Science.gov

Sample records for 1d tio2 nanofibers

  1. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.

    PubMed

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S G; Ramakrishna, Seeram

    2012-03-07

    Hollow mesoporous one dimensional (1D) TiO(2) nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO(2) nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO(2) nanofibers possess a high surface area of 118 m(2) g(-1) with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO(2) nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (J(sc)) are measured as 5.6% and 10.38 mA cm(-2) respectively, which are higher than those of DSSC made using regular TiO(2) nanofibers under identical conditions (η = 4.2%, J(sc) = 8.99 mA cm(-2)). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO(2) nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO(2) nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO(2) nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO(2) nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO(2) nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO(2) nanocatalysts.

  2. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S. G.; Ramakrishna, Seeram

    2012-02-01

    Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 °C. The annealed mesoporous TiO2 nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO2 nanofibers possess a high surface area of 118 m2 g-1 with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO2 nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (η) and short circuit current (Jsc) are measured as 5.6% and 10.38 mA cm-2 respectively, which are higher than those of DSSC made using regular TiO2 nanofibers under identical conditions (η = 4.2%, Jsc = 8.99 mA cm-2). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO2 nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO2 nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO2 nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO2 nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO2 nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO2 nanocatalysts.Hollow mesoporous one dimensional (1D) TiO2 nanofibers are successfully prepared by co-axial electrospinning of a titanium

  3. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis

    NASA Astrophysics Data System (ADS)

    Raghava Reddy, Kakarla; Gomes, Vincent G.; Hassan, Mahbub

    2014-03-01

    TiO2 nanofibers (30-50 nm diameter), fabricated by the electro-spinning process, were modified with organo-silane agents via a coupling reaction and were grafted with carbohydrate molecules. The mixture was carbonized to produce a uniform coating of amorphous carbon on the surface of the TiO2 nanofibers. The TiO2@C nanofibers were characterized by high resolution electron microscopy (HRTEM), x-ray diffraction (XRD), x-ray photoelectron (XPS), Fourier transform infrared (FTIR) and UV-vis spectroscopy. The photocatalytic property of the functional TiO2 and carbon nanocomposite was tested via the decomposition of an organic pollutant. The catalytic activity of the covalently functionalized nanocomposite was found to be significantly enhanced in comparison to unfunctionalized composite and pristine TiO2 due to the synergistic effect of nanostructured TiO2 and amorphous carbon bound via covalent bonds. The improvement in performance is due to bandgap modification in the 1D co-axial nanostructure where the anatase phase is bound by nano-carbon, providing a large surface to volume ratio within a confined space. The superior photocatalytic performance and recyclability of 1D TiO2@C nanofiber composites for water purification were established through dye degradation experiments.

  4. Influence of TiO2 nanofiber additives for high efficient dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Lee, Jae-Wook; Park, Ju-Young; Kim, Sun-Il

    2011-02-01

    TiO2 nanofibers were prepared from a mixture of titanium-tetra-isopropoxide and poly vinyl pyrrolidone by applying the electrospinning method. The samples were characterized by XRD, FE-SEM, TEM and BET analyses. The diameter of electrospun TiO2 nanofibers is in the range of 70 approximately 160 nm. To improve the short-circuit photocurrent, we added the TiO2 nanofibers in the TiO2 electrode of dye-sensitized solar cells (DSSCs). TiO2 nanofibers added in DSSCs can make up to 20% more conversion energy than the conventional DSSC with only TiO2 films only.

  5. Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers.

    PubMed

    Wang, Qingqing; Dong, Xianjun; Pang, Zengyuan; Du, Yuanzhi; Xia, Xin; Wei, Qufu; Huang, Fenglin

    2012-12-12

    Titanium dioxide-polyaniline/polyamide 6 (TiO(2)-PANI/PA6) composite nanofibers were prepared by in situ polymerization of aniline in the presence of PA6 nanofibers and a sputtering-deposition process with a high purity titanium sputtering target. TiO(2)-PANI/PA6 composite nanofibers and PANI/PA6 composite nanofibers were fabricated for ammonia gas sensing. The ammonia sensing behaviors of the sensors were examined at room temperature. All the results indicated that the ammonia sensing property of TiO(2)-PANI/PA6 composite nanofibers was superior to that of PANI/PA6 composite nanofibers. TiO(2)-PANI/PA6 composite nanofibers had good selectivity to ammonia. It was also found that the content of TiO(2) had a great influence on both the morphology and the sensing property of TiO(2)-PANI/PA6 composite nanofibers.

  6. Immobilization of TiO2 nanofibers on reduced graphene sheets: Novel strategy in electrospinning.

    PubMed

    Pant, Hem Raj; Adhikari, Surya Prasad; Pant, Bishweshwar; Joshi, Mahesh K; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-11-01

    A simple and efficient approach is developed to immobilize TiO2 nanofibers onto reduced graphene oxide (RGO) sheets. Here, TiO2 nanofiber-intercalated RGO sheets are readily produced by two-step procedure involving the use of electrospinning process to fabricate TiO2 precursor containing polymeric fibers on the surface of GO sheets, followed by simultaneous TiO2 nanofibers formation and GO reduction by calcinations. GO sheets deposited on the collector during electrospinning/electrospray can act as substrate on to which TiO2 precursor containing polymer nanofibers can be deposited which give TiO2 NFs doped RGO sheets on calcinations. Formation of corrugated structure cavities of graphene sheets decorated with TiO2 nanofibers on their surface demonstrates that our method constitutes an alternative top-down strategy toward fabricating verities of nanofiber-decorated graphene sheets. It was found that the synthesized TiO2/RGO composite revealed a remarkable increased in photocatalytic activity compared to pristine TiO2 nanofibers. Therefore, engineering of TiO2 nanofiber-intercalated RGO sheets using proposed facile technique can be considered a promising method for catalytic and other applications.

  7. Effect of calcination temperature on the photocatalytic properties of electrospun TiO2 nanofibers.

    PubMed

    Lee, Young-In; Lee, Jong-Sik; Park, Eun-Sil; Jang, Dae-Hwan; Lee, Jae-Eun; Kim, Kahee; Myung, Nosang V; Choa, Yong-Ho

    2014-10-01

    In this study, TiO2 nanofibers with a high aspect ratio and a large specific surface area were synthesized using the electrospinning technique, and the effect of calcination temperature on their crystal structure, diameter, specific surface area and photocatalytic activity was systematically investigated. The electrospun, as-prepared PVP/TTIP nanofibers were several tens of micrometers in length with a diameter of 74 nm. TiO2 nanofibers with an average diameter of 50 nm were prepared after calcination at various temperatures. The calcination temperature significantly influenced the photocatalytic and material properties of TiO2 including grain size and specific surface area. When compared to other nanostructured TiO2 materials, such as commercial TiO2 nanoparticles (P25, Degussa), the TiO2 nanofibers exhibited greater photocatalytic activity for the degradation of acetaldehyde and ammonia.

  8. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcón, Hugo; López, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m²/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials.

  9. Photocatalytic properties of silver nanoparticles decorated nanobranched TiO2 nanofibers.

    PubMed

    Yi, Chuan; Nirmala, R; Barakat, Nasser A M; Navamathavan, R; Kim, Hak-Yong

    2011-08-01

    In this study, nanobranched TiO2 nanofibers and silver loaded nanobranched TiO2 nanofibers were prepared by electrospinning technique followed by TiCl4 aqueous solution treatment and silver photodeposition method. Field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the products. X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) were conducted on the samples to study their chemical composition as well as crystallographic structure. The photocatalytic activities of these produced nanofibers were examined with two organic dyes, methylene blue and methyl orange, under ultraviolet (UV) light irradiation. The effect of nanobranches and silver modification on TiO2 nanofibers was revealed in the photocatalysis process. The photocatalytic degradation rates of silver loaded on nanobranched TiO2 nanofibers were 1.6 and 1.7 times as that of pure TiO2 nanofibers in the presence of methylene blue and methyl orange, respectively, which indicated silver nanoparticles combined nanobranches modified on the surface of TiO2 nanofibers could enhance the photocatalytic ability.

  10. Atomic-scale investigation of a new phase transformation process in TiO2 nanofibers.

    PubMed

    Lei, Yimin; Li, Jian; Wang, Zhan; Sun, Jun; Chen, Fuyi; Liu, Hongwei; Ma, Xiaohua; Liu, Zongwen

    2017-03-21

    Crystallography of phase transformation combining transmission electron microscopy (TEM) with in situ heating techniques and X-ray diffraction (XRD) can provide critical information regarding solid-state phase transitions and the transition-induced interfaces in TiO2 nanomaterials theoretically and experimentally. Two types of reduced titanium oxides (Ti3O5, Ti6O11) are found during ex situ and in situ heating of TiO2 (B) nanofibers with a specific morphology of the {100} single form (SF) in air and vacuum. The results indicate that the phase transformation process from TiO2 (B) follows the TiO2 (B) → Ti3O5 → Ti6O11 → anatase sequence for the nanofibers with the {100} SF. The occurrence of such a phase transition is selective to the morphology of TiO2 (B) nanofibers. The corresponding orientation relationships (COR) between the four phases are revealed according to the TEM characterization. Four types of coherent interfaces, following the CORs are also found. They are TiO2 (B)/Ti3O5, TiO2 (B)/Ti6O11, Ti6O11/anatase and TiO2 (B)/anatase respectively. The habit plane for the TiO2 (B) to Ti3O5 transition is calculated as the {100}TB by using the invariant line model. The detailed atomic transformation mechanism is elucidated based on the crystallographic features of the four phases.

  11. TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Shao, Changlu; Zhang, Zhenyi; Zhang, Mingyi; Mu, Jingbo; Guo, Zengcai; Liu, Yichun

    2011-07-01

    TiO2@carbon core/shell nanofibers (TiO2@C NFs) with different thinkness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform graphite carbon layer was formed around the electrospun TiO2 nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the TiO2@C NFs had remarkable light absorption in the visible region. The photocatalytic studies revealed that the TiO2@C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TiO2 nanofibers under visible light irradiation, which might be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and TiO2 with one dimension structure. Notably, the TiO2@C NFs could be easily recycled due to their one-dimensional nanostructural property.TiO2@carbon core/shell nanofibers (TiO2@C NFs) with different thinkness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform graphite carbon layer was formed around the electrospun TiO2 nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the TiO2@C NFs had remarkable light absorption in the visible region. The photocatalytic studies revealed that the TiO2@C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TiO2 nanofibers under visible light irradiation, which might be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and TiO2 with one dimension structure. Notably, the TiO2@C NFs could be easily recycled due to their

  12. Photocatalytic Oxidation of Volatile Organic Compounds Over Electrospun Activated TIO2/CARBON Nanofiber Composite

    NASA Astrophysics Data System (ADS)

    Gholamvand, Zahra; Aboutalebi, Seyed Hamed; Keyanpour-Rad, Mansoor

    In this study, TiO2/PAN-based fibers were prepared by electrospinning a composite solution containing both the desirable contents of TiO2 and a 10 wt. % PAN polymer solution dissolved in N, N-dimethylformamide. The TiO2 loaded electrospun PAN nanofibers were then carbonized at 1000 °C in N2 atmosphere furnace after stabilization at 230 °C in air. Then CNF/TiO2 nanofibers were oxidized at 450 °C in air. The morphology and structure of the TiO2-embeded carbon nanofibers were investigated by SEM and Raman spectroscopy. Specific surface area was determined using BET equation from N2 adsorption analysis. Photocatalytic tests were conducted in a UV illuminated set-up specialized for the filters using ethanol vapor. The results have shown that ethanol vapor was efficiently degraded on TiO2/CNF composite nanofiber mat under UV illumination. The aim of this study was to further investigate the feasibility of TiO2/ACF for practical indoor air purification.

  13. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning.

    PubMed

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-12-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 °C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue.

  14. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-07-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 °C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue.

  15. Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jinwei; Chen, Xi; Ai, Nan; Hao, Jumin; Chen, Qi; Strauf, Stefan; Shi, Yong

    2011-09-01

    Silver nanoparticle doped TiO2 nanofibers, prepared by the electrospinning process were used as the photoanode to fabricate dye sensitized solar cells. It was found that the nanoparticle doped solar cells have a significantly increased photocurrent density resulting in a 25% improved conversion efficiency compared to undoped solar cells. The improved performance is attributed to two factors: (1) the increased light harvesting efficiency due to the plasmon enhanced optical absorption induced by Ag nanoparticles, and (2) the improved electron collection efficiency as a result of faster electron transport in the Ag doped TiO2 nanofiber photoanode.

  16. Fabrication and characterization of TiO 2-ZnO composite nanofibers

    NASA Astrophysics Data System (ADS)

    Lotus, A. F.; Tacastacas, S. N.; Pinti, M. J.; Britton, L. A.; Stojilovic, N.; Ramsier, R. D.; Chase, G. G.

    2011-02-01

    Tetraisopropyl titanate, zinc acetate dihydrate, and polyvinylpyrrolidone (PVP) were mixed to obtain a composite solution for producing TiO 2-ZnO nanofibers. Electrospinning and subsequent calcination at 973 K were employed to produce composite metal-oxide nanofibers with diameters ranging from 50 to 150 nm. Characterization of the TiO 2-ZnO composite nanofibers was carried out by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV-vis) spectrophotometry. TGA reveals a total weight loss of 49% and no change in mass above 873 K. The nanofibers are predominantly made of titania and exhibit two different energy band gap values of 3.0 and 3.5 eV. Our findings indicate that in the composite TiO 2-ZnO nanofibers three different phases (anatase and rutile TiO 2 and wurtzite ZnO) can co-exist and retain their individual characteristic properties.

  17. Growth of TiO2 nanofibers on FTO substrates and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suryana, R.; Rahmawati, L. R.; Triyana, K.

    2016-11-01

    Growth of TiO2 nanofibers on fluorine-doped tin oxide (FTO) substrates have been performed using electrospinning method. Homogenous TiO2 solution as nanofibers material was prepared with titanium tetraisopropoxide (TTIP), ethanol, acetic acid and polyvinyl pyrrolidone (PVP) which was stirred for 24 h. TiO2 solution was loaded into the syringe pump. Electrospun voltage was operated under 15 kV with optimum distance between syringe tip and collector was 15 cm. FTO substrates were attached on the collector surface. Electrospinning coating time was varied at 15 min, 30 min, 45 min, and 60 min. Then TiO2 nanofibers layer was annealed at temperature of 450° C for 3 h. X-ray diffraction spectrum of TiO2 nanofibers showed major anatase peaks at 25.3°, 48.0° and 37.8° correlating crystal orientation of (101), (200), and (004), respectively while only one rutile peak at 27.5°(110). TiO2 nanofibers diameter was measured using atomic force microscopy (AFM). TiO2 nanofibers have diameter in range of 100-1000 nm. The obtained-TiO2 nanofibers were applied in dye-sensitized solar cell (DSSC) with beta-carotene as dye, carbon as catalyst, and I-/I3- redox couple as electrolyte. DSSC performance was analyzed from I-V characterization. Growth of TiO2 nanofibers at electrospinning time for 45 min has highest efficiency that is 0.016%. It is considered that TiO2 nanofibers at electrospinning time for 45 min can produce optimum thickness so that it is speculated many dyes adsorb on the nanofiber surfaces and many electrons diffuse toward the electrodes.

  18. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Albetran, H.; Low, I. M.

    2016-12-01

    Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

  19. Electrospun TiO2 nanofibers incorporated with graphene nanoflakes for energy conversion

    NASA Astrophysics Data System (ADS)

    Shinde, Manish A.; Alarifi, Ibrahim; Alharbi, Abdulaziz; Asmatulu, Ramazan

    2015-03-01

    Solar energy has been used in many different ways, including solar water heater, solar cooking, space heating, and electricity generation. The major drawbacks of the solar energy conversion systems are the lower conversion efficiency and higher manufacturing and replacement costs. In order to eliminate these obstacles, many studies were focused on the energy and cost efficiencies of the solar cells (particularly dye sensitized solar cells - DSSC and thin film solar cells). In the present study, TiO2 nanofibers incorporated with graphene nanoflakes (0, 2, 4, and 8wt.%) were produced using electrospinning process. The chemical utilized for the electrospinning process included poly (vinyle acetate), dimetylfomamide (DMF), titanium (IV) isopropoxide and acetic acid in the presence and absence of graphene nanoflakes. The resultant nanofibers were heat treated at 300 °C for 2 hrs in a standard oven to remove all the organic parts of the nanofibers, and then further heated up to 500 °C in an argon atmosphere for additional 12 hrs to crystalline the nanofibers. SEM, TEM and XRD studies showed that graphene and TiO2 nanofibers are well integrated in the nanofiber structures. This study may guide some of the scientists and engineers to tailor the energy bang gap structures of some of the semiconductor materials for different industrial applications, including DSSC, water splitting, catalyst, batteries, and fuel cell.

  20. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures.

    PubMed

    Kment, Stepan; Riboni, Francesca; Pausova, Sarka; Wang, Lei; Wang, Lingyun; Han, Hyungkyu; Hubicka, Zdenek; Krysa, Josef; Schmuki, Patrik; Zboril, Radek

    2017-04-11

    Solar driven photoelectrochemical water splitting (PEC-WS) using semiconductor photoelectrodes represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as dihydrogen (H2). In this context, titanium dioxide (TiO2) and iron oxide (hematite, α-Fe2O3) are among the most investigated candidates as photoanode materials, mainly owing to their resistance to photocorrosion, non-toxicity, natural abundance, and low production cost. Major drawbacks are, however, an inherently low electrical conductivity and a limited hole diffusion length that significantly affect the performance of TiO2 and α-Fe2O3 in PEC devices. To this regard, one-dimensional (1D) nanostructuring is typically applied as it provides several superior features such as a significant enlargement of the material surface area, extended contact between the semiconductor and the electrolyte and, most remarkably, preferential electrical transport that overall suppress charge carrier recombination and improve TiO2 and α-Fe2O3 photoelectrocatalytic properties. The present review describes various synthetic methods and modifying concepts of 1D-photoanodes (nanotubes, nanorods, nanofibers, nanowires) based on titania, hematite, and on α-Fe2O3/TiO2 heterostructures, for PEC applications. Various routes towards modification and enhancement of PEC activity of 1D photoanodes are discussed including doping, decoration with co-catalysts and heterojunction engineering. Finally, the challenges related to the optimization of charge transfer kinetics in both oxides are highlighted.

  1. Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation.

    PubMed

    Xu, Jie; Wang, Wenzhong; Shang, Meng; Gao, Erping; Zhang, Zhijie; Ren, Jia

    2011-11-30

    Bi-doped TiO(2) nanofibers with different Bi content were firstly prepared by an electrospinning method. The as-prepared nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence spectra (PL), and UV-vis diffuse reflectance spectroscopy (DRS). The results indicated that Bi(3+) ions were successfully incorporated into TiO(2) and extended the absorption of TiO(2) into visible light region. The photocatalytic experiments showed that Bi-doped TiO(2) nanofibers exhibited higher activities than sole TiO(2) in the degradation of rhodamine B (RhB) and phenol under visible light irradiation (λ>420 nm), and 3% Bi:TiO(2) samples showed the highest photocatalytic activities.

  2. Efficient removal of oil from oil contaminated water by superhydrophilic and underwater superoleophobic nano/micro structured TiO2 nanofibers coated mesh.

    PubMed

    Gunatilake, Udara Bimendra; Bandara, Jayasundera

    2017-03-01

    In this report, we investigated the TiO2 nanofibers coated stainless steel mesh as a novel underwater superoleophobic membrane for the effective separation of contaminated oil-water mixtures. The membrane was fabricated by spray deposition of hydrothermally synthesized TiO2 nanofibers on stainless steel mesh. The fabricated membrane exhibits superhydrophilicity and supereleophobicity properties in air and underwater respectively allowing the separation of oil-water efficiently. Randomly deposited TiO2 nanofibers on mesh exhibit rough surface property and hence superhydrophilic nature. Water oil separation efficiencies of ∼90 and ∼99% were achieved with this filter for less viscous and highly viscous oil respectively. Additionally, the TiO2 nanofibers coated mesh can degrade immiscible organic molecules due to photocatalytic activity of TiO2 nanofibers under UV light. As a result of self-cleaning property of TiO2 nanofibers coated mesh, the durability of the filter membrane is enhanced.

  3. Electrospun nylon-6 spider-net like nanofiber mat containing TiO(2) nanoparticles: a multifunctional nanocomposite textile material.

    PubMed

    Pant, Hem Raj; Bajgai, Madhab Prasad; Nam, Ki Taek; Seo, Yun A; Pandeya, Dipendra Raj; Hong, Seong Tshool; Kim, Hak Yong

    2011-01-15

    In this study, electrospun nylon-6 spider-net like nanofiber mats containing TiO(2) nanoparticles (TiO(2) NPs) were successfully prepared. The nanofiber mats containing TiO(2) NPs were characterized by SEM, FE-SEM, TEM, XRD, TGA and EDX analyses. The results revealed that fibers in two distinct sizes (nano and subnano scale) were obtained with the addition of a small amount of TiO(2) NPs. In low TiO(2) content nanocomposite mats, these nanofiber weaves were found uniformly loaded with TiO(2) NPs on their wall. The presence of a small amount of TiO(2) NPs in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO(2) antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved mechanical strength and UV blocking ability will also make it a potential candidate for protective clothing.

  4. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability.

    PubMed

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-03-14

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.

  5. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    PubMed Central

    Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe

    2017-01-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503

  6. Electrospun Nb-doped TiO2 nanofiber support for Pt nanoparticles with high electrocatalytic activity and durability

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae

    2017-03-01

    This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.

  7. Photochromism-based detection of volatile organic compounds by W-doped TiO2 nanofibers.

    PubMed

    Jin, Ming; Zhang, Xintong; Pu, Hongting; Nishimoto, Shunsuke; Murakami, Taketoshi; Fujishima, Akira

    2011-10-01

    W-doped TiO(2) nanofibers with various compositions (W/Ti: 2-8%) were fabricated by the electrospinning method from respective precursor solutions containing tungsten(V) pentaethoxide, titanium tetraisopropoxide (TTIP), and polyvinylpyrrolidone (PVP), followed with calcination at 550 °C. Morphological and structural characteristics of these nanofibers were studied with SEM, XRD and XPS. W-doping inhibited the crystal growth and anatase-to-rutile transformation of TiO(2) nanofibers. W-doped TiO(2) nanofiber mats showed good photocatalytic oxidation abilities for acetone. Obvious color change from white to blue of mats during the photocatalysis process can be detected by naked eyes, which provides a good way in detection of pollutants in indoor air, especially for the volatile organic compounds (VOCs).

  8. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

  9. Photocatalytic Activity of W-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Song, Yo-Seung; Cho, Nam-Ihn; Lee, Myung-Hyun; Kim, Bae-Yeon; Lee, Deuk Yong

    2016-02-01

    Photocatalytic degradation of methylene blue (MB) in water was examined using W-doped TiO2 nanofibers prepared by a sol-gel derived electrospinning and subsequent calcination for 4 h at 550 degrees C. Different concentrations of W dopant in the range of 0 to 8 mol% were synthesized to evaluate the effect of W concentration on the photocatalytic activity of TiO2. XRD results indicated that the undoped TiO2 is composed of anatase and rutile phases. The rutile phase was transformed to anatase phase completely with the W doping. Among W-TiO2 catalysts, the 2 mol% W-TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant increased from 1.04 x 10(-3) min(-1) to 3.54 x 10(-3) min(-1) with the increase of W doping from 0 to 2 mol%, but decreased down to 1.77 x 10(-3) min(-1) when the W content was 8 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with W-TiO2 catalysts than with pure TiO2-

  10. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Hua; Zhang, Tianxi; Pan, Chao; Pu, Chenchen; Hu, Yang; Hu, Xiaoyun; Liu, Enzhou; Fan, Jun

    2017-01-01

    TiO2 nanofiber film (TiO2 NFF) was successfully fabricated by an ethylene glycol-assisted hydrothermal method, and then self-assembled flake-like Bi2MoO6 was grown on the surface of TiO2 nanofiber under alcohol thermal condition. The investigations indicate that the nanofiber structure of TiO2 films exhibits excellent visible light scattering property, the scattering light overlaps with the absorption band of Bi2MoO6, which can enhance the utility of incident light. The prepared Bi2MoO6/TiO2 composites show obviously enhanced photocatalytic activity for methylene blue (MB) degradation compared with pure TiO2 nanofiber under visible light irradiation (λ > 420 nm). The enhanced photocatalytic activity is primarily attributed to the synergistic effect of visible light absorption and effective electron-hole separation at the interfaces of the two semiconductors, which is confirmed by photoluminescence (PL) and electrochemical tests.

  11. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Drunka, R.; Grabis, J.; Jankovica, Dz; Krumina, A.; Rasmane, Dz

    2015-03-01

    In the present work formation of active TiO2 nanofibers in microwave synthesis and their modification with platinum were studied. Mixture of anatase and rutile nanopowder and 10M KOH solution were used as raw materials. Microwave assisted synthesis method permitted to obtain TiO2 nanofibres with a diameter of 10nm and a specific surface area up to 40.2 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution and illuminated with UV irradiation or reduced with sodium boronhydride. To modify titania with sulphur and prepare co-doped nanofibers platinum doped samples were extra treated in hydrogen sulphide atmosphere. Photocatalytic activity was determined by degradation of the methylene blue (MB) solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds.

  12. Highly Efficient Photocatalytic Hydrogen Evolution in Ternary Hybrid TiO2/CuO/Cu Thoroughly Mesoporous Nanofibers.

    PubMed

    Hou, Huilin; Shang, Minghui; Gao, Fengmei; Wang, Lin; Liu, Qiao; Zheng, Jinju; Yang, Zuobao; Yang, Weiyou

    2016-08-10

    Development of novel hybrid photocatalysts with high efficiency and durability for photocatalytic hydrogen generation is highly desired but still remains a grand challenge currently. In the present work, we reported the exploration of ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers via a foaming-assisted electrospinning technique. It is found that by adjusting the Cu contents in the solutions, the unitary (TiO2), binary (TiO2/CuO, TiO2/Cu), and ternary (TiO2/CuO/Cu) mesoporous products can be obtained, enabling the growth of TiO2/CuO/Cu ternary hybrids in a tailored manner. The photocatalytic behavior of the as-synthesized products as well as P25 was evaluated in terms of their hydrogen evolution efficiency for the photodecomposition water under Xe lamp irradiation. The results showed that the ternary TiO2/CuO/Cu thoroughly mesoporous nanofibers exhibit a robust stability and the most efficient photocatalytic H2 evolution with the highest release rate of ∼851.3 μmol g(-1) h(-1), which was profoundly enhanced for more than 3.5 times with respect to those of the pristine TiO2 counterparts and commercial P25, suggesting their promising applications in clean energy production.

  13. Hierarchically structured suspended TiO2 nanofibers for use in UV and pH sensor devices.

    PubMed

    Lee, Won Seok; Park, Yang-Seok; Cho, Yoon-Kyoung

    2014-08-13

    Photoelectrochemical sensors based on hierarchically structured titanium dioxide (TiO2) nanofibers (NFs) were fabricated by combination of electrospinning, carbon microelectromechanical systems (MEMS), and hydrothermal reaction. During the electrospinning step, a rotating drum collector was used to align and position NFs of titanium tetraisopropoxide (TTIP) in polyvinylpyrrolidone (PVP) on top of a carbon-MEMS structure. Following calcination under vacuum, a stable ohmic contact was obtained between suspended TiO2-carbon NFs (TiO2/C NF) and the carbon electrodes. Subsequent to this, a hierarchical nanostructure of TiO2 nanowires (TiO2 NWs) was hydrothermally synthesized onto the TiO2/C NFs and successfully utilized as UV and pH sensors. This is the first demonstration of a semiconductor-based nanofiber sensor suspended on carbon electrodes that has been achieved by a relatively simple and cost-effective electrospinning method. Furthermore, these sensors demonstrate a high sensitivity, as well as a stable ohmic contact, due to the large surface area of the TiO2 NWs and the carbon-carbon contact between the suspended TiO2/C NFs and carbon electrodes.

  14. Electrospinning Titanium Dioxide (TiO2) nanofiber for dye sensitized solar cells based on Bryophyta as a sensitizer

    NASA Astrophysics Data System (ADS)

    Asma Ilahi, Novita; Suryana, Risa; Nurrosyid, Fahru; Kusuma, N. T. Linda

    2017-01-01

    From an engineering and economic perspective, immobilized TiO2 nanocatalysts are preferred in a variety of applications. In this study, TiO2 polymer solution was synthesized using ethanol, acetic acid, polyvinylpyrrolidone (PVP), and titanium tetra isopropoxide (TTIP). TiO2 solution was deposited on the FTO substrate by electrospinning method to obtain nano-sized layer. Capillary of syringes given a positive DC voltage of 6 kV to produce nanofiber, then annealed at 450 °C for 3 hours. Chlorophyll has obtained from extracted moss through a chromatographic process to used for dye. TiO2 nanofiber layer manufactured with varied by time and characterized by UV-Vis and IV-meter. The result exhibited a maximum efficiency of 0,0036% and significant absorption at 350 nm-500 nm wavelength.

  15. Performance of photocatalytic oxidation of tetracycline in aqueous solution by TiO2 nanofibers

    PubMed Central

    2013-01-01

    The presence of pharmaceutical compounds in water and soil has become an environmental concern. The aim of this study was to evaluate the performance of TiO2 nanofiber in the oxidation of the antibiotic tetracycline. TiO2 nanofiber was fabricated by electro-spinning method, and then was calcined at 560°C for 2 h. Central composite design (CCD) statistic model was used to optimize tetracycline concentration, time and pH for TiO2 catalyst. A tubular Pyrex glass reactor with diameter of 15 cm and height of 30 cm was designed and a 125W Philips HPLN lamp (UV, λ > 254 nm) was used as light source. Samples were measured by high-performance liquid chromatography (HPLC). Equation of model suggests a direct relationship between pH and time with efficiency of tetracycline removal. The observations indicated that time is the most significant (scaled estimate = + 28.04) parameter in efficiency of tetracycline removal. The application of response surface methodology yielded the equation of Y = 65.82 + 5.74 pH + 28.04 time + (−3.07)(pH)2 + (−6.6)(time)2, with R2 = 0.986 which represents good reliability of model. Based on the response surface plots optimum conditions for degradation of tetracycline with maximum efficiency of around 95% was attained. These conditions are as follow; concentration: 50 mg/l, pH= 8.3, time= 15 min. PMID:24499711

  16. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Hu, Junhua; Wang, Lijie; Zhang, Peng; Liang, Changhao; Shao, Guosheng

    2016-10-01

    Carbon-layer-coated TiO2/WO3 nanofibers (WTC) were fabricated by combining the electrospinning technique (for TiO2/WO3 nanofibers) and hydrothermal method (for carbon shell). The structure characterization results showed that TiO2/WO3 nanofibers (WT) were encased within an uniform carbon shell about 10 nm in thickness. By adjusting the content of WO3, the graphitization degree of carbon layer could be controlled, and the WTC nanofibers had remarkable light absorption in the visible region. Furthermore, the photoelectrochemical performance and photocatalytic activity were investigated systematically. As expected, the H2-generation rate of the as-prepared composite materials was greatly enhanced compared with pure TiO2 nanofibers (TNFs), TiO2/WO3 nanofibers (WT) and TiO2@carbon core/shell nanofibers (TC). The enhanced activities were mainly attributed to the multichannel-improved charge-carrier photosynthetic heterojunction system with the carbon layer on the surface of TiO2 as an electron collector and WO3 as a hole collector, leading to effective charge separation on these components, which were evidenced by photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy (EIS) and photocurrent analysis. Besides, the addition of WO3 promoted the graphitization of carbon layer, which in turn improved transport of electrons in the carbon layer and also contributed to the performance improvement.

  17. Sonocrystallization of ZIF-8 on Electrostatic Spinning TiO2 Nanofibers Surface with Enhanced Photocatalysis Property through Synergistic Effect.

    PubMed

    Zeng, Xue; Huang, Liuqing; Wang, Chaonan; Wang, Jianshu; Li, Jintang; Luo, Xuetao

    2016-08-10

    Semiconductor-metal-organic framework (MOF) hybrid photocatalysts have attracted increasing attention because of their enhanced photocatalytic activity. However, the effect of the interface reaction between semiconductor and MOFs is rarely studied. In this work, we studied the synthesis and photocatalytic activity of zeolitic imidazolate framework-8 (ZIF-8) decorated electrostatic spinning TiO2 nanofibers (TiO2 ESNFs). TiO2/ZIF-8 hybrid photocatalysts were prepared via a facile sonochemical route. It was crucial that the ZIF-8 was assembled homogeneously on the surface of TiO2 ESNFs and formed a N-Ti-O bond under sonochemical treatment, which may result in reducing recombination of the electron-hole pairs. The chemically bonded TiO2/ZIF-8 nanocomposites displayed excellent performance of thermal stability, controllable crystallinity, and great enhancement of photocatalytic activity in Rhodamine B (Rh B) photodegradation. Furthermore, the UV-vis light adsorption spectra of TiO2/ZIF-8 nanocomposites showed that the ZIF-8 photosensitizer extended the spectral response of TiO2 to the visible region. The new strategy reported here can enrich the method for designing new semiconductor-MOF hybrid photocatalysts.

  18. TiO2 nanofibers coated with rGO and Ag2O for promoting visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Wang, Yuan; OuYang, Xiaoping; Liu, Lixin; Zhu, Wenjun

    2017-03-01

    Due to the increase in environmental pollution, highly efficient photocatalysts with enhanced visible light photocatalytic activity have attracted considerable attention. In this work, TiO2/reduced graphene oxide (rGO)/Ag2O nanoheterostructures (NHs) based photocatalysts are successfully synthesized and a markedly higher visible light photocatalytic activity is achieved, of which at least 96% of Rhodamine B (RhB) molecules are decomposed by the TiO2/rGO/Ag2O NHs after 120 min visible light irradiation, but only 30% of RhB molecules are decomposed by pure TiO2 nanofibers (NFs). Furthermore, the influence of rGO volume ratio in TiO2/rGO/Ag2O NHs photocatalysts on visible light photocatalysis is studied, and the result shows that the sample with 5 vol% rGO exhibits the highest visible light photocatalytic activity. The much enhanced visible light photocatalytic performance of the ternary TiO2/rGO/Ag2O NHs can be ascribed to the intense visible light absorption of Ag2O, the excellent electron conductivity of 2D rGO and the matched energy level of TiO2, Ag2O, and rGO, for efficient boost of the photogenerated charge carriers transfer and separation at the interface of hierarchical TiO2/rGO/Ag2O NHs.

  19. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode.

    PubMed

    Jin, En Mei; Zhao, Xing Guan; Park, Ju-Young; Gu, Hal-Bon

    2012-02-02

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced.

  20. Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode

    PubMed Central

    2012-01-01

    For high solar conversion efficiency of dye-sensitized solar cells [DSSCs], TiO2 nanofiber [TN] and Ag-doped TiO2 nanofiber [ATN] have been extended to be included in TiO2 films to increase the amount of dye loading for a higher short-circuit current. The ATN was used on affected DSSCs to increase the open circuit voltage. This process had enhanced the exit in dye molecules which were rapidly split into electrons, and the DSSCs with ATN stop the recombination of the electronic process. The conversion efficiency of TiO2 photoelectrode-based DSSCs was 4.74%; it was increased to 6.13% after adding 5 wt.% ATN into TiO2 films. The electron lifetime of DSSCs with ATN increased from 0.29 to 0.34 s and that electron recombination was reduced. PMID:22297128

  1. Comparison of Titanium Dioxide (TiO2) nanoparticle-nanofiber and nanofiber-nanoparticle on the application of dye-sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Kusumaning Tyas, Linda; Suryana, Risa; Nurosyid, Fahru; Asma Ilahi, Novita

    2017-01-01

    Dye-sensitized Solar Cell (DSSC) is a solar cell that has great potential in the future because of the cheaper cost of fabrication and environmentally friendly basic ingredients. This study aims to determine the effect of type of screen on the TiO2 layer as the active electrode DSSC. The active electrode TiO2 based DSSC fabricated by the method of double layer. Efficiency Dye-sensitized Solar Cell (DSSC) can be obtained from the current-voltage curve I-V meter. Nanofiber on the nanoparticles can reach a highest efficiency of DSSC about 0,015%. The second variation of between nanofiber-nanoparticle layering, and nanoparticle-nanofiber, it appears that the nanofiber layer of nanoparticles above, no significant changes, namely in 10 minutes η = 0.014965; 15 minutes η = 0.011021 and 20 minutes η = 0.013332. This is demonstrated by the nature of the dominant nanofiber as a photon trap covered by the nature of the dominant nanoparticles absorb the dye, so that overtime does not affect the incoming electron. While the results of nanofiber layer on the nanoparticles changed significantly in the variation of 20 minutes, ie η = 0.00283. You can also see the most optimum time was 15 minutes, which is η = 0.01559. This may be due in this 15 minute nanofiber coating has a thickness that is optimum so that electrons can reach the electrode diffuse due to the interaction between photons and the dye more.

  2. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Chen, Weiwei; Wang, Jianjun; Shen, Yang; Gu, Lin; Lin, Yuanhua; Nan, Ce-Wen

    2014-05-01

    Interface issues are common and crucial in nanocomposites or nanohybrid systems since the interface area is enormous on the nanoscale. In the 0-3 dimensional polymer nanocomposites, in which nano-inclusions (0-dimension) are embedded in a 3-dimensionally connected polymer matrix, enhanced dielectric permittivity could be induced by the interfacial polarization at the interfaces between the nano-inclusions and the polymer matrix. In this contribution, we propose and demonstrate that the topological structure of the interface plays an equally important role as the area of the interface in determining the dielectric polarization of polymer nanocomposites. TiO2 nanofibers embedded with BaTiO3 nanoparticles are prepared via electrospinning and then fused with polyvinyl difluoride (PVDF) into polymer nanocomposite films. Modulation of hierarchical interfaces is thus achieved for these nanocomposites. The confinement of these additional interfaces inside the TiO2 nanofibers leads to percolated networks formed by the interfacial regions. The dielectric permittivity of the polymer nanocomposites is thus enhanced by ~300% over the PVDF matrix at a low filler loading of 11 vol%. A phase-field simulation study indicates that the enhanced dielectric permittivity could be attributed to the increased polarization in the percolated interfacial regions inside the TiO2 nanofibers. The instantaneous electrical breakdown of the TiO2@BaTiO3 nanofibers studied by the in situ transmission electron microscopy method further reveals the striking feature that the breakdown behavior of the nanofibers changes from semiconductive to metallic with the incorporation of insulating BaTiO3 nanoparticles.Interface issues are common and crucial in nanocomposites or nanohybrid systems since the interface area is enormous on the nanoscale. In the 0-3 dimensional polymer nanocomposites, in which nano-inclusions (0-dimension) are embedded in a 3-dimensionally connected polymer matrix, enhanced dielectric

  3. A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell.

    PubMed

    Nair, A Sreekumaran; Jose, Rajan; Shengyuan, Yang; Ramakrishna, Seeram

    2011-01-01

    Development of highly efficient dye-sensitized solar cells (DSSCs) with good photovoltaic parameters is an active research area of current global interest. In this article, we provide a simple recipe for the fabrication of electrospun TiO(2) nanorod-based efficient dye-sensitized solar cell using a Pechini-type sol. The Pechini-type sol of TiO(2) nanofibers produces a highly porous and compact layer of TiO(2) upon doctor-blading and sintering without the need for an adhesion and scattering layers or TiCl(4) treatment. The best nanofiber DSSCs with an area of ~0.28 cm(2) shows an efficiency of ~4.2% under standard test conditions (100 mW/cm(2), 25°C and AM1.5 G) and an incident photon-to-electron conversion efficiency (IPCE) of ~50%. Impedance measurements show lower charge transfer resistance that improved the fill factor. We believe that simple approaches such as the present one to develop nanofiber DSSCs would open up enormous possibilities in effective harvesting of solar energy for commercial applications, considering the fact that electrospinning is a cost-effective method for the mass scale production of nanofibers and nanorods.

  4. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers.

    PubMed

    Zhang, Xin; Chen, Weiwei; Wang, Jianjun; Shen, Yang; Gu, Lin; Lin, Yuanhua; Nan, Ce-Wen

    2014-06-21

    Interface issues are common and crucial in nanocomposites or nanohybrid systems since the interface area is enormous on the nanoscale. In the 0-3 dimensional polymer nanocomposites, in which nano-inclusions (0-dimension) are embedded in a 3-dimensionally connected polymer matrix, enhanced dielectric permittivity could be induced by the interfacial polarization at the interfaces between the nano-inclusions and the polymer matrix. In this contribution, we propose and demonstrate that the topological structure of the interface plays an equally important role as the area of the interface in determining the dielectric polarization of polymer nanocomposites. TiO2 nanofibers embedded with BaTiO3 nanoparticles are prepared via electrospinning and then fused with polyvinyl difluoride (PVDF) into polymer nanocomposite films. Modulation of hierarchical interfaces is thus achieved for these nanocomposites. The confinement of these additional interfaces inside the TiO2 nanofibers leads to percolated networks formed by the interfacial regions. The dielectric permittivity of the polymer nanocomposites is thus enhanced by ∼300% over the PVDF matrix at a low filler loading of 11 vol%. A phase-field simulation study indicates that the enhanced dielectric permittivity could be attributed to the increased polarization in the percolated interfacial regions inside the TiO2 nanofibers. The instantaneous electrical breakdown of the TiO2@BaTiO3 nanofibers studied by the in situ transmission electron microscopy method further reveals the striking feature that the breakdown behavior of the nanofibers changes from semiconductive to metallic with the incorporation of insulating BaTiO3 nanoparticles.

  5. Fabrication of a TiO2@porphyrin nanofiber hybrid material: a highly efficient photocatalyst under simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    La, Duong Duc; Rananaware, Anushri; Phuong Nguyen Thi, Hoai; Jones, Lathe; Bhosale, Sheshanath V.

    2017-03-01

    The solar spectrum consists of 8% UV radiation, while 45% of solar energy is from visible light. It is therefore desirable to fabricate a hybrid material which is able to harvest energy from a wide range of photons from the sun for applications such as solar cells, photovoltaics, and photocatalysis. In this study we report on the fabrication of a TiO2@porphyrin hybrid material by surfactant-assisted co-assembly of monomeric porphyrin molecules with TiO2 nanoparticles. The obtained TiO2@porphyrin composite shows excellent integration of TiO2 particles with diameters of 15–30 nm into aggregated porphyrin nanofibers, which have a width of 70–90 nm and are several µm long. SEM, XPS, XRD, FTIR, UV–Vis and fluorescence spectroscopy were employed to characterize the TiO2@TCPP hybrid material. This material exhibits efficient photocatalytic performance under simulated sunlight, due to synergistic photocatalytic activities of the porphyrin aggregates in visible light and TiO2 particles in the UV region. A plausible mechanism for photocatalytic degradation is also proposed and discussed.

  6. Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Hassen, D.; Shenashen, M. A.; El-Safty, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A.; El-Safty, A.; Yamaguchi, H.

    2016-10-01

    The development of inexpensive and effective electrocatalysts for oxygen reduction reaction (ORR) as a substitute for commercial Pt/C catalyst is an important issue in fuel cells. In this paper, we report on novel fabrication of self-supported nitrogen-doped carbon-supported titanium nanofibers (Nsbnd TiO2@C) and carbon-supported titanium (TiO2@C) electrocatalysts via a facile electrospinning route. The nitrogen atom integrates physically and homogenously into the entire carbon-titanium structure. We demonstrate the catalytic performance of Nsbnd TiO2@C and TiO2@C for ORR under alkaline conditions in comparison with Pt/C catalyst. The Nsbnd TiO2@C catalyst shows excellent ORR reactivity and durability. Interestingly, among all the catalysts used in this ORR, Nsbnd TiO2@C-0.75 exhibits remarkable competitive oxygen reduction activity in terms of current density and onset potential, as well as superior methanol tolerance. Such tolerance attributes to maximizing the diffusion of trigger pulse electrons during catalytic reactions because of enhanced electronic features. Results indicate that our fabrication strategy can provide an opportunity to produce a simple, efficient, cost-effective, and promising ORR electrocatalyst for practical applications in energy conversion and storage technologies.

  7. Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Guan, Hongyu; Wang, Xiaohong; Guo, Yihang; Shao, Changlu; Zhang, Xintong; Liu, Yichun; Louh, Rong-Fuh

    2013-09-01

    Novel nanostructured Ag/TiO2 hybrid nanofibers (NFs) have been successfully prepared via a simple electrospinning process combined with silver mirror reaction. The Ag/TiO2 NFs demonstrated a unique morphology with evenly distributed Ag nanoparticles uniformly deposited onto the surface of each individual TiO2 NFs. The loading capacity and size of Ag NPs can be easily controlled by varying the silver mirror reaction time. Compared with pristine TiO2 NFs, such heterogeneous Ag/TiO2 nanocomposites exhibited preferable photocatalytic activity during photocatalytic degradation of rhodamine-B under the simulated sunlight irradiation and this enhanced photocatalytic performance was driven by combination and interaction between TiO2 and Ag NPs.

  8. Fabrication and characterization of TiO2 coated cone shaped nano-fiber pH sensor

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Bhardwaj, V.; Gangwar, R. K.; De, M.; Singh, V. K.

    2017-03-01

    In the present paper a novel cone shaped nano-fiber (CSNF) pH sensor using multi-mode fiber (MMF) has been fabricated and demonstrated. Three different pH indicators, chlorophenol red, bromothymol blue and cresol red with precursor tetraethyl orthosilicate (TEOS) have been used for fabrication of pH sensing layer. A significant enhancement in sensing properties of pH sensor with TiO2 thin film has been observed. The pH sensor with TiO2 thin film shows the quite high sensitivity (1.16 dBm/pH) as compared to sensor with simple pH coating (0.81 dBm/pH) at 1550 nm with a good linear response. Moreover, the sensor with TiO2 film exhibits fast response time of ∼ 25 s for pH values ranging from 4 to 11 with excellent stability and durability.

  9. Fabrication characterization and activity of a solar light driven photocatalyst: cerium doped TiO2 magnetic nanofibers.

    PubMed

    Li, Cong-Ju; Wang, Bin; Wang, Jiao-Na

    2012-03-01

    A novel magnetic separable composite photocatalytic nanofiber consisting of TiO2 as the major phase, CeO(2-y) and CoFe2O4 as the dopant phase was prepared by sol-gel method and electrospinning technique, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrum (UV-vis DRS) and vibrating sample magnetometer (VSM). The photocatalytic activity of the resultant CoFe2O4-TiO2 and CeO(2-y)/CoFe2O4-TiO2 nanofibers was evaluated by photodegradation of methylene blue (MB) in an aqueous solution under xenon lamp (the irradiation spectrum energy distribution is similar to sunlight) irradiation in a photochemical reactor. The results showed that the dopant of Ce could affect the absorbance ability and photo-response range. The sample containing 1.0 wt% CeO(2-y) exhibited the highest degradation with 35% for MB under simulate solar light irradiation. Furthermore, the as-synthesized composite photocatalytic nanofibers could be separated easily by an external magnetic field, thus it might hold potential for application in wastewater treatment.

  10. Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Karanjit, Sudeep; Zhang, Lifeng; Fong, Hao; Qiao, Qiquan; Zhu, Zhengtao

    2011-02-01

    Herein, we report the transient photocurrent and photovoltage studies on the charge transport in dye sensitized solar cells (DSSCs) made from the composites of electrospun titanium oxide (TiO2) nanofibers, and conventional TiO2 nanoparticles. The results on charge transport parameters (including the charge recombination lifetime, the electron transport lifetime, and the diffusion length) indicated that the addition of TiO2 nanofibers into composite photoanodes led to substantial improvement on the efficiency of charge collection, suggesting that the composites of nanoparticles and one-dimensional nanostructures are promising materials for the development of DSSCs with high efficiency.

  11. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.

    PubMed

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent photocatalytic organic degradation and H2 generation from dye wastewater. The enhanced photocatalytic activity of TiO2/CuO composite nanofibers was ascribed to its excellent synergy of physicochemical properties: 1) mesoporosity and large specific surface area for efficient substrate adsorption, mass transfer and light harvesting; 2) red-shift of the absorbance spectra for enhanced light utilization; 3) long nanofibrous structure for efficient charge transfer and ease of recovery, 4) TiO2/CuO heterojunctions which enhance the separation of electrons and holes and 5) presence of CuO which serve as co-catalyst for the H2 production. The TiO2/CuO composite nanofibers also exhibited rapid settleability by gravity and uncompromised reusability. Thus, the as-synthesized TiO2/CuO composite nanofibers represent a promising candidate for highly efficient concurrent photocatalytic organic degradation and clean energy production from dye wastewater.

  12. Facile synthesis of GO@SnO2/TiO2 nanofibers and their behavior in photovoltaics.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Yasin, Ahmed S; Choi, Ho-Suk; Khalil, KhalilAbdelrazek; Barakat, Nasser A M

    2017-03-15

    Chemical doping is a widely-used strategy to improve the performance of TiO2 for the dye-sensitized solar cells (DSCs). However, the effect of two efficient dopants has been rarely investigated. We present the synthesis of GO@SnO2/TiO2 nanofibers (NFs) by a facile method using electrospinning and hydrothermal processes. The synthesized NFs are described in terms of morphology, crystallinity and chemistry through FESEM, TEM, HR-TEM, XRD, EDX, XPS, FT-IR and Raman spectra. As the results, the axial ratio and the average diameter of NFs decreased after the hydrothermal treatment and calcination process, respectively. The prepared Titania-based nanofibers have 81.82% anatase and 18.18% rutile-structure. The developed materials are applied as working electrodes of DSCs. The photovoltaic performances showed that the efficiency of the device employed GO@SnO2/TiO2 photoanode gave 5.41%, which was higher than those of cells fabricated with SnO2/TiO2 NFs (3.41%) and GO@TiO2 NFs (4.52%) photoanodes. The photovoltaic parameters such as Jsc, Voc, FF and Rct are calculated and found to be 11.19mAcm(-2), 0.72V, 0.67 and 9.26Ω, respectively. The high photovoltaic response of DSC based of GO@SnO2/TiO2 NFs may be attributed to the large surface area of the NFs, and the low electron recombination. Furthermore, the start-stop switches of the cell devices with the developed photoanode affirmed the stability and photovoltaic performance of the cell.

  13. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure.

    PubMed

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-19

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti(3+) interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  14. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    PubMed Central

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications. PMID:28102314

  15. Improved Solar-Driven Photocatalytic Performance of Highly Crystalline Hydrogenated TiO2 Nanofibers with Core-Shell Structure

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chen, Ching-Hsiang; Huang, Wei-Kang; Hsiao, Kai-Chi; Lin, Ting-Han; Chan, Shun-Hsiang; Wu, Po-Yeh; Lu, Chun-Fu; Chang, Yin-Hsuan; Lin, Tz-Feng; Hsu, Kai-Hsiang; Hsu, Jen-Fu; Lee, Kun-Mu; Shyue, Jing-Jong; Kordás, Krisztián; Su, Wei-Fang

    2017-01-01

    Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO2 nanofibers (H:TiO2 NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO2 NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses. Photodegradation of various organic dyes such as methyl orange, rhodamine 6G and brilliant green is shown to take place with significantly higher rates on our novel catalyst than on pristine TiO2 nanofibers and commercial nanoparticle based photocatalytic materials, which is attributed to surface defects (oxygen vacancy and Ti3+ interstitial defect) on the hydrogen treated surface. We propose three properties/mechanisms responsible for the enhanced photocatalytic activity, which are: (1) improved absorbance allowing for increased exciton generation, (2) highly crystalline anatase TiO2 that promotes fast charge transport rate, and (3) decreased charge recombination caused by the nanoscopic Schottky junctions at the interface of pristine core and hydrogenated shell thus promoting long-life surface charges. The developed H:TiO2 NFs can be helpful for future high performance photocatalysts in environmental applications.

  16. Electrospun Fe3O4/TiO2 hybrid nanofibers and their in vitro biocompatibility: prospective matrix for satellite cell adhesion and cultivation.

    PubMed

    Amna, Touseef; Hassan, M Shamshi; Van Ba, Hoa; Khil, Myung-Seob; Lee, Hak-Kyo; Hwang, I H

    2013-03-01

    We report the fabrication of novel Fe3O4/TiO2 hybrid nanofibers with the improved cellular response for potential tissue engineering applications. In this study, Fe3O4/TiO2 hybrid nanofibers were prepared by facile sol-gel electrospinning using titanium isopropoxide and iron(III) nitrate nonahydrate as precursors. The obtained electrospun nanofibers were vacuum dried at 80 °C and then calcined at 500 °C. The physicochemical characterization of the synthesized composite nanofibers was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction pattern. To examine the in vitro cytotoxicity, satellite cells were treated with as-prepared Fe3O4/TiO2 and the viability of cells was analyzed by Cell Counting Kit-8 assay at regular time intervals. The morphological features of unexposed satellite cells and exposed to Fe3O4/TiO2 composite were examined with a phase contrast microscope whereas the quantification of cell viability was carried out via confocal laser scanning microscopy. The morphology of the cells attached to hybrid matrix was observed by Bio-SEM. Cytotoxicity experiments indicated that the satellite cells could attach to the Fe3O4/TiO2 composite nanofibers after being cultured. We observed that Fe3O4-TiO2 composite nanofibers could support cell adhesion and growth. Results from this study therefore suggest that Fe3O4/TiO2 composite scaffold with small diameters (approximately 200 nm) can mimic the natural extracellular matrix well and provide possibilities for diverse applications in the field of tissue engineering and regenerative medicine.

  17. Necrosis of Staphylococcus aureus by the Electrospun Fe- and Ag-Doped TiO2 Nanofibers

    PubMed Central

    Aboelzahab, Asem; Azad, Abdul-Majeed; Goel, Vijay

    2012-01-01

    Postsurgery infections cause prolonged hospitalization, incurring increased patient and hospital costs, making it increasingly vital to develop an effective solution for the mitigation and elimination of infection buildup at these sites. Incorporation of a bactericidal device at the infection-prone sites provides the capability of attacking bacterial growth even after the patient has left the hospital. Polycrystalline titanium dioxide (TiO2) is photoactive and possesses antibacterial properties that can mitigate the onset of these infections and aid in wound healing. In this work, TiO2 nanofibers were synthesized by electrospinning. Doping with iron as well as with silver (5 wt% and 1 wt%, resp.) was also carried out to increase their effectiveness towards bactericidal properties. The electrospun fibers were processed and tested in the presence of light in the suspensions of methicillin-susceptible Staphylococcus aureus (MSSA) bacteria, which are the leading infection-inducing bacteria among hospital patients. It was found that upon brief activation (cf. 30 s) by an infrared laser source, greater than 90% of the S. aureus was rendered inactive within cf. 10 min. of exposure, thereby showing the potential of titania nanofibers for effective mitigation of infection. PMID:24977085

  18. In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency

    NASA Astrophysics Data System (ADS)

    Mali, Sawanta S.; Shim, Chang Su; Kim, Hyungjin; Patil, Pramod S.; Hong, Chang Kook

    2016-01-01

    We have demonstrated organometallic perovskite solar cells (PSCs) based on Au decorated TiO2 nanofibers and methylammonium lead iodide (MAPbI3). A power conversion efficiency of 14.92% was achieved, which is significantly higher than that of conventional mesoporous (mp) TiO2, as well as TiO2 nanofiber-based devices. The present synthetic process provides new opportunities for the development of efficient plasmonic PSCs based on metal oxide nanofibers. Solar cells based on these architectures exhibit a short-circuit current density JSC of 21.63 +/- 0.36 mA cm-2, VOC of 0.986 +/- 0.01 V and fill factor of 70% +/- 3%, which provide a power conversion efficiency of 14.92% +/- 0.33% under standard AM 1.5 conditions. The results of time-resolved photoluminescence (TRPL) spectroscopy and solid-state impedance spectroscopy (ssIS) revealed that PSCs based on Au-decorated TiO2 nanofibers exhibit a low recombination rate. The present results are much higher than those for reported PSCs based on a Au@TiO2 electron-transporting layer (ETL).We have demonstrated organometallic perovskite solar cells (PSCs) based on Au decorated TiO2 nanofibers and methylammonium lead iodide (MAPbI3). A power conversion efficiency of 14.92% was achieved, which is significantly higher than that of conventional mesoporous (mp) TiO2, as well as TiO2 nanofiber-based devices. The present synthetic process provides new opportunities for the development of efficient plasmonic PSCs based on metal oxide nanofibers. Solar cells based on these architectures exhibit a short-circuit current density JSC of 21.63 +/- 0.36 mA cm-2, VOC of 0.986 +/- 0.01 V and fill factor of 70% +/- 3%, which provide a power conversion efficiency of 14.92% +/- 0.33% under standard AM 1.5 conditions. The results of time-resolved photoluminescence (TRPL) spectroscopy and solid-state impedance spectroscopy (ssIS) revealed that PSCs based on Au-decorated TiO2 nanofibers exhibit a low recombination rate. The present results are much

  19. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.

    PubMed

    Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2

  20. Photoconversion of Dye-Sensitized Solar Cells with a 3D-Structured Photoelectrode Consisting of Both TiO2 Nanofibers and Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, Tae-Hwan; Kim, Wan-Tae; Choi, Won-Youl

    2016-06-01

    In dye-sensitized solar cells, a three-dimensional (3-D)-structured photoelectrode of TiO2 nanofibers and nanoparticles was successfully fabricated by electro-spinning and screen-printing processes. Structures with one-dimensional nanofibers can be expected to improve the charge transport in a photoelectrode. The microstructure and crystalline structure were observed by field-emission scanning electron microscopy and with an x-ray diffractometer, respectively. The particle size of the TiO2 particles and the diameters of the TiO2 nanofiber in the 3-D-structured photoelectrode were ~30 nm and ~500 nm, respectively. The total thickness of the TiO2 layer in the 3-D-structured photoelectrode, which is composed of a nanoparticle layer of ~12 μm and a nanofiber layer of ~8 μm, was ~20 μm. The crystalline, anatase phase was also determined. In these dye-sensitized solar cells with a 3-D-structured layer, a short-circuit current density of 12.36 mA/cm2, an open-circuit voltage of 0.74 V, a fill factor of 0.46, and an energy conversion efficiency of 4.18% were observed. These values are higher than those of dye-sensitized solar cells with a conventional TiO2 nanoparticle layer. The proposed 3-D-structured photoelectrode consisting of TiO2 nanofibers and nanoparticles can help improve the performance of commercial dye-sensitized solar cells.

  1. Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Ryu, Won-Hee; Jung, Ji-Won; Park, Kyusung; Kim, Sang-Joon; Kim, Il-Doo

    2014-09-01

    A tailored conversion-reaction anode material of 1-D MoS2 nanofibers with a vine-like shape composed of MoS2 nanoflakes delivers exceptionally high Na capacity and exhibits excellent rate properties. The improved cycleability of the MoS2 nanofiber electrode is achieved by a uniform TiO2 coating, which effectively minimized the sulfur dissolution.A tailored conversion-reaction anode material of 1-D MoS2 nanofibers with a vine-like shape composed of MoS2 nanoflakes delivers exceptionally high Na capacity and exhibits excellent rate properties. The improved cycleability of the MoS2 nanofiber electrode is achieved by a uniform TiO2 coating, which effectively minimized the sulfur dissolution. Electronic supplementary information (ESI) available: Experimental procedures, XRD results, Raman spectra results, Brunauer-Emmett-Teller (BET) analysis, ex situ XRD results, X-ray photoelectron spectra, and ex situ X-ray fluorescence analysis. See DOI: 10.1039/c4nr02044h

  2. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yeo, Yeolmae; Jung, Ji-Won; Park, Kyusung; Kim, Il-Doo

    2015-09-01

    Anatase TiO2 has been suggested as a potential sodium anode material, but the low electrical conductivity of TiO2 often limits the rate capability, resulting in poor electrochemical properties. To address this limitation, we propose graphene-wrapped anatase TiO2 nanofibers (rGO@TiO2 NFs) through an effective wrapping of reduced graphene oxide (rGO) sheets on electrospun TiO2 NFs. To provide strong electrostatic interaction between the graphene oxide (GO) sheets and the TiO2 NFs, poly(allylamine hydrochloride) (PAH) was used to induce a positively charged TiO2 surface by the immobilization of the -NH3+ group and to promote bonding with the negatively charged carboxylic acid (-COO-) and hydroxyl (-O-) groups on the GO. A sodium anode electrode using rGO@TiO2 NFs exhibited a significantly improved initial capacity of 217 mAh g-1, high capacity retention (85% after 200 cycles at 0.2C), and a high average Coulombic efficiency (99.7% from the second cycle to the 200th cycle), even at a 5C rate, compared to those of pristine TiO2 NFs. The improved electrochemical performances stem from highly conductive properties of the reduced GO which is effectively anchored to the TiO2 NFs.

  3. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries

    PubMed Central

    Yeo, Yeolmae; Jung, Ji-Won; Park, Kyusung; Kim, Il-Doo

    2015-01-01

    Anatase TiO2 has been suggested as a potential sodium anode material, but the low electrical conductivity of TiO2 often limits the rate capability, resulting in poor electrochemical properties. To address this limitation, we propose graphene-wrapped anatase TiO2 nanofibers (rGO@TiO2 NFs) through an effective wrapping of reduced graphene oxide (rGO) sheets on electrospun TiO2 NFs. To provide strong electrostatic interaction between the graphene oxide (GO) sheets and the TiO2 NFs, poly(allylamine hydrochloride) (PAH) was used to induce a positively charged TiO2 surface by the immobilization of the -NH3+ group and to promote bonding with the negatively charged carboxylic acid (-COO−) and hydroxyl (-O−) groups on the GO. A sodium anode electrode using rGO@TiO2 NFs exhibited a significantly improved initial capacity of 217 mAh g−1, high capacity retention (85% after 200 cycles at 0.2C), and a high average Coulombic efficiency (99.7% from the second cycle to the 200th cycle), even at a 5C rate, compared to those of pristine TiO2 NFs. The improved electrochemical performances stem from highly conductive properties of the reduced GO which is effectively anchored to the TiO2 NFs. PMID:26355340

  4. Increases in solar conversion efficiencies of the ZrO2 nanofiber-doped TiO2 photoelectrode for dye-sensitized solar cells

    PubMed Central

    2012-01-01

    In this paper, in order to improve the efficiency of dye-sensitized solar cells, we introduced zirconia [ZrO2] nanofibers into a mesoporous titania [TiO2] photoelectrode. The photoelectrode consists of a few weight percent of ZrO2 nanofibers and a mesoporous TiO2 powder. The mixed ZrO2 nanofibers and the mesoporous TiO2 powder possessed a larger surface area than the corresponding mesoporous TiO2 powder. The optimum ratio of the ZrO2 nanofiber was 5 wt.%. The 5 wt.% ZrO2-mixed device could get a short-circuit photocurrent density of 15.9 mA/cm2, an open-circuit photovoltage of 0.69 V, a fill factor of 0.60, and a light-to-electricity conversion efficiency of 6.5% under irradiation of AM 1.5 (100 mW/cm2). PMID:22297154

  5. Increases in solar conversion efficiencies of the ZrO2 nanofiber-doped TiO2 photoelectrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Mei Jin, En; Park, Ju-Young; Wang, Wan Lin; Guan Zhao, Xing; Gu, Hal-Bon

    2012-02-01

    In this paper, in order to improve the efficiency of dye-sensitized solar cells, we introduced zirconia [ZrO2] nanofibers into a mesoporous titania [TiO2] photoelectrode. The photoelectrode consists of a few weight percent of ZrO2 nanofibers and a mesoporous TiO2 powder. The mixed ZrO2 nanofibers and the mesoporous TiO2 powder possessed a larger surface area than the corresponding mesoporous TiO2 powder. The optimum ratio of the ZrO2 nanofiber was 5 wt.%. The 5 wt.% ZrO2-mixed device could get a short-circuit photocurrent density of 15.9 mA/cm2, an open-circuit photovoltage of 0.69 V, a fill factor of 0.60, and a light-to-electricity conversion efficiency of 6.5% under irradiation of AM 1.5 (100 mW/cm2).

  6. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  7. New strategy of photodynamic treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro

    NASA Astrophysics Data System (ADS)

    Li, Jingyuan; Wang, Xuemei; Jiang, Hui; Lu, Xiaohua; Zhu, Yudan; Chen, Baoan

    2011-08-01

    As one of the best biocompatible semiconductor nanomaterials, TiO2 nanofibers can act as a good photosensitizer material and show potential application in the field of drug carriers and photodynamic therapy to cure diseases. Celastrol, one of the active components extracted from T. wilfordii Hook F., was widely used in traditional Chinese medicine for many diseases. In this study, the cytotoxicity of celastrol for HepG2 cancer cells was firstly explored. The results showed that celastrol could inhibit cancer cell proliferation in a time-dependent and dose-dependent manner, inducing apoptosis and cell cycle arrest at G2/M phase in HepG2 cells. After the TiO2 nanofibers were introduced into the system of celastrol, the cooperation effect showed that the nanocomposites between TiO2 nanofibers and celastrol could enhance the cytotoxicity of celastrol for HepG2 cells and cut down the drug consumption so as to reduce the side-effect of the related drug. Associated with the photodynamic effect, it is evident that TiO2 nanofibers could readily facilitate the potential application of the active compounds from natural products like celastrol. Turning to the advantages of nanotechnology, the combination of nanomaterials with the related monomer active compounds of promising Chinese medicine could play an important role to explore the relevant mechanism of the drug cellular interaction and promote the potential application of TiO2 nanofibers in the clinical treatment.As one of the best biocompatible semiconductor nanomaterials, TiO2 nanofibers can act as a good photosensitizer material and show potential application in the field of drug carriers and photodynamic therapy to cure diseases. Celastrol, one of the active components extracted from T. wilfordii Hook F., was widely used in traditional Chinese medicine for many diseases. In this study, the cytotoxicity of celastrol for HepG2 cancer cells was firstly explored. The results showed that celastrol could inhibit cancer cell

  8. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Barakat, Nasser A M; Yasin, Ahmed S; Yousef, Ahmed; Choi, Ho-Suk

    2016-08-15

    Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs.

  9. Ultrafine TiO2 Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium-Sulfur Battery.

    PubMed

    Liang, Gemeng; Wu, Junxiong; Qin, Xianying; Liu, Ming; Li, Qing; He, Yan-Bing; Kim, Jang-Kyo; Li, Baohua; Kang, Feiyu

    2016-09-07

    Although lithium-sulfur (Li-S) batteries deliver high specific energy densities, lots of intrinsic and fatal obstacles still restrict their practical application. Electrospun carbon nanofibers (CNFs) decorated with ultrafine TiO2 nanoparticles (CNF-T) were prepared and used as a multifunctional interlayer to suppress the volume expansion and shuttle effect of Li-S battery. With this strategy, the CNF network with abundant space and superior conductivity can accommodate and recycle the dissolved polysulfides for the bare sulfur cathode. Meanwhile, the ultrafine TiO2 nanoparticles on CNFs work as anchoring points to capture the polysulfides with the strong interaction, making the battery perform with remarkable and stable electrochemical properties. As a result, the Li-S battery with the CNF-T interlayer delivers an initial reversible capacity of 935 mA h g(-1) at 1 C with a capacity retention of 74.2% after 500 cycles. It is believed that this simple, low-cost and scalable method will definitely bring a novel perspective on the practical utilization of Li-S batteries.

  10. Assessment of the short-term toxicity of TiO2 nanofiber in Sprague Dawley rats.

    PubMed

    Gato, Worlanyo E; Hunter, Daniel A; Byrd, Ian C; Mays, Christopher A; Yau, Wilson; Wu, Ji

    2017-02-09

    Synthetic nanomaterials have many unique chemical and physical properties, mainly due to their high specific surface area and quantum confinement effect. Specifically, titanium dioxide (TiO2 ) nanomaterial has high stability, anticorrosive, and photocatalytic properties. However, there are concerns over adverse biological effects resulting from bioeffects. This study was to investigate adverse effects associated with acute ingestion of TiO2 nanofiber (TDNF). TDNF was fabricated via electrospinning method, followed by dissolution in water. Six- to seven-week-old male Sprague Dawley rats were exposed to a total of 0, 40, and 60 ppm of TDNF for 2 weeks via oral gavage. Serum total protein and weight gain during the course of this study displayed marginal concentration-dependent alterations. These findings were followed by a global gene expression analysis to identify which transcripts might be responsive to TNDF toxicity. Differentially expressed mRNA levels were dose-dependently higher in animals exposed to TNDF. The majority of the affected genes were biochemically involved in immune response and inflammation. We believe this is due to the fact that TNDF is unable to penetrate the cell and forms phagocytosis sites that trigger inflammatory and immune response. All results taken together, short-term ingestion of TNDF produced marginal effects indicative of inflammation. Finally, the broad gene expression data were validated through quantification of immunoglobulin heavy chain alpha (Igha). Igha gene was upregulated in treated groups, showing similar expression patterns to the global gene expression data.

  11. Self-standing Hybrid Nanofibers of TiO2 and TiO2/Hydroxyapatite: Application in Photocatalytic and Photovoltatic Systems

    NASA Astrophysics Data System (ADS)

    Rouhani, Parvaneh

    2012-02-01

    A Hybrid fibers of Hydroxyapatite TiO2, HAp/TiO2 with modified photocatalytic properties were synthesized using a template method. Liquid phase deposition (LPD) technique was employed to grow TiO2 layers on cellulose fibers, followed by deposition of HAp from a pseudo body solution, and finally heat removing the cellulose template. The resulting material has a fibrous structure, mimicking the cellulose fibers shape, and have a typical surface area of 114 m^2/g, compared to 74 m^2/g for pure TiO2 fibers. Adsorption and photocatalytic degradation tests showed that addition of HAp to TiO2 fibers increased the adsorptive from 17% to 35%. Nano particulated TiO2 fibers as one-dimensional long structures were introduced into TiO2 P25 nano particle films using co-electrophoretic deposition. This resulted in less porosity and higher roughness factor of the films that provided more favorable conditions for electron transport. The films used as the photoanode of a dye solar cell (DSC) produced 65% higher photovoltaic efficiency. TiO2 fibers can be excellent binders in single-step, organic-free electrophoretic deposition of TiO2 for DSC photoanode.

  12. Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries.

    PubMed

    Xiong, Ya; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Yang, Hanxi

    2016-07-06

    Nanosized TiO2 is now actively developed as a low-cost and potentially high capacity anode material of Na-ion batteries, but its poor capacity utilization and insufficient cyclability remains an obstacle for battery applications. To overcome these drawbacks, we synthesized electrospun TiO2/C nanofibers, where anatase TiO2 nanocrystals with a diameter of ∼12 nm were densely embedded in the conductive carbon fibers, thus preventing them from aggregating and attacking by electrolyte. Due to its abundant active surfaces of well-dispersed TiO2 nanocrytals and high electronic conductivity of the carbon matrix, the TiO2/C anode shows a high redox capacity of ∼302.4 mA h g(-1) and a high-rate capability of 164.9 mAh g(-1) at a very high current of 2000 mA g(-1). More significantly, this TiO2/C anode can be cycled with nearly 100% capacity retention over 1000 cycles, showing a sufficiently long cycle life for battery applications. The nanofibrous architecture of the TiO2/C composite and its superior electrochemical performance may provide new insights for development of better host materials for practical Na-ion batteries.

  13. Enhancement in the photocatalytic activity of TiO2 nanofibers hybridized with g-C3N4 via electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Liu, Zhenglian; Fang, Minghao; Tang, Chao; Huang, Zhaohui; Liu, Yan'gai; Wu, Xiaowen; Mao, Yuanjie

    2016-05-01

    TiO2/g-C3N4 nanofibers with diameter of 100-200 nm were prepared by electrospinning method after calcination at high temperature, using polyvinylpyrrolidone (PVP), Melamine (C3H6N6), Ti(OC4H9)4 as raw materials. The composite nanofibers were characterized by XRD, FT-IR, SEM, UV-vis and PL respectively. The effects of different g-C3N4 contents on structure and photocatalytic degradation of the composite nanofibers were investigated. The results indicated that with increasing g-C3N4 content, the diameter of the composite fibers increased and the morphology changed from uniform structure to a nonuniform one, containing beads. The composite nanofibers displayed the best photocatalytic degradation on RhB, when the g-C3N4 content was 0.8 wt%. The degree of degradation was up to 99% at the optimal conditions of 40 min. The degradation activity of the composite nanofibers on RhB, MB and MO was found to be higher than that of the TiO2 nanofibers.

  14. A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance

    PubMed Central

    2014-01-01

    TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UV–vis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers. PMID:24410851

  15. Photoelectrochemical solar water splitting using electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Mali, Mukund G.; An, Seongpil; Liou, Minho; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-02-01

    TiO2 nano-fibrous films of thicknesses ranging from 0.17 to 3.24 μm were prepared on an indium-doped tin oxide substrate using an electrospinning technique for which the spinning time was varied from 5 to 60 min. The structural and morphological aspects were studied by means of XRD, Raman, and SEM analyses. The photoelectrochemical (PEC) properties of the films were tested by performing current-potential measurements. The optimal PEC performance was explored by varying the experimental conditions, specifically, the spinning time (5-60 min) and the annealing temperature (300, 500, and 700 °C). A comparison of the PEC performance of all the NF film thicknesses (0.17, 0.31, 1.53, 2.16, 4.67, and 7.53 μm) revealed that a thickness of 4.67 μm, that is, a film formed by electrospinning over a duration of 45 min, exhibited the optimum level of PEC performance. This film generated a photocurrent of around 150 μA/cm2, which was larger than the PEC values produced by the other films. The PEC performance of the 7.53-μm TiO2 NF film (produced by coating for 60 min) was found to be inferior to that of all the other thicknesses.

  16. Enhanced Electron Collection in Perovskite Solar Cells Employing Thermoelectric NaCo2 O4 /TiO2 Coaxial Nanofibers.

    PubMed

    Liu, Tao; Wang, Cheng; Hou, Juan; Zhang, Chuanbo; Chen, Haijun; He, Hongcai; Wang, Ning; Wu, Hui; Cao, Guozhong

    2016-10-01

    Thermoelectric NaCo2 O4 /TiO2 coaxial nanofibers are prepared and distributed in the perovskite solar cells. Under illumination, p-type NaCo2 O4 can convert unwanted heat to thermal voltage, and thus promote the electron extraction and transport with the action of electrostatic force. These advantages collectively contribute to an overall power conversion efficiency improvement of ≈20% (15.14% vs 12.65%).

  17. Engineered Solution-Liquid-Solid Growth of a "Treelike" 1D/1D TiO2 Nanotube-CdSe Nanowire Heterostructure: Photoelectrochemical Conversion of Broad Spectrum of Solar Energy.

    PubMed

    Mukherjee, Bratindranath; Sarker, Swagotom; Crone, Eric; Pathak, Pawan; Subramanian, Vaidyanathan R

    2016-12-07

    This work presents a hitherto unreported approach to assemble a 1D oxide-1D chalcogenide heterostructured photoactive film. As a representative system, bismuth (Bi) catalyzed 1D CdSe nanowires are directly grown on anodized 1D TiO2 nanotube (T_NT). A combination of the reductive successive-ionic-layer-adsorption-reaction (R-SILAR) and the solution-liquid-solid (S-L-S) approach is implemented to fabricate this heterostructured assembly, reported in this 1D/1D form for the first time. XRD, SEM, HRTEM, and elemental mapping are performed to systematically characterize the deposition of bismuth on T_NT and the growth of CdSe nanowires leading to the evolution of the 1D/1D heterostructure. The resulting "treelike" photoactive architecture demonstrates UV-visible light-driven electron-hole pair generation. The photoelectrochemical results highlight: (i) the formation of a stable n-n heterojunction between TiO2 nanotube and CdSe nanowire, (ii) an excellent correlation between the absorbance vis-à-vis light conversion efficiency (IPCE), and (iii) a photocurrent density of 3.84 mA/cm(2). This proof-of-concept features the viability of the approach for designing such complex 1D/1D oxide-chalcogenide heterostructures that can be of interest to photovoltaics, photocatalysis, environmental remediation, and sensing.

  18. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Cao, Tieping; Liu, Yichun

    2011-02-01

    In the present work, 2,9,16,23-tetranitrophthalocyanine copper(II) (TNCuPc)/TiO(2) hierarchical nanostructures were successfully fabricated by a simple combination method of electrospinning technique and solvothermal processing. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), UV-vis diffuse reflectance (DR), Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric and differential thermal analysis (TG-DTA) were used to characterize the as-synthesized TNCuPc/TiO(2) hierarchical nanostructures. The results showed that the secondary TNCuPc nanostructures were not only successfully grown on the primary TiO(2) nanofibers substrates but also uniformly distributed without aggregation. By adjusting the solvothermal fabrication parameters, the TNCuPc nanowires or nanoflowers were facilely fabricated, and also the loading amounts of TNCuPc could be controlled on the TNCuPc/TiO(2) hierarchical nanostructural nanofibers. And, there might exist the interaction between TNCuPc and TiO(2). A possible mechanism for the formation of TNCuPc/TiO(2) hierarchical nanostructures was suggested. The photocatalytic studies revealed that the TNCuPc/TiO(2) hierarchical nanostructures exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TNCuPc or TiO(2) nanofibers under visible-light irradiation.

  19. Promotion of nano-anatase TiO(2) on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach.

    PubMed

    Su, Mingyu; Liu, Huiting; Liu, Chao; Qu, Chunxiang; Zheng, Lei; Hong, Fashui

    2009-06-01

    Previous researches approved that photocatalysis activity of nano-TiO(2) could obviously increase photosynthetic effects of spinach, but the mechanism of improving light energy transfer and conversion is still unclear. In the present we investigated effects of nano-anatase TiO(2) on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Several effects of nano-anatase TiO(2) were observed: (1) UV-vis spectrum was blue shifted in both Soret and Q bands, and the absorption intensity was obviously increased; (2) resonance Raman spectrum showed four main peaks, which are ascribed to carotene, and the Raman peak intensity was as 6.98 times as that of the control; (3) the fluorescence emission peak was blue shifted and the intensity was decreased by 23.59%; (4) the DCPIP photoreduction activity showed 129.24% enhancement; (5) the oxygen-evolving rate of PS II was elevated by 51.89%. Taken together, the studies of the experiments showed that nano-anatase TiO(2) had bound to D1/D2/Cyt b559 complex, promoted the spectral responses, leading to the improvement of primary electron separation, electron transfer and light energy conversion of D1/D2/Cyt b559 complex.

  20. Promotion of nano-anatase TiO 2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach

    NASA Astrophysics Data System (ADS)

    Su, Mingyu; Liu, Huiting; Liu, Chao; Qu, Chunxiang; Zheng, Lei; Hong, Fashui

    2009-06-01

    Previous researches approved that photocatalysis activity of nano-TiO 2 could obviously increase photosynthetic effects of spinach, but the mechanism of improving light energy transfer and conversion is still unclear. In the present we investigated effects of nano-anatase TiO 2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Several effects of nano-anatase TiO 2 were observed: (1) UV-vis spectrum was blue shifted in both Soret and Q bands, and the absorption intensity was obviously increased; (2) resonance Raman spectrum showed four main peaks, which are ascribed to carotene, and the Raman peak intensity was as 6.98 times as that of the control; (3) the fluorescence emission peak was blue shifted and the intensity was decreased by 23.59%; (4) the DCPIP photoreduction activity showed 129.24% enhancement; (5) the oxygen-evolving rate of PS II was elevated by 51.89%. Taken together, the studies of the experiments showed that nano-anatase TiO 2 had bound to D1/D2/Cyt b559 complex, promoted the spectral responses, leading to the improvement of primary electron separation, electron transfer and light energy conversion of D1/D2/Cyt b559 complex.

  1. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB.

  2. Structural and photoelectrochemical properties of porous TiO2 nanofibers decorated with Fe2O3 by sol-flame

    NASA Astrophysics Data System (ADS)

    Sobti, N.; Bensouici, A.; Coloma, F.; Untiedt, C.; Achour, S.

    2014-08-01

    The hybrid structure of Fe2O3 nanoparticles/TiO2 nanofibers (NFs), combines the merits of large surface areas of TiO2 NFs and absorption in ultraviolet light-visible light range. This structure can be used for many applications such as photoelectrochemical water splitting and photo-catalysis. Here, a sol-flame method is used for depositing Fe2O3 on TiO2 NFs that were prepared by hydrothermal on Ti sheets. The obtained materials were characterized by XRD, SEM, UV/Vis diffuse reflectance, Raman, and XPS. The results revealed the formation of rutile and anatase crystalline phases together with Fe2O3. This process moves the absorption threshold of TiO2 NFs support into visible spectrum range and enhances the photocurrent in comparison to bare TiO2 NFs, although no hole scavenger was used. The impedance measurement at low and high frequencies revealed an increase in series resistance and a decrease in resistance of charge transfer with sol-flame treatment time. A mechanism for explaining the charge transfer in these TiO2 NFs decorated with Fe2O3 nanoparticles was proposed.

  3. A simple low pressure method for the synthesis of TiO2 nanotubes and nanofibers and their application in DSSCs

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mashhoun, Sara; Mollaei, Mohsen; Molaei, Mehdi; Taghavinia, Nima

    2015-07-01

    TiO2 nanotubes were synthesized using a modified autoclave-free thermal method from as-prepared initial powders. The size of initial powders (IP) was found to be critical in determining the morphology and crystal structure of the final product. Oleylamine (OA) was used as the polymer agent in the preparation of initial powders with different mol ratios of OA/Ti: 1, 5, and 10. X-ray diffraction analysis depicted that the increase of mole ratio up to 10 resulted in smaller nanoparticles with the sizes of about 8 nm. It was also deliberated that low temperature thermally treated IP showed the characteristic diffraction pattern of titanate phase of nanotubes. Scanning electron microscope images showed nanorods, short nanotubes, and single-phase long and uniform nanofibers produced from initial powders. SEM cross-section of the anode cell of TiO2 nanofibers demonstrated the presence of uniformly closed net long fibers in the cell. Open circuit voltage measurements of the nanofiber cell demonstrated a several hundreds of seconds in the electron transport decay, which was significantly higher than that of the nanoparticles. IMPS/IMVS measurements of the nanofibers and nanotube solar cells showed electron transport enhancement and long life time compared to their nanoparticle counterparts. [Figure not available: see fulltext.

  4. Controllable growth of conical and cylindrical TiO2-carbon core-shell nanofiber arrays and morphologically dependent electrochemical properties.

    PubMed

    Chen, Rongsheng; Hu, Liangsheng; Huo, Kaifu; Fu, Jijiang; Ni, Hongwei; Tang, Yan; Chu, Paul K

    2011-12-16

    Quasi-aligned cylindrical and conical core-shell nanofibers consisting of carbon shells and TiO(2) nanowire cores are produced in situ on Ti foils without using a foreign metallic catalyst and template. A cylindrical nanofiber has a TiO(2) nanowire core 30-50 nm in diameter and a 5-10 nm-thick cylindrical carbon shell, while in the conical nanostructure the TiO(2) nanowire core has a diameter of 20-40 nm and the thickness of the carbon shell varies from about 200 nm at the bottom to about 5 nm at the tip. Electrochemical analysis reveals well-defined redox peaks of the [Fe(CN)(6)](3-/4-) redox couple and heterogeneous charge-transfer rate constants of 0.010 and 0.062 cm  s(-1) for the cylindrical and conical nanofibers, respectively. The coverage of exposed edge planes on the cylindrical and conical carbon shells is estimated to be 2.5 and 15.5 % respectively. The more abundant exposed edge planes on the conical nanofiber decrease the overpotential and increase the voltammetric resolution during electrochemical detection of uric acid and ascorbic acid. Our results suggest that the density of edge-plane sites estimated from Raman scattering is not necessarily equal to the density of exposed edge-plane sites, and only carbon electrodes with a large density of exposed edge planes or free graphene sheet ends exhibit better electrochemical performance.

  5. Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate.

    PubMed

    Zhang, X; Aravindan, V; Kumar, P Suresh; Liu, H; Sundaramurthy, J; Ramakrishna, S; Madhavi, S

    2013-07-07

    We report the formation and extraordinary Li-storage properties of TiO2 hollow nanofibers by co-axial electrospinning in both the half-cell and full-cell configurations. Li-insertion properties are first evaluated as anodes in the half-cell configuration (Li/TiO2 hollow nanofibers) and we found that reversible insertion of ~0.45 moles is feasible at a current density of 100 mA g(-1). The half-cell displayed a good cyclability and retained 84% of its initial reversible capacity after 300 galvanostatic cycles. The full-cell is fabricated with a commercially available olivine phase LiFePO4 cathode under optimized mass loading. The LiFePO4/TiO2 hollow nanofiber cell delivered a reversible capacity of 103 mA h g(-1) at a current density of 100 mA g(-1) with an operating potential of ~1.4 V. Excellent cyclability is noted for the full-cell configuration, irrespective of the applied current densities, and it retained 88% of reversible capacity after 300 cycles in ambient conditions at a current density of 100 mA g(-1).

  6. Sterilization of Escherichia coli by using near-UV LED and TiO2 nanofibers that were prepared by using electrostatic spray

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Gil; Hong, Ji-Tae; Son, Min-Kyu; Lee, Kyoung-Jun; Xu, Guo-Cheng; Prabakar, Kandasamy; Kim, Hee-je

    2010-05-01

    TiO2 nanofiber films were prepared by a homemade electrostatic spray method at 13 kV using a high power supply. As-prepared TiO2 was used to sterilize enteropathogenic Escherichia coli in polluted water by using near-UV LEDs at three different wavelengths with variable exposure time and frequency of irradiation. Irrespective of the wavelength of the light source used, longer irradiation times such as 1 h completely inactivated the E. coli. However, a wavelength of 375 nm was effective in inactivating in a shorter irradiation time (15 min). When the frequency of irradiation was 1 kHz, almost 95% of the E. coli was inactivated after 30 min exposure.

  7. Enhanced conversion efficiency in dye-sensitized solar cells based on bilayered nano-composite photoanode film consisting of TiO2 nanoparticles and nanofibers.

    PubMed

    Du, P F; Song, L X; Xiong, J

    2014-06-01

    Novel TiO2 nanoparticles/nanofibers (NPs/NFs) bilayered nano-composite photoanode film for dye-sensitized solar cells (DSSCs) was fabricated through the combination of spin-coating and electrospinning. The NPs and NFs layers have complementary roles. The underlaid spin-coated NPs layer provides the photoanode film with higher specific surface area for dye adsorption and improved adhesion to conductive glass substrate. The overlaid electrospun NFs layer endows the photoanode film with better dye-loading and light-harvesting capabilities due to its porous meshwork structure. And the NFs layer also offers larger pore volume, which can facilitate the electrolyte diffusion and the activity regeneration of dye sensitizers. As a result, the electron transport is accelerated while the charge recombination is suppressed. Ascribing to the synergic effect of the NPs and NFs layers, the TiO2 NPs/NFs-based DSSCs achieve a conversion efficiency of 4.46%, which is nearly 14% higher than that of the pure TiO2 NPs-based ones.

  8. Substrate-immobilized electrospun TiO2 nanofibers for photocatalytic degradation of pharmaceuticals: The effects of pH and dissolved organic matter characteristics.

    PubMed

    Maeng, Sung Kyu; Cho, Kangwoo; Jeong, Boyoung; Lee, Jaesang; Lee, Yunho; Lee, Changha; Choi, Kyoung Jin; Hong, Seok Won

    2015-12-01

    A substrate-immobilized (SI) TiO2 nanofiber (NF) photocatalyst for multiple uses was prepared through electrospinning and hot pressing. The rate of furfuryl alcohol degradation under UV irradiation was found to be the highest when the anatase to rutile ratio was 70:30; the rate did not linearly increase as a function of the NF film thickness, mainly due to diffusion limitation. Even after eight repeated cycles, it showed only a marginal reduction in the photocatalytic activity for the degradation of cimetidine. The effects of pH and different organic matter characteristics on the photodegradation of cimetidine (CMT), propranolol (PRP), and carbamazepine (CBZ) were investigated. The pH-dependence of the photocatalytic degradation rates of PRP was explained by electrostatic interactions between the selected compounds and the surface of TiO2 NFs. The degradation rates of CMT showed the following order: deionized water > l-tyrosine > secondary wastewater effluent (effluent organic matter) > Suwannee River natural organic matter, demonstrating that the characteristics of the dissolved organic matter (DOM) can affect the photodegradation of CMT. Photodegradation of CBZ was affected by the presence of DOM, and no significant change was observed between different DOM characteristics. These findings suggest that the removal of CMT, PRP, and CBZ during photocatalytic oxidation using SI TiO2 NFs is affected by the presence of DOM and/or pH, which should be importantly considered for practical applications.

  9. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: the impact of wastewater components.

    PubMed

    Wang, Dawei; Li, Yi; Li Puma, Gianluca; Wang, Chao; Wang, Peifang; Zhang, Wenlong; Wang, Qing

    2015-03-21

    The effect of the water matrix components of a secondary effluent of a urban wastewater treatment plant on the photocatalytic activity of Ag/AgCl @ chiral TiO2 nanofibers and the undergoing reaction mechanisms were investigated. These effects were evaluated through the water components-induced changes on the net rate of hydroxyl radical (˙OH) generation and modeled using a relative rate technique. Dissolved organic matter DOM (k=-2.8×10(8) M(-1) s(-1)) scavenged reactive oxygen species, Cl(-) (k=-5.3×10(8) M(-1) s(-1)) accelerated the transformation from Ag to AgCl (which is not photocatalytically active under visible-light irradiation), while Ca(2+) at concentrations higher than 50 mM (k=-1.3×10(9) M(-1) s(-1)) induced aggregation of Ag/AgCl and thus all of them revealed inhibitory effects. In contrast, NO3(-) (k=6.9×10(8) M(-1) s(-1)) and CO3(2-) (k=3.7×10(8) M(-1) s(-1)) improved the photocatalytic activity of Ag/AgCl slightly by improving the rate of HO˙ generation. Other ubiquitous secondary effluent components including SO4(2-) (k=3.9×10(5) M(-1) s(-1)), NH3(+) (k=3.5×10(5) M(-1) s(-1)) and Na(+) (k=2.6×10(4) M(-1) s(-1)) had negligible effects. 90% of 17-α-ethynylestradiol (EE2) spiked in the secondary effluent was removed within 12 min, while the structure and size of Ag/AgCl @ chiral TiO2 nanofibers remained stable. This work may be helpful not only to uncover the photocatalytic mechanism of Ag/AgCl based photocatalyst but also to elucidate the transformation and transportation of Ag and AgCl in natural water.

  10. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    NASA Astrophysics Data System (ADS)

    Ding, Jianning; Li, Yan; Hu, Hongwei; Bai, Li; Zhang, Shuai; Yuan, Ningyi

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm-2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.

  11. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes.

    PubMed

    Ding, Jianning; Li, Yan; Hu, Hongwei; Bai, Li; Zhang, Shuai; Yuan, Ningyi

    2013-01-03

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm-2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies.

  12. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    PubMed Central

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm−2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies. PMID:23286741

  13. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-05-01

    Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the `shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the `shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ~1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the `shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and

  14. Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Wei, Xinbo; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Zhenyi; Liu, Yichun

    2016-05-01

    Ternary heterostructured nanofibers (NFs) consisting of plasmonic noble metal nanoparticles (Au, Ag, or Pt NPs), graphitic carbon nitride nanosheets (g-C3N4 NSs), and TiO2 NPs were synthesized in situ via a facile electrospinning technique combined with a subsequent thermal oxidation/reduction process. The thermal-reduced plasmonic NPs with sizes from 5 to 10 nm are dispersed uniformly into the heterojunctions of the NFs that are formed by thermal oxidation etching of exfoliated g-C3N4 NSs in the electrospun TiO2 nanofibrous matrix, as evidenced by microscopic and electronic structure analyses. In comparison to single-component photocatalysts, such as g-C3N4 NSs or TiO2 NFs, these ternary heterostructures exhibit significantly high photocatalytic activity for H2 evolution under simulated sunlight irradiation. The enhanced photoactivities are attributed to the strong photosynergistic effect between the surface plasmon resonance (SPR) and the heterojunction interface sensitization, which results in the improvement of charge-carrier generation and separation in the ternary heterostructured NFs. Further investigations indicate that coupling heterojunction sensitization on the g-C3N4/TiO2 interface with Ag SPR effects by plasmonic resonant energy transfer is the optimal strategy for synergistically improving the charge-carrier kinetics to achieve highly efficient photocatalytic H2 evolution. It is believed that our present study offers a promising method for the rational integration of multi-component photocatalytic systems that can realize high photocatalytic performances for use in solar-to-fuel conversion.

  15. Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution.

    PubMed

    Wei, Xinbo; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Zhenyi; Liu, Yichun

    2016-06-07

    Ternary heterostructured nanofibers (NFs) consisting of plasmonic noble metal nanoparticles (Au, Ag, or Pt NPs), graphitic carbon nitride nanosheets (g-C3N4 NSs), and TiO2 NPs were synthesized in situ via a facile electrospinning technique combined with a subsequent thermal oxidation/reduction process. The thermal-reduced plasmonic NPs with sizes from 5 to 10 nm are dispersed uniformly into the heterojunctions of the NFs that are formed by thermal oxidation etching of exfoliated g-C3N4 NSs in the electrospun TiO2 nanofibrous matrix, as evidenced by microscopic and electronic structure analyses. In comparison to single-component photocatalysts, such as g-C3N4 NSs or TiO2 NFs, these ternary heterostructures exhibit significantly high photocatalytic activity for H2 evolution under simulated sunlight irradiation. The enhanced photoactivities are attributed to the strong photosynergistic effect between the surface plasmon resonance (SPR) and the heterojunction interface sensitization, which results in the improvement of charge-carrier generation and separation in the ternary heterostructured NFs. Further investigations indicate that coupling heterojunction sensitization on the g-C3N4/TiO2 interface with Ag SPR effects by plasmonic resonant energy transfer is the optimal strategy for synergistically improving the charge-carrier kinetics to achieve highly efficient photocatalytic H2 evolution. It is believed that our present study offers a promising method for the rational integration of multi-component photocatalytic systems that can realize high photocatalytic performances for use in solar-to-fuel conversion.

  16. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition.

    PubMed

    Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-06-07

    Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.

  17. Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures

    SciTech Connect

    Cai, Zhengxu; Li, Lianwei; Lo, Wai-Yip; Zhao, Donglin; Wu, Qinghe; Zhang, Na; Su, Yu-An; Chen, Wei; Yu, Luping

    2016-07-05

    A novel series of amphiphilic TC-PEG molecules were designed and synthesized based on the orthogonal cyclophane unit. These molecules were able to self-assemble from 1D nanofibers and nanobelts to 2D ultrathin nanosheets (3 nm thick) in a controlled way by tuning the length of PEG side chains. The special structure of the cyclophane moiety allowed control in construction of nanostructures through programmed noncovalent interactions (hydrophobic hydrophilic interaction and pi-pi interaction). The self-assembled nanostructures were characterized by combining real space imaging (TEM, SEM, and AFM) and reciprocal space scattering (GIWAXS) techniques. This unique supramolecular system may provide a new strategy for the design of materials with tunable nanomorphology and functionality.

  18. Green approach for photocatalytic Cu(II)-EDTA degradation over TiO2: toward environmental sustainability.

    PubMed

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2015-02-17

    A green approach was successfully developed to reap three environmental benefits simultaneously: (1) clean water production, (2) hydrogen (H2) generation, and (3) well-dispersed in situ Cu(2+) recovery for direct TiO2-CuO composite reclamation, by exploiting the synergistic integration of photocatalytic reaction of Cu-EDTA and one-dimensional (1D) ultralong and ultrathin TiO2 nanofibers. In this light-initiated system, Cu-EDTA was oxidized by TiO2 thus releasing Cu(2+) which was reduced and recovered through uniform adsorption onto the long and porous TiO2 surface. A win-win platform was thus attained, on which Cu was recovered while providing active sites for H2 generation via photoreduction of H2O and enhancing photo-oxidation of remaining intermediate oxidation byproducts. Experimental results showed a H2 generation rate of 251 μmol/h concomitantly with TOC reduction. The used TiO2 nanofibers deposited with Cu were reclaimed directly as the TiO2-CuO composite after a facile heat treatment without additional chemicals and subsequently reusable for photocatalytic treatment of other wastewater (glycerol) to cogenerate H2 and clean water under both UV-visible and visible light. This study expounds a significant advancement through an ingenious integration which enhances the environmental sustainability of Cu-EDTA treatment via TiO2 photocatalysis. It also represents a promising and adoptable approach to synthesize other functional composite nanomaterials in a green manner thus broadening its environmental application spectrum, as it promotes industrial environmental management via waste segregation and motivates research to recover more resources from wastewater.

  19. Tailoring of electron diffusion through TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Jose, R.; Yusoff, M. M.

    2012-11-01

    Charge transport through a random network of onedimensional TiO2 nanostructures such as nanorods, nanowires, and nanofibers developed by electrospinning technique has been studied in the presence of an electrolyte by electrochemical impedance spectroscopy and transient photocurrent measurements. The results have been compared with the charge transport parameters of random TiO2 nanoparticle (25 nm) network. The charge transport was discussed under the framework of hopping transport. Continuous nanofibers had longer charge collecting times and short nanorods have enhanced scattering losses. The TiO2 films containing random network of nanowires of aspect ratio 10:1 can have an order of magnitude higher diffusion coefficient than other morphologies. Furthermore, charge transport through Nb-doped anatase TiO2 nanofibers was studied. It was observed that the Fermi level of TiO2 rise close to its conduction band and result in a band-edge type diffusion mechanism even at low bias voltages when 2 wt% Nb atoms replaces the Ti atoms in the anatase lattice. The Nb-doped anatase electrospun nanofibers showed high chemical capacitance, high effective diffusion coefficient, and lower transport resistance compared to the undoped samples and conventional nanoparticles.

  20. Characterization and photocatalytic activities of C, N and S co-doped TiO(2) with 1D nanostructure prepared by the nano-confinement effect.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao

    2008-09-10

    A novel method was developed for preparing high specific surface area (156.2 m(2) g(-1)) one-dimensional TiO(2) nanostructures co-doped with C, N and S by the nano-confinement effect. A nonmetal doping source (thiourea) was first intercalated into the inner space of H-titanate nanotubes prepared by the hydrothermal method, and then calcined at 450 °C for 2 h in air. The as-prepared C, N and S co-doped TiO(2) nanowires exhibited high visible light and enhanced UV-vis activities in photocatalytic degradation of toluene in the gas phase. The samples were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, fast Fourier transform analysis, x-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectra and photoluminescence. The results indicated that the anatase nanowires grew along the [101] direction. Doping TiO(2) nanowires with C, N and S could not only broaden the light adsorption spectra into the visible region (400-600 nm), but also inhibit the recombination of photo-induced carriers. A mechanism is proposed to elucidate the nano-confinement effect of H-titanate nanotubes in the formation of C, N and S co-doping. Based on this mechanism, the effect of C, N and S co-doping on the band structure of TiO(2) nanowires is also discussed.

  1. Comparison of photocatalytic properties of TiO2 thin films and fibers

    NASA Astrophysics Data System (ADS)

    Ozdemir, Mehtap; Kurt, Metin; Ozyuzer, Lutfi; Aygun, Gulnur

    2016-10-01

    Efficiency of solar panels degrades as a result of organic contamination such as airborne particles, bird droppings and leaves. Any foreign object on photovoltaic panels reduces the sunlight entering the absorbing surface of the solar panels. Since this leads to a major problem decreasing in energy production, solar panels should be cleaned. The self-cleaning method can be preferred. There are some methods to clean the surface of solar panels. Among the self-cleaning materials, TiO2 is the most preferable ones because of its powerful photocatalytic properties. In this study, photocatalytic TiO2 were produced in two different nanostructures: nanofibers and thin films. TiO2 nanofibers were successfully produced by electrospinning. TiO2 thin films were fabricated by reactive magnetron sputtering technique. Both TiO2 nanofiber and thin film structures were heat-treated to form TiO2 in anatase phase at 600 °C for 2 h in air. Then, they were evaluated by SEM analyses for morphology, X-ray diffraction (XRD) analyses for phase structures, X-ray photoelectron spectroscopy (XPS) for the chemical state and atomic concentration, and UV-spectrometer for photocatalytic performance. The results indicate that photocatalytic and transmittance properties of TiO2 thin films are better than those of nanofibers. Consequently, TiO2 based thin films exhibit better performance for solar cell applications due to the surface cleanliness.

  2. Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material

    PubMed Central

    Tan, Yanli; Gao, Qiuming; Li, Zeyu; Tian, Weiqian; Qian, Weiwei; Yang, Chunxiao; Zhang, Hang

    2016-01-01

    A novel one-step hydrothermal and calcination strategy was developed to synthesize the unique 1D oriented Co3O4 crystal nanofibers with (220) facets on the carbon matrix derived from the natural, abundant and low cost wool fibers acting as both carbon precursor and template reagent. The resultant W2@Co3O4 nanocomposite exhibited very high specific capacity and favorable high-rate capability when used as anode material of lithium ion battery. The high reversible Li+ ion storage capacity of 986 mAh g−1 was obtained at 100 mA g−1 after 150 cycles, higher than the theoretical capacity of Co3O4 (890 mAh g−1). Even at the higher current density of 1 A g−1, the electrode could still deliver a remarkable discharge capacity of 720 mAh g−1 over 150 cycles. PMID:27217201

  3. Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries

    PubMed Central

    Cho, Su-Ho; Jung, Ji-Won; Kim, Chanhoon; Kim, Il-Doo

    2017-01-01

    Cobalt oxide that has high energy density, is the next-generation candidate as the anode material for LIBs. However, the practical use of Co3O4 as anode material has been hindered by limitations, especially, low electrical conductivity and pulverization from large volume change upon cycling. These features lead to hindrance to its electrochemical properties for lithium-ion batteries. To improve electrochemical properties, we synthesized one-dimensional (1-D) Co3O4 nanofibers (NFs) overed with reduced graphene oxide (rGO) sheets by electrostatic self-assembly (Co3O4 NFs@rGO). The flexible graphene oxide sheets not only prevent volume changes of active materials upon cycling as a clamping layer but also provide efficient electrical pathways by three-dimensional (3-D) network architecture. When applied as an anode for LIBs, the Co3O4 NFs@rGO exhibits superior electrochemical performance: (i) high reversible capacity (615 mAh g−1 and 92% capacity retention after 400 cycles at 4.0 A g−1) and (ii) excellent rate capability. Herein, we highlighted that the enhanced conversion reaction of the Co3O4 NFs@rGO is attributed to effective combination of 1-D nanostructure and low content of rGO (~3.5 wt%) in hybrid composite. PMID:28345589

  4. A facile approach for high surface area electrospun TiO2 nanostructures for photovoltaic and photocatalytic applications.

    PubMed

    Arun, T A; Madhavan, Asha Anish; Chacko, Daya K; Anjusree, G S; Deepak, T G; Thomas, Sara; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-03-28

    A rice-shaped TiO2-ZnO composite was prepared by electrospinning a mixture comprising the precursors of TiO2 and ZnO in polyvinyl acetate polymer dissolved in N,N-dimethyl acetamide. The electrospun nanofibers upon heat treatment in air resulted in collapse of the continuous fiber morphology and the formation of the rice-shaped TiO2-ZnO composite. The TiO2-ZnO composite was then treated with dilute acetic acid under hydrothermal conditions to etch ZnO from the TiO2-ZnO composite to get coral-shaped anisotropic TiO2. The structural anisotropy of TiO2 produced by the selective etching of ZnO resulted in a high surface area of 148 m(2) g(-1) for the TiO2. The initial and final materials were characterized by scanning electron microscopy, transmission electron microscopy, Raman and XPS spectroscopies, powder X-ray diffraction and BET surface area measurements. The utility of the anisotropic TiO2 in photovoltaics and photocatalysis was explored. Dye-sensitized solar cells fabricated using the TiO2 showed a conversion efficiency of 6.54% as against 4.8% for a control experiment with the rice-shaped TiO2. The anisotropic TiO2 also showed good photocatalysis in the degradation of methyl orange dye and phenol.

  5. TiO2 nanofibrous interface development for Raman detection of environmental pollutants

    NASA Astrophysics Data System (ADS)

    Maznichenko, D.; Selvaganapathy, P. R.; Venkatakrishnan, K.; Tan, B.

    2012-12-01

    Sensor development has been reliant on planar Au and Ag nanoparticle research. The current findings explored a unique 3-D network of crystalline TiO2 nanoparticles linked as nanofibers. In addition to the favorability of using TiO2 for chemical and bio-molecular sensing, the nanofiber network provides molecular diffusion control and an increased confocal volume signal. Controlled femtosecond laser synthesis is also demonstrated that directly impacts surface-enhanced Raman spectroscopy detection of two common environmentally harmful chemicals: bisphenol A and diclofenac sodium salt. These findings assert that 3-D nanofibrous network porosity optimization is crucial for Raman monitoring of drinking water.

  6. A facile TiO2/PVDF composite membrane synthesis and their application in water purification

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhang, Yiming; Fan, Rong; Lewis, Rosmala

    2016-01-01

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO2/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO2 nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO2 composite membranes were studied systematically. The TiO2/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties.

  7. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  8. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe3O4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA)3(TPPO)2/polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe3O4 NP contents, and the highest electrical conductivity can reach up to the order of 10(-2) S cm(-1), and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe3O4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  9. Optical properties of hierarchical-nanostructured TiO2 and its time-dependent photo-degradation of gaseous acetaldehyde

    NASA Astrophysics Data System (ADS)

    Ahn, Kyun; Kim, Min-Sun; Kim, Soon-Hyun; Hyun Kim, Jae; Jeong, Se-Young; Kim, Jong-Pil; Sung Jin, Jong; Cho, Chae-Ryong

    2013-12-01

    The TiO2 hierarchical nanostructures (HNs) composed of rutile TiO2 nanowires on anatase TiO2 nanofibers had higher photocatalytic activities of 62% and 48% than the commercial TiO2 nanoparticles (˜21 nm diameter) in the continuous flow mode and closed-circulation mode, respectively, leading to an efficient degradation of gaseous acetaldehyde under UV-light irradiation. This behavior may be attributed to the effective TiO2 HNs with specific surface area of 85.1 m2/g and lower radiative recombination of self-trapped excitons, enabling an effective electron-hole separation.

  10. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-03-07

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.

  11. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation

    NASA Astrophysics Data System (ADS)

    Gao, Hongqing; Zhang, Peng; Hu, Junhua; Pan, Jimin; Fan, Jiajie; Shao, Guosheng

    2017-01-01

    One-dimensional Z-scheme TiO2/WO3/Pt heterostructures were fabricated by integrating a facile electrospinning technique and subsequent annealing in air. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy, were used to characterize the as-fabricated samples. The results showed that the H2-generation of the as-fabricated one-dimensional Z-scheme TiO2/WO3/Pt heterostructures (S2) was greatly enhanced compared with pure TiO2 nanofibers (S0) and TiO2/WO3 nanofibers (S1). The enhanced photocatalyst activities were mainly attributed to the solid-state Z-scheme photosynthetic heterojunction system with Pt nanoparticle as an electron collector and WO3 as a hole collector, leading to effective charge separation on these semiconductors, which were evidenced by electrochemical impedance spectroscopy (EIS) and photocurrent analysis.

  12. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review.

    PubMed

    Tian, Jian; Zhao, Zhenhuan; Kumar, Anil; Boughton, Robert I; Liu, Hong

    2014-01-01

    One-dimensional TiO2 nanostructured surface heterostructures (1D TiO2NSHs) have been comprehensively studied during the past two decades because of the possible practical applications in various fields, including photocatalysis, dye-sensitized solar cells, sensors, lithium batteries, biomedicine, catalysis, and supercapacitors. Combining extensive advancements in materials science and nanotechnology, a 1D TiO2NSH material with well-controlled size, morphology, and composition has been designed and synthesized. More importantly, its superior properties, including a high aspect ratio structure, chemical stability, large specific surface area, excellent electronic or ionic charge transfer, and a specific interface effect, have attracted a great deal of interest in improving current performance and exploring new applications. In this tutorial review, we introduce the characteristics of 1D TiO2 nanostructures, the design principles for the fabrication of 1D TiO2NSHs, and we also summarize the recent progress in developing synthesis methods and applications of 1D TiO2NSHs in different fields. The relationship between the secondary phase and the 1D TiO2 nanostructure and between the performance in applications and the excellent physical properties of 1D TiO2NSHs are also discussed.

  13. One-pot synthesis of peacock-shaped TiO2 light scattering layer with TiO2 nanorods film for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Sik; Kim, Young-Jea; Lee, Wonjoo; Kang, Soon Hyung

    2013-05-01

    A titanium dioxide (TiO2) film, showing distinctive functions and morphology, was prepared using the hydrothermal method by controlling the ratio of HCl:CH3COOH in acidic medium. A one-dimensional (1-D) TiO2 nanorod (NR) film was synthesized with a length of 2 μm using a 1:2 ratio of HCl:CH3COOH, whereas a 1-D TiO2 NR film with peacock shaped TiO2 nanobundles as a light scattering layer (LSL) was acquired by employing a 2:1 ratio of HCl:CH3COOH. This LSL exhibited remarkable dual functions with respect to high light harvesting, which was attributable to the large surface area of the micrometer-sized TiO2 nanobundles, consisting of small-sized TiO2 NRs of 30-40 nm in diameter and a light scattering effect in the long wavelength region of 550-700 nm. Accordingly, the dual functions of the LSL resulted in a sharp increase in conversion efficiency (3.93%) that was about twice that (1.49%) of TiO2 NR film synthesized using a 1:2 ratio of HCl:CH3COOH. In particular, a considerably enhanced short-circuit photocurrent (Jsc) was mainly responsible for the resulting increase in overall efficiency with a moderate increase in fill factor and slightly reduced open-circuit voltage.

  14. Micro- and nano-scale hollow TiO 2 fibers by coaxial electrospinning: Preparation and gas sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Choi, Sun-Woo; Kim, Sang Sub

    2011-11-01

    We report the preparation of micro- and nano-scale hollow TiO 2 fibers using a coaxial electrospinning technique and their gas sensing properties in terms of CO. The diameter of hollow TiO 2 fibers can be controlled from 200 nm to several micrometers by changing the viscosity of electrospinning solutions. Lower viscosities produce slim hollow nanofibers. In contrast, fat hollow microfibers are obtained in the case of higher viscosities. A simple mathematical expression is presented to predict the change in diameter of hollow TiO 2 fibers as a function of viscosity. The successful control over the diameter of hollow TiO 2 fibers is expected to bring extensive applications. To test a potential use of hollow TiO 2 fibers in chemical gas sensors, their sensing properties to CO are investigated at room temperature.

  15. Enhanced photocatalytic activity of TiO2 nanobarbed fibers treated with atmospheric pressure plasma using O2 gas

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Uk; Ahn, Kyun; Jeong, Se-Young; Cho, Chae-Ryong; Kim, Jong-Pil; Bae, Jong-Seong; Kim, Hyun-Gyu; Kwon, Se-Hun; Lee, Hyung Woo

    2010-11-01

    TiO2 nanobarbed fibers (NBFs) were prepared by growing rutile TiO2 nanorods on anatase TiO2 nanofibers via electrospinning and hydrothermal reaction processes. There was a large increase in the photocatalytic activity of O2-plasma-treated (OP)-TiO2 NBFs relative to that of the TiO2 NBFs; this is due to the hydroxylation of the surface of the TiO2 NBFs by OP treatment. The repeatability of the photocatalytic activity of the OP-TiO2 NBFs was found to be high and the decolorization rate after ten cycles was 88.3% of the initial value. These results indicate that OP-TiO2 NBFs have great potential for use as a photocatalyst.

  16. Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2

    NASA Astrophysics Data System (ADS)

    Han, Moyan; Chen, Ge

    2016-12-01

    Novel TiO2/carbon (TiO2/C) composites have been synthesized by a layer-by-layer deposition method, with electrostatic interaction. The addition of carbon conductive agents enhances the electrochemical performance of TiO2. Carbon for these has been sourced 0D nitrogen-doped carbon, 1D carbon nanotubes and 2D graphene. The as-obtained TiO2/C composites show carbon nanotubes and titanium dioxide coaxial nanocables anchored on the graphene. The nitrogen-doped carbon is uniformly dispersed on the nanocables. As anode materials for Li-ion batteries, the TiO2/C composites exhibit excellent rate capability and cycling stability. A capacity of 150 mAh/g is retained at a current density of 4 A/g. The enhanced electrochemical performance may be attributed to the well-dispersed carbon conductive framework, which facilitates charge transfer during the lithium insertion/extraction process.

  17. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  18. TiO2 Nanorods Preparation from Titanyl Sulphate Produced by Dissolution of Ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Rinawati, L.; Munifa, R. M. I.; Ramelan, A. H.; Sulistyono, Eko

    2017-02-01

    One-dimensional titanium oxides (TiO2) nanorods have substantial applications in photocatalytic, nanoelectronic, and photoelectrochemical solar cells. These applications require large quantities of materials and a production technique suitable for future industry fabrication. We demonstrate here a new method of TiO2 nanorods production from ilmenite sands (FeTiO3). In this process, the roasted ilmenite sand was separated from the iron content and dissolved in the sulphuric acid solution. Separation process of TiO2 from ilmenite has been carried out by roasting, leaching and precipitation processes. The roasting process was conducted by the addition of Na2S at a temperature of 800°C that had been deomposed ilmenite into hematite (Fe2O3), anatase TiO2, rutile TiO2, Na2SO4, NaFeS2 and NaFeO2. Separation TiO2 from titanyl sulfate (TiOSO4) after leaching in H2SO4 solution was conducted by hydrolysis-condensation step and complexation step of Fe2+ content. KCNS solution was used as a complexing agent. The xerogel synthesized TiO2 then was prepared to 1-D nanostructure of TiO2 nanorods by hydrothermal process under alkaline condition. By the two-step method, we finally gain the 1D nanorods TiO2 extracted from ilmenite sand. The characterization using the Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) obtained the nanorod morphology at a diameter about 9.6 nm.

  19. Growth Morphologies of Nanostructured Rutile TiO2

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Sheng; Liu, Hong-Wei

    2014-04-01

    The morphological and structural characteristics of nanostructure rutile TiO2 were investigated by using x-ray diffraction, scanning electron microscopy, electron diffraction, conventional and high resolution transmission electron microscopy. As a product of the precursor template of hydrogen titanate nanofibers, rutile could exhibit forms like tree, sheaf, or bundle. Both the branch and trunk of tree-like rutile have the same growth axis of [001]. The sheaf-like rutile forms while it grows along both [001] and [] directions. The bundle-like rutile grows along only one [001] direction. Tree-like morphology of nanocrystals rutile is revealed to be controlled by (101) twin structure. Twin formation is a possible mechanism to decrease the density of defects and reduce the system energy as the crystal grows.

  20. Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film

    NASA Astrophysics Data System (ADS)

    Li, Hongchao; Tang, Ningxin; Yang, Hongzhi; Leng, Xian; Zou, Jianpeng

    2015-11-01

    We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO2) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO2 nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO2 nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO2 nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35-45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO2 nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  1. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    PubMed Central

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g−1·h−1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  2. Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Seok; Jeong, Inyoung; Park, Joon-Suh; Lee, Jinwoo; Han, Il Ki; Lee, Wan In; Son, Hae Jung; Sohn, Byeong-Hyeok; Ko, Min Jae

    2016-06-01

    We fabricated perovskite solar cells with enhanced device efficiency based on vertically oriented TiO2 nanostructures using a nanoporous template of block copolymers (BCPs). The dimension and shape controllability of the nanopores of the BCP template allowed for the construction of one-dimensional (1-D) TiO2 nanorods and two-dimensional (2-D) TiO2 nanowalls. The TiO2 nanorod-based perovskite solar cells showed a more efficient charge separation and a lower charge recombination, leading to better performance compared to TiO2 nanowall-based solar cells. The best solar cells employing 1-D TiO2 nanorods showed an efficiency of 15.5% with VOC = 1.02 V, JSC = 20.0 mA cm-2 and fill factor = 76.1%. Thus, TiO2 nanostructures fabricated from BCP nanotemplates could be applied to the preparation of electron transport layers for improving the efficiency of perovskite solar cells.We fabricated perovskite solar cells with enhanced device efficiency based on vertically oriented TiO2 nanostructures using a nanoporous template of block copolymers (BCPs). The dimension and shape controllability of the nanopores of the BCP template allowed for the construction of one-dimensional (1-D) TiO2 nanorods and two-dimensional (2-D) TiO2 nanowalls. The TiO2 nanorod-based perovskite solar cells showed a more efficient charge separation and a lower charge recombination, leading to better performance compared to TiO2 nanowall-based solar cells. The best solar cells employing 1-D TiO2 nanorods showed an efficiency of 15.5% with VOC = 1.02 V, JSC = 20.0 mA cm-2 and fill factor = 76.1%. Thus, TiO2 nanostructures fabricated from BCP nanotemplates could be applied to the preparation of electron transport layers for improving the efficiency of perovskite solar cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01010e

  3. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity.

  4. Electrospun Composite Nanofibers of Semiconductive Polymers for Coaxial PN Junctions

    NASA Astrophysics Data System (ADS)

    Serrano, William; Thomas, Sylvia

    The objective of this research is to investigate the conditions under P3HT and Activink, semiconducting polymers, form 1 dimension (1D) coaxial p-n junctions and to characterize their behavior in the presence of UV radiation and organic gases. For the first time, fabrication and characterization of semiconductor polymeric single fiber coaxial arrangements will be studied. Electrospinning, a low cost, fast and reliable method, with a coaxial syringe arrangement will be used to fabricate these fibers. With the formation of fiber coaxial arrangements, there will be investigations of dimensionality crossovers e.g., from one-dimensional (1D) to two-dimensional (2D). Coaxial core/shell fibers have been realized as seen in a recent publication on an electrospun nanofiber p-n heterojunction of oxides (BiFeO3 and TiO2, respectively) using the electrospinning technique with hydrothermal method. In regards to organic semiconducting coaxial p-n junction nanofibers, no reported studies have been conducted, making this study fundamental and essential for organic semiconducting nano devices for flexible electronics and multi-dimensional integrated circuits.

  5. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles

    PubMed Central

    Sheikh, Faheem A.; Macossay, Javier; Kanjwal, Muzafar A.; Abdal-hay, Abdalla; Tantry, Mudasir A.; Kim, Hern

    2013-01-01

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO2 nanofibers and TiO2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO2 nanofibers by the electrospinning process. Similarly, TiO2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH4, which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems. PMID:24436780

  6. Synthesis of TiO2 nanorods from titania and titanyl sulfate produced from ilmenite dissolution by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Munifa, R. M. I.; Saputri, L. N. M. Z.; Chasanah, U.

    2016-11-01

    TiO2 powder has been synthesized through hydrolysis-condensation of titanyl sulfate solution to a starting material of TiO2 nanorods formation. This processing was conducted by the solid separation of TiO2 from ilmenite by roasting ilmenite, acidic leaching (hydrolysis), and co-precipitation (condensation). Roasting of ilmenite was carried out by the addition of Na2S at a temperature of 800°C. While the acidic leaching process was conducted by sulfuric acid at a various concentrations of 3, 3.5, 4.5, 6, and 9 M. The result shown that the solubility optimum occurs in H2SO4 6 M condition. Separation of Fe impurities of TiO2 gel from titanyl sulfate (TiOSO4) solution was done through complexation using KCNS addition. The characteristic of TiO2 obtained using X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) showed good crystallinity and purity. Further treatment of the TiO2 is the formation of one-dimensional nano-size (1-D nanorods) through a hydrothermal method under basic condition NaOH 12M solution. TiO2 nanorods were confirmed by Transmission Electron Microscope (TEM) which indicated that the diameter of TiO2 nanorods was about 7.02 nm in size.

  7. Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach.

    PubMed

    Seo, Myung-Seok; Jeong, Inyoung; Park, Joon-Suh; Lee, Jinwoo; Han, Il Ki; Lee, Wan In; Son, Hae Jung; Sohn, Byeong-Hyeok; Ko, Min Jae

    2016-06-02

    We fabricated perovskite solar cells with enhanced device efficiency based on vertically oriented TiO2 nanostructures using a nanoporous template of block copolymers (BCPs). The dimension and shape controllability of the nanopores of the BCP template allowed for the construction of one-dimensional (1-D) TiO2 nanorods and two-dimensional (2-D) TiO2 nanowalls. The TiO2 nanorod-based perovskite solar cells showed a more efficient charge separation and a lower charge recombination, leading to better performance compared to TiO2 nanowall-based solar cells. The best solar cells employing 1-D TiO2 nanorods showed an efficiency of 15.5% with VOC = 1.02 V, JSC = 20.0 mA cm(-2) and fill factor = 76.1%. Thus, TiO2 nanostructures fabricated from BCP nanotemplates could be applied to the preparation of electron transport layers for improving the efficiency of perovskite solar cells.

  8. α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting.

    PubMed

    Han, Hyungkyu; Riboni, Francesca; Karlicky, Frantisek; Kment, Stepan; Goswami, Anandarup; Sudhagar, Pitchaimuthu; Yoo, Jeongeun; Wang, Lei; Tomanec, Ondrej; Petr, Martin; Haderka, Ondrej; Terashima, Chiaki; Fujishima, Akira; Schmuki, Patrik; Zboril, Radek

    2017-01-07

    We report the fabrication of 3D hierarchical hetero-nanostructures composed of thin α-Fe2O3 nanoflakes branched on TiO2 nanotubes. The novel α-Fe2O3/TiO2 hierarchical nanostructures, synthesized on FTO through a multi-step hydrothermal process, exhibit enhanced performances in photo-electrochemical water splitting and in the photocatalytic degradation of an organic dye, with respect to pure TiO2 nanotubes. An enhanced separation of photogenerated charge carriers is here proposed as the main factor for the observed photo-activities: electrons photogenerated in TiO2 are efficiently collected at FTO, while holes are transferred to the α-Fe2O3 nanobranches that serve as charge mediators to the electrolyte. The morphology of α-Fe2O3 that varies from ultrathin nanoflakes to nanorod/nanofiber structures depending on the Fe precursor concentration was shown to have a significant impact on the photo-induced activity of the α-Fe2O3/TiO2 composites. In particular, it is shown that for an optimized photo-electrochemical structure, a combination of critical factors should be achieved such as (i) TiO2 light absorption and photo-activation vs.α-Fe2O3-induced shadowing effect and (ii) the availability of free TiO2 surface vs.α-Fe2O3-coated surface. Finally, theoretical analysis, based on DFT calculations, confirmed the optical properties experimentally determined for the α-Fe2O3/TiO2 hierarchical nanostructures. We anticipate that this new multi-step hydrothermal process can be a blueprint for the design and development of other hierarchical heterogeneous metal oxide electrodes suitable for photo-electrochemical applications.

  9. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  10. Porous TiO2 Assembled from Monodispersed Nanoparticles.

    PubMed

    Liu, Xu; Duan, Weijie; Chen, Yan; Jiao, Shihui; Zhao, Yue; Kang, Yutang; Li, Lu; Fang, Zhenxing; Xu, Wei; Pang, Guangsheng

    2016-12-01

    Porous TiO2 were assembled by evaporating or refluxing TiO2 colloid, which was obtained by dispersing the TiO2 nanoparticles with a crystallite size (d XRD) of 3.2 nm into water or ethanol without any additives. Porous transparent bulk TiO2 was obtained by evaporating the TiO2-C2H5OH colloid at room temperature for 2 weeks, while porous TiO2 nanospheres were assembled by refluxing the TiO2-H2O colloid at 80 °C for 36 h. Both of the porous TiO2 architectures were pore-size-adjustable depending on the further treating temperature. Porous TiO2 nanospheres exhibited enhanced photocatalysis activity compared to the nanoparticles.

  11. TiO2(B) nanoparticle-functionalized WO3 nanorods with enhanced gas sensing properties.

    PubMed

    Zhang, Hongxin; Wang, Shurong; Wang, Yanshuang; Yang, Jiedi; Gao, Xueling; Wang, Liwei

    2014-06-14

    In this work, TiO2(B) nanoparticle (NP)-functionalized WO3 nanorods (NRs) were synthesized by a two-step solution strategy, with a hydrothermal process for WO3 NRs and hydrolyzation of Ti(OBu)4 for the functionalization of TiO2(B) NPs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were employed to investigate the morphology, microstructure, crystalline nature and chemical composition of the prepared TiO2(B) NP-functionalized WO3 NRs. SEM and TEM results revealed that the TiO2(B)-WO3 composite showed a rod-like nanostructure with a diameter in the range from 93 to 154 nm and a rough surface, which could increase the accessible surface area and the amount of surface active sites, thus improving the properties or performance of the as-prepared composite NRs. XRD and XPS analysis clearly verified that monoclinic TiO2(B) NPs, a metastable polymorph of TiO2, were successfully supported on the WO3 NRs. Gas sensing measurement results for several common reductive organic gases such as acetone, ethanol, ether, methanol and formaldehyde demonstrated that the sensor based on the as-obtained TiO2(B) NP-functionalized WO3 NRs exhibited obviously enhanced responses compared with a pure WO3 NR based sensor, as well as fast response-recovery speeds, good reproducibility and good stability, indicating their promising application in gas sensors. The excellent gas sensing performance could be attributed to the unique 1D rod-like nanostructure with a rough surface, the existence of TiO2-WO3 heterojunctions and the catalytic effect of the TiO2(B) NPs. The as-prepared TiO2(B) NP-functionalized WO3 NRs will also have very good prospects in electrochromic devices and catalysis applications.

  12. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  13. Instability of Hydrogenated TiO2

    SciTech Connect

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  14. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion.

    PubMed

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-12-07

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.

  15. Novel continuous carbon and ceramic nanofibers and nanocomposites

    NASA Astrophysics Data System (ADS)

    Wen, Yongkui

    2004-12-01

    Manufacturing of carbon nanofibers from PAN precursor is described in Chapter 2 of the dissertation. The electrospun nanofibers were continuous, uniform in diameter, and the samples didn't contain impurities, unlike carbon nanotubes or vapor grown carbon fibers. Systematic studies on the electrospinning parameters showed that nanofiber diameter could be varied in a range of 80 to 1800 nm. XRD studies on the carbon nanofibers fired at different temperatures showed that higher temperature resulted in better nanostructure. Fracture-free random carbon nanofiber sheets were produced by stretch-stabilization and carbonization for the first time. Toughening effects of random as-spun PAN, stabilized PAN, and carbon nanofibers on Mode I and Mode II interlaminar fracture of advanced carbon-epoxy composites were examined by DCB and ENF tests respectively in Chapter 3. The results showed that the interlaminar fracture toughness increased the most with carbon nanofiber reinforcement. 200% improvement in Mode I fracture toughness and 60% in Mode II fracture toughness were achieved with a minimum increase of weight. SEM fractographic analysis showed nanofiber pullout and crack bridging as the main nanomechanisms of toughening. Chapter 4 describes manufacturing of aligned carbon nanofibers and nanocomposites by a modified electrospinning technique. Constant-load stretch-stabilization was applied on carbon nanofibers for the first time. Analysis showed that mechanical properties of nanofibers and nanocomposites improved with stretch-stabilization and alignment of carbon nanofibers. Nanofabrication of ceramic 3Al2O3-2SiO2, SiO2-TiO2 nanofibers by a novel combination of sol-gel and electrospinning techniques invented recently at UNL is described in Chapters 5. The 3Al2O3-2SiO2, SiO2-TiO 2 nanofibers were continuous, non circular in cross section and had crystalline structure after high temperature calcination. Effects of the process parameters on their geometry and structure were

  16. Anatase TiO2 nanorod-decoration for highly efficient photoenergy conversion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hoe; Seong, Won Mo; Park, Ik Jae; Yoo, Eun-Sang; Shin, Seong Sik; Kim, Ju Seong; Jung, Hyun Suk; Lee, Sangwook; Hong, Kug Sun

    2013-11-01

    In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile

  17. Impact of growth kinetics on morphology and pore structure of TiO2-one-pot synthesis of macroporous TiO2 microspheres.

    PubMed

    Zhong, Ziyi; Chen, Fengxi; Ang, Thiam-Peng; Han, Yifan; Lim, Weiqiang; Gedanken, Aharon

    2006-06-12

    Titanium dioxide was synthesized by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of acetic acid, 2-propanol, and organic amines (octylamine, aniline, and isobutylamine). H2O was supplied by an esterification reaction between acetic acid and 2-propanol (denoted as H2Oe), and/or by intentionally adding it (denoted as H2Oa). It was found that the quantity of H2Oa plays a crucial role in the morphology and porous structure of the final TiO2 product. Without the addition of H2Oa, 1D and porous TiO2 was synthesized. With the addition of H2Oa, and when the H2Oa:TiO2 molar ratio was in the range of 1:1 to 60:1, macroporous TiO2 microspheres possessing a large surface area and high thermal stability were obtained. When the H2Oa:TiO2 molar ratio exceeded 60:1, porous TiO2 with an irregular shape was formed. The variation in the morphology and porous structure is attributed to the manipulation of the growth kinetics by the addition of water.

  18. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    PubMed

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  19. TiO2-TiO2 composite resistive humidity sensor: ethanol crosssensitivity

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Saedi, Yasin

    2016-03-01

    The fabrication method and characterization results of a TiO2-TiO2 composite bead used for humidity sensing along with its negative cross-sensitivity to ethanol vapor are reported. The bead shaped resistive sample sensors are fabricated by the drop-casting of a TiO2 slurry on two Pt wire segments. The dried bead is pre-fired at 750°C and subsequently impregnated with a Ti-based sol. The sample is ready for characterization after a thermal annealing at 600°C in air. Structurally, the bead is a composite of the micron-sized TiO2 crystallites embedded in a matrix of nanometric TiO2 particle aggregates. The performance of the beads as resistive humidity sensors is recorded at room temperature in standard humidity level chambers. Results evince the wide dynamic range of the sensors fabricated in the low relative humidity range. While the sensor conductance is not sensitive to ethanol vapor in dry air, in humid air, sensor's responses are negatively affected by the contaminant.

  20. Double-Shelled TiO2 Hollow Spheres Assembled with TiO2 Nanosheets.

    PubMed

    Zhang, Chao; Zhou, Yuming; Zhang, Yiwei; Zhao, Shuo; Fang, Jiasheng; Sheng, Xiaoli; Zhang, Tao; Zhang, Hongxing

    2017-02-08

    High-quality double-shelled TiO2 hollow spheres (DHS-Ti) assembled with TiO2 nanosheets have been synthesized for the first time through a simple hydrothermal treatment of sSiO2 @TiO2 (TiO2 -coated solid SiO2 spheres). The double-shelled structure shows a high BET surface area up to 417.6 m(2)  g(-1) . Anatase DHS-Ti of high crystallinity can be obtained without structural collapse by calcination treatment. The effects of cetyl trimethylammonium bromide (CTAB) concentration, pH, and hydrothermal reaction temperature have also been investigated with a series of contrast experiments. A formation mechanism involving the in situ growth of amorphous TiO2 nanosheets followed by the redeposition of dissolved silica species is proposed. Lastly, the DHS-Ti forming strategy can be extended as a general strategy to fabricate various morphological hollow nanostructures and double-shelled Pt nanocatalysts by rationally selecting functional sSiO2 nanoparticles as core materials. This work could open up a new strategy for controllable synthesis of complex hollow structures and other functional materials.

  1. Aggregated TiO2 Based Nanotubes for Dye Sensitized Solar Cells

    SciTech Connect

    Nie, Zimin; Zhou, Xiaoyuan; Zhang, Qifeng; Cao, Guozhong; Liu, Jun

    2013-11-01

    One-dimensional (1D) semiconducting oxides have attracted great attention for dye sensitized solar cells (DSCs), but the overall performance is still quite limited as compared to TiO2 nanocrystalline DSCs. Here, we report the synthesis of aggregated TiO2 based nanotubes with controlled morphologies and crystalline structures to obtain an overall power conversion efficiency of 9.9% using conventional dye without any additional chemical treatment steps. The high efficiency is attributed to the unique aggregate structure for light harvesting, optimized high surface area, and good crystallinity of the nanotube aggregates obtained through proper thermal annealing. This study demonstrates that high efficiency DSCs can be obtained with 1D nanomaterials, and provides lessons on the importance of optimizing both the nanocrystalline structure and the overall microscale morphology.

  2. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts

    NASA Astrophysics Data System (ADS)

    Saeed, Khalid; Khan, Idrees; Gul, Tamanna; Sadiq, Mohammad

    2017-02-01

    Titanium oxide supported palladium (TiO2/Pd) and titanium oxide supported platinum (TiO2/Pt) nanoparticles were prepared from their precursors through the incipient wetness method. The TiO2/Pd and TiO2/Pt nanoparticles were characterized by scanning electron microscopy (SEM), and energy dispersive X-rays (EDX), while the photodegradation study of methyl violet was performed by UV/VIS spectrophotometry. The morphological study shows that the Pd and Pt were well deposited on the surface of TiO2, which was confirmed by EDX. Both TiO2/Pd and TiO2/Pt nanoparticles were used as photocatalysts for the photodegradation of methyl violet in aqueous media under UV-light irradiation. The photodegradation study revealed that the TiO2/Pd and TiO2/Pt nanoparticles degraded about 95 and 78% of dye within 20 min, respectively. The effect of various parameters such as catalyst dosage, concentration of dye, and medium on the photocatalytic degradation was examined. The activity of recovered TiO2/Pd and TiO2/Pt nanoparticles was studied.

  3. Integration of TiO2 nanotube arrays into solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bandara, J.; Shankar, K.; Basham, J.; Wietasch, H.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Thelakkat, M.

    2011-02-01

    In this investigation, transparent TiO2 nanotube arrays prepared on a FTO substrate are employed as 1D nanostructures providing elongated direct pathways for electron transport and collection in solid-state dye-sensitized solar cell (SDSC). Donor-antenna (D-A) dyes provide an exciting route for improving the light harvesting efficiency in dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state. Hence in this study we fabricated SDSC devices with different thicknesses of transparent TiO2 nanotube array electrodes sensitized with Ru-(II)-donor-antenna dye and spiro-OMeTAD as a hole conductor. At AM 1.5 G, 100 mW/cm2 illumination intensity, a power conversion efficiency of 1.94% was achieved when the TiO2 nanotubes are initially subjected to TiCl4 treatment. Furthermore, a linear increase in the cell current without loss in fill factor is observed for increasing length of TiO2 nanotubes. The structural and morphological characteristics of the transparent TiO2 nanotube arrays as well as the optimal conditions for the fabrication of SDSCs with transparent TiO2 nanotubes on FTO glass are reported.

  4. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  5. The role of multi-level structure for the improved photocatalytic performance of TiO2 fiber nanomaterial

    NASA Astrophysics Data System (ADS)

    Su, Bitao; Xin, Junlian; Li, Jianjiao; Zheng, Tao; Wang, Qizhao; Lei, Ziqiang

    2016-01-01

    A TiO2 multi-structured fiber nanomaterial was prepared via a template-assisted two-step method, and the effect of the pH value of the precursor solution on the structure of TiO2 nanofibers was mainly investigated. The samples were characterized by X-ray diffraction and scanning electron microscopy. The photocatalytic degradation of methylene blue solution was used as the model reaction to evaluate the photocatalytic property of the as-prepared TiO2 nanomaterials. Results indicated that the pH value of the precursor solution obviously influenced the formation and microstructure and photocatalytic activity of the TiO2 fiber nanomaterials. The multi-structured fiber nanomaterial showed better photocatalytic property. It was considered that high efficiencies of reactant molecules adsorption, light absorption, and separation of photogenerated e -- h + pairs played crucial roles for enhancing its photocatalytic property. In particular, the need of better understanding the relation of the light absorption and charge transport to the nanostructure has to be pointed out in this paper.

  6. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  7. Binding S0.6 Se0.4 in 1D Carbon Nanofiber with CS Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries.

    PubMed

    Yao, Yu; Zeng, Linchao; Hu, Shuhe; Jiang, Yu; Yuan, Beibei; Yu, Yan

    2017-03-29

    A one-step synthesis procedure is developed to prepare flexible S0.6 Se0.4 @carbon nanofibers (CNFs) electrode by coheating S0.6 Se0.4 powder with electrospun polyacrylonitrile nanofiber papers at 600 °C. The obtained S0.6 Se0.4 @CNFs film can be used as cathode material for high-performance Li-S batteries and room temperature (RT) Na-S batteries directly. The superior lithium/sodium storage performance derives from its rational structure design, such as the chemical bonding between Se and S, the chemical bonding between S0.6 Se0.4 and CNFs matrix, and the 3D CNFs network. This easy one-step synthesis procedure provides a feasible route to prepare electrode materials for high-performance Li-S and RT Na-S batteries.

  8. Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells

    PubMed Central

    2013-01-01

    In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells. PMID:23331863

  9. Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics of TiO2 films.

    PubMed

    Jung, Hyun Suk; Lee, Sang-Wook; Kim, Jin Young; Hong, Kug Sun; Lee, Young Cheol; Ko, Kyung Hyun

    2004-11-15

    TiO2 film for use as dye-sensitized solar cell was prepared using the TiO2 colloidal sols (unpeptized sol and peptized sol). The optical properties and photocurrent-voltage characteristics of the resultant films were investigated. The optical transmittance of TiO2 thin film prepared from the peptized colloidal sol was over 90%, while that of TiO2 film from the unpeptized sol was under 80%. The TiO2 photoelectrode prepared from the peptized colloidal sol showed low photoelectric conversion efficiency (eta), 1.30%, whereas the efficiency of photoelectrode from the unpeptized sol was 2.21%. The high optical transmittance and low conversion efficiency of TiO2 film from the peptized sol are discussed in terms of dense microstructure due to the drying nature of well-dispersed colloidal sol.

  10. Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas.

    PubMed

    Yuan, Yuan; Zhao, Yongchun; Li, Hailong; Li, Yang; Gao, Xiang; Zheng, Chuguang; Zhang, Junying

    2012-08-15

    Nanofibers prepared by an electrospinning method were used to remove elemental mercury (Hg(0)) from simulated coal combustion flue gas. The nanofibers composed of different metal oxides (MO(x)) including CuO, In(2)O(3), V(2)O(5), WO(3) and Ag(2)O supported on TiO(2) have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX) and UV-vis spectra. The average diameters of these nanofibers were about 200nm. Compared to pure TiO(2), the UV-vis absorption intensity for MO(x)-TiO(2) increased significantly and the absorption bandwidth also expanded, especially for Ag(2)O-TiO(2) and V(2)O(5)-TiO(2). Hg(0) oxidation efficiencies over the MO(x)-TiO(2) nanofibers were tested under dark, visible light (vis) irradiation and UV irradiation, respectively. The results showed that WO(3) doped TiO(2) exhibited the highest Hg(0) removal efficiency of 100% under UV irradiation. Doping V(2)O(5) into TiO(2) enhanced Hg(0) removal efficiency greatly from 6% to 63% under visible light irradiation. Ag(2)O doped TiO(2) showed a steady Hg(0) removal efficiency of around 95% without any light due to the formation of silver amalgam. An extended experiment with 8 Hg(0) removal cycles showed that the MO(x)-TiO(2) nanofibers were stable for removing Hg(0) from flue gas. Factors responsible for the enhanced photocatalytic activities of the MO(x)-TiO(2) nanofibers were also discussed.

  11. Modeling of Ionic Conductivity Enhancement of LiClO4-PVA-C System by TiO2 Addition Using Complex Numerical Model of PDE

    NASA Astrophysics Data System (ADS)

    Shokrollahi, Mahvash; Semnani, Dariush; Morshed, Mohammad; Rezaei, Behzad; Mirsoofian, Mehdi

    2013-12-01

    PVA-TiO2 nanocomposite polymer electrolytes (PEs) were produced with different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) using the electrospinning process. Morphological studies of PVA-TiO2 nanofibers were accomplished with SEM. PVA-TiO2 membranes exhibited a high porosity of 79-91%. The impedance results showed that incorporation of TiO2 into the nanofiber membrane improved its ionic conductivity from 0.7 × 10-5 to 2.5 × 10-5 S/cm at room temperature. Nanofiber PEs showed very good reversibility and electrochemical stability up to 4.7 V. Diffusion coefficient of Li ion into PVA-TiO2 nanocomposite PEs was estimated by using a complex numerical model of partial differential equation for evaluation of ion transmission. Diffusion coefficient of PVA-TiO2 PEs containing different amounts of TiO2 (0, 5, 10, 15, and 20 wt.%) increased with increasing the nanoparticles content.

  12. Ag/TiO2 nanofiber heterostructures: Highly enhanced photocatalysts under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Xu, Liang; Meng, Chuanmin; Zhu, Wenjun

    2013-05-01

    Photocatalysis of TiO2 has recently drawn considerable attention, while the photoefficiency of TiO2 is limited by its large band-gap energy and usually fast electron-hole recombination. Here, we present an unconventional heterostructure of Ag nanoparticles modified TiO2 nanofibers synthesized by one-step electrospinning process, to improve the photoefficiency of TiO2 host. The efficient promotion of the visible light photocatalysis of Ag/TiO2 nanofiber heterostructures can be ascribed to the electronic excitation of Ag nanoparticles under visible light and the transfer of the electrons to TiO2 conduction band, which deeply depends on the number of Ag/TiO2 junctions and the height of Schottky barrier. The Ag/Ti molar ratio can be easily controlled by the electrospinning process and the Ag/TiO2 nanofibers with Ag/Ti molar ratio of 0.05 exhibit the highest photocatalytic activity. Simultaneously, the Ag/TiO2 nanofiber heterostructures show excellent photocatalytic stability.

  13. Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties

    PubMed Central

    Mali, Sawanta S.; Kim, Hyungjin; Shim, Chang Su; Patil, Pramod S.; Kim, Jin Hyeok; Hong, Chang Kook

    2013-01-01

    Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures. PMID:24141599

  14. CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion.

    PubMed

    Zheng, Zhaoke; Xie, Wen; Lim, Zhi Shiuh; You, Lu; Wang, Junling

    2014-07-17

    For conventional dye or quantum dot sensitized solar cells, which are fabricated using mesoporous films, the inefficient electron transport due to defects such as grain boundaries and surface traps is a major drawback. To simultaneously increase the carrier transport efficiency as well as the surface area, optimal-assembling of hierarchical nanostructures is an attractive approach. Here, a three dimensional (3D) hierarchical heterostructure, consisting of CdS sensitized one dimensional (1D) ZnO nanorods deposited on two dimensional (2D) TiO2 (001) nanosheet, is prepared via a solution-process method. Such heterstructure exhibits significantly enhanced photoelectric and photocatalytic H2 evolution performance compared with CdS sensitized 1D ZnO nanorods/1D TiO2 nanorods photoanode, as a result of the more efficient light harvesting over the entire visible light spectrum and the effective electron transport through a highly connected 3D network.

  15. CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion

    PubMed Central

    Zheng, Zhaoke; Xie, Wen; Lim, Zhi Shiuh; You, Lu; Wang, Junling

    2014-01-01

    For conventional dye or quantum dot sensitized solar cells, which are fabricated using mesoporous films, the inefficient electron transport due to defects such as grain boundaries and surface traps is a major drawback. To simultaneously increase the carrier transport efficiency as well as the surface area, optimal-assembling of hierarchical nanostructures is an attractive approach. Here, a three dimensional (3D) hierarchical heterostructure, consisting of CdS sensitized one dimensional (1D) ZnO nanorods deposited on two dimensional (2D) TiO2 (001) nanosheet, is prepared via a solution-process method. Such heterstructure exhibits significantly enhanced photoelectric and photocatalytic H2 evolution performance compared with CdS sensitized 1D ZnO nanorods/1D TiO2 nanorods photoanode, as a result of the more efficient light harvesting over the entire visible light spectrum and the effective electron transport through a highly connected 3D network. PMID:25030846

  16. Ellipsoidal TiO2 hierarchitectures with enhanced photovoltaic performance.

    PubMed

    Peng, Wenqin; Yanagida, Masatoshi; Chen, Han; Han, Liyuan

    2012-04-23

    Hierarchical TiO(2) ellipsoids 250-500 nm in size have been synthesized on a large scale by a template-free hydrothermal route. The submicrometer-sized hierarchitectures are assembled from highly crystallized anatase nanorods about 17 nm in diameter with macroporous cavities on the outer shells. Based on the time-dependent morphological evolution under hydrothermal conditions, an oriented attachment process is proposed to explain formation of the hierarchical structures. Such hierarchical TiO(2) not only adsorbs large amounts of dye molecules due to high surface area, but also shows good light scattering caused by the submicrometer size. The TiO(2) hierarchitectures were deposited on top of a transparent TiO(2) nanocrystalline main layer to construct a double-layered photoanode for dye-sensitized solar cell (DSC) application, exhibiting enhanced light harvesting and power-conversion efficiency compared to a commercial TiO(2)-based electrode.

  17. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus.

    PubMed

    Zan, Ling; Fa, Wenjun; Peng, Tianyou; Gong, Zhen-Kui

    2007-02-01

    The photocatalysis effect of nanometer TiO2 particles and TiO2-coated ceramic plate on Hepatitis B virus surface antigen (HBsAg) was investigated. The ELISA (enzyme-linked immunosorbent assay) standard method was used to assess the efficiency of TiO2 material to destroy the HBsAg. The research has shown that the suspension of TiO2 (0.5g/L) can destroy most of the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.6mW/cm(2) at 365nm wavelength, or under the sunlight irradiation for a few hours. TiO2-coated ceramic plates can also destroy the HBsAg under the irradiation of mercury lamp, with the light intensity of 0.05mW/cm(2) at 365nm wavelength or under the room daylight for a few hours.

  18. Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Paulraj, M.

    2016-05-01

    Highly ordered rutile titanium dioxide nanorod (TNR) arrays (1.2 to 6.2 μm thickness) were grown on TiO2 blocking layer chemically deposited on fluorine doped tin oxide (FTO) substrate and were used as photo-electrodes to fabricate dye sensitized solar cells (DSSC's). Homogeneous layer of TiO2 on FTO was achieved by using aqueous peroxo- titanium complex (PTC) solutions via chemical bath deposition. Structural and morphological properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) measurements. TNR arrays (6.2 μm) with TiO2 blocking layer showed higher energy conversion efficiency (1.46%) than that without TiO2 blocking layer. The reason can be ascertained to the suppression of electron-hole recombination at the semiconductor/electrolyte interface by the effect of TiO2 blocking layer.

  19. Enhanced H2 sensing by substituting polyaniline nanoparticles with nanofibers

    NASA Astrophysics Data System (ADS)

    Sharma, Preetam K.; Srivastava, Subodh; Rajaura, Rajveer Singh; Sharma, Vinay; Sharma, S. S.; Singh, M.; Vijay, Y. K.

    2014-04-01

    We have synthesized Polyaniline nanoparticles and nanofibers using chemical oxidation method and tested them for their Hydrogen sensing properties. PANI nanoparticles and nanofibers have demonstrated sensor response of 1.38 and 1.52, respectively. Reaction kinetics has also enhanced in case of PANI nanofibers with response and recovery times of 170 and 95 s, respectively. The increased conductivity, sensor response and reaction kinetics in case of the nanofibers as compared to nanoparticles is attributed to the 1-D conductive channel provided by the nanofibers for faster and better electron transfer.

  20. Optimized nanostructured TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Topcu, Selda; Jodhani, Gagan; Gouma, Pelagia

    2016-07-01

    Titania is the most widely studied photocatalyst. In it’s mixed-phase configuration (anatase-rutile form) -as manifested in the commercially available P25 Degussa material- titania was previously found to exhibit the best photocatalytic properties reported for the pure system. A great deal of published research by various workers in the field have not fully explained the underlying mechanism for the observed behavior of mixed-phase titania photocatalysts. One of the prevalent hypothesis in the literature that is tested in this work involves the presence of small, active clusters of interwoven anatase and rutile crystallites or “catalytic “hot-spots””. Therefore, non-woven nanofibrous mats of titania were produced and upon calcination the mats consisted of nanostructured fibers with different anatase-rutile ratios. By assessing the photocatalytic and photoelectrochemical properties of these samples the optimized photocatalyst was determined. This consisted of TiO2 nanostructures annealed at 500˚C with an anatase /rutile content of 90/10. Since the performance of this material exceeded that of P25 complete structural characterization was employed to understand the catalytic mechanism involved. It was determined that the dominant factors controlling the photocatalytic behavior of the titania system are the relative particle size of the different phases of titania and the growth of rutile laths on anatase grains which allow for rapid electron transfer between the two phases. This explains how to optimize the response of the pure system.

  1. Tailored synthesis of photoactive TiO ₂ nanofibers and Au/TiO ₂ nanofiber composites: structure and reactivity optimization for water treatment applications.

    PubMed

    Nalbandian, Michael J; Greenstein, Katherine E; Shuai, Danmeng; Zhang, Miluo; Choa, Yong-Ho; Parkin, Gene F; Myung, Nosang V; Cwiertny, David M

    2015-02-03

    Titanium dioxide (TiO2) nanofibers with tailored structure and composition were synthesized by electrospinning to optimize photocatalytic treatment efficiency. Nanofibers of controlled diameter (30-210 nm), crystal structure (anatase, rutile, mixed phases), and grain size (20-50 nm) were developed along with composite nanofibers with either surface-deposited or bulk-integrated Au nanoparticle cocatalysts. Their reactivity was then examined in batch suspensions toward model (phenol) and emerging (pharmaceuticals, personal care products) pollutants across various water qualities. Optimized TiO2 nanofibers meet or exceed the performance of traditional nanoparticulate photocatalysts (e.g., Aeroxide P25) with the greatest reactivity enhancements arising from (i) decreasing diameter (i.e., increasing surface area), (ii) mixed phase composition [74/26 (±0.5) % anatase/rutile], and (iii) small amounts (1.5 wt %) of surface-deposited, more so than bulk-integrated, Au nanoparticles. Surface Au deposition consistently enhanced photoactivity by 5- to 10-fold across our micropollutant suite independent of their solution concentration, behavior that we attribute to higher photocatalytic efficiency from improved charge separation. However, the practical value of Au/TiO2 nanofibers was limited by their greater degree of inhibition by solution-phase radical scavengers and higher rate of reactivity loss from surface fouling in nonidealized matrixes (e.g., partially treated surface water). Ultimately, unmodified TiO2 nanofibers appear most promising for use as reactive filtration materials because their performance was less influenced by water quality, although future efforts must increase the strength of TiO2 nanofiber mats to realize such applications.

  2. Highly active nanocrystalline TiO(2) photoelectrodes.

    PubMed

    Paronyan, Tereza M; Kechiantz, A M; Lin, M C

    2008-03-19

    A simple method for the fabrication of highly photoactive nanocrystalline two-layer TiO(2) electrodes for solar cell applications is presented. Diluted titanium acetylacetonate has been used as a precursor for covering SnO(2):F (FTO) films with dense packed TiO(2) nanocrystallites. The nanoporous thick TiO(2) film follows the dense packed thin TiO(2) film as a second layer. For the latter, amorphous TiO(2) nanoparticles have been successfully synthesized by a sol-gel technique in an acidic environment with pH<1 and hydrothermal growth at a temperature of 200 °C. The acidic nanoparticle gel was neutralized by basic ammonia and a TiO(2) gel of pH 5 was obtained; this pH value is higher than the recently reported value of 3.1 (Park et al 2005 Adv. Mater. 17 2349-53). Highly interconnected, nanoporous, transparent and active TiO(2) films have been fabricated from the pH 5 gel. SEM, AFM and XRD analyses have been carried out for investigation of the crystal structure and the size of nanoparticles as well as the surface morphology of the films. Investigation of the photocurrent-voltage characteristics has shown improvement in cell performance along with the modification of the surface morphology, depending on pH of the TiO(2) gel. Increasing the pH of the gel from 2.1 to 5 enhanced the overall conversion efficiency of the dye-sensitized solar cells by approximately 30%. An energy conversion efficiency of 8.83% has been achieved for the cell (AM1.5, 100  mWcm(-2) simulated sunlight) compared to 6.61% efficiency in the absence of ammonia in the TiO(2) gel.

  3. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  4. Anatase TiO2 sheet-assisted synthesis of Ti(3+) self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: Roles of anatase TiO2 sheet.

    PubMed

    Zhang, Xiaojie; Zuo, Guoqing; Lu, Xin; Tang, Changqing; Cao, Shuo; Yu, Miao

    2017-03-15

    On the basis of measurements, such as field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, X-ray diffraction, electron paramagnetic resonance, photoluminescence spectra, and photocurrent measurements, the roles of anatase TiO2 sheet on synthesizing Ti(3+) self-doped mixed phase TiO2 nanosheets (doped TiO2 (A/R, TiO2 (A))) and on improving the performance for photocatalytic CO2 reduction were explored systematically. High surface area anatase TiO2 nanosheets (TiO2 (A)) as a substrate, structure directing agent, and inhibitor, mediated the synthesis of Ti(3+) self-doped mixed phase TiO2 nanosheets. Addition of TiO2 (A) significantly improved not only visible light absorption of doped TiO2 (A/R, TiO2 (A)), but also the efficiency of photo-excited charges separations due to the existence of interfacial regions of anatase-rutile TiO2 junctions. Finally, a possible mechanism for interfacial charge transfer at the anatase-rutile TiO2 interface and for photocatalytic CO2 reduction over Pt loaded doped TiO2 (A/R, TiO2 (A)) were proposed.

  5. TiO2 Fibers: Tunable Polymorphic Phase Transformation and Electrochemical Properties.

    PubMed

    Garcia, Edna; Li, Qiang; Sun, Xing; Lozano, Karen; Mao, Yuanbing

    2015-05-01

    A series of one-dimensional (1 D) nanoparticle-assembled TiO2 fibers with tunable polymorphs were prepared via a novel and large scale ForceSpinning process of titanium tetraisopropoxide (TTIP)/polyvinylpyrrolidone (PVP) precursor fibers followed with a thermal treatment at various calcination temperatures. The thermal and structural transformations were characterized by thermogravimetric analysis/differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction. The influence of polymorphic phase of the TiO2 fibers on the electrochemical performance in neutral aqueous 1 M Na2SO4 electrolyte was investigated. The polymorphic amorphous/anatase/rutile TiO2 fibers prepared at 450 degrees C achieved a highest capacitance of 21.2 F g(-1) (6.61 mF cm(-2)) at a current density of 200 mA g(-1), for which the improved electronic conductivity and activated pseudocapacitance mechanism may be responsible. This work helps bridge the gap between nanoscience and manufacturing. It also makes polymorphism control of functional materials a potential strategy for further improving supercapacitive output of metal oxides.

  6. Thermal insulation, antibacterial and mold properties of breathable nanofiber-laminated wallpapers.

    PubMed

    Kim, Byoung-Suhk; Kimura, Naotaka; Kim, Han-Ki; Watanabe, Kei; Kim, Ick-Soo

    2011-06-01

    We studied the thermal insulation, antibacterial and mold properties of the nanofiber laminated wallpapers prepared by laminate-coating using electrospinning method. The thermal insulation capability of the nanofiber laminated wallpapers was evaluated by using a home-made insulated environmental chamber under different environmental conditions. It was found that the nanofiber laminated wallpapers exhibited better thermal insulation performance than the conventional silk wallpaper, which was commercialized silk wallpapers prepared by polyacrylic resin, suggesting that the laminate-coated nanofiber layer played an effective role in thermal insulation. Compared to the normal silk wallpaper, the nanofiber laminated wallpaper also exhibited good moisture vapor transmission rate (MVTR) due to excellent vapor permeability. In addition, TiO2-containing nanofiber laminated wallpapers exhibited good antibacterial activity against both E. Coli and P. Aeruginosa.

  7. Growth of TiO2 nanoparticles under heat treatment

    NASA Astrophysics Data System (ADS)

    Bahadur, J.; Sen, D.; Mazumder, S.; Sastry, P. U.; Paul, B.

    2013-02-01

    The effect of heat treatment, on growth of NiO doped TiO2, have been investigated. The nanoparticle size has been estimated by small-angle x-ray scattering. The average particle size increases with increasing temperature. The growth of crystallite size has been probed by X-ray diffraction. A polymorphic phase transition of TiO2 is observed beyond 600°C due to growth of TiO2 nanoparticles beyond 14 nm of size.

  8. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.

  9. Photocatalytic activity of hydrogenated TiO2.

    PubMed

    Leshuk, Tim; Parviz, Roozbeh; Everett, Perry; Krishnakumar, Harish; Varin, Robert A; Gu, Frank

    2013-03-01

    Photocatalysis is a promising advanced water treatment technology, and recently the possibility of using hydrogenation to improve the photocatalytic efficiency of titanium dioxide has generated much research interest. Herein we report that the use of high-temperature hydrogenation to prepare black TiO2 primarily results in the formation of bulk defects in the material without affecting its electronic band structure. The hydrogenated TiO2 exhibited significantly worse photocatalytic activity under simulated sunlight compared to the unhydrogenated control, and thus we propose that high-temperature hydrogenation can be counterproductive to improving the photocatalytic activity of TiO2, because of its propensity to form bulk vacancy defects.

  10. TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor

    PubMed Central

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-01-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on β-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of β-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications. PMID:26030002

  11. TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor.

    PubMed

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-06-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on β-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of β-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications.

  12. Photocatalytic Applications of Electrospun TiO2 Nanofibres Embedded with Bimodal Sized and Prismatic Gold Nanoparticles.

    PubMed

    Gopika, G; Asha, A M; Sivakumar, N; Balakrishnan, A; Nair, S V; Subramanian, K R V

    2015-09-01

    In this paper, we have synthesized electrospun TiO2 nanofibers embedded with bimodal sized and prismatic gold nanoparticles. The surface plasmons generated in the gold nanoparticles were used to enhance the performance of photocatalysis. The photocatalytic conversion efficiencies of these bimodal sized/prismatic gold nanoparticles when embedded in electrospun TiO2 fibres showed an enhancement of upto 60% over bare fiber systems and also show higher efficiencies than electrospun fibrous systems embedded with unimodal sized gold nanoparticles. Anisotropic bimodal gold nanoparticles show the highest degree of photocatalytic activity. This may be attributed to greater density/concentration of nanoparticles with higher effective surface area and formation of a junction between the smaller and larger nanoparticles. Such a bimodally distributed range of nanoparticles could also lead to greater trapping of charge carriers at the TiO2 conduction band edge and promoting catalytic reactions on account of these trapped charges. This enhanced photocatalytic activity is explained by invoking different operating mechanisms such as improved surface area, greater trapping, coarse plasmon resonance and band effects. Thus, a useful applicability of the gold nanoparticles is shown in the area of photocatalysis.

  13. Photocatalytic metamaterials: TiO2 inverse opals.

    PubMed

    Sordello, Fabrizio; Duca, Clara; Maurino, Valter; Minero, Claudio

    2011-06-07

    The study of the photocatalytic activity of TiO(2) inverse opals showed that these structures behave as metamaterials: their properties arise principally from the 3D periodic structure of the material and marginally from porosity, reflectivity and scattering.

  14. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  15. The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Srisitthiratkul, Chutima; Pongsorrarith, Voraluck; Intasanta, Narupol

    2011-08-01

    While chemical and biological attacks pose risk to human health, clean air is of scientific, environmental and physiological concerns. In the present contribution, the potential use of nanosilver-decorated titanium dioxide (TiO 2) nanofibers for toxin decomposition with antimicrobial activity and self-cleaning properties was investigated. Titanium dioxide nanofibers were prepared through sol-gel reaction followed by an electrospinning process. Following the Japan Industrial Standard (JIS) protocol, decompositions of nitrogen oxide (NOx) and volatile organic compound (VOC) by the TiO 2 nanofibers suggested that these materials were capable of air treatment. To further enhance their anti-microbial activity, silver nanoparticles were decorated onto the TiO 2 nanofibers' surfaces via photoreduction of silver ion in the presence of the nanofibers suspension. Furthermore, tests of photocatalytic activity of the samples were performed by photodegrading methylene blue in water. The nanofibrous membranes prepared from these nanofibers showed superhydrophilicity under UV. Finally, the possibility of using these hybrid nanofibers in environmental and hygienic nanofiltration was proposed, where the self-cleaning characteristics was expected to be valuable in maintenance processes.

  16. Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds.

    PubMed

    Ramasundaram, Subramaniyan; Yoo, Ha Na; Song, Kyung Guen; Lee, Jaesang; Choi, Kyoung Jin; Hong, Seok Won

    2013-08-15

    A photocatalytically active stainless steel filter (P-SSF) was prepared by integrating electrospun TiO2 nanofibers on SSF surface through a hot-press process where a poly(vinylidene fluoride) (PVDF) nanofibers interlayer acted as a binder. By quantifying the photocatalytic oxidation of cimetidine under ultraviolet radiation and assessing the stability of TiO2 nanofibers integrated on the P-SSF against sonication, the optimum thickness of the TiO2 and PVDF layer was found to be 29 and 42 μm, respectively. At 10L/m(2)h flux, 40-90% of cimetidine was oxidized when the thickness of TiO2 layer increased from 10 to 29 μm; however, no further increase of cimetidine oxidation was observed as its thickness increased to 84 μm, maybe due to limited light penetration. At flux conditions of 10, 20, and 50 L/m(2) h, the oxidation efficiencies for cimetidine were found to be 89, 64, and 47%, respectively. This was attributed to reduced contact time of cimetidine within the TiO2 layer. Further, the degradation efficacy of cimetidine was stably maintained for 72 h at a flux of 10 L/m(2) h and a trans-filter pressure of 0.1-0.2 kPa. Overall, our results showed that it can potentially be employed in the treatment of effluents containing organic micropollutants.

  17. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  18. TiO2-ITO and TiO2-ZnO nanocomposites: application on water treatment

    NASA Astrophysics Data System (ADS)

    Chorfi, H.; Saadoun, M.; Bousselmi, L.; Bessais, B.

    2012-06-01

    One of the most promising ideas to enhance the photocatalytic efficiency of the TiO2 is to couple this photocatalyst with other semiconductors. In this work, we report on the development of photo-catalytic properties of two types of composites based on TiO2 - ITO (Indium Tin Oxide) and TiO2 - ZnO deposited on conventional ceramic substrates. The samples were characterized by X-ray diffraction (XRD) and transmission Electron Microscopy (TEM). The photo-catalytic test was carried out under UV light in order to reduce/oxidize a typical textile dye (Cibacron Yellow). The experiment was carried out in a bench scale reactor using a solution having a known initial dye concentration. After optimization, we found that both nanocomposites exhibit better photocatalytic activity compared to the standard photocatalyst P25 TiO2.

  19. Dye-sensitized TiO2 nanotube solar cells: rational structural and surface engineering on TiO2 nanotubes.

    PubMed

    Wang, Jun; Lin, Zhiqun

    2012-12-01

    Owing to well-defined structural parameters and enhanced electronic properties, highly ordered TiO(2) nanotube arrays have been employed to substitute TiO(2) nanoparticles for use in dye-sensitized solar cells. To further improve the performance of dye-sensitized TiO(2) nanotube solar cells, efforts have been directed toward the optimization of TiO(2) photoanodes, dyes, electrolytes, and counter electrodes. Herein, we highlight recent progress in rational structural and surface engineering on anodic TiO(2) nanotube arrays and their effects on improving the power conversion efficiency of dye-sensitized TiO(2) nanotube solar cells.

  20. A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Zhou, Yun; Meng, Chuanmin; Gao, Zhao; Cao, Xiuxia; Li, Xuhai; Xu, Liang; Zhu, Wenjun; Peng, Xusheng; Zhang, Botao; Lin, Yifeng; Liu, Lixin

    2016-10-01

    Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.

  1. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.

    PubMed

    Yu, Hua; Pan, Jian; Bai, Yang; Zong, Xu; Li, Xinyong; Wang, Lianzhou

    2013-09-27

    One-dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye-sensitized solar cells (DSSCs) due to their superior electron-transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three-dimensional (3D) rutile-nanorod-based network structure directly grown on fluorine-doped tin oxide (FTO) substrates was developed by using a facile two-step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head-caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light-harvesting efficiency was increased due to an enhanced light-scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open-circuit voltage decay (OCVD) analyses confirmed that the electron-recombiantion rate was reduced on formation of the nanorod-based 3D network for fast electron transport. As a resut, a light-to-electricity conversion efficiency of 6.31% was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2 .

  2. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In summary, the concerted effect of hvb(+) and ecb(-) to implement one oxidation event could pave the way for selective oxofunctionalization of organic substrates with O2 by metal oxide photocatalysis. Furthermore, it could also deepen our understanding on the role of O2 and the elusive nature of oxygen species at the interface of TiO2, which, in turn, could shed new light on avant-garde photocatalytic selective redox processes in addressing the energy and environmental challenges of the future.

  3. Nanofibrous TiO2 improving performance of mesoporous TiO2 electrode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Zukalová, Markéta; Kavan, Ladislav; Procházka, Jan; Zukal, Arnošt; Yum, Jun-Ho; Graetzel, Michael

    2013-05-01

    A method of direct coating of conducting glass by electrospinning was developed. Electrospun fibrous TiO2 consisting of closely packed anatase nanocrystals of 40-50 nm in size was incorporated into mesoporous TiO2 thin film stabilized by phosphorus. The mesoporous framework formed by walls with 5-6 nm TiO2 nanocrystals surrounding 20 nm mesopores exhibits extreme porosity and consequently limited number of necking points. TiO2 with fibrous morphology was found to solidify mesoporous titania and to be beneficial for the performance of corresponding photoanode in dye-sensitized solar cell (DSC). Obviously, its wire-like structure suitably interconnects mesoporous network and thus increases the electron collection efficiency from the TiO2 layer to the F-doped SnO2 electrode. The solar conversion efficiency of a DSC employing optimized photoanode consisting of nanocrystalline fibrous bottom layer, four mesoporous layers, and one nanocrystalline anatase scattering top layer sensitized with the N945 dye reached 5.35 %. This represents an improvement of about 9 % compared to the solar conversion efficiency of a DSC employing purely mesoporous TiO2 layer prepared by means of phosphorus doping (5.05 %).

  4. Anti-fogging nanofibrous SiO(2) and nanostructured SiO(2)-TiO(2) films made by rapid flame deposition and in situ annealing.

    PubMed

    Tricoli, Antonio; Righettoni, Marco; Pratsinis, Sotiris E

    2009-11-03

    Transparent, pure SiO(2), TiO(2), and mixed silica-titania films were (stochastically) deposited directly onto glass substrates by flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate and/or titanium tetra isopropoxide in xylene) and stabilized by in situ flame annealing. Silicon dioxide films consisted of a network of interwoven nanofibers or nanowires several hundred nm long and 10-15 nm thick, as determined by microscopy. These nanowire or nanofibrous films were formed by chemical vapor deposition (surface growth) on bare glass substrates during scalable combustion of precursor solutions at ambient conditions, for the first time to our knowledge, as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, titanium dioxide films consisted of nanoparticles 3-5 nm in diameter that were formed in the flame and deposited onto the glass substrate, resulting in highly porous, lace-like nanostructures. Mixed SiO(2)-TiO(2) films (40 mol % SiO(2)) had similar morphology to pure TiO(2) films. Under normal solar radiation, all such films having a minimal thickness of about 300 nm completely prevented fogging of the glass substrates. These anti-fogging properties were attributed to inhibition of water droplet formation by such super-hydrophilic coatings as determined by wetting angle measurements. Deactivated (without UV radiation) pure TiO(2) coatings lost their super-hydrophilicity and anti-fogging properties even though their wetting angle was reduced by their nanowicking. In contrast, SiO(2)-TiO(2) coatings exhibited the best anti-fogging performance at all conditions taking advantage of the high surface coverage by TiO(2) nanoparticles and the super-hydrophilic properties of SiO(2) on their surface.

  5. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li(+) pathways from surface to subsurface sites, which many chemists believe to contribute to the pseudocapacitive charging. Several disadvantages exist as well. TiO2(B), and titania in general, suffers from poor electronic and ionic conductivity. Nanostructured TiO2(B) also exhibits significant irreversible capacity loss (ICL) upon first discharge (lithiation). Nanostructuring TiO2(B) can help alleviate problems with poor ionic conductivity by shortening lithium diffusion pathways. Unfortunately, this also increases the likelihood of severe first discharge ICL due to reactive Ti-OH and Ti-O surface sites that can cause unwanted electrolyte degradation and irreversible trapping of Li(+). Nanostructuring also results in lowered volumetric energy density, which could be a considerable problem for mobile applications. We will also discuss these problems and proposed solutions. Scientists have synthesized TiO2(B) in a variety of nanostructures including nanowires, nanotubes, nanoparticles, mesoporous-ordered nanostructures, and nanosheets. Many of these structures exhibit enhanced Li(+) diffusion kinetics and increased specific capacities compared to bulk material, and thus warrant investigation on how nanostructuring influences lithiation behavior. This Account will focus on these influences from both experimental and theoretical perspectives. We will discuss the surface charging mechanism that gives rise to the increased lithiation and delithiation kinetics for TiO2(B), along with the influence of dimensional confinement of the nanoarchitectures, and how nanostructuring can change the lithiation mechanism considerably.

  6. Periodic Modification of Nanofibers by Polymer Crystallization

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Li, Christopher

    2008-03-01

    Electrospinning polymer nanofibers are one of the most useful 1D nanometer-scaled materials that have numerous potential applications in the fields of filter applications, and templates for tissue engineering. Herein we show that polymer nanofibers can also be used as 1D nucleation agents to induce polymer crystallization. Poly(ethylene oxide) was electrospun into nanofibers which was used to induce PEO crystallization in solution. Shish kebab morphology was observed with the nanofiber as the shish and the PEO lamellar crystals as the kebabs. This unique morphology was named as nano fiber shish kebabs (NFSKs). We demonstrated that the structural parameters of the NSFK such as the fiber diameter, periods, the kebab size etc. could be readily controlled by the electrospinning and crystallization conditions. This NSFK also renders 3D features to the otherwise 1D nanofibers. It also serves as a vehicle for incorporating a variety of functional groups to the nanofiber systems, which, in turn, leads to numerous biomedical as well as electronic applications.

  7. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties.

    PubMed

    Oleyaei, Seyed Amir; Almasi, Hadi; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-11-05

    In this study, ternary potato starch (PS) bionanocomposite films containing two types of nanoparticles, sodium montmorillonite (MMT), one-dimensional (1D) clay platelets, (3 and 5wt%) and TiO2, three-dimensional (3D) nanospheres, (0.5, 1 and 2wt%), are prepared using solvent casting method. X-ray diffraction (XRD) test confirms the completely exfoliated structure formed in the PS-MMT nanocomposites containing 3 and 5% MMT. The success of the formation of new hydrogen bonds between the hydroxyl groups of starch and nanofillers is confirmed by Fourier transform infrared (FTIR) spectroscopy. Tensile strength (TS), elongation at break (EB), glass transition temperature (Tg), and melting point (Tm) of the films are also enhanced after MMT and TiO2 incorporation. The water vapor permeability (WVP) and the visible, UVA, UVB and UVC lights transmittance decreases upon TiO2 and MMT content increasing. Generally, a synergistic effect is observed between MMT and TiO2 at lower concentrations of MMT.

  8. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires.

    PubMed

    Feng, Xinjian; Zhu, Kai; Frank, Arthur J; Grimes, Craig A; Mallouk, Thomas E

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO(2) nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport and a factor four lower defect state density than conventional rutile nanoparticle films.

  9. Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires

    SciTech Connect

    Feng, X.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E.

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO2 nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport (see picture) and a factor four lower defect state density than conventional rutile nanoparticle films.

  10. Photocatalytic performance of TiO2-zeolite templated carbon composites in organic contaminant degradation.

    PubMed

    Donphai, Waleeporn; Kamegawa, Takashi; Chareonpanich, Metta; Nueangnoraj, Khanin; Nishihara, Hirotomo; Kyotani, Takashi; Yamashita, Hiromi

    2014-12-07

    TiO2 composites with zeolite templated carbon (TiO2-ZTC) and activated carbon (TiO2-AC) were prepared and used as the photocatalysts for comparative studies with pure TiO2. TiO2-ZTC exhibited the highest rate of methylene blue degradation with a rate approximately 4 and 400 times higher than those of TiO2-AC and pure TiO2, respectively. Moreover, the highest catalytic performance of TiO2-ZTC in gas-phase degradation of acetone was approximately 1.1 and 12.9 times higher than TiO2-AC and pure TiO2, respectively. These outstanding performances could be attributed to high surface area, pore volume, and hydrophobic surface properties, leading to improvement in the adsorption properties of organic molecules.

  11. Fabrication and characterization of TiO2-NTs based hollow carbon fibers/carbon film composite electrode with NiOx decorated for capacitive application

    NASA Astrophysics Data System (ADS)

    Wei, Kajia; Wang, Yi; Han, Weiqing; Li, Jiansheng; Sun, Xiuyun; Shen, Jinyou; Wang, Lianjun

    2016-06-01

    This work designs a novel structure of TiO2 nanotubes (TiO2-NTs) based hollow carbon nanofibers (HCFs)/carbon film (CF) composite electrode with NiOx decorated for capacitive deionization application. The TiO2-NTs array is obtained through anode oxidation method on the titanium substrate, while the HCFs/CF is synthesized by thermal decomposition of a mixture of C6H12O6 and Ni(CH3COO)2·4H2O inside the nanochannels and over the caps of TiO2-NTs array, then followed by carbonization and HNO3 activation. The nickel possesses multi-functional effects during the synthesis process as carbon catalyst (Ni(II)), molecule binder (NiTi) and pseudo-capacitance supplier (NiOx). FE-SEM, XRD, Raman spectroscopy and water contact angle measurement reveal a uniform carbon distribution, favorable nickel dispersion, high stability and ideal hydrophilicity for this structure. With the addition of C6H12O6 and Ni(Ac)2·4H2O controlled at 10% (wt) and 2% (wt), respectively, a composite electrode with specific capacitance of 244.9 F·g-1, high oxygen evolution potential of 2.15 V and low water contact angle of 41.77° is obtained as well as minimum polarization impedance and efficient capacitive ability, which exhibits promising applications for practical employment.

  12. Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability.

    PubMed

    Toniatto, T V; Rodrigues, B V M; Marsi, T C O; Ricci, R; Marciano, F R; Webster, T J; Lobo, A O

    2017-02-01

    Researchers have been looking for modifying surfaces of polymeric biomaterials approved by FDA to obtain nanofeatures and bactericidal properties. If modified, it would be very interesting because the antibiotic administration could be reduced and, therefore, the bacterial resistance. Here, we report the electrospinning of poly (lactic acid) (PLA) with high loadings of titanium dioxide nanoparticles (TiO2, 1-5wt%) and their bactericidal properties. TiO2 nanoparticles have been recognized for a long time for their antibacterial, low cost and self-cleaning properties. However, their ability to reduce bacteria functions when used in polymers has not been well studied to date. In this context, we aimed here to generate nanostructured PLA electrospun fiber-TiO2 nanoparticle composites for further evaluation of their bactericidal activity and cell viability. TEM and SEM micrographs revealed the successful electrospinning of PLA/TiO2 and the generation of polymer-TiO2 nanostructures. When increasing the TiO2 concentration, we observed a proportional increase in the nanoparticle density along the fiber and surface. The nanostructured PLA/TiO2 nanofibers showed no mammalian cell toxicity and, most importantly, possessed bactericidal activity with higher TiO2 loads. Such results suggest that the present PLA electrospun fiber-TiO2 nanoparticle composites should be further studied for a wide range of biomedical applications.

  13. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    PubMed Central

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-01-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429

  14. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-09-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.

  15. Dynamics of fibronectin adsorption on TiO2 surfaces.

    PubMed

    Sousa, S R; Brás, M Manuela; Moradas-Ferreira, P; Barbosa, M A

    2007-06-19

    In the present work we analyze the dynamics of fibronectin (FN) adsorption on two different stable titanium oxides, with varied surface roughness, and chemically similar to those used in clinical practice. The two types of titanium oxide surfaces used were TiO2 sputtered on Si (TiO2 sp) and TiO2 formed on commercially pure titanium after immersion in H2O2 (TiO2 cp). Surface characterization was previously carried out using different techniques (Sousa, S. R.; Moradas-Ferreira, P.; Melo, L. V.; Saramago, B.; Barbosa, M. A. Langmuir 2004, 20 (22), 9745-9754). Imaging and roughness analysis before and after FN adsorption used atomic force microscopy (AFM) in tapping mode, in air, and in magnetic alternating current mode, in liquid (water). FN adsorption as a function of time was followed by X-ray photoelectron spectroscopy (XPS), by radiolabeling of FN with 125I (125I-FN), and by ellipsometry. Exchangeability studies were performed using FN and HSA. AFM roughness analysis revealed that, before FN adsorption, both TiO2 surfaces exhibited a lower root-mean-square (Rq) and maximum peak with the depth of the maximum valley (Rmax) roughness in air than in water, due to TiO2 hydration. After protein adsorption, the same behavior was observed for the TiO2 sp substrate, while Rq and Rmax roughness values in air and in water were similar in the case of the TiO2 cp substrate, for the higher FN concentration used. Surface roughness was always significantly higher on the TiO2 cp surfaces. AFM led to direct visualization of adsorbed FN on both surfaces tested, indicating that after 10 min of FN incubation the TiO2 sp surface was partially covered by FN. The adsorbed protein seems to form globular aggregates or ellipsoids, and FN aggregates coalesce, forming clusters as the time of adsorption and the concentration increase. Radiolabeling of FN revealed that a rapid adsorption occurs on both surfaces and the amount adsorbed increased with time, reaching a maximum after 60 min of incubation. Time dependence is also observed for the evolution of the atomic (%) of N determined by XPS and by the increase of the thickness by ellipsometry. TiO2 cp adsorbs more FN than the TiO2 sp surfaces, after 60 min of adsorption, as shown by the radiolabeling data. FN molecules are also more strongly attached to the former surface as indicated by the exchangeability studies. The overall results provide novel evidence that FN spontaneously adsorbs as a self-assembly at TiO2 surfaces as a function of time. The aggregate structure is an intermediate feature shared by some protein fibrillar assemblies at interfaces, which is believed to promote cell adhesion and cytoskeleton organization (Pellenc, D.; Berry, H.; Gallet, O. J. Colloid Interface Sci. 2006, 298 (1), 132-144. Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. J. Cell Sci. 2000, 113 (10), 1677-1686).

  16. Hydrogen Impurity Defects in Rutile TiO2

    PubMed Central

    Mo, Li-Bin; Wang, Yu; Bai, Yang; Xiang, Qing-Yun; Li, Qun; Yao, Wen-Qing; Wang, Jia-Ou; Ibrahim, Kurash; Wang, Huan-Hua; Wan, Cai-Hua; Cao, Jiang-Li

    2015-01-01

    Hydrogen-related defects play crucial roles in determining physical properties of their host oxides. In this work, we report our systematic experimental and theoretical (based on density functional theory) studies of the defect states formed in hydrogenated-rutile TiO2 in gaseous H2 and atomic H. In gas-hydrogenated TiO2, the incorporated hydrogen tends to occupy the oxygen vacancy site and negatively charged. The incorporated hydrogen takes the interstitial position in atom-hydrogenated TiO2, forming a weak O-H bond with the closest oxygen ion, and becomes positive. Both states of hydrogen affect the electronic structure of TiO2 mainly through changes of Ti 3d and O 2p states instead of the direct contributions of hydrogen. The resulted electronic structures of the hydrogenated TiO2 are manifested in modifications of the electrical and optical properties that will be useful for the design of new materials capable for green energy economy. PMID:26627134

  17. Water - Based TiO2 Suspensions: A Raman Study

    NASA Astrophysics Data System (ADS)

    Rangel, Roberto; Chipara, Dorina; Yust, Brian; Padilla, Desiree; Chipara, Mircea

    The antibacterial features of TiO2 are under scrutiny due to the UV radiation, which contributes to the generation of reactive oxygen species, mainly in water environments. A study of TiO2 suspensions in water and broth is reported. TiO2 has a low solubility in water. TiO2 (anatase), with average diameter of 15 nm from Nanostructured & Amorphous Materials, Inc. has been added to the fluid (water, broth) and the mixture was stirred for 1-10 h, followed by a 10-60 minutes sonication. The suspension was left to sediment for 1 day before measurements. Quasistable suspensions of TiO2 in water and broth were investigated by Raman spectroscopy using a Renishaw InVia spectrometer operating at 532 and 785 nm. The spectra of the nanofiller have been simulated by a collection of Breit-Wigner Fano line shapes and the effect of the preparation conditions (stirring and sonication time) on the parameters of Raman lines are reported. The differences are explained by observing that the sonication destroys the agglomerates of anatase resulting in a better dispersion of nanoparticles and consequently a longer sedimentation time. Sample preparation/storage have been done both under dark and UV light conditions.

  18. Lunar Prospector neutron spectrometer constraints on TiO2

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Lawrence, D. J.; Feldman, W. C.; Barraclough, B. L.; Gasnault, O. M.; Maurice, S.; Lucey, P. G.; Blewett, D. T.; Binder, A. B.

    2002-04-01

    Lunar Prospector neutron spectrometer measurements of the epithermal and thermal neutron leakage fluxes are used to provide constraints on TiO2 abundances in lunar surface materials. We use FeO abundance estimates based on both Clementine spectral reflectance techniques and preliminary Lunar Prospector gamma ray spectrometer determinations to first establish a model thermal neutron absorption due to all major elements except titanium. Then we remove the additional absorbing effects due to the rare earth elements gadolinium and samarium by using Lunar Prospector gamma ray spectrometer thorium abundances as a rare earth element proxy. The result can be compared to the ratio of epithermal to thermal neutron fluxes, which point to the presence of the additional thermal neutron absorber, titanium. We can derive abundance estimates of TiO2 and compare to other estimates derived spectroscopically. Our results show a significantly lower abundance of TiO2 than has been derived using Clementine data.

  19. Different methods in TiO2 photodegradation mechanism studies: gaseous and TiO2-adsorbed phases.

    PubMed

    Deveau, Pierre-Alexandre; Arsac, Fabrice; Thivel, Pierre-Xavier; Ferronato, Corinne; Delpech, Françoise; Chovelon, Jean-Marc; Kaluzny, Pascal; Monnet, Christine

    2007-06-18

    The development of photocatalysis processes offers a significant number of perspectives especially in gaseous phase depollution. It is proved that the photo-oxidizing properties of photocatalyst (TiO(2)) activated by UV plays an important role in the degradation of volatile organic compounds (VOC). Heterogeneous photocatalysis is based on the absorption of UV radiations by TiO(2). This phenomenon leads to the degradation and the oxidation of the compounds, according to a mechanism that associates the pollutant's adsorption on the photocatalyst and radical degradation reactions. The main objective of the study is the understanding of the TiO(2)-photocatalysis phenomenon including gaseous and adsorbed phase mechanisms. Results obtained with three different apparatus are compared; gaseous phases are analysed and mechanisms at the gaseous phase/photocatalyst interface are identified. This study leads to improve understanding of various mechanisms during pollutant photodegradation: adsorption of pollutants on TiO(2) first takes place, then desorption and/or photodegradation, and finally, desorption of degradation products on TiO(2). The association of analytical methods and different processes makes the determination of all parameters that affect the photocatalytic process possible. Mastering these parameters is fundamental for the design and construction of industrial size reactors that aim to purify the atmosphere.

  20. A Surface Science Perspective on TiO2 Photocatalysis

    SciTech Connect

    Henderson, Michael A.

    2011-06-15

    The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photochemistry and photocatalysis. This review highlights, from a surface science perspective, recent literature providing molecular-level insights into phonon-initiated events on TiO2 surfaces obtained in seven key scientific issues: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form.

  1. Optical and photocatalytic properties of TiO2 nanoplumes

    PubMed Central

    Scuderi, Viviana; Miritello, Maria; Nicotra, Giuseppe; Impellizzeri, Giuliana; Privitera, Vittorio

    2017-01-01

    Here we report the photocatalytic efficiency of hydrogenated TiO2 nanoplumes studied by measuring dye degradation in water. Nanoplumes were synthesized by peroxide etching of Ti films with different thicknesses. Structural characterization was carried out by scanning electron microscopy and transmission electron microscopy. We investigated in detail the optical properties of the synthesized material and related them to the efficiency of UV photodegradation of methylene blue dye. The obtained results show that TiO2 nanoplumes act as an effective antireflective layer increasing the UV photocatalytic yield of the film. PMID:28243556

  2. Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods

    DOE PAGES

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy; ...

    2015-12-02

    The immobilization of miniscule quantities of RuO2 (~0.1%) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. In addition, rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects,more » band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.« less

  3. Constructing hierarchical interfaces: TiO2-supported PtFe-FeOx nanowires for room temperature CO oxidation

    DOE PAGES

    Zhu, Huiyuan; Wu, Zili; Dong, Su; ...

    2015-08-05

    This is a report of a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe–FeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, themore » intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe–FeOx/TiO2 catalyst exhibits no activity decay. These results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.« less

  4. Photocatalytic degradation of methylene blue under UV light irradiation on prepared carbonaceous TiO2.

    PubMed

    Ramli, Zatil Amali Che; Asim, Nilofar; Isahak, Wan N R W; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M Ambar; Sopian, K

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m(2) g(-1)). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples.

  5. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems.

    PubMed

    Lin, Cheng-Fang; Wu, Chung-Hsin; Onn, Zong-Nan

    2008-06-15

    The present study was undertaken to evaluate the degradation performance of 4-chlorophenol (4-CP) using TiO2/WO3 and TiO2/SnO2 systems. A BET surface area analyzer, UV-vis spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron spectroscopy for chemical analysis (ESCA) were employed to characterize the photocatalyst. The band edge wavelength increased to 475 nm and gap energy decreased to 2.61 eV in the TiO2/WO3 system as compare to the single TiO2. Although the specific surfaces area of TiO2/WO3 decreases due to its larger size as compared to either TiO2 or WO3, the 4-CP degradation efficiency significantly increased as compared to single TiO2 or WO3 system at 435 nm wavelength. The TiO2/WO3 degradation of 4-CP at 369 nm was in fact inhibited. For TiO2/SnO2, the degradation efficiency also suffered at 369 nm, and only slightly increased compared to otherwise hardly 4-CP degraded in single TiO2 or SnO2 system. Since there is a significant accumulation of byproducts, the buildup of these intermediates on the catalyst surface may be responsible for their poor performance.

  6. Rational tailoring of ZnSnO3/TiO2 heterojunctions with bioinspired surface wettability for high-performance humidity nanosensors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyi; Huang, Jindou; Dong, Bin; Yuan, Qing; He, Yangyang; Wolfbeis, Otto S.

    2015-02-01

    We developed a novel kind of branched heterostructure by hydrothermal growth of ZnSnO3 nanostructures on TiO2 electrospun nanofibers, and demonstrated its enhanced ability to sense humidity through a sequential cactus-inspired tailoring of the ZnSnO3 nanostructures. Combining these results with first-principles calculations, it is deduced that the concentration of water molecules adsorbed on the ZnSnO3/TiO2 heterojunction surface can be increased by reducing the surface potential barrier. Meanwhile, the bioinspired ZnSnO3 nanoneedles, which form branches on the heterostructures, can further boost their adsorption abilities for water molecules via a water collection process. The adsorbed water molecules on the tips of the ZnSnO3 nanoneedles desorb easily in a low-humidity environment due to the small area of the tips (1.5-2.5 nm). Thus, the optimal ZnSnO3/TiO2 heterostructure exhibits response and recovery times of ~2.5 s and ~3 s, respectively. Its good sensitivity may enable it to detect tiny fluctuations in moisture and relative humidity that may surround any high-precision instrument.We developed a novel kind of branched heterostructure by hydrothermal growth of ZnSnO3 nanostructures on TiO2 electrospun nanofibers, and demonstrated its enhanced ability to sense humidity through a sequential cactus-inspired tailoring of the ZnSnO3 nanostructures. Combining these results with first-principles calculations, it is deduced that the concentration of water molecules adsorbed on the ZnSnO3/TiO2 heterojunction surface can be increased by reducing the surface potential barrier. Meanwhile, the bioinspired ZnSnO3 nanoneedles, which form branches on the heterostructures, can further boost their adsorption abilities for water molecules via a water collection process. The adsorbed water molecules on the tips of the ZnSnO3 nanoneedles desorb easily in a low-humidity environment due to the small area of the tips (1.5-2.5 nm). Thus, the optimal ZnSnO3/TiO2 heterostructure

  7. Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation.

    PubMed

    Wongaree, Mathana; Chiarakorn, Siriluk; Chuangchote, Surawut; Sagawa, Takashi

    2016-11-01

    The photocatalytic treatment of gaseous benzene under visible light irradiation was developed using electrospun carbon nanotube/titanium dioxide (CNT/TiO2) nanofibers as visible light active photocatalysts. The CNT/TiO2 nanofibers were fabricated by electrospinning CNT/poly(vinyl pyrrolidone) (PVP) solution followed by the removal of PVP by calcination at 450 °C. The molar ratio of CNT/TiO2 was fixed at 0.05:1 by weight, and the quantity of CNT/TiO2 loaded in PVP solution varied between 30 and 60 % wt. CNT/TiO2 nanofibers have high specific surface area (116 m(2)/g), significantly higher than that of TiO2 nanofibers (44 m(2)/g). The photocatalytic performance of the CNT/TiO2 nanofibers was investigated by decolorization of 1 × 10(-5) M methylene blue (MB) dye (in water solution) and degradation of 100 ppm gaseous benzene under visible light irradiation. The 50-CNT/TiO2 nanofibers (calcined CNT/TiO2 nanofibers fabricated from a spinning solution of 50 % wt CNT/TiO2 based on PVP) had higher MB degradation efficiency (58 %) than did other CNT/TiO2 nanofibers and pristine TiO2 nanofibers (15 %) under visible light irradiation. The photocatalytic degradation of gaseous benzene under visible light irradiation on filters made of 50-CNT/TiO2 nanofibers was carried out in a simulated air purifier system. Similar to MB results, the degradation efficiency of gaseous benzene by 50-CNT/TiO2 nanofibers (52 %) was higher than by other CNT/TiO2 nanofibers and pristine TiO2 nanofibers (18 %). The synergistic effects of the larger surface area and lower band gap energy of CNT/TiO2 nanofibers were presented as strong adsorption ability and greater visible light adsorption. The CNT/TiO2 nanofiber prepared in this study has potential for use in air purifiers to improve air treatment efficiency with less energy.

  8. Doping of TiO2 for sensitized solar cells.

    PubMed

    Roose, Bart; Pathak, Sandeep; Steiner, Ullrich

    2015-11-21

    This review gives a detailed summary and evaluation of the use of TiO2 doping to improve the performance of dye sensitized solar cells. Doping has a major effect on the band structure and trap states of TiO2, which in turn affect important properties such as the conduction band energy, charge transport, recombination and collection. The defect states of TiO2 are highly dependent on the synthesis method and thus the effect of doping may vary for different synthesis techniques, making it difficult to compare the suitability of different dopants. High-throughput methods may be employed to achieve a rough prediction on the suitability of dopants for a specific synthesis method. It was however found that nearly every employed dopant can be used to increase device performance, indicating that the improvement is not so much caused by the dopant itself, as by the defects it eliminates from TiO2. Furthermore, with the field shifting from dye sensitized solar cells to perovskite solar cells, the role doping can play to further advance this emerging field is also discussed.

  9. Photocatalytic bacterial inactivation by TiO2-coated surfaces

    PubMed Central

    2013-01-01

    The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was observed at 180, 60, 30 and 20 min of exposure for Escherichia coli, Staphylococcus aureus, Pseudomonas putida and Listeria innocua, respectively. The ceramic tiles demonstrated a photoactivated bactericidal effect at the same exposure time. In general, no differences were observed between the antibacterial effect obtained with Petri dishes and tiles. However, the photochemical activity of Petri dishes was greater than the activity of the tiles. Results obtained indicates that the TiO2-coated surfaces showed a photoactivated bactericidal effect with all bacteria tested highlighting that the titania could be used in the ceramic and building industry for the production of coated surfaces to be placed in microbiologically sensitive environments, such as the hospital and food industry. PMID:24090112

  10. ALMA observations of TiO2 around VY CMa

    NASA Astrophysics Data System (ADS)

    De Beck, Elvire; Vlemmings, Wouter; Muller, Sébastien; Black, John H.; O'Gorman, Eamon; Richards, Anita M. S.; Baudry, Alain; Maercker, Matthias; Decin, Leen; Humphreys, Elizabeth M.

    2016-07-01

    Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. We present and discuss the detections of 15 emission lines of TiO2 with ALMA in the complex environment of the red supergiant VY CMa. The observations reveal a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. We find evidence for a roughly east-west oriented, accelerating bipolar-like structure, of which the blue component runs into and breaks up around a solid continuum component. We see a distinct tail to the south-west for some transitions, consistent with features seen in the optical and near-infrared. We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa.

  11. Protein Corona Prevents TiO2 Phototoxicity

    PubMed Central

    Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez

    2015-01-01

    Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy. PMID:26083725

  12. The Synthesis of Cadmium Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Engelhard, Mark H.; Wang, Chong M.

    2007-06-01

    Cd doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors. The Cd doping was found to be able to significantly inhibit the growth of anatase crystal size, stabilize the mesoporous structure, and retard the densification of nanoporous TiO2 at elevated temperatures.

  13. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  14. Plasma assisted deposition of single and multistacked TiO2 hierarchical nanotube photoanodes.

    PubMed

    Nicolas Filippin, A; Sanchez-Valencia, Juan R; Idígoras, Jesús; Rojas, T Cristina; Barranco, Angel; Anta, Juan A; Borras, Ana

    2017-04-13

    We present herein an evolved methodology for the growth of nanocrystalline hierarchical nanotubes combining physical vapor deposition of organic nanowires (ONWs) and plasma enhanced chemical vacuum deposition of anatase TiO2 layers. The ONWs act as vacuum removable 1D and 3D templates, with the whole process occurring at temperatures ranging from RT to 250 °C. As a result, a high density of hierarchical nanotubes with tunable diameter, length and tailored wall microstructures are formed on a variety of processable substrates as metal and metal oxide films or nanoparticles including transparent conductive oxides. The reiteration of the process leads to the development of an unprecedented 3D nanoarchitecture formed by stacking the layers of hierarchical TiO2 nanotubes. As a proof of concept, we present the superior performance of the 3D nanoarchitecture as a photoanode within an excitonic solar cell with efficiencies as high as 4.69% for a nominal thickness of the anatase layer below 2.75 μm. Mechanical stability and straightforward implementation in devices are demonstrated at the same time. The process is extendable to other functional oxides fabricated by plasma-assisted methods with readily available applications in energy harvesting and storage, catalysis and nanosensing.

  15. Electrospinning of nanofibers for filtration media

    NASA Astrophysics Data System (ADS)

    Park, Hyoungjun

    Since particulate impurity is regarded as the primary cause of lung diseases, purification of air has been a crucial issue. Filtration is the most conventional method to obtain clean air, whereby particulate matter is collected on a fibrous media. The use of fibrous filters is prevalent because of their high filtration efficiency and low pressure drop. Fibrous filters were fabricated via the electrospinning process which can be used to produce continuous submicron-diameter sized fibers. Polyacrylonitrile (PAN) nanofibers with a mean fiber diameter of 224 nm were electrospun to form fibermats. Filtration tests on fibermats of PAN were conducted to confirm that filters of thinner fibers result in higher collection efficiencies and lower pressure drops than that of thicker fibers as predicted by the theoretical filtration mechanism. Results showed that electrospun PAN nanofibermats had a superior quality factor of 0.067+/-0 compared to 0.031+/-0.001 by the current state-of-the-art microfiber-based high particulate air (HEPA) filtration media. The verified theory implies that nanofibermats of other types of materials could also be considered as promising filtration media since filtration performance is independent of the material used. As materials for advanced next-generation filtration media, ceramics are favored over polymeric materials due to their robustness against environmental factors such as ultraviolet rays, abrasive particles, and high temperature all of which degrade and damage the fibrous structure. Amidst various ceramic materials, the anatase phase of TiO2 was selected due to its mechanical property and versatility as a photocatalyst and microwave-absorbing material. Anatase TiO2 fibers were fabricated by electrospinning followed by heat treatment at 500°C for 3 hours. However, early precipitation or gelation of the organic solvent-based TiO2 sol posed a practical challenge in the sample preparation. In order to enhance stability of the precursor sol, a

  16. The Effect of Annealing on the Photoconductivity of Carbon Nanofiber/TiO2 Core-Shell Nanowires for Use in Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2010-07-26

    10−2–10−3 cm for the annealed samples. These values lie between the reported ranges for a bare CNF 10−3 cm11 and anatase TiO2 thin films 10−1...phenomenon in nano- crystalline TiO2 thin films . 15 As can be seen in Fig. 3, the current increases sharply after the onset of illumination and then levels off...16. SECURITY CLASSIFICATION OF: Electrical transport properties and photoresponse of individual TiO2 -coated carbon nanofibers were studied in an

  17. Epitaxial 1D electron transport layers for high-performance perovskite solar cells.

    PubMed

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-10-07

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.

  18. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  19. Dielectric and Infrared Properties of TiO2 Films Containing Anatase and Rutile

    DTIC Science & Technology

    2005-07-18

    properties of TiO2 films containing anatase and rutile 2. Experimental details Thin films of TiO2 were deposited onto Si(1 0 0) wafers...annealed) and 7.4 nm (225 nm, deposited with a bias 872 Dielectric and infrared properties of TiO2 films containing anatase and rutile then annealed...Article POSTPRINT 3. DATES COVERED (From - To) 2001 - 2004 4. TITLE AND SUBTITLE Dielectric and infrared properties of TiO2 films

  20. Atomic layer deposited (ALD) TiO(2) and TiO(2-x)-N(x) thin film photocatalysts in salicylic acid decomposition.

    PubMed

    Vilhunen, S H; Sillanpää, M E T

    2009-01-01

    Degradation of salicylic acid (SA) with thin film photocatalyst, titanium dioxide (TiO(2)) and nitrogen-doped TiO(2) (TiO(2-x)-N(x)) combined with ultraviolet (UV) radiation was studied. TiO(2) film with thickness of 15 and 65 nm was tested. The TiO(2-x)-N(x) film had thickness of 15 nm on top of TiO(2) (50 nm). Photocatalysts were prepared on glass substrate by atomic layer deposition (ALD) technique. The effect of initial pH (3-10) was studied with SA concentration of 10 mg/l. Decomposition of SA was fastest at pH 6 with both films and the rate was equal at initial pH values 3 and 4.3. However, at higher pH values the non-doped film was more efficient.

  1. Enhanced H{sub 2} sensing by substituting polyaniline nanoparticles with nanofibers

    SciTech Connect

    Sharma, Preetam K. Srivastava, Subodh Singh, M.; Vijay, Y. K.; Rajaura, Rajveer Singh; Sharma, Vinay; Sharma, S. S.

    2014-04-24

    We have synthesized Polyaniline nanoparticles and nanofibers using chemical oxidation method and tested them for their Hydrogen sensing properties. PANI nanoparticles and nanofibers have demonstrated sensor response of 1.38 and 1.52, respectively. Reaction kinetics has also enhanced in case of PANI nanofibers with response and recovery times of 170 and 95 s, respectively. The increased conductivity, sensor response and reaction kinetics in case of the nanofibers as compared to nanoparticles is attributed to the 1-D conductive channel provided by the nanofibers for faster and better electron transfer.

  2. Efficient CO2 capture and photoreduction by amine-functionalized TiO2.

    PubMed

    Liao, Yusen; Cao, Shao-Wen; Yuan, Yupeng; Gu, Quan; Zhang, Zhenyi; Xue, Can

    2014-08-11

    Amine-functionalization of TiO2 nanoparticles, through a solvothermal approach, substantially increases the affinity of CO2 on TiO2 surfaces through chemisorption. This chemisorption allows for more effective activation of CO2 and charge transfer from excited TiO2 , and significantly enhances the photocatalytic rate of CO2 reduction into methane and CO.

  3. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst

    NASA Astrophysics Data System (ADS)

    Lv, Kangle; Fang, Shun; Si, Lingling; Xia, Yang; Ho, Wingkei; Li, Mei

    2017-01-01

    To efficiently separate the photo-generated electron-hole pairs of TiO2 hybrid, anatase TiO2 nanorod assembly grafted reduced graphene oxides (rGO@TiO2-NR) hybrid was successfully fabricated using potassium titanium oxalate (PTO) and graphene oxides (GO) as starting materials and diethylene glycol (DEG) as reductant. The effect of GO content on the structure and photocatalytic activity of rGO@TiO2-NR composite was systematically studied. Results show that, in the absence of GO, only TiO2 microsphere assembly is obtained from TiO2 nanorods. The presence of GO results in the formation of a flake-like TiO2-nanorod-assembled grafted rGO hybrid. The photocatalytic activity of rGO@TiO2-NR composite increases first and then decreases with increase in the amount of GO from 0 wt.% to 10 wt.%. The hybridized S4 sample prepared with 4 wt.% GO possesses the highest photocatalytic activity with a constant rate of 0.039 min-1 in the photocataytic degradation of Brilliant X-3B dye (X3B); this sample was enhanced more than three times when compared with pure TiO2 sample (0.012 min-1). The enhanced photocatalytic activity of the rGO@TiO2-NR hybrid was attributed to the strong interaction between TiO2 nanorods and rGO. The unique hierarchical structure of 1D nanorod assembly TiO2-rGO flakes facilitates the injection and transfer of photo-generated electrons from TiO2 to graphene, thus retarding the recombination of electron-hole pairs and enhancing the photocatalytic activity. The enlarged BET surface areas, not only increasing the number of active sites, but also facilitating the adsorption of the dye, and improved light-harvesting ability also contribute to the enhanced photoreactivity of rGO@TiO2-NR hybrid.

  4. Photocatalytic properties of nanostructured TiO2 surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Lauren; Luttrell, Timothy; Batzill, Matthias

    2012-02-01

    Photocatalytic chemical reactions are actively explored for direct production of chemical fuels from sun light through electrolysis or for the clean-up of organic pollutants through photocatalysis. Titanium dioxide is a prototypical photocatalyst which has been studied extensively. However, there are still unanswered questions regarding the relationship between surface morphology and photocatalytic properties. In this study, we used ion beam assisted surface nanopatterning and UV-catalysis to investigate the dependence of photoreactivity on surface nanostructures. Energetic argon gas ions were used to induce self-formation of nanopatterns on TiO2 surfaces and the structure formation was characterized by atomic force microscopy. The influence of the surface structure on the photochemical properties was assessed through photocatalytic degradation of methyl orange in aqueous solution with a flat sample and a nanopatterned sample of TiO2, respectively. The resulting absorbance spectrums were then compared.

  5. Hydroxyapatite growth on anodic TiO2 nanotubes.

    PubMed

    Tsuchiya, Hiroaki; Macak, Jan M; Müller, Lenka; Kunze, Julia; Müller, Frank; Greil, Peter; Virtanen, Sannakaisa; Schmuki, Patrik

    2006-06-01

    In the present work, we study the growth of hydroxyapatite formation on different TiO(2) nanotube layers. The nanotube layers were fabricated by electrochemical anodization of titanium in fluoride-containing electrolytes. To study various nanotube lengths, layers with an individual tube diameter of 100 nm were grown to a thickness of approximately 2 mum or 500 nm. The ability to form apatite on the nanotube layers was examined by immersion tests combined with SEM, XRD and FT-IR investigations. For reference, experiments were also carried out on compact anodic TiO(2) layers. The results clearly show that the presence of the nanotubes on a titanium surface enhances the apatite formation and that the 2-mum thick nanotube layer triggers deposition faster than the thinner layers. Tubes annealed to anatase, or a mixture of anatase and rutile are clearly more efficient in promoting apatite formation than the tubes in their "as-formed" amorphous state.

  6. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers.

    PubMed

    Lin, Lu; Wang, Huiyao; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei

    2017-03-08

    Incorporating reduced graphene oxide (rGO) or Fe(3+) ions in TiO2 photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO2-Fe and TiO2-rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO2-rGO and TiO2-Fe nanocomposites. Doping Fe into TiO2 particles (2.40eV) could reduce more band gap energy than incorporating rGO (2.85eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO2 decreased significantly the intensity of TiO2 photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO2-rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO2-Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO2-rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO2-Fe nanocomposite, narrower band gap would contribute to increased photocatalytic activity.

  7. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

    PubMed Central

    Gupta, Kiran; Singh, R P; Pandey, Ashutosh

    2013-01-01

    Summary This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2 and Ag-doped TiO2 nanoparticles against different bacterial strains under visible-light irradiation. The TiO2 and Ag-doped TiO2 photocatalysts were synthesized by acid catalyzed sol–gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2 has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2 nanoparticles. The decreased band-gap energy of Ag-doped TiO2 nanoparticles in comparison to TiO2 nanoparticles was investigated by UV–vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron–hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2 nanoparticles. Annealed TiO2 showed zero viability at 80 mg/30 mL whereas doped Ag-TiO2 7% showed zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only. PMID:23844339

  8. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli.

    PubMed

    Gupta, Kiran; Singh, R P; Pandey, Ashutosh; Pandey, Anjana

    2013-01-01

    This paper reports the structural and optical properties and comparative photocatalytic activity of TiO2 and Ag-doped TiO2 nanoparticles against different bacterial strains under visible-light irradiation. The TiO2 and Ag-doped TiO2 photocatalysts were synthesized by acid catalyzed sol-gel technique and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectroscopy and photoluminescence (PL). The XRD pattern revealed that the annealed sample of TiO2 has both anatase and rutile phases while only an anatase phase was found in Ag-doped TiO2 nanoparticles. The decreased band-gap energy of Ag-doped TiO2 nanoparticles in comparison to TiO2 nanoparticles was investigated by UV-vis spectroscopy. The rate of recombination and transfer behaviour of the photoexcited electron-hole pairs in the semiconductors was recorded by photoluminescence. The antimicrobial activity of TiO2 and Ag-doped TiO2 nanoparticles (3% and 7%) was investigated against both gram positive (Staphylococcus aureus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. As a result, the viability of all three microorganisms was reduced to zero at 60 mg/30 mL culture in the case of both (3% and 7% doping) concentrations of Ag-doped TiO2 nanoparticles. Annealed TiO2 showed zero viability at 80 mg/30 mL whereas doped Ag-TiO2 7% showed zero viability at 40 mg/30 mL culture in the case of P. aeruginosa only.

  9. High-Performance Humidity Sensors Based on Double-Layer ZnO-TiO2 Nanofibers via Electrospinning

    NASA Astrophysics Data System (ADS)

    Yue, Xue-Jun; Hong, Tian-Sheng; Xu, Xing; Li, Zhen

    2011-09-01

    ZnO and TiO2 nanofibers are synthesized via electrospinning methods and characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Humidity sensors with double-layer sensing films are fabricated by spinning the ZnO and TiO2 nanofibers on ceramic substrates sequentially. Compared with sensors loading only one type of nanofiber, the double-layer sensors exhibit much better sensing properties. The corresponding impedance changes more than four orders of magnitude within the whole humidity range from 11% to 95% relative humidity, and the response and recovery times are about 11 and 7s, respectively. Maximum hysteresis is around 1.5% RH, and excellent stability is also observed after 180 days. The humidity sensing mechanism is discussed in terms of the sensor structure. The experimental results provide a possible route for the design and fabrication of high performance humidity sensors based on one-dimensional nanomaterials.

  10. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Lin, Hong; Wang, Xiao; Hao, Feng

    2013-01-01

    As one of the most important components in dye-sensitized solar cells (DSCs), photoanode materials have attracted massive interest and been greatly developed through the efforts of various research institutions in recent years. Photoanode materials not only provide a large surface for the sensitizer to favor charge separation, but also conduct the electrons to the collection electrode. In recent years, one-dimensional (1D) nanostructures (nanotubes (NT), nanowires (NW) and nanorods(NR)), which offer direct pathways for electron transport, and nanostructures (nanosheets (NS) and nanoparticles (NP)) with (001) crystal facets which possess higher surface energies have been widely employed as photoanode materials. In this review, the progress of 1D nanostructures and those with (001) crystal facets, as well as their photovoltaic performance in DSCs will be discussed briefly. Further efforts are needed to provide theoretical research for 1D and (001) facet nanostructured TiO2 and to improve DSC performances based on these photoanodes.

  11. Tunable Polaronic Conduction in Anatase TiO2

    NASA Astrophysics Data System (ADS)

    Moser, S.; Moreschini, L.; Jaćimović, J.; Barišić, O. S.; Berger, H.; Magrez, A.; Chang, Y. J.; Kim, K. S.; Bostwick, A.; Rotenberg, E.; Forró, L.; Grioni, M.

    2013-05-01

    Oxygen vacancies created in anatase TiO2 by UV photons (80-130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.

  12. Nanomechanical properties of TiO2 granular thin films.

    PubMed

    Yaghoubi, Houman; Taghavinia, Nima; Alamdari, Eskandar Keshavarz; Volinsky, Alex A

    2010-09-01

    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69±0.05 GPa. Higher annealing temperatures resulted in inferior mechanical properties. No pile-up or sink-in effects were observed with minimal creep for the 300 °C annealed sample. Considerable decrease in the amount of chemisorbed water was found with increasing annealing temperature, causing gel films densification, explaining the increasing trend of hardness with annealing temperature between 100 °C and 300 °C. DTA/TGA results also confirmed the weight loss and the endothermic reaction due to desorption of chemisorbed water. Decrease in hardness above 300 °C annealing is attributed to thermal diffusion of Na ions from the glass substrate, confirmed by nanoindentation tests on TiO2 films deposited on fused quartz, which did not exhibit hardness decrease after 300 °C annealing.

  13. Photocatalytic Activity of Immobilized Geometries of TiO2

    NASA Astrophysics Data System (ADS)

    Koohestani, Hassan; Sadrnezhaad, Sayed Khatiboleslam

    2015-07-01

    Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The photocatalytic performance was determined by methyl orange degradation and cyanide photo-oxidation under ultraviolet irradiation. From the SEM images, the size range of the TiO2 particles in the film and in the network geometries were 20-60 nm. The nanoparticles had covered the surface of the substrate, uniformly. Removal of the cellulose substrate by heat treatment yielded hollow TiO2 fibers with diameters of 0.5-1 µm and lengths of 30 µm. The efficiencies of both photocatalytic reactions were obtained in the following order: powder > network > film > fiber geometry. The rate constant of the dye degradation reaction using powder catalyst was 0.0118 min-1. For network catalyst, it was 0.0083 min-1. Corresponding results for cyanide disinfection were 0.0055 and 0.0046 min-1. Although powder samples had higher rate constants, network geometry was preferred due to its higher immobility.

  14. COMMUNICATION: Drug loading of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Ayon, Arturo A.; Cantu, Michael; Chava, Kalpana; Mauli Agrawal, C.; Feldman, Marc D.; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily

    2006-12-01

    The loading of therapeutic amounts of drug on a nanoporous TiO2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery.

  15. Methanethiol chemistry on TiO 2-supported Ni clusters

    NASA Astrophysics Data System (ADS)

    Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.

    2008-10-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  16. Methanethiol Chemistry on TiO2-Supported Ni Clusters

    SciTech Connect

    Ozturk,O.; Park, J.; Black, T.; Rodriguez, J.; Hrbek, J.; Chen, D.

    2008-01-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiOx and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  17. Direct formation of reusable TiO2/CoFe2O4 heterogeneous photocatalytic fibers via two-spinneret electrospinning.

    PubMed

    Li, Cong-Ju; Wang, Jiao-Na; Wang, Bin; Gong, Jian Ru; Lin, Zhang

    2012-03-01

    A reusable photocatalytic TiO2/CoFe2O4 composite nanofiber was directly formed by using a vertical two-spinneret electrospinning process and sol-gel method, followed by heat treatment at 550 degrees C for 2 h. The high photocatalytic activity of the composite nanofibers depends on the good morphology of the fibers and the appropriate calcination temperature. The crystal structure and magnetic properties of the fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The photocatalytic activity of the TiO2/CoFe2O4 fibers was investigated through ultraviolet-visible absorbance following the photo-oxidative decomposition of phenol. Meanwhile, the presence of CoFe2O4 not only broadens the response region of visible light, but also enhances the absorbance of UV light. Furthermore, these fibers displayed photocatalytic activity associated with magnetic activity of CoFe2O4 ferrites, allowing easy separated of the photocatalysts after the photo-oxidative process and effectively avoided the secondary pollution of the treated water.

  18. Epitaxial 1D electron transport layers for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Han, Gill Sang; Chung, Hyun Suk; Kim, Dong Hoe; Kim, Byeong Jo; Lee, Jin-Wook; Park, Nam-Gyu; Cho, In Sun; Lee, Jung-Kun; Lee, Sangwook; Jung, Hyun Suk

    2015-09-01

    We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport.We demonstrate high-performance perovskite solar cells with excellent electron transport properties using a one-dimensional (1D) electron transport layer (ETL). The 1D array-based ETL is comprised of 1D SnO2 nanowires (NWs) array grown on a F:SnO2 transparent conducting oxide substrate and rutile TiO2 nanoshells epitaxially grown on the surface of the 1D SnO2 NWs. The optimized devices show more than 95% internal quantum yield at 750 nm, and a power conversion efficiency (PCE) of 14.2%. The high quantum yield is attributed to dramatically enhanced electron transport in the epitaxial TiO2 layer, compared to that in conventional nanoparticle-based mesoporous TiO2 (mp-TiO2) layers. In addition, the open space in the 1D array-based ETL increases the prevalence of uniform TiO2/perovskite junctions, leading to reproducible device performance with a high fill factor. This work offers a method to achieve reproducible, high-efficiency perovskite solar cells with high-speed electron transport

  19. Photocatalytic TiO2/glass nanoflake array films.

    PubMed

    Ho, Wingkei; Yu, Jimmy C; Yu, Jiaguo

    2005-04-12

    A new approach for the fabrication of oriented TiO2/glass nanoflake arrays has been developed. The ceramic nanoflake array was formed on a glass substrate via a simple, low temperature, and one-step hydrothermally induced phase separation approach without using any templates or additives. The factors affecting the formation of ceramic nanoflakes were examined by various characterization techniques. The results showed that the leaching of the soluble phase from the glass surface through hydrothermal processes resulted in oriented uniform ceramic nanoflake arrays. Electron microscope observations revealed that the nanoflakes formed a continuous porous three-dimensional-network array with a large surface-to-volume ratio. In addition, an anatase TiO2 film was successfully coated onto the nanoflake array by the sol-gel method. The TiO2/glass nanoflake array exhibited high activity for the photocatalytic degradation of acetone and for photoinduced hydrophilic conversion. Such enhancements were attributed to the beneficial effects of the new continuous porous three-dimensional-interconnected nanoflake network and its surface geometrical nanostructure. The present approach provides a convenient route to modify a photocatalytic coating with a porous nano-architectured substrate. This opens extensive new opportunities in the design of semiconductor/ceramic nanostructural array thin films with unusual properties for future optical and electronic applications.

  20. Band alignment of rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Scanlon, David O.; Dunnill, Charles W.; Buckeridge, John; Shevlin, Stephen A.; Logsdail, Andrew J.; Woodley, Scott M.; Catlow, C. Richard A.; Powell, Michael. J.; Palgrave, Robert G.; Parkin, Ivan P.; Watson, Graeme W.; Keal, Thomas W.; Sherwood, Paul; Walsh, Aron; Sokol, Alexey A.

    2013-09-01

    The most widely used oxide for photocatalytic applications owing to its low cost and high activity is TiO2. The discovery of the photolysis of water on the surface of TiO2 in 1972 launched four decades of intensive research into the underlying chemical and physical processes involved. Despite much collected evidence, a thoroughly convincing explanation of why mixed-phase samples of anatase and rutile outperform the individual polymorphs has remained elusive. One long-standing controversy is the energetic alignment of the band edges of the rutile and anatase polymorphs of TiO2 (ref. ). We demonstrate, through a combination of state-of-the-art materials simulation techniques and X-ray photoemission experiments, that a type-II, staggered, band alignment of ~ 0.4 eV exists between anatase and rutile with anatase possessing the higher electron affinity, or work function. Our results help to explain the robust separation of photoexcited charge carriers between the two phases and highlight a route to improved photocatalysts.

  1. Characterization of nanocrystalline anatase TiO(2) thin films.

    PubMed

    Huber, Bernd; Gnaser, Hubert; Ziegler, Christiane

    2003-04-01

    Nanoporous thin films were deposited onto glass substrates by painting with a solution of nanocrystalline anatase TiO(2) particles (with a size of either 6 nm or 16 nm) suspended in an organic solvent. Upon drying in air for about 1 day, the films were tempered at 450 degrees C in air for 1 h. This procedure results in stoichiometric TiO(2) films with a thickness of several micro m and a milky whitish appearance. Scanning force microscopy of the surface revealed that the nanoparticles of the films agglomerated into structures with lateral dimensions of some 100 nm. Transmission electron microscopy was utilized to investigate the structural arrangement of the crystallites in the films. High-resolution electron diffraction and X-ray diffraction analyses demonstrated, furthermore, that the material consists exclusively of a single TiO(2) phase, namely anatase, and that the films do not exhibit any preferential texture. The elemental stoichiometry and the possible presence of impurities were monitored throughout the films by means of secondary-ion mass spectrometry depth profiling. Electrical measurements have been carried out as a function of both the sample temperature T and the ambient oxygen partial pressure p(O(2)). From these data the electrical conductivity sigma of the porous films was determined in dependence of those parameters.

  2. BIOLOGICAL RESPONSE TO NANO-SCALE TIO2: ROLE OF PARTICLE DOSE, SHAPE AND RETENTION

    PubMed Central

    Silva, Rona M.; TeeSy, Christel; Franzi, Lisa; Weir, Alex; Westerhoff, Paul; Evans, James E.; Pinkerton, Kent E.

    2015-01-01

    TiO2 is one of the most widely used nanomaterials, valued for its highly refractive, photocatalytic and pigmenting properties. TiO2 is also classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. The objectives of this study were to establish a lowest observed effect level (LOEL) for nano-scale TiO2, determine TiO2 uptake in the lungs, and estimate toxicity based on physico-chemical properties and retention in the lungs. In vivo lung toxicity of nano-scale TiO2 using varying forms of well-characterized, highly-dispersed TiO2 was assessed. Anatase/rutile P25 spheres (TiO2-P25), pure anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NB) were tested. To determine the effects of dose and particle characteristics, male Sprague-Dawley rats were given TiO2 (0, 20, 70, or 200 µg) via intratracheal instillation. Broncho-alveolar lavage fluid (BALF) and lung tissue were obtained for analysis 1 and 7 days post exposure. Despite abundant TiO2 inclusions in all exposed animals, only TiO2-NB elicited any significant degree of inflammation seen in BALF at the 1-day time-point. This inflammation resolved by 7 days; although, TiO2 particles had not cleared from alveolar macrophages recovered from the lung. Histological examination showed TiO2-NB caused cellular changes at day 1 which were still evident at day 7. We conclude TiO2-NB is the most inflammatory with a lowest observable effect level of 200 µg at 1 day post instillation. PMID:24156719

  3. Characteristics of dye-sensitized solar cell with TiO2 anode under UV irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hsiao, Chih-Chen; Weng, Hao-Wei

    2016-03-01

    The anatase phase crystalline quality of commercial TiO2 (P25) nanoparticle sintered in air and N2 is improved. Compared DSSC with air-sintered TiO2 anode, DSSC with N2-sintered TiO2 anode has better performance mainly from high optical absorption efficiency. Under UV irradiation, organic contaminants adsorbed on TiO2 are dissociated by the photocatalysis, and the dye adsorption is enhanced. The DSSC performance with UV-treated/N2-sintered TiO2 anode is further improved.

  4. Fabrication and characterization of photovoltaic devices based on perovskite compounds with TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanayama, Masato; Oku, Takeo; Suzuki, Atsushi; Yamada, Masahiro; Fukunishi, Sakiko; Kohno, Kazufumi; Sakamoto, Hiroki

    2015-02-01

    Perovskite-type photovoltaic devices were fabricated by a spin-coating method using a mixture solution. The compact and meso-porous TiO2 of the solar cells were fabricated from TiO2 nanoparticles and sol, and the photovoltaic properties and microstructures were characterized. The conversion efficiencies were improved by the combination of TiO2 nanoparticles and sol. Current density was also improved by increasing numbers of spin-coatings of meso-porous TiO2. Thick meso-porous TiO2 layers would assist the construction of perovskite layers and block of the leak current.

  5. Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Ueoka, Naoki; Suzuki, Kohei; Suzuki, Atsushi; Yamada, Masahiro; Sakamoto, Hiroki; Minami, Satoshi; Fukunishi, Sakiko; Kohno, Kazufumi; Miyauchi, Shinsuke

    2017-01-01

    TiO2/CH3NH3PbI3-based photovoltaic devices were fabricated by a spin-coating method using mixture solutions with TiO2 nanoparticles. Compact TiO2 layers were prepared from titanium diisopropoxide bis(acetyl acetonate) and TiO2 nanoparticles with different particle sizes. The performance of the photovoltaic devices was improved by sequential deposition of the TiO2 layers, which resulted in microstructural change of the perovskite layers.

  6. Photochemistry on TiO2: Mechanisms Behind the Surface Chemistry

    DTIC Science & Technology

    2009-01-21

    photoinduced antimicrobial [11,13] properties of TiO2 films have recently been discovered and these ideas are now employed for new photochemically acti...ation in air causes water droplets to wet the TiO2 film surface, resulting in a lowering of the contact angle over time. The anatase TiO2 film was...Hydrophilic H2O Hydrocarbon film a b s t r a c t Photochemistry from TiO2 surfaces is described for two cases: The UV-induced photodesorption of O2 from TiO2

  7. Structural analysis of TiO2 and TiO2-Ag thin films and their antibacterial behaviors

    NASA Astrophysics Data System (ADS)

    Hsieh, J. H.; Yu, R. B.; Chang, Y. K.; Li, C.

    2012-01-01

    TiO2 (rutile and anatase) thin films was first prepared using reactive sputtering, in an Ar+O2 plasma. In the 2nd stage of the experiment, various amounts (3, 7, and 10 at. %) of Ag was doped into the rutile film in order to form TiO2-Ag thin films. These films were annealed for one hour in Ar atmosphere, at 300, 400, and 500 °C. The films' structures were then examined using X-ray diffractometry. FESEM (field-emission scaning electron microscopy) was used to investigate the surface emergence of Ag particles. As for the examination of optical band gaps and absorption of these films, UV-Vis-NIR photometer was used. The results show that, in as-deposited condition, the addition of Ag might disrupt the growth of crystalline structure and cause the formation of amorphous films. After annealing, it is found that the structure tends to become anatase phase which is a metastable phase between amorphous titanium oxide and rutile. More importantly, the absorption of the Ag-doped films would be enhanced in the visible-light range. Some of the enhancement is clearly due to plasmon resonance effect. The Ag-doped samples have shown some antibacterial effect in dark. When irradiated with light, the samples show a synergistic behavior combining the bactericidal effect of Ag ions and photocatalytic effect of TiO2.

  8. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.

    PubMed

    Shih, Yang-Hsin; Liu, Wei-Szu; Su, Yuh-Fan

    2012-08-01

    The present study aims to evaluate the effect of inorganic ions on the aggregation kinetics of stabilized titanium dioxide (TiO(2) ) nanoparticle (NP) suspension, an NP mode widely used in consumer goods and in aquatic environments. The point of zero charge of stabilized TiO(2) NPs was approximately pH 6.5. The particle size of the stabilized TiO(2) NP suspensions increased with the increase in salt concentrations. The additional salts caused the shift of zeta potentials of TiO(2) suspensions to a lower value. The TiO(2) NPs aggregated more obviously in the presence of anions than cations, and the effect of divalent anions was larger than that of monovalent anions. The critical coagulation concentration (CCC) values for commercial TiO(2) NP suspensions with positive surfaces were estimated as 290 and 2.3 meq/L for Cl(-) and SO 42-, respectively. These CCC values of stabilized TiO(2) NP suspensions are higher than those of TiO(2) NP powders, indicating greater stability of the commercial stabilized TiO(2) NP suspensions. The effects of commercial TiO(2) NP suspensions still need to be explored and defined. Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis can explain the aggregation behaviors of stabilized TiO(2) NP suspensions. Such an understanding can facilitate the prediction of NP fate in the environment.

  9. A theoretical investigation on photocatalytic oxidation on the TiO2 surface

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Tsuneda, Takao; Hirao, Kimihiko

    2012-01-01

    The TiO2 photocatalytic oxidation mechanism was theoretically investigated by using long-range corrected time-dependent density functional theory (LC-TDDFT) with a cluster model of the anatase TiO2(001) surface. We found that LC-TDDFT with the cluster model quantitatively reproduces the photoexcitations of the TiO2 surface by calculating the electronic spectra of a clean TiO2 surface and one with oxygen defects. We calculated the electronic spectra of a molecularly adsorbed TiO2 surface for the adsorptions of phenol, methanol, and methane molecules as typical organic molecules. We obtained the surprising result that the main peak of the phenol-adsorbed TiO2 surface, which overlaps with the main peak of the clean TiO2 surface, corresponds to charge transfers from the phenol molecule to the TiO2 surface. This indicates that the TiO2 photocatalytic oxidation proceeds through direct charge transfer excitation from the substrate molecules to the TiO2 surface. In contrast, we found slight and no charge transfer for methanol and methane adsorption, respectively, in agreement with the experimental findings for their reactivities. In light of these results, we propose a new mechanism for heterogeneous TiO2 photocatalytic oxidations.

  10. A theoretical investigation on photocatalytic oxidation on the TiO2 surface.

    PubMed

    Suzuki, Satoshi; Tsuneda, Takao; Hirao, Kimihiko

    2012-01-14

    The TiO(2) photocatalytic oxidation mechanism was theoretically investigated by using long-range corrected time-dependent density functional theory (LC-TDDFT) with a cluster model of the anatase TiO(2)(001) surface. We found that LC-TDDFT with the cluster model quantitatively reproduces the photoexcitations of the TiO(2) surface by calculating the electronic spectra of a clean TiO(2) surface and one with oxygen defects. We calculated the electronic spectra of a molecularly adsorbed TiO(2) surface for the adsorptions of phenol, methanol, and methane molecules as typical organic molecules. We obtained the surprising result that the main peak of the phenol-adsorbed TiO(2) surface, which overlaps with the main peak of the clean TiO(2) surface, corresponds to charge transfers from the phenol molecule to the TiO(2) surface. This indicates that the TiO(2) photocatalytic oxidation proceeds through direct charge transfer excitation from the substrate molecules to the TiO(2) surface. In contrast, we found slight and no charge transfer for methanol and methane adsorption, respectively, in agreement with the experimental findings for their reactivities. In light of these results, we propose a new mechanism for heterogeneous TiO(2) photocatalytic oxidations.

  11. Photodegradation of nalidixic acid assisted by TiO(2) nanorods/Ag nanoparticles based catalyst.

    PubMed

    Petronella, F; Diomede, S; Fanizza, E; Mascolo, G; Sibillano, T; Agostiano, A; Curri, M L; Comparelli, R

    2013-05-01

    Two different nanosized TiO2-based catalysts supported onto glass with tailored photocatalytic properties upon irradiation by UV light were successfully employed for the degradation of nalidixid acid, a widely diffused antibacterial agent of environmental relevance known to be non-biodegradable. Anatase rod-like TiO2 nanocrystals (TiO2NRs) and a semiconductor oxide-noble metal nanocomposite TiO2 NRs/Ag nanoparticles (NPs), synthesized by colloidal chemistry routes, were cast onto glass slide and employed as photocatalysts. A commercially available catalyst (TiO2 P25), also immobilized onto a glass slide, was used as a reference material. It was found that both TiO2 NRs/Ag NPs composite and TiO2 NRs demonstrated a photocatalytic efficiency significantly higher than the reference TiO2 P25. Specifically, TiO2 NRs/Ag NPs showed a photoactivity in nalidixic acid degradation 14 times higher than TiO2 P25 and 4 times higher than bare TiO2 NRs in the first 60min of reaction. Several by-products were identified by HPLC-MS along the nalidixic acid degradation, thus getting useful insight on the degradation pathway. All the identified by-products resulted completely removed after 6h of reaction.

  12. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    PubMed

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  13. Enhanced efficiency of dye-sensitized solar cells with novel synthesized TiO2.

    PubMed

    Ju, Ki-Young; Cho, Jung-Min; Cho, Sung-June; Yun, Je-Jung; Mun, Soo-San; Han, Eun-Mi

    2010-05-01

    An anatase TiO2 and three kinds of novel TiO2 nanoparticles were prepared by a hydrothermal method for dye-sensitized solar cells (DSSCs), which were obtained by mixing NaOH (10 M), KOH (14 M) and LiOH (10 M) solution with an anatase TiO2 powder, respectively. The TiO2 working electrodes of DSSCs were prepared and the photoelectric properties of the cells were characterized. The influence of different poly(ethylene glycol) contents in TiO2 films with and without HNO3 treatment on the electron transfer in DSSCs were investigated. It is found that the DSSC with HNO3 (0.002 mol/l)-treated film containing 16.7 wt% PEG shows the higher power conversion efficiency of 6.0%, which was mainly depended on the degrees of TiO2 pore size and uniformity of TiO2 films.

  14. Photocatalytic antibacterial performance of Sn(4+)-doped TiO(2) thin films on glass substrate.

    PubMed

    Sayilkan, Funda; Asiltürk, Meltem; Kiraz, Nadir; Burunkaya, Esin; Arpaç, Ertuğrul; Sayilkan, Hikmet

    2009-03-15

    Pure anatase, nanosized and Sn(4+) ion doped titanium dioxide (TiO(2)) particulates (TiO(2)-Sn(4+)) were synthesized by hydrothermal process. TiO(2)-Sn(4+) was used to coat glass surfaces to investigate the photocatalytic antibacterial effect of Sn(4+) doping to TiO(2) against gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus). Relationship between solid ratio of TiO(2)-Sn(4+) in coatings and antibacterial activity was reported. The particulates and the films were characterized using particle size analyzer, zeta potential analyzer, Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), SEM, AAS and UV/VIS/NIR techniques. The results showed that TiO(2)-Sn(4+) is fully anatase crystalline form and easily dispersed in water. Increasing the solid ratio of TiO(2)-Sn(4+) from 10 to 50% in the coating solution increased antibacterial effect.

  15. Preparation and properties of antibacterial TiO2@C/Ag core-shell composite

    NASA Astrophysics Data System (ADS)

    Tan, San-Xiang; Tan, Shao-Zao; Chen, Jing-Xing; Liu, Ying-Liang; Yuan, Ding-Sheng

    2009-08-01

    An environment-friendly hydrothermal method was used to prepare TiO2@C core-shell composite using TiO2 as core and sucrose as carbon source. TiO2@C served as a support for the immobilization of Ag by impregnation in silver nitrate aqueous solution. The chemical structures and morphologies of TiO2@C and TiO2@C/Ag composite were characterized by x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, energy dispersive x-ray spectroscopy and Brunauer-Emmett-Teller (BET) analysis. The antibacterial properties of the TiO2@C/Ag core-shell composite against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the viable cell counting method. The results indicate that silver supported on the surface of TiO2@C shows excellent antibacterial activity.

  16. 130-fold enhancement of TiO2 photocatalytic activities by ball milling

    NASA Astrophysics Data System (ADS)

    Saitow, Ken-ichi; Wakamiya, Tomoji

    2013-07-01

    Submicrometer TiO2 particles were prepared by changing the mechanochemical parameters in planetary ball milling. The TiO2 particles before and after milling were characterized by five experimental methods. The photocatalytic activities of the TiO2 particles were evaluated by the photoreduction of an aqueous solution of methylene blue. The activity of milled TiO2 was 136 times that of TiO2 (anatase) before milling and 62 times that of commercial available TiO2 photocatalyst (P25). In addition to the reduction in particle size and increase in specific surface area due to milling, the disorder TiO2, involving amorphous and srilankite phases, significantly increased the catalytic performance.

  17. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures

    PubMed Central

    Cheng, Chun; Amini, Abbas; Zhu, Chao; Xu, Zuli; Song, Haisheng; Wang, Ning

    2014-01-01

    We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching observed from photoluminescence of TiO2-ZnO hybrid nanostructures implied an enhanced charge transfer/separation process resulting from the novel type II heterostructures with fine interfaces. The catalytic performance of annealing products with different TiO2 phase varied with the annealing temperatures. This is attributed to the combinational changes in Eg of the TiO2 phase, the specific surface area and the quantity of surface hydroxyl groups. PMID:24566978

  18. Photocatalytic hydrogen generation over lanthanum doped TiO2 under UV light irradiation.

    PubMed

    Liu, Y; Xie, L; Li, Y; Qu, J L; Zheng, J; Li, X G

    2009-02-01

    TiO2 nanoparticles doped with different amount of lanthanum were obtained by sol-gel approach and followed annealing at different temperature. The crystal size of TiO2 doped with lanthanum was smaller than that of pure TiO2. Photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 was investigated. The photocatalytic activity of TiO2 doped with lanthanum for water splitting into H2 is higher than that of pure TiO2. It was found that the optimal photocatalyst was TiO2 doped with 2 wt% lanthanum and calcined at 600 degrees C for 4 h which had hydrogen generation rate 700.6 micromol h(-1).

  19. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection

    PubMed Central

    Elgrabli, Dan; Beaudouin, Remy; Jbilou, Nawel; Floriani, Magali; Pery, Alexandre; Rogerieux, Françoise; Lacroix, Ghislaine

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles’ half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg. PMID:25909957

  20. Study of TiO2 nanotubes as an implant application

    NASA Astrophysics Data System (ADS)

    Hazan, Roshasnorlyza; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.; Abdullah, Yusof; Mat, Ishak

    2016-01-01

    Vertically aligned TiO2 nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO2 nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO2 nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO2 nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO2 nanotubes surface during in vitro study revealed that BMSC prone to attach on TiO2 nanotubes. From the result, it can be conclude that TiO2 nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials.

  1. Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems.

    PubMed

    Yuan, Bao-ling; Li, Xiang-zhong; Graham, Nigel

    2008-05-01

    The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from DMP degradation were identified by HPLC and GC/MS analyses. The analytical results identified dimethyl 3-hydroxyphthalate and dimethyl 2-hydroxyphthalate as the two main intermediate products from the DMP degradation in the TiO2-UV-O2 system, while in contrast phthalic acid was found to be the main intermediate product in the TiO2-UV-Fe(VI) system. These findings indicate that DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) systems followed different reaction pathways. An electron spin resonance analysis confirmed that hydroxyl radicals existed in the TiO2-UV-O2 reaction system and an unknown radical species (most likely an iron-oxo species) is suspected to exist in the TiO2-UV-Fe(VI) reaction system. Two pathway schemes of DMP degradation in the TiO2-UV-O2 and TiO2-UV-Fe(VI) reaction systems are proposed. It is believed that the radicals formed in the TiO2-UV-O2 reaction system preferably attack the aromatic ring of the DMP, while in contrast the radicals formed in the TiO2-UV-Fe(VI) reaction systems attack the alkyl chain of DMP.

  2. Ti(3+) Self-Doped Blue TiO2(B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance.

    PubMed

    Zhang, Yan; Xing, Zipeng; Liu, Xuefeng; Li, Zhenzi; Wu, Xiaoyan; Jiang, Jiaojiao; Li, Meng; Zhu, Qi; Zhou, Wei

    2016-10-12

    Ti(3+) self-doped blue TiO2(B) single-crystalline nanorods (b-TR) are fabricated via a simple sol-gelation method, cooperated with hydro-thermal treatment and subsequent in situ treatment method, and afterward annealed at 350 °C in Ar. The structures are characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (UV-vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The prepared b-TR with narrow band gap possesses single-crystalline TiO2(B) phase, Ti(3+) self-doping, and one-dimensional (1D) rodlike nanostructure. In addition, the improved photocatalytic performance is studied by decomposition of Rhodamine B (RhB) and hydrogen evolution. The degradation rate of RhB by Ti(3+) self-doped blue TiO2(B) single-crystalline nanorods is ∼6.9- and 2.1-times higher compared with the rates of titanium dioxide nanoparticles and pristine TiO2(B) nanorods under visible light illumination, respectively. The hydrogen evolution rate of b-TR is 26.6 times higher compared with that of titanium dioxide nanoparticles under AM 1.5 irradiation. The enhanced photocatalytic performances arise from the synergetic action of the special TiO2(B) phase, Ti(3+) self-doping, and the 1D rod-shaped single-crystalline nanostructure, favoring the visible light utilization and the separation and transportation of photogenerated charge carriers.

  3. Visible light catalysis of rhodamine B using nanostructured Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films.

    PubMed

    Mahadik, M A; Shinde, S S; Mohite, V S; Kumbhar, S S; Moholkar, A V; Rajpure, K Y; Ganesan, V; Nayak, J; Barman, S R; Bhosale, C H

    2014-04-05

    The Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) composite films are deposited using spray pyrolysis method onto glass and FTO coated substrates. The structural, morphological, optical and photocatalytic properties of Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films are studied. XRD analysis confirms that films are polycrystalline with rhombohedral and tetragonal crystal structures for Fe2O3 and TiO(2) respectively. The photocatalytic activity was tested for the degradation of Rhrodamine B (Rh B) in aqueous medium. The rate constant (-k) was evaluated as a function of the initial concentration of species. Substantial reduction in concentrations of organic species was observed from COD and TOC analysis. Photocatalytic degradation effect is relatively higher in case of the TiO(2)/Fe(2)O(3) than TiO(2) and Fe(2)O(3) thin film photoelectrodes in the degradation of Rh B and 98% removal efficiency of Rh B is obtained after 20min. The photocatalytic experimental results indicate that TiO(2)/α-Fe(2)O(3) photoelectrode is promising material for removing of water pollutants.

  4. Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-09-15

    In this work, a simple and effective strategy to improve the photocatalytic dye degradation efficiency of the mesoporous-assembled TiO2 nanoparticle thin films by incorporating small contents of commercial P-25 TiO2 during the thin film preparation was developed. The mesoporous-assembled TiO2 nanoparticles were synthesized by a sol-gel method with the aid of a mesopore-directing surfactant, followed by homogeneously mixing with P-25 TiO2 prior to the thin film coating on glass substrate. The mesoporous-assembled TiO2 film with 5 wt.% P-25 TiO2 incorporation and calcined at 400°C provided an improved photocatalytic Acid Black (AB) dye degradation efficiency. The increase in number of coated layers to the optimum four layers of the aforementioned film was found to further improve the degradation efficiency. The recyclability test of this 5 wt.% P-25 TiO2-incorporated mesoporous-assembled TiO2 film with four coated layers revealed that it can be reused for multiple cycles without a requirement of post-treatment while the degradation efficiency was retained.

  5. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  6. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid.

    PubMed

    Li, Zhonglai; Wnetrzak, Renata; Kwapinski, Witold; Leahy, James J

    2012-09-26

    TiO(2) nanorods and ZrO(2)-modified TiO(2) nanocomposites have been prepared by hydrothermal synthesis and the deposition-precipitation method. Their sulfated products were tested as solid superacid catalysts for the esterification of levulinic acid which was used as a model bio-oil molecule. SEM and TEM characterization showed that TiO(2) nanorods with diameters ranging from 20 to 200 nm and with lengths of up to 5 μm were synthesized by a hydrothermal method at 180 °C. ZrO(2) nanoparticles with the diameters ranging from 10 to 20 nm were evenly deposited on TiO(2) nanorods. IR and XPS results suggested that sulfated ZrO(2)/TiO(2) nanocomposite has higher content of sulfate groups on the surface with a S/(Zr+Ti) ratio of 13.6% than sulfated TiO(2) nanorods with a S/Ti ratio of 4.9%. The HPLC results showed that sulfated ZrO(2)/TiO(2) nanocomposite have enhanced catalytic activity for esterification reaction between levulinic acid and ethanol compared to sulfated TiO(2) nanorods. The conversion of levulinic acid to ethyl levulinate can reach to 90.4% at the reaction temperature of 105 °C after 180 min.

  7. Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd.

    PubMed

    Fujimoto, Tânia M; Ponczek, Milena; Rochetto, Ursula L; Landers, Richard; Tomaz, Edson

    2016-03-30

    Heterogeneous photocatalytic oxidation systems using titanium dioxide (TiO2) have been extensively studied for the removal of several volatile organic compounds (VOCs). The addition of noble metals such as palladium on TiO2 may improve photocatalytic activity by increasing charge separation efficiency. In this work, palladium was impregnated on TiO2 and the efficiency of the new catalyst was tested and compared with that of pure TiO2. Pd was impregnated on TiO2 by the reduction method, using NaBH4, and was characterized by XRD, XPS, UV-Vis, and H2 chemisorption. The photocatalytic tests were performed in an annular coated-wall reactor using octane, isooctane, n-hexane, and cyclohexane at inlet concentrations varying from 100 to 120 ppmv. Compared with pure TiO2 film, the photocatalytic activity of TiO2 impregnated with 1 wt% of palladium was improved. All the aforementioned analytical techniques confirmed the presence of Pd incorporated into the structure of TiO2, and the conversion rates were studied in a broad range of residence times, yielding up to 90 % or higher rates in 40 s of residence time, thus underscoring the relevant contribution of the technology.

  8. Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions

    PubMed Central

    Liu, Yazi; Sun, Dan; Askari, Sadegh; Patel, Jenish; Macias-Montero, Manuel; Mitra, Somak; Zhang, Richao; Lin, Wen-Feng; Mariotti, Davide; Maguire, Paul

    2015-01-01

    A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding. PMID:26497265

  9. A TiO2/CNT coaxial structure and standing CNT array laminated photocatalyst to enhance the photolysis efficiency of TiO2.

    PubMed

    Wang, Gou-Jen; Lee, Ming-Way; Chen, Yi-Hong

    2008-01-01

    In this study a TiO2/CNT coaxial structure and standing CNT array laminated photocatalyst to enhance the photolysis efficiency of TiO2 is presented. An electrochemical bath that used a nanoporous anodic aluminum oxide membrane as the separation grating to separate two vessels with a transmembrane concentration gradient was constructed. The catalyzed photolysis efficiency was measured in terms of the photolysis-induced ion current. The experimental results demonstrate that the photolysis efficiency of TiO2 could be increased by the high electron conductibility of the standing CNT array. The experimental results also indicate that photolysis efficiency could be enhanced by increasing the height of the standing CNT array substrate; however, it degraded as the thickness of the TiO2/CNT coaxial structure and the TiO2 shell increased.

  10. Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation.

    PubMed

    Jo, Wan-Kuen; Kang, Hyun-Jung

    2015-01-01

    This study was conducted under visible-light exposure to investigate the photocatalytic characteristics of a multiwalled carbon nanotube/titania (TiO2) composite nanofiber (MTCN) using a continuous-flow tubular reactor. The MTCN was prepared by a sol-gel process, followed by an electrospinning technique. The photocatalytic decomposition efficiency for limonene on the MTCN was higher than those obtained from reference TiO2 nanofibers or P25 TiO2, and the experimental results agreed well with the Langmuir-Hinshelwood model. The CO concentrations generated during the photocatalysis did not reach levels toxic to humans. The mineralization efficiency for limonene on the MTCN was also higher than that for P25 TiO2. Moreover, the mineralization efficiency obtained using the MTCN increased steeply from 8.3 to 91.1% as the residence time increased from 7.8 to 78.0s, compared to the increase in the decomposition efficiencies for limonene from 90.1 to 99.9%. Three gas-phase intermediates (methacrolein, acetic acid, and limonene oxide) were quantitatively determined for the photocatalysis for limonene over the MTCN, whereas only two intermediates (acetic acid and limonene oxide) were quantitatively determined over P25 TiO2. Other provisional gas-phase intermediates included cyclopropyl methyl ketone and 2-ethylbutanal.

  11. A computational study of the TiO2 molecule

    NASA Technical Reports Server (NTRS)

    Ramana, M. V.; Phillips, D. H.

    1988-01-01

    A computational investigation of the ground 1A1 and lowest energy B2 states of the titanium dioxide molecule has been carried out. The treatment utilized SCF calculations in an extended basis followed by a CI treatment for each geometry. The ground state geometry agrees well with experiment, while the agreement between the computed vibrational frequency nu1 and the experimental value for a matrix isolated TiO2 is less satisfactory. Population analysis for the ground state indicates less than one excess electron on each oxygen atom. The first excited state has a linear geometry and the singlet and triplet are essentially degenerate.

  12. TiO2 coated microfluidic devices for recoverable hydrophilic and hydrophobic patterns

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Hyung; Kim, Sang Kyung; Park, Hyung-Ho; Kim, Tae Song

    2015-03-01

    We report a simple method for modifying the surfaces of plastic microfluidic devices through dynamic coating process with a nano-colloidal TiO2 sol. The surface of the thermoplastic, cyclic olefin copolymer (COC) was coated with the TiO2 film, that displayed an effective photocatalytic property. The hydrophilic surface is obtained in the TiO2-coated zone of a microfluidic channel, and TiO2 coated surface degradation can be reversed easily by UV irradiation. The present work shows a photocatalytic activity concerning the effect of TiO2 coating density, which is controlled by the number of coating cycles. The hydrophilized surface was characterized by the contact angle of water and the TiO2 coated COC surface reduced the water contact angle from 85° to less than 10° upon UV irradiation. The photocatalytic effect of the layer that was coated five times with TiO2 was excellent, and the super-hydrophilicity of the TiO2 surface could be promptly recovered after 10 months of storage at atmospheric conditions. The COC microfluidic devices, in which TiO2 has been freshly deposited and aged for 10 months, were capable of generating water-in oil-in water (W/O/W) double emulsions easily and uniformly by simple control of the flow rates for demonstration of excellent hydrophilic patterning and recovery of the TiO2 coated in the microchannels.

  13. Surface Properties and Catalytic Performance of Activated Carbon Fibers Supported TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Yang, Huifen; Fu, Pingfeng

    Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti-O-Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.

  14. Improved photoelectrical performance of graphene supported highly crystallized anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Sun, Qiong; Zhao, Mei; Li, Yang; Liu, Qiuhong; Dong, Lifeng

    2015-08-01

    In this study, titanium oxysulfate (TiOSO4) and graphene were used as titanium source and supporter, respectively, to synthesize anatase TiO2-graphene (TiO2-G) composite. Crystal structure, morphology, and composition of TiO2-G were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and thermogravimetric analysis. Both TiO2-G and blank TiO2 powders exhibit spindle-shaped structure with the long axis along [001]. Compared to unsupported TiO2, TiO2 nanoparticles uniformly formed on graphene surface. When fabricated into dye-sensitized solar cells, photoelectrical conversion efficiency of TiO2-G (2.3 %) was much higher than that of blank TiO2 (0.89 %) prepared at the same conditions. Moreover, high sintering temperature enhanced photoelectrical performance of the composite. When the temperature was increased from 450 to 600 °C, the efficiency was improved from 1.5 to 2.6 %. The findings above demonstrate that TiO2-G has great potential for applications in dye-sensitized solar cells.

  15. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes

    PubMed Central

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the “d value” of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  16. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO2) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO2 to AE was higher than that of pure TiO2, and the optimal V dopant content of TiO2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO2 to NOx and HC were higher than those to CO2 and CO in AE because of the reversible reaction between CO2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO2 to each component in AE were also increased under visible light irradiation. The V-doped TiO2 also showed higher degradation efficiencies to NOx and HC than those to CO2 and CO under visible light irradiation. The V doped TiO2 presented higher photocatalytic activity to CO2 than that to CO, but the reversible reaction between CO and CO2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO2 to AE for air purification, developing a sustainable environmental purification technology based on TiO2 materials.

  17. One-dimensional Fe2O3/TiO2 photoelectrode and investigation of its photoelectric properties in photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Song, Xi-Ming; Zhou, Xin; Yuan, Chunxue; Zhang, Yu; Tong, Qiang; Li, Ying; Cui, Luxia; Liu, Daliang; Zhang, Wei

    2017-03-01

    We reported a novel Fe2O3/rutile TiO2 nanorod (NR) arrays with the heterogeneous structure for photoelectrochemical (PEC) cells, which were fabricated on fluorine-doped tin oxide glass (FTO) substrates that serve as model architecture via a hydrothermal method. Fe2O3 was revealed as an inexpensive and eco-friendly semiconductor sensitizer to make TiO2 respond to visible light. By using this photoanode, the photoelectric conversion and water splitting properties of PEC cells based on the one-dimensional (1D) Fe2O3/TiO2 heterostructures were investigated in detail under simulated sunlight. Meanwhile, the optimization of photovoltaic performance was also achieved by regulating the amount of Fe2O3. The open circuit voltage and short circuit current of the Fe2O3/TiO2 solar cell can reach 0.435 V and 1.840 mA/cm2, respectively. In addition, theoretical analysis of the photoelectric effect is preliminarily explored on the basis of the flat band potential results.

  18. 3D Bi2S3/TiO2 cross-linked heterostructure: An efficient strategy to improve charge transport and separation for high photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Jia, Junhong

    2016-10-01

    A novel 3D cross-linked heterostructure of TiO2 nanorods connecting with each other via ultrathin Bi2S3 nanosheets is constructed by a facile and effective strategy. The growth mechanism has been investigated and proposed based on the evolution of microstructure by changing the reaction parameters. Benefiting from the unique cross-linked heterostructure, the as-prepared Bi2S3 nanosheets modified TiO2 nanorods arrays could achieve a high energy conversion efficiency of 3.29% which is the highest value to date for Bi2S3-only sensitized solar cells as the reported highest value is 2.23% and other reported values are less than 1%. Furthermore, the photoelectrochemical studies clearly reveal that the novel cross-linked heterostructure exhibits much better activity than 0D nanoparticles decorated TiO2 nanorods under visible light irradiation, which may be primarily ascribed to the efficient electron transfer from 2D ultrathin Bi2S3 nanosheets to 1D TiO2 nanorod arrays. The promising results in this work confirm the advantages of cross-linked heterostructure and also undoubtedly offer an attractive synthesis strategy to fabricate other nanorod-based hierarchical architecture as well as nano-devices for solar energy conversion.

  19. Low temperature transfer of well-tailored TiO2 nanotube array membrane for efficient plastic dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Fu, Nianqing; Li, Xiaoyan; Liu, Yan; Liu, Yanchun; Guo, Min; Li, Wenfang; Huang, Haitao

    2017-03-01

    Transferring semiconductor film onto plastic substrate for efficient flexible photovoltaic devices with good mechanical stability against shape wrench is always a big challenge. In this work, well-designed TiO2 nanotube array (TNTA) membrane is achieved by a combination of hot-water-soaking and TiCl4 post-treatment for efficient plastic DSSCs. In this engineered TiO2 architecture, the TiO2 particle decorated and nanowire capped TNTA hybrid structure provides not only enormous dye-loading amount and excellent light scattering/trapping effects for superior light harvesting efficiency, but also fast charge transport along the 1D aligned TNTA scaffold. More importantly, the thin and mesoporous TiO2 layer deposited on the bottom surface of TNTA makes it is possible to form mechanical interlocking between TNTA membrane and the adhesive layer to insure the excellent mechanical stability and efficient electron transfer from the TNTA membrane to the substrate. The plastic DSSCs based on the well-tailored TNTA membranes yield an exciting efficiency of 6.25% and at the same time maintain 90% of its initial efficiency after hundreds of bending cycles.

  20. Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Karahaliloglu, Zeynep; Hacker, Christoph; Demirbilek, Murat; Seide, Gunnar; Denkbas, Emir Baki; Gries, Thomas

    2014-09-01

    Recently, nanomaterials, especially titanium-based nanomaterials, have a great potential for decolorization of textile dye effluents. In this article, the nanofibrillar filters functionalized with titanium nanoparticle (nTi) were designed to improve dyeing wastewater decolorization. Pristine polypropylene (PP) and nTi-PP nanocomposite nonwovens were produced as a photocatalyzer by melt-electrospinning process. The average diameter of pristine PP- and nTi-PP nanocomposite melt-electrospun fibers was found average as 700 ± 0.3 and 800 ± 0.4 nm, respectively. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to improve decomposition activity. Scanning electron microscopy (SEM) results revealed that titanium nanoparticles were deposited uniformly on the nanofibers. X-ray photon spectroscopy (XPS) results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by using methyl orange (MO) as a model compound. The decolorization experiments were carried out by varying initial dye concentration (10, 20, 40 mg/L), pH (2, 5, and 9), and loaded TiO2 amount (1 and 2 %). According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filter has better properties compared to GA-untreated group from point of photocatalytic efficiency, especially over 90 % decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. The complete decolarization of MO was observed at pH value of 5, photocatalyst concentration of 20 mg/L, and 1 % nTi-loading after 3 h. The results show that surface activated PP nonwovens, which is introduced Ti nanoparticles into and onto the structure, a good photocatalytic activity.

  1. Hyaluronic acid immobilization on the poly-allylamine coated nano-network TiO2 surface.

    PubMed

    Shim, Jae-Won; Lee, Kang; Jeong, Moon-Jin; Jung, Sang-Chul; Kim, Byung-Hoon

    2011-08-01

    Recently, biocompatibility report revealed that the TiO2 nano-network (TiO2 NT) structure has much higher cells colonization than the native TiO2 on Ti surface. In this study, we prepared the hyaluronic acid (HA) immobilized TiO2 NT layer by plasma surface modification and then evaluated biological behavior of MC3T3-E1 on the Ti, TiO2 NT and TiO2 NT/NH2/HA surface. The cell viability tests revealed slightly enhanced viability on the TiO2 NT/NH2/HA surfaces than on the untreated Ti surfaces.

  2. Effects of TiO2 coating dosage and operational parameters on a TiO2/Ag photocatalysis system for decolorizing Procion red MX-5B.

    PubMed

    Lin, Yu-Chih; Lee, Ho-Shan

    2010-07-15

    In this study, titanium dioxide (TiO(2)) powder was coated onto the surface of a dendritic silver (Ag) carrier to synthesize TiO(2)/Ag for decolorizing Procion red MX-5B (MX-5B), and related operation factors were also studied. The results showed that even without ultraviolet-A (UVA) irradiation, the Ag carrier from the TiO(2)/Ag catalyst had oxidizing ability, which could effectively degrade MX-5B color, but TiO(2) was ineffective. In addition, TiO(2) from TiO(2)/Ag demonstrated photocatalysis performance when irradiated, and the Ag carrier further showed an electron-scavenging ability to mitigate electron-hole pair recombination, which can improve the photocatalytic efficacy. With the oxidization and electron-scavenging ability of Ag and the photocatalysis ability of TiO(2), TiO(2)/Ag can decolor MX-5B more efficiently than TiO(2). The heavier Ag carrier also improves the solid-liquid separation of nano-TiO(2), making TiO(2)/Ag more suitable for application in slurry systems of photocatalytic water treatment. When the TiO(2)/Ag coating ratio was 50% by weight, there was a sufficient amount of TiO(2) on Ag's surface with a good distribution, and it exhibited a good photocatalysis decolorizing effect. In a study of how operational factors impact the decolorizing of MX-5B in the TiO(2)/Ag photocatalysis system with UVA irradiation (UVA-TiO(2)/Ag), the decolorization efficiency was optimal when the solution was maintained at pH 6.35. The addition of 0.01 M hydrogen peroxide (H(2)O(2)) aided the photocatalysis decolorization efficiency, although excessive H(2)O(2) reacted with hydroxyl free radicals and decreased the active groups in the system, thereby reducing the photocatalysis activity. An operating temperature of 40 degrees C was conducive to MX-5B decolorization, which was better than operating at room temperature.

  3. Antibacterial effect of silver modified TiO2/PECVD films

    NASA Astrophysics Data System (ADS)

    Hájková, P.; Patenka, P. Å.; Krumeich, J.; Exnar, P.; Kolouch, A.; Matoušek, J.; Kočí, P.

    2009-08-01

    This paper deals with photocatalytic activity of silver treated TiO2 films. The TiO2 films were deposited on glass substrates by plasma enhanced chemical vapor deposition (PECVD) in a vacuum reactor with radio frequency (RF) low temperature plasma discharge in the mixture of oxygen and titanium isopropoxide vapors (TTIP). The depositions were performed under different deposition conditions. Subsequently, the surface of TiO2 films was modified by deposition of silver nanoparticles. Photocatalytic activity of both silver modified and unmodified TiO2 films was determined by decomposition of the model organic matter (acid orange 7). Selected TiO2 samples were used for tests of antibacterial activity. These tests were performed on Gram-negative bacteria Escherichia coli. The results clearly proved that presence of silver clusters resulted in enhancement of the photocatalytic activity, which was up to four times higher than that for pure TiO2 films.

  4. Microwave irradiation induced band gap tuning of MoS2-TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Shakya, Jyoti; Mohanty, T.

    2016-05-01

    The MoS2-TiO2 nanocomposites have been synthesized by sol-gel method and characterized by different microscopic and spectroscopic techniques. The crystallinity of these nanocomposites has been confirmed by X-ray diffraction (XRD) analysis. The Raman spectrum of MoS2-TiO2 nanocomposites consists of three distinct peaks (E1 g, E1 2g and A1g) which are associated with TiO2 and MoS2. The morphological study is carried out by scanning electron microscope. The effect of microwave irradiation on the band gap of MoS2-TiO2 nanocomposites has been investigated; it is observed that the microwave irradiation causes decrease in the band gap of MoS2-TiO2 nanocomposites. The microwave treated MoS2-TiO2 thin films offers a novel process route in treating thin films for commercial applications.

  5. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  6. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Sheini, Azarmidokht; Armand, Nezam

    2012-06-01

    The use of titanium dioxide (TiO2) as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. In this investigation photocatalytic degradation of monoethanolamine (MEA) using TiO2 (in form of anatase) loaded on surface of clinoptilolite (CP) (TiO2-CP) in wastewater was studied. The surface interaction between TiO2 and CP was investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), IR and X-ray diffraction (XRD). Then the effects of some parameters such as pH, amount of photocatalyst, and initial concentration of MEA on degradation percentage of MEA were examined. The obtained results show that the TiO2-CP is an active photocatalyst as compared with TiO2 nanopowders. All these results indicated that this proposed method can be useful for the development of wastewater treatment applications.

  7. Structural and Optical Characterization of Synthesized TiO2 Nanopowder Using Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Lourduraj, S.; Williams, R. Victor

    2016-02-01

    The nanocrystalline TiO2 powder was synthesized by sol-gel method. The XRD analysis reveals that TiO2 powder was highly crystalline (anatase phase) and nanostructured with tetragonal system. The average crystallite size after calcined at 673K is found to be 7.7nm. The surface morphological studies using scanning electron microscopy (SEM) exhibit that the formation of nanosized TiO2 particles with less densification nature. Atomic force microscopy (AFM) topography exhibits the uniform distribution of spherical-shaped particles. The energy dispersive X-ray spectroscopy (EDX) confirms the presence of Titanium and Oxygen in synthesized TiO2 nanopowder. The value of optical bandgap of TiO2 nanopowder calculated from UV-Visible spectrum is 3.45eV. The presence of TiO2 particles is confirmed from the dominant fourier transform infrared (FTIR) peaks at 621cm-1 and 412cm-1.

  8. Surface Treatment for Effective Dye Adsorption on Nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Yanagida, Masatoshi; Han, Chen; Han, Liyuan

    2012-10-01

    To improve the efficiency of dye-sensitized solar cells (DSCs) by controlling dye adsorption on TiO2 surface, the effect of surface treatments on the properties of [NBu4]2[Ru(Htcterpy)(NCS)3] (black dye; [NBu4]: tetrabutylammonium cation; H3tcterpy: 4,4',4''-tricarboxy-2,2':6',2''-terpyridine) on nanocrystalline TiO2 films was investigated by analysis of the photovoltaic performance and the electron transport properties. Although the surface treatments do not affect on the condition band edge of TiO2, the amount of dye on TiO2 increases. The enhancement of dye adsorption by treatment of TiO2 in HCl solution is more effective than that by dipping the dye solution containing deoxycholic acid (DCA) as additive. But the charge recombination between an electron in TiO2 and I3- in the electrolyte can be reduced by the DCA treatment.

  9. Review of the progress in preparing nano TiO2: an important environmental engineering material.

    PubMed

    Wang, Yan; He, Yiming; Lai, Qinghua; Fan, Maohong

    2014-11-01

    TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well.

  10. Effect of TiO2 pigment gradation on the properties of thermal insulation coatings

    NASA Astrophysics Data System (ADS)

    Shen, Lu-wei; Zhang, Ya-mei; Zhang, Pei-gen; Shi, Jin-jie; Sun, Zheng-ming

    2016-12-01

    This study was designed to evaluate the thermal performance and mechanical properties of coatings with different gradations of TiO2 pigments. The solar reflectance, cooling performance, wash resistance, and film adhesion strength of the coatings were investigated. The influence of TiO2 powder gradation on the final properties of the coatings was studed. The solar reflectance and the thermal insulation were observed to increase with increasing content of nanosized TiO2. The mechanical properties of the coatings, such as their wash resistance and film adhesion strength, were observed to increase with increased incorporation of nanosized TiO2. Such improvements in the properties of the coatings were attributed to the greater specific surface area and lower thermal conductivity of nanosized TiO2 particles compared to normal TiO2 particles.

  11. Synthesis and characterization of TiO2 and Ag/TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Thakur, Amit Kumar; Kulshrestha, Vaibhav; Shahi, V. K.

    2013-02-01

    Single phase anatase TiO2 nanoparticles were prepared using Titanium tertachloride (TiCl4) as precursor through an inexpensive method. Well dispersed nanocomposites of silver at TiO2 were synthesized successfully by photochemical route. Both TiO2 and Ag/TiO2 were characterized using X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). The particle size of TiO2 is found to be ˜ 11 nm and ˜ 22 nm for Ag/TiO2, by XRD and confirmed by TEM. TEM micrographs also show the single phase crystal of TiO2 and confirm the deposition of silver among TiO2.

  12. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  13. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity.

    PubMed

    Jiang, Baojiang; Tian, Chungui; Zhou, Wei; Wang, Jianqiang; Xie, Ying; Pan, Qingjiang; Ren, Zhiyu; Dong, Youzhen; Fu, Dan; Han, Jiale; Fu, Honggang

    2011-07-18

    We present a facile route for the preparation of TiO(2)-graphene composites by in situ growth of TiO(2) in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum-assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)(4) and the surfactant into the interlayers of EG. Subsequently, numerous TiO(2) nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO(2)-graphene composites. The as-prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO(2) nanoparticles homogeneously cover the surface of high-quality graphene sheets. The graphene exhibits a multi-layered structure (5-7 layers). Notably, the TiO(2)-graphene composite (only 30 wt % of which is TiO(2)) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants.

  14. Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study.

    PubMed

    Koltsakidou, Α; Antonopoulou, M; Εvgenidou, Ε; Konstantinou, I; Giannakas, A E; Papadaki, M; Bikiaris, D; Lambropoulou, D A

    2017-02-01

    In the present study, the photocatalytic activity of TiO2-based photocatalysts toward degradation and mineralization of the anti-cancer drug 5-fluorouracil (5-FU) in aqueous phase was investigated under simulated solar and visible irradiation. Commercial TiO2 (P25) and N/S-doped TiO2 catalysts synthesized by a simple sol-gel method were used as photocatalysts. TiO2 P-25 was found to be the most photoactive catalyst for the removal of 5-FU, under simulated solar irradiation. Among N/S-doped TiO2 catalysts, the one with molar Ti:N/S ratio equal to 0.5 was the most efficient under simulated solar irradiation. In contrast, under visible irradiation the catalyst with equimolar Ti:N/S ratio showed the highest performance for the removal of 5-FU. Scavenging experiments revealed that HO radicals and h(+) were the major reactive species mediating photocatalytic degradation of 5-FU using TiO2 P-25 and N/S-doped TiO2 catalysts, under simulated solar irradiation. On the other hand, the essential contribution of (1)O2 and O2(-) in the degradation of 5-FU under visible light was proved. The transformation products (TPs) of 5-FU, were identified by LC-MS-TOF suggesting that defluorination followed by hydroxylation and oxidation are the main transformation pathways, under all the studied photocatalytic systems.

  15. Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles.

    PubMed

    Nahar, Mst Shamsun; Hasegawa, Kiyoshi; Kagaya, Shigehiro

    2006-12-01

    Fe-doped TiO2 was prepared by the calcination of Fe(x)TiS(2) (x=0, 0.002, 0.005, 0.008, 0.01) and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectra. All the Fe-doped TiO2 were composed of an anatase crystal form and showed red shifts to a longer wavelength. The activity of the Fe-doped TiO2 for the degradation of phenol was investigated by varying the iron content during UV (365nm) and visible light (405nm and 436nm) irradiation. The degradation rate depended on the Fe content and the Fe-doped TiO2 was responsive to the visible light as well as the elevated activity toward UV light. The molar ratio of 0.005 was the optimum for both the UV and visible light irradiations. The result was discussed on the basis of the balance of the excited electron-hole trap by the doped Fe(3+) and their charge recombination on the doped Fe(3+) level. The Fe-doped TiO2 (x=0.005) was more active than P25 TiO2 under solar light irradiation. The suspended Fe-doped TiO2 spontaneously precipitated once the stirring of the reaction mixture was terminated.

  16. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  17. Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells

    DTIC Science & Technology

    2012-08-01

    Tunable TiO2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells by Joshua J. Martin, Mark H. Griep, Anit Giri, Samuel G. Hirsch... Tio2 Nanotube Arrays for Flexible Bio-Sensitized Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...pathway vs. TiO2 nanoparticles in dye-sensitized solar cell (DSSC) designs. TiNT arrays prepared by electrochemical anodization of Ti foils and

  18. [TiO2-Induced Photodegradation of Levofloxacin by Visible Light and Its Mechanism].

    PubMed

    Guo, Hong-sheng; Liu, Ya-nan; Qiao, Qi; Wei, Hong; Dong, Cheng-xing; Xue, Jie; Li, Ke-bin

    2015-05-01

    Levofloxacin is an emerging pollutant. Single levofloxacin and TiO2 have no visible-light activity. However, photodegradation of levofloxacin dramatically enhanced in the presence of TiO2 under visible light irradiation. Considering this finding, he photodegradation of levofloxacin over TiO2 was investigated under visible light irradiation. Effects of TiO2 dosage, levofloxacin concentration, and solution pH on levofloxacin photodegradation were examined by monitoring its concentration decay with time. The results showed that levofloxacin photodegradation fitted the Langmuir-Hinshelwood kinetic model. Solution pH, TiO2 dose, and levofloxacin concentration had significant effects on the photodegradation rates. In addition, batch adsorption experiments revealed that adsorption of levofloxacin on TiO2 conformed to the pseudo-second-order kinetics and the Langmuir isotherm. DRS spectrum of levofloxacin-adsorbed TiO2 suggested that a surface complex was formed between levofloxacin and TiO2. Addition of radical scavengers and N2-degassing affecting levofloxacin photodegradation indicated that the superoxide ion radical was mainly active species. UV-Vis spectra of a deaerated TiO2 and levofloxacin suspensions further confirmed that the electron injection into TiO2 conduction band took place under visible light irradiation. Based on these results, a charge-transfer mechanism initiated by photoexcitation of TiO2/ levofloxacin surface complex was proposed for levofloxacin photocatalytic degradation over TiO2 under visible light. This study indicates that the charge-transfer-complex-mediated photocatalytic technique has promising applications in the removal of colorless organic pollutants.

  19. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    PubMed

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO2) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (< 30 min) and highly reliable method to detect and quantify TiO2 particles (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO2 particles from the sugar solution. The peak intensity of TiO2 sensitively responded to the concentration of TiO2 with a limit of detection (LOD) of 0.073 mg kg(-1). In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO2, which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg(-1), with an LOD of 8.46 mg kg(-1). Additionally, we applied Raman spectroscopy to prove the presence of TiO2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO2 in food, which facilitate the risk assessment of TiO2 through food exposure.

  20. Photoresponse and Donor Concentration of Plasma-Sprayed TiO2 and TiO2-ZnO Electrodes

    NASA Astrophysics Data System (ADS)

    Ye, F.-X.; Ohmori, A.; Li, C.-J.

    2005-12-01

    The photoelectrochemical characteristics of plasma-sprayed porous TiO2, TiO2-5%ZnO, and TiO2-10%ZnO electrodes in 0.1 N NaOH solution were studied through a three-electrode cell system. The microstructure, morphology, and composition of the electrodes were analyzed using an electron probe surface roughness analyzer (ERA-8800FE), scanning electron microscopy, and x-ray diffraction. The results indicate that the sprayed electrodes have a porous microstructure, which is affected by the plasma spray parameters and composition of the powders. The TiO2-ZnO electrodes consist of anatase TiO2, rutile TiO2, and Zn2Ti3O8 phase. The photoresponse characteristics of the plasma-sprayed electrodes are comparable to those of single-crystal TiO2, but the breakdown voltage is close to 0.5 V (versus that of a saturated calomel electrode). The short-circuit photocurrent density ( J SC) increases with a decrease of donor concentration, which was calculated according to the Gartner-Butler model. For the lowest donor concentration of a TiO2-5%ZnO electrode sprayed under an arc current of 600 A, the short-circuit J SC is approximately 0.4 mA/cm2 higher than that of the TiO2 electrodes under 30 mW/cm2 xenon light irradiation. The J SC increases linearly with light intensity.

  1. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles

    PubMed Central

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol–gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)–doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)–doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated. PMID:25105016

  2. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.

    PubMed

    Hemmati Borji, Saeedeh; Nasseri, Simin; Mahvi, Amir Hossein; Nabizadeh, Ramin; Javadi, Amir Hossein

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol-gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)-doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated.

  3. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    PubMed

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  4. Improvement of solar energy conversion with Nb-incorporated TiO2 hierarchical microspheres.

    PubMed

    Hoang, Son; Ngo, Thong Q; Berglund, Sean P; Fullon, Raymond R; Ekerdt, John G; Mullins, C Buddie

    2013-07-22

    Niobium-modified TiO2 hierarchical spherical micrometer-size particles, which consist of many nanowires, are synthesized by solvothermal synthesis and studied as photoelectrodes for water photo-oxidation and dye-sensitized solar cell (DSSC) applications. Incorporation of Nb leads to a rutile-to-anatase TiO2 phase transition in the TiO2 hierarchical spheres (HSs), with the anatase percentage increasing from 0% for the pristine TiO2 HSs to 47.6% for the 1.82 at.% Nb-incorporated TiO2 sample. Incorporation of Nb leads to significant improvements in water photo-oxidation with the photocurrents reaching 70.5 μA cm(-2) at 1.23 V versus the reversible hydrogen electrode, compared with 28.3 μA cm(-2) for the pristine TiO2 sample. The photoconversion efficiency of Nb:TiO2 HS-based DSSCs reaches 6.09±0.15% at 0.25 at.% Nb, significantly higher than that for the pristine TiO2 HS cells (3.99±0.02%). In addition, the incident-photon-to-current efficiency spectra for DSSCs show that employing TiO2 and Nb:TiO2 HSs provides better light harvesting, especially of long-wavelength photons, than anatase TiO2 nanoparticle-based DSSCs.

  5. Tuning hydrophobicity of TiO2 layers with silanization and self-assembled nanopatterning.

    PubMed

    Van, Trong Nghia; Lee, Young Keun; Lee, Jaesang; Park, Jeong Young

    2013-03-05

    The wettability of TiO2 layers is controlled by forming highly ordered arrays of nanocones using nanopatterning, based on self-assembly and dry etching. Nanopatterning of TiO2 layers is achieved via formation of self-assembled monolayers of SiO2 spheres fabricated using the Langmuir-Blodgett technique, followed by dry etching. Three types of TiO2 layers were fabricated using the sol-gel technique, sputtering, and thermal process in order to address the relationship between the wettability and the structure of TiO2 nanostructures. Compared to a thin film TiO2 layer, the nanopatterned TiO2 samples show a smaller static water contact angle (i.e., where the water contact angle decreases as the etching time increases), which is attributed to the Wenzel equation. When TiO2 layers are coated by 1H,1H,2H,2H-perfluorooctyltrichlorosilane, we observed the opposite behavior, exhibiting superhydrophobicity (up to contact angle of 155°) on the nanopatterned TiO2 layers. Self-assembled nanopatterning of the TiO2 layer may provide an advanced method for producing multifunctional transparent layers with self-cleaning properties.

  6. Structural, morphological, optical and photocatalytic investigation of Ag-doped TiO2

    NASA Astrophysics Data System (ADS)

    Kundu, Virender Singh; Singh, Davender; Maan, A. S.; Tanwar, Amit

    2016-05-01

    The pure and Ag-doped TiO2 nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO2 and 8.86 nm for 6 mol % Ag doped TiO2. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO2 and Ag-doped TiO2 nanoparticles showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc's plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO2 and Ag-doped TiO2 nanoparticles showed that Ag-doped TiO2 degrades MB dye more efficiently than pure TiO2.

  7. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    PubMed

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-06-05

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity.

  8. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

    PubMed Central

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  9. TiO2 micro-devices fabricated by laser direct writing.

    PubMed

    Wang, Yongsheng; Miao, Junjie; Tian, Ye; Guo, Chuanfei; Zhang, Jianming; Ren, Tianling; Liu, Qian

    2011-08-29

    Constructing micro/nanostructures based on TiO2 has attracted increasing attention due to the excellent properties of TiO2. In this study, we report a simple method to directly fabricate TiO2 micro-devices, including Fresnel lens, gear structures and suspended beams only by laser direct writing and selective-etching processing. This route shows great potential in fabricating TiO2 structures for micro-electro-mechanical systems, diffractive optical elements and bio-applications, owing to its maskless process, low cost, and flexible dry/wet alternative etching treatment.

  10. Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Kanemitsu, Yoshihiko

    2012-09-01

    The dynamical behavior of photoexcited states of TiO2 governs the activities of TiO2-based solar cells and photocatalysts. We determined the lifetimes of photoexcited electrons and holes in rutile and anatase TiO2 single crystals by combining advantages of time-resolved photoluminescence, photoconductance, and transient absorption spectroscopy. Electrons and holes in rutile show exponential decays with the lifetime of a few tens of nanoseconds, while non-exponential decays are observed in anatase, indicating the presence of multiple carrier trapping processes. We revealed the generic features of the carrier recombination processes in rutile and anatase TiO2.

  11. Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites.

    PubMed

    Kovacic, Marin; Salaeh, Subhan; Kusic, Hrvoje; Suligoj, Andraz; Kete, Marko; Fanetti, Mattia; Stangar, Urska Lavrencic; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2016-09-01

    The study is aimed at evaluating the potential of immobilized TiO2-based zeolite composite for solar-driven photocatalytic water treatment. In that purpose, TiO2-iron-exchanged zeolite (FeZ) composite was prepared using commercial Aeroxide TiO2 P25 and iron-exchanged zeolite of ZSM5 type, FeZ. The activity of TiO2-FeZ, immobilized on glass support, was evaluated under solar irradiation for removal of diclofenac (DCF) in water. TiO2-FeZ immobilized in a form of thin film was characterized for its morphology, structure, and composition using scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). Diffuse reflectance spectroscopy (DRS) was used to determine potential changes in band gaps of prepared TiO2-FeZ in comparison to pure TiO2. The influence of pH, concentration of hydrogen peroxide, FeZ wt% within the composite, and photocatalyst dosage on DCF removal and conversion efficiency by solar/TiO2-FeZ/H2O2 process was investigated. TiO2-FeZ demonstrated higher photocatalytic activity than pure TiO2 under solar irradiation in acidic conditions and presence of H2O2.

  12. Influence of TiO2 nanostructures on the optical absorption of organic-inorganic perovskite

    NASA Astrophysics Data System (ADS)

    Liu, Zongyi; Ye, Mao; Ostrowski, Michel; Yi, Ya Sha

    2016-04-01

    This work aims to reveal the strong influence of TiO2 nanostructures on the light absorption property of TiO2 and perovskite mixture. Three TiO2 nanostructures, i.e., nanoparticles (S1), ultrapure nanorods (S2), and ultrasmall nanorods (S3), were studied: S1 was selected as a baseline; S2 and S3 were synthesized from S1 by using modified hydrothermal processes. Mesoporous TiO2 thin films were spin-coated from solutions containing these TiO2 nanorods and nanoparticles (S1 as baseline). Organic-inorganic hybrid perovskite CH3NH3PbI3 was then incorporated into these mesoporous TiO2 thin films. Optical absorption results showed that the perovskite mixture with ultrasmall TiO2 nanostructures (S3) has significantly higher optical absorption coefficient. Finite-difference time domain models were built based on three distinct nanostructures of TiO2 and CH3NH3PbI3 mixtures fabricated (S1 to S3) to understand their optical absorption properties. Our work is promising to fabricate TiO2 nanostructures, as a backbone structure, for a series of applications including photovoltaics and photodetection.

  13. AC conductivity studies of Fe doped TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Vijayan, P. P.; Thomas, M.; George, K. C.

    2015-02-01

    Fe-doped TiO2 nanotubes are prepared by the combination of sol-gel process with hydrothermal treatment. The morphology and crystalline structure of TiO2 nanotubes are characterized by transmission electron microscopy (TEM), X-ray diffraction respectively (XRD). Fe doping induces a structural transformation from anatase to rutile. The temperature dependence of the ac electrical conductivity is investigated in the temperature range 303-413 K. Positive temperature coefficient of resistance is observed in the Fe doped TiO2 nanotubes. PL spectrum shows the presence of oxygen vacancies and self trapped excitons in Fe doped TiO2 nanotubes and undoped samples.

  14. Optical absorption and electrical transport in hybrid TiO2 and polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhou, Xi-Song; Li, Zheng; Wang, Ning; Lin, Yuan-Hua; Nan, Ce-Wen

    2006-06-01

    Hybrid nanofilms of poly(2-methoxy-5-ethylhexyloxy-1,4-phenylene)vinylene (MEH-PPV) and anatase-TiO2 nanoparticles were prepared. The results showed that the optical absorption spectra and electrical transport properties of the TiO2/MEH-PPV nanocomposite films were strongly dependent on the particle size and concentration of TiO2 nanoparticles in the hybrid films. In comparison with pure TiO2 nanofilms, the hybrid TiO2/MEH-PPV films presented a shift of the absorption edge to the lower-energy region, and an obvious nonlinear current-voltage characteristic.

  15. The electronic and optical properties of Eu/Si-codoped anatase TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Lin, Yanming; Jiang, Zhenyi; Hu, Xiaoyun; Zhang, Xiaodong; Fan, Jun

    2012-03-01

    The electronic and optical properties of Eu/Si-codoped anatase TiO2 are investigated using the density functional theory. The calculated results show that the synergistic effects of Eu/Si codoping can effectively extend the optical absorption edge, which can lead to higher visible-light photocatalytic activities than pure anatase TiO2. To verify the reliability of our calculated results, nanocrystalline Eu/Si-codoped TiO2 is prepared by a sol-gel-solvothermal method, and the experimental results also indicate that the codoping sample exhibits better absorption performance and higher photocatalytic activities than pure TiO2.

  16. Alternative structure of TiO2 with higher energy valence band edge

    NASA Astrophysics Data System (ADS)

    Coh, Sinisa; Yu, Peter Y.; Aoki, Yuta; Saito, Susumu; Louie, Steven G.; Cohen, Marvin L.

    2017-02-01

    We propose an alternative structure of TiO2 anatase that has a higher energy oxygen p -like valence band maximum than pristine TiO2 anatase and thus has a much better alignment with the water splitting levels. This alternative structure is unique when considering a large subspace of possible structural distortions of TiO2 anatase. We propose two routes towards this state and argue that one of them might have been realized in the recently discovered so-called black TiO2.

  17. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Demirci, Selim; Dikici, Tuncay; Yurddaskal, Metin; Gultekin, Serdar; Toparli, Mustafa; Celik, Erdal

    2016-12-01

    In this study, undoped and silver (Ag) doped titanium dioxide (TiO2) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO2 films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO2 films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO2 films calcined at 500 °C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO2 matrix enhanced the photocatalytic activity of TiO2 films under UV light irradiation as compared to the undoped TiO2 film. Furthermore, the results indicated that the 0.7% Ag doped TiO2 film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO2 films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water.

  18. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  19. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00476g

  20. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Zhu, Dachuan; Cao, Shixiu

    2016-02-01

    A facile method by combining anodic oxidation and hydrothermal method was developed to construct highly ordered anatase TiO2 nanorods (TNRs) and nanotubes (TNTs). In this method, the anodic oxidation was used for preparing highly ordered amorphous TNTs, which subsequently served as highly ordered template for next reaction process. Upon hydrothermal treatment, the as-anodized amorphous template got converted to highly ordered anatase TNTs (blank sample) in without cobalt nitrate solution and TNRs (doped sample) in cobalt nitrate solution, respectively. To our best knowledge, this is first successful attempt to prepare highly ordered anatase TNRs based on the above amorphous template. The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the as-prepared anatase TNRs are composed by a large number of anatase TiO2 nanoparticles (TNPs) and the morphology at top of TNRs is different from that of its trunk. Details of the morphology, phase transformation, and growth mechanism of the obtained TNRs are discussed. In addition, the role of Co2+ in the crystallization process had been also discussed.

  1. Characterization of manufactured TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.

    2013-04-01

    Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different techniques to characterize five different manufactured TiO2 nanoparticles. In this study, different measurement techniques have been implemented: Transmission Electron Microscopy (TEM), Scanning Mobility Particle Sizer (SMPS) and Aerodynamic Particle Sizer (APS). The TEM results lead to a relatively good agreement between data from the manufacturer and our characterizations of primary particle size. With regard to the dustiness, the results show a strong presence of agglomerates / aggregates of primary particles and a significant presence of emitted airborne nanoparticles with a diameter below 100 nm (composed of isolated primary particles and small aggregates / agglomerates formed from a few primary particles): the number proportion of these particles varies from 0 to 44 % in the measurement range 14-360 nm depending on the types of powders and corrections of measurements.

  2. Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Yang, Ziling; Lu, Jing; Ye, Weichun; Yu, Chushu; Chang, Yanlong

    2017-01-01

    The Pt/TiO2 hollow nanofibers (HNFs) as a photocatalyst have been successfully prepared by a uniaxial electrospinning method combined with photo-deposition. The as-synthesized photocatalysts were characterized by TEM, XRD, SAED, EDX, XPS, N2 adsorption-desorption, and UV-vis DRS. The TiO2 HNFs were composed of an anatase-rutile mixed phase, with the ratio of ∼70:30. The band gap of TiO2 HNFs decreased from 3.09 down to 2.77 eV with 2 wt.% Pt loading, this led to an enhanced photocatalytic performance under visible light. By evaluating the degradation of azo dye Orange II, the pseudo-first-rate constant (k) of Pt/350-TiO2 HNFs system was 0.0069 min-1, which was 11.5 and 3.63 times higher than for TiO2 HNFs and Pt/P25, respectively. The main factors affecting the photocatalytic activity were further investigated, these included the loading amount of Pt, the calcination temperature of TiO2 HNFs, the pH of initial solution and the light source. The results of repeated use of the Pt/TiO2 HNFs demonstrated that the photocatalysts exhibited an excellent stability even after ten cycles. The possible degradation mechanism was also studied. It was shown that rad O2- radicals were the main reactive oxygen species for the degradation of Orange II.

  3. Hydrogen donor in anatase TiO2

    NASA Astrophysics Data System (ADS)

    Lavrov, E. V.

    2016-01-01

    An IR absorption study of hydrogen-related defects in natural single-crystalline anatase TiO2 has been carried out. A complex with IR absorption lines at 3412 and 3417 cm-1 is shown to act as a donor with ionization energy of tens of meV. The two lines are identified as stretching local vibrational modes of the O-H bonds of the donor in the neutral and positive charge states, respectively. The defect is unstable against annealing at approximately 300 ∘C and a storage at room temperature on the time scale of a few weeks. These findings suggest that interstitial hydrogen is a plausible model of this defect.

  4. TiO2 doped with nitrogen: synthesis and characterization.

    PubMed

    Abazović, Nadica D; Montone, Amelia; Mirenghi, Luciana; Janković, Ivana A; Comor, Mirjana I

    2008-02-01

    In this study, nitrogen-doped titanium dioxide (TiO2) powders were synthesized in two ways: by heating of titanium hydroxide with urea and by direct hydrolysis of titanium tetraisopropoxide (TTIP) with ammonium hydroxide. The samples were characterized by structural (XRD), analytical (XPS), optical (UV/Vis absorption/reflection and Raman spectroscopy) and morphological (SEM, TEM) techniques. The characterization suggested that the doped materials have anatase crystalline form without any detectable peaks that correspond to dopants. The absorption threshold of titanium dioxide was moved in the visible range of optical spectrum from 3.2 eV to 2.20 eV. Particle sizes of synthesized powders were obtained from XRD measurements and from TEM data ranging from 6-20 nm. XPS and Raman spectroscopy were used for detection of nitrogen in doped samples.

  5. Surface structures of rutile TiO2(114)

    NASA Astrophysics Data System (ADS)

    Kubo, Toshitaka; Orita, Hideo; Nozoye, Hisakazu

    2016-11-01

    The surface structures of rutile TiO2(114) have been studied using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Depending on the sample preparation, the surface exhibits many complicated local nanostructures, e.g., dot-like, missing row, row-like (1 × 3), and twin dotted (2 × 2) structures. After several cycles of sputtering and high-temperature annealing, all samples exhibit triangular pyramidal structure. Microfaceted structural models, which are composed of combinations of {111} and (001) microfacets, can explain all experimental results as well as the structural variety. The calculated STM images are in good agreement with the experimental results. The decreasing density of dangling bonds, the increasing coordination number, and the evolution of non-polar structures stabilize the surface energy, which results in the microfaceted reconstructions. The formation of various nanostructures and the surface stoichiometric changes are discussed.

  6. Structure and stability of small TiO2 nanoparticles.

    PubMed

    Hamad, S; Catlow, C R A; Woodley, S M; Lago, S; Mejías, J A

    2005-08-25

    The effect of the nanostructure on the photochemistry of TiO2 is an active field of research owing to its applications in photocatalysis and photovoltaics. Despite this interest, little is known of the structure of small particles of this oxide with sizes at the nanometer length scale. Here we present a computational study that locates the global minima in the potential energy surface of Ti(n)O2n clusters with n = 1-15. The search procedure does not refer to any of the known TiO2 polymorphs, and is based on a novel combination of simulated annealing and Monte Carlo basin hopping simulations, together with genetic algorithm techniques, with the energy calculated by means of an interatomic potential. The application of several different methods increases our confidence of having located the global minimum. The stable structures are then refined by means of density functional theory calculations. The results from the two techniques are similar, although the methods based on interatomic potentials are unable to describe some subtle effects. The agreement is especially good for the larger particles, with n = 9-15. For these sizes the structures are compact, with a preference for a central octahedron and a surrounding layer of 4- and 5-fold coordinated Ti atoms, although there seems to be some energy penalty for particles containing the 5-fold coordinated metal atoms with square base pyramid geometry and dangling Ti=O bonds. The novel structures reported provide the basis for further computational studies of the effect of nanostructure on adsorption, photochemistry, and nucleation of this material.

  7. Water diffusion on TiO2 anatase surface

    NASA Astrophysics Data System (ADS)

    Agosta, L.; Gala, F.; Zollo, G.

    2015-06-01

    Compatibility between biological molecules and inorganic materials, such as crystalline metal oxides, is strongly dependent on the selectivity properties and the adhesion processes at the interface between the two systems. Among the many different aspects that affect the adsorption processes of peptides or proteins onto inorganic surfaces, such as the charge state of the amino acids, the peptide 3D structure, the surface roughness, the presence of vacancies or defects on and below the surface, a key role is certainly played by the water solvent whose molecules mediate the interaction. Then the surface hydration pattern may strongly affect the adsorption behavior of biological molecules. For the particular case of (101) anatase TiO2 surface that has a fundamental importance in the interaction of biocompatible nano-devices with biological environment, it was shown, both theoretically and experimentally, that various hydration patterns are close in energy and that the water molecules are mobile at as low temperature values as 190 K. Then it is important to understand the dynamical behavior of first hydration layer of the (101) anatase surface. As a first approach to this problem, density functional calculations are used to investigate water diffusion on the (101) anatase TiO2 surface by sampling the potential energy surface of water molecules of the first hydration layer thus calculating the water molecule migration energy along some relevant diffusion paths on the (101) surface. The measured activation energy of water migration seems in contrast with the observed surface mobility of the water molecules that, as a consequence could be explained invoking a strong role of the entropic term in the context of the transition state theory.

  8. Flame-made ultra-porous TiO2 layers for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Osorio Mayon, Yahuitl; Duong, The; Nasiri, Noushin; White, Thomas P.; Tricoli, Antonio; Catchpole, Kylie R.

    2016-12-01

    We report methyl ammonium lead iodide (MAPbI3) solar cells with an ultra-porous TiO2 electron transport layer fabricated using sequential flame aerosol and atomic layer depositions of porous and compact TiO2 layers. Flame aerosol pyrolysis allows rapid deposition of nanostructured and ultra-porous TiO2 layers that could be easily scaled-up for high-throughput low-cost industrial solar cell production. An efficiency of 13.7% was achieved with a flame-made nanostructured and ultra-porous TiO2 electrode that was coated with a compact 2 nm TiO2 layer. This demonstrates that MAPbI3 solar cells with a flame-made porous TiO2 layer can have a comparable efficiency to that of the control MAPbI3 solar cell with the well-established spin-coated porous TiO2 layer. The combination of flame aerosol and atomic layer deposition provides precise control of the TiO2 porosity. Notably, the porosity of the as-deposited flame-made TiO2 layers was 97% which was then fine-tuned down to 87%, 56% and 35% by varying the thickness of the subsequent compact TiO2 coating step. The effects of the decrease in porosity on the device performance are discussed. It is also shown that MAPbI3 easily infiltrates into the flame-made porous TiO2 nanostructure thanks to their high porosity and large pore size.

  9. Flame-made ultra-porous TiO2 layers for perovskite solar cells.

    PubMed

    Mayon, Yahuitl Osorio; Duong, The; Nasiri, Noushin; White, Thomas P; Tricoli, Antonio; Catchpole, Kylie R

    2016-12-16

    We report methyl ammonium lead iodide (MAPbI3) solar cells with an ultra-porous TiO2 electron transport layer fabricated using sequential flame aerosol and atomic layer depositions of porous and compact TiO2 layers. Flame aerosol pyrolysis allows rapid deposition of nanostructured and ultra-porous TiO2 layers that could be easily scaled-up for high-throughput low-cost industrial solar cell production. An efficiency of 13.7% was achieved with a flame-made nanostructured and ultra-porous TiO2 electrode that was coated with a compact 2 nm TiO2 layer. This demonstrates that MAPbI3 solar cells with a flame-made porous TiO2 layer can have a comparable efficiency to that of the control MAPbI3 solar cell with the well-established spin-coated porous TiO2 layer. The combination of flame aerosol and atomic layer deposition provides precise control of the TiO2 porosity. Notably, the porosity of the as-deposited flame-made TiO2 layers was 97% which was then fine-tuned down to 87%, 56% and 35% by varying the thickness of the subsequent compact TiO2 coating step. The effects of the decrease in porosity on the device performance are discussed. It is also shown that MAPbI3 easily infiltrates into the flame-made porous TiO2 nanostructure thanks to their high porosity and large pore size.

  10. Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays.

    PubMed

    Xu, Zhihua; Yu, Jiaguo

    2011-08-01

    Fe-modified TiO(2) nanotube arrays (TiO(2) NTs) were prepared by annealing amorphous TiO(2) NTs whose surface was covered with Fe(3+) by a dip-coating procedure, and characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-visible reflectance spectroscopy. The photoelectrochemical properties were evaluated by the photocurrent response and photoelectrocatalytic (PEC) degradation of methylene orange (MO) and 4-chlorophenol in water under visible-light irradiation (λ > 420 nm). The results showed that a Fe-modified TiO(2) NTs electrode exhibited a larger photocurrent response and higher PEC activity for the degradation of organic pollutants than a pure TiO(2) NTs electrode. At a bias potential of 0.4 V, the photocurrent response of a 0.5 M Fe-modified TiO(2) NTs electrode exceeded that of a pure TiO(2) NTs electrode by a factor of about 10, and the PEC degradation rates of MO and 4-chlorophenol on a 0.5 M Fe-modified TiO(2) NTs electrode exceeded those on a pure TiO(2) NTs electrode by a factor of about 2.5. The larger photocurrent response and higher PEC activity of Fe-modified TiO(2) NTs could be attributed to the enhancement of separation of charge-carriers at the external electric field and the extension of the light response range of TiO(2) to the visible-light region with the narrowing of the band gap.

  11. High pressure structural phase transitions of TiO2 nanomaterials

    NASA Astrophysics Data System (ADS)

    Quan-Jun, Li; Bing-Bing, Liu

    2016-07-01

    Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α-PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

  12. Highly recoverable TiO2-GO nanocomposites for stormwater disinfection.

    PubMed

    Wang, Gen; Feng, Wenjun; Zeng, Xiangkang; Wang, Zhouyou; Feng, Chuanping; McCarthy, David T; Deletic, Ana; Zhang, Xiwang

    2016-05-01

    A highly recoverable titanium dioxide-graphene oxide (TiO2-GO) composite was developed by a facile method of ultrasonic treatment of GO nanosheets and TiO2 nanoparticles, which should overcome the separation problem of nanosized TiO2 from treated water. Separability of the prepared samples was systematically investigated by gravity settling experiments. The samples' photocatalytic activity for stormwater disinfection was also studied under the irradiation of a solar simulator. The results demonstrated that TiO2-GO showed high efficient separability due to its accelerated settling behaviour. Zeta-potential analysis showed that the accelerated sedimentation of the catalyst was attributed to the aggregation of TiO2-GO resulting from the electrostatic attraction between TiO2 and GO. The TiO2-GO composite with a mass ratio of 100:2 (TiO2-2%GO) achieved both higher separability and good photocatalytic activity for stormwater disinfection. Its suspension became clear (turbidity < 50 NTU) after 8 h of sedimentation, while 99.5% of E.coli were deactivated in 90 min. The TiO2-GO composite exhibited excellent durability; no apparent change in the separability of TiO2-2%GO was observed after 10 treatment cycles (15 h in total), while only slight decrease in the photocatalytic activity was noted. In conclusion, the developed TiO2-GO composite showed promising results for stormwater disinfection.

  13. Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance.

    PubMed

    Huang, Shaozhuan; Zhang, Lin; Lu, Xueyi; Liu, Lifeng; Liu, Lixiang; Sun, Xiaolei; Yin, Yin; Oswald, Steffen; Zou, Zhaoyong; Ding, Fei; Schmidt, Oliver G

    2017-01-24

    Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti(3+)-self-doped TiO2 (TiO2-δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti(3+), and the amorphous, thin TiO2 nanomembrane provides a shortened Li(+) diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti(3+) concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti(3+) self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g(-1) at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.

  14. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  15. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  16. Carbon Nanofiber Reinforced Polymers

    DTIC Science & Technology

    2006-01-01

    2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Carbon Nanofiber Reinforced Polymers 5a. CONTRACT NUMBER 5b...REVIEW Carbon Nanofiber Reinforced Polymers J.N. Baucom, A. Rohatgi, W.R. Pogue III, and J.P. Thomas Materials Science and Technology Division...of mass-produced and inexpensive, discontinuous carbon nanofibers to create a percolated fiber network within a polymeric matrix that will result in

  17. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations.

    PubMed

    Stengl, Václav; Opluštil, František; Němec, Tomáš

    2012-01-01

    A novel In(3+)-doped TiO(2) and TiO(2)/In(2)S(3) nanocomposites for photocatalytic degradation of environmental pollutants and stoichiometric degradation of warfare agents were prepared by a homogeneous hydrolysis with urea and thioacetamide, respectively. The prepared samples series TiInTAA were annealed at 600°C. The prepared samples were characterized by X-ray powder diffraction, IR spectroscopy, Raman spectroscopy, specific surface area (BET) and porosity determination. The method of UV-Vis diffuse reflectance spectroscopy was employed to estimate band-gap energies. The photocatalytic activity (PCA) was tested by degradation of Orange dye, whereas stoichiometric activity was studied by degradation of sulfur mustard. Incorporation of In(3+) into titania lattice increases PCA of TiO(2) in the visible light and increases stoichiometric decomposition of sulfur mustard against nondoped TiO(2) as well. PCA of TiO(2)/In(2)S(3) composite depends on the optimal ratio of TiO(2):In(2)S(3) in composite, while the activity for stoichiometric decomposition of sulfur mustards depends on the content of In(2)S(3) in nanocomposite.

  18. A novel 3D structure composed of strings of hierarchical TiO2 spheres formed on TiO2 nanobelts with high photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yongjian; Li, Meicheng; Song, Dandan; Li, Xiaodan; Yu, Yue

    2014-03-01

    A novel hierarchical titanium dioxide (TiO2) composite nanostructure with strings of anatase TiO2 hierarchical micro-spheres and rutile nanobelts framework (TiO2 HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO2 nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m2/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO2 HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO2 may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries.

  19. Analysis of the electron transport properties in dye-sensitized solar cells using highly ordered TiO2 nanotubes and TiO2 nanoparticles.

    PubMed

    Kao, Mu-Jung; Chang, Ho; Cho, Kun-Ching; Kuo, Chin-Guo; Chien, Shu-Hua; Liang, Shi-Sheng

    2012-04-01

    This study uses TiO2 nanoparticles and highly ordered anatase TiO2 nanotubes (AOTnt) as thin film photoanodes for dye-sensitized solar cells (DSSCs). DSSCs are assembled by single-layer and double-layer films of photoanodes and their electron transfer performance is compared. TiO2 nanoparticles were fabricated by the sol-gel method, and AOTnts were grown on titanium foil. This study uses TiO2 nanoparticles or AOTnts to prepare single-layer photoanodes and TiO2 nanoparticles coated on an AOTnt film to fabricate double-layer photoanodes. These three different photoanodes are soaked in dye and assembled into DSSCs, and their open-loop voltage recession, electrochemical impedance, lifetime, life cycle, and effective diffusion coefficient are measured. Electron transfer efficiency of the photoanodes and light harvesting efficiency are further analyzed. The results show that the electron transfer efficiency, open-loop voltage recession, lifetime, life cycle, and effective diffusion coefficient of the DSSCs assembled using double-layer photoanodes (AOTnt-TiO2) are superior to those of single-layer photoanodes (TiO2 or AOTnt).

  20. Interference effects in photoacoustic and reflectance spectroscopies on TiO2/Si structures and TiO2 band gap.

    PubMed

    Conde-Gallardo, A; Cruz-Orea, A; Tomas, S A

    2004-08-01

    Experimental results of photoacoustic (PAS) and reflectance (RS) spectroscopies of titanium dioxide thin films (TiO2), deposited on Si substrates, are compared in a wide optical range including transparent and absorbent regions of TiO2. Due to the fact that the light modulation frequency f used in the photoacoustic experiments was so low that the thermal diffusion length of the TiO2 (mu = 100 microm) is always larger than the thickness of the studied films, the PAS turns out to be complementary to RS over the entire range. The presence of multiple reflection interference effects makes difficult a direct evaluation of the TiO2 band gap from the PAS signal. However, by employing k(lambda) values, obtained from transmission experiments on equivalent TiO2 films deposited on transparent fused quartz substrates, the PAS spectra for the films deposited on silicon are reconstructed by using those theoretical models that consider multiple reflections. The reasonable agreement of the simulated and experimental PAS spectra allows one to obtain reliable Eg values for the TiO2 films deposited on opaque silicon substrates.

  1. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-01-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  2. Hydrothermal Etching Treatment to Rutile TiO2 Nanorod Arrays for Improving the Efficiency of CdS-Sensitized TiO2 Solar Cells.

    PubMed

    Wan, Jingshu; Liu, Rong; Tong, Yuzhu; Chen, Shuhuang; Hu, Yunxia; Wang, Baoyuan; Xu, Yang; Wang, Hao

    2016-12-01

    Highly ordered TiO2 nanorod arrays (NRAs) were directly grown on an F:SnO2 (FTO) substrate without any seed layer by hydrothermal route. For a larger surface area, the second-step hydrothermal treatment in hydrochloric acid was carried out to the as-prepared TiO2 NRAs. The results showed that the center portion of the TiO2 nanorods were dissolved in the etching solution to form a nanocave at the initial etching process. As the etching time extended, the tip parts of the nanocave wall split into lots of nanowires with a reduced diameter, giving rise to a remarkable increase of specific surface area for the TiO2 NRAs. The TiO2 films after etching treatment were sensitized by CdS quantum dots (QDs) to fabricate quantum dot-sensitized solar cells (QDSSCs), which exhibited a significant improvement in the photocurrent density in comparison with that of the un-treated device, this mainly attributed to the enhancement of QD loading and diffused reflectance ability. Through modifying the etching TiO2 films with TiCl4, a relatively high power conversion efficiency (PCE) of 3.14 % was obtained after optimizing the etching time.

  3. Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Yu, Jiemei; Zhu, Xiaoli; Kong, Xiang Zheng

    2012-11-01

    In a mixed solvent of water and ethanol, polystyrene/titanium dioxide (PSt/TiO2) composite particles of core-shell structure were prepared by hydrolysis of tetrabutyl titanate in the presence of cationic PSt particles or anionic PSt particles surface-treated using γ-aminopropyl triethoxysilane. Hollow TiO2 particles were obtained through calcination of the PSt/TiO2 core-shell particles to burn off the PSt core or through dissolution of the core by tetrahydrofuran (THF). An alternative process constituted of preheating the PSt/TiO2 particles at 200°C to allow partial crystallization followed by calcination or PSt dissolution by THF. The outcome TiO2 particles thus prepared were examined by TEM, and hollow TiO2 particles were observed. The crystalline phase structure and phase transformation were characterized, which revealed that preheating before the removal of the PSt core was useful to achieve the desired hollow TiO2 particles, and the calcination process was beneficial to the formation of anatase and rutile structures. The tests of TiO2 particles as catalyst in the photodegradation of Rhodamine B demonstrated that a much higher catalytic activity was observed with the TiO2 hollow particles prepared through calcination combined with preheating.

  4. An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Quantong; Li, Siqian; Wang, Yi; Ye, Cong; Ruterana, Pierre; Wang, Hao

    2014-12-01

    An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube (TNT) arrays is prepared by a sol-gel process through hydrolysis and condensation of titaniumtetrachloride in an aqueous medium containing alcohol and ammonia. By introducing the TiO2 nanoparticles of proper particle size ∼20 nm into TNT arrays, the surface area, dye adsorption, short-circuit photocurrent density (Jsc), open circuit voltage (Voc) and the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs) are significantly improved (up to 107% enhancement on PCE). Particularly, the addition of alcohol and ammonia in TiO2 sol results in more hydroxyl groups chemisorbed onto the surface of the photoanodes, which is favorable for achieving large amount of dye adsorption. The influence of sol-treating time on the microstructure, morphology of photoanodes and the corresponding photovoltaic performance of DSSCs are investigated. It is found that immersing the TNT arrays into TiO2 sol for 0.5-2 h gives PCE of DSSC higher than 9.6%, and the highest PCE of 9.86% is achieved in DSSC when treating the TNT arrays with TiO2 sol for 2 h.

  5. Electrospun Perovskite Nanofibers

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Zhu, Yanyan

    2017-02-01

    CH3NH3PbI3 perovskite nanofibers were synthesized by versatile electrospinning techniques. The synthetic CH3NH3PbI3 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and photoluminescence. As counter electrodes, the synthesized nanofibers increased the performance of the dye-sensitized solar cells from 1.58 to 2.09%. This improvement was attributed to the enhanced smoothness and efficiency of the electron transport path. Thus, CH3NH3PbI3 perovskites nanofibers are potential alternative to platinum counter electrodes in dye-sensitized solar cells.

  6. Functional nanofibers and membranes by electrospinning

    NASA Astrophysics Data System (ADS)

    Formo, Eric Victor

    This research focuses on advances in the fabrication of functional membranes through the process of electrospinning to either alter the arrangement or composition of nanofiber arrays. To control nanofiber arrangement, easily reconfigurable collectors were constructed that could direct the deposition over large areas (>50 cm2) and pattern the membranes into various designs, including parallel, fan-out, and spiral arrays. Subsequently, the composition of electrospun membranes was modified using the sol-gel method to yield fibers composed of TiO2 (anatase and rutile) and ZrO 2 (tetragonal) phases. Implementing the polyol reduction method, these nanofiber surfaces were coated with Pt, Pd, and Rh nanoparticles of 2-5 nm or Pt nanowires with lengths up to 125 nm. Interestingly, by calcining the ZrO2 at a lower temperature, the nanofibers could mediate the growth of Pt nanostars or Pt nanowires by adjusting the Pt precursor concentration in the polyol reduction bath. The anatase membranes could also be modified through the self-assembly of various silanes to give either thiol or amine surface groups. The functionalized membranes were then tested for a number of applications associated with the catalysis field. Specifically, anatase fiber membranes coated with Pt and Pd nanoparticles were used as catalysts in a continuous flow reactor for either hydrogenation or cross-coupling reactions, respectively, which was proven to operate with a high yield, a rapid flow rate, and were readily recyclable. The effects of both the coverage and morphology of the Pt-decorated anatase fibers on the methanol oxidation reaction were then studied. Nanofibers with a submonolayer of Pt nanoparticles or Pt nanowires were found to display improved catalytic durability over commercial Pt/C as determined by chronoamperometry. Further, by utilizing the oxygen reduction reaction, results showed that the Pt nanostars had superior electrochemical properties in comparison to Pt black. Finally, the

  7. Synthesis and optimization of Ag-TiO2 composite nanofibers for photocatalytic treatment of impaired water sources.

    PubMed

    Nalbandian, Michael J; Zhang, Miluo; Sanchez, Joel; Kim, Seil; Choa, Yong-Ho; Cwiertny, David M; Myung, Nosang V

    2015-12-15

    In this work, Ag-TiO2 composite nanofibers were fabricated by electrospinning, where the composition and crystallinity were tuned by controlling the precursor composition and annealing conditions. Characterization revealed that bulk-embedded Ag nanoparticles inhibited anatase-to-rutile phase transformation and a decrease in band gap from 3.2 down to 2.8 eV with increase in the Ag content. The photocatalytic activity of 0.5 at.% Ag-TiO2 nanofibers toward phenol degradation was the greatest, outperforming both unmodified TiO2 nanofibers and commercially available TiO2 Aeroxide(®) P25 by a factor of ∼3. The high reactivity of the low content Ag-TiO2 nanofibers can be attributed to the addition of electron traps, which provide efficient carrier separation and, therefore, decreased recombination. However, further increase in Ag content led to lower photoreactivity, most likely due to the growth of the Ag nanoparticles, which suggests an optimal size of 2 to 3 nm for the Ag nanoparticles at 0.5 at.% provided the greatest photoreactivity. Ag-TiO2 nanofibers show great promise as innovative and highly performing nanomaterials for future nanotechnology-based treatment systems, particularly when the photoreactivity demonstrate herein is used in synergy with the established antimicrobial activity of nano-Ag.

  8. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  9. Mo + C codoped TiO(2) using thermal oxidation for enhancing photocatalytic activity.

    PubMed

    Zhang, Jun; Pan, Chunxu; Fang, Pengfei; Wei, Jianhong; Xiong, Rui

    2010-04-01

    The photocatalytic activity of TiO(2) is enhanced mainly through heightening absorption of UV-vis light and improving the separation efficiency of photoinduced electrons and holes. The recent new theoretical research revealed that the TiO(2) codoped with Mo + C is considered to be an optimal doping system. On the basis of this theory, the Mo + C codoped TiO(2) powders were first experimentally synthesized by thermal oxidizing a mixture of TiC and MoO(3) powders in the air. The XRD patterns and the XPS survey spectrum showed that carbon (C) acted as a Ti-O-C band structure and molybdenum (Mo) existed as Mo(6+) in anatase TiO(2). The Mo+C codoped TiO(2) had a 32 nm red shift of the spectrum onset compared with pure anatase TiO(2), and its band gap was reduced from 3.20 to 2.97 eV. The photocurrent of the Mo + C codoped TiO(2) was about 4 times as high as that of pure anatase TiO(2), and its photocatalytic activity on decomposition of methylene blue was enhanced.

  10. Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Darbari, S.; Abdi, Y.; Haghighi, F.; Mohajerzadeh, S.; Haghighi, N.

    2011-06-01

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO2 nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 °C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO2/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO2/CNT arrays and thin films of TiO2. The TiO2/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO2/CNTs and TiO2 film. The excellent visible light-induced photocatalytic antifungal activity of the TiO2/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  11. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation.

    PubMed

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  12. Superstructure of TiO2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges.

    PubMed

    Bian, Zhenfeng; Tachikawa, Takashi; Majima, Tetsuro

    2012-06-07

    Materials with intricate nanostructures display fascinating properties, which have inspired extensive research on the synthesis of materials with controlled structures. In this study, we investigated the properties of superstructures of TiO2 to understand the inter-relationship between structural ordering and photocatalytic performance. The nanoplate anatase TiO2 mesocrystals were chosen as the typical investigation objects, which were newly synthesized by a topotactic structural transformation. The TiO2 mesocrystals displayed the superstructure of crystallographically ordered alignment of anatase TiO2 nanocrystals with high surface area and large high-energy surface {001} planes exposed. The photoconductive atomic force microscopy and time-resolved diffuse reflectance spectroscopy were utilized to determine the charge transport properties of TiO2 mesocrystals, and their features were highlighted by a comparison with reference TiO2 samples, for example, anatase TiO2 nanocrystals with similar surface area and single crystal structure. Consequently, it was found for the first time that such a superstructure of TiO2 could largely enhance charge separation and had remarkably long-lived charges, thereby exhibiting greatly increased photoconductivity and photocatalytic activity.

  13. A TiO2 abundance map for the northern maria

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Saunders, R. S.; Matson, D. L.; Mosher, J. A.

    1977-01-01

    A map of TiO2 abundance for most of the northern maria is presented. The telescopic data base used is the 0.38/0.56-micron ratio mosaic from Johnson et at. (1977). The titanium content has been estimated using the correlation established by Charette et al. (1974). The combination of observational, processing, and calibration errors indicates that the TiO2 map is accurate to + or - 2% (wt% TiO2) for high TiO2 content (more than 5%) and + or - 1% for low values of TiO2. Analysis of the lunar sample and telescopic data suggests strongly that the spectral parameter mapped is sensitive primarily to TiO2 abundance in the range 3-9% and does not correlate directly with iron content. It is suggested, however, that for the low TiO2 mare regions (less than 2-3% TiO2) there may be a relation between the spectral ratio and iron content and that some of the reddest mare areas in the Imbrium region may have low iron contents as well as low titanium abundances.

  14. Photoassisted NO reduction with NH3 over TiO2 photocatalyst.

    PubMed

    Tanaka, Tsunehiro; Teramura, Kentaro; Arakaki, Kyoko; Funabiki, Takuzo

    2002-11-21

    Photoassisted selective catalytic reduction of NO with ammonia (photo-SCR) at low temperature over irradiated TiO2 in a flow reactor was confirmed to proceed efficiently and the adsorbed ammonia reacted with NO under irradiation of TiO2.

  15. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.

    PubMed

    Zhang, Qinghong; Li, Shuang; Li, Yaogang; Wang, Hongzhi

    2011-12-01

    Anatase TiO2 nanocrystals with the high specific surface area were prepared by the hydrothermal treatment of anatase TiO2 sols at the temperature of 150 degrees C and above. When TiO2 sols with a lower content of TiO2 and at a relatively high pH value were hydrothermal treated, the dispersible and nanorod-like TiO2 nanocrystals were formed via the oriented attachment. The nanorod-like TiO2 nanocrystals with an aspect ratio of larger than 5 and a mean diameter of less than 7 nm were obtained in the absence of organic compounds. The as-prepared TiO2 nanocrystals were characterized with X-ray diffraction, transmission electron microscopy and BET surface area techniques. The TiO2 nanostructures were deposited on the FTO conductive glass as the anodic electrode for the dye-sensitized solar cells (DSSCs) and assembled into solar cells. The derived solar cells showed a conversion efficiency of 6.12% under 1 sun illumination of simulated sunlight and external quantum efficiency (EQE) of more than 60% at the wavelength of 550 nm. The DSSCs from the anatase nanorods has a higher open circuit voltage compared to the spherical nanocrystals.

  16. Shock induced phase transition of different TiO2 precursors

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Gao, Xiang; Liu, Jianjun; Zhou, Qiang

    2011-06-01

    To investigate the effects of phase composition and particle size on shock-induced phase transition of TiO2, different TiO2 precursors including MC-150 TiO2(pure anatase,5nm), P25 TiO2(85% anatase/15% rutile,15nm), T2 TiO2(pure anatase,35nm) and T1 TiO2(pure rutile, 24nm) were impacted by detonation-driven high velocity flyers. Powder X-ray diffraction(XRD) was used to characterize the phase composition of recovered samples. Two types of phase transition were observed, including anatase to rutile transition and anatase to high pressure phase of srilankite transition. The phase transition mechanisms and effects of shock conditions, initial phase composition and particle size were analyzed. Complete transition from anatase to srilankite can be obtained by adjusting the shock conditions. In the case of impacting pure P25 TiO2, anatase to srilankite transition was hardly observed, which may be due to the restraint of initial phase of thermodynamically stable rutile. However, in the case of impacting a mixture of P25 TiO2 and dicyandiamide(C2N4H4) , it is interesting to observe anatase to srilankite transition and the mechanisms was analyzed. National Natural Science Foundation of China

  17. Structural and photocatalytic studies of Mn doped TiO2 nanoparticles.

    PubMed

    Chauhan, Ruby; Kumar, Ashavani; Chaudhary, Ram Pal

    2012-12-01

    Mn-doped TiO(2) nanoparticles (Ti(1-)(x)Mn(x)O(2); where x=0.00-0.10) were synthesized by sol-gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-Vis spectrometer. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology and measurements show that the size of crystallites is in the range of 10-20 nm. Optical measurements indicated a red shift in the absorption band edge after Mn doping. Direct allowed band gap of undoped and Mn-doped TiO(2) nanoparticles measured by UV-Vis spectrometer were 3.00 and 2.95 eV at 300 °C, respectively. Photocatalytic activities of TiO(2) and Mn doped TiO(2) were evaluated by irradiating the sample solution of methylene blue (MB) dye under ultraviolet and visible light exposure. It was found that Mn-doped TiO(2) bleaches MB much faster than undoped TiO(2) upon its exposure to the visible light as comparison to ultraviolet light. The experiment demonstrated that the photodegradation efficiency of Mn-doped TiO(2) was significantly higher than that of undoped TiO(2) upon its exposure to visible light.

  18. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee; Juan, Joon Ching; Basirun, Wan Jefrey; Centi, Gabriele

    2016-05-01

    The synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO2 photocatalysts is evaluated for the photocatalytic degradation of atrazine. The interaction between fluorine and hydrogen species in hydrogenated F-doped TiO2 overcomes the limitations of individual F-doped TiO2 and hydrogenated TiO2 photocatalyst properties. Hydrogenated F-doped TiO2 is photo-active under UV, visible and infrared light illumination with efficient electrons and holes separations. The optimized concentration of surface vacancies and Ti3+ centers coupled with enhanced surface hydrophilicity facilitates the production of surface-bound and free hydroxyl radicals. The surface of the catalyst contains dbnd Tisbnd F, dbnd Tisbnd OH, dbnd Tisbnd Ovacancy and dbnd Tisbnd H bonds as evidenced by XPS, Raman, FTIR and HR-TEM analysis. This combination also triggers the formation of new Ti3+ occupied states under the conduction band of hydrogenated F-doped TiO2. Moreover, the change in the pore structure from cylindrical to slits and larger surface area facilitates surface charge interactions. The thermal stability is also enhanced and a single anatase phase is obtained. The size of the particles of hydrogenated F-doped TiO2 is also uniform with defined and homogeneous crystal structure. This synergetic effect between fluorine and hydrogen opens up new alternatives in improving the properties of TiO2 and its photocatalytic activity.

  19. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation

    PubMed Central

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P.

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  20. Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage

    NASA Astrophysics Data System (ADS)

    Abdi, Yaser; Khalilian, Maryam; Arzi, Ezatollah

    2011-06-01

    Carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Cabbage-like TiO2 nanostructures on the CNTs were produced by atmospheric-pressure chemical vapour deposition. Scanning electron microcopy was used to study the morphology of the TiO2/CNT structures while x-ray diffraction and Fourier transform infrared (FTIR) spectroscopy were used to verify the characteristics of the prepared nanostructures. Their hydrophilicity under UV and visible light was investigated and compared with the activity of thin films of TiO2. The TiO2/CNTs showed a highly improved photocatalytic activity in comparison with the TiO2 film. The excellent visible-light-induced hydrophilicity of the TiO2/CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate. The results of this study showed that the fabricated cabbage-like TiO2/CNT nanostructures have a super-hydrophilic surface without further UV irradiation. Electrical measurements showed that a p-n junction was formed at the interface of the TiO2/CNTs. Consequently, a super-hydrophilic surface was achieved by applying an electric bias voltage. Visible-light- and electro-induced hydrophilicity of the obtained nanostructure was reported in this work.

  1. Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis.

    PubMed

    Chen, Huan; Chen, Shuo; Quan, Xie; Zhang, Yaobin

    2010-01-01

    Facile and effective approaches were developed to fabricate the inverse TiO2/Pt opals Schottky structures on the Ti substrate. The as-prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance UV-vis spectra (DRS), respectively. The results indicate that these samples were of ordered network, which was built by the Pt skeleton frame and the outer TiO2 layer. The TiO2 layer was identified as anatase with the preferential orientation of (101) plane. The experiments of short-circuit photocurrent (SCPC) and photocatalytic degradation of phenol were also conducted under the UV irradiation in order to evaluate the photoactivity of the samples. By tuning the red edge of photonic stop-band overlapping the absorption maximum of anatase (at 360 nm), both the UV absorption and the carrier separation of the samples were improved. The kinetic constant using the optimal inverse TiO2/Pt opals (0.992 h(-1)) was about 1.5 times as great as that of the disordered inverse TiO2/Pt opals (TiO2/Pt-mix) and was 3.3 times as great as that of pristine TiO2 nanocrystalline film (TiO2-nc) on Ti substrate.

  2. Neurotoxicity and biochemical responses in the earthworm Pheretima hawayana exposed to TiO2NPs.

    PubMed

    Khalil, Abdelmonem M

    2015-12-01

    Serious concerns have been expressed about potential risks of manufactured TiO2NPs. In this research, toxicity of nanoparticulate and bulk TiO2 were examined to the earthworm Pheretima hawayana. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic. The 24-h LC50 for TiO2NPs (145.36 mg kg(-1)) was highly toxic than that of bulk TiO2 (357.77 mg kg(-1)). The aim of the present work is to evaluate the suitability of P. hawayana and its biochemical responses to be used as a bioindicator organism and biomarkers of TiO2 toxicity. Earthworms were exposed to three sublethal concentrations of TiO2NPs (1, 10 and 100 µg kg(-1)) for 28 days to test acetylcholinesterase (AChE), antioxidant enzymes (superoxide dismutase: SOD and catalase: CAT) activities and MDA content. The response of the antioxidant enzymes combined with AChE inhibition and MDA accumulation indicated that TiO2NPs could induce significant impairments to the earthworms at the actual environment tested concentrations. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to TiO2NPs exposure, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of earthworm P. hawayana as potential bioindicator species for assessing the risk of nanoparticles environmental contamination.

  3. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water.

    PubMed

    Mohamed, Alaa; El-Sayed, Ramy; Osman, T A; Toprak, M S; Muhammed, M; Uheida, A

    2016-02-01

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles.

  4. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches.

    PubMed

    Lee, Daeho; Rho, Yoonsoo; Allen, Frances I; Minor, Andrew M; Ko, Seung Hwan; Grigoropoulos, Costas P

    2013-11-21

    In this study, a hierarchical TiO2 nanostructure with densely-packed and omnidirectional branches grown by a hydrothermal method is introduced. This morphology is achieved via high-concentration TiCl4 treatment of upright backbone nanowires (NWs) followed by hydrothermal growth. Secondary nanobranches grow in all directions from densely distributed, needle-like seeds on the jagged round surface of the backbone NWs. In addition, hierarchical, flower-like branches grow on the top surface of each NW, greatly increasing the surface area. For dye-sensitized solar cell (DSSC) applications, the TiO2 nanostructure demonstrated a photoconversion efficiency of up to 6.2%. A parametric study of the DSSC efficiency showed that branched TiO2 DSSCs can achieve nearly four times the efficiency of non-branched TiO2 nanowire DSSCs, and up to 170% the efficiency of previously-reported sparsely-branched TiO2 NW DSSCs.

  5. Hierarchical structured TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Shih, Yen-Chen; Chu, Ann-Kuo; Huang, Wen-Yao

    2012-04-01

    A novel approach has been developed to fabricate hills-like hierarchical structured TiO2 photoanodes for dye-sensitized solar cells (DSSCs). The appropriately aggregated TiO2 clusters in the photoanode layer could cause stronger light scattering and higher dye loading that increases the efficiency of photovoltaic device. For detailed light-harvesting study, different molecular weights of polyvinyl alcohol (PVA) were used as binders for TiO2 nanoparticles (P-25 Degussa) aggregation. A series of TiO2 films with dissimilar morphology, the reflection of TiO2 films, absorbance of attached dye, amount of dye loading, and performance of fabricated DSSC devices, were measured and investigated. An optimized device had energy conversion efficiency of 4.47% having a higher dye loading and good light harvesting, achieving a 23% increase of short-circuit current J(sc) in DSSCs.

  6. Micro-twins TiO2 nanorods grown on seeded ZnO film

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Xia, Maosheng; Liu, Yuhua; Zheng, Biju; Jiang, Qing; Lian, Jianshe

    2012-04-01

    TiO2 anatase nanorods (NRs) epitaxially grew along the [001] direction at 600 °C on seeded c-axis oriented ZnO films which were deposited on a quartz glass substrate. The length of TiO2 NRs was about 450 nm. Micro-twins (MTs) were found in the TiO2 NRs with the (103) plane as the twin planes. The possible growth mechanisms of these TiO2 MTs have been studied using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The photo-degradation experiment showed that the TiO2 NRs have a high degradation efficiency of 32.9%. The effects of structural defects and MTs on the photocatalytic activity have been discussed.

  7. Sandwich structure of Pd doped nanostructure TiO2 film as O2 sensor.

    PubMed

    Wang, Hairong; Sun, Quantao; Chen, Lei; Zhao, Yulong

    2013-09-01

    In this paper, we investigated the sensing properties of sandwich structure of TiO2/Pd/TiO2 thin films at various operating temperatures and oxygen partial pressures. The nanostructure TiO2 thin films were prepared by the sol-gel method. Various thickness of Pd buried layer was deposited by magnetron sputtering of a pure Pd target. The films were characterized using X-ray diffraction analysis and SEM. It was found that TiO2/Pd/TiO2 thin films have the p-type behavior while the pure TiO2 thin film is n-type semiconductor materials. We found that the structure of TiO2/Pd/TiO2 thin films with 10 s sputtering Pd layer has a better stability at 240 °C.

  8. Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Chaudhary, Ujwal; Das, Santanu; Godavarty, Anuradha; Agarwal, Arvind

    2013-10-01

    The effect of porosity on photocatalytic activity of plasma-sprayed TiO2 coating on steel substrate is studied by varying processing parameters viz. plasma power and powder feed rate. The relationship between porosity content and methylene blue (MB) dye decomposition rate was established to correlate coating microstructure and its photocatalytic activity. The coating with the highest porosity content exhibited best photocatalytic efficiency. The same processing parameters were used to deposit TiO2 coating on FTO glass. The photocatalytic activity of TiO2 coating on FTO was 2.5 times better than TiO2 coating on the steel substrate. TiO2 coating on FTO glass contains bimodal porosity distribution (micropores and submicron pores) which accelerated MB decomposition by accelerated diffusion of ionic species.

  9. Photoconductivity studies on amorphous and crystalline TiO2 films doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Rentería-Tapia, V.; Aguilar-Franco, M.

    2011-06-01

    In this work, amorphous and crystalline TiO2 films were synthesized by the sol-gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.

  10. One-Step Solvothermal Synthesis of Black TiO2 Films for Enhanced Visible Absorption.

    PubMed

    Chen, Shanlong; Tao, Jie; Tao, Haijun; Wang, Chen; Shen, Yizhou; Jiang, Jiajia; Zhu, Lumin; Zeng, Xiaofei; Wang, Tao

    2016-03-01

    An economic and facile solvothermal method was reported to prepare black TiO2 films on Ti foils that possessed the property of optical absorption in the visible region. The UV-vis spectra showed that the black TiO2 samples exhibited highly enhanced visible-light absorption from 400-600 nm. The black TiO2 films were compact and uniform, composed of nanoparticles and nanosheets. Moreover, a mixed structure of anatase and rutile was present in black TiO2 films. The electron paramagnetic resonance (EPR) spectra confirmed the presence of Ti3+ in samples, which accounted for longer wavelength optical absorption. The results showed that the TiO2 films had retained their black color upon storage in ambient atmosphere for more than one month. Therefore, it was supposed that the ethylene glycol in solvothermal reaction was the key factor for the extension of the absorption spectrum.

  11. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    NASA Astrophysics Data System (ADS)

    Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-01

    Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  12. A TiO2 nanotube network electron transport layer for high efficiency perovskite solar cells.

    PubMed

    Gao, Xianfeng; Li, Jianyang; Gollon, Sam; Qiu, Ming; Guan, Dongsheng; Guo, Xiaoru; Chen, Junhong; Yuan, Chris

    2017-02-15

    The electron transport layer (ETL) plays a critical role in high efficiency perovskite solar cells. In this study, an anodic TiO2 nanotube film was transformed into a TiO2 nanotube network film, which maintained its advantage as an efficient ETL for perovskite solar cells. Compared with the mesoporous TiO2 nanoparticle ETL, the TiO2 nanotube network ETL can increase the efficiency of perovskite solar cells by 26.6%, which is attributed to its superior charge collection property and light trapping ability. The results confirm the importance of optimizing the electron collecting layer and suggest another way to design and fabricate novel perovskite solid state solar cells, potentially by using a TiO2 nanotube network film as an alternative high efficiency electrode.

  13. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    PubMed Central

    Xie, Zheng; Liu, Xiangxuan; Wang, Weipeng; Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2014-01-01

    TiO2 nanorod arrays (TiO2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. PMID:27877718

  14. Mechanochemical Synthesis of TiO2 Nanocomposites as Photocatalysts for Benzyl Alcohol Photo-Oxidation

    PubMed Central

    Ouyang, Weiyi; Kuna, Ewelina; Yepez, Alfonso; Balu, Alina M.; Romero, Antonio A.; Colmenares, Juan Carlos; Luque, Rafael

    2016-01-01

    TiO2 (anatase phase) has excellent photocatalytic performance and different methods have been reported to overcome its main limitation of high band gap energy. In this work, TiO2-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO2 loading were synthesized using a simple one-pot mechanochemical method. Photocatalysts were characterized by a number of techniques and their photocatalytic activity was tested in the selective oxidation of benzyl alcohol to benzaldehyde. Extension of light absorption into the visible region was achieved upon titania incorporation. Results indicated that the photocatalytic activity increased with TiO2 loading on the catalysts, with moderate conversion (20%) at high benzaldehyde selectivity (84%) achieved for 5% TiO2-MAGSNC. These findings pointed out a potential strategy for the valorization of lignocellulosic-based biomass under visible light irradiation using designer photocatalytic nanomaterials. PMID:28335221

  15. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-02-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  16. Improvement of Ultrasonic Disinfection Power Using TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Dadjour, Mahmoud Farshbaf; Ogino, Chiaki; Matsumura, Susumu; Nakamura, Shinichi; Shimizu, Nobuaki

    2005-03-01

    The disinfection power of an ultrasonic system was enhanced using TiO2-photocatalyst in the irradiating solutions. Cultures of Legionella were used in the irradiation system with and without TiO2. A significant decrease in the concentration of viable cells was observed during irradiation in the presence of TiO2. The rate of cell killing was higher in the presence of TiO2 than it was with Al2O3, and was proportional to the amount of TiO2 used in the irradiating samples. There was no significant effect of cell concentration on the rate of cell killing in the range of 103 to 107 CFU/ml. Addition of OH radical scavengers such as glutathione, ascorbic acid and histidine to the irradiating solutions reduced the rate of disinfection, thus indicating the primary role of OH radicals in this process.

  17. Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO(2) hybrid nanoparticles.

    PubMed

    Shahmoradi, Behzad; Ibrahim, Ibrahim A; Sakamoto, Naonori; Ananda, Sannaiah; Somashekar, Rudrappa; Row, Tagur N Guru; Byrappa, Kullaiah

    2010-08-01

    Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO(2) and modified neodymium doped TiO(2) hybrid nanoparticles. For the first time, surface modification of Nd(3 +) doped TiO(2) hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO(2) nanoparticles was more compared to pure TiO(2), which can be attributed to the doping and modification with n-butylamine.

  18. Fabrication and photovoltaic properties of heterostructured TiO2 nanowires.

    PubMed

    Noh, Suk-In; Park, Dong-Won; Shim, Hee-Sang; Ahn, Hyo-Jin

    2012-07-01

    One-dimensional heterostructured TiO2 nanowires were successfully fabricated by an electrospinning technique and modified by hydrolysis. We investigated their structure, morphology, chemical composition, and optical properties by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy. In the case of the photovoltaic performance, the short-circuit current density and cell efficiency of the DSSCs employing single TiO2 nanowires and heterostructured TiO2 nanowires improve from 6.90 to 11.38 mA/cm2 and from 2.56 to 4.29%, respectively. The results show that the photoconversion efficiency of the heterostructured TiO2 nanowires could be improved by more than approximately 67% compared to that of the single TiO2 nanowires because of the enhanced specific surface area that facilitates dye adsorption.

  19. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  20. Fundamental reactions in TiO 2 nanocrystallite aqueous solutions studied by pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Gao, Ruomei; Safrany, Agnes; Rabani, Joseph

    2002-12-01

    Reactions of the hydrated electron, H atoms, 2-propanol, and methanol radicals with the TiO 2 nano-particles have been studied either directly or by competition kinetics. The radicals were produced by radiolysis of 2-propanol, t-butanol, or methanol aqueous solutions in acid pH's. The reactions involve electron injection to the conduction band. As expected, the t-butanol radical is inert towards TiO 2 under our conditions, while the other reducing radicals react with TiO 2. The reactivity decreases in the order: e aq->H>CH 3COHCH 3>CH 2OH. Two TiO 2 nanocrystallite sizes, with average diameters of 1.0 and 4.7 nm were compared. For equal concentrations (in terms of TiO 2 molecules), the rate of electron injection shows relatively little dependency on particle size. The rates of interfacial electron transfer and transfer coefficient are also reported.

  1. Nb doping effect on TiO2-x films for bolometer applications

    NASA Astrophysics Data System (ADS)

    Shin, Young Bong; Kumar Reddy, Y. Ashok; Kang, In-Ku; Lee, Hee Chul

    2016-04-01

    Nb-doped TiO2-x thin films were deposited using a 1 at% niobium doped titanium target by RF reactive magnetron sputtering at various oxygen partial pressures (pO2). The films appeared amorphous in the pO2 range of 4.4-4.7% with resistivity ranging from 0.39 Ω cm to 2.48 Ω cm. Compared to pure TiO2-x films, the resistivity of the Nb-doped TiO2-x films did not change sensitively with the oxygen partial pressure, indicating that the resistivity of the films can be accurately controlled. 1/f noise parameter of Nb-doped TiO2-x films were found to decrease largely while the measured temperature coefficient of resistance (TCR) of the films was still high. The obtained results indicate that Nb-doped TiO2-x films have great potential as an alternative bolometric material.

  2. Effects of annealed temperature on the properties of TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Avesh

    2016-05-01

    In this work, the structural, morphological and electrical properties of TiO2 thin films are studied. The phase transformation of TiO2 from anatase to rutile is occurred at a certain temperature. This transformation increases defects concentration onthe surface of the film which acts as trapping sites for carriers, thereby affecting the Fermi level of TiO2 film.Quantitative estimation of Fermi level shifting is measured in terms of work function measurement using scanning Kelvin probe measurement. Work function of TiO2 was found to decrease with increasing annealed temperature indicating shifting of Fermi level towards conduction band. Position of Fermi level plays an important role in phase transformation and electronic properties of TiO2.

  3. Origin of photoactivity of oxygen-deficient TiO2 under visible light

    NASA Astrophysics Data System (ADS)

    Lo, Hsin-Hsi; Gopal, Neeruganti O.; Ke, Shyue-Chu

    2009-08-01

    As it is now well established that oxygen vacancies are spontaneously introduced during nitrogen doping of anatase TiO2, there is a lively debate on whether nitrogen dopant or oxygen vacancy contributes to the visible light photoactivity of the doped catalyst. We showed that the coordinately unsaturated Ti site is integral to the visible light photoactivity in anatase oxygen-deficient TiO2 catalyst. Accordingly, oxygen vacancies may contribute to the visible light photoactivities in N-doped TiO2 and other nonmetallic ion-doped TiO2 as well. A redox active visible light photocatalyst has been developed based on oxygen-deficient structure in anatase TiO2.

  4. Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun

    2015-02-01

    Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.

  5. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  6. Influence of annealing on optical and photovoltaic properties of nanostructured TiO2 films

    NASA Astrophysics Data System (ADS)

    Serikov, T. M.; Ibrayev, N. Kh; Smagulov, Zh Kh; Kuterbekov, К. А.

    2017-01-01

    Spectral and kinetic characteristics of the photoluminescence of TiO2 films obtained from TiO2 nanoparticles and nanotubes were studied. Luminescence spectra typical for the TiO2 with anatase structure were observed under UV excitation of the films. Heat treatment of the films at T=1273 K leads to a long-wavelength shift of the photoluminescence band with maximum at 850 nm, which corresponds to the rutile structure. The luminescence duration of rutile films is longer than the luminescence duration of the anatase films as for nanoparticles and for nanotubes. The photovoltaic properties of TiO2 films with different structures were investigated. It was established that anatase structured films have a higher photocurrent than the rutile structured film. By impedance spectroscopy method it was found that the electron transport resistance in the nanotube films is higher but the recombination rate is lower than in the TiO2 nanoparticle films.

  7. Shape transformation and relaxation dynamics of photoexcited TiO2/Ag nanocomposites.

    PubMed

    Kim, Mee Rahn; Ah, Chil Seong; Shin, Dongha; Lee, Sang Kyung; Lee, Wan In; Jang, Du-Jeon

    2008-06-01

    The laser-induced sintering of TiO2 nanoparticles into larger nanospheres is accelerated by adsorbed silver particles. For the same weight fraction of silver, silver nanoparticles of 5 nm in diameter modify TiO2 nanoparticles more effectively than those of 1.5 nm do, suggesting that the photocatalysis of TiO2 nanoparticles as well as their stability is highly dependent on the sizes, the shapes, and the distribution of adsorbed metal nanoparticles. The photoexcited electrons of TiO2 nanoparticles are quenched at trap sites and surface states by transfer to the conduction band of silver, implying that the presence of adsorbed silver nanoparticles enhances the photocatalytic effect of TiO2.

  8. Formaldehyde degradation by photocatalytic Ag-doped TiO2 film of glass fiber roving.

    PubMed

    Ubolchonlakate, Kornkanok; Sikong, Lek; Tontai, Tienchai

    2010-11-01

    The photocatalytic Ag doped TiO2 porous films were prepared by sol-gel method and dip coated on glass fiber roving. The sol composed of titanium (IV) isopropoxide, triethanolamine, ethanol and nitric acid followed by calcination of the film at 500 degrees C for 1 hour with a heating rate of 3 degrees C/min. The surface morphology and properties of synthesized TiO2 films were characterized by X-ray diffraction, atomic forced microscope and scanning electron microscope. A laboratory photocatalytic reactor was set up to carry out photoactivity of the prepared catalysts. The results show that TiO2-Ag and TiO2-Ag-TEA porous films give highest rate of formaldehyde gas degradation. It can be noted that triethanolamine exhibits two effects on TiO2 composite films; one is its effect on porous film structure and second is a reverse effect of hindrance of anatase growth.

  9. UV protection afforded by gel-trapped TiO2 particles.

    PubMed

    Sojka, Milan F; Cummins, Phillip G; Declercq, Lieve A G; Fthenakis, Christina G; Ionita-Manzatu, Mirela C; Lee, Wilson A; Maes, Daniel H; McKeever-Alfieri, Mary Ann; Najdek, Linda J; Pernodet, Nadine; Sente, Ilse M E; Teta, Lawrence P; Van Rillaer, Katrin; Yarosh, Daniel B; Giacomoni, Paolo U

    2011-07-01

    We have developed a technology to incorporate micronized titanium dioxide (TiO(2)), together with antioxidants, in particles of a UV-visible transparent polymer gel. These particles are coated with silica to avoid clustering and the size of the micronized TiO(2) reduces the back scattering of white light. gel-trapped TiO(2) minimizes the oxidative stress exerted by UV radiation, increases the photo-stability of some accompanying ingredients, such as avobenzone. The size of the particles is in the micrometre range. This favors their permanence on the top of the stratum corneum. Gel-trapped TiO(2)-based sunscreens provide a larger SPF and two-fold larger UVA protection than equal-composition sunscreens that contain larger amounts of untrapped TiO(2).

  10. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  11. The morphological characterizations of titanium dioxide (TiO2) via sol-gel method

    NASA Astrophysics Data System (ADS)

    Nordin, N. K. S.; Hashim, U.; Vijayakumaran, T.

    2017-03-01

    Titanium Dioxide (TiO2) has comes with many fascinating properties in environmental purification, photocatalytic activity and in sensor application. TiO2 is prepared by sol-gel method and been coated on the silicon oxide (SiO) and glasses for 1 layer, 3 layers, 5 layers and finally 7 layers to find the best layer for coating purpose. A few characterizations had been carried out such as Scanning Electron Microscope (SEM), Photoluminescence (PL) and Current-Voltage (I-V) measurement for TiO2. The I-V recorded for the presence of Interdigitated Electrode (IDE) is 2.46×10-10 at 1V increased from 2.24×10-10 without the coating of TiO2. TiO2 coated on IDE triggered more sensitive sensor compared to IDE without metal oxides coated.

  12. A study of bactericidal effect and optimization of pathogenic bacteria using TiO2 photocatalyst.

    PubMed

    Kim, Tae-Young; Park, Seung-Shik; Kim, Seung-Jai; Cho, Sung-Young

    2011-02-01

    The photocatalytic degradation of Salmonella choleraesuis subsp. and Vibrio parahaemolyticus in water by TiO2 catalysts was investigated in a batch reactor. After 30 min of irradiation with UV light in the presence of 1 mg/ml of TiO2, death ratio of S. choleraesuis subsp. and V. parahaemolyticus was 60% and 83%, respectively. And complete killing of the cells was achieved after 3 h of illumination in the presence of TiO2. We established the response surface methodology to investigate the effect of principal parameters on the pathogenic bacteria sterilization such as TiO2 concentration, pH and temperature. By applying response surface analysis to the bactericidal effect of S. almonella choleraesuis subsp. and V. parahaemolyticus, we found that the cell death ratio was influenced significantly by the first order term of TiO2 concentration.

  13. Surface properties and biocompatibility of nanostructured TiO2 film deposited by RF magnetron sputtering.

    PubMed

    Majeed, Asif; He, Jie; Jiao, Lingrui; Zhong, Xiaoxia; Sheng, Zhengming

    2015-01-01

    Nanostructured TiO2 films are deposited on a silicon substrate using 150-W power from the RF magnetron sputtering at working pressures of 3 to 5 Pa, with no substrate bias, and at 3 Pa with a substrate bias of -50 V. X-ray diffraction (XRD) analysis reveals that TiO2 films deposited on unbiased as well as biased substrates are all amorphous. Surface properties such as surface roughness and wettability of TiO2 films, grown in a plasma environment, under biased and unbiased substrate conditions are reported according to the said parameters of RF power and the working pressures. Primary rat osteoblasts (MC3T3-E1) cells have been cultured on nanostructured TiO2 films fabricated at different conditions of substrate bias and working pressures. The effects of roughness and hydrophilicity of nanostructured TiO2 films on cell density and cell spreading have been discussed.

  14. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Capone, S.; Siciliano, P.

    2012-03-01

    The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO2 polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO2 polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO2 thin film and the TiO2 nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10-4) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor Rg, a parallel RgbCgb block and a parallel Rc-CPEc combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in parallel connection with

  15. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors.

    PubMed

    Francioso, L; De Pascali, C; Capone, S; Siciliano, P

    2012-03-09

    The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO(2) polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO(2) polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO(2) thin film and the TiO(2) nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10(-4)) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor R(g), a parallel R(gb)C(gb) block and a parallel R(c)-CPE(c) combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in

  16. TiO2 crystal facet-dependent antimony adsorption and photocatalytic oxidation.

    PubMed

    Song, Jiaying; Yan, Li; Duan, Jinming; Jing, Chuanyong

    2017-02-24

    Anatase TiO2 crystal facets are garnering increasing attention due to their unique surface property. However, no specific linear relationship had been derived between the facet exposed on TiO2 and the surface adsorption capacity as well as photocatalytic performance. This study systematically explored the facet effects on antimony (Sb) adsorption and photocatalytic oxidation using high-index {201} and low-index {101}, {001}, and {100} TiO2. The results suggest that high-index {201} TiO2 exhibits the best Sb(III) adsorption and photocatalytic activity compared to the low-index TiO2. Both the Sb(III) adsorption density and the amount of OH and O2(-) generated in solution were correlated to the magnitude of surface energy on TiO2 facets. Photocatalytically generated OH and O2(-) were responsible for Sb(III) photooxidation as evidenced by radical-trapping experiments. The great contribution of OH was observed only on {201}, not on low-index TiO2. This phenomenon was found to be attributable to the high surface energy on {201}, which enables the generation of a large amount of photogeneration OH to compensate for the fast rate of OH dissipation. Therefore, the predominant participation of OH in Sb(III) photooxidation was only possible on high-index {201} TiO2, which resulted in an enhanced photocatalytic rate. On the other hand, O2(-) dominated the Sb(III) photocatalytic oxidation on low-index TiO2. The intrinsic facet-dependent adsorption and photocatalytic mechanism obtained from this study would be useful for developing TiO2-based environmental technologies.

  17. Synthesis and photo-degradation application of WO3/TiO2 hollow spheres.

    PubMed

    Lv, Kezhen; Li, Jie; Qing, Xiaoxia; Li, Wenzhang; Chen, Qiyuan

    2011-05-15

    A WO(3)/TiO(2) composite, hollow-sphere photocatalyst with average diameter of 320 nm and shell thickness of 50 nm was successfully prepared using a template method. UV-vis diffuse reflectance spectra illustrated that the main absorption edges of the WO(3)/TiO(2) hollow spheres were red-shifted compared to the TiO(2) hollow spheres, indicating an extension of light absorption into the visible region of the composite photocatalyst. The WO(3) and TiO(2) phases were confirmed by X-ray diffraction analysis. BET isotherms revealed that the specific surface area and average pore diameter of the hollow spheres were 40.95 m(2)/g and 19 nm, respectively. Photocatalytic experiments indicate that 78% MB was degraded by WO(3)/TiO(2) hollow spheres under visible light within 80 min. Under the same conditions, only 24% MB can be photodegraded by TiO(2). The photocatalytic mineralization of MB, catalyzed by TiO(2) and WO(3)/TiO(2), proceeded at a significantly higher rate under UV irradiation than that under visible light, and more significant was the increase in the apparent rate constant with the WO(3)/TiO(2) composite semiconductor material which was 3.2- and 3.5-fold higher than with the TiO(2) material under both UV and visible light irradiation. The increased photocatalytic activity of the coupled nanocomposites was attributed to photoelectron/hole separation efficiency and the extension of the wavelength range of photoexcitation.

  18. High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers.

    PubMed

    Wang, Bin; Karthikeyan, Rengasamy; Lu, Xiao-Ying; Xuan, Jin; Leung, Michael K H

    2013-12-15

    In this study, TiO2 nanorods were successfully immobilized on carbon fibers by a facile pyrolysis of natural cotton in nitrogen atmosphere followed by a one-pot hydrothermal method. Carbonized cotton fibers (CCFs) and TiO2-CCFs composites were characterized using field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffractometer (XRD), diffuse reflectance UV-vis spectroscopy (DRS) and photoluminescence (PL) spectroscopy. Results implied that the band gap narrowing of TiO2 was achieved after integration of CCFs. Dye adsorption isotherm indicated that the maximum dye adsorption capacity (qm) of CCFs-1000 (13.4 mg/g) was 2 times higher than that of cotton fibers and qm of TiO2-CCFs-1000 (9.0mg/g) was 6-7 times higher than that of TiO2 nanorods. Photocatalytic activity of TiO2 nanorods prepared with 3 mL Ti(OBu)4 showed the highest photocatalytic activity. TiO2-CCFs-1000 exhibited higher activity than TiO2 immobilized on CCFs-400, CCFs-600 and CCFs-800. Good photostability of TiO2-CCFs-1000 was found for dye degradation under visible light irradiation. The enhancement of photocatalytic dye degradation was due to the high adsorptivity of dye molecules, enhanced light adsorption and effective separation of electron-hole pairs. This work provides a low-cost and sustainable approach to immobilize nanostructured TiO2 on carbon fibers for environmental remediation.

  19. Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles

    NASA Astrophysics Data System (ADS)

    Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong

    2011-12-01

    Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.

  20. Monodisperse TiO2 Spheres with High Charge Density and Their Self-Assembly.

    PubMed

    Xia, Hongbo; Wu, Suli; Su, Xin; Zhang, Shufen

    2017-01-03

    Titanium dioxide (TiO2 ) spheres are potential candidates to fabricate three-dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near-infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self-assembly of TiO2 spheres, have been prepared by means of sol-gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ-potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2 O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self-assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.

  1. Morphology transformations in tetrabutyl titanate-acetic acid system and sub-micron/micron hierarchical TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Niu; Xie, Yanan; Sebo, Bobby; Liu, Yumin; Sun, Xiaohua; Peng, Tao; Sun, Weiwei; Bu, Chenghao; Guo, Shishang; Zhao, Xingzhong

    2013-11-01

    The concentration of tetrabutyl titanate (TBT) and H2O influence on the reaction kinetics of TBT and acetic acid (AcOH) solvothermal system are systematically studied. It is found that TBT and H2O have greatly accelerated the hydrolysis-condensation process of the TBT-AcOH system. By adjusting those concentrations with reaction time, we prepare five kinds of sub-micron/micron precursors, which are hierarchical structures consisting of different primary building blocks. The morphology of these precursors varies from noninterlaced structures composed of flower-like microsphere and ellipsoid sphere to interlaced structures composed of flower-like microsphere interlaced nanofibers, ellipsoid spheres interlaced flower-like microsphere and nanoparticles interlaced flower-like microsphere. These interlaced structures are synthesized for the first time and are not ordinary mixtures of the noninterlaced structures. After heat treatment, these precursors are transformed to anatase TiO2. Shape-dependent photovoltaic performances of dye-sensitized solar cells (DSSCs) are also discussed. DSSCs based on these hierarchical sub-micron/micron TiO2 show 7.3%-7.9% energy conversion efficiencies, and the devices based on interlaced structures have higher efficiencies (7.4%-7.9%) than those of the devices based on noninterlaced structures (7.3%-7.6%).

  2. Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer

    NASA Astrophysics Data System (ADS)

    Ranjitha, A.; Muthukumarasamy, N.; Thambidurai, M.; Velauthapillai, Dhayalan; Madhan Kumar, A.; Gasem, Zuhair M.

    2014-10-01

    Nanocrystalline Cd-doped TiO2 thin films have been prepared by sol-gel method. X-ray diffraction analysis reveals that TiO2 and Cd-doped TiO2 nanocrystalline thin films are of anatase phase. The average grain size of TiO2 and Cd-doped TiO2 nanocrystalline thin films was found to lie in the range of 15-18 nm. Solar cells have been fabricated with a device structure of ITO/Cd-doped TiO2/P3HT:PC71BM/MoO3/Al configuration. The power conversion efficiency of the inverted organic solar cell with Cd-doped TiO2 is 3.06% and is higher than that of TiO2 based organic solar cell (2.64%).

  3. Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method.

    PubMed

    Umadevi, M; Parimaladevi, R; Sangari, M

    2014-01-01

    Fluorine doped TiO2 were synthesized by solid state reaction method. Optical and structural properties of fluorine doped TiO2 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffusion reflectance spectroscopy and scanning electron microscopic techniques. The prepared fluorine doped TiO2 was smaller in size with respect to pure TiO2 and it is tetragonal in crystalline structure. Nanoflakes like structure of pure and fluorine doped TiO2 was confirmed from SEM image. Fluorine doped TiO2 shows smaller band gap, high strain and dislocation density when compared to pure TiO2. It also has higher photocatalytic activity with respect to pure TiO2.

  4. Dye-Sensitized Solar Cell with Photoanode Made with Polystyrene-Ball-Embedded TiO2 Pastes

    NASA Astrophysics Data System (ADS)

    Hsu, Yu-Ching; Wu, Tony Chang Chi; Cheng, I.-Chun; Chen, Jian-Zhang; Yang, Mu-Rong

    2011-06-01

    We report the effect of varying the concentration of polystyrene (PS) balls embedded in TiO2 paste during the fabrication of TiO2 photoanodes on the performance of dye-sensitized solar cells (DSSCs). We fabricated porous photoanodes using TiO2 pastes mixed with various concentrations of PS balls in aqueous solution. During the TiO2 sintering processes, the PS evaporated, leaving behind large cavities (>1 µm) in the photoanodes. These cavities enhance the scattering of light, leading to improved absorption of light by N3 dyes. DSSC efficiency increases with the increase in PS ball concentration during TiO2 fabrication. As with classical devices, TiCl4 treatment of TiO2 and the use of a compact TiO2 layer both improve the cell efficiency of DSSC devices with our large-cavity TiO2 photoanodes.

  5. Failure modes of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Zussman, E.; Rittel, D.; Yarin, A. L.

    2003-06-01

    Failure modes of electrospun polymer nanofibers are reported. The nanofibers have diameters in the range of 80-400 nm and lengths greater then several centimeters. The nanofibers fail by a multiple necking mechanism, sometimes followed by the development of a fibriliar structure. This phenomenon is attributed to a strong stretching of solidified nanofibers by the tapered accumulating wheel (electrostatic lens), if its rotation speed becomes too high. Necking has not been observed in the nanofibers collected on a grounded plate.

  6. Omnidirectional reflection from nanocolumnar TiO2 films

    NASA Astrophysics Data System (ADS)

    Leontyev, Viktor; Hawkeye, Matthew; Kovalenko, Andriy; Brett, Michael J.

    2012-10-01

    Anisotropic properties of columnar nanoporous thin films were utilized to design and fabricate interference mirrors with lossless omnidirectional reflection in the visible spectral range. Index graded columnar films with distributed Bragg reflector (DBR), sinusoidal, and Gaussian refractive index profiles were studied using finite-difference frequency-domain and finite-difference time-domain methods, with an emphasis on maximizing the omnidirectional reflection bandwidth. Titanium dioxide columnar films with sixteen period sinusoidal refractive index profile were fabricated using the glancing angle deposition technique and characterized by angle resolved transmittance measurements. Simulations and experimental measurements have shown the presence of the omnidirectional reflection band up to 5% wide for a film with a maximum refractive index nmax=2.3 and refractive index contrast Δn =0.8. Simulations further showed that with the optimal choice of the refractive index variation range, the omnidirectional reflection band can reach 10.5% width in TiO2 films with a sinusoidal index profile, 14.5% with a DBR index profile, and 12% with a Gaussian profile. Due to the optical anisotropy of the columnar films, the reflection bandwidth exceeded the corresponding value, observed in isotropic analogs, by a factor of three to four depending on the choice of the refractive index profile.

  7. The potential health challenges of TiO2 nanomaterials.

    PubMed

    Sha, Baoyong; Gao, Wei; Cui, Xingye; Wang, Lin; Xu, Feng

    2015-10-01

    Titanium dioxide (TiO2 ) nanomaterials (NMs) have found widespread applications owing to their attractive physical and chemical properties. As a result, the potential adverse impacts of nano-TiO2 exposure on humans have become a matter of concern. This review presents the state-of-the-art advances on the investigations of the adverse effects of NMs, including the potential exposure routes of nano-TiO2 (e.g. respiratory system, skin absorption and digestive system), the physico-chemical characterizations of nano-TiO2 (e.g. crystal structure, shape,size, zeta potential, treatment media, aggregation and agglomeration tendency, surface characteristics and coatings), risk evaluation of nanotoxicity (e.g. cytotoxicity, ecotoxicity, phototoxicity, and phytotoxicity) and potential mechanisms of adverse effects (e.g. generation of reactive oxygen species, oxidative stress and organelle dysfunction). The review aims to facilitate scientific assessments of health risks to nano-TiO2 , which would guide the safe applications of NMs in our daily life.

  8. New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues.

    PubMed

    Nesic, Jelena; Rtimi, Sami; Laub, Danièle; Roglic, Goran M; Pulgarin, Cesar; Kiwi, John

    2014-11-01

    This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NP's aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NP's. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study.

  9. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells.

    PubMed

    Nair, A Sreekumaran; Zhu, Peining; Babu, V Jagadeesh; Yang, Shengyuan; Krishnamoorthy, Thirumal; Murugan, Rajendiran; Peng, Shengjie; Ramakrishna, Seeram

    2012-04-17

    We report the use of highly porous, dense, and anisotropic TiO(2) derived from electrospun TiO(2)-SiO(2) nanostructures through titanate route in dye-sensitized solar cells. The titanate-derived TiO(2) of high surface areas exhibited superior photovoltaic parameters (efficiency > 7%) in comparison to the respective electrospun TiO(2) nanomaterials and commercially available P-25.

  10. A general templated method to homogeneous and composition-tunable hybrid TiO2 nanocomposite fibers.

    PubMed

    Xu, Ximing; Li, Xiaona; Lin, Pingyong; Chen, Ting; Yuan, Rusheng; Ding, Zhengxin; Wu, Ling; Wang, Xuxu; Li, Zhaohui

    2011-03-07

    Sequential impregnations of metal ions and titanium tetraisopropoxide (TTIP) into activated carbon fibers (ACF) followed by a solvothermal treatment has been found to be a general method in the preparations of homogeneous and composition-tunable hybrid TiO(2) hierarchical nanocomposite fibers like WO(3)/TiO(2), Fe(2)O(3)/TiO(2) and SnO(2)/TiO(2).

  11. In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation.

    PubMed

    Zhang, Yong-Gang; Ma, Li-Li; Li, Jia-Lin; Yu, Ying

    2007-09-01

    TiO2/Cu2O composite is prepared by a simple electrochemical method and coated on glass matrix through a spraying method. The obtained composite is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of TiO2/Cu2O composite films with different ratio of TiO2 and Cu2O on photodegradation of the dye methylene blue under visible light is investigated in detail. It is found that the photocatalytic activity of TiO2/Cu2O composite film with the presence of FeSO4 and EDTA is much higher than that for the similar system with only TiO2 and Cu2O film respectively. Without the presence of FeSO4 and EDTA, there is no degradation for methylene blue. The exploration of the optimized parameters for the degradation of methylene blue by using TiO2/Cu2O composite film as catalyst under visible light was also carried out. The most significant factor is the amount of Ti02 in the composite, and the second significant factor is the concentration of FeSO4. During the degradation of methylene blue under visible light, TiO2/Cu2O composite film generates H202, and Fenton regent is formed with Fe2+ and EDTA, which is detected in this study. The mechanism for the great improvement of photocatalytic activity of TiO2/Cu2O composite film under visible light is proposed by the valence band theory. Electrons excitated from TiO2/Cu2O composite under visible light are transferred from the conduction band of Cu2O to that of Ti02. The formed intermediate state of Ti 3+ ion is observed by X-ray photoelectron spectroscopy (XPS) on the TiO/Cu2O composite film. Additionally, the accumulated electrons in the conduction band of TiO2 are transferred to oxygen on the TiO2 surface for the formation of O2- or O2(2-), which combines with H+ to form H2O2. The evolved H202 with FeSO4 and EDTA forms Fenton reagentto degrade methylene blue. Compared to the traditional Fenton reagent, this new kind of in situ Fenton reagent generated from TiO2/Cu2O composite film does not need to supply H202. It is expected to be easily recycled, which may reduce second pollution and the cost of wastewater treatment. Moreover, this TiO/Cu2O composite film with FeSO4 and EDTA provides a new way to take advantage of TiO2 under visible light.

  12. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films.

    PubMed

    Mattsson, Andreas; Leideborg, Michael; Larsson, Karin; Westin, Gunnar; Osterlund, Lars

    2006-01-26

    Adsorption and solar light decomposition of acetone was studied on nanostructured anatase TiO2 and Nb-doped TiO2 films made by sol-gel methods (10 and 20 mol % NbO2.5). A detailed characterization of the film materials show that films contain only nanoparticles with the anatase modification with pentavalent Nb oxide dissolved into the anatase structure, which is interpreted as formation of substituted Nb=O clusters in the anatase lattice. The Nb-doped films displayed a slight yellow color and an enhanced the visible light absorption with a red-shift of the optical absorption edge from 394 nm for the pure TiO2 film to 411 nm for 20 mol % NbO2.5. In-situ Fourier transform infrared (FTIR) transmission spectroscopy shows that acetone adsorbs associatively with eta1-coordination to the surface cations on all films. On Nb-doped TiO2 films, the carbonyl bonding to the surface is stabilized, which is evidenced by a lowering of the nu(C=O) frequency by about 20 cm(-1) to 1672 cm(-1). Upon solar light illumination acetone is readily decomposed on TiO2, and stable surface coordinated intermediates are formed. The decomposition rate is an order of magnitude smaller on the Nb-doped films despite an enhanced visible light absorption in these materials. The quantum yield is determined to be 0.053, 0.004 and 0.002 for the pure, 10% Nb:TiO2, and 20%Nb:TiO2, respectively. Using an interplay between FTIR and DFT calculations we show that the key surface intermediates are bidentate bridged formate and carbonate, and H-bonded bicarbonate, respectively, whose concentration on the surface can be correlated with their heats of formation and bond strength to coordinatively unsaturated surface Ti and Nb atoms at the surface. The oxidation rate of these intermediates is substantially slower than the initial acetone decomposition rate, and limits the total oxidation rate at t>7 min on TiO2, while no decrease of the rate is observed on the Nb-doped films. The rate of degradation of key surface intermediates is different on pure TiO2 and Nb-doped TiO2, but cannot explain the overall lower total oxidation rate for the Nb-doped films. Instead the inferior photocatalytic activity in Nb-doped TiO2 is attributed to an enhanced electron-hole pair recombination rate due to Nb=O cluster and cation vacancy formation.

  13. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles

    PubMed Central

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B.

    2017-01-01

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO2 NPs in a concentration dependent manner: (i) directly, through TiO2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems. PMID:28303908

  14. Rubber sheet strewn with TiO2 particles: photocatalytic activity and recyclability.

    PubMed

    Sriwong, Chaval; Wongnawa, Sumpun; Patarapaiboolchai, Orasa

    2012-01-01

    A new method for the preparation of rubber sheet strewn with titanium dioxide particles (TiO2-strewn sheet) is presented. This simple and low cost method is based on the use of TiO2 powder (Degussa P25) being strewn onto the sheet made from rubber latex (60% HA) through a steel sieve. The characteristic of the TiO2-strewn sheet was studied by using scanning electron microscopy/energy dispersive X-ray spectrometer (SEM/EDS) and X-ray diffractometer (XRD) techniques. The photocatalytic activity of TiO2-strewn rubber sheet was evaluated using Indigo Carmine (IC) dye as a model for organic dye pollutant in water. The results showed that the TiO2-strewn sheet could degrade IC dye solution under UV light irradiation. The effects of pH, initial concentration, and the intensity of UV light on the photodegradation were also investigated. Kinetics of the photocatalytic degradation was of the first-order reaction. The used TiO2-strewn sheet can be recovered and reused. The recycling uses did not require any cleaning between successive uses and no decline in the photodegradation efficiency was observed compared with freshly prepared TiO2-strewn sheet.

  15. Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Mehdi, Ahmadi; Sajjad Rashidi, Dafeh; Hamed, Fatehy

    2016-04-01

    An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (R s) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.

  16. Preparation of Amine-Functionalized TiO2/Carbon Photocatalyst by Arc Discharge in Liquid

    NASA Astrophysics Data System (ADS)

    Arikawati, Erlina; Pranoto; Endah Saraswati, Teguh

    2017-02-01

    Amine-functionalized titanium dioxide/carbon (TiO2/C) was prepared via the arc discharge method using graphite electrodes and a liquid medium consisting of 50% ethanol with the addition of urea. The arc discharge was conducted using a voltage of 20 to 40 V. X-ray diffraction (XRD) of prepared TiO2/C showed a pattern of definitive peaks at 25.32°, 26.61°, and 36.14°, which are the main characteristic peaks of TiO2, C graphite, and titanium carbide, respectively. The successful surface modification of TiO2/C synthesized in liquid ethanol/urea resulted in better dispersion of nanoparticles in water than TiO2/C synthesized in ethanol only. This surface characteristic was also confirmed via Fourier transform infrared (FTIR) spectra of TiO2/C synthesized in liquid ethanol/urea, which revealed C=O, C–N, C–O, and N–H stretching vibrations at 1600–1700, 1400–1100, 1200–1300, and 3300–3400 cm‑1, respectively. Scanning electron microscopy (SEM) analysis showed that the nanocomposite had a spherical morphology. Transmission electron microscopy (TEM) analysis found that the structure of the nanocomposite was carbon coated with TiO2.

  17. Density functional theory study of dopants in polycrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Körner, Wolfgang; Elsässer, Christian

    2011-05-01

    We present a density functional theory (DFT) study of doped rutile and anatase TiO2 in which we investigate the impact of grain boundaries on the physics of atomic defects. The main goal is to obtain information about the positions of the defect levels generated by an oxygen vacancy, a titanium interstitial, cation dopants Nb, Al, and Ga, and an anion dopant N in the electronic band gap having in mind the application of TiO2 as a transparent conducting oxide (TCO) or its use in heterogeneous catalysis. Due to the known deficiency of the local density approximation (LDA) of DFT to yield accurate values for band gap energies for insulators such as TiO2, a self-interaction correction (SIC) to the LDA is employed. The main result of our study is that grain boundaries do affect the defect formation energies as well as the position and shape of the dopant-induced electronic energy levels significantly with respect to the single crystal. According to our study Nb doping may lead to n-conducting TiO2 whereas doping with N, Al, or Ga is not promising in order to achieve p-conducting TiO2. Furthermore an increase in the photoconductivity of TiO2:N and the colorlessness of TiO2:Al may be explained by our results.

  18. Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method.

    PubMed

    Mohan, Rajneesh; Drbohlavova, Jana; Hubalek, Jaromir

    2013-12-01

    A biphasic solvothermal reaction method has been used for the synthesis of TiO2 nanoparticles (NPs). In this method, hydrolysis and nucleation occur at the interface of organic phase (titanium (IV) n-propoxide and stearic acid dissolved in toluene) and water phase (tert-butylamine dissolved in water) resulting in the nucleation of the stearic acid-capped TiO2 NPs. These NPs are hydrophilic due to hydrophobic stearic acid ligands and could be dispersed in toluene, but not in water. These stearic acid-capped TiO2 NPs were surface-modified with 2,3-dimercaptosuccinic acid (DMSA) in order to make them water soluble. The resultant TiO2 NPs were easily redispersed in water without any noticeable aggregation. The Rietveld profile fitting of X-ray diffraction (XRD) pattern of the TiO2 NPs revealed highly crystalline anatase structure. The average crystallite size of TiO2 NPs was calculated to be 6.89 nm, which agrees with TEM results. These results have important implications for the use of TiO2 in biomedical, environmental, and industrial applications.

  19. Bifunctional bridging linker-assisted synthesis and characterization of TiO2/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Žunič, Vojka; Kurtjak, Mario; Suvorov, Danilo

    2016-11-01

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO2) nanoparticles were coupled with the Au nanoparticles to form TiO2/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO2, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO2/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO2. The TiO2/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO2 nanopowders.

  20. Dense and high-hydrophobic rutile TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Peng, X.; Chen, A.

    2005-02-01

    Dense and well-oriented rutile TiO2 nanorod arrays were synthesized on a titanium substrate using the organic compound dibutyltin dilaurate as the oxygen source in the oxidation of Ti at 850 °C. The influence of temperature on the nanostructured TiO2 formation and the effect of the TiO2 structures on their wettability were also investigated. Polycrystalline TiO2 grains were formed at 800 °C; in contrast, TiO2 micro-whiskers were grown on the Ti substrate at 900 °C. The measurement of the water contact angle shows that the wetting property of the TiO2 films strongly depends on their surface structure. The surface of the dense well-oriented nanorod arrays is highly hydrophobic with a water contact angle of 130 °C. This study has demonstrated that the direct oxidation of Ti substrate using an organic oxygen source is a promising method for fabrication of large scale, uniform and well-aligned TiO2 nanorod arrays on titanium substrates.

  1. Cr2O3 nanoparticles modified TiO2 nanotubes for enhancing visible photoelectrochemical performance.

    PubMed

    Zhang, Fen; Jin, Tao; Zeng, Rongchang; Cui, Hongzhi; Song, Liang

    2014-09-01

    TiO2 nanotube arrays modified by nanoparticles Cr2O3 with high sensibility in the visible spectrum were prepared by annealing the anodic TiO2 nanotube arrays pre-loaded with Cr(NO3)3 solution which was uniformly clung to the TiO2 nanotube arrays. The influence of the dipping time on the microstructure of the Cr2O3/TiO2-nanotubes was investigated. The microstructure and the elemental analysis were characterized by scanning electron microscope (SEM) and Energy dispersive X-ray (EDX). The photoelectrochemical performances of the as-prepared composite nanotubes were determined by measuring the photogenerated current and voltage under illumination of ultraviolet-visible (UV-vis)/visible light. The TiO2 nanotube arrays modified by Cr2O3 showed higher photocurrent values than those of unmodified TiO2 nanotube arrays. The enhanced photoelectrochemical behaviors can be attributed to the modified Cr2O3 which increases the probability of charge-carrier separation and extends the range of the TiO2 photoresponse from UV to visible region due to the low band gap of 2.3 eV of Cr2O3.

  2. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity.

    PubMed

    Wu, Xiaofeng; Fang, Shun; Zheng, Yang; Sun, Jie; Lv, Kangle

    2016-02-01

    Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S) modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R) from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B) and Rhodamine B (RhB) dyes under visible light irradiation (λ > 420 nm). The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity.

  3. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio).

    PubMed

    Sheng, Lei; Wang, Ling; Su, Mingyu; Zhao, Xiaoyang; Hu, Renping; Yu, Xiaohong; Hong, Jie; Liu, Dong; Xu, Bingqing; Zhu, Yunting; Wang, Han; Hong, Fashui

    2016-02-01

    Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior-related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C-fos, C-jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs.

  4. Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size-Reactivity Correlation.

    PubMed

    Zheng, Jing; Liu, Lei; Ji, Guangbin; Yang, Qifan; Zheng, Lirong; Zhang, Jing

    2016-08-10

    An improved hydrogenation strategy for controllable synthesis of oxygen-deficient anatase TiO2 (H-TiO2) is performed via adjusting the particle size of starting rectangular anatase TiO2 nanosheets from 90 to 30 nm. The morphology and structure characterizations obviously demonstrate that the starting materials of TiO2 nanosheets are transformed into nanoparticles with distinct size reduction; meanwhile, the concentration of oxygen vacancy is gradually increased with the decreasing particle size of starting TiO2. As a result, the Li-storage performance of H-TiO2 is not only much better than that of the pure TiO2 but also elevated stage by stage with the decreasing particle size of starting TiO2; especially the H-TiO2 with highest concentration of oxygen vacancy from smallest TiO2 nanosheets shows the best Li-storage performance with a stable discharge capacity 266 mAh g(-1) after 100 cycles at 1 C. Such excellent performance should be attributed to the joint action from oxygen vacancy and size effect, which promises significant enhancement of high electronic conductivity without weakening Li(+) diffusion via hydrogenation strategy.

  5. Fast diffusion of silver in TiO2 nanotube arrays.

    PubMed

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui; Liang, Wei; Yang, Fuqian

    2016-01-01

    Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10(-18) m(2)/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag.

  6. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells.

    PubMed

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml(-1)) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  7. Air detoxification with nanosize TiO2 aerosol tested on mice.

    PubMed

    Besov, A S; Krivova, N A; Vorontsov, A V; Zaeva, O B; Kozlov, D V; Vorozhtsov, A B; Parmon, V N; Sakovich, G V; Komarov, V F; Smirniotis, P G; Eisenreich, N

    2010-01-15

    A method for fast air purification using high concentration aerosol of TiO(2) nanoparticles is evaluated in a model chemical catastrophe involving toxic vapors of diisopropyl fluorophosphate (DFP). Mice are used as human model in a closed 100 dm(3) chamber. Exposure of mice to 37 ppm of DFP vapor for 15 min resulted in acute poisoning. Spraying TiO(2) aerosol in 2 min after the start of exposure to DFP vapors resulted in quick removal of DFP vapors from the chamber's air. Animals did not show signs of poisoning after the decontamination experiment and exposure to TiO(2) aerosol alone. Reactive oxygen species (ROS) and antioxidant activity (AOA) of mice blood plasma were measured for animals exposed to sound of aerosol generator, DFP vapors, TiO(2) aerosol and DFP vapors+TiO(2) aerosol. Reduced ROS and increased AOA were found for mice exposure to sound, DFP and TiO(2) aerosol. Exposure to DFP and decontamination with TiO(2) nanoparticles resulted in decreased AOA in 48 h following the exposure. The results suggest that application of TiO(2) aerosol is a powerful method of air purification from toxic hydrolysable compounds with moderate health aftermaths and requires further study and optimization.

  8. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    PubMed

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells.

  9. Organic photovoltaic devices with colloidal TiO2 nanorods as key functional components.

    PubMed

    Loiudice, Anna; Rizzo, Aurora; De Marco, Luisa; Belviso, Maria R; Caputo, Gianvito; Cozzoli, P Davide; Gigli, Giuseppe

    2012-03-21

    We report on a novel approach to integrate colloidal anatase TiO(2) nanorods as key functional components into polymer bulk heterojunction (BHJ) photovoltaic devices by means of mild, all-solution-based processing techniques. The successful integration of colloidal nanoparticles in organic solar cells relies on the ability to remove the long chain insulating ligands, which indeed severely reduces the charge transport. To this aim we have exploited the concomitant mechanisms of UV-light-driven photocatalytic removal of adsorbed capping ligands and hydrophilicization of TiO(2) surfaces in both solid-state and liquid-phase conditions. We have demonstrated the successful integration of the UV-irradiated films and colloidal solutions of TiO(2) nanorods in inverted and conventional solar cell geometries, respectively. The inverted devices show a power conversion efficiency of 2.3% that is a ca. three times improvement over their corresponding cell counterparts incorporating untreated TiO(2), demonstrating the excellent electron-collecting property of the UV-irradiated TiO(2) films. The integration of UV-treated TiO(2) solutions in conventional devices results in doubled power conversion efficiency for the thinner active layer and in maximum power conversion efficiency of 2.8% for 110 nm thick devices. In addition, we have demonstrated, with the support of device characterizations and optical simulations, that the TiO(2) nanocrystal buffer layer acts both as electron-transporting/hole-blocking material and optical spacer.

  10. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.

    PubMed

    Shao, Wei; Gu, Feng; Li, Chunzhong; Lu, Mengkai

    2010-06-21

    Uniform mesoporous TiO(2) nanospheres were successfully developed via an interfacial confined formation process for application in dye-sensitized solar cells. The mesoporous spherical structures greatly promote the dye-loading capacity, electron transfer, and light scattering, resulting in remarkable enhancement of the cell performance. The designed interfacial platform caused a reaction-limited aggregation of the TiO(2) nanocrystals, resulting in the formation of mesoporous spherical nanostructures with sphere diameter of 216 nm and pore size of 8 nm. The oriented attachment of adjacent TiO(2) nanocrystals facilitated the electron transfer process when the mesoporous TiO(2) nanospheres were used as electrode films. The dye coverage was enhanced remarkably in the mesoporous spherical TiO(2) samples. Owing to the enhanced light-harvesting efficiency, solar conversion efficiency was enhanced about 30% for the dye-sensitized solar cell (DSSC) based on mesoporous spherical TiO(2) in comparison with that made by commercial TiO(2) nanoparticles.

  11. Structural and optical properties of electrohydrodynamically atomized TiO2 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Choi, Kyung-Hyun; Duraisamy, Navaneethan; Muhammad, Nauman Malik; Kim, Inyoung; Choi, Hyunseok; Jo, Jeongdai

    2012-06-01

    In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti-O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current-voltage ( I- V) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.

  12. Light-induced antifungal activity of TiO 2 nanoparticles/ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-09-01

    Antifungal activity of TiO2/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO2/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO2 (anatase and rutile) and ZnO. TiO2/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  13. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    NASA Astrophysics Data System (ADS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-11-01

    In this study, we have synthesized C60 and C70-modified TiO2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C60 and C70 derivatives) can act as sinks for photogenerated electrons in TiO2, while the fullerene/TiO2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO2 NWs, the modified TiO2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO2 which expand the utilization of solar light from UV to visible light. The results reveal that the C70/TiO2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO2, the electron only devices and photoelectrochemical cells based on fullerenes/TiO2 are also fabricated and evaluated.

  14. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y

    NASA Astrophysics Data System (ADS)

    Guesh, Kiros; Márquez-Álvarez, Carlos; Chebude, Yonas; Díaz, Isabel

    2016-08-01

    Zeolite Y was treated using ammonium acetate and ammonium fluoride sequentially. As a consequence the aluminum from the surface was selectively removed. Then, loading with TiO2 (20 wt%) led to a final photocatalyst. The samples were characterized by X-ray diffraction (XRD), elemental analysis (ICP-OES), N2 adsorption, diffuse reflectance UV-vis spectroscopy (DRS), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). It was found that 50% of the Al atoms were removed from the surface of the zeolite without affecting the framework structure. The TiO2/treated zeolite sample yielded 92% photocatalytic degradation of 10 ppm methyl orange (MO), a model pollutant, while the TiO2/parent zeolite converted only 7.6%. The mass normalized turnover rate (TORm) of the treated zeolite loaded with TiO2 was about 12 times higher than that of the parent zeolite loaded with the same amount of TiO2 precursor. This higher photocatalytic activity of the TiO2 supported on treated zeolite can be attributed to a more efficient interaction of the TiO2 with the zeolite leading to higher adsorption capacity. Reusability of the photocatalysts was assessed by performing three consecutive reaction cycles that showed no significant loss of photocatalytic activity.

  15. Biogenesis of TiO2 nanoparticles using endophytic Bacillus cereus

    NASA Astrophysics Data System (ADS)

    Sunkar, Swetha; Nachiyar, C. Valli; Lerensha, Rashmi; Renugadevi, K.

    2014-11-01

    Synthesis of nanoparticles has attracted a lot of attention due to their unusual optical, photoelectrochemical, and electronic properties. Semi conductor TiO2 nanoparticles are known to be effective UV absorbers or photocatalysts, thereby making them important in environmental purification. The present study reports a simple, green, and easily reproducible method for the synthesis of TiO2 NPs using the endophytic bacteria Bacillus cereus under ambient conditions. The synthesized TiO2 NPs were characterized for their size, shape, and crystalline nature using various instrumental analyses. Anatase TiO2 NPs were formed whose size was in the range of 69-140 nm which was confirmed further by XRD analysis. The surface topology was studied by AFM analysis, and the SEM micrographs displayed the 2D images of the TiO2 NPs. EDX analysis was performed to confirm the presence of the elements in the sample. Phytotoxic analysis of these nanoparticles was carried out, and it was found that germination rate was not affected but there is a decrease in the length of the roots by around 40 %. But these TiO2 nanoparticles did not show significant cytotoxicity in normal cells (Vero) compared to cancer cells (Hep2). This study offers a feasible and ecofriendly alternative to the existing syntheses methods and suggests a plausible means for the large-scale production of TiO2 NPs.

  16. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  17. Enhanced photocatalytic activity in anodized WO3-loaded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Golestani-Fard, F.; Bayati, R.; Eftekhari-Yekta, B.

    2015-04-01

    In this work, TiO2 and WO3-grafted TiO2 nanotubes were grown via anodizing of titanium substrates in tungstate containing electrolytes. The samples were characterized in detail by XRD, XPS, SEM, EDX, and UV-Vis spectrophotometry techniques. Besides, photocatalytic characteristics were evaluated through measuring the degradation rate of 4-chlorophenol to establish a correlation between structure and photochemical properties. We were able to control morphology and growth mode of nanotubes from a tubular to a worm-like structure by changing the electrolyte composition. The samples possessed an anatase-rutile matrix where the anatase/rutile ratio was found to increase with the concentration of tungstate in the electrolyte. We attributed this observation to change in electrical conductivity of the electrolyte and the heat generated on the substrates. It was unambiguously revealed that a composite of WO3 and TiO2 forms and, in parallel, tungsten is doped into the crystalline lattice of TiO2. The maximum photocatalytic reaction rate constant for TiO2 and WO3-TiO2 samples was determined to be 0.0131 and 0.0174 min-1 respectively. The grafting TiO2 nanotubes with WO3 enhances the photocatalytic activity mainly due to the hindrance of charge carrier recombination and the formation of a more acidic surface. We established a correlation between structure, stoichiometry, and photocatalytic characteristics of nanotubes.

  18. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-02-01

    Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays.

  19. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.

    PubMed

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-03-07

    Novel nanocomposite films, based on graphene oxide (GO) and TiO(2) nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO(2) nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO(2) nanotube composite electrode compared with pristine TiO(2) nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO(2) nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO(2) nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO(2) nanotube arrays.

  20. Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties.

    PubMed

    Yu, Dong-Hui; Yu, Xiaodan; Wang, Changhua; Liu, Xian-Chun; Xing, Yan

    2012-05-01

    In this paper, TiO(2)/Ag sponge-like nanostructure composites have been prepared by the surface sol-gel method with the template of natural cellulose, which is relatively simple, low-cost, and environmentally friendly. The Ag nanoparticles are deposited on the TiO(2) nanosponges through UV irradiation photoreduction of silver nitrate solutions. The physicochemical properties of as-prepared composites are characterized by XRD, BET, SEM, TEM, XPS and UV-vis DRS techniques. The UV-light photocatalytic activities of the composites are evaluated through the photodegradation of two model organic molecules including RhB and salicylic acid. The experimental results show that the photocatalytic activities of TiO(2)/Ag nanosponge composites are superior to that of P25, pure TiO(2) nanoparticle aggregates synthesized by the hydrothermal method and pure TiO(2) nanosponge. The superior activities of TiO(2)/Ag nanosponge composite photocatalysts can be attributed to the unique nanosponge morphology, uniform dispersion of Ag nanoparticles, and strong interaction between Ag and TiO(2) nanosponges.

  1. Fast diffusion of silver in TiO2 nanotube arrays

    PubMed Central

    Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui

    2016-01-01

    Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630

  2. Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Pakdel, Esfandiar; Daoud, Walid A.; Wang, Xungai

    2013-06-01

    Wool fabrics were functionalised using TiO2 and TiO2/SiO2 nanocomposites through a low-temperature sol-gel method. Titanium terta isopropoxide (TTIP) and tetra ethylorthosilicate (TEOS) were employed as precursors of TiO2 and SiO2, respectively. Nanocomposite sols were devised based on three molar ratio percentages of TiO2/SiO2 70:30, 50:50, and 30:70 to investigate the role of each component. The self-cleaning and hydrophilicity of wool fabrics were analysed based on the removal of coffee stain under UV and water droplet contact angle measurements, respectively. It was observed that applying TiO2/SiO2 50:50 and 30:70 sols to wool rendered the fabric superhydrophilic. Fabrics functionalised with TiO2/SiO2 30:70 showed the highest efficiency in stain removal, followed by samples functionalised with TiO2/SiO2 50:50.

  3. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  4. Super-long aligned TiO2/carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Hu, Yue; Li, Yan; Zhang, Han; Zhang, Shaowen; Qu, Liangti; Shi, Gaoquan; Dai, Liming

    2010-12-01

    5 mm long aligned titanium oxide/carbon nanotube (TiO2/CNT) coaxial nanowire arrays have been prepared by electrochemically coating the constituent CNTs with a uniform layer of highly crystalline anatase TiO2 nanoparticles. While the presence of the TiO2 coating was confirmed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and x-ray diffraction, the resultant TiO2/CNT coaxial arrays were demonstrated to exhibit minimized recombination of photoinduced electron-hole pairs and fast electron transfer from the long TiO2/CNT arrays to external circuits. This, in conjunction with the aligned macrostructure, facilitates the fabrication of TiO2/CNT arrays for various device applications, ranging from photodetectors to photocatalytic systems. Thus, the millimeter long TiO2/CNT arrays represent a significant advance in the development of new macroscopic photoelectronic nanomaterials attractive for a variety of device applications beyond those demonstrated in this study.

  5. Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method

    NASA Astrophysics Data System (ADS)

    Mohan, Rajneesh; Drbohlavova, Jana; Hubalek, Jaromir

    2013-12-01

    A biphasic solvothermal reaction method has been used for the synthesis of TiO2 nanoparticles (NPs). In this method, hydrolysis and nucleation occur at the interface of organic phase (titanium (IV) n-propoxide and stearic acid dissolved in toluene) and water phase ( tert-butylamine dissolved in water) resulting in the nucleation of the stearic acid-capped TiO2 NPs. These NPs are hydrophilic due to hydrophobic stearic acid ligands and could be dispersed in toluene, but not in water. These stearic acid-capped TiO2 NPs were surface-modified with 2,3-dimercaptosuccinic acid (DMSA) in order to make them water soluble. The resultant TiO2 NPs were easily redispersed in water without any noticeable aggregation. The Rietveld profile fitting of X-ray diffraction (XRD) pattern of the TiO2 NPs revealed highly crystalline anatase structure. The average crystallite size of TiO2 NPs was calculated to be 6.89 nm, which agrees with TEM results. These results have important implications for the use of TiO2 in biomedical, environmental, and industrial applications.

  6. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  7. Effects of TiO2 content on the microstructure, mechanical properties and photocatalytic activity of three dimensional TiO2-Graphene composite prepared by hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Shi, Xiangru; Chen, Jian; Wang, Wenxiu; Wang, Zengmei; Zhang, Yao; Guo, Xinli

    2016-07-01

    A series of three dimensional (3D) porous TiO2-graphene (TGR) hydrogel samples with different mass ratio of graphene to TiO2 were obtained using a one-step hydrothermal method. Their microstructure, mechanical properties, and photocatalytic activity were investigated. The TGR samples exhibited well defined interconnected 3D porous network microstructure and good mechanical strength. Moreover, the pore size and the compressive strength could be easily adjusted by changing the content of TiO2, showing a decreasing tendency with the increase of the relative content of TiO2. The results of the photodegradation of methylene blue indicated that the photocatalytic activity of the TGR samples can be significantly enhanced, compared to the pure TiO2 nanoparticles. The TGR sample also showed good durability and reusability. The mechanisms resulting in the improvement of photocatalytic activity were investigated with DRS, PL spectra, and adsorption experiment under dark conditions. It was found that adsorption is the dominant factor for the enhanced photocatalytic activity.

  8. Layered TiO2: PVK nano-composite thin films for photovoltaic applications. TiO2: PVK nano-composite thin films.

    PubMed

    Kaune, G; Wang, W; Metwalli, E; Ruderer, M; Rossner, R; Roth, S V; Müller-Buschbaum, P

    2008-01-01

    The influence of the solvent used for spin-coating on the homogeneity of poly(N-vinylcarbazole) (PVK) films is investigated. Homogenous films are obtained only by the use of toluene, solution in tetrahydrofuran (THF) and chloroform results in radially oriented inhomogeneities and films prepared by use of N-methylpyrrolidone and dimethylacetamide show particle formation during spin-coating. Layered nano-composite thin films are prepared by spin-coating a PVK film on top of a nano-structured titanium dioxide ( TiO2) layer. The TiO2 thin films are prepared by a sol-gel process using an amphiphilic copolymer as structure-directing agent. Structural characterisation of the TiO2 :PVK nano-composite films is done by field emission scanning electron microscopy (FESEM) and grazing-incidence small-angle scattering (GISAXS). Bare TiO2 films are probed for comparison. Light is basically only absorbed in the ultraviolet regime and absorption slightly increases upon addition of PVK, which makes the layered TiO2 :PVK nano-composite thin films good candidates for UV photovoltaic devices. Furthermore, absorption remains stable over a period of several days.

  9. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  10. Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles.

    PubMed

    Safajou, Hamed; Khojasteh, Hossein; Salavati-Niasari, Masoud; Mortazavi-Derazkola, Sobhan

    2017-07-15

    In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.

  11. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity.

    PubMed

    Tan, Huaqiao; Zhao, Zhao; Niu, Mang; Mao, Chengyu; Cao, Dapeng; Cheng, Daojian; Feng, Pingyun; Sun, Zaicheng

    2014-09-07

    Colored TiO2 has attracted enormous attention due to its visible light absorption and excellent photocatalytic activity. In this report, we develop a simple and facile solid-state chemical reduction approach for a large-scale production of colored TiO2 at mild temperature (300-350 °C). The obtained sample possesses a crystalline core/amorphous shell structure (TiO2@TiO2-x). The oxygen vacancy results in the formation of a disordered TiO2-x shell on the surface of TiO2 nanocrystals. XPS and theoretical calculation results indicate that valence band tail and vacancy band below the conduction band minimum appear for the TiO2-x, which implies that the TiO2@TiO2-x nanocrystal has a narrow band gap and therefore leads to a broad visible light absorption. Oxygen vacancy in a proper concentration promotes the charge separation of photogenerated carriers, which improves the photocatalytic activity of TiO2@TiO2-x nanocrystals. This facile and general method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven H2 production.

  12. Structural and optoelectronic characterization of TiO2 films prepared using the sol gel technique

    NASA Astrophysics Data System (ADS)

    Jiménez González, A. E.; Gelover Santiago, S.

    2007-07-01

    TiO2 is a versatile material that makes for fascinating study in any of its several physical forms: monocrystal, polycrystal, powder or thin film. Its enhanced photosensitivity to UV radiation and excellent chemical stability in acidic and aqueous media point to its excellent potential for use in a variety of applications, such as solar cells, electronic devices, chemical sensors and photocatalysts. Of late, thin films of TiO2 have permitted the study of physical and chemical properties that are almost impossible to examine in powders. Using the sol-gel technique, it was possible to prepare TiO2 films, and to specifically modify their characteristic properties by means of annealing treatments. Optical measurements carried out on sol-gel derived films produced results similar to those found in films prepared using the sputtering technique. The use of TiO2 films facilitates the study of the behaviour of crystalline structure, grain size, photoresponse, electrical conductivity in both darkness and light and energy band gap (Eg) as a function of treatment temperature. For the first time, it has been demonstrated that the photoconductivity of TiO2 becomes apparent at a treatment temperature of 350 °C, which means that below this temperature the material is not photosensitive. The photosensitivity (S) of TiO2 films prepared by the sol-gel technique reaches values between 100 and 104, surpassing by more than two orders of magnitude the photosensitivity of TiO2 in powder form. In addition, it was possible to study the surface crystalline structure, where TEM studies clearly revealed both the polycrystalline order and the atomic arrangements of the TiO2 films. Our findings will afford us an opportunity to better study the nature of TiO2 and to enhance its performance with respect to the above-mentioned applications.

  13. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

    PubMed

    Sun, Hang; Zeng, Shan; He, Qinrong; She, Ping; Xu, Kongliang; Liu, Zhenning

    2017-03-21

    A facile approach for the preparation of spiky TiO2/Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2/AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2/AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2/Au nanosphere photocatalysts, the spiky TiO2/AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2/AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2/AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

  14. Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy.

    PubMed

    Qu, Qiyun; Geng, Hongwei; Peng, Ruixiang; Cui, Qi; Gu, Xiaohong; Li, Fanqing; Wang, Mingtai

    2010-06-15

    This paper presents a solvothermal strategy for chemical modification of TiO(2) nanoparticles with carboxylic acids. Solvothermal reaction between the TiO(2) nanoparticles and carboxylic acid molecules in an autoclave at 100 degrees C provides carboxylic acid-modified TiO(2) particles with a modification efficiency much higher than the conventional immersion method. TiO(2) nanoparticles were prepared by hydrolysis of titanium isopropoxide in nitric acid solution; the modified nanoparticles were characterized by powder X-ray diffraction pattern, scanning electron microscopy, absorption and Fourier transform infrared spectra, and thermogravimetric analysis. Results show that the binding form of the modifier molecules on TiO(2) surface is in a bidentate chelating mode, the crystalline phase composition and morphological structure of the preformed TiO(2) nanoparticles are not affected by the solvothermal reaction, and the surface coverage of the modifier molecules can be adjusted by the weight ratio of modifier/TiO(2) during feeding. It is evident that the reaction processes in the solvothermal strategy involve the formation of double hydrogen bondings between carboxylic acid molecule and TiO(2) at the same Ti site and the coordination at solvothermal temperature by dehydration from the hydrogen bondings. The solvothermal strategy for modifying TiO(2) nanoparticles is expected to find potential applications in many fields; for example, our results demonstrate that the photovoltaic performance of the TiO(2) nanoparticles can be improved by the solvothermal modification even with an insulating modifier and controlled by the modifier coverage.

  15. Biocompatibility of different nanostructured TiO2 scaffolds and their potential for urologic applications.

    PubMed

    Imani, Roghayeh; Pazoki, Meysam; Zupančič, Daša; Kreft, Mateja Erdani; Kralj-Iglič, Veronika; Veranič, Peter; Iglič, Aleš

    2016-11-01

    Despite great efforts in tissue engineering of the ureter, urinary bladder, and urethra, further research is needed in order to improve the patient's quality of life and minimize the economic burden of different lower urinary tract disorders. The nanostructured titanium dioxide (TiO2) scaffolds have a wide range of clinical applications and are already widely used in orthopedic or dental medicine. The current study was conducted to synthesize TiO2 nanotubes by the anodization method and TiO2 nanowires and nanospheres by the chemical vapor deposition method. These scaffolds were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. In order to test the urologic applicability of generated TiO2 scaffolds, we seeded the normal porcine urothelial (NPU) cells on TiO2 nanotubes, TiO2 nanowires, TiO2 nanospheres, and on the standard porous membrane. The viability and growth of the cells were monitored everyday, and after 3 weeks of culturing, the analysis with scanning electron microscope (SEM) was performed. Our results showed that the NPU cells were attached on all scaffolds; they were viable and formed a multilayered epithelium, i.e., urothelium. The apical plasma membrane of the majority of superficial NPU cells, grown on all three different TiO2 scaffolds and on the porous membrane, exhibited microvilli; thus, indicating that they were at a similar differentiation stage. The maximal caliper diameter measurements of superficial NPU cells revealed significant alterations, with the largest cells being observed on nanowires and the smallest ones on the porous membrane. Our findings indicate that different nanostructured TiO2 scaffolds, especially nanowires, have a great potential for tissue engineering and should be further investigated for various urologic applications.

  16. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  17. Synergistic effects of F and Fe in co-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Shen, Huiyuan; Liu, Yanhua

    2016-03-01

    TiO2 photocatalysts co-doped with F and Fe were synthesized by a sol-gel method. Synergistic effects of F and Fe in the co-doped TiO2 were verified by NH3 decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-Vis) absorption spectroscopy, and was analyzed by the simulation based on the density functional theory (DFT). The results from NH3 decomposition confirmed that the cooperation of F and Fe broadened the optical response of TiO2 to visible light region and also enhanced the photocatalytic activity of TiO2 under ultraviolet light. XRD patterns, SEM and HRTEM images showed that the co-doped samples were nanometric anatase with an average particle size of 25 nm. Co-doping with F and Fe inhibited the grain growth of TiO2 from anatase to rutile and resulted in a larger lattice defect. XPS analysis exhibited that the doped F and Fe atoms were into the TiO2 lattice. UV-Vis absorption spectra showed that its optical absorption edge was moved up to approximately 617 nm and its ultraviolet absorption was also enhanced. The DFT results indicated that the cooperation of Fe 3d and O 2p orbits narrowed the band gap of TiO2 and F 2p orbit widened the upper valence bands. The synergistic electron density around F and Fe in co-doped TiO2 was capable to enhance the photo-chemical stability of TiO2.

  18. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  19. Beneficial surface passivation of hydrothermally grown TiO2 nanowires for solar water oxidation

    NASA Astrophysics Data System (ADS)

    Yun, Gun; Song, Gwang Yeom; Ahn, Bo-Eun; Lee, Sang-Kwon; Heo, Jaeyeong; Ahn, Kwang-Soon; Kang, Soon Hyung

    2016-03-01

    Rutile TiO2 nanowires (TONWs) with a length of 2.0 μm were synthesized using a facile hydrothermal method in a strong acid solution. To investigate the effect of surface passivation of TONW arrays, a TiO2 layer with a thickness varying from 5 to 20 nm on TONW arrays was applied by atomic layer deposition (ALD). No distinct morphological modification was observed in all prepared TONW arrays in the environment where the diameter of the TONW arrays was systematically increased from 10 to 40 nm. In this study, Mott-Schottky analysis revealed that 10 nm TiO2-coated TONW (denoted as TiO2(10 nm)/TONW) arrays showed the highest electronic conductivity, followed by the 5 nm, 20 nm, and 0 nm TiO2/TONW arrays. The photoelectrochemical (PEC) performance was assessed in 0.1 M KOH, which revealed that TiO2(10 nm)/TONW arrays displayed a photocurrent density (3.92 mA/cm2 at 0.5 VNHE) higher than that (2.72 mA/cm2) of TONW arrays. This may be ascribed to the surface passivation of trap or defect sites by the thin TiO2 surface coating, leading to the increased electron densities and improving the PEC performance. For a more definitive examination, photovoltage decay measurement was performed to calculate the decay lifetime, which is closely correlated to the electron-hole recombination reaction. In this study, TiO2(10 nm)/TONW arrays exhibited a decay lifetime (0.7 s) shorter than that (1.1 s) of TONW arrays, proving the suppressed charge recombination in the thin TiO2/TONW arrays.

  20. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  1. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  2. Photodegradation of phenanthrene by N-doped TiO2 photocatalyst.

    PubMed

    Sirisaksoontorn, Weekit; Thachepan, Surachai; Songsasen, Apisit

    2009-07-15

    The photodegradation of phenanthrene has been catalyzed by nanostructures of TiO2 doped with nitrogen, N-doped TiO2. The N-doped TiO2 was prepared from the sol-gel reaction of Titanium(IV) bis(ethyl acetoacetato)diisopropoxide with 25% ammonia solution. The N-doped TiO2 was calcined at various temperatures from 300 to 700 degrees C. X-ray diffraction (XRD) results showed that N-doped TiO2 remained amorphous at 300 degrees C but anatase-to-rutile transformation started at 400 degrees C and was complete at 700 degrees C. The average particle size calculated from Scherrer's equation was in the range of 9-51 nm with surface area (S(BET)) of 253.7-4.8 m2/g. X-ray photoelectron spectroscopy (XPS) results confirmed the incorporation of nitrogen atoms (Ti-N bond) in the N-doped catalyst. Moreover, the percentage of nitrogen determined by Elemental analysis was 0.236% of N-doped calcined at 400 degrees C. UV-Vis reflection spectra indicated that N-doped TiO2 calcined at 400 degrees C shifted to the higher absorption edge in the range of visible light. N-doped TiO2 calcined at 400 degrees C successfully catalyzed the photodegradation of phenanthrene (80% conversion) whereas N-doped TiO2 calcined at 500 degrees C and P25 TiO2 failed as catalysts.

  3. Effects of TiO2 structures in dye-sensitized solar cell.

    PubMed

    Kim, Bok-Min; Rho, Seon-Gyun; Kang, Choon-Hyoung

    2011-02-01

    In this work, the effects of crystalline structure of the TiO2, which is incorporated in fabrication of the n-type electrode, on the DSSC performance were investigated in terms of the energy conversion efficiency. In this effort, TiO2 nanoparticle pastes with varying contents of rutile and anatase structures were prepared by using the ethanol mixing method. The most efficient photo-electro-chemical performance was achieved for the DSSC fabricated with the TiO2 paste in which the anatase form of the nanocrystal extends to 90%.

  4. Activation of TiO2 photocatalyst by single-bubble sonoluminescence for water treatment.

    PubMed

    Ogi, Hirotsugu; Hirao, Masahiko; Shimoyama, Masashi

    2002-05-01

    Single-bubble sonoluminescence (SBSL) continues to attract many researchers because the physics behind it remains uncertain and few applications have appeared. In this study, we propose to apply SBSL to a water-treatment technique. The SBSL flashes contain intense ultraviolet light, which activates a TiO2 photocatalyst to decompose organic compounds in water. This mechanism comes from the similar spectrum patterns between SBSL emission and TiO2 absorption. SBSL in solutions containing small amount of TiO2 powder decomposed phenol and 2,4-dinitrophenol with efficiency several times higher than those by the existing methods.

  5. Doping of TiO 2 Polymorphs for Altered Optical and Photocatalytic Properties

    DOE PAGES

    Nie, Xiliang; Zhuo, Shuping; Maeng, Gloria; ...

    2009-01-01

    Tmore » his paper reviews recent investigations of the influence of dopants on the optical properties of TiO 2 polymorphs.he common undoped polymorphs of TiO 2 are discussed and compared.he results of recent doping efforts are tabulated, and discussed in the context of doping by elements of the same chemical group. Dopant effects on the band gap and photocatalytic activity are interpreted with reference to a simple qualitative picture of the TiO 2 electronic structure, which is supported with first-principles calculations.« less

  6. Preparation of nanostructured TiO2 photoelectrode for flexible dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Karuppuchamy, S.; Andou, Y.; Endo, T.

    2013-08-01

    Nanocrystalline titanium dioxide (TiO2) thin film was successfully prepared by simple electrodeposition method from alkaline aqueous solution containing potassium titanium oxalate and hydroxylamine. Surface characterization of the electrodeposited films indicates the formation of crystalline TiO2. The dye solar cell constructed from dye-modified electrodeposited TiO2 film achieved an overall light-to-electricity conversion efficiency of 2.1 % under 1 sun illumination, indicating its high potential as a photoelectrode material for the DSCs.

  7. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma.

    PubMed

    Sousa, S R; Moradas-Ferreira, P; Saramago, B; Melo, L Viseu; Barbosa, M A

    2004-10-26

    In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In contrast, after 72 h, nearly all the adsorbed albumin molecules effectively exchange with other albumin molecules.

  8. Photoassisted Water-Gas Shift Reaction over Platinized TiO2 Catalysts.

    DTIC Science & Technology

    1980-07-15

    level diagram, (2) that holes will be found at both the Pt/ TiO2 and the TiO2 /gas Interfaces and (3) that electrons will be captured at the Pt...T10 2 which enhances photoconductivity . We expect this sa~e change in conductivity to be important in our powdered catalysts. Changes in electronic band...02 during the photoassisted water-gas shiit reaction over Pt/ TIO2 at 25 0 C. p W24 tort. I20 figure a Pictorial Model of the photoinduced redox

  9. Effects of TiO2 NPs on Silkworm Growth and Feed Efficiency.

    PubMed

    Li, YangYang; Ni, Min; Li, FanChi; Zhang, Hua; Xu, KaiZun; Zhao, XiaoMing; Tian, JiangHai; Hu, JingSheng; Wang, BinBin; Shen, WeiDe; Li, Bing

    2016-02-01

    Silkworm (Bombyx mori) (B. mori) is an economically important insect and a model species for Lepidoptera. It has been reported that feeding of low concentrations of titanium dioxide nanoparticles (TiO2 NPs) can improve feed efficiency and increase cocoon mass, cocoon shell mass, and the ratio of cocoon shell. However, high concentrations of TiO2 NPs are toxic. In this study, we fed B. mori with different concentrations of TiO2 NPs (5, 10, 20, 40, 80, and 160 mg/L) and investigated B. mori growth, feed efficiency, and cocoon quality. We found that low concentrations of TiO2 NPs (5 and 10 mg/L) were more effective for weight gains, with significant weight gain being obtained at 72 h (P < 0.05). TiO2 NPs at 20 mg/L or higher had certain inhibitory effects, with significant inhibition to B. mori growth being observed at 48 h. The feed efficiency was significantly improved at low concentrations of 5 and 10 mg/L for 14.6 and 13.1 %, respectively (P < 0.05). All B. mori fed with TiO2 NPs showed increased cocoon mass and cocoon shell mass; at 5 and 10 mg/L TiO2 NPs, cocoon mass was significantly increased by 8.29 and 9.39 %, respectively (P < 0.05). We also found that low concentrations (5 and 10 mg/L) of TiO2 NPs promoted B. mori growth and development, improved feed efficiency, and increased cocoon production, while high concentrations (20 mg/L or higher) of TiO2 NPs showed inhibitory effect to the B. mori. Consecutive feeding of high concentrations of TiO2 NPs led to some degrees of adaptability. This study provides a reference for the research on TiO2 NPs toxicity and the basis for the development of TiO2 NPs as a feed additive for B. mori.

  10. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  11. Local Bonding Analysis of the Valence and Conduction Band Features of TiO2

    DTIC Science & Technology

    2007-01-01

    nanocrystalline samples tenuous at best. Hence, the phase of the unannealed TiO2 films cannot conclusively be identified as either anatase or rutile...reveals the local physical origin of the electronic structure in nanocrystalline films . TiO2 has further been chosen as a natural starting point to...thickness ratio is 2:1 for TiO2 . This assump- tion has been verified by XPS studies of the substrate Si 2p core-level spectra with film thickness. The

  12. Optical near-field induced visible response photoelectrochemical water splitting on nanorod TiO2

    NASA Astrophysics Data System (ADS)

    Huong Le, Thu Hac; Mawatari, Kazuma; Pihosh, Yuriy; Kawazoe, Tadashi; Yatsui, Takashi; Ohtsu, Motoichi; Tosa, Masahiro; Kitamori, Takehiko

    2011-11-01

    Here we report a way to induce the visible response of non-doped TiO2 in the photocatalytic electrochemical water splitting, which is achieved by utilizing the optical near-field (ONF) generated on nanorod TiO2. The visible response is attributed to the ONF-induced phonon-assisted excitation process, in which TiO2 is excited by sub-bandgap photons via phonon energy. Our approach directly gets involved in the excitation process without chemical modification of materials; accordingly it is expected to have few drawbacks on the photocatalytic performance. This study may offer another perspective on the development of solar harvesting materials.

  13. Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    TiO2-coated Ag nanorods (Ag@TiO2 NRs) have been fabricated as multifunctional surface-enhanced Raman scattering (SERS) substrates. Uniform TiO2 shells could sufficiently protect the internal Ag NRs against oxidation and sulfuration, thus the temporal stability of SERS substrates was markedly improved. Meanwhile, due to the synergetic effect between crystalline TiO2 and Ag, the nanocomposites could clean themselves via photocatalytic degradation of the adsorbed molecules under ultraviolet irradiation and water dilution, making the SERS substrates renewable. Such Ag@TiO2 NRs were shown to serve as outstanding SERS sensors featuring high sensitivity, superior stability and recyclability. PMID:26486994

  14. Low-Temperature Preparation and Properties of High Activity Anatase TiO2 Aqueous Sols

    NASA Astrophysics Data System (ADS)

    Liu, Qingju; Na, Wei; Zhu, Zhongqi; Zhang, Jin

    2011-06-01

    Anatase TiO2 aqueous sols were prepared below 70 °C by sol method. The influences of preparing conditions on the crystal structures and stability of the sols were investigated with X-ray diffraction (XRD) and Zeta potential. The photocatalytic activities of the anatase TiO2 aqueous sols were characterized by degradation of methyl orange and methylene blue under ultraviolet light, fluorescent light and sunlight. The sols demonstrate higher photocatalytic activity than that of Degussa P25-TiO2.

  15. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ahmed, Amira Y.; Kandiel, Tarek A.; Ivanova, Irina; Bahnemann, Detlef

    2014-11-01

    Methanol is an available, small, and colorless molecule, which can be used for the photocatalytic activity evaluation without the sensitization problem associated with most dye molecules. Thus, TiO2 suspended in aqueous methanol solutions is commonly employed as a model test for the photocatalytic degradation of organic pollutants in aerobic system or for photocatalytic hydrogen production in absence of molecular oxygen. It is, hence, important to explore the mechanism of its photocatalytic and photoelectrochemical oxidation on TiO2 in aqueous solution. In this mini-review, the possible mechanisms for water and methanol oxidation on TiO2 will therefore be presented and discussed.

  16. Thermal performance of higher aspect ratio microchannels using TiO2-water nanofluids.

    PubMed

    Raghuraman, D R S; Nagarajan, P K; Suresh, S

    2013-04-01

    An experimental setup was developed to study the heat transfer and fluid flow characteristics in rectangular copper microchannels with hydraulic diameter 29.4 microm using TiO2-Water nanofluids. The experimental facility is validated using existing correlations and subsequently tested with 0.1% and 0.3% concentrations of TiO2 nanofluids. The thermal resistance of heat sink with nanofluids is compared with the base fluid. It is inferred that 0.3% TiO2-Water nanofluids have 18% lower thermal resistance as compared to base fluid having for the same operating conditions.

  17. Fabrication and photocatalytic activity of TiO2 derived nanotubes with Ag ions doping.

    PubMed

    Liu, Fang; Lai, Shuting; Huang, Peilin; Liu, Yingju; Xu, Yuehua; Fang, Yueping; Zhou, Wuyi

    2012-11-01

    Ag/TiO2 nanotubes with uniform distribution were successfully prepared by a hydrothermal-dipping method. The synthesized samples were characterized by XRD, TEM and FTIR, respectively. The results exhibited that the morphological structure of the TiO2 nanotubes was improved by the doping of Ag ions. The photocatalytic degradation experiment indicated that the photocatalytic activity of the Ag/TiO2 nanotubes indicated better photocatalytic activity than pure TiO2 nanotubes since silver was able to help the electron-hole separation by attracting photoelectrons. The optimal mol ration of TiO2 and AgNO3 was 25:1.

  18. Study of gamma irradiation effect on commercial TiO2 photocatalyst.

    PubMed

    Bello Lamo, M P; Williams, P; Reece, P; Lumpkin, G R; Sheppard, L R

    2014-07-01

    The aim of this work is to understand the effect of gamma irradiation on commercial TiO2 photocatalyst for water treatment applications. Previous studies concluded that gamma-irradiation is able to modify the electronic properties of TiO2 based photocatalysts and consequently their photocatalytic performance. However, there are some discrepancies in the literature where on one hand a significant enhancement of the material properties is reported and on the other hand only a weak effect is observed. In this study a surface effect on TiO2 is confirmed by using low and medium gamma irradiation doses.

  19. The effect of TiO2 nanostructures on self-degrading polyurethane foams

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Charpentier, Paul A.

    2014-03-01

    Waste polyurethane foams are becoming a serious environmental problem due to their low degradation rates upon exposure to the environment. By adding TiO2 nanostructures as a photocatalyst, we can simultaneously enhance mechanical properties during use for higher performance applications, while enhancing degradation when exposed to light when placed in landfills. In this work, we integrated anatase TiO2 nanoparticles into polyurethane foams using a unique bifunctional monomer approach and studied the photodegradation ability and mechanism in a weathering chamber simulating natural environmental conditions. We found that the TiO2 nanoparticles increased the degradation rate in a significant manner showing the utility of this approach.

  20. Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2-δ

    NASA Astrophysics Data System (ADS)

    Errico, L. A.; Rentería, M.; Weissmann, M.

    2005-11-01

    In recent years there has been an intense search for room temperature ferromagnetism in semiconductors doped with dilute magnetic impurities, in particular, oxides. In this work we study the structural, electronic, and magnetic properties of doped rutile TiO2 for two different impurity concentrations (25% and 6.25%), considering different distributions of the impurities in the host lattice. Calculations were performed with ab initio methods, assuming that the magnetic impurities substitutionally replace the Ti ions. Our results show that a local magnetic moment appears in the cases of Mn, Fe, and Co impurities, but not in the cases of Ni and Cu impurities. They also show that in the system Ti1-xCoxO2 the magnetic ions align ferromagnetically, while in Ti1-xMnxO2 and Ti1-xFexO2 the antiferromagnetic alignment is energetically favorable. We have also studied the effect of oxygen vacancies, which turned out to be very important. Their presence decreases the energy required to introduce the impurities in the host lattice and reciprocally, the presence of impurities is related to a higher vacancy concentration. The pairs impurity-nearest-neighbor oxygen vacancy seem to be the energetically preferred structures and to produce the highest local magnetic moments. Ni and even Cu impurities acquire magnetic moments in this environment.

  1. Enhanced Photodetection from TiO2-SiO x -TiO2 One-Dimensional Device

    NASA Astrophysics Data System (ADS)

    Choudhuri, Bijit; Mondal, Aniruddha; Saha, Ardhendu

    2016-08-01

    In this work, TiO2 nanowires (NWs)/SiO x zigzag (ZZ) film/TiO2 NWs structure-based devices were fabricated using glancing angle deposition and oblique angle deposition techniques. An investigation of the optoelectronic properties of the devices will be presented. The NWs-ZZ-NWs structure showed an average of 1.6 times enhancement in absorbance value as compared to the absorbance of the structure that contains only NWs. When irradiated with white light, NWs-ZZ-NWs- and only NWs-based devices exhibited a maximum 6.3 and 2.7 times greater light-to-dark current ratio, respectively, at -3 V. The maximum photoresponsivity and internal gain at the wavelength of 370 nm were calculated to be 57 A/W and 191, respectively, for the NWs-ZZ-NWs devices. The rise and fall time for the NWs-ZZ-NWs and NW devices were 16.56 s and 8.2 s, and 8.39 s and 7.31 s, respectively.

  2. Wet chemically prepared rutile TiO2(110) and TiO2(011): Substrate preparation for surface studies under non-UHV conditions

    NASA Astrophysics Data System (ADS)

    Ahmed, M. H. M.; Lydiatt, F. P.; Chekulaev, D.; Wincott, P. L.; Vaughan, D. J.; Jang, J. H.; Baldelli, S.; Thomas, A. G.; Walters, W. S.; Lindsay, R.

    2014-12-01

    A procedure for wet chemical preparation of TiO2 single crystal surfaces is detailed. The potential of this procedure is demonstrated through application to rutile-TiO2(110) and rutile-TiO2(011) substrates. Characterisation with atomic force microscopy, low energy electron diffraction, auger electron spectroscopy, and vibrational sum frequency spectroscopy indicates that flat, well-ordered, carbon-free surfaces can be generated. Notably, in contrast to the (2 × 1) low energy electron diffraction pattern observed for TiO2(011) prepared in ultra-high vacuum, wet chemical preparation results in a (4 × 1) unit cell; wet chemically prepared TiO2(110) displays an unreconstructed (1 × 1) surface.

  3. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  4. Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

    DOE PAGES

    Khromova, Irina; Kužel, Petr; Brener, Igal; ...

    2016-06-27

    Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipolemore » resonances in the emerging THz all-dielectric metamaterial technology.« less

  5. Rippling of polymer nanofibers.

    PubMed

    Wu, Xiang-Fa; Kostogorova-Beller, Yulia Y; Goponenko, Alexander V; Hou, Haoqing; Dzenis, Yuris A

    2008-12-01

    This paper studies the evolution mechanism of surface rippling in polymer nanofibers under axial stretching. This rippling phenomenon has been detected in as-electrospun polyacrylonitrile in recent single-fiber tension tests, and in electrospun polyimide nanofibers after imidization. We herein propose a one-dimensional nonlinear elastic model that takes into account the combined effect of surface tension and nonlinear elasticity during the rippling initiation and its evolution in compliant polymer nanofibers. The polymer nanofiber is modeled as an incompressible, isotropically hyperelastic Mooney-Rivlin solid. The fiber geometry prior to rippling is considered as a long circular cylinder. The governing equation of surface rippling is established through linear perturbation of the static equilibrium state of the nanofiber subjected to finite axial prestretching. The critical stretch and ripple wavelength are determined in terms of surface tension, elastic property, and fiber radius. Numerical examples are demonstrated to examine these dependencies. In addition, a critical fiber radius is determined, below which the polymer nanofibers are intrinsically unstable. The present model, therefore, is capable of predicting the rippling condition in compliant nanofibers, and can be further used as a continuum mechanics approach for the study of surface instability and nonlinear wave propagation in compliant fibers and wires at the nanoscale.

  6. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests.

    PubMed

    Maneerat, Chamorn; Hayata, Yasuyoshi

    2006-03-15

    The antifungal activity of TiO2 photocatalytic reaction in the form of TiO2 powder and TiO2 coated on a plastic film against Penicillium expansum was investigated in vitro and in fruit tests. The mixture of P. expansum conidial suspension and TiO2 powder was added to potato dextrose agar (PDA) plates for vitro test. The TiO2 photocatalytic reaction reduced conidial germination of the fungal pathogen. It was found that the ability of the TiO2 photocatalytic reaction to suppress P. expansum growth correlated to the amount of TiO2 added. Lower numbers of viable colonies of P. expansum were observed with increasing amount of TiO2. Regardless of the kind of selected fruit inoculated with P. expansum, both TiO2 powder and TiO2-coated film exhibited antifungal activity to control fruit rot. Development of Penicillium rot in apple was significantly (P = 0.05) retarded by the TiO2 photocatalytic reaction. Similarly the TiO2 photocatalytic reaction was the only treatment where no tomato fruit rot was noticeable after 1 week of storage. TiO2-coated film also decreased brown lesions and Penicillium rot infection in lemons. The mean severity fruit rot scores (browning and softening flesh) were 3.2 and 1.9 for uncoated and TiO2-coated film, respectively. Our findings suggest that "TiO2 photocatalytic reaction" shows antifungal activity against P. expansum which may have potential for postharvest disease control.

  7. A Comparative Study of Nanostructured TiO2, ZnO and Bilayer TiO2/ZnO Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Rani, Mamta; Tripathi, S. K.

    2015-04-01

    Titanium dioxide (TiO2), Zinc oxide (ZnO) and bilayer TiO2/ZnO (TZO) based cells have been developed and sensitized with five organic dyes and one cocktail dye composed of five dyes. Photovoltaic performance of TiO2 and ZnO solar cell sensitized with six dyes is compared to that of bilayer TZO cells. The forward current is found to increase with applied voltage in the range V ≤ 0.4 V, which is dominated by thermionic emission, whereas in 0.4 ≤ V ≤ 0.7 V, the current transport is due to space charge-limited current controlled by exponential trap distribution in all devices. The combined properties of the materials enhance the efficiency of composite TZO cells. TiO2 permits the formation of an energy barrier at the ZnO electrode/electrolyte interface, which reduces the back electron transfer from the conduction band of ZnO to I3 - in the electrolyte. Also, due to the TiO2 layer on the ZnO, the latter forms a compact layer between flourine-doped tin oxide (FTO)/TiO2 which benefits the fast electron transfer from TiO2 to ZnO to FTO glass. This reduces the charge recombination occurring at the ZnO/FTO interface leading to higher open circuit voltage ( V oc), higher short circuit current ( J sc), lower series resistance ( R s), and in turn higher efficiency in TZO solar cells as compared to ZnO cells. Among the six dyes, Eosin-Y and Rose Bengal dye gave the best performance as sensitizers with TZO.

  8. Electron channeling in TiO2 coated Cu layers

    NASA Astrophysics Data System (ADS)

    Zheng, Pengyuan; Zhou, Tianji; Gall, Daniel

    2016-05-01

    Electron transport in metal conductors with ˜5-30 nm width is dominated by surface scattering. In situ transport measurements as a function of surface chemistry demonstrate that the primary parameter determining the surface scattering specularity is the localized surface density of states at the Fermi level N(E f ). In particular, the measured sheet resistance of epitaxial Cu(001) layers with thickness d Cu = 9-25 nm increases when coated with d Ti = 0.1-4.0 monolayers (MLs) of Ti, but decreases again during exposure to 37 Pa of O2. These resistivity changes are a function of d Cu and d Ti and are due to a transition from partially specular electron scattering at the Cu surface to completely diffuse scattering at the Cu-Ti interface, and the recovery of surface specularity as the Ti is oxidized. X-ray reflectivity and photoelectron spectroscopy indicate the formation of a 0.47 ± 0.03 nm thick Cu2O surface layer on top of the TiO2-Cu2O during air exposure, while density functional calculations of TiO x cap layers as a function of x = 0-2 and d Ti = 0.25-1.0 ML show a reduction of N(E f ) by up to a factor of four. This reduction is proposed to be the key cause for the recovery of surface specularity and results in electron confinement and channeling in the Cu layer upon Ti oxidation. Transport measurements at 293 and 77 K confirm the channeling and demonstrate the potential for high-conductivity metal nanowires by quantifying the surface specularity parameter p = 0.67 ± 0.05, 0.00 ± 0.05, and 0.35 ± 0.05 at the Cu-vacuum, Cu-Ti, and Cu-TiO2 interfaces.

  9. Electrokinetic Properties of TiO2 Nanotubular Surfaces

    NASA Astrophysics Data System (ADS)

    Lorenzetti, Martina; Gongadze, Ekaterina; Kulkarni, Mukta; Junkar, Ita; Iglič, Aleš

    2016-08-01

    Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10-3 M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces.

  10. Conversion of Nanocellulose Aerogel into TiO2 and TiO2@C Nano-thorns by Direct Anhydrous Mineralization with TiCl4. Evaluation of Electrochemical Properties in Li Batteries.

    PubMed

    Henry, Aurélien; Plumejeau, Sandrine; Heux, Laurent; Louvain, Nicolas; Monconduit, Laure; Stievano, Lorenzo; Boury, Bruno

    2015-07-15

    Nanostructured TiO2 and TiO2@C nanocomposites were prepared by an original process combining biotemplating and mineralization of aerogels of nanofibrillated cellulose (NFC). A direct one step treatment of NFC with TiCl4 in strictly anhydrous conditions allows TiO2 formation at the outermost part of the nanofibrils while preserving their shape and size. Such TiO2@cellulose composites can be transformed into TiO2 nanotubes (TiO2-NT) by calcination in air at 600 and 900 °C, or into TiO2@C nanocomposites by pyrolysis in argon at 600 and 900 °C. Detailed characterization of these materials is reported here, along with an assessment of their performance as negative electrode materials for Li-ion batteries.

  11. Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Chen, Weiya; Liu, Yanbo; Ma, Ying; Yang, Wenxiu

    2015-01-01

    Functionalized TiO2 (f-TiO2) was synthesized by the atom transfer radical polymerization process and then three types of composite nanofiber membranes including PI/PVdF-HFP (PI/PH, with no nanoparticles contained in PI), TiO2@PI/PVdF-HFP (T@PI/PH, with TiO2 mixed in PI) and f-TiO2@PI/PVdF-HFP (f-T@PI/PH, with f-TiO2 blended in PI) were prepared by bicomponent co-electrospinning technique which could separately maintain the original properties of both PVdF-HFP and PI nanofibers. UV-vis characterization manifested that the modified nanoparticles can provide significant improvements in reducing the particle agglomeration. Morphology, porosity, electrolyte uptake and liquid electrolyte contact angle of all the electrospun separators were investigated, and results showed that the composite separator with 2% f-TiO2 nanoparticle had smaller fiber diameter, higher porosity, larger electrolyte uptake, smaller contact angle and more excellent thermal dimensional stability. More importantly, the tensile strength of all the composite membranes increased by more than three times after thermal calendering process, which resulted from the several bonded points caused by the fusion of PVdF-HFP component with low melting temperature. Additionally, electrochemical properties of PI/PH, 2% T@PI/PH and 2% f-T@PI/PH composite separators and cycling performances of corresponding batteries were evaluated and 2% f-T@PI/PH composite separator showed better properties than the other two.

  12. Angle dependent antireflection property of TiO2 inspired by cicada wings

    NASA Astrophysics Data System (ADS)

    Zada, Imran; Zhang, Wang; Li, Yao; Sun, Peng; Cai, Nianjin; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Zhang, Di

    2016-10-01

    Inspired by cicada wings, biomorphic TiO2 with antireflective structures (ARSs) was precisely fabricated using a simple, inexpensive, and highly effective sol-gel process combined with subsequent calcination. It was confirmed that the fabricated biomorphic TiO2 not only effectively inherited the ARS but also exhibited high-performance angle dependent antireflective properties ranging from normal to 45°. Reflectance spectra demonstrated that the reflectivity of the biomorphic TiO2 with ARSs gradually changed from 1.4% to 7.8% with the increasing incidence angle over a large visible wavelength range. This angle dependent antireflective property is attributed to an optimized gradient refractive index between air and TiO2 via ARSs on the surface. Such surfaces with ARSs may have potential application in solar cells.

  13. Facile embedding of single vanadium atoms at the anatase TiO2(101) surface.

    PubMed

    Koust, Stig; Arnarson, Logi; Moses, Poul G; Li, Zheshen; Beinik, Igor; Lauritsen, Jeppe V; Wendt, Stefan

    2017-04-05

    To understand the structure-reactivity relationships for mixed-metal oxide catalysts, well-defined systems are required. Mixtures of vanadia and titania (TiO2) are of particular interest for application in heterogeneous catalysis, with TiO2 often acting as the support. By utilizing high-resolution scanning tunneling microscopy, we studied the interaction of vanadium (V) with the anatase TiO2(101) surface in the sub-monolayer regime. At 80 K, metallic V nucleates into homogeneously distributed clusters onto the terraces with no preference for nucleation at the step edges. However, embedding of single V atoms into TiO2 occurs following annealing at room temperature. In conjunction with X-ray photoelectron spectroscopy data and density functional theory calculations, we propose that monomeric V atoms occupy positions of regular surface Ti sites, i.e., Ti atoms are substituted by V atoms.

  14. Fabrication of TiO2/ZnS nanocomposites for solar energy mediated photocatalytic application

    NASA Astrophysics Data System (ADS)

    Prasannalakshmi, P.; Shanmugam, N.

    2017-03-01

    In the present work, we demonstrate the photocatalytic properties of nanosized TiO2, and different levels of ZnS-loaded TiO2/ZnS composites, for the degradation of the organic dyes brilliant green (BG), and methylene blue (MB) under solar light irradiation. For this process, TiO2 and the composites were synthesized by a sol-gel method. Further, the prepared products were subjected to structural, optical, and morphological characterizations. The results of the photocatalytic activity imply that for the samples studied, TiO2 loaded with an optimum level of zinc (0.25 M), and sulfur (0.5 M) is better able to actively degrade both BG and MB, due to its enhanced BET surface area, reduced band gap, and low charge transfer resistance.

  15. Deposition of Co-doped TiO2 Thin Films by sol-gel method

    NASA Astrophysics Data System (ADS)

    Boutlala, A.; Bourfaa, F.; Mahtili, M.; Bouaballou, A.

    2016-03-01

    Cobalt doped TiO2 thin films have been prepared by sol-gel method onto glass substrate at room temperature. in this present work, we are interesting to study the effect of Cobalt doped TiO2 thin films.the concentration of Co was varied from 0 to 6%at .The obtained films have been annealed at 500°C for 2 hours. X-ray diffraction patterns showed that Co: TiO2 films are polycrystalline with a tetragonal anatase and orthorhombic brookite types structures. The surface morphologies of the TiO2 doped with cobalt thin films were evaluated by Atomic Force Microscopy (AFM). The optical properties were studied by mean of UV-visible and near infrared spectroscopy.The calculated optical band gap decreases from 3.30 to 2.96 eV with increasing Co doping.

  16. Fabrication of TiO2/ZnS nanocomposites for solar energy mediated photocatalytic application.

    PubMed

    Prasannalakshmi, P; Shanmugam, N

    2017-03-15

    In the present work, we demonstrate the photocatalytic properties of nanosized TiO2, and different levels of ZnS-loaded TiO2/ZnS composites, for the degradation of the organic dyes brilliant green (BG), and methylene blue (MB) under solar light irradiation. For this process, TiO2 and the composites were synthesized by a sol-gel method. Further, the prepared products were subjected to structural, optical, and morphological characterizations. The results of the photocatalytic activity imply that for the samples studied, TiO2 loaded with an optimum level of zinc (0.25M), and sulfur (0.5M) is better able to actively degrade both BG and MB, due to its enhanced BET surface area, reduced band gap, and low charge transfer resistance.

  17. Phase stability frustration on ultra-nanosized anatase TiO2.

    PubMed

    Patra, Snehangshu; Davoisne, Carine; Bouyanfif, Houssny; Foix, Dominique; Sauvage, Frédéric

    2015-06-04

    This work sheds light on the exceptional robustness of anatase TiO2 when it is downsized to an extreme value of 4 nm. Since at this size the surface contribution to the volume becomes predominant, it turns out that the material becomes significantly resistant against particles coarsening with temperature, entailing a significant delay in the anatase to rutile phase transition, prolonging up to 1000 °C in air. A noticeable alteration of the phase stability diagram with lithium insertion is also experienced. Lithium insertion in such nanocrystalline anatase TiO2 converts into a complete solid solution until almost Li1TiO2, a composition at which the tetragonal to orthorhombic transition takes place without the formation of the emblematic and unwished rock salt Li1TiO2 phase. Consequently, excellent reversibility in the electrochemical process is experienced in the whole portion of lithium content.

  18. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method.

    PubMed

    Priyanka, Karathan Parakkandi; Sukirtha, Thiruvangium Henry; Balakrishna, Kagalagodu Manjunthiah; Varghese, Thomas

    2016-04-01

    In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol-gel method. As synthesised TiO2 NPs were characterised by X-ray diffraction, scanning electron microscopy and ultraviolet-visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans.

  19. Transport properties in single-crystalline rutile TiO2 nanorods

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Chen, C. A.; Wang, W. C.; Tsai, H. Y.; Huang, Y. S.

    2011-11-01

    Electronic transport properties of the single-crystalline titanium dioxide (TiO2) nanorods (NRs) with single rutile phase have been investigated. The conductivity values for the individual TiO2 NRs grown by metal-organic chemical vapor deposition are in the range of 1-10 Ω-1 cm-1. The temperature-dependent measurement shows the presence of two shallow donor levels/bands with activation energies at 8 and 28 meV, respectively. On the photoconductivity (PC), the TiO2 NRs exhibit the much higher normalized PC gain and sensitive excitation-power dependence than the polycrystalline nanotubes. The results demonstrate the superior photoconduction efficiency and distinct mechanism in the monocrystalline one-dimensional TiO2 nanostructures in comparison to the polycrystalline or nanoporous counterparts.

  20. Effect of construction of TiO2 nanotubes on platelet behaviors: Structure-property relationships.

    PubMed

    Huang, Qiaoling; Yang, Yun; Zheng, Dajiang; Song, Ran; Zhang, Yanmei; Jiang, Pinliang; Vogler, Erwin A; Lin, Changjian

    2017-03-15

    Blood compatibility of TiO2 nanotubes (TNTs) has been assessed in rabbit platelet-rich plasma (PRP), which combines activation of both blood plasma coagulation and platelets. We find that (i) amorphous TiO2 nanotubes (TNTs) with relatively larger outer diameters led to reduced platelet adhesion/activation, (ii) TNTs with relatively smaller outer diameters in a predominately rutile phase also inhibited platelet adhesion and activation, and (iii) a pervasive fibrin network formed on larger outer diameter TNTs in a predominately anatase phase. Thus, this study suggests that combined effect of crystalline phase and surface chemistry controls blood-contact behavior of TNTs. A more comprehensive mechanism is proposed for understanding hemocompatibility of TiO2 which might prove helpful as a guide to prospective design of TiO2-based biomaterials.