Science.gov

Sample records for 1d two-dimensional 2d

  1. Fluorescence2D: Software for Accelerated Acquisition and Analysis of Two-Dimensional Fluorescence Spectra

    PubMed Central

    Kovrigin, Evgenii L.

    2014-01-01

    The Fluorescence2D is free software that allows analysis of two-dimensional fluorescence spectra obtained using the accelerated “triangular” acquisition schemes. The software is a combination of Python and MATLAB-based programs that perform conversion of the triangular data, display of the two-dimensional spectra, extraction of 1D slices at different wavelengths, and output in various graphic formats. PMID:24984078

  2. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  3. ANALYSIS OF 209 CHLORINATED BIPHENYL CONGENERS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY-TIME-OF-FLIGHT MASS SPECTROMETRY IN THE 1-D MODE FOLLOWED BY THE 2-D MODE

    EPA Science Inventory

    Since the initial discovery of polychlorinated biphenyls (PCBs) in the environment, the detection and identification of certain PCB congeners using the traditional one dimensional (1-D) chromatographic technique has been very challenging, especially, separating the 46 isomeric pe...

  4. Ring Correlations in Two-Dimensional (2D) Random Networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.

  5. Electron Energy Levels in the 1D-2D Transition

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint

    Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.

  6. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGESBeta

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  7. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.

    2004-11-01

    The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.

  8. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    NASA Astrophysics Data System (ADS)

    Li, Chao; Yao, Kan; Li, Fang

    2009-06-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently. We present an important class of two-dimensional (2D) cloaks with polygon geometries. Explicit expressions of transformed medium parameters are derived with their unique properties investigated. It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary. At most positions, the principle axes of permittivity tensors do not align with position vectors. An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified. Since polygon cloaks can be tailored to resemble any objects, the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  9. BILL2D - A software package for classical two-dimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Solanpää, J.; Luukko, P. J. J.; Räsänen, E.

    2016-02-01

    We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  10. Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers.

    PubMed

    Liu, Wei; Wang, Lu; Su, Yu-Jun; Chen, Yan-Cong; Tucek, Jiri; Zboril, Radek; Ni, Zhao-Ping; Tong, Ming-Liang

    2015-09-01

    Three new two-dimensional (2D) Hofmann-type coordination polymers with general formula [Fe(3-NH2py)2M(CN)4] (3-NH2py = 3-aminopyridine, M = Ni (1), Pd (2), Pt (3)) have been synthesized. Magnetic susceptibility measurements show that they exhibited cooperative spin crossover (SCO) with remarkable hysteretic behaviors. Their hysteresis widths are 25, 37, and 30 K for 1-3, respectively. The single-crystal structure of 1 suggest that the pseudo-octahedral Fe sites are equatorially bridged by [M(CN)4](2-) to form 2D grids and axially coordinated by 3-NH2py ligands. The intermolecular interactions between layers (the offset face-to-face π···π interactions, hydrogen bonds, and weak N(amino)···Ni(II) contacts) together with the covalent bonds bridged by [M(CN)4](2-) units are responsible to the significant cooperativity. PMID:26258593

  11. Two dimensional spectroscopy of Liquids in THz-domain: THz analogue of 2D Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Tanimura, Y.

    1998-03-01

    After the initial proposal(Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993)), the two dimensional Raman spectroscopy in the liquid phase has been received a considerable attention. Both experimental and theoretical activity of this field has been quite high. Since we have two controllable delay times, we can obtain more information than the lower-order experiments such as OKE. The new information includes that on heterogeneous distribution in liquids. Recently, it is found that the coupling between the modes in liquids can be investigated by the technique, both experimentally and theoretically(A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. (in press))^,(K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997)) In this talk, we will emphasize that we can perform the THz analogue of the 2D Raman spectroscopy if the THz short-pulse laser becomes available, which may not be in the far future. Theoretically, we can formulate this novel THz spectroscopy on the same footing as the 2D Raman spectroscopy. We will clarify new aspects of this technique comparing with the 2D Raman spectroscopy--- the reason it worth trying the tough experiment. See

  12. Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

  13. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1995-01-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  14. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  15. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  16. CoPc 2D and 1D Arrangement on a Ferromagnetic Surface.

    PubMed

    Annese, Emilia; ViolBarbosa, Carlos E; Rossi, Giorgio; Fujii, Jun

    2016-05-31

    We investigated the growth and electronic properties of Co-phthalocyanine (CoPc) molecule deposited on iron film with different structures (pseudomorph-fcc and bcc) and on iron nanowires by scanning tunnelling microscopy and X-ray absorption spectroscopy (XAS). CoPc molecules self-assemble in a two-dimensional (2D) arrangement with the molecular plane parallel to the iron surfaces, and the local order is lost after the first layer. The molecule-ferromagnet interaction causes the broadening of Co and N unoccupied molecular states as well as different electronic distribution of N states as a function of the atomic structure of iron surface. The ferromagnetic coupling between the molecule and the iron film is dominated by the electronic interaction between Co and the first Fe layer. CoPc 2D arrangement turns into 1D by using as a template the iron nanowire grown on a facet surface of oxidized Cu(332) surface. CoPc molecules interact weakly with the iron nanowires manifesting a substantial Co 3dz spectral feature in XAS spectrum and the possibility of a magnetic interaction between Co moment and iron nanowires. Both CoPc 2D and 1D arrangements can open up new interesting scenarios to tune the magnetic properties of hybrid interfaces involving metallorganic molecules. PMID:27191039

  17. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  18. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  19. PLUME2D: TWO-DIMENSIONAL PLUMES IN UNIFORM GROUND WATER FLOW

    EPA Science Inventory

    A closed-form analytical solution for two dimensional plumes was incorporated in an interactive computer program. The assumption of an infinite aquifer depth and uniform source mass rate and source location was overcome by using the principal of superposition in space and time. T...

  20. Nylon 6,6 electrospun fibres reinforced by amino functionalised 1D and 2D carbon

    NASA Astrophysics Data System (ADS)

    Navarro-Pardo, F.; Martínez-Barrera, G.; Martínez-Hernández, A. L.; Castaño, V. M.; Rivera-Armenta, J. L.; Medellín-Rodríguez, F.; Velasco-Santos, C.

    2012-09-01

    Nylon 6,6 electrospun nanocomposites were prepared and reinforced with 0.1, 0.5 and 1wt.% of 1D and 2D carbon. Both carbon nanotubes and graphene were functionalised with amino groups (f-CNT and f-Ge respectively). The morphology and graphitization changes of carbon nanomaterials were evaluated by transmission electron microscopy (TEM) and Raman spectroscopy; functional groups of modified nanomaterials was analysed by infrared spectroscopy. The mechanical response and the crystallinity of the fibres were measured by dynamical mechanical analysis, differential scanning calorimetry and wide angle x-ray diffraction. The morphology and dispersion of the nanomaterials in the nanofibres was studied by scanning electron microscopy and TEM. The storage modulus was improved by 118% for f-CNT and 116% for f-Ge. The mechanical response of the nanocomposites exhibited different behaviour upon loading of 1D and 2D carbon. This trend is consistent with the crystallinity of the nanofibres. This study showed f-CNT resulted in better mechanical properties at the lowest loading. On the other hand f-Ge showed improved reinforcing effect by increasing the filler loading. The two-dimensional structure of graphene was an important factor for the higher crystallinity in the electrospun nanofibres.

  1. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    PubMed Central

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-01-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications. PMID:23152940

  2. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability. PMID:27028491

  3. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  4. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR

    SciTech Connect

    Zielinski, R.G.; Kazimi, M.S.

    1981-09-01

    Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.

  5. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  6. FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide

    NASA Technical Reports Server (NTRS)

    Wawrzynek, Paul; Ingraffea, Anthony

    1994-01-01

    FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.

  7. Two-Dimensional Electronic Spectroscopy of the Photosystem II D1D2-cyt.b559 Reaction Center Complex

    NASA Astrophysics Data System (ADS)

    Myers, Jeffrey Allen

    Two-dimensional electronic spectroscopy (2DES) is a powerful new technique for examining the electronic and vibronic couplings and dynamics of chemical, semiconductor, and biological samples. We present several technical innovations in the implementation of 2DES. We have performed two-color 2DES experiments, extending the technique's ability to study energy transfer to states at frequencies far from the initial absorption. We have demonstrated 2DES in the pump-probe geometry using a pulse-shaper. This method eliminates many technical challenges inherent to previous implementations of 2DES, making it a more widely accessible technique. To broaden the available frequency information, we have demonstrated 2DES with a continuum probe pulse. We have utilized this method to observe vibrational wavepacket dynamics in a laser dye, demonstrating that these dynamics modulate 2D lineshapes and must be accounted for in modelling 2DES data. We perform 2DES studies on the Qy band of the D1D2-cyt.b559 reaction center of plant photosystem II. This reaction center is the core oxygen-evolving complex in plant photosynthesis, taking in light energy and forming a charge separated state capable of splitting water. Understanding the relationship between the structure and function has both fundamental importance and applications to improving artificial light-harvesting. Traditional spectroscopy methods have been unable to completely resolve the time-ordering of energy and charge transfer events or the degree of electronic coupling between chromophores due to severe spectral congestion in the Q y band. 2DES extends previous methods by frequency-resolving an additional dimension to reveal the degree of static disorder and electronic coupling, as well as a detailed picture of energy and charge transfer dynamics that will allow tests of excitonic models of the reaction center. Our data show direct evidence of electronic coupling and rapid sub-ps energy transfer between "blue" and "red

  8. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    NASA Astrophysics Data System (ADS)

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  9. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. PMID:25773968

  10. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    USGS Publications Warehouse

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  11. User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning

    SciTech Connect

    Hallquist, J.O.

    1982-02-01

    This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.

  12. Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities

    NASA Astrophysics Data System (ADS)

    Nishinaka, Takahiro; Yamaguchi, Satoshi; Yoshida, Yutaka

    2014-05-01

    We construct a two-dimensional crystal melting model which reproduces the BPS index of D2-D0 states bound to a non-compact D4-brane on an arbitrary toric CalabiYau singularity. The crystalline structure depends on the toric divisor wrapped by the D4-brane. The molten crystals are in one-to-one correspondence with the torus fixed points of the moduli space of the quiver gauge theory on D-branes. The F- and D-term constraints of the gauge theory are regarded as a generalization of the ADHM constraints on instantons. We also show in several examples that our model is consistent with the wall-crossing formula for the BPS index.

  13. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  14. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it

  15. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  16. Study of the equilibrium vacancy ensemble in aluminum using 1D- and 2D-angular correlation of annihilation radiation

    SciTech Connect

    Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.

    1985-03-12

    One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.

  17. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.

    PubMed

    Dang, Zhi-Min; Zheng, Ming-Sheng; Zha, Jun-Wei

    2016-04-01

    With the development of flexible electronic devices and large-scale energy storage technologies, functional polymer-matrix nanocomposites with high permittivity (high-k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high-k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one-dimensional (1D) and two-dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high-k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized. PMID:26865507

  18. 2D/1D approximations to the 3D neutron transport equation. I: Theory

    SciTech Connect

    Kelley, B. W.; Larsen, E. W.

    2013-07-01

    A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)

  19. 2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons

    SciTech Connect

    Kelley, B. W.; Collins, B.; Larsen, E. W.

    2013-07-01

    In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)

  20. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition

    NASA Astrophysics Data System (ADS)

    Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M.; Knoester, Jasper; Cao, Jianshu

    2016-05-01

    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.

  1. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition.

    PubMed

    Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M; Knoester, Jasper; Cao, Jianshu

    2016-05-13

    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality. PMID:27232033

  2. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    SciTech Connect

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  3. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  4. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.

    PubMed

    Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C; Ruoff, Rodney S; Pellegrini, Vittorio

    2015-01-01

    Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications. PMID:25554791

  5. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  6. High-throughput critical dimensions uniformity (CDU) measurement of two-dimensional (2D) structures using scanning electron microscope (SEM) systems

    NASA Astrophysics Data System (ADS)

    Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2011-03-01

    In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.

  7. Introducing 2D Materials—a new multidisciplinary journal devoted to all aspects of graphene and related two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Fal'ko, Vladimir I.

    2014-06-01

    On behalf of the Editorial Board and IOP Publishing, I am pleased to announce the opening of 2D Materials. Research on two-dimensional materials, such as graphene, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology, and extending from fundamental science to novel applications. It is this situation which defines the scope and mission of 2D Materials, a new journal that will serve all sides of this multidisciplinary field by publishing urgent research of the highest quality and impact.

  8. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  9. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778

  10. Strong and Weak 2D Topological Superconductivity in Hidden Quasi-1D Systems

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yao, Hong

    2014-03-01

    Partly motivated by the newly discovered family of bismuth-based superconductors including LaO1-xFxBiS2, we study possible 2D topological superconductivities (TSC) in hidden quasi-1D systems with spin-orbit couplings. By doing RPA calculations and renormalization group (RG) treatment, we theoretically find that in a large portion of the phase diagram with varying interaction strengths and spin-orbit coupling the ground states favors superconductivity with odd-parity pairing, which results in either chiral TSC or time reversal invariant weak-Z2 TSC. We shall discuss several ways to experimentally identify these strong and weak 2D topological superconductivity. Possible applications to the bismuth-based superconductors LaO1-xFxBiS2 will also be remarked.

  11. Structural transformation in monolayer materials: a 2D to 1D transformation.

    PubMed

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials. PMID:27388501

  12. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  13. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  14. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-21

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp(2) honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm(2) V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices. PMID:27072060

  15. SNARK09 - a software package for reconstruction of 2D images from 1D projections.

    PubMed

    Klukowska, Joanna; Davidi, Ran; Herman, Gabor T

    2013-06-01

    The problem of reconstruction of slices and volumes from 1D and 2D projections has arisen in a large number of scientific fields (including computerized tomography, electron microscopy, X-ray microscopy, radiology, radio astronomy and holography). Many different methods (algorithms) have been suggested for its solution. In this paper we present a software package, SNARK09, for reconstruction of 2D images from their 1D projections. In the area of image reconstruction, researchers often desire to compare two or more reconstruction techniques and assess their relative merits. SNARK09 provides a uniform framework to implement algorithms and evaluate their performance. It has been designed to treat both parallel and divergent projection geometries and can either create test data (with or without noise) for use by reconstruction algorithms or use data collected by another software or a physical device. A number of frequently-used classical reconstruction algorithms are incorporated. The package provides a means for easy incorporation of new algorithms for their testing, comparison and evaluation. It comes with tools for statistical analysis of the results and ten worked examples. PMID:23414602

  16. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk. PMID:24359648

  17. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Zhao, Jijun

    2016-04-01

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ~1000 cm2 V-1 s-1 even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor

  18. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    K.R. Maskaly

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  19. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  20. 1D and 2D simulations of seismic wave propagation in fractured media

    NASA Astrophysics Data System (ADS)

    Möller, Thomas; Friederich, Wolfgang

    2016-04-01

    Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.

  1. FTOM-2D: a two-dimensional approach to model the detailed thermal behavior of nonplanar surfaces

    NASA Astrophysics Data System (ADS)

    Bartos, B.; Stein, K.

    2015-10-01

    The Fraunhofer thermal object model (FTOM) predicts the temperature of an object as a function of the environmental conditions. The model has an outer layer exchanging radiation and heat with the environment and a stack of layers beyond modifying the thermal behavior. The innermost layer is at a constant or variable temperature called core temperature. The properties of the model (6 parameters) are fitted to minimize the difference between the prediction and a time series of measured temperatures. The model can be used for very different objects like backgrounds (e.g. meadow, forest, stone, or sand) or objects like vehicles. The two dimensional enhancement was developed to model more complex objects with non-planar surfaces and heat conduction between adjacent regions. In this model we call the small thermal homogenous interacting regions thermal pixels. For each thermal pixel the orientation and the identities of the adjacent pixels are stored in an array. In this version 7 parameters have to be fitted. The model is limited to a convex geometry to reduce the complexity of the heat exchange and allow for a higher number of thermal pixels. For the test of the model time series of thermal images of a test object (CUBI) were analyzed. The square sides of the cubes were modeled as 25 thermal pixels (5 × 5). In the time series of thermal images small areas in the size of the thermal pixels were analyzed to generate data files that can easily be read by the model. The program was developed with MATLAB and the final version in C++ using the OpenMP multiprocessor library. The differential equation for the heat transfer is the time consuming part in the computation and was programmed in C. The comparison show a good agreement of the fitted and not fitted thermal pixels with the measured temperatures. This indicates the ability of the model to predict the temperatures of the whole object.

  2. Comparison of 1D and 2D modelling with soil erosion model SMODERP

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan

    2013-04-01

    The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can

  3. Analytic signal extraction approach based on 2D Grating Interferometer and systematic comparison between 2D GI and 1D case

    NASA Astrophysics Data System (ADS)

    Ju, Z.; Wang, Y.; Li, P.; Zhu, Z.; Zhang, K.; Huang, W.; Yuan, Q.; Wu, Z.; Zhu, P.

    2016-03-01

    X-ray imaging method based on 2D grating interferometer was proposed and studied recently, to overcome the limitations in signal extraction and phase retrieval when using 1D grating interferometer. In this paper, the concept of angle-signal response function is proposed, and different surfaces of different 2D setups under the condition of parallel coherent light are calculated and depicted with Matlab. Based on this concept, performance of 2D grating interferometer is systematically analyzed and an analytic 2D signal extraction approach is theoretically proposed. Besides, signal extraction, phase retrieval and feasibility of using conventional source are also briefly discussed and compared between 2D grating interferometer and 1D case.

  4. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  5. Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells

    NASA Astrophysics Data System (ADS)

    Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif

    2015-09-01

    Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.

  6. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    SciTech Connect

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  7. 1D and 2D Assembly of Plant Viruses for Materials Development

    SciTech Connect

    Qian Wang

    2013-01-11

    The research focused on the development of novel bionanoparticle (BNP)-based materials, especially the assembly of chemically and genetically-tailored BNP at the interface between immiscible fluids. The chemical, physical, dynamical and mechanistic aspects have been studied in this research. In particular, rod-like tobacco mosaic virus (TMV) based anisotropic nanorods were synthesized via RNA or polymer assisted assembling process. Such kind of TMV-rods offers an ideal model system for the mechanistic study of orienting and packing anisotropic nanoparticles, which may have great potential in the applications of photovoltaic and field emission devices. Specific objectives include: 1) Synthesize BNPs with controlled functionality at defined positions; 2) synthesize 1D nanorods with defined length via polymer or RNA assisted assembly of TMV or TMV coat proteins; 3) self-assemble and crosslink BNPs and TMV-nanorods at liquid-liquid interfaces; 4) quantitatively characterize the structural organization of the 1D and 2D BNP-assemblies using both small angle neutron scattering and synchrotron small angle X-ray scattering; and 5) develop methods to apply grazing incidence small angle X-ray/neutron scattering to investigate the assemblies of BNPs.

  8. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guangwei, Li; Haotong, Zhang; Zhongrui, Bai

    2015-06-01

    Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our

  9. Comparison of conventional (100%), two dimensional (2D), and three-dimensional (3D) seismic data: Case histories from the Midcontinent

    SciTech Connect

    Schloeder, F.X. III

    1995-09-01

    The principal objective of seismic exploration is to determine three geologic parameters, the structural top, the bottom, and the lateral extent of an oil and gas reservoir. Conventional (100%) data is very efficient in locating the structural top and bottom of reservoirs. Two-dimensional (2D) common depth point (CDP) seismic data provides an immense improvement in seismic data quality over conventional (100%) data. This improvement enables the explorer to better visualize and map the reservoir in each direction of the seismic line. Three-dimensional (3D) seismic technology provides even more mappable data and capability. The explorer may visualize every imaginable direction and subtlety of a reservoir. This talk compares conventional (100%), two-dimensional (2D), and three-dimensional (3D) seismic data from the Midcontinent. Case histories of the Douglass (Upper Pennsylvanian) in Texas, the Morrow (Lower Pennsylvanian) in Colorado, the {open_quotes}Chat{close_quotes} (Mississippian) and the Hunton (Silurian-Devonian) in Oklahoma, and the Simpson (Ordovician) in Kansas will be discussed. Major and independent operators can maximize their exploration efforts by integrating existing data with three-dimensional (3D) technology and a solid geologic interpretation.

  10. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    DOE PAGESBeta

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less

  11. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    PubMed Central

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-01-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220

  12. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    SciTech Connect

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  13. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  14. An energy investigation into 1D/2D oriented-attachment assemblies of 1D Ag nanocrystals.

    PubMed

    Lv, Weiqiang; Yang, Xuemei; Wang, Wei; Niu, Yinghua; Liu, Zhongping; He, Weidong

    2014-09-15

    In the field of oriented-attachment crystal growth, one-dimensional nanocrystals are frequently employed as building blocks to synthesize two-dimensional or large-aspect-ratio one-dimensional nanocrystals. Despite recent extensive experimental advances, the underlying inter-particle interaction in the synthesis still remains elusive. In this report, using Ag as a platform, we investigate the van der Waals interactions associated with the side-by-side and end-to-end assemblies of one-dimensional nanorods. The size, aspect ratio, and inter-particle separation of the Ag precursor nanorods are found to have dramatically different impacts on the van der Waals interactions in the two types of assemblies. Our work facilitates the fundamental understanding of the oriented-attachment assembling mechanism based on one-dimensional nanocrystals. PMID:24954815

  15. Transport and Retention of Fullerene Aggregates in Heterogeneous Two Dimensional (2-D) Aquifer Cells Containing Natural Aquifer Sands

    NASA Astrophysics Data System (ADS)

    Walker, D. I.; Wolfand, J.; Wang, Y.; Bai, C.; Li, Y.; Abriola, L. M.; Pennell, K. D.

    2011-12-01

    Understanding the processes governing nanomaterial fate in subsurface environments is important due to their widespread use in commercial and manufacturing settings. To date, the majority of studies on nanoparticle transport in porous media have been conducted under idealized conditions in columns packed with uniform, clean sands. To evaluate the transport of nanoparticles in more representative subsurface systems, column and aquifer cell experiments were completed to investigate the transport of fullerene aggregates (nC60) in unwashed Ottawa sands and in the presence of low permeability lenses. To obtain independent measurements of attachment parameters, nC60 breakthrough and retention profiles were measured in 1-D columns (2.5 dia x 10.8 cm length) with three different size fractions (40-50 mesh, d50=335 μm; 80-100 mesh, d50=165 μm; and 100-140 mesh, d50=125 μm) of unwashed Ottawa sand. A three pore volume pulse of nC60 (ca. 2.5 mg/L) suspension containing 6 mM NaCl resulted in 71, 5 and 3 percent breakthrough in the 40-50, 80-100 and 100-140 mesh unwashed Ottawa sand, respectively. Solid phase retention profiles for all three size fractions exhibited hyper-exponential decline with distance from the column inlet, consistent with a physical straining process. The aquifer cells (63 x 36 x 1.4 cm) were packed with unwashed 40-50 mesh Ottawa sand as the background medium, in which rectangular lenses (2.4 cm x 9.6 cm) of lower permeability (80-100 and 100-140 mesh) were emplaced. Following completion of nonreactive tracer tests, 200-400 mL pulses of nC60 (ca. 2.5 mg/L) suspension were injected through side-ports up-gradient of the lenses. Only trace amounts of nC60 were detected in aqueous samples collected from down-gradient sampling ports. Post-experiment dissection of the aquifer cell demonstrated that solid phase concentrations of nC60 were largest surrounding the injection ports and decreased monotonically with no preferential accumulation observed at the

  16. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes

    NASA Astrophysics Data System (ADS)

    Ok, Jong G.; Panday, Ashwin; Lee, Taehwa; Jay Guo, L.

    2014-11-01

    We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a `single-stroke' 2D patterning using a DNI tool in VIP.

  17. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes.

    PubMed

    Ok, Jong G; Panday, Ashwin; Lee, Taehwa; Jay Guo, L

    2014-12-21

    We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a 'single-stroke' 2D patterning using a DNI tool in VIP. PMID:25363145

  18. von Neumann Stability Analysis of Numerical Solution Schemes for 1D and 2D Euler Equations

    NASA Astrophysics Data System (ADS)

    Konangi, Santosh; Palakurthi, Nikhil Kumar; Ghia, Urmila

    2014-11-01

    A von Neumann stability analysis is conducted for numerical schemes for the full system of coupled, density-based 1D and 2D Euler equations, closed by an isentropic equation of state. The governing equations are discretized on a staggered grid, which permits equivalence to finite-volume discretization. Presently, first-order accurate spatial and temporal finite-difference techniques are analyzed. The momentum convection term is treated as explicit, semi-implicit or implicit. Density upwind bias is included in the spatial operator of the continuity equation. By combining the discretization techniques, ten solution schemes are formulated. For each scheme, unstable and stable regimes are identified through the stability analysis, and the maximum allowable CFL number is predicted. The predictions are verified for selected schemes, using the Riemann problem at incompressible and compressible Mach numbers. Very good agreement is obtained between the analytically predicted and ``experimentally'' observed CFL values for all cases, thereby validating the analysis. The demonstrated analysis provides an accurate indication of stability conditions for the Euler equations, in contrast to the simplistic conditions arising from model equations, such as the wave equation.

  19. Spectral functions in the 1D and 2D Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Ivancic, Robert; Duchon, Eric; Trivedi, Nandini

    2014-03-01

    We use state of the art numerical techniques including quantum Monte Carlo and maximum entropy methods to obtain the low energy excitation spectra in the superfluid and Mott-insulator phases of the Bose Hubbard model. These results are checked in 1D against Bethe Ansatz and tDMRG results and extended to 2D where such approaches are impossible. In the superfluid, we find linearly dispersing Bogoliubov sound modes as well as additional gapped modes broadened by interaction effects. In the Mott insulator, we find evidence for a finite gap and well defined quasiparticle excitations. We examine properties such as the excitation lifetime, density of states, and speed of sound as the system is tuned across the quantum phase transition that separates the superfluid and Mott states. These results provide an important theoretical framework for upcoming ultracold atom experiments in one and two dimensions. We acknowledge support from the NSF DMR-0907275 (R.I., E.D. and N.T.).

  20. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  1. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  2. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  3. Hydrothermal synthesis and structural characterization of two 1-D and 2-D Dawson-based phosphotungstates

    SciTech Connect

    Zhao Junwei; Zheng Shoutian; Liu Wei; Yang Guoyu

    2008-03-15

    Two new Dawson-based phosphotungstates (H{sub 2}en){sub 0.5}H[Cu(en){sub 2}(H{sub 2}O)]{sub 2}{l_brace}[Cu(en){sub 2}]({alpha}{sub 1}-P{sub 2}W{sub 17}CuO{sub 61}){r_brace}.8H{sub 2}O (1) (en=ethylenediamine) and [4,4'-H{sub 2}bpy]{sub 2}{l_brace}[Cu(4,4'-bpy){sub 3}][Cu(4,4'-bpy){sub 4}(H{sub 2}O){sub 2}]{sub 2}[Cu(4,4'-bpy)][{alpha}-P{sub 2}W{sub 1=} 8O{sub 62}]{sub 2}{r_brace}.6H{sub 2}O (2) (4,4'-bpy=4,4'-bipyridine) have been hydrothermally synthesized and structurally characterized. 1 crystallizes in the triclinic space group P-1 with a=11.7626(17), b=13.246(2), c=29.350(5) A, {alpha}=87.355(5), {beta}=79.583(5), {gamma}=66.993(3){sup o}, V=4138.3(11) A{sup 3}, Z=2, GOF=1.089, R{sub 1}=0.0563 and wR{sub 2}=0.1505, whereas 2 belongs to the orthorhombic space group Iba2 with a=22.277(8), b=47.04(2), c=22.153(8) A, V=23215(17) A{sup 3}, Z=4, GOF=1.051, R{sub 1}=0.0627 and wR{sub 2}=0.1477. 1 consists of a 1-D linear chain structure constructed from monocopper{sup II}-substituted Dawson polyoxoanions, while 2 represents the first 2-D sheet-like structure with a (4,4)-connected topological net built up from plenary Dawson-type polyoxoanions and Cu{sup II}-4,4'-bpy complex cations in polyoxometalate chemistry. - Graphical abstract: Two Dawson-based phosphotungstates (H{sub 2}en){sub 0.5}H[Cu(en){sub 2}(H{sub 2}O)]{sub 2}{l_brace}[Cu(en){sub 2}]({alpha}{sub 1}-P{sub 2}W{sub 17}CuO{sub 61}){r_brace}.8H{sub 2}O (1) and [4,4'-H{sub 2}bpy]{sub 2}{l_brace}[Cu(4,4'-bpy){sub 3}][Cu(4,4'-bpy){sub 4}(H{sub 2}O){sub 2}]{sub 2}[Cu(4,4'-bpy)][{alpha}-P{sub 2}W{sub 1=} 8O{sub 62}]{sub 2}{r_brace}.6H{sub 2}O (2) have been hydrothermally synthesized and structurally characterized. 1 consists of a 1-D linear chain structure constructed from monocopper-substituted Dawson polyoxoanions, while 2 represents the first 2-D sheet-like structure with a (4,4)-connected topological net built up from saturated Dawson-type polyoxoanions and Cu{sup II}-4,4'-bpy complex cations in

  4. Two-dimensional correlation spectroscopy (2D-COS) variable selection for near-infrared microscopy discrimination of meat and bone meal in compound feed.

    PubMed

    Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia

    2014-01-01

    This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data. PMID:25061786

  5. Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.

  6. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    PubMed

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  7. The reaction of N/2D/ with O2 as a source of O/1D/ atoms in aurorae

    NASA Technical Reports Server (NTRS)

    Rusch, D. W.; Sharp, W. E.; Gerard, J.-C.

    1978-01-01

    The source of O(1D) atoms in the auroral ionosphere is investigated using sounding rocket data. Previously, it has been shown that the conventional sources of O(1D) atoms in the aurora, dissociative recombination of O2(plus) and electron impact excitation of atomic oxygen, fail to explain the measured 6300 A volume emission rate profile. It is suggested that the atom-atom interchange reaction of N(2D) with O2 can be the major source of auroral 6300 A emission if O(1D) is created with high efficiency.

  8. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  9. Pulse methods in 1D and 2D liquid-phase NMR

    SciTech Connect

    Brey, W.S.

    1988-01-01

    State-of-the-art nuclear magnetic resonance spectrometers are capable of performing an array of multiple-pulse one-dimensional and two-dimensional experiments. These experiments can provide detailed information about the structure, dynamics, and reactions of molecules. However, their successful application to chemical problems requires that the chemist have some knowledge of the various experiments and the information they can provide. This book, written by authorities in the field, provides such information for both the specialist and the nonspecialist.

  10. Advanced Nodal P3/SP3 Axial Transport Solvers for the MPACT 2D/1D Scheme

    SciTech Connect

    Stimpson, Shane G; Collins, Benjamin S

    2015-01-01

    As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P3/SP3 solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P3/SP3 approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP3 solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP3 solver is still under development, it is intended to resolve the issues with HY-NEM-SP3 but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P3 solver to generate the second moment cell-averaged scalar flux.

  11. Disappearance of 2D Magnetic Character in Quasi-1D System CoNb2O6 under Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Kobayashi, Satoru; Katagiri, Kouji; Yoshizawa, Hideki; Ishikawa, Masayasu; Miyatani, Kazuo; Kohn, Kay

    1995-07-01

    We report neutron scattering as well as ac susceptibility studies on the formation of magnetic ordering in a quasi-1D ferromagnetic chain system CoNb2O6 in magnetic fields up to 600 Oe. At T=1.5 K, a noncollinear ferrimagnetic (FR) phase with up-up-down spin arrangement along the b axis is field-induced in the magnetic field above ˜300 Oe. Interestingly, the pronounced 2D magnetic character previously found in the noncollinear antiferromagnetic phase disappears in the FR phase. This is direct evidence that the 2D magnetic character is due to the cancellation of interchain exchange fields at an apex site of a 2D isosceles-triangular lattice where quasi-1D ferromagnetic chains lie.

  12. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept. PMID:27588873

  13. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  14. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  15. The clearance of human fibrinogen fragments D1, D2, D3 and fibrin fragment D1 dimer in mice.

    PubMed

    Pizzo, S V; Pasqua, J J

    1982-10-01

    The clearance of human fibrinogen fragments D1, D2, D3 and fibrin fragment D1 dimer were studied in the mouse model. Clearance of these fragments is a complex process involving clearance from blood into three other compartments. The overall clearance of fragment D1 and its dimer were essentially identical. Fragments D2 and D3 cleared at a progressively slower rate. Competition studies were performed between 125I-labeled fragment D1 and large molar excesses of unlabeled human fragments D1, D2, D3, D1 dimer, fragment E, fibrinogen, macroalbumin, mannan and asialoorosomucoid. Of these ligands only the fragment D variants competed for the clearance of 125I-labeled fragment D1. Cross-competition was observed when 125I-labeled fragment D1 dimer was cleared in the presence of a large molar excesses of fragment D1. Autopsies demonstrated that injected fragments D1, D2, D3 and D1 dimer cleared primarily in liver and kidneys. In some clearance studies, livers were perfused with tissue culture fluid, subjected to light microscopic autoradiography, and silver grain counts performed to localize cleared fragment D1. These experiments indicated that 80% of the liver uptake was in hepatocytes. However, when silver grain counts were normalized for the number of parenchymal and nonparenchymal cells, the distribution of silver grains was essentially identical (1.8 and 1.6 grains per cells, respectively). It is concluded that fragments D1, D2, D3 and D1 dimer are recognized by a similar clearance pathway. Since neither fibrinogen nor fragment E competed for the clearance of fragment D1, it is suggested that determinants present in the fragment D domain become exposed after plasmin attack on fibrinogen and are responsible for clearance. PMID:7138910

  16. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  17. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  18. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging.

    PubMed

    Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E

    2014-06-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487

  19. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    NASA Astrophysics Data System (ADS)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  20. 2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan; Moore, Chris; Boerner, Jeremiah

    2015-09-01

    Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Dolphin: a tool for automatic targeted metabolite profiling using 1D and 2D (1)H-NMR data.

    PubMed

    Gómez, Josep; Brezmes, Jesús; Mallol, Roger; Rodríguez, Miguel A; Vinaixa, Maria; Salek, Reza M; Correig, Xavier; Cañellas, Nicolau

    2014-12-01

    One of the main challenges in nuclear magnetic resonance (NMR) metabolomics is to obtain valuable metabolic information from large datasets of raw NMR spectra in a high throughput, automatic, and reproducible way. To date, established software packages used to match and quantify metabolites in NMR spectra remain mostly manually operated, leading to low resolution results and subject to inconsistencies not attributable to the NMR technique itself. Here, we introduce a new software package, called Dolphin, able to automatically quantify a set of target metabolites in multiple sample measurements using an approach based on 1D and 2D NMR techniques to overcome the inherent limitations of 1D (1)H-NMR spectra in metabolomics. Dolphin takes advantage of the 2D J-resolved NMR spectroscopy signal dispersion to avoid inconsistencies in signal position detection, enhancing the reliability and confidence in metabolite matching. Furthermore, in order to improve accuracy in quantification, Dolphin uses 2D NMR spectra to obtain additional information on all neighboring signals surrounding the target metabolite. We have compared the targeted profiling results of Dolphin, recorded from standard biological mixtures, with those of two well established approaches in NMR metabolomics. Overall, Dolphin produced more accurate results with the added advantage of being a fully automated and high throughput processing package. PMID:25370160

  2. 2D Spatial Frequency Considerations in Comparing 1D Power Spectral Density Measurements

    SciTech Connect

    Takacs, P.Z.; Barber, S.; Church, E.L.; Kaznatcheev, K.; McKinney, W.R.; Yashchuk, V.Y.

    2010-06-14

    The frequency footprint of ID and 2D profiling instruments needs to be carefully considered in comparing ID surface roughness spectrum measurements made by different instruments. Contributions from orthogonal direction frequency components can not be neglected. The use of optical profiling instruments is ubiquitous in the measurement of the roughness of optical surfaces. Their ease-of-use and non-contact measurement method found widespread use in the optics industry for measuring the quality of delicate optical surfaces. Computerized digital data acquisition with these instruments allowed for quick and easy calculation of surface roughness statistics, such as root-mean-square (RMS) roughness. The computing power of the desktop computer allowed for the rapid conversion of spatial domain data into the frequency domain, enabling the application of sophisticated signal processing techniques to be applied to the analysis of surface roughness, the most powerful of which is the power spectral density (PSP) function. Application of the PSD function to surface statistics introduced the concept of 'bandwidth-limited' roughness, where the value of the RMS roughness depends critically upon the spatial frequency response of the instrument. Different instruments with different spatial frequency response characteristics give different answers when measuring the same surface.

  3. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is

  4. Constraint directed CAD tool for automatic latency-optimal implementation of 1-D and 2-D Fourier transforms

    NASA Astrophysics Data System (ADS)

    Nash, J. Gregory

    2002-07-01

    A specialized CAD tool is described that will take a user's high level code description of a non-uniform affinely indexed algorithm and automatically generate abstract latency-optimal systolic arrays. Emphasis has been placed on ease of use and the ability to either force conformation to specific design criteria or perform unconstrained explorations. How such design goals are achieved is illustrated in the context of LU decomposition and the matrix Lyapunov equation. The tool is then used to generate new 1-D and 2-D hardware efficient systolic arrays for the discreet Fourier transform that take advantage of the use of the radix-4 matrix decomposition.

  5. Vectorization of a 2D-1D Iterative Algorithm for the 3D Neutron Transport Problem in Prismatic Geometries

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Févotte, François; Lathuilière, Bruno; Plagne, Laurent

    2014-06-01

    The past few years have been marked by a noticeable increase in the interest in 3D whole-core heterogeneous deterministic neutron transport solvers for reference calculations. Due to the extremely large problem sizes tackled by such solvers, they need to use adapted numerical methods and need to be efficiently implemented to take advantage of the full computing power of modern systems. As for numerical methods, one possible approach consists in iterating over resolutions of 2D and 1D MOC problems by taking advantage of prismatic geometries. The MICADO solver, developed at EDF R&D, is a parallel implementation of such a method in distributed and shared memory systems. However it is currently unable to use SIMD vectorization to leverage the full computing power of modern CPUs. In this paper, we describe our first effort to support vectorization in MICADO, typically targeting Intel© SSE CPUs. Both the 2D and 1D algorithms are vectorized, allowing for high expected speedups for the whole spatial solver. We present benchmark computations, which show nearly optimal speedups for our vectorized implementation on the TAKEDA case.

  6. Self-assembly of silver(I) coordination polymers from aminopyrimidyl derivatives and malonate acid: From 1D chain to 2D layer

    NASA Astrophysics Data System (ADS)

    Sun, Di; Zhang, Na; Xu, Qin-Juan; Luo, Geng-Geng; Huang, Rong-Bin; Zheng, Lan-Sun

    2010-04-01

    Two new silver(I) coordination polymers (CPs) of the formula [Ag 2(dmapym) 4(mal)·H 2O] n ( 1) and [Ag 3(apym) 3(mal)NO 3] n ( 2) (dmapym = 2-amino-4,6-dimethylprimidine, apym = 2-aminopyrimidine, H 2mal = malonate) have been synthesized by reactions of AgNO 3 and 2-aminopyrimidyl ligands with malonate under the ammoniacal condition. Both complexes have been characterized by element analysis, IR and single-crystal X-ray diffraction. The monodentate dmapym and tridentate mal ligands link Ag(I) ions to give complex 1 a one-dimensional (1D) H-shaped chain structure. The complex 2 is a two-dimensional (2D) double sheet structure constructed by (4, 4) single sheet. Additionally, the hydrogen-bonding and C-H⋯π interactions also direct the self-assembly of supramolecular architectures. The photoluminescence properties of the 1 and 2 were investigated in the solid state at room temperature.

  7. On the parameterization of 1D vertical mixing in planetary atmospheres: insights from 2D and 3D simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2015-11-01

    Most of the current atmospheric chemistry models for planets (e.g., Krasnopolsky & Parshev 1981; Yung & Demore 1982; Yung, Allen & Pinto 1984; Lavvas et al. 2008; Zhang et al. 2012) and exoplanets (e.g., Line, Liang & Yung 2010; Moses et al. 2011; Hu & Seager 2014) adopt a one-dimensional (1D) chemical-diffusion approach in the vertical coordinate. Although only a crude approximation, these 1D models have succeeded in explaining the global-averaged vertical profiles of many chemical species in observations. One of the important assumptions of these models is that all chemical species are transported via the same eddy diffusion profile--that is, the assumption is made that the eddy diffusivity is a fundamental property of the dynamics alone, and does not depend on the chemistry. Here we show that, as also noticed in the Earth community (e.g., Holton 1986), this “homogenous eddy diffusion” assumption generally breaks down. We first show analytically why the 1D eddy diffusivity must generally depend both on the horizontal eddy mixing and the chemical lifetime of the species. This implies that the long-lived species and short-lived chemical species will generally exhibit different eddy diffusion profiles, even in a given atmosphere with identical dynamics. Next, we present tracer-transport simulations in a 2D chemical-diffusion-advection model (Shia et al. 1989; Zhang, Shia & Yung 2013) and a 3D general circulation model (MITgcm, e.g., Liu & Showman 2013), for both rapid-rotating planets and tidally-locked exoplanets, to further explore the effect of chemical timescales on the eddy diffusivity. From the 2D and 3D simulation outputs, we derive effective 1D eddy diffusivity profiles for chemical tracers exhibiting a range of chemical timescales. We show that the derived eddy diffusivity can depend strongly on the horizontal eddy mixing and chemistry, although the dependences are more complex than the analytic model predicts. Overall, these results suggest that

  8. Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor

    A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.

  9. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties.

    PubMed

    Island, Joshua O; Biele, Robert; Barawi, Mariam; Clamagirand, José M; Ares, José R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  10. Floodplain mapping via 1D and quasi-2D numerical models in the valley of Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Oikonomou, Athanasios; Dimitriadis, Panayiotis; Koukouvinos, Antonis; Tegos, Aristoteles; Pagana, Vasiliki; Panagopoulos, Panayiotis-Dionisios; Mamassis, Nikolaos; Koutsoyiannis, Demetris

    2013-04-01

    The European Union Floods Directive defines a flood as 'a covering by water of land not normally covered by water'. Human activities, such as agriculture, urban development, industry and tourism, contribute to an increase in the likelihood and adverse impacts of flood events. The study of the hydraulic behaviour of a river is important in flood risk management. Here, we investigate the behaviour of three hydraulic models, with different theoretical frameworks, in a real case scenario. The area is located in the Penios river basin, in the plain of Thessaly (Greece). The three models used are the one-dimensional HEC-RAS and the quasi two-dimensional LISFLOOD-FP and FLO-2D which are compared to each other, in terms of simulated maximum water depth as well as maximum flow velocity, and to a real flood event. Moreover, a sensitivity analysis is performed to determine how each simulation is affected by the river and floodplain roughness coefficient, in terms of flood inundation.

  11. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    PubMed Central

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  12. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-03-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.

  13. Extending the Nonlinear-Beam-Dynamics Concept of 1D Fixed Points to 2D Fixed Lines

    NASA Astrophysics Data System (ADS)

    Franchetti, G.; Schmidt, F.

    2015-06-01

    The origin of nonlinear dynamics traces back to the study of the dynamics of planets with the seminal work of Poincaré at the end of the nineteenth century: Les Méthodes Nouvelles de la Mécanique Céleste, Vols. 1-3 (Gauthier Villars, Paris, 1899). In his work he introduced a methodology fruitful for investigating the dynamical properties of complex systems, which led to the so-called "Poincaré surface of section," which allows one to capture the global dynamical properties of a system, characterized by fixed points and separatrices with respect to regular and chaotic motion. For two-dimensional phase space (one degree of freedom) this approach has been extremely useful and applied to particle accelerators for controlling their beam dynamics as of the second half of the twentieth century. We describe here an extension of the concept of 1D fixed points to fixed lines in two dimensions. These structures become the fundamental entities for characterizing the nonlinear motion in the four-dimensional phase space (two degrees of freedom).

  14. Extending the Nonlinear-Beam-Dynamics Concept of 1D Fixed Points to 2D Fixed Lines.

    PubMed

    Franchetti, G; Schmidt, F

    2015-06-12

    The origin of nonlinear dynamics traces back to the study of the dynamics of planets with the seminal work of Poincaré at the end of the nineteenth century: Les Méthodes Nouvelles de la Mécanique Céleste, Vols. 1-3 (Gauthier Villars, Paris, 1899). In his work he introduced a methodology fruitful for investigating the dynamical properties of complex systems, which led to the so-called "Poincaré surface of section," which allows one to capture the global dynamical properties of a system, characterized by fixed points and separatrices with respect to regular and chaotic motion. For two-dimensional phase space (one degree of freedom) this approach has been extremely useful and applied to particle accelerators for controlling their beam dynamics as of the second half of the twentieth century. We describe here an extension of the concept of 1D fixed points to fixed lines in two dimensions. These structures become the fundamental entities for characterizing the nonlinear motion in the four-dimensional phase space (two degrees of freedom). PMID:26196806

  15. Resolution of rupture directivity in weak events (Mw ~ 5): a comparison of 1D and 2D source parameterizations

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Stich, Daniel; Morales, José; Ferreira, Ana M. G.

    2016-04-01

    Rupture directivity of small to moderate magnitude earthquakes may resolve the fault plane ambiguity and explain the disproportionate damage caused by some events. However, it is challenging to robustly resolve characteristic parameters such as direction, length, asymmetry and speed of rupture of weak events with short source durations. Here we infer directivity from apparent source time functions (ASTF) at regional distance and quantify the associated uncertainties. First, we use ASTF durations to model a propagating 1D line source with general asymmetry. Second, we use the full ASTF signals to invert for the 2D distribution of fault slip. Slip inversion is performed through a Popperian scheme, where random trial models are either falsified on account of large misfit, or else become member of the solution set of the inverse problem. We assess the resolution of rupture directivity representing centroid shifts from the solution set in a rose diagram. Using as example an event with well-studied rupture directivity, the 2011 Mw 5.2 Lorca (Spain) earthquake, 1D and 2D parameterizations yield similar estimates for direction (N213°E and N220°E respectively) and asymmetry (67:33, 65:35) of rupture propagation, as well as rupture length (2.1 km, 2.7 km) and speed (3.5 km/s, 3.25 km/s). The asymmetry of rupture is moderate, and the high rupture velocity ≥ 90% vS may be held primarily responsible for the strong directivity effect of this earthquake. Formal uncertainties of rupture extent and speed are large in the 1D model, while the more general 2D model produces larger uncertainties in rupture directivity and asymmetry. We show that inversion of apparent source durations is intrinsically unable to resolve highly asymmetric bilateral ruptures, while inversion of full ASTFs misses part of the signal's complexity, suggesting the presence of deconvolution artifacts. We extend the analysis to the Mw 4.6 foreshock of the Lorca earthquake, inferring similar directivity

  16. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: Summary of principles and its application to amyloid fiber monolayers

    PubMed Central

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L.; Skoff, David R.; Zhang, Tianqi; Zanni, Martin T.

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl 4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a−) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrates the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure. PMID:25611039

  17. Coronates, spherical containers, bowl-shaped surfaces, porous 1D-, 2D-, 3D-metallo-coordination polymers, and metallodendrimers.

    PubMed

    Saalfrank, Rolf W; Scheurer, Andreas

    2012-01-01

    Supramolecular coordination cages and polymers bear exceptional advantages over their organic counterparts. They are available in one-pot reactions and in high yields and display physical properties that are generally inaccessible with organic species. Moreover, their weak, reversible, noncovalent bonding interactions facilitate error checking and self-correction. This review emphasizes the achievements in supramolecular coordination container as well as polymer chemistry initiated by serendipity and their materialization based on rational design. The recognition of similarities in the synthesis of different supramolecular assemblies allows prediction of potential structures in related cases. The combination of detailed symmetry considerations with the basic rules of coordination chemistry has only recently allowed for the design of rational strategies for the construction of a variety of nanosized spherical containers, bowls, 1D-, 2D-, and 3D-coordination polymers with specified size and shape. PMID:22160460

  18. Transition from 1D to 2D Laser-Induced Ultrasonic Wave Propagation in an Extended Plate

    NASA Astrophysics Data System (ADS)

    Laloš, Jernej; Požar, Tomaž; Možina, Janez

    2016-05-01

    Optodynamic interaction between a laser pulse and the surface of an opaque, solid elastic object produces transient waves that propagate and reverberate within the object. They can be, in general, categorized into three distinctive types which are all formed through different mechanisms: ablation-induced waves, light-pressure-induced waves, and thermoelastic waves. In this paper, out-of-plane displacements of such waves are simulated at the epicentral position on the opposite side of an extended plane-parallel elastic plate. Wave propagation is mathematically described by Green's transfer functions convolved with suitable time profiles of the incoming laser pulses. The simulated size of the circularly symmetric laser-illuminated area on the plate surface is varied to show the limit-to-limit transition of the displacement waveforms: from a 2D point source to an infinite 1D source.

  19. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  20. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-01-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future. PMID:26842242

  1. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-01-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin "Si-random grating-Si" sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future. PMID:26842242

  2. Comparison of 1D, 2D and 2.5D Constrained Inversion of Electrical Resistivity Data

    NASA Astrophysics Data System (ADS)

    Catt, L. M.; West, J.; Clark, R. A.

    2007-05-01

    Clay-rich till plains cover much of the UK. Such sites are attractive locations for landfills, since the till cover lowers the risk of landfill leachate entering groundwater. However, such tills often contain discrete sand and gravel bodies that can act as leachate flow routes. Such bodies may not be detected by conventional site investigation techniques such as drilling boreholes and trial pitting. A combined geoelectrical survey was carried out at a study site typical of such till plains and close to cliff exposures, which allowed direct mapping of sand bodies. Electrical resistivity tomography (ERT), resistivity cone penetrometry (RCPT) and frequency-domain electromagnetic data were collected. In a previous study, the electromagnetic and RCPT data were used to construct reference models for 2D inversion of the ERT data. The use of these reference models improved the solution models produced by inversion. We showed that the best solution model produced by inversion with a range of reference models could be determined without a priori knowledge of the true geoelectrical structure. This was done by using the area-weighted L2 norm between the solution models and associated reference models as a proxy for the misfit between the solution models and the true geoelectrical structure of the ground. In order to assess the most suitable method for combining invasive and non-invasive measurements, we compare both constrained and unconstrained 1D, 2D and 2.5D inversions of resistivity data collected at the study site. Preliminary results suggest that for 2.5D inversion the true 3D geoelectrical structure of the ground at the field study site is not sufficiently well known for comparison between the solution models and the true geoelectrical structure of the ground to be made. The results of work in progress evaluating layer-depth- constrained 1D inversion will be presented at the meeting.

  3. Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

    NASA Astrophysics Data System (ADS)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2015-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.

  4. Syntheses, structures, and properties of two novel cadmium coordination polymers with 1D and 2D structures

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Chuanbi; Zhu, Dongsheng; Xu, Lin

    2011-09-01

    Two novel complexes [Cd 2(MIP) 2(BDC) 2]n ( 1) [MIP = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, BDC = terephthalic acid] and [Cd(IPM)(NDC)]n ( 2) [IPM = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-2-methoxyphenol, NDC = naphthalene-1,4-dicarboxylic acid] have been synthesized by hydrothermal reaction and characterized by elemental analysis, IR, single-crystal X-ray diffraction and thermogravimetric analysis (TGA). Complex 1 exhibits 1D zigzag chain structure and complex 2 shows 2D layer topology. The intermolecular C sbnd H⋯O interactions extend the complex 1 into 2D networks, and the existing H-bonds further stabilized the complexes 1-2, which can be proved by TGA experiment. Furthermore, the solid-state fluorescence spectrum of the complex 2 was studied, as well as the ligand IPM. The complex 2 exhibits intense broad emission at 540 nm at room temperature, which is red-shifted by 45 nm relative to that of free ligand IPM.

  5. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.

    PubMed

    Sanda, Suresh; Biswas, Soumava; Konar, Sanjit

    2015-02-16

    We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h. PMID:25594401

  6. Effects of 3 dimensional crystal geometry and orientation on 1D and 2D time-scale determinations of magmatic processes using olivine and orthopyroxene

    NASA Astrophysics Data System (ADS)

    Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia

    2014-05-01

    One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data

  7. Current status of one- and two-dimensional numerical models: Successes and limitations

    NASA Technical Reports Server (NTRS)

    Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.

    1985-01-01

    The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.

  8. MT2D: an interactive two-dimensional magnetotelluric and line source modeling program (user's guide and documentation for Rev. 3)

    SciTech Connect

    Nutter, C.

    1981-04-01

    MT2D.REV3 is the latest revision of a 2-dimensional, finite-element, interactive MT-line source modeling program. The original program was a batch-mode program developed by John Stodt. An interactive program was developed based on Stodt's program for a UNIVAC 1108. The program uses linear interpolation of the unknown field over triangular sub-domains of the region where a solution is sought in conjunction with the Galerkin technique to derive a system of linear equations which approximate the governing partial differential equation. The solution of this linear system of equations gives the approximate field values at the nodes of the discretized domain. MT2D has an interactive data management system for data manipulation and display built around the finite-element program.

  9. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses

    NASA Astrophysics Data System (ADS)

    Printz Ringbæk, Toke; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens

    2016-06-01

    A ripple filter (RiFi)—also called mini-ridge filter—is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25–30% and 45–49%, respectively.

  10. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses.

    PubMed

    Ringbæk, Toke Printz; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens

    2016-06-01

    A ripple filter (RiFi)-also called mini-ridge filter-is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25-30% and 45-49%, respectively. PMID:27203127

  11. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    SciTech Connect

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  12. A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire

    NASA Astrophysics Data System (ADS)

    de la Mata, Maria; Zhou, Xiang; Furtmayr, Florian; Teubert, Jörg; Gradecak, Silvija; Eickhoff, Martin; Fontcuberta i Morral, Anna; Arbiol, Jordi

    2013-05-01

    We review different strategies to achieve a three-dimensional energy bandgap modulation in a nanowire (NW) by the introduction of self-assembled 0D, 1D and 2D quantum structures, quantum dots (QDs), quantum wires (QWRs) and quantum wells (QWs). Starting with the well-known axial, radial (coaxial/prismatic) or polytypic quantum wells in GaN/AlN, GaAs/AlAs or wurtzite/zinc-blende systems, respectively, we move to more sophisticated structures by lowering their dimensionality. New recent approaches developed for the self-assembly of GaN quantum wires and InAs or AlGaAs quantum dots on single nanowire templates are reported and discussed. Aberration corrected scanning transmission electron microcopy is presented as a powerful tool to determine the structure and morphology at the atomic scale allowing for the creation of 3D atomic models that can help us to understand the enhanced optical properties of these advanced quantum structures.

  13. Novel phase-space Monte-Carlo method for quench dynamics in 1D and 2D spin models

    NASA Astrophysics Data System (ADS)

    Pikovski, Alexander; Schachenmayer, Johannes; Rey, Ana Maria

    2015-05-01

    An important outstanding problem is the effcient numerical computation of quench dynamics in large spin systems. We propose a semiclassical method to study many-body spin dynamics in generic spin lattice models. The method, named DTWA, is based on a novel type of discrete Monte-Carlo sampling in phase-space. We demonstare the power of the technique by comparisons with analytical and numerically exact calculations. It is shown that DTWA captures the dynamics of one- and two-point correlations 1D systems. We also use DTWA to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. Computing spatial and time-dependent correlations, we find a sharp change in the speed of propagation of correlations at a critical range of interactions determined by the system dimension. The investigations are relevant for a broad range of systems including solids, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.

  14. Photon-dressed quasiparticle states in 1D and 2D materials: a many-body Floquet approach

    NASA Astrophysics Data System (ADS)

    Manghi, Franca; Puviani, Matteo

    We studiy the interplay between electron-electron interactions and non-equilibrium conditions associated to time-dependent external fields. Exploring phases of quantum matter away from equilibrium may give access to regimes inaccessible under equilibrium conditions. What makes this field particularly interesting is the possibility to engineer new phases of matter by an external tunable control. We have developed a scheme that allows to treat photo-induced phenomena in the presence of electron-electron many body interactions, where both the nonlinear effects of the external field and the electron-electron correlation are treated simultaneously and in a non-perturbative way. The Floquet approach is used to include the effects of the external time periodic field, and the Cluster Perturbation Theory to describe interacting electrons in a lattice. They are merged in a Floquet-Green function method that allows to calculate photon dressed quasiparticle excitation. For 1D systems we show that an unconventional Mott insulator-to-metal transition occurs for given characteristics of the applied field (intensity and frequency). The method has also been applied to the 2D honeycomb lattice (graphene), where in the presence of realistic values of electron-electron interaction, we show that linearly polarized light may give rise to non-dissipative edge states associated to a non-trivial topological behavior.

  15. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  16. Two-Dimensional IHCP Code

    1997-11-18

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  17. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata.

    PubMed

    Castillejo, Ma Ángeles; Fernández-Aparicio, Mónica; Rubiales, Diego

    2012-01-01

    Crenate broomrape (Orobanche crenata) is considered to be the major constraint for legume crops in Mediterranean countries. Strategies of control have been developed, but only marginal successes have been achieved. For the efficient control of the parasite, a better understanding of its interaction and associated resistance mechanisms at the molecular level is required. The pea response to this parasitic plant and the molecular basis of the resistance was studied using a proteomic approach based on 2D DIGE and MALDI-MSMS analysis. For this purpose, two genotypes showing different levels of resistance to O. crenata, as well as three time points (21, 25, and 30 d after inoculation) have been compared. Multivariate statistical analysis identified 43 differential protein spots under the experimental conditions (genotypes/treatments), 22 of which were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of the proteins identified were metabolic and stress-related proteins and a high percentage of them (86%) matched with specific proteins of legume species. The behaviour pattern of the identified proteins suggests the existence of defence mechanisms operating during the early stages of infection that differed in both genotypes. Among these, several proteins were identified with protease activity which could play an important role in preventing the penetration and connection to the vascular system of the parasite. Our data are discussed and compared with those previously obtained in pea and Medicago truncatula. PMID:21920908

  18. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  19. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    SciTech Connect

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs.

  20. Data page reconstruction method based on two-dimensional soft output Viterbi algorithm with self reference for holographic data storage

    NASA Astrophysics Data System (ADS)

    Koo, Keunhwi; Kim, Soo-Yong; Jeong, Jae Jin; Kim, Sang Woo

    2014-09-01

    This study introduces a two-dimensional (2D) partial response maximum likelihood (PRML) method to reconstruct a degraded data page having 2D inter-symbol interference for holographic data storage. The proposed 2D PRML method consists of 2D partial response (PR) target, 2D equalizer using least mean square algorithm, and 2D soft output Viterbi algorithm (SOVA) having just two one-dimensional (1D) SOVAs in horizontal and vertical directions. To accurately organize a trellis diagram of the 1D SOVA in structural accordance with the 2D PR target, this study proposes the self-reference process for the extrinsic information in the 1D SOVA. Finally, simulation results show that the proposed method has bit error rate performance similar to that of modified 2D SOVA having four 1D SOVAs despite the relatively low computational complexity. Moreover, parallel processing is possible in the two 1D SOVAs through the self-reference process.

  1. A Mass Conservative Method for Integrating 1-D Vadose Zone Simulations Discretized in the Moisture Content Domain with 2-D Groundwater Interflow Simulations

    NASA Astrophysics Data System (ADS)

    Steinke, R. C.

    2015-12-01

    Discretizing 1-D vadose zone simulations in the moisture content domain, such as is done in the Talbot-Ogden method, provides some advantages over discretizing in depth, such as is done in Richards' Equation. These advantages include inherent mass conservation and lower computational cost. However, doing so presents a difficulty for integration with 2-D groundwater interflow simulations. The equations of motion of the bins of discrete moisture content take the depth of the water table as an input. They do not produce it as an output. Finding the correct water table depth so that the groundwater recharge from the 1-D vadose zone simulation mass balances with the lateral flows from the 2-D groundwater interflow simulation was a previously unsolved problem. In this paper we present a net-groundwater-recharge method to solve to this problem and compare it with the source-term method used with Richards' Equation.

  2. Structural and conformational study of the aluminum-thymulin complex using 1-D and 2-D NMR techniques

    SciTech Connect

    Laussac, J.P.; Lefrancier, P.; Dardenne, M.; Bach, J.F.; Marraud, M.; Cung, M.T.

    1988-11-16

    The interaction between aluminum and thymulin, a linear nonapeptide of thymic origin isolated from serum, was investigated by means of one- and two-dimensional NMR experiments. These experiments were performed in dimethyl-d/sub 6/ sulfoxide solution at different metal:peptide ratios. The results lead the following conclusions: (i) the Al(III) complexation corresponds to a fast exchange on the NMR time scale; (ii) the evolution of /sup 1/H and /sup 13/C NMR chemical shifts indicates the existence of one type of complex with a 1:2 stoichiometry, associating two peptide molecules and one Al(III) ion; (iii) analysis of the spectra suggests that Al(III) has a specific binding site involving the Asn/sup 9/COO/sup /minus// terminal group and the hydroxyl group of the Ser/sup 4/ residue; (iv) from the NOESY data a conformation has been proposed and compared to the biologically active Zn(II)-thymulin complex. 23 refs., 6 figs., 1 tab.

  3. Unraveling the heterogeneity in N butyl-N-methylpiperidinium trifluromethanesulfonimide ionic liquid by 1D and 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Neha; Saha, Satyen

    2014-06-01

    Room temperature ionic liquids are one of the most exciting classes of materials in the last decade. In particular piperidinium (PIP) cation based ionic liquid (IL) (such as PIP14NTf2) have found application in electrochemistry/batteries. In this Letter, 2D NMR (NOESY and HOESY) is employed for studying the interactions present between cations and anions. HOESY spectrum shows that fluorine of NTf2 unusually interacts with all proton of the cation (PIP14). Combined HOESY and NOESY indicate that NTf2 anion is distributed heterogeneously in liquid. Existence of micro heterogeneity in this important class of IL is proposed.

  4. Molecular, 1D and 2D assemblies from hexakis(3-pyridyloxy)cyclophosphazene containing 20-membered metallamacrocyclic motifs.

    PubMed

    Suriya Narayanan, Ramakirushnan; Chandrasekhar, Vadapalli

    2016-02-01

    The coordination behaviour of hexakis(3-pyridyloxy)cyclophosphazene (L) towards divalent metal ions is described. The reaction of L with hydrated metal nitrates afforded [{N3P3(O-C5H4N-3)6}2{Zn(H2O)3(NO3)}2{Zn(H2O)2(NO3)}2]n[NO3]2n·4nH2O·nCH3OH (1), [{N3P3(O-C5H4N-3)6}2{Zn(H2O)3(NO3)}2{Cu(NO3)}2]n[NO3]2n·4nH2O·nCH3CN (2), [{N3P3(O-C5H4N-3)6}2{(NO3)Cd-(μ-(NO3)-Cd(NO3)2(μ-(NO3)Cd(NO3)}]n·2nCH3OH·3nH2O (3), and [{N3P3(O-C5H4N-3)6}2{Cd(H2O)3(NO3)}2][NO3]2·9H2O (4). 1 and 2 are one-dimensional coordination polymers while 3 is a two-dimensional coordination polymer. On the other hand 4 is a molecular metallamacrocycle. A common feature of 1-4 is the presence of a 20-membered dimetallamacrocyclic motif constructed through the involvement of a pair of cyclophosphazene ligands through their geminal pyridyloxy substituents. The P-N bond distances in L and its metal complexes 1-4 are nearly the same indicating the flexible nature of the coordination pyridyloxy arms present on the cyclophosphazene scaffold. PMID:26687430

  5. Two-Dimensional Soft Output Viterbi Algorithm with a Variable Reliability Factor for Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Koo, Keunhwi; Kim, Soo-Yong; Jeong, Jae Jin; Kim, Sang Woo

    2013-09-01

    In a practical holographic data storage system, the reconstruction process for a data page should account for the processing time as well as the bit error rate (BER) performance. To improve both aspects, we introduce two-dimensional (2D) partial response maximum likelihood composed of a 2D partial response (PR) target including diagonal elements and a 2D soft output Viterbi algorithm (SOVA) with a variable reliability factor. The 2D SOVA performs two one-dimensional (1D) SOVAs in structural accordance with the 2D PR target where extrinsic information uses the expected value calculated on a synchronization pattern. Finally, the 2D SOVA exports a weighted average using the reliability factor that is updated similarly as the optimization scheme for each page. The simulation results show that the proposed method has superior BER performance, despite using only two 1D SOVAs as compared with the modified 2D SOVA composed of four 1D SOVAs.

  6. Fermi-surface reconstruction from two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) data using maximum-likelihood fitting of wavelet-like functions

    NASA Astrophysics Data System (ADS)

    G, A., Major; Fretwell, H. M.; Dugdale, S. B.; Alam, M. A.

    1998-11-01

    A novel method for reconstructing the Fermi surface from experimental two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) projections is proposed. In this algorithm, the 3D electron momentum-density distribution is expanded in terms of a basis of wavelet-like functions. The parameters of the model, the wavelet coefficients, are determined by maximizing the likelihood function corresponding to the experimental data and the projections calculated from the model. In contrast to other expansions, in the case of that in terms of wavelets a relatively small number of model parameters are sufficient for representing the relevant parts of the 3D distribution, thus keeping computation times reasonably short. Unlike other reconstruction methods, this algorithm takes full account of the statistical information content of the data and therefore may help to reduce the amount of time needed for data acquisition. An additional advantage of wavelet expansion may be the possibility of retrieving the Fermi surface directly from the wavelet coefficients rather than indirectly using the reconstructed 3D distribution.

  7. In-Depth Characterization and Spectral Library Building of Glycopeptides in the Tryptic Digest of a Monoclonal Antibody Using 1D and 2D LC-MS/MS.

    PubMed

    Dong, Qian; Yan, Xinjian; Liang, Yuxue; Stein, Stephen E

    2016-05-01

    This work presents a detailed analysis of glycopeptides produced in the tryptic digestion of an IgG1 reference material. Analysis was done by nanospray ESI LC-MS/MS over a wide range of HCD collision energies with both conventional 1D separation for various digestion conditions and a 20 fraction 2D-LC study of a single digest. An extended version of NIST-developed software for analysis of "shotgun" proteomics served to identify the glycopeptides from their precursor masses and product ions for peptides with up to three missed cleavages. A peptide with a single missed cleavage, TKPREEQYNSTYR, was dominant and led to the determination of almost all glycans reported in this study. The 2D studies found a total of 247 glycopeptide ions and 60 glycans of different masses, including 30 glycans found in the 1D studies. This significantly larger number of glycans than found in any other glycoanalysis of therapeutic glycoproteins is due to both the improved separation of sialylated versus asialylated species in the first (high-pH) dimension and the ability to inject large amounts of glycosylated peptides in the 2D studies. Systematic variations in retention with glycan size were also noted. Energy-dependent changes in HCD fragmentation confirmed the proposed glycan structures and led to a peak-annotated mass spectral library to aid the analysis of glycopeptides derived from IgG1 drugs. PMID:26990841

  8. SOLVING THE TWO-DIMENSIONAL DIFFUSION FLOW MODEL.

    USGS Publications Warehouse

    Hromadka, T.V., II; Lai, Chintu

    1985-01-01

    A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion equation. To investigate its capability, the numerical model using the diffusion approach is applied to a hypothetical failure problem of a regional water reservoir. The model is based on an explicit, integrated finite-difference scheme, and the floodplain is simulated by a popular home computer which supports 64K FORTRAN. Though simple, the 2-D model can simulate some interesting flooding effects that a 1-D full dynamic model cannot.

  9. Self-assembly of three new coordination complexes: Formation of 2-D square grid, 1-D chain and tape structures

    NASA Astrophysics Data System (ADS)

    Indrani, Murugan; Ramasubramanian, Ramasamy; Fronczek, Frank R.; Vasanthacharya, N. Y.; Kumaresan, Sudalaiandi

    2009-08-01

    Three distinct coordination complexes, viz., [Co(imi) 2(tmb) 2] ( 1) [where imi = imidazole], {[Ni(tmb) 2(H 2O) 3]·2H 2O} n ( 2) and [Cu 2(μ-tmb) 4(CH 3OH) 2] ( 3), have been synthesized hydrothermally by the reactions of metal acetates, 2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(II) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (II) ions and the O atoms of methanol coordinate in an anti arrangement to form a square pyramidal geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity.The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in 1a, respectively.

  10. Breaking through 1D layout limitations and regaining 2D design freedom Part I: 2D layout decomposition and stitching techniques for hybrid optical and self-aligned multiple patterning

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi; Zhou, Jun; Chen, Yijian

    2015-03-01

    To break through 1-D IC layout limitations, we develop computationally efficient 2-D layout decomposition and stitching techniques which combine the optical and self-aligned multiple patterning (SAMP) processes. A polynomial time algorithm is developed to decompose the target layout into two components, each containing one or multiple sets of unidirectional features that can be formed by a SAMP+cut/block process. With no need of connecting vias, the final 2-D features are formed by directly stitching two components together. This novel patterning scheme is considered as a hybrid approach as the SAMP processes offer the capability of density scaling while the stitching process creates 2-D design freedom as well as the multiple-CD/pitch capability. Its technical advantages include significant reduction of via steps and avoiding the interdigitating types of multiple patterning (for density multiplication) to improve the processing yield. The developed decomposition and synthesis algorithms are tested using 2-D layouts from NCSU open cell library. Statistical and computational characteristics of these public layout data are investigated and discussed.

  11. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  12. Time-domain calculations of the 1D and 2D spectra of resonantly-coupled vibrations in liquids and proteins

    NASA Astrophysics Data System (ADS)

    Torii, Hajime

    2012-12-01

    A time-domain computational method for calculating 1D and 2D spectra of resonantly-coupled vibrations in condensed-phase systems is presented. This method simultaneously takes into account the diagonal frequency modulations, the off-diagonal vibrational couplings, and the dynamics of the system, and is applicable to systems of wide interest, e.g., the O-H stretching modes of water and alcohols, and the amide I modes of proteins. The case of the amide I mode of (Ala-d)4 in D2O solution is shown as an example.

  13. 1-D, 2-D and 3-D Negative-Refraction Metamaterials at Optical Frequencies: Optical Nano-Transmission-Line and Circuit Theory

    NASA Astrophysics Data System (ADS)

    Engheta, Nader; Alu, Andrea

    2006-03-01

    In recent years metamaterials have offered new possibilities for overcoming some of the intrinsic limitations in wave propagation. Their realization at microwave frequencies has followed two different paths; one consisting of embedding resonant inclusions in a host dielectric, and the other following a transmission-line approach, i.e., building 1-D, 2-D, or 3-D cascades of circuit elements, respectively, as linear, planar or bulk right- or left-handed metamaterials. The latter is known to provide larger bandwidth and better robustness to ohmic losses. Extending these concepts to optical frequencies is a challenging task, due to changes in material response to electromagnetic waves at these frequencies. However, recently we have studied theoretically how it may be possible to have circuit nano-elements at these frequencies by properly exploiting plasmonic resonances. Here we present our theoretical work on translating the circuit concepts of right- and left-handed metamaterials into optical frequencies by applying the analogy between nanoparticles and nanocircuit elements in transmission lines. We discuss how it is possible to synthesize optical negative-refraction metamaterials by properly cascading plasmonic and non-plasmonic elements in 1-D, 2-D and 3-D geometries.

  14. A non-negative moment-preserving spatial discretization scheme for the linearized Boltzmann transport equation in 1-D and 2-D Cartesian geometries

    NASA Astrophysics Data System (ADS)

    Maginot, Peter G.; Morel, Jim E.; Ragusa, Jean C.

    2012-08-01

    We present a new nonlinear spatial finite-element method for the linearized Boltzmann transport equation with Sn angular discretization in 1-D and 2-D Cartesian geometries. This method has two central characteristics. First, it is equivalent to the linear-discontinuous (LD) Galerkin method whenever that method yields a strictly non-negative solution. Second, it always satisfies both the zeroth and first spatial moment equations. Because it yields the LD solution when that solution is non-negative, one might interpret our method as a classical fix-up to the LD scheme. However, fix-up schemes for the LD equations derived in the past have given up solution of the first moment equations when the LD solution is negative in order to satisfy positivity in a simple manner. We present computational results comparing our method in 1-D to the strictly non-negative linear exponential-discontinuous method and to the LD method. We present computational results in 2-D comparing our method to a recently developed LD fix-up scheme and to the LD scheme. It is demonstrated that our method is a valuable alternative to existing methods.

  15. PBE-DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Saïl, K.; Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-12-01

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units ( n = 1-11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6-31 G( d, p) level of theory and the Perdew-Burke-Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E gap, V oc, and V bi) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies ( E ex), the maximal absorption wavelength (λmax), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  16. PBE–DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    SciTech Connect

    Saïl, K. Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-12-15

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units (n = 1–11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6–31 G(d, p) level of theory and the Perdew–Burke–Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E{sub gap}, V{sub oc}, and V{sub bi}) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies (E{sub ex}), the maximal absorption wavelength (λ{sub max}), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  17. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  18. A direct sensitivity comparison between flow-modulated comprehensive 2D and 1D GC in untargeted and targeted MS-based experiments.

    PubMed

    Tranchida, Peter Q; Franchina, Flavio A; Zoccali, Mariosimone; Bonaccorsi, Ivana; Cacciola, Francesco; Mondello, Luigi

    2013-09-01

    The present contribution is focused on the measurement of the analytical sensitivity attained in untargeted/targeted MS/MS experiments, performed using flow-modulator comprehensive 2D and 1D GC. The comprehensive 2D experiment was performed by diverting part of the high flow (circa 80%) to flush the accumulation loop (about 28 mL/min) to waste, to reduce the gas flow entering the ion source. 1D analyses were performed through: (i) unmodulated and (ii) single column applications. An equivalent temperature program was applied in the modulated and unmodulated analyses, while a faster one was employed in the single column one. In all application types, the (same) triple quadrupole instrument was operated in the full-scan and multiple reaction monitoring modes. A genuine sweet orange oil and the same sample spiked with 20 phytosanitary compounds were employed to reach the research objective. The results highlight the problems related to the flow modulation-MS combination. Specifically, it was found that sensitivity was on average three to four times higher in unmodulated and optimized single-column applications. PMID:23868497

  19. A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences.

    PubMed

    Zhao, Hai-Qing; Yang, Shui-Ping; Ding, Ni-Ni; Qin, Liang; Qiu, Gui-Hua; Chen, Jin-Xiang; Zhang, Wen-Hua; Chen, Wen-Hua; Hor, T S Andy

    2016-03-15

    Polymorphic compounds {[Cu(dcbb)2(H2O)2]·10H2O}n (, 1D chain), [Cu(dcbb)2]n (, 2D layer) and their co-crystal {[Cu(dcbb)2(H2O)][Cu(dcbb)2]2}n () have been prepared from the coordination reaction of a 2D polymer [Na(dcbb)(H2O)]n (, H2dcbbBr = 1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide) with Cu(NO3)2·3H2O at different temperatures in water. Compounds have an identical metal-to-ligand stoichiometric ratio of 1 : 2, but absolutely differ in structure. Compound features a 2D layer structure with aromatic rings, positively charged pyridinium and free carboxylates on its surface, promoting electrostatic, π-stacking and/or hydrogen-bonding interactions with the carboxyfluorescein (FAM) labeled probe single-stranded DNA (probe ss-DNA, delineates as P-DNA). The resultant P-DNA@ system facilitated fluorescence quenching of FAM via a photoinduced electron transfer process. The P-DNA@ system functions as an efficient fluorescent sensor selective for HIV double-stranded DNA (HIV ds-DNA) due to the formation of a rigid triplex structure with the recovery of FAM fluorescence. The system reported herein also distinguishes complementary HIV ds-DNA from mismatched target DNA sequences with the detection limit of 1.42 nM. PMID:26883749

  20. MICADO: Parallel implementation of a 2D-1D iterative algorithm for the 3D neutron transport problem in prismatic geometries

    SciTech Connect

    Fevotte, F.; Lathuiliere, B.

    2013-07-01

    The large increase in computing power over the past few years now makes it possible to consider developing 3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. Among all approaches presented in the literature, the method first introduced in [1] seems very promising. It consists in iterating over resolutions of 2D and ID MOC problems by taking advantage of prismatic geometries without introducing approximations of a low order operator such as diffusion. However, before developing a solver with all industrial options at EDF, several points needed to be clarified. In this work, we first prove the convergence of this iterative process, under some assumptions. We then present our high-performance, parallel implementation of this algorithm in the MICADO solver. Benchmarking the solver against the Takeda case shows that the 2D-1D coupling algorithm does not seem to affect the spatial convergence order of the MOC solver. As for performance issues, our study shows that even though the data distribution is suited to the 2D solver part, the efficiency of the ID part is sufficient to ensure a good parallel efficiency of the global algorithm. After this study, the main remaining difficulty implementation-wise is about the memory requirement of a vector used for initialization. An efficient acceleration operator will also need to be developed. (authors)

  1. Thermal Solitons in 1d and 2d Anharmonic Lattices - Solectrons and the Organization of Non-Linear Fluctuations in Long-Living Dynamical Structures

    NASA Astrophysics Data System (ADS)

    Velarde, M. G.; Ebeling, W.; Chetverikov, A. P.

    2013-01-01

    We study the thermal excitation of intrinsic localized modes in the form of solitons in 1d and 2d anharmonic lattices at moderately high temperatures. Such finite-amplitude fluctuations form long-living dynamical structures with life-time in the pico-second range thus surviving a relatively long time in comparison to other thermal fluctuations. Further we discuss the influence of such long-living fluctuations on the dynamics of added excess free electrons. The atomic lattice units are treated as quasi-classical objects interacting by Morse forces and stochastically moving according to Langevin equations. In 2d the atoms are initially organized in a triangular lattice. The electron distributions are in a first estimate represented by equilibrium adiabatic distributions in the actual polarization fields. Computer simulations show that in 2d systems such excitations are moving with supersonic velocities along lattice rows oriented with the cristallographic axes. By following the electron distributions we have also been able to study the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life times.

  2. Application of Organophosphonic Acids by One-Step Supercritical CO2 on 1D and 2D Semiconductors: Toward Enhanced Electrical and Sensing Performances.

    PubMed

    Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam

    2015-07-15

    Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications. PMID:26087766

  3. Combinatorial variation of structure in considerations of compound lumping in one- and two-dimensional property representations of condensable atmospheric organic compounds. 1. Lumping by 1-D volatility with nC fixed

    NASA Astrophysics Data System (ADS)

    Pankow, James F.; Niakan, Negar; Asher, William E.

    2013-12-01

    Many current models that aim to predict urban and regional levels of organic particulate matter (OPM) use either the 2 product (2p) framework for secondary organic aerosol (SOA) formation, or a static 1-D volatility basis set (1-D-VBS). These approaches assume that: 1) the compounds involved in OPM condensation/evaporation can be lumped simply by volatility with no specificity regarding carbon number nC, MW, or polar functionality; 2) water uptake does not occur; and 3) the compounds are non-ionizing. This work considers the consequences for uniphasic PM caused by the first two assumptions due to effects of the condensed-phase mean molecular weight MWbar and activity coefficients (ζi), including when RH (relative humidity) > 0. Setting nC = 10 for all bins, multiple chemical structures were developed for each bin of a 1-D-VBS for un-aged SOA in the α-pinene/ozone system. For each bin, a group-contribution vapor pressure (pLo) prediction method was used to find multiple structures such that the groups-based log pLo for nC = 10 and variable numbers of aldehyde, ketone, hydroxyl, and carboxylic acid groups agrees, within ±0.5, with the bin volatility. The number of possible combinations with one structure taken from each bin was 17,640. The Raster-Roulette Organic Aerosol (RROA) model was used to calculate the equilibrium mass concentrations (μg m-3) of OPM (Mo) and co-condensed water (Mw) at 25 °C for each combination for ranges of RH and ΔHC (change in parent hydrocarbon concentration). UNIFAC was used to determine the needed values of ζi. Frequency distributions from RROA for Mo, Mw, and the O:C ratio were developed. For Mo levels typical of the ambient atmosphere, then for the 1-D-VBS and all bins constrained at nC = 10, significant RH-induced enhancement of OPM condensation was observed in the distributions. The spread of the distributions was found to increase rapidly as the level of OPM decreased. The within-bin spread of ±0.5 log units in the groups

  4. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  5. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

    PubMed

    Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio

    2012-03-12

    We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping. PMID:22418672

  6. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  7. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  8. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  9. A time series generalized functional model based method for vibration-based damage precise localization in structures consisting of 1D, 2D, and 3D elements

    NASA Astrophysics Data System (ADS)

    Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.

    2016-06-01

    This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.

  10. Can a highly flexible copper(i) cluster-containing 1D and 2D coordination polymers exhibit MOF-like properties?

    PubMed

    Bonnot, Antoine; Juvenal, Frank; Lapprand, Anthony; Fortin, Daniel; Knorr, Michael; Harvey, Pierre D

    2016-07-28

    The reaction of CuI with the highly flexible dithioether ligand p-TolS(CH2)8STol-p affords both in MeCN or in EtCN the 2D coordination polymers [Cu8I8{p-TolS(CH2)8STol-p}3(solvent)2]n (1·MeCN and 1·EtCN) containing octanuclear Cu8I8 clusters as connection nodes. In contrast, treatment of CuI with p-tBuC6H4S(CH2)8SC6H4But-p in EtCN solution leads to the formation of the luminescent 1D CP [Cu4I4{tBuC6H4S(CH2)8SC6H4-tBu}2(EtCN)2]n (2·EtCN) incorporating Cu4(μ3-I)4 clusters of the closed cubane type as secondary building units (SBUs). The 2D coordination polymers 1·MeCN and 1·EtCN demonstrate the ability to lose their solvent crystallisation molecules under vacuum and readsorb the same or a new one using vapor as monitored by powder X-ray diffraction, thermogravimetric, IR, chromaticity, emission spectra and emission lifetime measurements. Conversely, the 1D material 2·EtCN does not readsorb EtCN, likely due to the collapse of the macrocycles formed by the metal cluster nodes and flexible long-chained ArSC8SAr ligands but absorbs a smaller substrate such as CO2. PMID:27333826

  11. Layer-by-Layer Polyelectrolyte Assisted Growth of 2D Ultrathin MoS2 Nanosheets on Various 1D Carbons for Superior Li-Storage.

    PubMed

    Qu, Qunting; Qian, Feng; Yang, Siming; Gao, Tian; Liu, Weijie; Shao, Jie; Zheng, Honghe

    2016-01-20

    Transitional metal sulfide/carbon hybrids with well-defined structures could not only maximize the functional properties of each constituent but engender some unique synergistic effects, holding great promise for applications in Li-ion batteries and supercapacitors and for catalysis. Herein, a facile and versatile approach is developed to controllably grow 2D ultrathin MoS2 nanosheets with a large quantity of exposed edges onto various 1D carbons, including carbon nanotubes (CNTs), electrospun carbon nanofibers, and Te-nanowire-templated carbon nanofibers. The typical approach involves the employment of layer-by-layer (LBL) self-assembled polyelectrolyte, which controls spatially the uniform growth and orientation of ultrathin MoS2 nanosheets on these 1D carbons irrespective of their surface properties. Such unique structures of the as-prepared CNTs@MoS2 hybrid are significantly favorable for the fast diffusions of both Li-ions and electrons, satisfying the kinetic requirements of high-power lithium ion batteries. As a result, CNTs@MoS2 hybrids exhibit excellent electrochemical performances for lithium storage, including a high reversible capacity (1027 mAh g(-1)), high-rate capability (610 mAh g(-1) at 5 C), and excellent cycling stability (negligible capacity loss after 200 continuous cycles). PMID:26709711

  12. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    NASA Astrophysics Data System (ADS)

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-01

    Three new 1D to 3D complexes, namely, {[Ni(btec)(Himb)2(H2O)2]·6H2O}n (1), {[Cd(btec)0.5(imb)(H2O)]·1.5H2O}n (2), and {[Zn(btec)0.5(imb)]·H2O}n (3) (H4btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (53·62·7)(52·64). Complex 3 presents a 3D framework with a point symbol of (4·64·8)(42·62·82). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature.

  13. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance.

    PubMed

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-14

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could

  14. Two-dimensional tungsten oxide nanowire networks

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Li, Y. H.; Ahmad, I.; McCartney, D. G.; Zhu, Y. Q.; Hu, W. B.

    2006-09-01

    The authors report the synthesis and characterization of two-dimensional (2D) single crystalline nanonetworks consisting of tungsten oxide nanowires with diameters of ca. 20nm. The 2D networks are believed to result from the nanowire growth along the four crystallographic equivalent directions of ⟨110⟩ in the tetragonal WO2.9 structure. These 2D tungsten oxide networks may be potential precursors for creating 2D networks comprising WS2 nanotubes.

  15. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  16. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-01

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could open up new

  17. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain

    PubMed Central

    Sun, Jianjun; Xu, Jinbin; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.

    2012-01-01

    The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors. PMID:23185343

  18. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  19. NKG2D performs two functions in invariant NKT cells: Direct TCR-independent activation of NK-like cytolysis, and co-stimulation of activation by CD1d

    PubMed Central

    Kuylenstierna, Carlotta; Björkström, Niklas K.; Andersson, Sofia K.; Sahlström, Peter; Bosnjak, Lidija; Paquin-Proulx, Dominic; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Moll, Markus; Sandberg, Johan K.

    2012-01-01

    Invariant NKT cells are important in the activation and regulation of immune responses. They can also function as CD1d-restricted killer cells. However, the role of activating innate NK cell receptors expressed on NKT cells in triggering cytolytic function is poorly characterized. Here, we initially confirmed that the cellular stress-ligand receptor NKG2D is expressed on CD4− NKT cells, whereas most CD4+ NKT cells lack this receptor. Interestingly, NKG2D+ NKT cells frequently expressed perforin, and both NKG2D and perforin localized at the site of contact with NKG2D ligand-expressing target cells. CD4− NKT cells degranulated in response to NKG2D engagement in a redirected activation assay independently of stimulation via their invariant TCR. NKT cells killed P815 cells coated with anti-NKG2D mAb and CD1d-negative K562 tumor target cells in an NKG2D-dependent manner. Furthermore, NKG2D engagement co-stimulated TCR-mediated NKT cell activation in response to endogenous CD1d-presented ligands or suboptimal levels of anti-CD3 triggering. These data indicate that the CD4− subset of human NKT cells can mediate direct lysis of target cells via NKG2D engagement independently of CD1d, and that NKG2D also functions as a co-stimulatory receptor in these cells. NKG2D thus plays both a direct and a co-stimulatory role in the activation of NKT cells. PMID:21590763

  20. Testing a new analytical approach for determination of vibrational transition moment directions in low symmetry planar molecules: 1-D- and 2-D-naphthalene.

    PubMed

    Rogojerov, Marin; Keresztury, Gábor; Kamenova-Nacheva, Mariana; Sundius, Tom

    2012-12-01

    A new analytical approach for improving the precision in determination of vibrational transition moment directions of low symmetry molecules (lacking orthogonal axes) is discussed in this paper. The target molecules are partially uniaxially oriented in nematic liquid crystalline solvent and are studied by IR absorption spectroscopy using polarized light. The fundamental problem addressed is that IR linear dichroism measurements of low symmetry molecules alone cannot provide sufficient information on molecular orientation and transition moment directions. It is shown that computational prediction of these quantities can supply relevant complementary data, helping to reveal the hidden information content and achieve a more meaningful and more precise interpretation of the measured dichroic ratios. The combined experimental and theoretical/computational method proposed by us recently for determination of the average orientation of molecules with C(s) symmetry has now been replaced by a more precise analytical approach. The new method introduced and discussed in full detail here uses a mathematically evaluated angle between two vibrational transition moment vectors as a reference. The discussion also deals with error analysis and estimation of uncertainties of the orientational parameters. The proposed procedure has been tested in an analysis of the infrared linear dichroism (IR-LD) spectra of 1-D- and 2-D-naphthalene complemented with DFT calculations using the scaled quantum mechanical force field (SQM FF) method. PMID:22981590

  1. Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses

    PubMed Central

    Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Mukamel, Shaul

    2012-01-01

    Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole. PMID:22583220

  2. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  3. Two-Dimensional Aperture Coding for Magnetic Sector Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Russell, Zachary E.; Chen, Evan X.; Amsden, Jason J.; Wolter, Scott D.; Danell, Ryan M.; Parker, Charles B.; Stoner, Brian R.; Gehm, Michael E.; Brady, David J.; Glass, Jeffrey T.

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code.

  4. Two-dimensional aperture coding for magnetic sector mass spectrometry.

    PubMed

    Russell, Zachary E; Chen, Evan X; Amsden, Jason J; Wolter, Scott D; Danell, Ryan M; Parker, Charles B; Stoner, Brian R; Gehm, Michael E; Brady, David J; Glass, Jeffrey T

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code. PMID:25510933

  5. Effects of zotepine, chlorpromazine and haloperidol on D-1, D-2, D-3 and D-4 subtypes of dopamine receptors in rat striatal and bovine caudate nucleus membranes.

    PubMed

    Arima, T; Makihata, J; Makimura, T; Nomura, Y; Segawa, T

    1986-01-01

    Inhibitory effects of zotepine (Zot) on D-1, D-2, D-3 and D-4 subtypes of dopamine (DA) receptors were investigated in crude synaptic membranes of rat striatum and bovine caudate nucleus and compared to those of chlorpromazine (CPZ) and haloperidol (HAL). From the IC(50)-values of Zot, CPZ and HAL, the K-values of each drug are estimated as follows: 34.4, 152 and 244 nM (D-1, (3)H-labeled cis-flupenthixol binding (1.0 nM) to rat membranes); 37.4, 7.1 and 2.4 nM (D-2, [(3)H]spiperone (Spi) binding (0.5 nM) to rat membranes in the presence of 0.1 ?M ketanserin); 73.1, 15.2 and 22.4 nM (D-3, (3)H-labeled N-propylapomorphine (NPA) binding (0.29 nM) to bovine membranes in the presence of 0.1 ?M Spi); 9.5, 65.3 and 3.1 nM (D-4, [(3)H]NPA binding (0.29 nM) bovine membranes in the presence of 25 nM DA), respectively. Zot binds with higher affinity to D-4 but lower affinity to D-3 than to other subtypes. It is also presumed that Zot binds to D-1 with high affinity and D-2 and D-3 with low affinity compared to CPZ and HAL. PMID:20493089

  6. The two dimensional fold test in paleomagnetism using ipython notebook

    NASA Astrophysics Data System (ADS)

    Setiabudidaya, Dedi; Piper, John D. A.

    2016-01-01

    One aspect of paleomagnetic analysis prone to controversy is the result of the fold test used to evaluate the age of a magnetisation component relative to the age of a structural event. Initially, the fold test was conducted by comparing the Fisherian precision parameter (k) to results from different limbs of a fold structure before and after tilt adjustment. To accommodate synfolding magnetisation, the tilt correction can be performed in stepwise fashion to both limbs simultaneously, here called one dimensional (1D) fold test. The two dimensional (2D) fold test described in this paper is carried out by applying stepwise tilt adjustment to each limb of the fold separately. The rationale for this is that tilts observed on contrasting limbs of deformed structure may not be synchronous or even belong to the same episode of deformation. A program for the procedure is presented here which generates two dimensional values of the k-parameter visually presented in contoured form. The use of ipython notebook enables this 2D fold test to be performed interactively and yield a more precise evaluation than the primitive 1D fold test.

  7. On-line 1D and 2D porous layer open tubular/LC-ESI-MS using 10-microm-i.d. poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis.

    PubMed

    Luo, Quanzhou; Yue, Guihua; Valaskovic, Gary A; Gu, Ye; Wu, Shiaw-Lin; Karger, Barry L

    2007-08-15

    Following on our recent work, on-line one-dimensional (1D) and two-dimensional (2D) porous layer open tubular/liquid chromatography-electrospray ionization-mass spectrometry (PLOT/LC-ESI-MS) platforms using 3.2 mx10 microm i.d. poly(styrene-divinylbenzene) (PS-DVB) PLOT columns have been developed to provide robust, high-performance, and ultrasensitive proteomic analysis. With the use of a PicoClear tee, the dead volume connection between a 50 microm i.d. PS-DVB monolithic micro-SPE column and the PLOT column was minimized. The micro-SPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15-40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, approximately 2.5 ng of protein in 2 microL of solution, an amount corresponding to 20 SiHa cells, was subjected to on-line micro-SPE-PLOT/LC-ESI-MS/MS analysis using a linear ion trap MS. A total of 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate of less than 1%. The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to approximately 45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cmx75 microm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only approximately 5% of the injected sample amount. The resolving power of the

  8. Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.

    PubMed

    Rong, Youmin; Warner, Jamie H

    2014-12-23

    Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N. PMID:25474120

  9. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    SciTech Connect

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  10. A new family of 1D, 2D and 3D frameworks aggregated from Ni5, Ni4 and Ni7 building units: synthesis, structure, and magnetism.

    PubMed

    Liu, Ya-Hui; Lu, Li-Ping; Zhu, Miao-Li; Feng, Si-Si; Su, Feng

    2016-05-31

    Three new Ni(ii)-clusters based on a Y-shaped ligand (biphenyl-3,4',5-tricarboxylate, H3BPT), [Ni5(HBPT)4(OH)2(H2O)12]n (), [Ni4(BPT)2(OH)2(H2O)6]n·4nH2O (), and [Ni7(BPT)2(1,4-bib)2(OH)6(HCO2)2]n·3nH2O () (1,4-bib = 1,4-bi(1H-imidazol-1-yl)benzene), have been synthesized under solvothermal conditions. They were studied by infrared spectroscopy (IR), single crystal X-ray diffraction, thermogravimetric analysis (TGA), and magnetochemistry. The complexes contain low nuclear Ni-clusters as building units (BUs). Structurally, in , the cluster BUs of [Ni5(μ3-OH)2](8+) can be viewed as two reverse triangles sharing a common vertex, which are connected by the partially deprotonated μ2-η(1):η(1)-HBPT(2-) forming 1D chains. The BUs of [Ni4(μ3-OH)2](6+) clusters in can be considered as two reverse triangles sharing a common edge and extended by deprotonated μ6-η(1):η(1):η(1):η(1):η(2)-BPT(3-) constructing a 2D framework. The 3D framework of complex consists of a [Ni7(μ3-OH)4(R-COO)7(HCO2)3] cluster BUs with fully deprotonated μ5-η(1):η(1):η(1):η(1):η(1):η(1)-BPT(3-) and 1,4-bib ligands. In addition, TGA reveals that the complexes are stable in the range of 293-548 K. Magnetostructural analyses indicate ferromagnetic coupling of J1 = 1.85(3) and J2 = 2.25(4) cm(-1) in and J = 5.76(6) cm(-1) in , whereas magnetic parameters J1 = -2.64(3), J2 = -23.22(19) and J3 = 12.02(5) cm(-1) indicate an alternating magnetic chain (AF/F) in . PMID:27180871

  11. Superconductivity in two-dimensional boron allotropes

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Zeng, Shuming; Ni, Jun

    2016-01-01

    We use ab initio evolutionary algorithm and first-principles calculations to investigate structural, electronic, vibrational, and superconducting properties of two-dimensional (2 D ) boron allotropes. Remarkably, we show that conventional BCS superconductivity in the stable 2 D boron structures is ubiquitous with the critical temperature Tc above the liquid hydrogen temperature for certain configurations. Due to the electronic states of the Fermi surface originating from both σ and π electrons, the superconductivity of the 2 D structures arises from multiple phonon modes. Our results support that 2 D boron structure may be a pure single-element material with the highest Tc on conditions without high pressure and external strain.

  12. A deterministic computational model for the two dimensional electron and photon transport

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Nealy, John E.

    2014-12-01

    A deterministic (non-statistical) two dimensional (2D) computational model describing the transport of electron and photon typical of space radiation environment in various shield media is described. The 2D formalism is casted into a code which is an extension of a previously developed one dimensional (1D) deterministic electron and photon transport code. The goal of both 1D and 2D codes is to satisfy engineering design applications (i.e. rapid analysis) while maintaining an accurate physics based representation of electron and photon transport in space environment. Both 1D and 2D transport codes have utilized established theoretical representations to describe the relevant collisional and radiative interactions and transport processes. In the 2D version, the shield material specifications are made more general as having the pertinent cross sections. In the 2D model, the specification of the computational field is in terms of a distance of traverse z along an axial direction as well as a variable distribution of deflection (i.e. polar) angles θ where -π/2<θ<π/2, and corresponding symmetry is assumed for the range of azimuth angles (0<φ<2π). In the transport formalism, a combined mean-free-path and average trajectory approach is used. For candidate shielding materials, using the trapped electron radiation environments at low Earth orbit (LEO), geosynchronous orbit (GEO) and Jupiter moon Europa, verification of the 2D formalism vs. 1D and an existing Monte Carlo code are presented.

  13. Three new 2-D metal-organic frameworks containing 1-D metal chains bridged by N-benzesulfonyl-glutamic acid: Syntheses, crystal structures and properties

    SciTech Connect

    Ma Lufang; Huo Xiankuan; Wang Liya Wang Jiange; Fan Yaoting

    2007-05-15

    To explore the possibility of obtaining the metal-organic frameworks (MOFs) bearing the bsgluH{sub 2} ligand, two new Cd(II) and one Cu(II) coordination polymers, [Cd(bsglu)(bipy)] {sub n} (1), [Cd(bsglu).(H{sub 2}O)] {sub n} (2) and {l_brace}[Cu{sub 2}(bsglu){sub 2}(bipy){sub 2}].4H{sub 2}O{r_brace} {sub n} (3) (bsglu=N-benzesulfonyl-glutamic acid bianion, bipy=2,2'-bipyridine) were synthesized and characterized by IR, elemental analysis and X-ray diffraction analysis. Compounds 1 and 3 exhibit one-dimensional coordination chains, which are further connected to form two-dimensional supramolecular networks through {pi}-{pi} aromatic stacking interactions in a novel zipper-like way. Compound 2 presents a two-dimensional layer structure. To the best of our knowledge, 2 is the first two-dimensional complex formed from transition metal and bsgluH{sub 2} ligand. Interestingly, the bsglu anion exhibits remarkable versatile coordination modes in these complexes. Fluorescent analyses show that 1 exhibits photoluminescence in the solid state. Magnetic measurements for 3 revealed that the Cu(II) chain exhibit a weak antiferromagnetic behavior with a J value of -0.606 cm{sup -1}. - Graphical abstract: Three new complexes, [Cd(bsglu)(bipy)] {sub n} (1), [Cd(bsglu).(H{sub 2}O)] {sub n} (2) and {l_brace}[Cu{sub 2}(bsglu){sub 2}(bipy){sub 2}].4H{sub 2}O{r_brace} {sub n} (3), constructed from Cd(II) or Cu(II) salt with N-benzesulfonyl-glutamic acid were synthesized and characterized. Compounds 1 and 3 exhibit one-dimensional chains which are further connected to form two-dimensional supramolecular networks through {pi}-{pi} aromatic stacking interactions in a novel zipper-like way. Compound 2 presents a two-dimensional layer structure. Luminescence of 1 and magnetic properties of 3 are also investigated.

  14. Two dimensional vernier

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  15. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  16. Two-dimensional soft output Viterbi algorithm with noise filter for patterned media storage

    NASA Astrophysics Data System (ADS)

    Kim, Jinyoung; Lee, Jaejin

    2011-04-01

    We introduce a two-dimensional (2D) soft output Viterbi algorithm (SOVA) using two 1D SOVAs, which apply two noise filters corresponding to horizontal and vertical directions, respectively, for patterned media storage. Patterned media storage has 2D intersymbol interference (ISI), which includes ISI from neighboring symbols and intertrack interference from adjacent tracks, since there is a small space between adjacent tracks and neighborhood symbols. Noise filter replaces colored noise with white noise. As a result, the noise filter can reduce the noise power, so that performance can be improved. As shown in the simulation results, when there is no off-track, the 2D SOVA using a noise filter is approximately 0.4 dB better than not using a noise filter at a 10-6 bit error rate; when there is 20% off-track, it has about a 1 dB gain.

  17. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.

    PubMed

    Wang, Zhiyong; Li, Hong; Liu, Zheng; Shi, Zujin; Lu, Jing; Suenaga, Kazu; Joung, Soon-Kil; Okazaki, Toshiya; Gu, Zhennan; Zhou, Jing; Gao, Zhengxiang; Li, Guangping; Sanvito, Stefano; Wang, Enge; Iijima, Sumio

    2010-10-01

    Quasi-one-dimensional nanotubes and two-dimensional nanoribbons are two fundamental forms of nanostructures, and integrating them into a novel mixed low-dimensional nanomaterial is fascinating and challenging. We have synthesized a stable mixed low-dimensional nanomaterial consisting of MoS(2) inorganic nanoribbons encapsulated in carbon nanotubes (which we call nanoburritos). This route can be extended to the synthesis of nanoburritos composed of other ultranarrow transition-metal chalcogenide nanoribbons and carbon nanotubes. The widths of previously synthesized MoS(2) ribbons are greater than 50 nm, while the encapsulated MoS(2) nanoribbons have uniform widths down to 1-4 nm and layer numbers down to 1-3, depending on the nanotube diameter. The edges of the MoS(2) nanoribbons have been identified as zigzag-shaped using both high-resolution transmission electron microscopy and density functional theory calculations. PMID:20828123

  18. Distinctive features of complexation of anthracycline antibiotic daunomycin with deoxyhexanucleotide d(GCATGC) in aqueous solution: 1D- and 2D-NMR analysis

    NASA Astrophysics Data System (ADS)

    Pahomov, Valery I.; Rogova, Olga V.; Volynkin, Vladimir S.; Veselkov, Kyrill A.; Hernandez Santiago, Adrian A.; Semanin, Alexander V.; Djimant, Leonid N.; Veselkov, Alexei N.

    2004-07-01

    Complexation of anthracycline antibiotic daunomycin (DAU) with self-complementary deoxyhexanucleotide d(GCATGC) in aqueous solution has been investigated by one-dimensional and two-dimensional homonuclear 'H NMR spectroscopy (TOCSY and NOESY) and heteronuclear 'H-31P NMR spectroscopy (HMBC). Quantitative determination of parameters of oligonucleotide self-association and its complexation with DAU was based on the analysis of the dependences of proton chemical shifts on concentration and temperature. Experimental results were analysed in terms of the equilibrium reaction constants, limiting proton chemical shifts and thermodynamical parameters (enthalpies AN, entropies AS) of the formation of hexamer duplex and different drug-DNA complexes. The most favourable structures of the single-stranded form of d(GCATGC) and the intercalated DAU-hexamer complex have been determined using X-PLOR software taking into consideration both intra- and intermolecular NOE contacts.

  19. Low-cost two-dimensional gel densitometry

    SciTech Connect

    Levenson, R.M.; Maytin, E.V.; Young, D.A.

    1986-11-01

    A major obstacle to full utilization of the powerful technique of two-dimensional (2-D) gel electrophoresis is the expense and complexity of quantifying the results. Using an analog-to-digital converter already present in the widely available Commodore 64 or Commodore 128 microcomputer, the authors have developed a 2-D gel densitometer (GELSCAN) which adds only $20.00 to the cost of the Commodore system (currently around $700.00). The system is designed to work with autoradiograms of 2-D gels. Spots of interest are identified visually and then positioned manually over a light source. A pinhole photoelectric sensor mounted in a hand-held, Plexiglas holder, or mouse, is briefly rubbed over each spot. Maximum density of the spot is determined and its value is converted to counts per minute via an internal calibration curve which corrects for the nonlinear response of film to radiation. Local spot backgrounds can be subtracted and values can be normalized between gels to adjust for variation in amount of radioactivity applied or in exposure time. Reproducibility is excellent and the technique has some practical as well as theoretical advantages over other more complicated approaches to 2-D gel densitometry. In addition, the GELSCAN system can also be used for scanning individual bands in 1-D gels, quantitation of dot-blot autoradiograms and other tasks involving transmission densitometry.

  20. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  1. Conditional convergence in two-dimensional dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Kuykendall, William P.; Cai, Wei

    2013-07-01

    For two-dimensional dislocation dynamics simulations under periodic boundary conditions in both directions, the summation of the periodic image stress fields is found to be conditionally convergent. For example, different stress fields are obtained depending on whether the summation in the x-direction is performed before or after the summation in the y-direction. This problem arises because the stress field of a 1D periodic array of dislocations does not necessarily go to zero far away from the dislocation array. The spurious stress fields caused by conditional convergence in the 2D sum are shown to consist of only a linear term and a constant term with no higher order terms. Absolute convergence, and hence self-consistency, is restored by subtracting the spurious stress fields, whose expressions are derived in both isotropic and anisotropic elasticity.

  2. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  3. Design of efficient circularly symmetric two-dimensional variable digital FIR filters

    PubMed Central

    Bindima, Thayyil; Elias, Elizabeth

    2016-01-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  4. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    PubMed

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739

  5. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  6. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  7. Syntheses and crystal structures of four 1-D or 2-D coordination polymers based on 1-((benzotriazol-1-yl)methyl)-1 H-1,3-imidazole

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoli; Li, Weiqiang; Jin, Guanghua; Zhao, Dong; Zhu, Xiaoqing; Meng, Xiangru; Hou, Hongwei

    2011-05-01

    In this paper, four coordination polymers, {[Ag(bmi)]·NO 3} n ( 1), [Co(N 3) 2(bmi) 2] n ( 2), [Cu(SCN) 2(bmi) 2] n ( 3), and {[Cu(bmi) 2(CH 3OH)(H 2O)]·(ClO 4) 2} n ( 4) have been synthesized through the reactions of an unsymmetrical ligand 1-((benzotriazol-1-yl)methyl)-1 H-1,3-imidazole (bmi) with Ag(I), Co(II) and Cu(II) salts at room temperature. X-ray diffraction analyses showed that compound 1 exhibits double-stranded helical chain. Compounds 2- 4 display 2-D rhombus grid network structure. The rhombus grid consists of 32-membered rings, and gives the dimensions of ca. 8.9 × 8.9 Å for compound 2, ca. 10.1 × 10.1 Å for compound 3, and ca. 9.7 × 9.5 Å for compound 4. In addition, the 2-D layers of compound 3 are stacked into 3-D structure via π- π interactions, while the 3-D architecture of compound 4 is realized through complicated hydrogen bonds and π- π interactions. The thermal analyses of compounds 1 and 3 indicate that they have high thermal stability and are stable up to 259 °C.

  8. Two-dimensional Rayleigh model of vapor bubble evolution

    SciTech Connect

    Amendt, P; Friedman, M; Glinsky, M; Gurewitz, E; London, R A; Strauss, M

    1999-01-14

    The understanding of vapor bubble generation in an aqueous tissue near a fiber tip has required advanced two dimensional (2D) hydrodynamic simulations. For 1D spherical bubble expansion a simplified and useful Rayleigh-type model can be applied. For 2D bubble evolution, such a model does not exist. The present work proposes a Rayleigh-type model for 2D bubble expansion that is faster and simpler than the 2D hydrodynamic simulations. The model is based on a flow potential representation of the hydrodynamic motion controlled by a Laplace equation and a moving boundary condition. We show that the 1D Rayleigh equation is a specific case of our model. The Laplace equation is solved for each time step by a finite element solver using a triangulation of the outside bubble region by a fast unstructured mesh generator. Two problems of vapor bubbles generated by short-pulse lasers near a fiber tip-are considered: (a) the outside region has no boundaries except the fiber, (b) the fiber and the bubble are confined in a long channel, which simulates a fiber in a vessel wall. Our simulations for problems of type (a) include features of bubble evolution as seen in experiments, including a collapse away from the fiber tip. A different behavior was obtained for problems of type (b) when the channel boundary is close to the fiber. In this case the bubble's expansion and collapse are both extremely slow in the direction normal to this boundary and distortion of the bubble is observed.

  9. Measurement and comparison of one- and two-dimensional modulation transfer function of optical imaging systems based on the random target method

    NASA Astrophysics Data System (ADS)

    Kang, Jiqiang; Hao, Qun; Cheng, Xuemin

    2014-10-01

    One-dimensional modulation transfer function (1-D MTF) has been generally calculated to evaluate the image quality of optical imaging systems, such as the horizontal MTF and vertical MTF. These MTFs can be measured by the use of some mature ways. However, the information of 1-D MTF for performance evaluation may not enough for the systems handling two-dimensional (2-D) targets of high resolution, thus discussing 2-D MTF will be necessary. We investigate the measurement method for the 1-D and 2-D MTF of optical imaging systems based on the random target method, and the characteristics of 2-D MTF and 1-D MTF in terms of MTF values and cutoff frequency are also noted.

  10. Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model.

    PubMed

    Ekama, G A; Marais, P

    2004-02-01

    The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  11. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  12. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  13. Intrinsic two-dimensional features as textons.

    PubMed

    Barth, E; Zetzsche, C; Rentschler, I

    1998-07-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features. PMID:9656473

  14. Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors.

    PubMed

    Xu, Renjing; Zhang, Shuang; Wang, Fan; Yang, Jiong; Wang, Zhu; Pei, Jiajie; Myint, Ye Win; Xing, Bobin; Yu, Zongfu; Fu, Lan; Qin, Qinghua; Lu, Yuerui

    2016-02-23

    We report a trion (charged exciton) binding energy of ∼162 meV in few-layer phosphorene at room temperature, which is nearly 1-2 orders of magnitude larger than those in two-dimensional (2D) transition metal dichalcogenide semiconductors (20-30 meV) and quasi-2D quantum wells (∼1-5 meV). Such a large binding energy has only been observed in truly one-dimensional (1D) materials such as carbon nanotubes, whose optoelectronic applications have been severely hindered by their intrinsically small optical cross sections. Phosphorene offers an elegant way to overcome this hurdle by enabling quasi-1D excitonic and trionic behaviors in a large 2D area, allowing optoelectronic integration. We experimentally validated the quasi-1D nature of excitonic and trionic dynamics in phospherene by demonstrating completely linearly polarized light emission from excitons and trions in few-layer phosphorene. The implications of the extraordinarily large trion binding energy in a higher-than-one-dimensional material are far-reaching. It provides a room-temperature 2D platform to observe the fundamental many-body interactions in the quasi-1D region. PMID:26713882

  15. Transition metal ion directed supramolecular assembly of one- and two-dimensional polyrotaxanes incorporating cucurbituril.

    PubMed

    Park, Ki-Min; Whang, Dongmok; Lee, Eunsung; Heo, Jungseok; Kim, Kimoon

    2002-01-18

    This paper reports a synthetic strategy to construct one- and two-dimensional (1D and 2D) polyrotaxanes, in which a number of rings are threaded onto a coordination polymer, by the combination of self-assembly and coordination chemistry. Our approach to construct polyrotaxanes with high structural regularity involves threading a cucurbituril (CB) "bead" with a short "string" to form a stable pseudorotaxane, followed by linking the pseudorotaxanes with metal ions as "linkers" to organize into a 1D or 2D polyrotaxane. A 4- or 3-pyridylmethyl group is attached to each end of 1,4-diaminobutane or 1,5-diaminopentane to produce the short "strings", which then react with the cucurbituril "bead" to form stable pseudorotaxanes. The reaction of the pseudorotaxanes with various transition metal ions including CuII, CoII, NiII, AgI, and CdII produces 1D or 2D polyrotaxanes, in which many molecular "beads" are threaded onto 1D or 2D coordination polymers as confirmed by X-ray crystallography. The overall structure of a polyrotaxane is the result of interplay among various factors that include the coordination preferences of the metal ion, spatial disposition of the donor atoms with respect to the CB beads in the pseudorotaxane, and the size and coordination ability of the counteranion. PMID:11843162

  16. Enhanced Collective Magnetic Properties in 2D Monolayers of Iron Oxide Nanoparticles Favored by Local Order and Local 1D Shape Anisotropy.

    PubMed

    Toulemon, Delphine; Liu, Yu; Cattoën, Xavier; Leuvrey, Cédric; Bégin-Colin, Sylvie; Pichon, Benoit P

    2016-02-16

    Magnetic nanoparticle arrays represent a very attractive research field because their collective properties can be efficiently modulated as a function of the structure of the assembly. Nevertheless, understanding the way dipolar interactions influence the intrinsic magnetic properties of nanoparticles still remains a great challenge. In this study, we report on the preparation of 2D assemblies of iron oxide nanoparticles as monolayers deposited onto substrates. Assemblies have been prepared by using the Langmuir-Blodgett technique and the SAM assisted assembling technique combined to CuAAC "click" reaction. These techniques afford to control the formation of well-defined monolayers of nanoparticles on large areas. The LB technique controls local ordering of nanoparticles, while adjusting the kinetics of CuAAC "click" reaction strongly affects the spatial arrangement of nanoparticles in monolayers. Fast kinetics favor disordered assemblies while slow kinetics favor the formation of chain-like structures. Such anisotropic assemblies are induced by dipolar interactions between nanoparticles as no magnetic field is applied and no solvent evaporation is performed. The collective magnetic properties of monolayers are studied as a function of average interparticle distance, local order and local shape anisotropy. We demonstrate that local control on spatial arrangement of nanoparticles in monolayers significantly strengthens dipolar interactions which enhances collective properties and results in possible super ferromagnetic order. PMID:26807596

  17. Spin-coated and PECVD low dielectric constant porous organosilicate films studied by 1D and 2D solid-state NMR.

    PubMed

    Gerbaud, Guillaume; Hediger, Sabine; Bardet, Michel; Favennec, Laurent; Zenasni, Aziz; Beynet, Julien; Gourhant, Olivier; Jousseaume, Vincent

    2009-11-14

    In the research field of the sub-65 nm semiconductor industry, organosilicate SiOCH films with low dielectric constant (k < 2.4) need to be developed in order to improve the performance of integrated circuits [International Roadmap for Semiconductors (ITRS), San Jose, CA, 2004]. One way to produce SiOCH films of low dielectric constant is to introduce pores into the film. This is usually obtained in two steps. Firstly, co-deposition of a matrix precursor, with a sacrificial organic porogen, either by plasma enhanced chemical vapor deposition (PECVD) or spin-coating. Secondly, application of a specific thermal treatment to remove the porogen and create the porosity. This last step can be improved by adding to the thermal process a super-critical CO(2) treatment, an UV irradiation or an electronic bombardment (e-beam). In this study, the two deposition processes as well as the various treatments applied to eliminate the porogens were evaluated and compared using high-resolution solid-state NMR. For this purpose, hybrid (containing porogens) and porous films were extensively characterized on the basis of their (1)H, (13)C and (29)Si high-resolution NMR spectra. Information was obtained concerning the crosslinking of the Si skeleton. Spectral features could be correlated to the processes used. Isotropic chemical shift analyses and 2D correlation NMR experiments were used to show the existence and nature of the interactions between the matrix precursor and the organic porogen. PMID:19851550

  18. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes.

    PubMed

    Kim, Taehoon; Park, Junyong; Sohn, Jongmoo; Cho, Donghwi; Jeon, Seokwoo

    2016-04-26

    Here we propose a concept of conductive dry adhesives (CDA) combining a gecko-inspired hierarchical structure and an elastomeric carbon nanocomposite. To complement the poor electrical percolation of 1D carbon nanotube (CNT) networks in an elastomeric matrix at a low filler content (∼1 wt %), a higher dimensional carbon material (i.e., carbon black, nanographite, and graphene nanopowder) is added into the mixture as an aid filler. The co-doped graphene and CNT in the composite show the lowest volume resistance (∼100 ohm·cm) at an optimized filler ratio (1:9, total filler content: 1 wt %) through a synergetic effect in electrical percolation. With an optimized conductive elastomer, gecko-inspired high-aspect-ratio (>3) microstructures over a large area (∼4 in.(2)) are successfully replicated from intaglio-patterned molds without collapse. The resultant CDA pad shows a high normal adhesion force (∼1.3 N/cm(2)) even on rough human skin and an excellent cycling property for repeatable use over 30 times without degradation of adhesion force, which cannot be achieved by commercial wet adhesives. The body-attachable CDA can be used as a metal-free, all-in-one component for measuring biosignals under daily activity conditions (i.e., underwater, movements) because of its superior conformality and water-repellent characteristic. PMID:26986477

  19. Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure.

    PubMed

    Tolhurst, Thomas M; Leedahl, Brett; Andrews, Justin L; Marley, Peter M; Banerjee, Sarbajit; Moewes, Alexander

    2016-06-21

    New V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off dxy band in the ζ-phase. States of dxy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO6] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V2O5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V2O5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase. PMID:27230816

  20. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    PubMed Central

    Grechko, Maksim; Zanni, Martin T.

    2012-01-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I′ band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I′ transition dipole vector with respect to the helix axis, our measurements indicate that the amide I′ vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine. PMID:23163364

  1. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    NASA Astrophysics Data System (ADS)

    Grechko, Maksim; Zanni, Martin T.

    2012-11-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I' band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I' transition dipole vector with respect to the helix axis, our measurements indicate that the amide I' vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine.

  2. 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohui; Qi, Xiang; Shen, Yongzhen; Xiao, Si; Xu, Guanghua; Zhang, Zhen; Huang, Zongyu; Zhong, Jianxin

    2016-08-01

    2D photocatalytic TiO2/MoS2 hybrid nanosheets (HNs) have been prepared via a facile hydrothermal process. X-ray diffraction patterns and Raman spectra are carried out and confirm a well crystalized anatase and 2H-MoS2 hybridization. Additional morphological and microstructural tests verify a distinct MoS2 framework, indicating the relatively stability of the MoS2 nanosheet platform with a high specific surface area. UV–vis spectra and electrochemical impedance spectra exhibit an enhanced light absorption ability and conductivity of TiO2/MoS2 compared to that of just TiO2. Photoelectrochemical (PEC) tests also demonstrate the photocurrent of 20 : 1 TiO2/MoS2 HNs is greatly improved compared to that of as-prepared TiO2. The saturation current density is about 33 µA cm‑2 when the applied potential is 0.2 V, which is nearly twice that of pure TiO2 and four times as high as 5 : 1 TiO2/MoS2 HNs and 1 : 1 TiO2/MoS2 HNs. Besides that, the duration test exhibits no detectable distinction after processing 25 cycles. The improved photocatalytic activities are perhaps derived from the high conductivity and the increased active sites for the introduction of co-catalytic MoS2 nanosheets as well as the positive synergetic effect between the TiO2 and MoS2. This work demonstrates that the as-prepared TiO2/MoS2 HNs may have a great potential application in PEC hydrogen production.

  3. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  4. Evaluation of the causes of inundation in a repeatedly flooded zone in the city of Cheongju, Korea, using a 1D/2D model.

    PubMed

    Park, In-Hyeok; Lee, Jeong-Yong; Lee, Ji-Heon; Ha, Sung-Ryong

    2014-01-01

    Currently, unprecedented levels of damage arising from major weather events have been experienced in a number of major cities worldwide. Furthermore, the frequency and the scale of these disasters appear to be increasing and this is viewed by some as tangible proof of climate change. In the urbanized areas sewer overflows and resulting inundation are attributed to the conversion of previous surfaces into impervious surfaces, resulting in increased volumes of runoff which exceed the capacity of sewer systems and in particular combined sewer systems. In this study, the characteristics of sewer overflows and inundation have been analyzed in a repeatedly flooded zone in the city of Cheongju in Korea. This included an assessment of inundation in a 50-year storm event with total rainfall of 165 mm. A detailed XP-SWMM 2D model was assembled and run to simulate the interaction of the sewage system overflows and surface inundation to determine if inundation is due to hydraulic capacity limitations in the sewers or limitations in surface inlet capacities or a combination of both. Calibration was undertaken using observation at three locations (PT #1, PT #2, PT #3) within the study area. In the case of the subsurface flow calibration, R(2) value of 0.91 and 0.78 respectively were achieved at PT #1 and PT #2. Extremely good agreement between observed and predicted surface flow depths was achieved also at PT #1 and PT #2. However, at PT #3 the predicted flow depth was 4 cm lower than the observed depth, which was attributed to the impact of buildings on the local flow distribution. Areas subject to flooding were classified as either Type A (due to insufficient hydraulic capacity of a sewer), Type B (which is an area without flooding notwithstanding insufficient hydraulic capacity of a sewer) or Type C (due to inlet limitations, i.e. there is hydraulic capacity in a sewer which is not utilized). In the total flooded zone, 24% was classified as Type A (10.2 ha) and 25% was

  5. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  6. Two dimensionality in quasi-one-dimensional cobalt oxides

    NASA Astrophysics Data System (ADS)

    Sugiyama, J.; Nozaki, H.; Brewer, J. H.; Ansaldo, E. J.; Morris, G. D.; Takami, T.; Ikuta, H.; Mizutani, U.

    2006-03-01

    Magnetism of quasi-one-dimensional (1D) cobalt oxides ACoO ( A=Ca, Sr and Ba, n=1-5 and ∞) was investigated by μ+SR using polycrystalline samples, at temperatures from 300 K down to 1.8 K. The wTF- μ+SR experiments showed the existence of a magnetic transition in all six samples investigated. The onset temperature of the transition (Tcon) was found to decrease with n; that is, 100±25, 90±10, 85±10, 65±10 50±10, and 15±1 K for n=1-5, and ∞, respectively. In particular, for the samples with n=2-5, Tcon was detected only by the present μ+SR measurements. A muon spin oscillation was clearly observed in both Ca 3Co 2O 6(n=1) and BaCoO 3(n=∞), whereas only a fast relaxation is apparent even at 1.8 K in the other four samples ( n=2-5). Taking together with the fact that the paramagnetic Curie temperature ranges from -150 to -200 K for the compound with n=2 and 3, the μ+SR result indicates that a two-dimensional (2D) short-range antiferromagnetic (AF) order, which has been thought to be unlikely to exist at high T due to a relatively strong 1D F interaction, appears below Tcon for all compounds with n=1-5; but quasi-static long-range AF order formed only in Ca 3Co 2O 6, below 25 K. For BaCoO 3(n=∞), as T decreased from 300 K, 1D F order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.

  7. [Progress in Application of Two-Dimensional Correlation Spectroscopy for Detection of Food Quality].

    PubMed

    Yang, Ren-jie; Yang, Yan-rong; Liu, Hai-xue; Dong, Gui-mei; Du, Yan-hong; Shan, Hui-yong; Zhang, Wei-yu

    2015-08-01

    In recent years, the food safety and quality has always been a serious issue. Therefore, it is urgent to develop a rapid and widely available method to determine the quality of food. Due to high spectral resolution, good spectral selectivity and good ability of spectrogram analysis, the technology of two-dimensional (2D) correlation spectroscopy is an effective method for solving three major problems encountered by the conventional one-dimensional (1D) spectrum: low selectivity of the spectra, difficulty in extracting the information of the spectral feature and difficulty in spectrogram analysis. Therefore, 2D correlation spectroscopy, which is suited to distinguish similar samples hardly distinguished by the conventional 1D spectroscopy, has been successfully applied in many complex biological systems. The developmental process, the experimental way to obtain spectrum, the fundamental mathematical principle and the properties of 2D correlation spectroscopy were introduced in this paper. At the same time, it is pointed out that the origin of weak characteristic bands of substance can be verified in terms of the positive or negative corss peaks in synchronous 2D correlation spectrum combined with the existence or inexistence of corss peaks in asynchronous 2D correlation spectrum. The application of 2D near-infrared, mid-infrared, fluorescence, and raman correlation spectroscopy in the detection of food quality and adulteration, concentrated specifically on diary product, wine, oil, meat, honey, and rice were reviewed. Finally, the limitations and future development prospects were pointed out. PMID:26672279

  8. Nitrogenated holey two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-03-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications.

  9. Nitrogenated holey two-dimensional structures

    PubMed Central

    Mahmood, Javeed; Lee, Eun Kwang; Jung, Minbok; Shin, Dongbin; Jeon, In-Yup; Jung, Sun-Min; Choi, Hyun-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Sohn, So-Dam; Park, Noejung; Oh, Joon Hak; Shin, Hyung-Joon; Baek, Jong-Beom

    2015-01-01

    Recent graphene research has triggered enormous interest in new two-dimensional ordered crystals constructed by the inclusion of elements other than carbon for bandgap opening. The design of new multifunctional two-dimensional materials with proper bandgap has become an important challenge. Here we report a layered two-dimensional network structure that possesses evenly distributed holes and nitrogen atoms and a C2N stoichiometry in its basal plane. The two-dimensional structure can be efficiently synthesized via a simple wet-chemical reaction and confirmed with various characterization techniques, including scanning tunnelling microscopy. Furthermore, a field-effect transistor device fabricated using the material exhibits an on/off ratio of 107, with calculated and experimental bandgaps of approximately 1.70 and 1.96 eV, respectively. In view of the simplicity of the production method and the advantages of the solution processability, the C2N-h2D crystal has potential for use in practical applications. PMID:25744355

  10. Two-dimensional nuclear magnetic resonance petrophysics.

    PubMed

    Sun, Boqin; Dunn, Keh-Jim

    2005-02-01

    Two-dimensional nuclear magnetic resonance (2D NMR) opens a wide area for exploration in petrophysics and has significant impact to petroleum logging technology. When there are multiple fluids with different diffusion coefficients saturated in a porous medium, this information can be extracted and clearly delineated from CPMG measurements of such a system either using regular pulsing sequences or modified two window sequences. The 2D NMR plot with independent variables of T2 relaxation time and diffusion coefficient allows clear separation of oil and water signals in the rocks. This 2D concept can be extended to general studies of fluid-saturated porous media involving other combinations of two or more independent variables, such as chemical shift and T1/T2 relaxation time (reflecting pore size), proton population and diffusion contrast, etc. PMID:15833623

  11. Rationally synthesized two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Colson, John W.; Dichtel, William R.

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  12. Merging of RVR meander with CONCEPTS: Simplified 2D model for long-term meander evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...

  13. Kirigami for Two-Dimensional Electronic Membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold

    2015-03-01

    Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.

  14. Two-dimensional probe absorption in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Zhang, Yan; Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-07-01

    We investigate the two-dimensional (2D) probe absorption in coupled quantum dots. It is found that, due to the position-dependent quantum interference effect, the 2D optical absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state quantum communication.

  15. An atlas of two-dimensional materials.

    PubMed

    Miró, Pere; Audiffred, Martha; Heine, Thomas

    2014-09-21

    The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls. PMID:24825454

  16. Pentahexoctite: a new two-dimensional allotrope of carbon.

    PubMed

    Sharma, Babu Ram; Manjanath, Aaditya; Singh, Abhishek K

    2014-01-01

    The ability of carbon to exist in many forms across dimensions has spawned search in exploring newer allotropes consisting of either, different networks of polygons or rings. While research on various 3D phases of carbon has been extensive, 2D allotropes formed from stable rings are yet to be unearthed. Here, we report a new sp(2) hybridized two-dimensional allotrope consisting of continuous 5-6-8 rings of carbon atoms, named as "pentahexoctite". The absence of unstable modes in the phonon spectra ensures the stability of the planar sheet. Furthermore, this sheet has mechanical strength comparable to graphene. Electronically, the sheet is metallic with direction-dependent flat and dispersive bands at the Fermi level ensuring highly anisotropic transport properties. This sheet serves as a precursor for stable 1D nanotubes with chirality-dependent electronic and mechanical properties. With these unique properties, this sheet becomes another exciting addition to the family of robust novel 2D allotropes of carbon. PMID:25418419

  17. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  18. Two-dimensional wind tunnel

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on the Japanese National Aerospace Laboratory two dimensional transonic wind tunnel, completed at the end of 1979 is presented. Its construction is discussed in detail, and the wind tunnel structure, operation, test results, and future plans are presented.

  19. Design of one-dimensional power spectrum using two-dimensional fast Fourier transform for discrimination of paper-based kraft tapes.

    PubMed

    Sasaoka, Sara; Saito, Koichi; Higashi, Kenjirou; Limwikrant, Waree; Moribe, Kunikazu; Suzuki, Shinichi; Yamamoto, Keiji

    2015-12-01

    A novel type of spectrum, the one-dimensional power spectrum (1D-PS), was designed for the discrimination of adhesive packing tapes, i.e., kraft tapes. The 1D-PS offered complementary information to that provided by the improved two-dimensional PS (2D-PS), which was calculated using our previously established image processes combined with a two-dimensional fast Fourier transform (2D-FFT) to obtain information about the spatial periodicity within kraft tapes. The 1D-PS was calculated using a three-step image process: (i) the 2D-FFT was applied to 50 randomly selected areas in a transmitted light image; (ii) the obtained 2D-PSs were accumulated without applying a logarithmic transform; (iii) the wavenumber and the maximum intensity were plotted on the x-axis and y-axis, respectively. Through an intra-roll comparison, the 1D-PSs collected from single rolls showed similar profiles. In an inter-roll comparison, the 1D-PSs from 50 commercially available brand-name products were classified into 29 groups. The 1D-PSs contained other useful information than that provided by the improved 2D-PSs: they presented more peaks and absolute intensity with a wider range. The 1D-PSs enabled us to compare the spectra quickly and easily, owing to their unchanging profiles regardless of the orientation of the scanned images. A combined use of the 1D-PSs with the improved 2D-PSs-both spectrum types being convenient, rapid, non-destructive, and applicable to dirty and/or damaged samples-could further improve the identification of kraft tapes. PMID:26461031

  20. Three-state analytic theory of two-dimensional nuclear magnetic resonance in systems with coupled macro- and micropores.

    PubMed

    Johnson, David Linton; Schwartz, Lawrence M

    2015-06-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) experiments involve a sequence of longitudinal (T(1)) and transverse (T(2)) measurements. In a previous paper we showed that if each of these 1D measurements can be represented by two exponential decays then there can be an accurate analytic solution for the 2D measurements with no additional information. In this paper we extend the theory to the case where there are three decay channels for the 1D measurements. The resulting analytic theory introduces a single free parameter, which is a rotation angle in the vector space spanned by the normal modes. Our predictions agree quite well with numerical results based on the microporous grain consolidation (μGC) model. The theory allows one to deduce information about decay modes in situations in which they may not be measurable in a conventional 1D measurement because the amplitude of that mode is too small. PMID:26172724

  1. Quantum hydrodynamics approach to the formation of waves in polarized two-dimensional systems of charged and neutral particles

    SciTech Connect

    Andreev, P. A.; Kuzmenkov, L. S.; Trukhanova, M. I.

    2011-12-15

    In this paper, we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Although we focused primarily on the two-dimensional (2D) physical systems, the method is valid for three-dimensional (3D) and one-dimensional (1D) systems too. The presented method is based upon the Schroedinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schroedinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimensional ion and hole gas placed into an external electric field, which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D, and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma, and in 2D electron-hole plasma. Generation of waves in 3D-system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.

  2. Can Two-Dimensional Boron Superconduct?

    PubMed

    Penev, Evgeni S; Kutana, Alex; Yakobson, Boris I

    2016-04-13

    Two-dimensional boron is expected to exhibit various structural polymorphs, all being metallic. Additionally, its small atomic mass suggests strong electron-phonon coupling, which in turn can enable superconducting behavior. Here we perform first-principles analysis of electronic structure, phonon spectra, and electron-phonon coupling of selected 2D boron polymorphs and show that the most stable structures predicted to feasibly form on a metal substrate should also exhibit intrinsic phonon-mediated superconductivity, with estimated critical temperature in the range of Tc ≈ 10-20 K. PMID:27003635

  3. Two-dimensional relativistic space charge limited current flow in the drift space

    SciTech Connect

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  4. Experimental investigation of two-dimensional antiferromagnetic systems

    NASA Astrophysics Data System (ADS)

    Woodward, Frank Matthew

    Quantum fluctuations have a profound effect on the bulk properties of magnetic systems, particularly in low spatial dimension. For example, 1D chains with half integral spins have a gapless excitation spectrum while whole integer spin chains have a (Haldane) gap. The quantum critical behavior of the S = 1/2 2D system is thought to be the origin of high TC superconductivity. Molecular magnets are engineered materials where spin, interaction strength, or dimensionality can be tuned for experimental exploration of magnetism. A conscious effort was made to pick chemical motifs known to generate a quasi two dimensional Heisenberg system and attempt to exploit these motifs by designing classes of compounds based upon them. Creating many similar systems and observing changes in magnetism as a result in changes of chemical structure provides for the development of a phenomenological model of magnetostructural correlations which can then be verified by calculation. This dissertation discusses two distinct classes of antiferromagnetic systems, each based upon entirely different chemical motifs, both exhibiting the desired two dimensional Heisenberg antiferromagnetic behavior. One class is based upon copper tetrabromide: (5gammaAP)2CuBr4 where 5gammaAP = 2-amino-5-gamma-pyridinium with gamma = chloro, bromo, or methyl substituents. These materials are shown, by bulk magnetization and calorimetry studies to possess an exchange strength on the order of J ≈ -7 to -9 K and ordering temperatures in the range of TN ≈ 3.5 to 5 K. In the ordered state, these materials are shown to possesses a weak 3D exchange interaction, and exhibit a spin-flop transition to long range order in the magnetism. The other class under investigation is based upon copper pyrazine: Cu(pz) 2(ClO4)2, Cu(pz)2(BF6) 2, and [Cu(pz)2(NO3)](PF6). By bulk magnetic measurements of powder and single crystal samples they are shown to be a very good approximation of the 2D QHAF model. The two dimensional magnetic

  5. Simulations of the Two-Dimensional Electronic Spectroscopy of the Photosystem II Reaction Center

    PubMed Central

    Lewis, K. L. M.; Fuller, F. D.; Myers, J. A.; Yocum, C. F.; Mukamel, S.; Abramavicius, D.; Ogilvie, J. P.

    2013-01-01

    We report simulations of the two-dimensional electronic spectroscopy of the Qy band of the D1-D2-Cyt b559 photosystem II reaction center at 77 K. We base the simulations on an existing Hamiltonian that was derived by simultaneous fitting to a wide range of linear spectroscopic measurements and described within modified Redfield theory. The model obtains reasonable agreement with most aspects of the two-dimensional spectra, including the overall peak shapes and excited state absorption features. It does not reproduce the rapid equilibration from high energy to low energy excitonic states evident by a strong cross-peak below the diagonal. We explore modifications to the model to incorporate new structural data and improve agreement with the two-dimensional spectra. We find that strengthening the system–bath coupling and lowering the degree of disorder significantly improves agreement with the cross-peak feature, while lessening agreement with the relative diagonal/antidiagonal width of the 2D spectra. We conclude that two-dimensional electronic spectroscopy provides a sensitive test of excitonic models of the photosystem II reaction center and discuss avenues for further refinement of such models. PMID:23210463

  6. Epitaxial Growth of Two-Dimensional Stanene

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Ultrathin semiconductors present various novel electronic properties. The first experimental realized two-dimensional (2D) material is graphene. Searching 2D materials with heavy elements bring the attention to Si, Ge and Sn. 2D buckled Si-based silicene was realized by molecular beam epitaxy (MBE) growth. Ge-based germanene was realized by mechanical exfoliation. Sn-based stanene has its unique properties. Stanene and its derivatives can be 2D topological insulators (TI) with a very large band gap as proposed by first-principles calculations, or can support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall (QAH) effect. For the first time, in this work, we report a successful fabrication of 2D stanene by MBE. The atomic and electronic structures were determined by scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) in combination with first-principles calculations. This work will stimulate the experimental study and exploring the future application of stanene. In cooperation with Fengfeng Zhu, Wei-jiong Chen, Yong Xu, Chun-lei Gao, Dan-dan Guan, Canhua Liu, Dong Qian, Shou-Cheng Zhang.

  7. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  8. Epitaxial growth of two-dimensional stanene

    NASA Astrophysics Data System (ADS)

    Zhu, Feng-Feng; Chen, Wei-Jiong; Xu, Yong; Gao, Chun-Lei; Guan, Dan-Dan; Liu, Can-Hua; Qian, Dong; Zhang, Shou-Cheng; Jia, Jin-Feng

    2015-10-01

    Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

  9. Two-dimensional dipolar nematic colloidal crystals.

    PubMed

    Skarabot, M; Ravnik, M; Zumer, S; Tkalec, U; Poberaj, I; Babic, D; Osterman, N; Musevic, I

    2007-11-01

    We study the interactions and directed assembly of dipolar nematic colloidal particles in planar nematic cells using laser tweezers. The binding energies for two stable configurations of a colloidal pair with homeotropic surface alignment are determined. It is shown that the orientation of the dipolar colloidal particle can efficiently be controlled and changed by locally quenching the nematic liquid crystal from the laser-induced isotropic phase. The interaction of a single colloidal particle with a single colloidal chain is determined and the interactions between pairs of colloidal chains are studied. We demonstrate that dipolar colloidal chains self-assemble into the two-dimensional (2D) dipolar nematic colloidal crystals. An odd-even effect is observed with increasing number of colloidal chains forming the 2D colloidal crystal. PMID:18233658

  10. Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images.

    PubMed

    Hobson, Maritza A; Davis, Stephen D

    2015-01-01

    While commissioning Varian's Portal Dose Image Prediction (PDIP) algorithm for portal dosimetry, an asymmetric radial response in the portal imager due to backscatter from the support arm was observed. This asymmetric response led to differences on the order of 2%-3% for simple square fields (< 20 × 20 cm2) when comparing the measured to predicted portal fluences. A separate problem was that discrepancies of up to 10% were seen in measured to predicted portal fluences at increasing off-axis distance (> 10 cm). We have modified suggested methods from the literature to provide a 1D correction for the off-axis response problem which adjusts the diagonal profile used in the portal imager calibration. This inherently cannot fix the 2D problem since the PDIP algorithm assumes a radially symmetric response and will lead to some uncertainty in portal dosimetry results. Varian has recently released generic "2D correction" files with their Portal Dosimetry Pre-configuration (PDPC) package, but no independent testing has been published. We present the comparison between QA results using the Varian correction method to results using our 1D profile correction method using the gamma passing rates with a 3%, 3 mm criterion. The average, minimum, and maximum gamma pass rates for nine fixed-field IMRT fields at gantry 0° using our profile correction method were 98.1%, 93.7%, and 99.8%, respectively, while the results using the PDPC correction method were 98.4%, 93.1%, and 99.8%. For four RapidArc fields, the average, minimum, and maximum gamma pass rates using our correction method were 99.6%, 99.4%, and 99.9%, respectively, while the results using the PDPC correction method were 99.8%, 99.5%, and 99.9%. The average gamma pass rates for both correction methods are quite similar, but both show improvement over the uncorrected results. PMID:26103173

  11. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  12. Evolution of the stimulated Raman scattering instability in two-dimensional particle-in-cell simulations

    SciTech Connect

    Masson-Laborde, P. E.; Casanova, M.; Loiseau, P.; Rozmus, W.; Peng, Z.; Pesme, D.; Hueller, S.; Chapman, T.; Bychenkov, V. Yu.

    2010-09-15

    In the following work, we analyze one-dimensional (1D) and two-dimensional (2D) full particle-in-cell simulations of stimulated Raman scattering (SRS) and study the evolution of Langmuir waves (LWs) in the kinetic regime. It is found that SRS reflectivity becomes random due to a nonlinear frequency shift and that the transverse modulations of LWs are induced by (i) the Weibel instability due to the current of trapped particles and (ii) the trapped particle modulational instability (TPMI) [H. Rose, Phys. Plasmas 12, 12318 (2005)]. Comparisons between 1D and 2D cases indicate that the nonlinear frequency shift is responsible for the first saturation of SRS. After this transient interval of first saturation, 2D effects become important: a strong side-scattering of the light, caused by these transverse modulations of the LW and the presence of a nonlinear frequency shift, is observed together with a strong transverse diffusion. This leads to an increase of the Landau damping rate of the LW, contributing to the limiting of Raman backscattering. A model is developed that reproduces the transverse evolution of the magnetic field due to trapped particles. Based on a simple 1D hydrodynamic model, the growth rate for the Weibel instability of the transverse electrostatic mode and magnetic field is estimated and found to be close to the TPMI growth rate [H. Rose et al., Phys. Plasmas 15, 042311 (2008)].

  13. Two-dimensional cyanates: stabilization through hydrogenation.

    PubMed

    Tsetseris, Leonidas

    2016-06-01

    According to first-principles calculations, it should be possible to grow two-dimensional (2D) forms of copper thio-cyanate (CuSCN) and copper seleno-cyanate (CuSeCN) since their energies are only marginally higher than those of their most stable three-dimensional (3D) wurtzite structures. Here we show using the same theoretical approach that chemisorption reactions of hydrogen molecules with the above-mentioned 2D CuSCN and CuSeCN systems enhance their stability as they decrease the energy difference with respect to the corresponding hydrogenated forms of the wurtzite crystals. Hydrogenation causes a sizeable decrease in the energy band gap by 0.56 eV and 0.65 eV for hydrogenated 2D-CuSCN (CuSCNH2) and 2D-CuSeCN (CuSeCNH2), respectively. Finally, we describe the stability of hydrogen vacancies in CuSCNH2 and CuSeCNH2 and show that the presence of isolated single H vacancies or di-vacancies does not affect significantly the electronic properties of the host systems close to the valence and conduction band edges. PMID:27183226

  14. Universal Conductance Fluctuation in Two-Dimensional Topological Insulators.

    PubMed

    Choe, Duk-Hyun; Chang, K J

    2015-01-01

    Despite considerable interest in two-dimensional (2D) topological insulators (TIs), a fundamental question still remains open how mesoscopic conductance fluctuations in 2D TIs are affected by spin-orbit interaction (SOI). Here, we investigate the effect of SOI on the universal conductance fluctuation (UCF) in disordered 2D TIs. Although 2D TI exhibits UCF like any metallic systems, the amplitude of these fluctuations is distinguished from that of conventional spin-orbit coupled 2D materials. Especially, in 2D systems with mirror symmetry, spin-flip scattering is forbidden even in the presence of strong intrinsic SOI, hence increasing the amplitude of the UCF by a factor of √2 compared with extrinsic SOI that breaks mirror symmetry. We propose an easy way to experimentally observe the existence of such spin-flip scattering in 2D materials. Our findings provide a key to understanding the emergence of a new universal behavior in 2D TIs. PMID:26055574

  15. Two-dimensional T 2 distribution mapping in porous solids with phase encode MRI

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg V.; Balcom, Bruce J.

    2011-09-01

    Two pure phase encode MRI sequences, CPMG-prepared SPRITE and spin-echo SPI with compressed sensing, for two-dimensional (2-D) T2 distribution mapping have been presented. The sequences are 2-D extensions of their 1-D predecessors previously described and are intended for studying processes in porous solids and other samples with short relaxation times whenever 2-D T2 maps are preferable to simple 1-D profiling. The sequences were tested on model samples and natural water-saturated rocks, in a low field MRI instrument. 2-D spin-echo SPI and CPMG-SPRITE demonstrate a similar performance, enabling measurement of T2 down to 1-2 ms. Both experiments are time consuming (up to 2-2.5 h sample dependent). As such, they can be recommended mostly for measurement during steady state conditions or when studying relatively slow dynamic processes (e.g. enhanced oil recovery, cement paste hydration, curing rubber, infiltration of paramagnetic ions).

  16. Two-dimensional T2 distribution mapping in porous solids with phase encode MRI.

    PubMed

    Petrov, Oleg V; Balcom, Bruce J

    2011-09-01

    Two pure phase encode MRI sequences, CPMG-prepared SPRITE and spin-echo SPI with compressed sensing, for two-dimensional (2-D) T2 distribution mapping have been presented. The sequences are 2-D extensions of their 1-D predecessors previously described and are intended for studying processes in porous solids and other samples with short relaxation times whenever 2-D T2 maps are preferable to simple 1-D profiling. The sequences were tested on model samples and natural water-saturated rocks, in a low field MRI instrument. 2-D spin-echo SPI and CPMG-SPRITE demonstrate a similar performance, enabling measurement of T2 down to 1-2 ms. Both experiments are time consuming (up to 2-2.5 h sample dependent). As such, they can be recommended mostly for measurement during steady state conditions or when studying relatively slow dynamic processes (e.g. enhanced oil recovery, cement paste hydration, curing rubber, infiltration of paramagnetic ions). PMID:21757381

  17. Radiative modeling of solar prominences, two-dimensional transfer plus partial frequency redistribution

    NASA Astrophysics Data System (ADS)

    Paletou, F.; Vial, Jean-Claude; Auer, L. H.

    1992-11-01

    The two dimensional (2D) PRD (Partial Redistribution) radiative transfer code of Auer and Paletou was used to compute the resonance lines of HI, MgII and CaII in quiescent prominences, which are modeled as isothermal freestanding slabs illuminated from the sides as well as from below. PRD and 2D effects are evidenced and compared to Complete Redistribution (CRD) computations for both 1D and 2D geometries. Important edge variations are found at the bottom and the top that should be observed with a spatial resolution of one arcsecond. As in 1D, PRD effects allow for greater penetration of the incident radiation into the layer. The 2D code computes both the radial emergent intensity and the amount of radiation backscattered into the chromosphere. It can accordingly, be used to estimate the visibility of filaments. It will be of special interest to build nonisothermal models and compare, for example the Ly alpha profiles with the SUMER/SOHO (Solar Ultraviolet Measurement of Emitted Radiation)/(Solar and Heliospheric Observatory) observations.

  18. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  19. Two-dimensional modulation transfer function: a new perspective.

    PubMed

    Marom, Emanuel; Milgrom, Benjamin; Konforti, Naim

    2010-12-10

    One-dimensional templates, such as the U.S. Air Force resolution target or the circular spoke target, are commonly used for the characterization of imaging systems via the modulation transfer function response. It is shown in this paper that one needs a new family of templates for a true characterization of imaging systems that acquire two-dimensional (2D) high-density images or handle 2D information, such as 2D bar code detection and identification. The contrast provided by the newly defined 2D templates is the "true" contrast of the acquired image that the electronic processors are challenged with. PMID:21151231

  20. Two dimensional discriminant neighborhood preserving embedding in face recognition

    NASA Astrophysics Data System (ADS)

    Pang, Meng; Jiang, Jifeng; Lin, Chuang; Wang, Binghui

    2015-03-01

    One of the key issues of face recognition is to extract the features of face images. In this paper, we propose a novel method, named two-dimensional discriminant neighborhood preserving embedding (2DDNPE), for image feature extraction and face recognition. 2DDNPE benefits from four techniques, i.e., neighborhood preserving embedding (NPE), locality preserving projection (LPP), image based projection and Fisher criterion. Firstly, NPE and LPP are two popular manifold learning techniques which can optimally preserve the local geometry structures of the original samples from different angles. Secondly, image based projection enables us to directly extract the optimal projection vectors from twodimensional image matrices rather than vectors, which avoids the small sample size problem as well as reserves useful structural information embedded in the original images. Finally, the Fisher criterion applied in 2DDNPE can boost face recognition rates by minimizing the within-class distance, while maximizing the between-class distance. To evaluate the performance of 2DDNPE, several experiments are conducted on the ORL and Yale face datasets. The results corroborate that 2DDNPE outperforms the existing 1D feature extraction methods, such as NPE, LPP, LDA and PCA across all experiments with respect to recognition rate and training time. 2DDNPE also delivers consistently promising results compared with other competing 2D methods such as 2DNPP, 2DLPP, 2DLDA and 2DPCA.

  1. Two-dimensional thermofield bosonization

    SciTech Connect

    Amaral, R.L.P.G.

    2005-12-15

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.

  2. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  3. Analysis of membrane-protein complexes of the marine sulfate reducer Desulfobacula toluolica Tol2 by 1D blue native-PAGE complexome profiling and 2D blue native-/SDS-PAGE.

    PubMed

    Wöhlbrand, Lars; Ruppersberg, Hanna S; Feenders, Christoph; Blasius, Bernd; Braun, Hans-Peter; Rabus, Ralf

    2016-03-01

    Sulfate-reducing bacteria (SRB) obtain energy from cytoplasmic reduction of sulfate to sulfide involving APS-reductase (AprAB) and dissimilatory sulfite reductase (DsrAB). These enzymes are predicted to obtain electrons from membrane redox complexes, i.e. the quinone-interacting membrane-bound oxidoreductase (QmoABC) and DsrMKJOP complexes. In addition to these conserved complexes, the genomes of SRB encode a large number of other (predicted) membrane redox complexes, the function and actual formation of which is unknown. This study reports the establishment of 1D Blue Native-PAGE complexome profiling and 2D BN-/SDS-PAGE for analysis of the membrane protein complexome of the marine sulfate reducer Desulfobacula toluolica Tol2. Analysis of normalized score profiles of >800 proteins in combination with hierarchical clustering and identification of 2D BN-/SDS-PAGE separated spots demonstrated separation of membrane complexes in their native form, e.g. ATP synthase. In addition to the QmoABC and DsrMKJOP complexes, other complexes were detected that constitute the basic membrane complexome of D. toluolica Tol2, e.g. transport proteins (e.g. sodium/sulfate symporters) or redox complexes involved in Na(+) -based bioenergetics (RnfABCDEG). Notably, size estimation indicates dimer and quadruple formation of the DsrMKJOP complex in vivo. Furthermore, cluster analysis suggests interaction of this complex with a rhodanese-like protein (Tol2_C05230) possibly representing a periplasmic electron transfer partner for DsrMKJOP. PMID:26792001

  4. Two dimensional unstable scar statistics.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  5. Two-dimensional vortices and accretion disks

    NASA Astrophysics Data System (ADS)

    Nauta, Michiel Doede

    2000-01-01

    Observations show that there are disks around certain stars that slowly rain down on the central (compact) object: accretion disks. The rate of depletion of the disk might be slow but is still larger than was expected on theoretical grounds. That is why it has been suggested that the disks are turbulent. Because the disk is thin and rotating this turbulence might be related to two-dimensional (2D) turbulence which is characterized by energy transfers towards small wave numbers and the formation of 2D-vortices. This hypothesis is investigated in this thesis by numerical simulations. After an introduction, the numerical algorithm that was inplemented is discussed together with its relation to an accretion disk. It performs well under the absence of discontinuities. The code is used to study 2D-turbulence under the influence of background rotation with compressibility and a shearing background flow. The first is found to be of little consequence but the shear flow alters 2D-turbulence siginificantly. Only prograde vortices of enough strength are able to withstand the shear flow. The size of the vortices in the cross stream direction is also found to be smaller than the equivalent of the thickness of an accretion disk. These circulstances imply that the assumption of two-dimensionality is questionable so that 2D-vortices might not abound in accretion disks. However, the existence of such vortices is not ruled out and one such a cortex is studied in detail in chapter 4. The internal structure of the vortex is well described by a balance between Coriolis, centrifugal and pressure forces. The vortex is also accompanied by two spiral compressible waves. These are not responsible for the azimuthal drift of the vortex, which results from secondary vortices, but they might be related to the small radial drift that is observed. Radial drift leads to accretion but it is not very efficient. Multiple vortex interactions are the topic of tha last chapter and though interesting the

  6. Seismic isolation of two dimensional periodic foundations

    SciTech Connect

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  7. Two-dimensional heterostructures: fabrication, characterization, and application.

    PubMed

    Wang, Hong; Liu, Fucai; Fu, Wei; Fang, Zheyu; Zhou, Wu; Liu, Zheng

    2014-11-01

    Two-dimensional (2D) materials such as graphene, hexagonal boron nitrides (hBN), and transition metal dichalcogenides (TMDs, e.g., MoS2) have attracted considerable attention in the past few years because of their novel properties and versatile potential applications. These 2D layers can be integrated into a monolayer (lateral 2D heterostructure) or a multilayer stack (vertical 2D heterostructure). The resulting artificial 2D structures provide access to new properties and applications beyond their component 2D atomic crystals and hence, they are emerging as a new exciting field of research. In this article, we review recent progress on the fabrication, characterization, and applications of various 2D heterostructures. PMID:25219598

  8. Two-dimensional heterostructures: fabrication, characterization, and application

    DOE PAGESBeta

    Wang, Hong; Liu, Fucai; Fu, Wei; Fang, Zheyu; Zhou, Wu; Liu, Zheng

    2014-08-13

    Two-dimensional (2D) materials such as graphene, hexagonal boron nitrides (hBN), and transition metal dichalcogenides (TMDs, e.g., MoS2) have attracted considerable attention in the past few years because of their novel properties and versatile potential applications. These 2D layers can be integrated into a monolayer (lateral 2D heterostructure) or a multilayer stack (vertical 2D heterostructure). The resulting artificial 2D structures provide access to new properties and applications beyond their component 2D atomic crystals and hence, they are emerging as a new exciting field of research. Lastly, in this article, we review recent progress on the fabrication, characterization, and applications of variousmore » 2D heterostructures.« less

  9. Two-dimensional heterostructures: fabrication, characterization, and application

    SciTech Connect

    Wang, Hong; Liu, Fucai; Fu, Wei; Fang, Zheyu; Zhou, Wu; Liu, Zheng

    2014-08-13

    Two-dimensional (2D) materials such as graphene, hexagonal boron nitrides (hBN), and transition metal dichalcogenides (TMDs, e.g., MoS2) have attracted considerable attention in the past few years because of their novel properties and versatile potential applications. These 2D layers can be integrated into a monolayer (lateral 2D heterostructure) or a multilayer stack (vertical 2D heterostructure). The resulting artificial 2D structures provide access to new properties and applications beyond their component 2D atomic crystals and hence, they are emerging as a new exciting field of research. Lastly, in this article, we review recent progress on the fabrication, characterization, and applications of various 2D heterostructures.

  10. Two-dimensional soft nanomaterials: a fascinating world of materials.

    PubMed

    Zhuang, Xiaodong; Mai, Yiyong; Wu, Dongqing; Zhang, Fan; Feng, Xinliang

    2015-01-21

    The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context. PMID:25155302

  11. Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Ju, Long

    a charge transfer process between graphene and BN when the exposure of visible light is introduced. We show this photo-induced doping in graphene resembles the modulation doping technique in traditional semiconductor heterojunctions, where a charge doping is introduced while the high mobility is maintained. This work reveals importance of interactions between stacked 2D materials on the overall properties and demonstrate a repeatable and convenient way of fabricating high quality graphene devices with active control of doping patterning. Along this direction, we did further STM experiment to visualize and manipulate charged defects in boron nitride with the help of graphene. The last theme is about the interesting properties of bilayer graphene, which is to some extent more interesting than monolayer graphene due to its electric-field dependent band structures. Firstly, we visualized the stacking boundary within exfoliated bilayer graphene by near field infrared microscopy. In dual-gated field-effect-transistor devices fabricated on the boundaries, we demonstrated the existence of topologically protected one dimensional conducting channels at the boundary through electric transport measurement. The 1D boundary states also demonstrated the first graphene-based valleytronic device. The topics we are going to talk about in this thesis are quite diversified. Just like the versatile nature of optical spectroscopy, we never limit ourself to a specific technique and do incremental things. Most of the experiments are driven by the important and interesting problems in the two dimensional materials field and we chose the right tool and conceive the right experiment to answer that question. Both pure optical methods and combinations with electric transport and STM measurements were used. I believe the flexibility of optical spectroscopy and its compatibility with other experimental techniques provide a powerful toolbox to explore many possibilities beyond the reach of a

  12. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy. PMID:26811117

  13. Hydrothermal syntheses and characterization of two novel luminescent Cadmium(II) frameworks: From 1D infinite triple Cd-(trz)-Cd bridges to a rare I2O0 network with 2D Cd-Br-Cd inorganic connectivity

    NASA Astrophysics Data System (ADS)

    Liu, Shi Xin; Li, Jian Hui; Wang, You You; Wu, Xiang Xia; Huo, Jian Zhong; Ding, Bin; Wang, Xiu Guang; Zhu, Zhao Zhou; Xia, Jun

    2015-05-01

    Using the 4-substituted-1,2,4-triazole derivate ligand 4-p-tolyl-1,2,4-triazole (L), two novel luminescent Cadmium(II) frameworks, namely {[Cd(μ2-L)3]·(NO3)2·L}n (1) and [Cd1.5(μ2-L)(μ2-Br)2(μ3-Br)]n (2) have been isolated under hydrothermal conditions. The structural analysis reveals that 1 presents a one-dimensional (1D) chain structural motif containing novel infinite triple Cd-(trz)-Cd bridges (triply trz-bridged M-M species). While 2 presents a rare I2O0 type framework, in which the infinite 2D Cd-Br-Cd inorganic connectivity with a 4-connected Kagome topology can be observed. The FT-IR, PXRD and thermal stabilities of 1-2 have investigated. The solid-state photo-luminescent spectra of organic ligand L and 1-2 also have been measured indicating strong emission bands.

  14. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    NASA Astrophysics Data System (ADS)

    Xin, Ling-Yun; Liu, Guang-Zhen; Wang, Li-Ya

    2011-06-01

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2O)] n(1), [Zn(PHDA)(BPP)] n(2), and [Cu 2(PHDA) 2(BPP)] n(3) (H 2PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 86 68 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state.

  15. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  16. Two-dimensional swimming behavior of bacteria

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin

    Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.

  17. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations. PMID:21517357

  18. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  19. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    SciTech Connect

    Rancova, Olga; Abramavicius, Darius; Jankowiak, Ryszard

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  20. Experimental study on interface region of two-dimensional Si layers by forming gas annealing

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Suzuki, Yuhya; Kikuchi, Reika; Suzuki, Ayaka; Inoue, Ryohsuke; Yamanaka, Masahiro; Yokoyama, Miki; Nagamine, Yoshiki; Aoki, Takashi; Maeda, Tatsuro

    2016-04-01

    We experimentally studied the SiO2/Si and Si/buried oxide (BOX) interface regions of a two-dimensional (2D) Si layer, by forming gas annealing (FGA). A photoluminescence (PL) result measured at various lattice temperature, T L, values shows that the PL intensity I PL of the 2D-Si layer rapidly increases and then saturates with increasing FGA temperature, T A, and time, t A. I PL also increases with decreasing T L. A one-dimensional (1D) Schroedinger equation simulator indicates that some of the electrons in the 2D-Si layer generated by a PL excitation laser are quantum-mechanically transmitted into Si interface regions. Actually, we experimentally confirmed that the PL spectra of the 2D-Si layer can be fitted by the PL emission from two regions with different PL peak photon energy values, E PH, which consist of a typical 2D-Si and the interface regions of both the surface SiO2/Si and Si/BOX. Thus, this forming gas dependence is probably attributable to the improved lifetime τ of electrons in the surface interface region, because the Si surface is terminated by H atoms. Moreover, the E PH of the interface region is higher than that of the 2D-Si layer, because of the graded increased bandgap in the interface regions. However, the E PH of 2D-Si is independent of both T A and T L, and this T L independence does not agree with that of a 3D-Si layer. Consequently, we experimentally verified the larger impact of the Si interface on the performance of 2D-Si layer.

  1. Mode competition and mode control in free electron lasers with one and two dimensional Bragg resonators

    SciTech Connect

    Yu, P.N.; Ginzburg, N.S.; Sergeev, A.S.

    1995-12-31

    In the report we present a time domain approach to the theory of FELs with one and two dimensional Bragg resonators. It is demonstrated that traditional 1-D Bragg resonators provide possibilities for effective longitudinal mode control. In particular, simulation of the FEL realized in the joint experiment of JINR (Dybna) and IAP (N. Novgord) confirms achievement of the single mode operating regime with high efficiency of about 20%. However, 1-D Bragg resonators lose their selectivity as the transverse size of the system is increased. We simulate mode competition in FELs with coaxial 1-D Bragg resonators and observe a progressively more complicated azimuthal mode competition pattern as the perimeter of the resonator is increased. At the same time, using 2-D Bragg resonators for the same electron beam and microwave system perimeter gives very fast establishment of the single frequency regime with an azimuthally symmetric operating mode. Therefore, FELs utilising 2-D Bragg resonators with coaxial and planar geometry may be considered as attractive sources of high power spatially coherent radiation in the mm and sub-mm wave bands.

  2. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  3. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  4. Developing Sediment Transport and Dredging Prediction Model of Ohio River at Olmsted Locks and Dams Area using HEC-RAS (1D/2D)By Ganesh Raj Ghimire1 and Bruce A. Devantier 2

    NASA Astrophysics Data System (ADS)

    Ghimire, G. R.

    2015-12-01

    Sediment deposition is a serious issue in the construction and operation of large reservoir and inland navigation projects in the United States and around the world. Olmsted Locks and Dams in the Ohio River navigation system is facing similar challenges of huge sediment deposition during the ongoing in-wet construction methodology since 1993. HEC-RAS 5.0 integrated with ArcGIS, will be used to yield unsteady 2D hydrodynamic model of Ohio River at Olmsted area. Velocity, suspended sediment, bed sediment and hydrographic survey data acquired from public archives of USGS and USACE Louisville District will be input into the model. Calibration and validation of model will be performed against the measured stage, flow and velocity data. It will be subjected to completely unsteady 1D sediment transport modeling new to HEC-RAS 5.0 which incorporates sediment load and bed gradation via a DSS file, commercial dredging and BSTEM model. Sediment model will be calibrated to replicate the historical bed volume changes. Excavated cross-sections at Olmsted area will also be used to predict the sediment volume trapped inside the ditch over the period between excavations and placement of dam shells at site. Model will attempt to replicate historical dredging volume data and compare with the deposition volume from simulation model to formulate the dredging prediction model. Hence, the results of this research will generate a model that can form a basis for scheduling the dredging event prior to the placement of off-shore cast shells replacing the current as and when required approach of dredging plan. 1 Graduate Student, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603 2 Professor, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603

  5. Longitudinal viscosity of two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Goree, J.; Liu, Bin

    2013-01-01

    The longitudinal viscosity ηl is obtained for a two-dimensional (2D) liquid using a Green-Kubo method with a molecular dynamics simulation. The interparticle potential used has the Debye-Hückel or Yukawa form, which models a 2D dusty plasma. The longitudinal ηl and shear ηs viscosities are found to have values that match very closely, with only negligible differences for the entire range of temperatures that is considered. For a 2D Yukawa liquid, the bulk viscosity ηb is determined to be either negligibly small or not a meaningful transport coefficient.

  6. Two-dimensional crystals: managing light for optoelectronics.

    PubMed

    Eda, Goki; Maier, Stefan A

    2013-07-23

    Semiconducting two-dimensional (2D) crystals such as MoS2 and WSe2 exhibit unusual optical properties that can be exploited for novel optoelectronics ranging from flexible photovoltaic cells to harmonic generation and electro-optical modulation devices. Rapid progress of the field, particularly in the growth area, is beginning to enable ways to implement 2D crystals into devices with tailored functionalities. For practical device performance, a key challenge is to maximize light-matter interactions in the material, which is inherently weak due to its atomically thin nature. Light management around the 2D layers with the use of plasmonic nanostructures can provide a compelling solution. PMID:23834654

  7. Two-Dimensional Layered Materials-Based Spintronics

    NASA Astrophysics Data System (ADS)

    Su, Guohui; Wu, Xing; Tong, Wenqi; Duan, Chungang

    2015-12-01

    The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.

  8. Parallel Stitching of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Lin, Yuxuan; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing; Department of Electrical Engineering; Computer Science, Massachusetts Institute of Technology Team

    Large scale integration of atomically thin metals (e.g. graphene), semiconductors (e.g. transition metal dichalcogenides (TMDs)), and insulators (e.g. hexagonal boron nitride) is critical for constructing the building blocks for future nanoelectronics and nanophotonics. However, the construction of in-plane heterostructures, especially between two atomic layers with large lattice mismatch, could be extremely difficult due to the strict requirement of spatial precision and the lack of a selective etching method. Here, we developed a general synthesis methodology to achieve both vertical and in-plane ``parallel stitched'' heterostructures between a two-dimensional (2D) and TMD materials, which enables both multifunctional electronic/optoelectronic devices and their large scale integration. This is achieved via selective ``sowing'' of aromatic molecule seeds during the chemical vapor deposition growth. MoS2 is used as a model system to form heterostructures with diverse other 2D materials. Direct and controllable synthesis of large-scale parallel stitched graphene-MoS2 heterostructures was further investigated. Unique nanometer overlapped junctions were obtained at the parallel stitched interface, which are highly desirable both as metal-semiconductor contact and functional devices/systems, such as for use in logical integrated circuits (ICs) and broadband photodetectors.

  9. Two-dimensional separated flows

    NASA Astrophysics Data System (ADS)

    Gersten, K.

    The state of the art of asymptotic theory is discussed with respect to incompressible two-dimensional separated flows. As an example, the flow over an indented flat plate is considered for two cases: a small separation bubble within the lower part of the boundary layer, and the 'catastrophic' separation of the whole boundary layer with a large recirculating eddy. Separation means failure of Prandtl's boundary layer theory, and alternate theories are required. An example of this is shown in the calculation of circulation in the dent according to triple-deck theory. The free-streamline theory approach is used to examine the indented flat plate and the flow past a circular cylinder. Attention is also given to flow control by continuous injection, combined forced and free convection, unsteady laminar flows, and laminar flows.

  10. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  11. Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Revard, Benjamin C.; Tipton, William W.; Yesypenko, Anna; Hennig, Richard G.

    2016-02-01

    Single-layer materials represent a new materials class with properties that are potentially transformative for applications in nanoelectronics and solar-energy harvesting. With the goal of discovering novel two-dimensional (2D) materials with unusual compositions and structures, we have developed a grand-canonical evolutionary algorithm that searches the structure and composition space while constraining the thickness of the structures. Coupling the algorithm to first-principles total-energy methods, we show that this approach can successfully identify known 2D materials and find low-energy ones. We present the details of the algorithm, including suitable objective functions, and illustrate its potential with a study of the Sn-S and C-Si binary materials systems. The algorithm identifies several 2D structures of InP, recovers known 2D structures in the binary Sn-S and C-Si systems, and finds two 1D Si defects in graphene with formation energies below that of isolated substitutional Si atoms.

  12. One- and two-dimensional Stirling machine simulation using experimentally generated flow turbulence models

    NASA Technical Reports Server (NTRS)

    Goldberg, Louis F.

    1990-01-01

    Investigations of one- and two-dimensional (1- or 2-D) simulations of Stirling machines centered around experimental data generated by the U. of Minnesota Mechanical Engineering Test Rig (METR) are covered. This rig was used to investigate oscillating flows about a zero mean with emphasis on laminar/turbulent flow transitions in tubes. The Space Power Demonstrator Engine (SPDE) and in particular, its heater, were the subjects of the simulations. The heater was treated as a 1- or 2-D entity in an otherwise 1-D system. The 2-D flow effects impacted the transient flow predictions in the heater itself but did not have a major impact on overall system performance. Information propagation effects may be a significant issue in the simulation (if not the performance) of high-frequency, high-pressure Stirling machines. This was investigated further by comparing a simulation against an experimentally validated analytic solution for the fluid dynamics of a transmission line. The applicability of the pressure-linking algorithm for compressible flows may be limited by characteristic number (defined as flow path information traverses per cycle); this warrants further study. Lastly the METR was simulated in 1- and 2-D. A two-parameter k-w foldback function turbulence model was developed and tested against a limited set of METR experimental data.

  13. Solution structural characterization of cyanometmyoglobin: Resonance assignment of heme cavity residues by two-dimensional NMR

    SciTech Connect

    Emerson, S.D.; La Mar, G.N. )

    1990-02-13

    Steady-state nuclear Overhauser effects (NOE), two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY), and 2D spin correlation spectroscopy (COSY) have been applied to the fully paramagnetic low-spin, cyanide-ligated complex of sperm whale ferric myoglobin to assign the majority of the heme pocket side-chain proton signals and the remainder of the heme signals. It is shown that the 2D NOESY map reveals essentially all dipolar connectivities observed in ordinary 1D NOE experiments and expected on the basis of crystal coordinates, albeit often more weakly than in a diamagnetic analogue. For extremely broad ({approximately}600-Hz) and rapidly relaxing (T{sub 1} {approximately} 3 ms) signals which show no NOESY peaks, the authors demonstrate that conventional steady-state NOEs obtained under very rapid pulsing conditions still allow detection of the critical dipolar connectivities that allow unambiguous assignments. Numerous critical COSY cross peaks between strongly hyperfine-shifted peaks were resolved and assigned. In all, 95% (53 of 56 signals) of the total proton sets within {approximately}7.5 {angstrom} of the iron, the region experiencing the strongest hyperfine shifts and paramagnetic relaxation, are now unambiguously assigned. Hence it is clear that the 2D methods can be profitably applied to paramagnetic proteins. The scope and limitations of such application are discussed. The resulting hyperfine shift pattern for the heme confirmed expectations based on model compounds.

  14. Continuum in MDGC Technology: From Classical Multidimensional to Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Kulsing, Chadin; Nolvachai, Yada; Rawson, Paul; Evans, David J; Marriott, Philip J

    2016-04-01

    Recent advances in multidimensional gas chromatography (MDGC) comprise methods such as multiple heart-cut (H/C) analysis and comprehensive two-dimensional gas chromatography (GC × GC); however, clear approaches to evaluate the MDGC results, choice of the most appropriate method, and optimized separation remain of concern. In order to track the capability of these analytical techniques and select an effective experimental approach, a fundamental approach was developed utilizing a time summation model incorporating temperature-dependent linear solvation energy relationship (LSER). The approach allows prediction of optimized analyte distribution in the 2D space for various MDGC approaches employing different experimental variables such as column lengths, temperature programs, and stationary phase combinations in order to evaluate separation performance (apparent (1)D, (2)D, total number of separated peaks, and orthogonality) for simulated MDGC results. The methodology applied LSER to generate results for nonpolar-polar and polar-nonpolar 2D column configurations for separation of 678 compounds in an oxidized kerosene-based jet fuel sample. Three-dimensional plots were generated in order to illustrate the dependency of separation performance on (2)D column length and number of injections for different stationary phase combinations. With a given limit of analysis time, a MDGC approach to obtain an optimized total separated peak number for a particular column set was proposed depending on (1)D and (2)D analyte peak distribution. This study introduces fundamental concepts and establishes approaches to design effective GC × GC or multiple H/C systems for different column combinations, to provide the best overall separation outcomes with the highest separated peak number and/or orthogonality. PMID:26973019

  15. Transmission electron microscopy of structural disorder in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Huang, Pinshane Yeh

    Transmission electron microscopy (TEM) of two-dimensional materials (2D) offers an unprecedented opportunity to study disordered systems down to the single-atom level. The reduced dimensionality of these systems provides a two-fold opportunity: first, 2D materials serve as model systems for exploring direct correlations between the structure and properties of individual atomic features. Second, these studies enable the development of new 2D materials and devices with precisely tailored optical, electronic, and mechanical properties. The experiments presented in this thesis show the first atomic-resolution images of extended one- and two-dimensional disorder in 2D materials and the extraordinary range of consequences they have on the local materials properties. The thesis begins with studies that probe the structure and properties of the 1D defects that make up grain boundaries in atomically-thin layers of graphene and molybdenum disulfide. These experiments span length scales across five orders of magnitude to image every atom at the grain boundaries through atomic-resolution scanning TEM and rapidly map the location, orientation, and shape of several hundred grains with dark-field TEM. Correlating these images with local probes of electrical, mechanical, and optical properties reveals that grain boundaries have effects that range from the unmeasurable to the extreme. A second set of projects utilizes aberration-corrected electron microscopy of a newly discovered 2D polymorph of SiO2 to conduct some of the first atomic resolution studies of glass. Images of the atomic structure of 2D SiO2 strikingly resemble Zachariasen's foundational cartoon models of glasses and reveal distributions of medium-range ordering that will be critical for refining theoretical models for how and why glasses form. Additional experiments use the electron beam to excite and image atomic rearrangements in this 2D SiO2, producing dramatic videos that visualize the structural building blocks

  16. Bi-layer ^3He: a simple two dimensional heavy fermion system with quantum criticality

    NASA Astrophysics Data System (ADS)

    Saunders, John

    2008-03-01

    Two dimensional helium films provide simple model systems for the investigation of quantum phase transitions in two dimensions. Monolayer ^3He absorbed on graphite, with various pre-platings, behaves as a two dimensional Mott-Hubbard system, complete with a density driven ``metal-insulator'' transition [1, 2] into what appears to be a gapless spin-liquid. In two dimensions the corrections to the temperature dependence of the fluid heat capacity, beyond the term linear in T, are anomalous and attributed to quasi-1D scattering [3]. On the other hand, bi-layer ^3He films adsorbed on the surface of graphite show evidence of two-band heavy-fermion behavior and quantum criticality [4, 5]. The relevant control parameter is the total density of the ^3He film. The ^3He bilayer system can be driven toward a quantum critical point (QCP) at which the effective mass appears to diverge, the effective inter-band hybridization vanishes, and a local moment state appears. A theoretical model in terms of a ``Kondo breakdown selective Mott transition'' has recently been suggested [6]. * In collaboration with: A Casey, M Neumann, J Nyeki, B Cowan. [1] Evidence for a Mott-Hubbard Transition in a Two-Dimensional ^3He Fluid Monolayer, A. Casey, H. Patel, J. Ny'eki, B. P. Cowan, and J. Saunders Phys. Rev. Lett. 90, 115301 (2003) [2] D Tsuji et al. J. Low Temp. Phys. 134, 31 (2004) [3] A V Chubukov et al. Phys. Rev. B71, 205112 (2005) [4] Bilayer ^3He; a simple two dimensional heavy fermion system with quantum criticality, Michael Neumann, Jan Nyeki, Brian Cowan, John Saunders. Science 317, 1356 (2007) [5] Heavy fermions in the original Fermi liquid. Christopher A Hooley and Andrew P Mackenzie. Science 317, 1332 (2007) [6] C Pepin, Phys. Rev. Lett. 98, 206401 (2007) and A Benlagra and C Pepin, arXiv: 0709.0354

  17. Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Ren, Jun; Fu, HuiXia; Ding, ZiJing; Li, Hui; Meng, Sheng

    2015-10-01

    We predict a series of new two-dimensional (2D) inorganic materials made of silicon and carbon elements (2D Si x C1- x ) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D Si x C1- x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 eV as the ratio x changes in 2D Si x C1- x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their π and π* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D Si x C1- x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D Si x C1- x have profound implications in nanoelectronic and photovoltaic device applications.

  18. Digital Filters for Two-Dimensional Data

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1983-01-01

    Computational efficient filters speed processing of two-dimensional experimental data. Two-dimensional smoothing filter used to attenuate highfrequency noise in two-dimensional numerical data arrays. Filter provides smoothed data values equal to values obtained by fitting surface with secondand third-order terms to 5 by 5 subset of data points centered on points and replacing data at each point by value of surface fitted at point. Especially suited for efficient analysis of two-dimensional experimental data on images.

  19. Two dimensional investigation of ion acoustic waves reflection from the sheath

    SciTech Connect

    Cartwright, K.L.; Birdsall, C.K.

    1995-12-31

    Preliminary results show that oblique ion waves propagate from the bulk plasma into and all the way through the sheath in both 1D and 2D simulation. These waves are launched from one side of the system with a AC voltage or a current source with a frequency less than the ion plasma frequency. The one and initial two dimensional PIC simulations show the details of densities, potentials, fields, particle moments and time-distance plots of the average density minus the instantaneous density. From the time-distance plot the direction and magnitude of the ion acoustic wave is measured. From this the coefficients of reflection and transmission as a function of the incident angle is calculated. The observations are compared with laboratory experiments and theory.

  20. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    PubMed

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-01

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution. PMID:23977902

  1. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  2. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities. PMID:23176195

  3. Thermal Independent Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Luong, Jim; Guan, Xiaosheng; Xu, Shifen; Gras, Ronda; Shellie, Robert A

    2016-09-01

    We introduce a modulation strategy for comprehensive two-dimensional gas chromatography (GC×GC) with complete thermal independence between the cooling and heating stages and without the need for GC oven heat for remobilization. Based on this approach, a compact thermal independent modulator (TiM) with thermoelectric cooling and micathermic heating has been successfully innovated for use in GC×GC. The device operates externally to a gas chromatograph, does not require liquid cryogen, and has minimal consumables requirements. The augmentation of an additional gas flow stream results in a number of critical chromatographic parameter improvements such as the decoupling of flows of first- and second-dimension columns to attain both efficiency and speed optimized flow in each dimension, the potential for independent retention time locking or scaling in either dimension, the improvement of modulator reinjection efficiency, as well as facilitating back-flushing for the first dimension to enhance system cleanliness and throughput. TiM was found to be useful for chromatographic applications over a volatility range equivalent to nC6 to nC24 under conditions used. Repeatability of retention time for model compounds such as benzene, toluene, ethyl benzene, and xylenes were found to be quite satisfactory with relative standard deviations of less than 0.009% in (1)D and less than 0.008% in (2)D (n = 10). Typical peak widths of 120 ms or less with a relative standard deviation of less than 4.7% were achieved for the aromatic model compounds. In this article, the performance of the modulator is demonstrated and a series of challenging chromatographic applications are presented to illustrate usefulness of the apparatus. PMID:27537206

  4. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    SciTech Connect

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  5. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  6. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  7. Development of Novel Two-dimensional Layers, Alloys and Heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Zheng

    2015-03-01

    The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.

  8. Low-power adiabatic sequences for in-vivo localized two-dimensional chemical shift correlated MR spectroscopy

    PubMed Central

    Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory

    2011-01-01

    Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988

  9. Two-dimensional convective turbulence

    SciTech Connect

    Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N.

    1996-02-01

    We show that 2D {bold E{times}B} ionospheric turbulence of the electron density in the equatorial electrojet is isomorphic to the viscous convection of an ordinary fluid in a porous medium due to temperature gradients. Numerical simulations reveal the strong anisotropy in the turbulence, which consists of rising hot bubbles and falling cool bubbles. These bubbles break up into fingers leading to the formation of stable shear flows. After reaching a quasisteady state, the omnidirectional energy spectrum approaches a {ital k}{sup {minus}2} behavior, rather than {ital k}{sup {minus}5/3} as expected from isotropic turbulence. Physical mechanisms that lead to anisotropy are analyzed. {copyright} {ital 1996 The American Physical Society.}

  10. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  11. Collective effects in the two-dimensional Josephson junction array

    NASA Astrophysics Data System (ADS)

    Vinokour, Valerii; Sadovskyy, Ivan; Galda, Alexey

    2013-03-01

    We study collective quantum effects in the two-dimensional Josephson junction arrays (JJA) in the vicinity of the superconductor-insulator transition (SIT). We find the contribution of the quantum coherent phase slips (QCPS) into the formation of thermodynamic properties of the JJA, including critical current, as a function of the magnetic field. We investigate the response of the 2D JJA to the external bias and the contribution from QCPS to this response.

  12. Sputter deposition of multilayer thermoelectric films: An approach to the fabrication of two-dimensional quantum wells

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph C.; Barbee, Troy W.; Chapline, George C.; Foreman, Ronald J.; Summers, Leslie J.; Dresselhaus, Mildred S.; Hicks, Lyndon D.

    1994-08-01

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT≤1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (1D) quantum wires could have ZT≥3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi0.9Sb0.1 and PbTe0.8Se0.2 onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. If successful, this research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

  13. A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum

    NASA Astrophysics Data System (ADS)

    Xi, Caiping; Zhang, Shunning; Xiong, Gang; Zhao, Huichang

    2016-07-01

    Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signal. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two-dimensional multifractal detrended fluctuation analysis (2D-MFDFA) and two-dimensional multifractal detrended moving average (2D-MFDMA) algorithm, and a detailed description of the application of the two-dimensional fractal signal processing by using the two methods. By applying the 2D-MFDFA and 2D-MFDMA to the series generated from the two-dimensional multiplicative cascading process, we systematically do the comparative analysis to get the advantages, disadvantages and the applicabilities of the two algorithms for the first time from six aspects such as the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders and the calculation amount. The results provide a valuable reference on how to choose the algorithm from 2D-MFDFA and 2D-MFDMA, and how to make the schemes of the parameter settings of the two algorithms when dealing with specific signals in practical applications.

  14. Comparative proteomics of E. coli O157:H7: two-dimensional gel electrophoresis vs. two-dimensional liquid chromatography separation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accepted method for comparing bacterial proteomes has traditionally been two-dimensional gel electrophoresis (2-D GE). However, in recent years, new procedures for protein separation have been introduced. One of these new procedures utilizes column-based liquid chromatography (2-D LC) separati...

  15. Selectable one-dimensional or two-dimensional gas chromatography-olfactometry/mass spectrometry with preparative fraction collection for analysis of ultra-trace amounts of odor compounds.

    PubMed

    Ochiai, Nobuo; Sasamoto, Kikuo

    2011-05-27

    A novel selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-olfactometry/mass spectrometry with preparative fraction collection (selectable (1)D/(2)D GC-O/MS with PFC) system was developed. The main advantages of this system are the simple and fast selection of (1)D GC-O/MS or (2)D GC-O/MS or (1)D GC-PFC or (2)D GC-PFC operation with a mouse click (without any instrumental set-up change), and total transfer of enriched compounds with thermal desorption (TD) on the same system for identification with (2)D GC-O/MS analysis. Recovery of PFC enrichment with 20 injection cycles of 15 model compounds at 500pg each (e.g. alcohol, aldehyde, ester, lactone, and phenol) was very good with recoveries in the range of 98-116%. The feasibility and benefit of the proposed system was demonstrated with an identification of off-flavor compounds (e.g. 2,4,6-trichloroanisole (TCA), 2-isobutyl-3-methoxypyrazine (IBMP), and geosmin) in spiked wine at odor perception threshold level (5-50ngL(-1)). After parallel stir bar sorptive extraction (SBSE) for 20 aliquots of a sample and subsequent PFC enrichment for the odor-active fractions from the 20 stir bars, three off-flavor compounds were clearly resolved and detected with TD-(2)D GC-O/MS in scan mode. The good efficiency of SBSE-PFC enrichment in the range of 71-78% shows that all analytical steps, e.g. SBSE, TD, (1)D/(2)D GC-O/MS, and PFC, are quantitative and identification of off-flavor compounds at ngL(-1) level in wine is possible. PMID:21081238

  16. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  17. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides.

    PubMed

    Chen, Xin; McDonald, Aidan R

    2016-07-01

    Two-dimensional (2D) layered transition-metal dichalcogenides (TMDs) are a fascinating class of nanomaterials that have the potential for application in catalysis, electronics, photonics, energy storage, and sensing. TMDs are rather inert, and thus pose problems for chemical derivatization. However, to further modify the properties of TMDs and fully harness their capabilities, routes towards their chemical functionalization must be identified. Herein, recent efforts toward the chemical (bond-forming) functionalization of 2D TMDs are critically reviewed. Recent successes are highlighted, along with areas where further detailed analyses and experimentation are required. This burgeoning field is very much in its infancy but has already provided several important breakthroughs. PMID:26848815

  18. Two-dimensional magmons with damage and the transition to magma-fracturing

    NASA Astrophysics Data System (ADS)

    Cai, Zhengyu; Bercovici, David

    2016-07-01

    Magma-fracturing during melt migration is associated with the propagation of a pore-generating damage front ahead of high-pressure fluid injection, which facilitates the transport of melt in the asthenosphere and initiates dike propagation in the lithosphere. We examine the propagation of porous flow in a damageable matrix by applying the two-phase theory for compaction and damage proposed by Bercovici et al. (2001a) and Bercovici and Ricard (2003) in 2-D. Damage (void generation and microcracking) is treated by considering the generation of interfacial surface energy by deformational work. We examine the stability of 1-D solitary waves to 2-D perturbations, and study the formation of finite-amplitude, two-dimensional solitary waves with and without solenoidal (rotational) flow of the matrix. We show that the wavelength and growth rate of the most unstable perturbations are dependent on both background porosity and the presence of solenoidal flow field. The effect of damage on finite amplitude 2-D solitary waves is then examined with numerical experiments. Stably propagating circular waves become flattened (elongated perpendicular to gravity) for small porosity, or elongated (parallel to gravity) for large porosity with increased damage. We show that the weakening of the matrix due to damage leads to these changes in wave geometry, which indicates a transition from magmatic porous flow to dike-like or sill-like magma-fracturing as magma passes through a semi-brittle/semi-ductile zone in the lithosphere.

  19. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks

    NASA Astrophysics Data System (ADS)

    Shabani, J.; Kjaergaard, M.; Suominen, H. J.; Kim, Younghyun; Nichele, F.; Pakrouski, K.; Stankevic, T.; Lutchyn, R. M.; Krogstrup, P.; Feidenhans'l, R.; Kraemer, S.; Nayak, C.; Troyer, M.; Marcus, C. M.; Palmstrøm, C. J.

    2016-04-01

    Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance.

  20. Shock wave in a two-dimensional dusty plasma crystal

    SciTech Connect

    Ghosh, Samiran

    2009-10-15

    Two-dimensional (2D) shock structures of longitudinal dust lattice wave (LDLW) in a hexagonal Yukawa crystal are studied. The nonlinear evolution equation derived for dusty plasma crystal is found to be a 2D Burgers' equation, where the Burgers' term, i.e., the dissipation is provided by ''hydrodynamic damping'' due to irreversible processes that take place within the system. Analytical and numerical solutions of this equation on the basis of crystal experimental parameters show the development of compressional shock structures of LDLW in 2D dusty plasma crystal. The shock strength decreases (increases) with the increase in lattice parameter {kappa} (angle of propagation of the nonlinear wave). The results are discussed in the context of 2D monolayer hexagonal dusty plasma crystal experiments.

  1. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  2. Recent Advances in Two-Dimensional Materials Beyond Graphene

    SciTech Connect

    Meunier, Vincent; Sumpter, Bobby G.; Terrones Maldonado, Mauricio; Terrones Maldonado, Humberto; Liang, Liangbo; Cooper, Valentino R.; Bhimanapati, Ganesh; Lin, Zhong; Jung, Yeongwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael; Louie, Steven G.; Ringe, Emilie; Xia, Fengnian; Wang, Yeliang; Akinwande, Deji; Zhu, Jun; Schuller, John; Schaak, Raymond; Robinson, Joshua A

    2015-11-06

    The isolation of graphene in 2004 by peeling apart the atomically-thin sheets that comprise graphite was a defining moment for the birth of a field: Two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here we review significant recent advances and important new developments in 2D materials beyond graphene . We provide insight into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene, which enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

  3. Recent Advances in Two-Dimensional Materials Beyond Graphene

    DOE PAGESBeta

    Meunier, Vincent; Sumpter, Bobby G.; Terrones Maldonado, Mauricio; Terrones Maldonado, Humberto; Liang, Liangbo; Cooper, Valentino R.; Bhimanapati, Ganesh; Lin, Zhong; Jung, Yeongwoong; Cha, Judy; et al

    2015-11-06

    The isolation of graphene in 2004 by peeling apart the atomically-thin sheets that comprise graphite was a defining moment for the birth of a field: Two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here we review significant recent advances and important new developments in 2D materials beyond graphene . We provide insight into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulkmore » solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene, which enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.« less

  4. Tunable states of interlayer cations in two-dimensional materials

    SciTech Connect

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  5. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage.

    PubMed

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-08-01

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. The factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented. The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. Particularly, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films. PMID:27254831

  6. Recent Advances in Two-Dimensional Materials beyond Graphene.

    PubMed

    Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A

    2015-12-22

    The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene. PMID:26544756

  7. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage

    DOE PAGESBeta

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-06-02

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Moreover, synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. Some factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented.more » The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Some various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. In particular, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films.« less

  8. A two dimensional artificial reality

    NASA Technical Reports Server (NTRS)

    Krueger, Myron W.

    1991-01-01

    The current presumption is that it is necessary to don goggles, gloves and a data suit to experience artificial reality. However, there is another technology that offers an alternative or complement to the encumbering techniques associated with NASA. In VIDEOPLACE, your image appears in a 2D graphic world created by a computer. The VIDEOPLACE computer can analyze a person's image in 1/30 second and can detect when an object is touched. Thus, it can generate a graphic or auditory response to an illusory contact. VIDEOPLACE technology exists in two formats: the VIDEODESK and the VIDEOPLACE. In the VIDEODESK environment, the image of your hands can be used to perform the normal mouse functions, such as menuing and drawing. In addition, you have the advantage of multipoint control. For instance, you can use the thumbs and forefingers of each hand as control points for a spline curve. Perhaps most important, the image of your hands can be compressed and transmitted to a colleague over an ISDN voice channel to appear on the remote screen superimposed over identical information. Likewise, the image of your colleague's hands can appear on both screens. The result is that the two of you can use your hands to point to features on your respective screens as you speak, exactly as you would if you were sitting together. In the VIDEOPLACE environment, you can interact with graphic creatures and the images of other people in other locations in a graphic world. Your whole body can be moved, scaled and rotated in real-time without regard to the laws of physics. Thus, VIDEOPLACE can be used to create a fantasy world in which the laws of cause and effect are composed by an artist.

  9. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.

    PubMed

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Lin, Liangjun; Kasper, F Kurtis; Qin, Yi-Xian; Mikos, Antonios G; Sitharaman, Balaji

    2013-03-11

    This study investigates the efficacy of two-dimensional (2D) carbon and inorganic nanostructures as reinforcing agents for cross-linked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multiwalled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum disulfide nanoplatelets (MSNPs) at 0.01-0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multiwalled carbon nanotubes (SWCNTs, MWCNTs) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35-108%, compressive yield strength = 26-93%, flexural modulus = 15-53%, and flexural yield strength = 101-262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNP nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNP showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2D nanostructures (GONPs, MSNPs) are better reinforcing agents compared to one-dimensional (1D) nanostructures (e.g., SWCNTs). The results also indicated that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicated good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01-0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1-0.2 wt %). The analysis of surface area and aspect ratio

  10. Two-Dimensional Nanostructure- Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Qin, Yi-Xian; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    This study investigates the efficacy of two dimensional (2D) carbon and inorganic nanostructures as reinforcing agents of crosslinked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multi-walled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum di-sulfite nanoplatelets (MSNPs) at 0.01–0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multi-walled carbon nanotubes (SWCNT, MWCNT) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35–108%, compressive yield strength = 26–93%, flexural modulus = 15–53%, and flexural yield strength = 101–262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNPs nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNPs showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2-D nanostructures (GONP, MSNP) are better reinforcing agents compared to 1-D nanostructures (e.g. SWCNTs). The results also indicate that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicates good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01–0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1–0.2 wt%). The analysis of surface area and aspect ratio of

  11. Preparative two-dimensional liquid chromatography/mass spectrometry for the purification of complex pharmaceutical samples.

    PubMed

    Zhang, Yinong; Zeng, Lu; Pham, Catherine; Xu, Rongda

    2014-01-10

    A new preparative two-dimensional liquid chromatography/mass spectrometry system (2D LC-LC/MS) has been designed and implemented to enhance capability and resolving power for the separation and purification of pharmaceutical samples. The system was constructed by modifications of a conventional preparative LC/MS instrument with the addition of a set of switching valves and a sample loop, as well as interfacing a custom software program with MassLynx. The system integrates two chromatographic separations from the first and second dimensions into a single automated run to perform the purification of a target compound from a complex mixture without intermediate steps of sample preparation. The chromatography in the first dimension, operated in the heart-cutting mode, separates the target compound from the impurities by mass-triggered fractionation based on its molecular weight. This purified fraction from the first dimension is stored in the sample loop, and then gets transferred to the second column by using at-column dilution. A control software program, coined Prep 2D LCMS, was designed to integrate with MassLynx to retrieve data acquisition status. All of the chromatographic hardware components used in this preparative 2D LC-LC/MS system are from the original open access preparative LC/MS system, which has high level of robustness and affords easy and user-friendly operation. The new system is very versatile and capable of collecting multiple fractions with different masses under various purification modes as configured in the methods, such as conventional one-dimensional (1D) purification and/or 2D purification. This new preparative 2D LC-LC/MS system is therefore the ideal tool for medicinal chemistry lab in drug discovery environment. PMID:24309715

  12. Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation

    SciTech Connect

    Canas-Ventura, M. E.; Klappenberger, F.; Clair, S.; Pons, S.; Kern, K.; Brune, H.; Strunskus, T.; Woell, Ch.; Fasel, R.; Barth, J. V.

    2006-11-14

    The adsorption of terephthalic acid [C{sub 6}H{sub 4}(COOH){sub 2}, TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis indicates that the 1D phase consists of intact TPA chains stabilized by a dimerization of the self-complementary carboxyl groups, whereas in the 2D phase, consisting of deprotonated entities, the molecules form lateral ionic hydrogen bonds. The supramolecular growth dynamics and the resulting structures are explained by a self-limiting deprotonation process mediated by the catalytic activity of the Pd surface. Our models for the molecular ordering are supported by molecular mechanics calculations and a simulation of high resolution STM images.

  13. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates.

    PubMed

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices. PMID:27199079

  14. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  15. Optically trapped quasi-two-dimensional Bose gases in a random environment: Quantum fluctuations and superfluid density

    SciTech Connect

    Zhou Kezhao; Liang Zhaoxin; Zhang Zhidong; Hu Ying

    2010-10-15

    We investigate a dilute Bose gas confined in a tight one-dimensional (1D) optical lattice plus a superimposed random potential at zero temperature. Accordingly, the ground-state energy, quantum depletion, and superfluid density are calculated. The presence of the lattice introduces a crossover to the quasi-two-dimensional (2D) regime, where we analyze asymptotically the 2D behavior of the system, particularly the effects of disorder. We thereby offer an analytical expression for the ground-state energy of a purely 2D Bose gas in a random potential. The obtained disorder-induced normal fluid density n{sub n} and quantum depletion n{sub d} both exhibit a characteristic 1/ln(1/n{sub 2D}a{sub 2D}{sup 2}) dependence. Their ratio n{sub n}/n{sub d} increases to 2 compared to the familiar 4/3 in lattice-free three-dimensional (3D) geometry, signifying a more pronounced contrast between superfluidity and Bose-Einstein condensation in low dimensions. The conditions for possible experimental realization of our scenario are also proposed.

  16. On the Importance of Noncovalent Carbon-Bonding Interactions in the Stabilization of a 1D Co(II) Polymeric Chain as a Precursor of a Novel 2D Coordination Polymer.

    PubMed

    Pal, Pampi; Konar, Saugata; Lama, Prem; Das, Kinsuk; Bauzá, Antonio; Frontera, Antonio; Mukhopadhyay, Subrata

    2016-07-14

    A new cobalt(II) coordination polymer 2 with μ1,5 dicyanamide (dca) and a bidentate ligand 3,5-dimethyl-1-(2'-pyridyl)pyrazole (pypz) is prepared in a stepwise manner using the newly synthesized one-dimensional linear Co(II) coordination polymer 1 as a precursor. The structural and thermal characterizations elucidate that the more stable complex 2 shows a two-dimensional layer structural feature. Here, Co(II) atoms with μ1,5 dicyanamido bridges are linked by the ligand pypz forming a macrocyclic chain that runs along the crystallographic 'c' axis having 'sql' (Shubnikov notation) net topology with a 4-connected uninodal node having point symbol {4(4).6(2)}. The remarkable noncovalent carbon-bonding contacts detected in the X-ray structure of compound 1 are analyzed and characterized by density functional theory calculations and the analysis of electron charge density (atoms in molecules). PMID:27295490

  17. Scaling and self-similarity in two-dimensional hydrodynamics.

    PubMed

    Ercan, Ali; Kavvas, M Levent

    2015-07-01

    The conditions under which depth-averaged two-dimensional (2D) hydrodynamic equations system as an initial-boundary value problem (IBVP) becomes self-similar are investigated by utilizing one-parameter Lie group of point scaling transformations. Self-similarity conditions due to the 2D k-ε turbulence model are also investigated. The self-similarity conditions for the depth-averaged 2D hydrodynamics are found for the flow variables including the time, the longitudinal length, the transverse length, the water depth, the flow velocities in x- and y-directions, the bed shear stresses in x- and y-directions, the bed shear velocity, the Manning's roughness coefficient, the kinematic viscosity of the fluid, the eddy viscosity, the turbulent kinetic energy, the turbulent dissipation, and the production and the source terms in the k-ε model. By the numerical simulations, it is shown that the IBVP of depth-averaged 2D hydrodynamic flow process in a prototype domain can be self-similar with that of a scaled domain. In fact, by changing the scaling parameter and the scaling exponents of the length dimensions, one can obtain several different scaled domains. The proposed scaling relations obtained by the Lie group scaling approach may provide additional spatial, temporal, and economical flexibility in setting up physical hydraulic models in which two-dimensional flow components are important. PMID:26232977

  18. Electronic transport in two-dimensional high dielectric constant nanosystems.

    PubMed

    Ortuño, M; Somoza, A M; Vinokur, V M; Baturina, T I

    2015-01-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials. PMID:25860804

  19. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGESBeta

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  20. Electronic transport in two-dimensional high dielectric constant nanosystems

    SciTech Connect

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  1. Measuring Monotony in Two-Dimensional Samples

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's correlation coefficient for…

  2. Linkage analysis by two-dimensional DNA typing

    SciTech Connect

    Meerman, G.J. te; Meulen, M.A. van der ); Mullaart, E.; Morolli, B.; Uitterlinden, A.G. ); Daas, J.H.G. den ); Vijg, J. Beth Israel Hospital, Boston, MA )

    1993-12-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core probes. The 2-D DNA typing method generates a large amount of information on polymorphic loci per gel. Here, the authors demonstrate the potential usefulness of 2-D DNA typing in an empirical linkage study on the red factor in cattle, and the authors show an example of the 2-D DNA typing analysis of a human pedigree. The power efficiency of 2-D DNA typing in general is compared with that of single-locus typing by simulation. The results indicate that, although 2-D DNA typing is very efficient in generating data on polymorphic loci, its power to detect linkage is lower than single-locus typing, because it is not obvious whether a spot represents the presence of one or two alleles. It is possible to compensate for this lower informativeness by increasing the sample size. Genome scanning by 2-D DNA typing has the potential to be more efficient than current genotyping methods in scoring polymorphic loci. Hence, it could become a method of choice in mapping genetic traits in humans and animals. 13 refs., 5 figs., 4 tabs.

  3. Analysis techniques for two-dimensional infrared data

    NASA Technical Reports Server (NTRS)

    Winter, E. M.; Smith, M. C.

    1978-01-01

    In order to evaluate infrared detection and remote sensing systems, it is necessary to know the characteristics of the observational environment. For both scanning and staring sensors, the spatial characteristics of the background may be more of a limitation to the performance of a remote sensor than system noise. This limitation is the so-called spatial clutter limit and may be important for systems design of many earth application and surveillance sensors. The data used in this study is two dimensional radiometric data obtained as part of the continuing NASA remote sensing programs. Typical data sources are the Landsat multi-spectral scanner (1.1 micrometers), the airborne heat capacity mapping radiometer (10.5 - 12.5 micrometers) and various infrared data sets acquired by low altitude aircraft. Techniques used for the statistical analysis of one dimensional infrared data, such as power spectral density (PSD), exceedance statistics, etc. are investigated for two dimensional applicability. Also treated are two dimensional extensions of these techniques (2D PSD, etc.), and special techniques developed for the analysis of 2D data.

  4. Tensor representation of color images and fast 2D quaternion discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.

  5. Two dimensional WS2 lateral heterojunctions by strain modulation

    NASA Astrophysics Data System (ADS)

    Meng, Lan; Zhang, Yuhan; Hu, Song; Wang, Xiangfu; Liu, Chunsheng; Guo, Yandong; Wang, Xinran; Yan, Xiaohong

    2016-06-01

    "Strain engineering" has been widely used to tailor the physical properties of layered materials, like graphene, black phosphorus, and transition-metal dichalcogenides. Here, we exploit thermal strain engineering to construct two dimensional (2D) WS2 in-plane heterojunctions. Kelvin probe force microscopy is used to investigate the surface potentials and work functions of few-layer WS2 flakes, which are grown on SiO2/Si substrates by chemical vapor deposition, followed by a fast cooling process. In the interior regions of strained WS2 flakes, work functions are found to be much larger than that of the unstrained regions. The difference in work functions, together with the variation of band gaps, endows the formation of heterojunctions in the boundaries between inner and outer domains of WS2 flakes. This result reveals that the existence of strain offers a unique opportunity to modulate the electronic properties of 2D materials and construct 2D lateral heterojunctions.

  6. Two-dimensional electronic spectroscopy with birefringent wedges

    NASA Astrophysics Data System (ADS)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-01

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  7. Extended quantum jump description of vibronic two-dimensional spectroscopy

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Keß, Martin; Wehner, Johannes G.; Engel, Volker; Zhang, Pan-Pan; Eisfeld, Alexander

    2015-06-07

    We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic method and provides an efficient method for the calculation of the 2D-spectra.

  8. Nanoelectronic circuits based on two-dimensional atomic layer crystals

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Zhong, Zhaohui

    2014-10-01

    Since the discovery of graphene and related forms of two-dimensional (2D) atomic layer crystals, numerous studies have reported on the fundamental material aspects, such as the synthesis, the physical properties, and the electrical properties on the transistor level. With the advancement in large-area synthesis methods, system level integration to exploit the unique applications of these materials is close at hand. The main purpose of this review is to focus on the current progress and the prospect of circuits and systems based on 2D material that go beyond the single-transistor level studies. Both analog and digital circuits based on graphene and related 2D atomic layer crystals will be discussed.

  9. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  10. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  11. Two dimensional Langevin recombination in regioregular poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Juška, Gytis; Genevičius, Kristijonas; Nekrašas, Nerijus; Sliaužys, Gytis; Österbacka, Ronald

    2009-07-01

    In this work, it is shown that recombination in regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (RRP3HT:PCBM) bulk-heterojunction solar cells is caused by the two dimensional (2D) Langevin recombination in the lamellar structures of RRP3HT, which are formed after annealing process. Due to 2D Langevin process, bimolecular recombination coefficient is reduced in comparison with three dimensional Langevin case, and bimolecular recombination coefficient depends on the density of charge carriers n1/2. Data obtained from the different experimental techniques (charge extraction with linearly increasing voltage, integral time of flight, double injection current transients and transient absorption spectroscopy) confirms 2D Langevin recombination in RR3PHT.

  12. Quasi-Two-Dimensional Magnetism in Co-Based Shandites

    NASA Astrophysics Data System (ADS)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-06-01

    We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.

  13. A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Liang, Wenli Z.; Diamond, P. H.

    1993-01-01

    The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.

  14. Two-dimensional electronic spectroscopy with birefringent wedges.

    PubMed

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-01

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria. PMID:25554272

  15. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    PubMed Central

    Mannix, Andrew J.; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D.; Alducin, Diego; Myers, Benjamin D.; Liu, Xiaolong; Fisher, Brandon L.; Santiago, Ulises; Guest, Jeffrey R.; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R.; Hersam, Mark C.; Guisinger, Nathan P.

    2016-01-01

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195

  16. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  17. Two-dimensional nanoarchitectonics: organic and hybrid materials.

    PubMed

    Govindaraju, T; Avinash, M B

    2012-10-21

    Programmed molecular assemblies with molecular-level precision have always intrigued mankind in the quest to master the art of molecular engineering. In this regard, our review seeks to highlight the state of the art in supramolecular engineering. Herein we describe two-dimensional (2D) nanoarchitectonics of organic and organic-inorganic based hybrid materials. Molecular systems ranging from simpler hydrogen bonding driven bis-acylurea and cyclic dipeptide derivatives to complex peptoids, arylenes, cucurbiturils, biphenyls, organosilicons and organometallics, which involve a delicate interplay of multiple noncovalent interactions are discussed. These specifically chosen examples illustrate the molecular design principles and synthetic protocols to realize 2D nanosheets. The description also emphasizes the wide variety of functional properties and technological implications of these 2D nanomaterials besides an outlook for future progress. PMID:22782293

  18. Attractive Coulomb interaction of two-dimensional Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.

    2016-06-01

    We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron and hole exchange interaction between excited excitons has an attractive character both for s - and p -type two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons, the direct interaction of 2D Rydberg excitons exhibits van der Waals-type long-range interaction. The results predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.

  19. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported. PMID:26329169

  20. Collective excitations of a trapped Bose-Einstein condensate in the presence of weak disorder and a two-dimensional optical lattice

    SciTech Connect

    Hu Ying; Liang Zhaoxin; Hu Bambi

    2010-05-15

    We investigate the combined effects of weak disorder and a two-dimensional (2D) optical lattice on the collective excitations of a harmonically trapped Bose-Einstein condensate (BEC) at zero temperature. Accordingly, we generalize the hydrodynamic equations of superfluid for a weakly interacting Bose gas in a 2D optical lattice to include the effects of weak disorder. Our analytical results for the collective frequencies beyond the mean-field approximation reveal the peculiar role of disorder, interplaying with the 2D optical lattice and interatomic interaction, on elementary excitations along the 3D to 1D crossover. In particular, consequences of disorder on the phonon propagation and surface modes are analyzed in detail. The experimental scenario is also proposed.

  1. Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity

    SciTech Connect

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, with the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.

  2. Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity

    DOE PAGESBeta

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, withmore » the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.« less

  3. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  4. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  5. Novel stilbene-based Fischer base analog of leuco-TAM - (2E,2'Z)-{2-(4-(E)-styrylphenyl)propane-1,3-diylidene}bis(1,3,3-trimethylindoline) - derivatives: synthesis and structural consideration by 1D NMR and 2D NMR spectroscopy.

    PubMed

    Keum, Sam-Rok; Lim, Hyun-Woo

    2016-02-01

    We report the synthesis of a series of novel stilbene-based (St) Fischer base analogs of leuco-triarylmethane (LTAM) dyes by treating Fischer base with (E)-4-styrylbenzaldehyde derivatives. All St-LTAM molecules examined herein are characterized by 1D and 2D NMR. They were found to exhibit ZE configuration and isomerize to their diastereomers EE and ZZ in 2-3 h. They exhibit type I behavior of diastereomeric isomerization. PMID:26448377

  6. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  7. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance

    PubMed Central

    Wilson, James B.; Blom, Eric; Cunningham, Ryan; Xiao, Yuxuan; Kupfer, Gary M.; Jones, Nigel J.

    2010-01-01

    The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2-monoubiquitylation. Our data demonstrates that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi

  8. Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10.

    PubMed

    Yoshikawa, M; Negishi, S; Shima, Y; Hojo, H; Mase, A; Kogi, Y; Imai, T

    2010-10-01

    Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10. PMID:21033869

  9. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  10. Extension of modified power method to two-dimensional problems

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  11. Fast, comprehensive two-dimensional liquid chromatography

    PubMed Central

    Stoll, Dwight R.; Li, Xiaoping; Wang, Xiaoli; Carr, Peter W.; Porter, Sarah E. G.; Rutan, Sarah C.

    2011-01-01

    The absolute need to improve the separating power of liquid chromatography, especially for multi-constituent biological samples, is becoming increasingly evident. In response, over the past few years, there has been a great deal of interest in the development of two dimension liquid chromatography (2DLC). Just as 1DLC is preferred to 1DGC based on its compatibility with biological materials we believe that ultimately 2DLC will be preferred to the much more highly developed 2DGC for such samples. The huge advantage of 2D chromatographic techniques over 1D methods is inherent in the tremendous potential increase in peak capacity (resolving power). This is especially true of comprehensive 2D chromatography wherein it is possible, under ideal conditions, to obtain a total peak capacity equal to the product of the peak capacities of the first and second dimension separations. However, the very long timescale (typically several hours to tens of hours) of comprehensive 2DLC is clearly its chief drawback. Recent advances in the use of higher temperatures to speed up isocratic and gradient elution liquid chromatography have been used to decrease the time needed to do the second dimension LC separation of 2DLC to about 20 seconds for a full gradient elution run. Thus fast, high temperature LC is becoming a very promising technique. Peak capacities of over 2000 and rates of peak capacity production of nearly 1 peak/s have been achieved. In consequence, many real samples showing more than 200 peaks with signal to noise ratios of better than 10:1 have been run in total times of under 30 minutes. This report is not intended to be a comprehensive review of 2DLC, but is deliberately focused on the issues involved in doing fast 2DLC by means of elevating the column temperature; however, many issues of broader applicability will be discussed. PMID:17888443

  12. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  13. Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes.

    PubMed

    Ryu, Soo Ryeon; Noda, Isao; Lee, Chang-Hee; Lee, Phil Ho; Hwang, Hyonseok; Jung, Young Mee

    2011-04-01

    In this study, we demonstrate the potentials and pitfalls of using various waterfall plots, such as conventional waterfall plots, two-dimensional (2D) gradient maps, moving window two-dimensional analysis (MW2D), perturbation-correlation moving window two-dimensional analysis (PCMW2D), and moving window principal component analysis two-dimensional correlation analysis (MWPCA2D), in the detection of the existence of band position shifts. Waterfall plots of the simulated spectral datasets are compared with conventional 2D correlation spectra. Different waterfall plots give different features in differentiating the behaviors of frequency shift versus two overlapped bands. Two-dimensional correlation spectra clearly show the very characteristic cluster pattern for both band position shifts and two overlapped bands. The vivid pattern differences are readily detectable in various waterfalls plots. Various types of waterfall plots of temperature-dependent infrared (IR) spectra of ethylene glycol, which does not have the actual band shift but only two overlapped bands, and of Fourier transform infrared (FT-IR) spectra of 2 wt% acetone in a mixed solvent of CHCl(3)/CCl(4) demonstrate that waterfall plots are not able to unambiguously detect the difference between real band shift and two overlapped bands. Thus, the presence or lack of the asynchronous 2D butterfly pattern seems like the most effective diagnostic tool for band shift detection. PMID:21396181

  14. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  15. Two-dimensional correlation analysis of near-infrared spectral intensity variations of ground wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized two-dimensional (2D) correlation analysis was applied to characterize the NIR spectral intensity fluctuations among many spectra of ground wheat with multi-variable variations. Prior to 2D analysis, the spectra having neighboring protein / SDSS reference values were averaged and then new...

  16. The SWISS-2DPAGE database of two-dimensional polyacrylamide gel electrophoresis.

    PubMed Central

    Appel, R D; Sanchez, J C; Bairoch, A; Golaz, O; Ravier, F; Pasquali, C; Hughes, G J; Hochstrasser, D F

    1994-01-01

    SWISS-2DPAGE is a database of proteins identified on two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), created and maintained at the University Hospital of Geneva in collaboration with the Department of Medical Biochemistry of Geneva University. The proteins have been identified on various 2-D PAGE reference maps by microsequencing, immunoblotting, gel comparison and amino acid composition. Images PMID:7937063

  17. Two-Dimensional Ffowcs Williams/Hawkings Equation Solver

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2005-01-01

    FWH2D is a Fortran 90 computer program that solves a two-dimensional (2D) version of the equation, derived by J. E. Ffowcs Williams and D. L. Hawkings, for sound generated by turbulent flow. FWH2D was developed especially for estimating noise generated by airflows around such approximately 2D airframe components as slats. The user provides input data on fluctuations of pressure, density, and velocity on some surface. These data are combined with information about the geometry of the surface to calculate histories of thickness and loading terms. These histories are fast-Fourier-transformed into the frequency domain. For each frequency of interest and each observer position specified by the user, kernel functions are integrated over the surface by use of the trapezoidal rule to calculate a pressure signal. The resulting frequency-domain signals are inverse-fast-Fourier-transformed back into the time domain. The output of the code consists of the time- and frequency-domain representations of the pressure signals at the observer positions. Because of its approximate nature, FWH2D overpredicts the noise from a finite-length (3D) component. The advantage of FWH2D is that it requires a fraction of the computation time of a 3D Ffowcs Williams/Hawkings solver.

  18. First-Principles Predication of Two-Dimensional Electrides

    NASA Astrophysics Data System (ADS)

    Ming, Wenmei; Yoon, Mina

    Two-dimensional (2D) electrides have recently received increasing interest due to its promise for electron emitter, surface catalyst and high-mobility electronic devices. However, they are very limited in a few layered alkaline-earth nitrides and rare-earth carbides. Here, we extend the possibility of 2D electrides by structure predication, using density functional theory calculation in conjunction with particle swarm optimization algorithm. Simple-element compounds A2B (A/B = alkali metals/halogen, or A/B = alkaline-earth metals/VA, VIA, VIIA nonmetals) and AB (A/B = alkaline-earth metals/halogen), which have nominal imbalanced oxidation numbers, were investigated. We find several new 2D electrides out of 90 candidates, and uncover that the stabilization of the 2D layered structure, which is required for the success of 2D electrides, strongly depends on the relative size of cation, in such a way that it has to be of similar or larger size than the anion in order to sufficiently screen the repulsion between the excess electrons and anions. We additionally identify the experimental conditions of temperature and chemical potential where the predicted 2D electrides are stabilized against the decomposition into compounds with balanced oxidation numbers. Funding support from LDRD program at ORNL.

  19. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  20. Generates 2D Input for DYNA NIKE & TOPAZ

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  1. Liquid gradient in two-dimensional matrix for high throughput screening

    PubMed Central

    Hu, Shan-Wen; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-01-01

    Based on the ingenious combination of two different gradient generation mechanisms, this work reports a novel approach for a high throughput linear liquid gradient in a two-dimensional (2D) matrix. Specifically, a typical Christmas Tree structure with two inlets was designed as the first mixture gradient generator, upon which the second diffusion gradient generator was coupled to produce the desired concentration series on the basis of the distance difference. Rather than a simple 1D line, the integration of the two generators would result in an innovative 2D matrix of reservoirs, which was then characterized both theoretically and experimentally. Theoretically, calculation of fluid field demonstrated the formation of a concentration gradient, which was then confirmed by the dye solution visualization analysis. For high throughput screening application, doxorubicin (Dox) was then selected as model medicine to treat the acute myeloblastic leukemia (HL-60) cells. Cell viability displayed that cell death rate enhanced with the increase of drug concentration, and this result was higher than that on a 96-well plate, and the corresponding mechanism was properly discussed. Subsequently, Dox and quercetin were employed simultaneously to generate an overlapping gradient and its effect on HL-60 cells was investigated. Due to the automatic formation of concentration gradient that could improve the work efficiency, this work provides a promising tool for future high throughput drug screening. PMID:24396550

  2. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  3. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  4. Efficient Two-Dimensional-FFT Program

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1992-01-01

    Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.

  5. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    PubMed

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). PMID:24548435

  6. Two-dimensional Hyper-branched Gold Nanoparticles Synthesized on a Two-dimensional Oil/Water Interface

    PubMed Central

    Shin, Yonghee; Lee, Chiwon; Yang, Myung-Seok; Jeong, Sunil; Kim, Dongchul; Kang, Taewook

    2014-01-01

    Two-dimensional (2D) gold nanoparticles can possess novel physical and chemical properties, which will greatly expand the utility of gold nanoparticles in a wide variety of applications ranging from catalysis to biomedicine. However, colloidal synthesis of such particles generally requires sophisticated synthetic techniques to carefully guide anisotropic growth. Here we report that 2D hyper-branched gold nanoparticles in the lateral size range of about 50 ~ 120 nm can be synthesized selectively on a 2D immiscible oil/water interface in a few minutes at room temperature without structure-directing agents. An oleic acid/water interface can provide diffusion-controlled growth conditions, leading to the structural evolution of a smaller gold nucleus to 2D nanodendrimer and nanourchin at the interface. Simulations based on the phase field crystal model match well with experimental observations on the 2D branching of the nucleus, which occurs at the early stage of growth. Branching results in higher surface area and stronger near-field enhancement of 2D gold nanoparticles. This interfacial synthesis can be scaled up by creating an emulsion and the recovery of oleic acid is also achievable by centrifugation. PMID:25156520

  7. A two-dimensional matrix correction for off-axis portal dose prediction errors

    SciTech Connect

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in

  8. A Two-Dimensional Compressible Gas Flow Code

    1995-03-17

    F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicabilitymore » of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.« less

  9. Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming

    2015-02-17

    We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer. PMID:25581402

  10. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    PubMed

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage. PMID:27163318

  11. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    PubMed

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  12. Gate-induced superconductivity in two-dimensional atomic crystals

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-09-01

    Two-dimensional (2D) crystals are attracting growing interest in condensed matter physics, since these systems exhibit not only rich electronic and photonic properties but also exotic electronic phase transitions including superconductivity and charge density wave. Moreover, owing to the recent development of transfer methods after exfoliation and electric-double-layer transistors, superconducting 2D atomic crystals, the thicknesses of which are below 1–2 nm, have been successfully obtained. Here, we present a topical review on the recent discoveries of 2D crystalline superconductors by ionic-liquid gating and a series of their novel properties. In particular, we highlight two topics; quantum metallic states (or possible metallic ground states) and superconductivity robust against in-plane magnetic fields. These phenomena can be discussed with the effects of weakened disorder and/or broken spacial inversion symmetry leading to valley-dependent spin-momentum locking (spin-valley locking). These examples suggest the superconducting 2D crystals are new platforms for investigating the intrinsic quantum phases as well as exotic nature in 2D superconductors.

  13. Photocurrent generation with two-dimensional van der Waals semiconductors.

    PubMed

    Buscema, Michele; Island, Joshua O; Groenendijk, Dirk J; Blanter, Sofya I; Steele, Gary A; van der Zant, Herre S J; Castellanos-Gomez, Andres

    2015-06-01

    Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures. PMID:25909688

  14. Cross-peak-specific two-dimensional electronic spectroscopy

    PubMed Central

    Read, Elizabeth L.; Engel, Gregory S.; Calhoun, Tessa R.; Mančal, Tomáš; Ahn, Tae Kyu; Blankenship, Robert E.; Fleming, Graham R.

    2007-01-01

    Intermolecular electronic coupling dictates the optical properties of molecular aggregate systems. Of particular interest are photosynthetic pigment–protein complexes that absorb sunlight then efficiently direct energy toward the photosynthetic reaction center. Two-dimensional (2D) ultrafast spectroscopy has been used widely in the infrared (IR) and increasingly in the visible to probe excitonic couplings and observe dynamics, but the off-diagonal spectral signatures of coupling are often obscured by broad diagonal peaks, especially in the visible regime. Rotating the polarizations of the laser pulses exciting the sample can highlight certain spectral features, and the use of polarized pulse sequences to elucidate cross-peaks in 2D spectra has been demonstrated in the IR for vibrational transitions. Here we develop 2D electronic spectroscopy using cross-peak-specific pulse polarization conditions in an investigation of the Fenna–Matthews–Olson light harvesting complex from green photosynthetic bacteria. Our measurements successfully highlight off-diagonal features of the 2D spectra and, in combination with an analysis based on the signs of features arising from particular energy level pathways and theoretical simulation, we characterize the dominant response pathways responsible for the spectral features. Cross-peak-specific 2D electronic spectroscopy provides insight into the interchromophore couplings, as well as into the energetic pathways giving rise to the signal. With femtosecond resolution, we also observe dynamical processes that depend on these couplings and interactions with the protein environment. PMID:17548830

  15. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  16. Modified two-dimensional computational model for electrostrictive graft elastomer

    NASA Astrophysics Data System (ADS)

    Sun, Changjie; Wang, Youqi; Su, Ji

    2004-07-01

    A modified two-dimensional computational model is developed to calculate the electromechanical properties of the electrostrictive graft elastomer. The electrostrictive graft elastomer, recently developed by NASA, is a type of electro-active polymer. In a previous paper, the authors calculated electrostrictive graft elastomer electromechanical properties using a 2-D atomic force field. For this 2-D polymer structure, a much higher electric field was required to produce strain compared with that required in experiments. Two reasons could explain the higher electric field strength: (1) Polymer chain movement is restricted to a 2-D plane rather than to a 3-D plane. Out-plane dihedral torsional angle change would thus not be modeled. For this reason, 2-D polymer chains are less flexible than actual 3-D polymer chains. (2) Boundary effect of the computational model. In the original model, a unit cell consisting of a single graft unit was developed to simulate the deformation of the electrostrictive graft elastomer. The boundary of the unit cell would restrict the rotation of the graft unit. In this paper, a modified 2-D computational model is established to overcome the above problems. Firstly, three-dimensional deformations, induced by both bending angle and dihedral torsional angle changes, are projected onto a two-dimensional plane. Using both theoretical and numerical analyses, the projected 2-D equilibrium bending angle is shown to have the same value as the 3-D equilibrium bending angle. The 2-D equivalent bending stiffness is derived using a series model based upon the fact that both bending and dihedral torsion produce configuration change. The equivalent stiffness is justified by the characteristics of the polymer chain and end-to-end distance. Secondly, a self-consistent scheme is developed to eliminate the boundary effect. Eight images of the unit cell are created peripherally, with the original unit cell in the center. Thus the boundary can only affect the

  17. Theoretical prediction of a new two-dimensional carbon allotrope and NDR behaviour of its one-dimensional derivatives.

    PubMed

    Mandal, Bikash; Sarkar, Sunandan; Pramanik, Anup; Sarkar, Pranab

    2013-12-28

    By using state of the art theoretical methods we have predicted a new two-dimensional (2-D) carbon allotrope. This new planar carbon framework is made of hexagons, octagons and pentagons and hence named as HOP graphene (HOPG). The possibility of existence of HOPG is evident from its dynamical stability as confirmed by phonon-mode analysis and also from an energetic point of view since it is energetically more favorable than recently synthesized graphdiyne. The band structure shows the metallic behaviour of this new form of carbon allotrope. We also explored the electronic structure and transport properties of a 1-D derivative (nanoribbon) of HOPG. Most of the nanoribbons exhibit multiple negative differential resistance (NDR) behaviour with high peak to valley ratio. PMID:24217214

  18. Two-dimensional fin efficiency of plate fin-tube heat exchangers under partially and fully wet conditions

    NASA Astrophysics Data System (ADS)

    Jang, Jiin-Yuh; Lin, Chien-Nan

    2002-08-01

    This paper presents the two-dimensional analysis for the efficiency of continuous plate fin-tube heat exchangers in staggered and in-lined arrangements under the dry, partially wet, and fully wet conditions for different heat transfer coefficient ( h=20 W/m2K to h=80 W/m2K) and air relative humidity over the full range from ϕ=0 % to ϕ=100%. It is shown that the fin efficiencies of the staggered arrangement are higher than those for the in-lined arrangement, and the fully wet fin efficiency is 10-20% lower than that for a dry fin. The conventional 1-D sector method underestimates the fin efficiency up to 4 % as compared to the 2-D analysis.

  19. Control of Electron Transport in Two-Dimensional Array of Si Nanodisks for Spiking Neuron Device

    NASA Astrophysics Data System (ADS)

    Igarashi, Makoto; Huang, Chi-Hsien; Morie, Takashi; Samukawa, Seiji

    2010-08-01

    We fabricated a device with a two-dimensional Si-nanodisk array (2D ND array) with spiking neurons. The 2D ND array was prepared using a 2D array of iron-oxide cores as a uniform mask and a defect-free chlorine neutral beam as an etcher. The transformation from a pulse input signal (voltage) to a decayed analog output (current) was clearly observed, which may have resulted from the random hopping of electrons in the 2D ND array. Additionally, these analog outputs could be integrated in this 2D array by applying consecutive pulse inputs.

  20. High Mobility Two-Dimensional Electron Gas in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Li, Likai; Ye, Guojun; Tran, Vy; Chen, Guorui; Wang, Huichao; Wang, Jian; Watanabe, Kenji; Taniguchi, Takashi; Yang, Li; Chen, Xianhui; Zhang, Yuanbo

    2015-03-01

    Black phosphorus has recently emerged as a new member in the family of two-dimensional (2D) atomic crystals. It is a semiconductor with a tunable bandgap and high carrier mobility - material properties that are important for potential opto-electronic and high-speed device applications. In this work, we achieve a record-high carrier mobility in black phosphorus by placing it on hexagonal boron nitride (h-BN) substrate. The exceptional mobility of the 2D electron gas created at the interface allows us to observe quantum oscillations for the first time in this material. The temperature and magnetic field dependence of the oscillations yields crucial information about the black phosphorus 2DEG, such as cyclotron mass of the charge carriers and their lifetime. Our results pave the way to future research on quantum transport in black phosphorus.

  1. Ultrabroadband two-quantum two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gellen, Tobias A.; Bizimana, Laurie A.; Carbery, William P.; Breen, Ilana; Turner, Daniel B.

    2016-08-01

    A recent theoretical study proposed that two-quantum (2Q) two-dimensional (2D) electronic spectroscopy should be a background-free probe of post-Hartree-Fock electronic correlations. Testing this theoretical prediction requires an instrument capable of not only detecting multiple transitions among molecular excited states but also distinguishing molecular 2Q signals from nonresonant response. Herein we describe a 2Q 2D spectrometer with a spectral range of 300 nm that is passively phase stable and uses only beamsplitters and mirrors. We developed and implemented a dual-chopping balanced-detection method to resolve the weak molecular 2Q signals. Experiments performed on cresyl violet perchlorate and rhodamine 6G revealed distinct 2Q signals convolved with nonresonant response. Density functional theory computations helped reveal the molecular origin of these signals. The experimental and computational results demonstrate that 2Q electronic spectra can provide a singular probe of highly excited electronic states.

  2. Dynamic metastability in the two-dimensional Potts ferromagnet

    NASA Astrophysics Data System (ADS)

    Ibáñez Berganza, Miguel; Petri, Alberto; Coletti, Pietro

    2014-05-01

    We investigate the nonequilibrium dynamics of the two-dimensional (2D) Potts model on the square lattice after a quench below the discontinuous transition point. By means of numerical simulations of systems with q =12, 24, and 48, we observe the onset of a stationary regime below the temperature-driven transition, in a temperature interval decreasing with the system size and increasing with q. These results obtained dynamically agree with those obtained from the analytical continuation of the free energy [J. L. Meunier and A. Morel, Eur. Phys. J. B 13, 341 (2000), 10.1007/s100510050040], from which metastability in the 2D Potts model results to be a finite-size effect.

  3. Stopping power of two-dimensional spin quantum electron gases

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Jiang, Wei; Yi, Lin

    2015-04-01

    Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.

  4. Exchange interactions of magnetic surfaces below two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Friedrich, Rico; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan

    2016-06-01

    In this theoretical investigation we demonstrate that the adsorption of spatially extended two-dimensional (2D) π systems such as graphene and hexagonal boron nitride on the ferromagnetic fcc Co(111) surface leads to a specific behavior of the in-plane and interlayer Co-Co magnetic exchange interactions. More specifically, for both systems the magnetic exchange coupling within the first Co layer is enhanced, while the one between the first and the second Co layer is not modified, in contrast to the magnetic interlayer softening induced by organic molecules. Importantly, the in-plane magnetic hardening effect is mainly due to the hybridization between the pz states of the 2D π system and the d states of the Co surface.

  5. Superfluid response of two-dimensional parahydrogen clusters in confinement

    SciTech Connect

    Idowu, Saheed; Boninsegni, Massimo

    2015-04-07

    We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.

  6. Nonlinear compressional waves in a two-dimensional Yukawa lattice.

    PubMed

    Avinash, K; Zhu, P; Nosenko, V; Goree, J

    2003-10-01

    A modified Korteweg-de Vries (KdV) equation is obtained for studying the propagation of nonlinear compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-dimensional (2D) lattice. Assuming a Yukawa potential, we use this method to model compressional wave propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and preventing the emergence of a soliton. PMID:14683049

  7. Water adsorption on two-dimensional silica films

    NASA Astrophysics Data System (ADS)

    Nayakasinghe, M. T.; Chakradhar, A.; Sivapragasam, N.; Burghaus, U.

    2016-02-01

    In the meanwhile several inorganic low-dimensional crystals (analog to the prototypical organic graphene) are known. A technological important example is two-dimensional (2D) silica films (silicatene); their molecular structure is well described in the literature. However, much less is known about the surface chemistry. We present experimental data to characterize water adsorption on silicatene using several known synthesis procedures. The wettability of the 2D films did in our study depend on details of the film preparation. Therefore, the hydrophobicity could be used as a simple diagnostics tool to verify the quality of silicatene films. In addition, wettability of the precursors to silicatene namely Mo(112), and O-Mo(112) were characterized.

  8. Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides.

    PubMed

    Jana, Manoj K; Rao, C N R

    2016-09-13

    The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS2 In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501969

  9. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    SciTech Connect

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    2010-04-21

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

  10. Materials Science and Engineering with Two-dimensional Atomic Layers

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.

    There has been tremendous interest in recent years to study two-dimensional atomic layers which form building blocks of many bulk layered materials and devices. This talk will focus on the materials science aspects of 2D atomic layer, in particular the emerging structures based on transition metal chalcogenides. Several aspects that include synthesis, characterization and device fabrication will be explored with the objective of achieving all 2D functional structures for future technologies. The concept of nanoscale engineering and the goal of creating new artificially stacked van der Waals solids will be discussed through a number of examples. The challenges involved in scalable synthesis, doping, defect engineering, surface modifications of monolayers and the controlled creation of stacked structures and in-plane junctions from multiple compositions will be discussed. Some of anticipated applications of these materials will also be discussed.

  11. Electrical conductivity of quasi-two-dimensional foams.

    PubMed

    Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina

    2015-04-01

    Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics. PMID:25974485

  12. High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography.

    PubMed

    Freye, Chris E; Mu, Lan; Synovec, Robert E

    2015-12-11

    A high-temperature diaphragm valve-based comprehensive two-dimensional gas chromatography (GC×GC) instrument is demonstrated which readily allows separations up to 325°C. Previously, diaphragm valve-based GC×GC was limited to 175°C if the valve was mounted in the oven, or limited to 265°C if the valve was faced mounted on the outside of the oven. A new diaphragm valve has been commercially developed, in which the temperature sensitive O-rings that previously limited the separation temperatures have been replaced with Kalrez O-rings, a perfluoroelastomer, allowing for significantly higher temperatures permitting a greater range of volatile and semi-volatile compounds to be readily separated. In the current investigation, a separation temperature up to 325°C is demonstrated with the valve mounted directly in the oven. Since the temperature limit for most commonly used GC columns is at or below 325°C, the scope of diaphragm valve-based GC×GC is now dramatically broadened to encompass a majority of all column stationary phase chemistries. A 44-component mixture of alkanes, alcohols, and polyaromatic hydrocarbons is used to study this new configuration whose boiling points range from 98°C (n-heptane) to 450°C (n-triacontane). For the test mixture using a modulation period PM of 1.0s, peak shapes on second dimension separations, (2)D, are symmetric with average widths at base of 79.4ms, producing a (2)D peak capacity of (2)nc∼12. Based on the average peak width of 2.4s for the first dimension separation with a run time of 32.5min, the (1)D peak capacity is (1)nc∼800. Thus, the ideal two-dimensional peak capacity [Formula: see text] is 9600. Little variation in within-analyte (2)D peak width was observed with an average %RSD of less than 3.0%. Furthermore, retention time on (2)D was very reproducible with an average %RSD less than 0.5%. Measured peak areas (sum of all (2)D peaks for given analyte) had an average %RSD of 4.4%. The transfer fraction from (1)D

  13. A study on modeling of the writing process and two-dimensional neural network equalization for two-dimensional magnetic recording

    NASA Astrophysics Data System (ADS)

    Yamashita, Masato; Okamoto, Yoshihiro; Nakamura, Yasuaki; Osawa, Hisashi; Miura, Kenji; Greaves, S.; Aoi, H.; Kanai, Y.; Muraoka, Hiroaki

    2012-04-01

    A simple writing process considering magnetic clusters due to exchange coupling between grains is studied for two-dimensional magnetic recording. The bit error rate (BER) performance of a low-density parity-check coding and iterative decoding system with a two-dimensional neural network equalizer (2D-NNE) that can diminish the influences of jitter-like medium noise and inter-track interference is obtained using a read/write channel model based on the proposed writing process, and it is compared with those for one- and two-dimensional finite impulse response equalizers (FIREs). It is clarified that the BER performance for the 2D-NNE is far superior to those for the FIREs.

  14. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  15. Electrical contacts to two-dimensional semiconductors.

    PubMed

    Allain, Adrien; Kang, Jiahao; Banerjee, Kaustav; Kis, Andras

    2015-12-01

    The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides. PMID:26585088

  16. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  17. Towards application of one- and two-dimensional nanomaterials for reinforcement of polymeric nanocomposite bone grafts

    NASA Astrophysics Data System (ADS)

    Farrshid, Behzad

    One- and two-dimensional (1-D and 2-D) nanomaterials possess extraordinary physiochemical properties such as large surface area, excellent mechanical properties, high surface energy and good dispersivity in organic and biological solvents, therefore, they have been extensively used as reinforcing agents to improve the mechanical properties of polymeric scaffolds for bone tissue engineering applications. Carbon nanomaterials such as carbon nanotubes and graphene have been used as reinforcing agents for biodegradable polymeric scaffolds and composites, however, their short- and long-term in vitro cytotoxicity and in vivo biocompatibility is an area of extensive debate. In this study, we have systematically investigated the effects of addition of low concentrations (0.01-0.2 wt. %) of 1-D and 2-D carbon nanomaterials (graphene oxide nanoplatelets, graphene oxide nanoribbons and carbon nanotubes) and inorganic nanomaterials (boron nitride nanotubes, boron nitride nanoplatelers, tungsten disulfide nanotubes and molybdenum disulfide nanoplatelets) on the mechanical properties, cytocompatibility, and bioactivity of poly(propylene fumarate) (PPF) nanocomposites towards their potential applications as porous and nonporous implants for bone tissue engineering. Addition of nanomaterials in the PPF matrix improved the compressive and flexural mechanical properties of non-porous crosslinked PPF nanocomposites and porous PPF scaffolds. Our results suggest that in addition to high surface roughness and surface area of the nanomaterials, the presence of functional groups on the surface of nanomaterials leads to an increased nanomaterial-polymer interaction and a uniform dispersion of nanomaterials in polymer matrix which may be the key factors responsible for an improved mechanical reinforcement. The in vitro studies showed an excellent cytocompatibility for both carbon and inorganic nanomaterial reinforced PPF nanocomposites and scaffolds. Protein adsorption studies and in vitro

  18. Two-dimensional nanolithography using atom interferometry

    SciTech Connect

    Gangat, A.; Pradhan, P.; Pati, G.; Shahriar, M.S.

    2005-04-01

    We propose a scheme for the lithography of arbitrary, two-dimensional nanostructures via matter-wave interference. The required quantum control is provided by a {pi}/2-{pi}-{pi}/2 atom interferometer with an integrated atom lens system. The lens system is developed such that it allows simultaneous control over the atomic wave-packet spatial extent, trajectory, and phase signature. We demonstrate arbitrary pattern formations with two-dimensional {sup 87}Rb wave packets through numerical simulations of the scheme in a practical parameter space. Prospects for experimental realizations of the lithography scheme are also discussed.

  19. Crossflow in two-dimensional asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Lee, L. P.

    1975-01-01

    An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated.

  20. Pressure profiles of nonuniform two-dimensional atomic Fermi gases

    NASA Astrophysics Data System (ADS)

    Martiyanov, Kirill; Barmashova, Tatiana; Makhalov, Vasiliy; Turlapov, Andrey

    2016-06-01

    Spatial profiles of the pressure have been measured in atomic Fermi gases with primarily two-dimensional (2D) kinematics. The in-plane motion of the particles is confined by a Gaussian-shape potential. The two-component deeply degenerate Fermi gases are prepared at different values of the s -wave attraction. The pressure profile is found using the force-balance equation, from the measured density profile and the trapping potential. The pressure is compared to zero-temperature models within the local density approximation. In the weakly interacting regime, the pressure lies above a Landau Fermi-liquid theory and below the ideal-Fermi-gas model, whose prediction coincides with that of the Cooper-pair mean-field theory. The values closest to the data are provided by the approach where the mean field of Cooper pairs is supplemented with fluctuations. In the regime of strong interactions, in response to the increasing attraction, the pressure shifts below this model reaching lower values calculated within Monte Carlo methods. Comparison to models shows that interaction-induced departure from 2D kinematics is either small or absent. In particular, comparison with a lattice Monte Carlo suggests that kinematics is two dimensional in the strongly interacting regime.

  1. Statistical mechanics of shell models for two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Boffetta, G.; Crisanti, A.; Frick, P.; Paladin, G.; Vulpiani, A.

    1994-12-01

    We study shell models that conserve the analogs of energy and enstrophy and hence are designed to mimic fluid turbulence in two-dimensions (2D). The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager [Nuovo Cimento Suppl. 6, 279 (1949)], Hopf [J. Rat. Mech. Anal. 1, 87 (1952)], and Lee [Q. Appl. Math. 10, 69 (1952)]. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. This is clear evidence that the simplest shell models are not adequate to reproduce the main features of two-dimensional turbulence. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy and from one branch of the formal statistical equilibrium coincide in these shell models in contrast to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence has previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy. We also study the dynamical properties of the models and the growth of perturbations.

  2. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    PubMed

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. PMID:26994923

  3. Optimal design of 2D digital filters based on neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-hua; He, Yi-gang; Zheng, Zhe-zhao; Zhang, Xu-hong

    2005-02-01

    Two-dimensional (2-D) digital filters are widely useful in image processing and other 2-D digital signal processing fields,but designing 2-D filters is much more difficult than designing one-dimensional (1-D) ones.In this paper, a new design approach for designing linear-phase 2-D digital filters is described,which is based on a new neural networks algorithm (NNA).By using the symmetry of the given 2-D magnitude specification,a compact express for the magnitude response of a linear-phase 2-D finite impulse response (FIR) filter is derived.Consequently,the optimal problem of designing linear-phase 2-D FIR digital filters is turned to approximate the desired 2-D magnitude response by using the compact express.To solve the problem,a new NNA is presented based on minimizing the mean-squared error,and the convergence theorem is presented and proved to ensure the designed 2-D filter stable.Three design examples are also given to illustrate the effectiveness of the NNA-based design approach.

  4. Surfactant mediated one- and two-dimensional ZnO nanostructured thin films for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Mummoorthi, M.; Rajendran, S.; Ravi, G.

    2015-01-01

    One-dimensional (1D) and two-dimensional (2D) nanostructured zinc oxide (ZnO) thin films were electrodeposited from aqueous zinc chloride on FTO glass substrates. The effects of organic surfactant such as cetyltrimethyl ammonium bromide (CTAB) and polyvinyl alcohol (PVA) on structural, morphological, crystal quality and optical properties of electrodeposited ZnO films were investigated. The x-ray diffraction pattern revealed that the prepared thin films were pure wutrzite hexagonal structure. The thin films deposited using organic surfactant in this work showed different morphologies such as nanoplatelet and flower. The hexagonal platelet and flower-like nanostructures were obtained in the presence of CTAB and PVA surfactant, respectively. The crystal quality and atomic vacancies of the prepared nanostructured thin films were investigated by micro Raman spectroscopic technique. The emission properties and optical quality of the films were studied by photoluminescence spectrometry. PEMA-LiClO4-EC gel polymer electrolyte has been used to replace the liquid electrolyte for reducing the leakage problem. Graphene counter electrode was used as an alternative for platinum electrode. Eosin yellow dye was used as a sensitizer. J-V characterizations were carried out for different 1D and 2D nanostructures. The nanoflower structure exhibited higher efficiency (η = 0.073%) than the other two nanostructures.

  5. An iterative inter-track interference mitigation method for two-dimensional magnetic recording systems

    NASA Astrophysics Data System (ADS)

    Warisarn, C.; Losuwan, T.; Supnithi, P.; Kovintavewat, P.

    2014-05-01

    At high recording density, the readback signal of two-dimensional magnetic recording is inevitably corrupted by the two-dimensional (2D) interference consisting of inter-symbol interference and inter-track interference (ITI), which can significantly degrade the overall system performance. This paper proposes an iterative ITI mitigation method using three modified 2D soft-output Viterbi algorithm (2D-SOVA) detectors in conjunction with an iterative processing technique to combat the 2D interference. The codeword of the outer code is divided and then written on three separate tracks. For every iteration, all 2D-SOVA detectors exchange the soft information to improve the reliability of the a priori information and use it in the branch metric calculation, before feeding the refined soft information to the outer decoder. Simulation results show that the proposed method outperforms the conventional receiver and the existing partial ITI mitigation method.

  6. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks.

    PubMed

    Bunck, David N; Dichtel, William R

    2013-10-01

    Two-dimensional (2D) polymers assemble organic subunits into covalently linked, high-aspect-ratio networks with long-range order. Despite recent advances in 2D polymerization, scalable and general methods to access few- and single-layer materials are limited. Here we exfoliate a hydrazone-linked covalent organic framework (COF) to yield bulk quantities of few-layer two-dimensional (2D) polymers. Immersing the COF powder in several laboratory solvents exfoliates and disperses thin COF-43 samples, which maintain their characteristic periodic hexagonal structure. This phenomenon was characterized using infrared spectroscopy, dynamic light scattering, atomic force microscopy, transmission electron microscopy, and selected area electron diffraction. 2D COFs with reduced interlayer interaction energies offer a new means to access high-aspect-ratio 2D polymers whose structure may be designed using established principles of COF synthesis. PMID:24053107

  7. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates.

    PubMed

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. PMID:27102681

  8. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II–VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  9. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.

  10. Two-dimensional carbon leading to new photoconversion processes.

    PubMed

    Tang, Hongjie; Hessel, Colin M; Wang, Jiangyan; Yang, Nailiang; Yu, Ranbo; Zhao, Huijun; Wang, Dan

    2014-07-01

    Two-dimensional (2D) carbon allotropes, which are atomic thick layers made of network carbon atoms with hexagonal structured lattices, have been neglected until the direct investigation of mechanically exfoliated graphene by Novoselov et al. in 2004. Graphene is a 2D carbon allotrope with a unique structure of hexagonally arranged atoms that give it unparalleled electrical conductivity and carrier mobility, in addition to excellent mechanical flexibility and extremely high specific surface area. Graphene and its derivatives have been extensively studied for photovoltaic and photocatalytic applications due to their inherent nature to extract and transport charges from photon-absorbing semiconductors and conjugated polymers. Graphyne and graphdiyne, 2D carbon allotropes like graphene but containing not only doubly but also triply bonded carbon atoms, are predicted to possess intrinsic semiconductor bandgap and even more superior electrical properties than graphene. The current theoretical understanding and experimental status of graphyne and graphdiyne will be discussed in contrast of graphene, demonstrating those promising competitors to graphene in further lightening a new photoconversion. This review addresses the recent successes and current challenges of graphene, graphyne and graphdiyne, and provides insightful perspectives for the future applications of 2D carbon materials in photoelectric conversion and photocatalysis. PMID:24654006

  11. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    PubMed

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them. PMID:27100910

  12. Line shape analysis of two-dimensional infrared spectra

    PubMed Central

    Guo, Qi; Pagano, Philip; Li, Yun-Liang; Kohen, Amnon; Cheatum, Christopher M.

    2015-01-01

    Ultrafast two-dimensional infrared (2D IR) spectroscopy probes femtosecond to picosecond time scale dynamics ranging from solvation to protein motions. The frequency-frequency correlation function (FFCF) is the quantitative measure of the spectral diffusion that reports those dynamics and, within certain approximations, can be extracted directly from 2D IR line shapes. A variety of methods have been developed to extract the FFCF from 2D IR spectra, which, in principle, should give the same FFCF parameters, but the complexity of real experimental systems will affect the results of these analyses differently. Here, we compare five common analysis methods using both simulated and experimental 2D IR spectra to understand the effects of apodization, anharmonicity, phasing errors, and finite signal-to-noise ratios on the results of each of these analyses. Our results show that although all of the methods can, in principle, yield the FFCF under idealized circumstances, under more realistic experimental conditions they behave quite differently, and we find that the centerline slope analysis yields the best compromise between the effects we test and is most robust to the distortions that they cause. PMID:26049447

  13. Two-dimensional material electronics and photonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    2015-09-01

    Two-dimensional (2D) materials has attracted intense interest in research in recent years. As compared to their bulk counterparts, these 2D materials have many unique properties due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the materials also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and interaction with light. These unique properties of 2D materials open up broad territories of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on graphene and transition metal dichalcogenides.

  14. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  15. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    SciTech Connect

    Yue, Yuan; Kan, Yuwei; Clearfield, Abraham; Choi, Hyunho; Liang, Hong

    2015-12-21

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.

  16. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Xiao, Hai; Goddard, William A., III

    2016-05-01

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nano-electronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g. transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation, one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies, and the harmful defects are difficult to form at a low halide chemical potential. Thus we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  17. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  18. Two-dimensional state in driven magnetohydrodynamic turbulence

    SciTech Connect

    Bigot, Barbara; Galtier, Sebastien

    2011-02-15

    The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k{sub ||}=0 and in the area k{sub ||}>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvenic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.

  19. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Kan, Yuwei; Choi, Hyunho; Clearfield, Abraham; Liang, Hong

    2015-12-01

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y2O3) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.

  20. Two-dimensional ultrasound image matching system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zaim, Amjad; Keck, Rick W.; Selman, Steven H.; Jankun, Jerzy

    2001-05-01

    Two-dimensional (2D) ultrasound imaging is commonly used for diagnosis in a variety of medical fields. However, there are several drawbacks of conventional 2D-ultrasound imaging. These include prostate or transducer movement that produces sets of different images that are difficult to interpret. Also during patient's reexamination correspondence between sets of images before reexamination and after is difficult to establish. This can be described as a problem of correlation between two sets of images: the first created before distortion or examination, the second one after. We propose a method to register 2D ultrasound volumes based on external markers introduced in the prostate. The metal balls are inserted in the prostate at three distinct locations in the prostate. These appear as bright dots in the ultrasound field, serve as reference points, are then outlined through a user-interactive program from two sets of images. Then, the computer program rotates and translates till they match respectively, and displays the mapped points with their corresponding location. Based on this idea we developed an image-guided system for PDT that require high-precision placement of implants. In the planning stage, the system performs an automatic acquisition of 2D transrectal ultrasound images that will ultimately be used to construct the treatment plan. At the time of the therapy, new sets of ultrasound images are acquired and a match is established between the virtual world and the patient's real world with the aid of manually introduced markers and image matching algorithms.

  1. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  2. New two dimensional compounds: beyond graphene

    NASA Astrophysics Data System (ADS)

    Lebegue, Sebastien

    2015-03-01

    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  3. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  4. Valley excitons in two-dimensional semiconductors

    DOE PAGESBeta

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  5. Valley excitons in two-dimensional semiconductors

    SciTech Connect

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.

  6. Two-dimensional graphene analogues for biomedical applications.

    PubMed

    Chen, Yu; Tan, Chaoliang; Zhang, Hua; Wang, Lianzhou

    2015-05-01

    The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health. PMID:25519856

  7. Two-dimensional materials for novel liquid separation membranes.

    PubMed

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  8. Two-dimensional materials for novel liquid separation membranes

    NASA Astrophysics Data System (ADS)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  9. Probing electric properties at the boundary of planar 2D heterostructure

    NASA Astrophysics Data System (ADS)

    Park, Jewook

    The quest for novel two-dimensional (2D) materials has led to the discovery of hybridized 2D atomic crystals. Especially, planar 2D heterostructure provides opportunities to explore fascinating electric properties at abrupt one-dimensional (1D) boundaries reminiscent to those seen in the 2D interfaces of complex oxides. By implementing the concept of epitaxy to 2D space, we developed a new growth technique to epitaxially grow hexagonal boron nitride (hBN) from the edges of graphene, forming a coherent planar heterostructure. At the interface of hBN and graphene, a polar-on-nonpolar 1D boundary can be formed which is expected to possess peculiar electronic states associated with the polarity of hBN and edge states of graphene Scanning tunneling microscopy and spectroscopy (STM/S) measurements revealed an abrupt 1D zigzag oriented boundary, with boundary states about 0.6 eV below or above the Fermi level depending on the termination of the hBN at the boundary. The boundary states are extended along the boundary and exponentially decay into the bulk of graphene and hBN. Combined STM/S and first-principles theory study not only disclose spatial and energetic distribution of interfacial state but also reveal the origin of boundary states and the effect of the polarity discontinuity at the interface By probing electric properties at the boundary in the atomic scale, planar 2D heterostructure is demonstrated as a promising platform for discovering emergent phenomena at the 1D interface in 2D materials. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  10. Divergence of the long-wavelength collective diffusion coefficient in quasi-one- and quasi-two-dimensional colloidal suspensions.

    PubMed

    Lin, Binhua; Cui, Bianxiao; Xu, Xinliang; Zangi, Ronen; Diamant, Haim; Rice, Stuart A

    2014-02-01

    We report the results of experimental studies of the short-time-long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q → 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D(e)(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D(0): H(q) ≡ D(e)(q)S(q)/D(0). We find an apparent divergence of H(q) as q → 0 with the form H(q) ∝ q(-γ) (1.7 < γ < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q → 0 we infer that D(e)(q) does. This behavior is qualitatively different from that of the three-dimensional H(q) and D(e)(q) as q → 0, and the divergence is of a different functional form from that predicted for the diffusion coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions that define the dimensionality of the system. We provide support for the contention that the boundary conditions that define a confined system play a very important role in determining the long-wavelength behavior of the collective diffusion coefficient from two sources: (i) the results of simulations of H(q) and D(e)(q) in quasi-1D and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423 (1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that D(e)(q) for a monolayer of colloid particles constrained to lie in the interface between two fluids diverges as q(-1) as q → 0. PMID:25353468

  11. Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects

    SciTech Connect

    Wells, Jered R.; Dobbins, James T. III

    2012-10-15

    Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm{sup -1}) and approximate circular symmetry at frequencies below 4 mm{sup -1}. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm{sup -1}. Slit measurement near 45 Degree-Sign revealed radial asymmetry in the MTF resulting from

  12. Magnetization study of two dimensional helium three

    NASA Astrophysics Data System (ADS)

    Guo, Lei

    This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the

  13. Calibration of Two-dimensional Floodplain Modeling in the Atchafalaya River Basin Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Lee, Hgongki; Neal, Jeffrey; Alsdorf, Doug

    2012-01-01

    Two-dimensional (2D) satellite imagery has been increasingly employed to improve prediction of floodplain inundation models. However, most focus has been on validation of inundation extent, with little attention on the 2D spatial variations of water elevation and slope. The availability of high resolution Interferometric Synthetic Aperture Radar (InSAR) imagery offers unprecedented opportunity for quantitative validation of surface water heights and slopes derived from 2D hydrodynamic models. In this study, the LISFLOOD-ACC hydrodynamic model is applied to the central Atchafalaya River Basin, Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for the purpose of demonstrating the utility of InSAR in coupled 1D/2D model calibration. Two calibration schemes focusing on Manning s roughness are compared. First, the model is calibrated in terms of water elevations at a single in situ gage during a 62 day simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. The best-fit models show that the mean absolute errors are 3.8 cm for a single in situ gage calibration and 5.7 cm/46 days for InSAR water level calibration. The optimum values of Manning's roughness coefficients are 0.024/0.10 for the channel/floodplain, respectively, using a single in situ gage, and 0.028/0.10 for channel/floodplain the using SAR. Based on the calibrated water elevation changes, daily storage changes within the size of approx 230 sq km of the model area are also calculated to be of the order of 107 cubic m/day during high water of the modeled period. This study demonstrates the feasibility of SAR interferometry to support 2D hydrodynamic model calibration and as a tool for improved understanding of complex floodplain hydrodynamics

  14. Synthesis of Two-Dimensional Materials by Selective Extraction

    SciTech Connect

    Naguib, Michael; Gogotsi, Yury

    2014-12-09

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the precursor

  15. Synthesis of Two-Dimensional Materials by Selective Extraction

    DOE PAGESBeta

    Naguib, Michael; Gogotsi, Yury

    2014-12-09

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds tomore » form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the

  16. Two-dimensional magnetic property measurement for magneto-rheological elastomer

    NASA Astrophysics Data System (ADS)

    Zeng, Jianbin; Guo, Youguang; Li, Yancheng; Zhu, Jianguo; Li, Jianchun

    2013-05-01

    Magneto-rheological elastomer (MRE) is a new kind of smart material. Its rheological properties can be altered and controlled in a real time manner when it is applied an external magnetic field. For calculating magnetic properties of MRE material, usually Maxwell-Garnet equation is used to acquire an approximately effective permeability. This equation treats the magnetic property of particles as linear. However, when the applied magnetic field is alternating or rotating, the nonlinearity of magnetic property and magnetic hysteresis cannot be neglected. Hence, the measurement and modelling of the magnetic properties under alternating and rotating magnetic fields are essential to explore new applications of the material. This paper presents the investigation on the magnetic hysteresis properties of MRE material under one-dimensional (1-D) alternating and two-dimensional (2-D) rotating magnetic field excitations. A kind of MRE material, consisting of 70% carbonyl iron particles, 10% silicone oil, and 20% silicone rubber, was used to investigate the magnetic properties. The diameter of carbonyl iron particles is 3-5 μm. The measurement results, such as the relations between magnetic field intensity (H) and magnetic flux density (B) under different magnetic field excitations on the MRE sample, have been obtained and analyzed. These data would be useful for design and analysis of MRE smart structures like MR dampers.

  17. Doubled CO2 experiments with the Global Change Research Center two-dimensional statistical dynamical climate model

    NASA Astrophysics Data System (ADS)

    Mackay, R. M.; Khalil, M. A. K.

    1995-10-01

    The zonally averaged response of the Global Change Research Center two-dimensional (2-D) statistical dynamical climate model (GCRC 2-D SDCM) to a doubling of atmospheric carbon dioxide (350 parts per million by volume (ppmv) to 700 ppmv) is reported. The model solves the two-dimensional primitive equations in finite difference form (mass continuity, Newton's second law, and the first law of thermodynamics) for the prognostic variables: zonal mean density, zonal mean zonal velocity, zonal mean meridional velocity, and zonal mean temperature on a grid that has 18 nodes in latitude and 9 vertical nodes (plus the surface). The equation of state, p=ρRT, and an assumed hydrostatic atmosphere, Delta;p=-ρgΔz, are used to diagnostically calculate the zonal mean pressure and vertical velocity for each grid node, and the moisture balance equation is used to estimate the precipitation rate. The model includes seasonal variations in solar intensity, including the effects of eccentricity, and has observed land and ocean fractions set for each zone. Seasonally varying values of cloud amounts, relative humidity profiles, ozone, and sea ice are all prescribed in the model. Equator to pole ocean heat transport is simulated in the model by turbulent diffusion. The change in global mean annual surface air temperature due to a doubling of atmospheric CO2 in the 2-D model is 1.61 K, which is close to that simulated by the one-dimensional (1-D) radiative convective model (RCM) which is at the heart of the 2-D model radiation code (1.67 K for the moist adiabatic lapse rate assumption in 1-D RCM). We find that the change in temperature structure of the model atmosphere has many of the characteristics common to General Circulation Models, including amplified warming at the poles and the upper tropical troposphere, and stratospheric cooling. Because of the potential importance of atmospheric circulation feedbacks on climate change, we have also investigated the response of the zonal wind

  18. Pentahexoctite: A New Two-dimensional Allotrope of Carbon

    NASA Astrophysics Data System (ADS)

    Manjanath, Aaditya; Sharma, Babu Ram; Singh, Abhishek K.

    2015-03-01

    Structures with carbon atoms can be arranged in various shapes (polygons) that exhibit unique properties. This has spawned search in exploring such newer allotropes across dimensions. Although research has been extensive in bulk graphitic structures, there are several 2D allotropes that are yet to be unearthed. Here, we report a new allotrope consisting of 5-6-8 rings of carbon atoms, named as ``pentahexoctite.'' This sp2 hybridized 2D allotrope has mechanical strength comparable to graphene. Electronically, the sheet is metallic with direction-dependent flat and dispersive bands at the Fermi level. It serves as a precursor for a stable 1D nanotubes with chirality-dependent electronic and mechanical properties. With these unique properties, the pentahexoctite sheet is another exciting addition to the family of robust novel 2D allotropes of carbon.

  19. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  20. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  1. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  2. Two-dimensional ranking of Wikipedia articles

    NASA Astrophysics Data System (ADS)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  3. Two-Dimensional NMR Lineshape Analysis.

    PubMed

    Waudby, Christopher A; Ramos, Andres; Cabrita, Lisa D; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  4. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    SciTech Connect

    Liu Guocheng; Chen Yongqiang; Wang Xiuli Chen Baokuan; Lin Hongyan

    2009-03-15

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.

  5. Deeply subrecoil two-dimensional Raman cooling

    SciTech Connect

    Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.

    2004-10-01

    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.

  6. Fully localized two-dimensional embedded solitons

    SciTech Connect

    Yang Jianke

    2010-11-15

    We report the prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, they are fully stable under perturbations.

  7. Two-dimensional Electronic Double-Quantum Coherence Spectroscopy

    PubMed Central

    Kim, Jeongho; Mukamel, Shaul

    2009-01-01

    CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We

  8. Differentiation of Asian ginseng, American ginseng and Notoginseng by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Guang-hua; Zhou, Qun; Sun, Su-qin; Leung, Kelvin Sze-yin; Zhang, Hao; Zhao, Zhong-zhen

    2008-07-01

    The herbal materials of Asian ginseng (the root of Panax ginseng), American ginseng (the root of Panax quinquefolius) and Notoginseng (the root of Panax notoginseng) were differentiated by conventional Fourier transform infrared spectroscopy (1D-FTIR) and two-dimensional (2D) correlation FTIR applying a thermal perturbation. Altogether 30 samples were collected and analyzed. Their entire 1D-FTIR spectra in the range of 4000-400 cm -1 and 2D-FTIR spectra in the region of 850-1530 cm -1 were generally similar based on the peaks position and intensities. This indicated the chemical constituents in these species of herbs were not distinctively different. However, variation in peak intensity were observed at about 1640 cm -1, 1416 cm -1, 1372 cm -1 and 1048 cm -1 in the 1D-FTIR spectra among these species for their ease differentiation. Clustering analysis of 1D-FTIR showed that these species located in different clusters. Much difference in their second derivative FTIR pattern among the three species also provided information for easy differentiation. These species of herbs were further identified based on the positions and intensities of relatively strong auto-peaks, positive or negative cross-peaks in their 2D-FTIR spectra. The findings provide a rapid and new operational procedure for the differentiation of these notable herbs. The visual and colorful 2D-FTIR spectra can provide dynamic structural information of chemical components in analyte and demonstrated as a powerful and useful approach for herbs identification.

  9. Two-dimensional resonators for local oscillators

    NASA Astrophysics Data System (ADS)

    Huang, K.-c.; Jenkins, A.; Edwards, D.; Dew-Hughes, D.

    1999-11-01

    The expedited globalization of satellite technology has brought about a rapid boost in satellite competition and increased utilization of wireless communications remote data devices. In space communications receivers, there is an expanding demand for higher performance from local oscillators. The determining conditions are high Q values, high circulating power and low amplifier noise figures. In spite of their low insertion loss, conventional one-dimensional high-temperature superconducting (HTS) resonator-feedback oscillators suffer from high peak current densities inside the resonator and thus have a limited power-handling characteristics. To achieve higher-power oscillators, it is possible to introduce a two-dimensional microstrip resonator to balance the internal current distribution. To this end, 3 GHz two-dimensional resonators have been fabricated from TBCCO 2212 thin films deposited by RF sputtering onto 2 cm square LaAlO3 substrates. This paper demonstrates the frequency stabilizer role and the frequency response of the two-dimensional resonator. The considerable improvement for the performance of resonator-feedback oscillators constructed using such HTS resonators will also be presented.

  10. Two-dimensional structured illumination microscopy.

    PubMed

    Schropp, M; Uhl, R

    2014-10-01

    In widefield fluorescence microscopy, images from all but very flat samples suffer from fluorescence emission from layers above or below the focal plane of the objective lens. Structured illumination microscopy provides an elegant approach to eliminate this unwanted image contribution. To this end a line grid is projected onto the sample and phase images are taken at different positions of the line grid. Using suitable algorithms 'quasi-confocal images' can be derived from a given number of such phase-images. Here, we present an alternative structured illumination microscopy approach, which employs two-dimensional patterns instead of a one-dimensional one. While in one-dimensional structured illumination microscopy the patterns are shifted orthogonally to the pattern orientation, in our two-dimensional approach it is shifted at a single, pattern-dependent angle, yet it already achieves an isotropic power spectral density with this unidirectional shift, which otherwise would require a combination of pattern-shift and -rotation. Moreover, our two-dimensional approach also yields a better signal-to-noise ratio in the evaluated image. PMID:25113075

  11. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

    NASA Astrophysics Data System (ADS)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

    2016-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

  12. An In-Plane Epitaxial Heterostructure of Two-Dimensional Crystals

    NASA Astrophysics Data System (ADS)

    Gu, Gong

    2015-03-01

    By adapting the concept of epitaxy to two-dimensional (2D) space, a single-atomic-layer, in-plane heterostructure of a prototypical material system, graphene and hexagonal boron nitride (h-BN), has been grown. It is shown by multiple complementary experimental techniques that monolayer crystalline h-BN grows from fresh edges of monolayer graphene with lattice coherence, forming an abrupt 1D interface. The challenges of obtaining truly 2D heterostructures with lattice coherence and sharp interface unassisted by templates in the third dimension will be discussed. Importantly, the h-BN lattice orientation is solely determined by the graphene, forgoing configurations favored by the supporting substrate, a polycrystalline Cu foil with an exclusively (100) surface. To illustrate this important feature of heteroepitaxy in 2D, this talk will briefly discuss the graphene/Cu(100) and h-BN/Cu(100) orientational relations when the two materials are grown alone on Cu foils. For a counterintuitive reason, when grown alone, h-BN strictly aligns to Cu(100) exhibiting four and only four symmetrically equivalent orientations, while graphene shows a wide spread of rotations. The energetically favored h-BN/Cu(100) orientational alignment is overridden when h-BN is grown as an ``epistrip'' templated by a graphene edge. This talk will allude to the interesting physics of the 1D boundary states that has been theoretically predicted, such as spin polarization. As an intermediate step towards establishing the long-predicted physical properties, the boundary states have been observed by atomic-resolution scanning tunneling microscopy and tunneling spectrum mapping, although the sought-after spin polarization is destroyed by the presence of the Cu substrate. This work was partially supported by DARPA (approved for public release; distribution is unlimited) and NSF (ECCS-1231808). A portion of this research was conducted at the Center for Nanophase Materials Sciences (CNMS), sponsored at Oak

  13. Two-Dimensional Chalcogenides: Material Synthesis and Nano-Device Applications

    NASA Astrophysics Data System (ADS)

    Jacobs-Gedrim, Robin

    Low-dimensional nanostructures exhibit distinct properties from their bulk counterparts. Here the synthesis of novel low-dimensional nanostructures is demonstrated using both top down and bottom up processes and their properties are investigated. Two-dimensional (2D) binary sesquichalcogenides are introduced as a viable material platform for phase change random access memory, photodetection, and the investigation of topological insulator surface states. An exponential relationship is observed between layer thickness and energy consumption during switching of 2D phase change devices, ultra-high responsivity in 2D photoresistors, and surface-rich conduction in 2D topological insulator nanoplates. Additionally, methods for the assessment of chemical purity, stoichiometry, and dimensions of two-dimensional nanomaterials are introduced for the first time. The unique properties of nanoscaled chalcogenide materials may enable future technologies such as synaptronics, universal memory and machine vision, as well as providing a platform for fundamental research on the physics of condensed matter systems.

  14. Fabrication and characterization of a two-dimensional IPMC sensor

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Tan, Xiaobo

    2013-04-01

    Ionic polymer-metal composites (IPMCs) have inherent sensing and actuation properties. An IPMC sensor typically consists of a thin ion-exchange membrane, chemically plated with electrodes on both surfaces. Such IPMC sensors respond to deflections in the beam-bending directions only and thus are considered one-dimensional. In this paper, a novel IPMC sensor capable of two-dimensional sensing is proposed by plating two pairs of electrodes on orthogonal surfaces of a Nafion beam that has comparable thickness and width. The fabrication method is reported along with the characterization of the fabricated sensor. Experimental results show that the proposed IPMC sensor can be used for 2D flow sensing with promising applications in artificial lateral line systems. In the fabrication process Nafion solution is first cast and solidified, and the resulting structure is then cut to form beams with square cross-sections. In particular, the sample we fabricated has cross section of 1mm by 1mm and length of 15mm. Platinum electrodes are then plated on four side surfaces of the Nafion beam, insulated from each other. The fabricated IPMC sensor is shown to respond to 2D mechanical stimuli, and separate sensor signals are collected from the two pairs of electrodes. The responses (short-circuit currents) of the fabricated IPMC sensor are characterized both in air and in water, to verify the 2D sensing capability and examine the correlation between the two sensor signals.

  15. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films

    PubMed Central

    2014-01-01

    Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films’ resistivity increases with decreasing temperature and they exhibit negative magnetoresistance—both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications. PMID:24741204

  16. Two-dimensional boron nitride structures functionalization: first principles studies.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2016-09-01

    Density functional theory calculations have been performed to investigate two-dimensional hexagonal boron nitride (2D hBN) structures functionalization with organic molecules. 2x2, 4x4 and 6x6 periodic 2D hBN layers have been considered to interact with acetylene. To deal with the exchange-correlation energy the generalized gradient approximation (GGA) is invoked. The electron-ion interaction is treated with the pseudopotential method. The GGA with the Perdew-Burke-Ernzerhoff (PBE) functionals together with van der Waals interactions are considered to deal with the composed systems. To investigate the functionalization two main configurations have been explored; in one case the molecule interacts with the boron atom and in the other with the nitrogen atom. Results of the adsorption energies indicate chemisorption in both cases. The total density of states (DOS) displays an energy gap in both cases. The projected DOS indicate that the B-p and N-p orbitals are those that make the most important contribution in the valence band and the H-s and C-p orbitals provide an important contribution in the conduction band to the DOS. Provided that the interactions of the acetylene with the 2D layer modify the structural and electronic properties of the hBN the possibility of structural functionalization using organic molecules may be concluded. PMID:27566317

  17. Two-dimensional van der Waals C60 molecular crystal

    PubMed Central

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-01-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55–100 GPa, 90–155 MPa, and 1.5–2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics. PMID:26183501

  18. Two-Dimensional Phosphorus Porous Polymorphs with Tunable Band Gaps.

    PubMed

    Zhuo, Zhiwen; Wu, Xiaojun; Yang, Jinlong

    2016-06-01

    Exploring stable two-dimensional (2D) crystalline structures of phosphorus with tunable properties is of considerable importance partly due to the novel anisotropic behavior in phosphorene and potential applications in high-performance devices. Here, 21 new 2D phosphorus allotropes with porous structure are reported based on topological modeling method and first-principles calculations. We establish that stable 2D phosphorus crystals can be obtained by topologically assembling selected phosphorus monomer, dimer, trimer, tetramer, and hexamer. Nine of reported structures are predicted to be more stable than white phosphorus. Their dynamic and thermal stabilities are confirmed by the calculated vibration spectra and Born-Oppenheimer molecular dynamic simulation at temperatures up to 1500 K. These phosphorus porous polymorphs have isotropic mechanic properties that are significantly softer than phosphorene. The electronic band structures calculated with the HSE06 method indicate that new structures are semiconductors with band gaps ranging widely from 0.15 to 3.42 eV, which are tuned by the basic units assembled in the network. Of particular importance is that the position of both conduction and valence band edges of some allotropes matches well with the chemical reaction potential of H2/H(+) and O2/H2O, which can be used as element photocatalysts for visible-light-driven water splitting. PMID:27171121

  19. Two-dimensional copper thio- and seleno-cyanates.

    PubMed

    Tsetseris, Leonidas

    2016-03-21

    Based on density-functional theory calculations we identify two-dimensional (2D) forms of copper thio-cyanate (CuSCN) and copper seleno-cyanate (CuSeCN). CuSCN is known to crystallize in two three-dimensional polymorphs, the beta wurtzite and the alpha structure, both with tetrahedral bonding networks. Here we find that CuSCN and CuSeCN may be stabilized also in monolayer geometries with SCN or SeCN groups protruding out of Cu planes. The cohesive energies of stacks made out of these sheets are comparable to those of the alpha and beta structures, so, in principle, 2D CuSCN and CuSeCN may be formed under the appropriate experimental conditions. Other 2D CuSCN and CuSeCN phases with honeycomb-like structures also correspond to local energy minima, but are less stable with respect to the above-mentioned systems. PMID:26911411

  20. Valley Hall Effect in Two-Dimensional Hexagonal Lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Michihisa; Shimazaki, Yuya; Borzenets, Ivan V.; Tarucha, Seigo

    2015-12-01

    Valley is a quantum number defined for energetically degenerate but nonequivalent structures in energy bands of a crystalline material. Recent discoveries of two-dimensional (2D) layered materials have shed light on the potential use of this degree of freedom for information carriers because the valley can now be potentially manipulated in integrated 2D architectures. The valleys separated by a long distance in a momentum space are robust against external disturbance and the flow of the valley, the valley current, is nondissipative because it carries no net electronic current. Among the various 2D valley materials, graphene has by far the highest crystal quality, leading to an extremely long valley relaxation length in the bulk. In this review, we first describe the theoretical background of the valley Hall effect, which converts an electric field into a valley current. We then describe the first observation of the valley Hall effect in monolayer MoS2. Finally, we describe experiments on the generation and detection of the pure valley current in monolayer and bilayer graphene, achieved recently using the valley Hall effect and inverse valley Hall effect. While we show unambiguous evidence of a pure valley current flowing in graphene, we emphasize that the field of "valleytronics" is still in its infancy and that further theoretical and experimental investigations are necessary.

  1. Impact of heterocirculene molecular symmetry upon two-dimensional crystallization

    PubMed Central

    Xiao, W. D.; Zhang, Y. Y.; Tao, L.; Aït-Mansour, K.; Chernichenko, K. Y.; Nenajdenko, V. G.; Ruffieux, P.; Du, S. X.; Gao, H.-J.; Fasel, R.

    2014-01-01

    Despite the development of crystal engineering, it remains a great challenge to predict the crystal structure even for the simplest molecules, and a clear link between molecular and crystal symmetry is missing in general. Here we demonstrate that the two-dimensional (2D) crystallization of heterocirculenes on a Au(111) surface is greatly affected by the molecular symmetry. By means of ultrahigh vacuum scanning tunneling microscopy, we observe a variety of 2D crystalline structures in the coverage range from submonolayer to monolayer for D8h-symmetric sulflower (C16S8), whereas D4h-symmetric selenosulflower (C16S4Se4) forms square and rectangular lattices at submonolayer and monolayer coverages, respectively. No long-range ordered structure is observed for C1h-symmetric selenosulflower (C16S5Se3) self-assembling at submonolayer coverage. Such different self-assembly behaviors for the heterocirculenes with reduced molecular symmetries derive from the tendency toward close packing and the molecular symmetry retention in 2D crystallization due to van der Waals interactions. PMID:24957140

  2. Two-dimensional van der Waals C60 molecular crystal

    NASA Astrophysics Data System (ADS)

    Reddy, C. D.; Gen Yu, Zhi; Zhang, Yong-Wei

    2015-07-01

    Two-dimensional (2D) atomic crystals, such as graphene and transition metal dichalcogenides et al. have drawn extraordinary attention recently. For these 2D materials, atoms within their monolayer are covalently bonded. An interesting question arises: Can molecules form a 2D monolayer crystal via van der Waals interactions? Here, we first study the structural stability of a free-standing infinite C60 molecular monolayer using molecular dynamic simulations, and find that the monolayer is stable up to 600 K. We further study the mechanical properties of the monolayer, and find that the elastic modulus, ultimate tensile stress and failure strain are 55-100 GPa, 90-155 MPa, and 1.5-2.3%, respectively, depending on the stretching orientation. The monolayer fails due to shearing and cavitation under uniaxial tensile loading. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the monolayer are found to be delocalized and as a result, the band gap is reduced to only 60% of the isolated C60 molecule. Interestingly, this band gap can be tuned up to ±30% using strain engineering. Owing to its thermal stability, low density, strain-tunable semi-conducting characteristics and large bending flexibility, this van der Waals molecular monolayer crystal presents aplenty opportunities for developing novel applications in nanoelectronics.

  3. Interactions between lasers and two-dimensional transition metal dichalcogenides.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur

    2016-05-01

    The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area. PMID:27141556

  4. Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives.

    PubMed

    Eksik, Osman; Gao, Jian; Shojaee, S Ali; Thomas, Abhay; Chow, Philippe; Bartolucci, Stephen F; Lucca, Don A; Koratkar, Nikhil

    2014-05-27

    Emerging two-dimensional (2D) materials such as transition metal dichalcogenides offer unique and hitherto unavailable opportunities to tailor the mechanical, thermal, electronic, and optical properties of polymer nanocomposites. In this study, we exfoliated bulk molybdenum disulfide (MoS2) into nanoplatelets, which were then dispersed in epoxy polymers at loading fractions of up to 1% by weight. We characterized the tensile and fracture properties of the composite and show that MoS2 nanoplatelets are highly effective at enhancing the mechanical properties of the epoxy at very low nanofiller loading fractions (below 0.2% by weight). Our results show the potential of 2D sheets of transition metal dichalcogenides as reinforcing additives in polymeric composites. Unlike graphene, transition metal dichalcogenides such as MoS2 are high band gap semiconductors and do not impart significant electrical conductivity to the epoxy matrix. For many applications, it is essential to enhance mechanical properties while also maintaining the electrical insulation properties and the high dielectric constant of the polymer material. In such applications, conductive carbon based fillers such as graphene cannot be utilized. This study demonstrates that 2D transition metal dichalcogenide additives offer an elegant solution to such class of problems. PMID:24754702

  5. Lateral and Vertical Two-Dimensional Layered Topological Insulator Heterostructures.

    PubMed

    Li, Yanbin; Zhang, Jinsong; Zheng, Guangyuan; Sun, Yongming; Hong, Seung Sae; Xiong, Feng; Wang, Shuang; Lee, Hye Ryoung; Cui, Yi

    2015-11-24

    The heterostructured configuration between two-dimensional (2D) semiconductor materials has enabled the engineering of the band gap and the design of novel devices. So far, the synthesis of single-component topological insulator (TI) 2D materials such as Bi2Se3, Bi2Te3, and Sb2Te3 has been achieved through vapor phase growth and molecular beam epitaxy; however, the spatial controlled fabrication of 2D lateral heterostructures in these systems has not been demonstrated yet. Here, we report an in situ two-step synthesis process to form TI lateral heterostructures. Scanning transmission electron microscopy and energy-dispersive X-ray mapping results show the successful spatial control of chemical composition in these as-prepared heterostructures. The edge-induced growth mechanism is revealed by the ex situ atomic force microscope measurements. Electrical transport studies demonstrate the existence of p-n junctions in Bi2Te3/Sb2Te3 heterostructures. PMID:26468661

  6. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  7. Soap film flows: Statistics of two-dimensional turbulence

    SciTech Connect

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-08-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R{sub {lambda}}{approx}100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in {ital k} space consistent with the k{sup {minus}3} spectrum of the Kraichnan{endash}Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. {copyright} {ital 1999 American Institute of Physics.}

  8. Temporal enhancement of two-dimensional color doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  9. Two-dimensional axisymmetric Child-Langmuir scaling law

    SciTech Connect

    Ragan-Kelley, Benjamin; Verboncoeur, John; Feng Yang

    2009-10-15

    The classical one-dimensional (1D) Child-Langmuir law was previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of radius r, outer drift tube radius R>r, and gap length L, we further examine the space charge limit in two dimensions. Simulations were done with no applied magnetic field as well as with a large (100 T) longitudinal magnetic field to restrict motion of particles to 1D. The ratio of the observed current density limit J{sub CL2} to the theoretical 1D value J{sub CL1} is found to be a monotonically decreasing function of the ratio of emission radius to gap separation r/L. This result is in agreement with the planar results, where the emission area is proportional to the cathode width W. The drift tube in axisymmetric systems is shown to have a small but measurable effect on the space charge limit. Strong beam edge effects are observed with J(r)/J(0) approaching 3.5. Two-dimensional axisymmetric electrostatic particle-in-cell simulations were used to produce these results.

  10. Formation of novel 2D polymer nanowebs via electrospinning

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Li, Chunrong; Miyauchi, Yasuhiro; Kuwaki, Oriha; Shiratori, Seimei

    2006-08-01

    We have found a procedure for generating novel two-dimensional (2D) nanowebs in three-dimensional (3D) fibrous mats by optimization of various processing parameters during electrospinning. The electrospun fibres act as a support for the 'fishnet-like' nanowebs comprising interlinked one-dimensional (1D) nanowires. The average diameter of the nanowires contained in typical nanowebs is about one order of magnitude less than that of conventional electrospun fibres. The formation of the nanowebs of poly(acrylic acid) (PAA) and nylon-6 is considered to be due to the electrically forced fast phase separation of the charged droplets which move at high speed between the capillary tip and the collector. The formation, morphology and area density of the nanowebs in electrospun fibrous mats are strongly affected by the applied voltage, ambient relative humidity, kinds of solvents, solution concentration and distance between the capillary tip and the collector.

  11. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  12. Statistical mechanics of two-dimensional and geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Venaille, Antoine

    2012-06-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  13. Biological and environmental interactions of emerging two-dimensional nanomaterials.

    PubMed

    Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert

    2016-03-21

    Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057

  14. Crystal orbital studies on the 1D silic-diyne nanoribbons and nanotubes.

    PubMed

    Zhu, Ying; Bai, Hongcun; Huang, Yuanhe

    2016-02-01

    This work presents crystal orbital studies on novel one-dimensional (1D) nanoscale materials derived from a Si-diyne sheet, based on the density functional theory. The two-dimensional (2D) Si-diyne layer is observed to be carbo-merized silicene, with a similar structure to graphdiyne. The 2D Si-diyne and its 1D ribbons and tubes, of different size and chirality, have been addressed systematically. The low dimensional Si-diyne materials studied exhibit relatively high stability, according to phonon-frequency calculations and molecular dynamics simulations. With comparable diameters, the Si-diyne tubes have lower strain energies than silicene and silicon carbide nanotubes. The Si-diyne layer and its 1D derivatives are all semiconductors, regardless of the size and chirality of the strips and tubes. In addition, the band gaps of the 1D Si-diyne nanoribbons and nanotubes with different chirality, always monotonically decrease as their sizes increases. A quantitative relationship between the band gap and the size of the ribbons and tubes was obtained. The mobility of charge carriers for the 1D Si-diyne structures was also investigated. It was found that both hole and electron mobility of the ribbons and tubes exhibit linear increase with increasing size. The electrons have greater mobility than the holes for each strip and tube. In addition, the mechanical properties of the Si-diyne nanostructures were also investigated by calculation of the Young's modulus and the Poisson's ratio. PMID:26744378

  15. Visualising the strain distribution in suspended two-dimensional materials under local deformation

    PubMed Central

    Elibol, Kenan; Bayer, Bernhard C.; Hummel, Stefan; Kotakoski, Jani; Argentero, Giacomo; Meyer, Jannik C.

    2016-01-01

    We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene’s G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials. PMID:27346485

  16. Visualising the strain distribution in suspended two-dimensional materials under local deformation.

    PubMed

    Elibol, Kenan; Bayer, Bernhard C; Hummel, Stefan; Kotakoski, Jani; Argentero, Giacomo; Meyer, Jannik C

    2016-01-01

    We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene's G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials. PMID:27346485

  17. Visualising the strain distribution in suspended two-dimensional materials under local deformation

    NASA Astrophysics Data System (ADS)

    Elibol, Kenan; Bayer, Bernhard C.; Hummel, Stefan; Kotakoski, Jani; Argentero, Giacomo; Meyer, Jannik C.

    2016-06-01

    We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene’s G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials.

  18. Flexoelectricity in