Science.gov

Sample records for 1d two-dimensional 2d

  1. ANALYSIS OF 209 CHLORINATED BIPHENYL CONGENERS USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY-TIME-OF-FLIGHT MASS SPECTROMETRY IN THE 1-D MODE FOLLOWED BY THE 2-D MODE

    EPA Science Inventory

    Since the initial discovery of polychlorinated biphenyls (PCBs) in the environment, the detection and identification of certain PCB congeners using the traditional one dimensional (1-D) chromatographic technique has been very challenging, especially, separating the 46 isomeric pe...

  2. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    PubMed

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  3. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  4. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    PubMed

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  5. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    SciTech Connect

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  6. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    PubMed

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  7. Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers.

    PubMed

    Liu, Wei; Wang, Lu; Su, Yu-Jun; Chen, Yan-Cong; Tucek, Jiri; Zboril, Radek; Ni, Zhao-Ping; Tong, Ming-Liang

    2015-09-08

    Three new two-dimensional (2D) Hofmann-type coordination polymers with general formula [Fe(3-NH2py)2M(CN)4] (3-NH2py = 3-aminopyridine, M = Ni (1), Pd (2), Pt (3)) have been synthesized. Magnetic susceptibility measurements show that they exhibited cooperative spin crossover (SCO) with remarkable hysteretic behaviors. Their hysteresis widths are 25, 37, and 30 K for 1-3, respectively. The single-crystal structure of 1 suggest that the pseudo-octahedral Fe sites are equatorially bridged by [M(CN)4](2-) to form 2D grids and axially coordinated by 3-NH2py ligands. The intermolecular interactions between layers (the offset face-to-face π···π interactions, hydrogen bonds, and weak N(amino)···Ni(II) contacts) together with the covalent bonds bridged by [M(CN)4](2-) units are responsible to the significant cooperativity.

  8. Red wine proteins: two dimensional (2-D) electrophoresis and mass spectrometry analysis.

    PubMed

    Mainente, Federica; Zoccatelli, Gianni; Lorenzini, Marilinda; Cecconi, Daniela; Vincenzi, Simone; Rizzi, Corrado; Simonato, Barbara

    2014-12-01

    The aim of the present study was to optimize protein extraction from red wine (cv. Cabernet) in order to obtain a separation by two-dimensional electrophoresis (2-DE) compatible with mass spectrometry identification. Proteins were denatured by sodium dodecyl-sulphate (SDS) and precipitated as potassium salts. The potassium-DS (KDS) protein complexes obtained were treated with different solutions in order to remove the detergent. Proteins were solubilized with different buffers and separated by different electrophoretic approaches [native, urea, acid urea PAGEs and isoelectric focusing (IEF)] as the first-dimension (1-DE). The best 2D separation was achieved by using 10% saccharose in the DS removal step, and 6-cyclohexylhexyl β-d-maltoside detergent in the solubilisation buffer combined with the IEF approach. Several well focalized protein spots were obtained and analyzed through mass-spectrometry.

  9. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1995-01-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  10. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  11. PRONTO 2D: A two-dimensional transient solid dynamics program

    SciTech Connect

    Taylor, L.M.; Flanagan, D.P.

    1987-03-01

    PRONTO 2D is a two-dimensional transient solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Four node uniform strain quadrilateral elements are used in the finite element formulation. A number of new numerical algorithms which have been developed for the code are described in this report. An adaptive time step control algorithm is described which greatly improves stability as well as performance in plasticity problems. A robust hourglass control scheme which eliminates hourglass distortions without disturbing the finite element solution is included. All constitutive models in PRONTO are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. An accurate incremental algorithm was developed to determine this rotation and is described in detail. A robust contact algorithm was developed which allows for the impact and interaction of deforming contact surfaces of quite general geometry. A number of numerical examples are presented to demonstrate the utility of these algorithms. 41 refs., 51 figs., 5 tabs.

  12. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  13. Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR

    NASA Astrophysics Data System (ADS)

    Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.

    1990-12-01

    The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.

  14. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  15. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite.

    PubMed

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-17

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  16. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    NASA Astrophysics Data System (ADS)

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-11-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications.

  17. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

    NASA Astrophysics Data System (ADS)

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-01

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  18. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes.

    PubMed

    Vabbina, Phani Kiran; Kaushik, Ajeet; Pokhrel, Nimesh; Bhansali, Shekhar; Pala, Nezih

    2015-01-15

    We report on label free, highly sensitive and selective electrochemical immunosensors based on one-dimensional 1D ZnO nanorods (ZnO-NRs) and two-dimensional 2D ZnO nanoflakes (ZnO-NFs) which were synthesized on Au-coated substrates using simple one step sonochemical approach. Selective detection of cortisol using cyclic voltammetry (CV) is achieved by immobilizing anti-cortisol antibody (Anti-C(ab)) on the ZnO nanostructures (NSs). 1D ZnO-NRs and 2D ZnO-NFs provide unique sensing advantages over bulk materials. While 1D-NSs boast a high surface area to volume ratio, 2D-NSs with large area in polarized (0001) plane and high surface charge density could promote higher Anti-C(ab) loading and thus better sensing performance. Beside large surface area, ZnO-NSs also exhibit higher chemical stability, high catalytic activity, and biocompatibility. TEM studies showed that both ZnO-NSs are single crystalline oriented in (0001) plane. The measured sensing parameters are in the physiological range with a sensitivity of 11.86 µA/M exhibited by ZnO-NRs and 7.74 µA/M by ZnO-NFs with the lowest detection limit of 1 pM which is 100 times better than conventional enzyme-linked immunosorbant immunoassay (ELISA). ZnO-NSs based cortisol immunosensors were tested on human saliva samples and the performance were validated with conventional (ELISA) method which exhibits a remarkable correlation. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat for point-of-care cortisol detection and such developed protocol can be used in personalized health monitoring/diagnostic.

  19. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  20. Optical properties of two-dimensional (2D) CdSe nanostructures

    NASA Astrophysics Data System (ADS)

    Cherevkov, S. A.; Baranov, A. V.; Fedorov, A. V.; Litvin, A. P.; Artemyev, M. V.; Prudnikau, A. V.

    2013-09-01

    The resonant and off-resonant Raman spectra of optical phonons in two-dimensional CdSe nanocrystals of 5, 6, and 7 monolayers are analysed. The spectra are dominated by SO and LO phonon bands of CdSe, whose frequencies are thickness-independent in the off-resonant Raman scattering but demonstrate an evident thickness dependence in the case of the resonant Raman scattering.

  1. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  2. NATRAN2. Fluid Hammer Analysis 1D & 2D Systems

    SciTech Connect

    Shin, Y.W.; Valentin, R.A.

    1992-03-03

    NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.

  3. A Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Protocol for Studies of Neural Precursor Cells.

    PubMed

    Guest, Paul C

    2017-01-01

    This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.

  4. FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide

    NASA Technical Reports Server (NTRS)

    Wawrzynek, Paul; Ingraffea, Anthony

    1994-01-01

    FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.

  5. Protein profiling using two-dimensional difference gel electrophoresis (2-D DIGE).

    PubMed

    Feret, Renata; Lilley, Kathryn S

    2014-02-03

    2-D DIGE relies on pre-electrophoretic labeling of samples with one of three spectrally distinct fluorescent dyes, followed by electrophoresis of all samples in one 2-D gel. The dye-labeled samples are then viewed individually by scanning the gel at different wavelengths, which circumvents problems with gel-to-gel variation and spot matching between gels. Image analysis programs are used to generate volume ratios for each spot, which essentially describe the intensity of a particular spot in each test sample, and thus enable protein abundance level changes to be identified and quantified. This unit describes the 2-D DIGE procedure including sample preparation from various cell types, labeling of proteins, and points to consider in the downstream processing of fluorescently labeled samples.

  6. Two-Dimensional Electronic Spectroscopy of the Photosystem II D1D2-cyt.b559 Reaction Center Complex

    NASA Astrophysics Data System (ADS)

    Myers, Jeffrey Allen

    Two-dimensional electronic spectroscopy (2DES) is a powerful new technique for examining the electronic and vibronic couplings and dynamics of chemical, semiconductor, and biological samples. We present several technical innovations in the implementation of 2DES. We have performed two-color 2DES experiments, extending the technique's ability to study energy transfer to states at frequencies far from the initial absorption. We have demonstrated 2DES in the pump-probe geometry using a pulse-shaper. This method eliminates many technical challenges inherent to previous implementations of 2DES, making it a more widely accessible technique. To broaden the available frequency information, we have demonstrated 2DES with a continuum probe pulse. We have utilized this method to observe vibrational wavepacket dynamics in a laser dye, demonstrating that these dynamics modulate 2D lineshapes and must be accounted for in modelling 2DES data. We perform 2DES studies on the Qy band of the D1D2-cyt.b559 reaction center of plant photosystem II. This reaction center is the core oxygen-evolving complex in plant photosynthesis, taking in light energy and forming a charge separated state capable of splitting water. Understanding the relationship between the structure and function has both fundamental importance and applications to improving artificial light-harvesting. Traditional spectroscopy methods have been unable to completely resolve the time-ordering of energy and charge transfer events or the degree of electronic coupling between chromophores due to severe spectral congestion in the Q y band. 2DES extends previous methods by frequency-resolving an additional dimension to reveal the degree of static disorder and electronic coupling, as well as a detailed picture of energy and charge transfer dynamics that will allow tests of excitonic models of the reaction center. Our data show direct evidence of electronic coupling and rapid sub-ps energy transfer between "blue" and "red

  7. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    NASA Astrophysics Data System (ADS)

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  8. Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine.

    PubMed

    Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel

    2013-08-15

    In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.

  9. Two-Dimensional (2-D) Acoustic Fish Tracking at River Mile 85, Sacramento River, California

    DTIC Science & Technology

    2013-06-01

    7 ii Abstract Fish behavior in response to levee repairs at River Mile 85.6 of the Sacramento River was monitored using 60 VR2W 180-kHz and 45...arrays of VR2W 69-kHz receivers were installed in the river adjacent to levee repair sites and natural areas. This initial effort at 2-D tracking...a levee repair site was located on the outside of a river bend. The site was located at RM 85, just south of Knights Landing, California. The study

  10. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    USGS Publications Warehouse

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  11. Tight-Binding Approximations in 1D and 2D Coupled-Cavity Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Day, Nicole C. L.

    Light confinement and controlling an optical field has numerous applications in the field of telecommunications for optical signals processing. When the wavelength of the electromagnetic field is on the order of the period of a photonic microstructure, the field undergoes reflection, refraction, and coherent scattering. This produces photonic bandgaps, forbidden frequency regions or spectral stop bands where light cannot exist. Dielectric perturbations that break the perfect periodicity of these structures produce what is analogous to an impurity state in the bandgap of a semiconductor. The defect modes that exist at discrete frequencies within the photonic bandgap are spatially localized about the cavity-defects in the photonic crystal. In this thesis the properties of two tight-binding approximations (TBAs) are investigated in one-dimensional and two-dimensional coupled-cavity photonic crystal structures. We require an efficient and simple approach that ensures the continuity of the electromagnetic field across dielectric interfaces in complex structures. In this thesis we develop E- and D-TBAs to calculate the modes in finite 1D and 2D two-defect coupled-cavity photonic crystal structures. In the E- and D-TBAs we expand the coupled-cavity [vector electron]-modes in terms of the individual [vector electron]- and [vector D meson]-modes, respectively. We investigate the dependence of the defect modes, their frequencies and quality factors on the relative placement of the defects in the photonic crystal structures. We then elucidate the differences between the two TBA formulations, and describe the conditions under which these formulations may be more robust when encountering a dielectric perturbation. Our 1D analysis showed that the 1D modes were sensitive to the structure geometry. The antisymmetric D mode amplitudes show that the D. TBA did not capture the correct (tangential [vector electron]-field) boundary conditions. However, the D-TBA did not yield

  12. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  13. Two dimensional assisted liquid chromatography - a chemometric approach to improve accuracy and precision of quantitation in liquid chromatography using 2D separation, dual detectors, and multivariate curve resolution.

    PubMed

    Cook, Daniel W; Rutan, Sarah C; Stoll, Dwight R; Carr, Peter W

    2015-02-15

    Comprehensive two-dimensional liquid chromatography (LC×LC) is rapidly evolving as the preferred method for the analysis of complex biological samples owing to its much greater resolving power compared to conventional one-dimensional (1D-LC). While its enhanced resolving power makes this method appealing, it has been shown that the precision of quantitation in LC×LC is generally not as good as that obtained with 1D-LC. The poorer quantitative performance of LC×LC is due to several factors including but not limited to the undersampling of the first dimension and the dilution of analytes during transit from the first dimension ((1)D) column to the second dimension ((2)D) column, and the larger relative background signals. A new strategy, 2D assisted liquid chromatography (2DALC), is presented here. 2DALC makes use of a diode array detector placed at the end of each column, producing both multivariate (1)D and two-dimensional (2D) chromatograms. The increased resolution of the analytes provided by the addition of a second dimension of separation enables the determination of analyte absorbance spectra from the (2)D detector signal that are relatively pure and can be used to initiate the treatment of data from the first dimension detector using multivariate curve resolution-alternating least squares (MCR-ALS). In this way, the approach leverages the strengths of both separation methods in a single analysis: the (2)D detector data is used to provide relatively pure analyte spectra to the MCR-ALS algorithm, and the final quantitative results are obtained from the resolved (1)D chromatograms, which has a much higher sampling rate and lower background signal than obtained in conventional single detector LC×LC, to obtain accurate and precise quantitative results. It is shown that 2DALC is superior to both single detector selective or comprehensive LC×LC and 1D-LC for quantitation of compounds that appear as severely overlapped peaks in the (1)D chromatogram - this is

  14. 1D and 2D Occam's Inversion of Magnetotelluric Data Applied in Volcano-Geothermal Area In Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ariani, Elsi; Srigutomo, Wahyu

    2016-08-01

    One-dimensional (1D) and two-dimensional (2D) magnetotelluric data inversion were conducted to reveal the subsurface resistivity structure beneath the eastern part of a volcano in Central Java, Indonesia. Fifteen magnetotelluric sounding data spanning two lines of investigation were inverted using Occam's inversion scheme. The result depict that there are extensively conductive layer (2-10 ohm meter) below the volcanic overburden. This conductive layer is interpreted as the clay cap resulted from thermal alteration. A higher resistivity layer (10-80 ohm meter) underlies the clay cap and is interpreted as the reservoir whose top boundaries vary between 1000 m above and 2000 m below sea level.

  15. Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances

    NASA Astrophysics Data System (ADS)

    Xin, Shihe; Le Quéré, Patrick

    2012-06-01

    Following our previous two-dimensional (2D) studies of flows in differentially heated cavities filled with air, we studied the stability of 2D natural convection flows in these cavities with respect to 3D periodic perturbations. The basis of the numerical methods is a time-stepping code using the Chebyshev spectral collocation method and the direct Uzawa method for velocity-pressure coupling. Newton's iteration, Arnoldi's method and the continuation method have been used in order to, respectively, compute the 2D steady-state base solution, estimate the leading eigenmodes of the Jacobian and perform linear stability analysis. Differentially heated air-filled cavities of aspect ratios from 1 to 7 were investigated. Neutral curves (Rayleigh number versus wave number) have been obtained. It turned out that only for aspect ratio 7, 3D stationary instability occurs at slightly higher Rayleigh numbers than the onset of 2D time-dependent flow and that for other aspect ratios 3D instability always takes place before 2D time-dependent flows. 3D unstable modes are stationary and anti-centro-symmetric. 3D nonlinear simulations revealed that the corresponding pitchfork bifurcations are supercritical and that 3D instability leads only to weak flow in the third direction. Further 3D computations are also performed at higher Rayleigh number in order to understand the effects of the weak 3D fluid motion on the onset of time-dependent flow. 3D flow structures are responsible for the onset of time-dependent flow for aspect ratios 1, 2 and 3, while for larger aspect ratios they do not alter the transition scenario, which was observed in the 2D cases and that vertical boundary layers become unstable to traveling waves.

  16. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals

    NASA Astrophysics Data System (ADS)

    Wang, X.; Pan, E.

    2008-05-01

    We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6mm. A general solution is derived in terms of two functions \\varphi_1, \\varphi_2, which satisfy wave equations, and another harmonic function \\varphi_3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.

  17. Plasmonic Excitations of 1D Metal-Dielectric Interfaces in 2D Systems: 1D Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Mason, Daniel R.; Menabde, Sergey G.; Yu, Sunkyu; Park, Namkyoo

    2014-04-01

    Surface plasmon-polariton (SPP) excitations of metal-dielectric interfaces are a fundamental light-matter interaction which has attracted interest as a route to spatial confinement of light far beyond that offered by conventional dielectric optical devices. Conventionally, SPPs have been studied in noble-metal structures, where the SPPs are intrinsically bound to a 2D metal-dielectric interface. Meanwhile, recent advances in the growth of hybrid 2D crystals, which comprise laterally connected domains of distinct atomically thin materials, provide the first realistic platform on which a 2D metal-dielectric system with a truly 1D metal-dielectric interface can be achieved. Here we show for the first time that 1D metal-dielectric interfaces support a fundamental 1D plasmonic mode (1DSPP) which exhibits cutoff behavior that provides dramatically improved light confinement in 2D systems. The 1DSPP constitutes a new basic category of plasmon as the missing 1D member of the plasmon family: 3D bulk plasmon, 2DSPP, 1DSPP, and 0D localized SP.

  18. Engineering 1D Quantum Stripes from Superlattices of 2D Layered Materials.

    PubMed

    Gruenewald, John H; Kim, Jungho; Kim, Heung Sik; Johnson, Jared M; Hwang, Jinwoo; Souri, Maryam; Terzic, Jasminka; Chang, Seo Hyoung; Said, Ayman; Brill, Joseph W; Cao, Gang; Kee, Hae-Young; Seo, Sung S Ambrose

    2017-01-01

    Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2 IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials.

  19. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    PubMed

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  20. FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.

    PubMed

    Chatziefstratiou, Efthalia K; Bohrer, Gil; Bova, Anthony S; Subramanian, Ravishankar; Frasson, Renato P M; Scherzer, Amy; Butler, Bret W; Dickinson, Matthew B

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.

  1. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  2. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  3. Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7 T--GOIA-1D-ISIS/2D-CSI.

    PubMed

    Chmelík, M; Kukurová, I Just; Gruber, S; Krššák, M; Valkovič, L; Trattnig, S; Bogner, W

    2013-05-01

    A fully adiabatic phosphorus (31P) two-dimensional (2D) chemical shift spectroscopic imaging sequence with reduced chemical shift displacement error for 7 T, based on 1D-image-selected in vivo spectroscopy, combined with 2D-chemical shift spectroscopic imaging selection, was developed. Slice-selective excitation was achieved by a spatially selective broadband GOIA-W(16,4) inversion pulse with an interleaved subtraction scheme before nonselective adiabatic excitation, and followed by 2D phase encoding. The use of GOIA-W(16,4) pulses (bandwidth 4.3-21.6 kHz for 10-50 mm slices) reduced the chemical shift displacement error in the slice direction ∼1.5-7.7 fold, compared to conventional 2D-chemical shift spectroscopic imaging with Sinc3 selective pulses (2.8 kHz). This reduction was experimentally demonstrated with measurements of an MR spectroscopy localization phantom and with experimental evaluation of pulse profiles. In vivo experiments in clinically acceptable measurement times were demonstrated in the calf muscle (nominal voxel volume, 5.65 ml in 6 min 53 s), brain (10 ml, 6 min 32 s), and liver (8.33 ml, 8 min 14 s) of healthy volunteers at 7 T. High reproducibility was found in the calf muscle at 7 T. In combination with adiabatic excitation, this sequence is insensitive to the B1 inhomogeneities associated with surface coils. This sequence, which is termed GOIA-1D-ISIS/2D-CSI (goISICS), has the potential to be applied in both clinical research and in the clinical routine.

  4. Extrapolation of fractal dimensions of natural fracture networks in dolomites from 1-D to 2-D environment

    NASA Astrophysics Data System (ADS)

    Verbovšek, T.

    2009-04-01

    style of the dolomites or to the isotropy of fractures. Results obtained by the 'cut-off' method give higher values of the fractal dimensions than the 'full' method, as only appropriate data values were considered in calculations. Values of one-dimensional values of the fractal dimensions can be reliably extrapolated to a two-dimensional environment by equation D2-D= D1-D+ 1.03 for the 'cut-off' method and D2-D= D1-D+ 1.06 for the 'full' method. Both differences between D1-D and D2-D values (1.03 and 1.06) lie very close to the theoretical value of 1.00, so the fracture networks in dolomites can be described as nearly ideal non-mathematical and isotropic fractal objects, and the field data adequately supports the theoretical extrapolation.

  5. CHEM2D: a two-dimensional, three-phase, nine-component chemical flood simulator. Volume I. CHEM2D technical description and FORTRAN code

    SciTech Connect

    Fanchi, J.R.

    1985-04-01

    Under the sponsorship of the US Department of Energy, a publicly available chemical simulator has been evaluated and substantially enhanced to serve as a useful tool for projecting polymer or chemical flood performance. The program, CHEM2D, is a two-dimensional, three-phase, nine-component finite-difference numerical simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous linear, areal, or cross-sectional reservoir descriptions. The user may specify well performance as either pressure or rate constrained. Both a constant time step size and a variable time step size based on extrapolation of concentration changes are available as options. A solution technique which is implicit in pressure and explicit in saturations and concentrations is used. The major physical mechanisms that are modeled include adsorption, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary or ternary phase behavior, non-Newtonian polymer rheology, and two-phase or three-phase relative permeability. Typical components include water, oil, surfactant, polymer, and three ions (chloride, calcium, and sodium). Components may partition amongst the aqueous, oleic, and microemulsion phases. Volume I of this report provides a discussion of the formulation and algorithms used within CHEM2D. Included in Volume I are a number of validation and illustrative examples, as well as the FORTRAN code. The CHEM2D user's manual, Volume II, contains both the input data sets for the examples presented in Volume I and an example output. All appendices and a phase behavior calculation program are collected in Volume III. 20 references.

  6. Study of the equilibrium vacancy ensemble in aluminum using 1D- and 2D-angular correlation of annihilation radiation

    SciTech Connect

    Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.

    1985-03-12

    One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.

  7. Wheat quality related differential expressions of albumins and globulins revealed by two-dimensional difference gel electrophoresis (2-D DIGE).

    PubMed

    Gao, Liyan; Wang, Aili; Li, Xiaohui; Dong, Kun; Wang, Ke; Appels, Rudi; Ma, Wujun; Yan, Yueming

    2009-12-01

    Comparative proteomics analysis offers a new approach to identify differential proteins among different wheat genotypes and developmental stages. In this study, the non-prolamin expression profiles during grain development of two common or bread wheat cultivars (Triticum aestivum L.), Jing 411 and Sunstate, with different quality properties were analyzed using two-dimensional difference gel electrophoresis (2-D DIGE). Five grain developmental stages during the post-anthesis period were sampled corresponding to the cumulative averages of daily temperatures ( degrees C: 156 degrees C, 250 degrees C, 354 degrees C, 447 degrees C and 749.5 degrees C). More than 400 differential protein spots detected at one or more of the developmental stages of the two cultivars were monitored, among which 230 proteins were identified by MS. Of the identified proteins, more than 85% were enzymes possessing different physiological functions. A total of 36 differential proteins were characterized between the two varieties, which are likely to be related to wheat quality attributes. About one quarter of the proteins identified expressed in multiple spots with different pIs and molecular masses, implying certain post-translational modifications (PTMs) of proteins such as phosphorylations and glycosylations. The results provide new insights into biochemical mechanisms for grain development and quality.

  8. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

  9. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  10. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces.

    PubMed

    Gunawidjaja, Ray; Kharlampieva, Eugenia; Choi, Ikjun; Tsukruk, Vladimir V

    2009-11-01

    It is demonstrated that bimetallic silver-gold anisotropic nanostructures can be easily assembled from various nanoparticle building blocks with well-defined geometries by means of electrostatic interactions. One-dimensional (1D) silver nanowires, two-dimensional (2D) silver nanoplates, and spherical gold nanoparticles are used as representative building blocks for bottom-up assembly. The gold nanoparticles are electrostatically bound onto the 1D silver nanowires and the 2D silver nanoplates to give bimetallic nanostructures. The unique feature of the resulting nanostructures is the particle-to-particle interaction that subjects absorbed analytes to an enhanced electromagnetic field with strong polarization dependence. The Raman activity of the bimetallic nanostructures is compared with that of the individual nanoparticle blocks by using rhodamine 6G solution as the model analyte. The Raman intensity of the best-performing silver-gold nanostructure is comparable with the dense array of silver nanowires and silver nanoplates that were prepared by means of the Langmuir-Blodgett technique. An optimized design of a single-nanostructure substrate for surface-enhanced Raman spectroscopy (SERS), based on a wet-assembly technique proposed here, can serve as a compact and low-cost alternative to fabricated nanoparticle arrays.

  11. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications.

    PubMed

    Dang, Zhi-Min; Zheng, Ming-Sheng; Zha, Jun-Wei

    2016-04-06

    With the development of flexible electronic devices and large-scale energy storage technologies, functional polymer-matrix nanocomposites with high permittivity (high-k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high-k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one-dimensional (1D) and two-dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high-k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized.

  12. Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT

    SciTech Connect

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-P$_3$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.

  13. 2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS

    SciTech Connect

    Falewicz, R.; Rudawy, P.; Murawski, K.; Srivastava, A. K. E-mail: rudawy@astro.uni.wroc.pl E-mail: asrivastava.app@iitbhu.ac.in

    2015-11-01

    Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.

  14. Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions

    NASA Astrophysics Data System (ADS)

    Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz's growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz's growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon's map type embedding: a “continuous” embedding of 1D Gompertz's growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.

  15. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  16. Multiresolution image representation using combined 2-D and 1-D directional filter banks.

    PubMed

    Tanaka, Yuichi; Ikehara, Masaaki; Nguyen, Truong Q

    2009-02-01

    In this paper, effective multiresolution image representations using a combination of 2-D filter bank (FB) and directional wavelet transform (WT) are presented. The proposed methods yield simple implementation and low computation costs compared to previous 1-D and 2-D FB combinations or adaptive directional WT methods. Furthermore, they are nonredundant transforms and realize quad-tree like multiresolution representations. In applications on nonlinear approximation, image coding, and denoising, the proposed filter banks show visual quality improvements and have higher PSNR than the conventional separable WT or the contourlet.

  17. A novel coordination polymer containing both interdigitated 1D chains and interpenetrated 2D grids.

    PubMed

    Ayyappan, Ponnaiyan; Evans, Owen R; Lin, Wenbin

    2002-07-01

    A hydro(solvo)thermal reaction between zinc perchlorate and ethyl ester of a new pyridinecarboxylate bridging ligand of approximately 17.6 A in length yields a unique coordination polymer which contains both interdigitated infinite 1D chains and interpenetrated 2D rhombohedral grids [Zn(2.5)(L)(4)(mu(3)-OH)] x (H(2)O)(5), 1, where L is 3-[[4-(4-pyridylethenyl)phenyl]ethenyl]benzoate. The 1D chains contain mu(3)-bridged hydroxy groups and have a [Zn(4)(mu(3)-OH)(2)(L)(6)] stoichiometry, while the 2D grids have a Zn(L)(2) formula and diagonal distances of 31.7 and 25.2 A. Crystal data for 1: monoclinic space group P2/c, a = 15.686(2) A, b = 12.6103(16) A, c = 38.999(5) A, beta = 98.397(2) degrees, and Z = 4.

  18. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  19. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.

    PubMed

    Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C; Ruoff, Rodney S; Pellegrini, Vittorio

    2015-01-02

    Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications.

  20. A multiple digital watermarking algorithm based on 1D and 2D chaotic sequences

    NASA Astrophysics Data System (ADS)

    Ji, Zhen; Jiang, Lai; Jin, Jing; Zhang, Jihong

    2003-09-01

    Multiple digital watermarking is attracting more and more researchers because it is more valuable in the practical applications than single watermarking. In this paper, a multiple watermarking algorithm based on 1-D and 2-D chaotic sequences is proposed. The chaotic sequences have the advantages of massive, high security, and weakest correlation. The massive and independent digital watermark signals are generated through 1-D chaotic maps, which are determined by different initial conditions and parameters. The chaotic digital watermark signals effectively resolve the construction of massive watermarks with good performance. The embedding of multiple watermakrs is more complex than the single watermarking scheme. In this paper, each watermark is added to the middle frequency coefficients of wavelet domain randomly by exploiting 2-D chaotic system, so the embedding and extracting of each watermark would not disturb each other. Considering the parameters of 2-D chaotic systsem as the key to embedding procedure can prevent the watermarks to be removed maliciously, therefore the performance of security is better. The capacity of the multiple watermarking is also analyzed in this paper. The experimental results demonstrate that this proposed watermarking algorithm is robust to many common attacks and it is a reliable copyright protection for multiple legal owners.

  1. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  2. High-throughput critical dimensions uniformity (CDU) measurement of two-dimensional (2D) structures using scanning electron microscope (SEM) systems

    NASA Astrophysics Data System (ADS)

    Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2011-03-01

    In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.

  3. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  4. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.

  5. Structural transformation in monolayer materials: a 2D to 1D transformation.

    PubMed

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  6. GNSS meteorology for severe weather - 1D, 2D and 3D solution

    NASA Astrophysics Data System (ADS)

    Rohm, Witold; Manning, Toby; Yuan, Yubin; Biadeglgne, Bertukan; Choy, Sue Lynn; Zhang, Kefei

    2013-04-01

    The variability of water vapour (WV) is strongly correlated with the formation, course and dissipation of the mesoscale convective storm systems, due to the large latent heat transfers in the evaporation/condensation process. Contrary to its importance WV space and time distribution remains under sampled in both domains, especially in sparsely populated countries such as Australia. GPS meteorology currently is a very important data source for meteorology, climatology and forecasting, due to the relatively dense network of receivers, operating in the unified reference frame. Point observations of troposphere delay (1D), integrated water vapour (1D), as well as maps of these parameters (2D) are highly sensitive to building up of high amount of water vapour in the troposphere, as well as storm passage. The Kalman filter based GNSS tomography is an emerging method of reconstructing dynamically changing wet refractivity fields (3D). All types of ground based GNSS products has solid scientific foundations and are routinely estimated by major GNSS processing centres with high accuracy and low latency (ie. EGVAP AC). The forthcoming challenge of for the analyse of GNSS meteorology estimates (1D, 2D and 3D) is developing a quantifiable method to predict as well as identify location, size and severity of mesoscale convective storm system. In the course of this research several spatial and temporal filter and indicators have been developed to aid in early detection, prediction and monitoring of severe weather events using all types of GNSS meteorology by-products estimates (1D, 2D and 3D). This research presents a case study based on the analysis of an extreme convective super cell storm in the Victorian region during March 2010 using GPS tomography. Integrated Perceptible Water readings collected from MOBS stations confirmed high time resolution as well as sensitivity to incoming severe weather. Another, special measure of Refractive Index adopted for GPS tomography wet

  7. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  8. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  9. 1d, 2d, and 3d periodic structures: Electromagnetic characterization, design, and measurement

    NASA Astrophysics Data System (ADS)

    Brockett, Timothy John

    Periodic structures have many useful applications in electromagnetics including phased arrays, frequency selective surfaces, and absorbing interfaces. Their unique properties can be used to provide increased performance in antenna gain, electromagnetic propagation, and electromagnetic absorption. In antenna arrays, repeating elements create a larger eective aperture, increasing the gain of the antenna and the ability to scan the direction of the main beam. Three-dimensional periodic structures, such as an array of shaped pillars such as columns, cones, or prisms have the potential of improving electromagnetic absorption, improving performance in applications such as solar cell eciency and absorbing interfaces. Furthermore, research into periodic structures is a continuing endeavor where novel approaches and analysis in appropriate applications can be sought. This dissertation will address the analysis, diagnostics, and enhancement of 1D, 2D, and 3D periodic structures for antenna array applications and solar cell technology. In particular, a unique approach to array design will be introduced to prevent the appearance of undesirable grating lobes in large antenna arrays that employ subarrays. This approach, named the distortion diagnostic procedure, can apply directly to 1D and 2D periodic structures in the form of planar antenna arrays. Interesting corollaries included here are developments in millimeter-wave antenna measurements including spiral planar scanning, phaseless measurements, and addressing antennas that feature an internal source. Finally, analysis and enhancement of 3D periodic structures in nanostructure photovoltaic arrays and absorbing interfaces will be examined for their behavior and basic operation in regards to improved absorption of electromagnetic waves.

  10. SNARK09 - a software package for reconstruction of 2D images from 1D projections.

    PubMed

    Klukowska, Joanna; Davidi, Ran; Herman, Gabor T

    2013-06-01

    The problem of reconstruction of slices and volumes from 1D and 2D projections has arisen in a large number of scientific fields (including computerized tomography, electron microscopy, X-ray microscopy, radiology, radio astronomy and holography). Many different methods (algorithms) have been suggested for its solution. In this paper we present a software package, SNARK09, for reconstruction of 2D images from their 1D projections. In the area of image reconstruction, researchers often desire to compare two or more reconstruction techniques and assess their relative merits. SNARK09 provides a uniform framework to implement algorithms and evaluate their performance. It has been designed to treat both parallel and divergent projection geometries and can either create test data (with or without noise) for use by reconstruction algorithms or use data collected by another software or a physical device. A number of frequently-used classical reconstruction algorithms are incorporated. The package provides a means for easy incorporation of new algorithms for their testing, comparison and evaluation. It comes with tools for statistical analysis of the results and ten worked examples.

  11. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  12. Quality control and stability studies with the monoclonal antibody, trastuzumab: application of 1D- vs. 2D-gel electrophoresis.

    PubMed

    Nebija, Dashnor; Noe, Christian R; Urban, Ernst; Lachmann, Bodo

    2014-04-15

    Recombinant monoclonal antibodies (rmAbs) are medicinal products obtained by rDNA technology. Consequently, like other biopharmaceuticals, they require the extensive and rigorous characterization of the quality attributes, such as identity, structural integrity, purity and stability. The aim of this work was to study the suitability of gel electrophoresis for the assessment of charge heterogeneity, post-translational modifications and the stability of the therapeutic, recombinant monoclonal antibody, trastuzumab. One-dimensional, SDS-PAGE, under reducing and non-reducing conditions, and two-dimensional gel electrophoresis were used for the determination of molecular mass (Mr), the isoelectric point (pI), charge-related isoform patterns and the stability of trastuzumab, subjected to stressed degradation and long-term conditions. For the assessment of the influence of glycosylation in the charge heterogeneity pattern of trastuzumab, an enzymatic deglycosylation study has been performed using N-glycosidase F and sialidase, whereas carboxypeptidase B was used for the lysine truncation study. Experimental data documented that 1D and 2D gel electrophoresis represent fast and easy methods to evaluate the quality of biological medicinal products. Important stability parameters, such as the protein aggregation, can be assessed, as well.

  13. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  14. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk.

  15. Resolution-optimized NMR measurement of (1)D(CH), (1)D(CC) and (2)D(CH) residual dipolar couplings in nucleic acid bases.

    PubMed

    Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad

    2004-11-01

    New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.

  16. In-situ 1-D and 2-D mapping of soil core and rock samples using the LIBS long spark

    SciTech Connect

    Rodolfa, C. T.; Cremers, D. A.; Ebinger, M. H.

    2004-01-01

    LIBS is being developed for stand-off interrogation of samples up to 20 m from a lander or rover. Stand-off capability is important to access targets not conveniently located for in-situ analysis. On the other hand, in-situ techniques are still important and are being developed for future missions such as MSL. Retrieved samples may consist of loose soils, subsurface soil cores, drilled rock cores, and ice cores. For these sample types, it is possible to employ LIBS analysis and take advantage of LIBS capabilities. These include: (1) rapid analysis, (2) good detection sensitivity for many elements, (3) good spatial resolution (3-100 microns), and (4) ability to clean a surface prior to analysis. Using LIBS, it is possible to perform a 1-dimensional analysis, for example, determining element concentrations along a soil core, or a 2-dimensional mapping of the sample surface using a unique 'long' spark. Two-dimensional sampling has been developed previously by focusing the laser pulses as small spots on the sample and then moving the sample a short distance between sampling locations. Although demonstrated, this method is time consuming, requiring a large number of shots to span even a small region (for 3 micron resolution, an area 600 x 480 microns sampled in {approx} 30 min using a 20 Hz laser). For a spacecraft instrument, the ability to more rapidly prepare a 2D elemental spatial map will be desirable. Here they discuss the use of LIBS for sampling along a core in 1D (detection of carbon) and for 2D mapping of a rock face.

  17. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  18. Kinetics of Neuraminidase Action on Glycoproteins by 1D and 2D NMR

    PubMed Central

    Barb, Adam W.; Glushka, John N.; Prestegard, James H.

    2011-01-01

    The surfaces of mammalian cells are coated with complex carbohydrates, many terminated with a negatively charged N-acetylneuraminic acid residue. This motif is specifically targeted by pathogens, including influenza viruses and many pathogenic bacteria, to gain entry into the cell. A necessary step in the influenza virus life cycle is the release of viral particles from the cell surface; this is achieved by cleaving N-acetylneuraminic acid from cell surface glycans with a virally-produced neuraminidase. Here we present a laboratory exercise to model this process using a glycoprotein as a glycan carrier and using real time nuclear magnetic resonance (NMR) spectroscopy to monitor N-acetylneuraminic acid release as catalyzed by neuraminidase. A time-resolved two dimensional data processing technique, statistical total correlation spectroscopy (STOCSY), enhances the resolution of the complicated 1D glycoprotein spectrum and isolates characteristic peaks corresponding to substrates and products. This exercise is relatively straightforward and leads students through a wide range of biologically and chemically relevant procedures, including use of NMR spectroscopy, enzymology and data processing techniques. PMID:22058570

  19. Kinetics of Neuraminidase Action on Glycoproteins by 1D and 2D NMR.

    PubMed

    Barb, Adam W; Glushka, John N; Prestegard, James H

    2011-01-01

    The surfaces of mammalian cells are coated with complex carbohydrates, many terminated with a negatively charged N-acetylneuraminic acid residue. This motif is specifically targeted by pathogens, including influenza viruses and many pathogenic bacteria, to gain entry into the cell. A necessary step in the influenza virus life cycle is the release of viral particles from the cell surface; this is achieved by cleaving N-acetylneuraminic acid from cell surface glycans with a virally-produced neuraminidase. Here we present a laboratory exercise to model this process using a glycoprotein as a glycan carrier and using real time nuclear magnetic resonance (NMR) spectroscopy to monitor N-acetylneuraminic acid release as catalyzed by neuraminidase. A time-resolved two dimensional data processing technique, statistical total correlation spectroscopy (STOCSY), enhances the resolution of the complicated 1D glycoprotein spectrum and isolates characteristic peaks corresponding to substrates and products. This exercise is relatively straightforward and leads students through a wide range of biologically and chemically relevant procedures, including use of NMR spectroscopy, enzymology and data processing techniques.

  20. 1D and 2D NMR of nanocellulose in aqueous colloidal suspensions.

    PubMed

    Jiang, Feng; Dallas, Jerry L; Ahn, B Kollbe; Hsieh, You-Lo

    2014-09-22

    This is the first report on surface structural elucidation of individual nanocellulose as colloidal suspensions by 1D 1H, 2D heteronuclear single quantum coherence (HSQC) as well as 13C nuclear magnetic resonance (NMR). 1H NMR of rice straw CNCs (4.7 nm thick, 143 nm long, 0.04 sulfate per AG or 19.0% surface hydroxyl to sulfate conversion) resembled that of homogeneous cellulose solution. Conventional 2D HSQC NMR of CNC, CNF 1.5 (2-14 nm thick, several micrometers long, 0.10 COOH per AG) and CNF10 (2.0 nm thick, up to 1 μm long, 0.28 COOH per AG) gave H1:H2 ratios of 1.08:1, 0.97:1 and 0.94:1, respectively, all close to the theoretical 1:1 value for cellulose. The H1:H6 ratios determined from 2D HSQC NMR for CNCs, CNF1.5 and CNF10 were 1:1.47, 1:0.88 and 1:0.14, respectively, and corresponded to 26%, 56% and 93% C6 primary hydroxyl conversion to sulfate and carboxyl groups, consistent with, but more sensitive than those by conductometric titration and X-ray diffraction. Both 1H and 2D HSQC NMR data confirm that solution-state NMR detects nanocellulose surface carbons and protons primarily, validating this technique for direct surface characterization of nanocellulose in aqueous colloidal suspensions, presenting a sensitive and meaningful NMR tool for direct characterizing individual nanocellulose surfaces in never-dried state.

  1. 1D and 2D simulations of seismic wave propagation in fractured media

    NASA Astrophysics Data System (ADS)

    Möller, Thomas; Friederich, Wolfgang

    2016-04-01

    Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.

  2. Surface plasmon hurdles leading to a strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings.

    PubMed

    Brûlé, Yoann; Demésy, Guillaume; Gralak, Boris; Popov, Evgeny

    2015-04-06

    An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.

  3. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer.

    PubMed

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  4. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  5. Comparison of Students' Ability to Measure Distance using Wavelength in 1D and 2D Settings

    NASA Astrophysics Data System (ADS)

    White, Gary

    2015-03-01

    When physics students are asked to measure the distance between two fixed locations using a concrete object like a pencil, virtually all respond successfully; however, in some settings, when asked to perform a similar measurement using wavelength as a ruler, there is less success, especially if the students are first asked to note that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by M. Kryjevskaia, M. Stetzer, and P. Heron, The Physics Teacher 51,560, (2103) and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this latter result, and also show some interesting features when comparing particular 1D and 2D contexts.

  6. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  7. Analytic signal extraction approach based on 2D Grating Interferometer and systematic comparison between 2D GI and 1D case

    NASA Astrophysics Data System (ADS)

    Ju, Z.; Wang, Y.; Li, P.; Zhu, Z.; Zhang, K.; Huang, W.; Yuan, Q.; Wu, Z.; Zhu, P.

    2016-03-01

    X-ray imaging method based on 2D grating interferometer was proposed and studied recently, to overcome the limitations in signal extraction and phase retrieval when using 1D grating interferometer. In this paper, the concept of angle-signal response function is proposed, and different surfaces of different 2D setups under the condition of parallel coherent light are calculated and depicted with Matlab. Based on this concept, performance of 2D grating interferometer is systematically analyzed and an analytic 2D signal extraction approach is theoretically proposed. Besides, signal extraction, phase retrieval and feasibility of using conventional source are also briefly discussed and compared between 2D grating interferometer and 1D case.

  8. Near-infrared (NIR) monitoring of Nylon 6 during quenching studied by projection two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2016-11-01

    Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.

  9. The 1D and 2D Hα Kinematics of Galaxies in ZFIRE at z ~ 2

    NASA Astrophysics Data System (ADS)

    Alcorn, Leo Yvonne; Tran, Kim-Vy; Glazebrook, Karl; Labbe, Ivo; Straatman, Caroline; Kacprzak, Glenn; ZFIRE, ZFOURGE

    2017-01-01

    We perform a kinematic analysis of star-forming galaxies at z ~ 2 in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS as part of the ZFIRE survey. Our sample consists of galaxies from the overdense regions at z = 2.1 in COSMOS as well as field objects from 1.9 < z < 2.5. We measure Hα integrated velocity dispersions, and through modeling 2D exponential disks with arctangent velocity profiles, we measure rotational velocities and gas velocity dispersions. Our 1D kinematics show no statistically significant differences on the basis of environment, and we conclude that the kinematics of star-forming galaxies at z ~ 2 are not significantly different between the cluster and field. By testing our models against 2D simulations, we find we can recover our input kinematics to within 14% of the input values, allowing us to further constrain the debated evolution of the Tully-Fisher relation at z ~ 2.

  10. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    SciTech Connect

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  11. 1D and 2D Assembly of Plant Viruses for Materials Development

    SciTech Connect

    Qian Wang

    2013-01-11

    The research focused on the development of novel bionanoparticle (BNP)-based materials, especially the assembly of chemically and genetically-tailored BNP at the interface between immiscible fluids. The chemical, physical, dynamical and mechanistic aspects have been studied in this research. In particular, rod-like tobacco mosaic virus (TMV) based anisotropic nanorods were synthesized via RNA or polymer assisted assembling process. Such kind of TMV-rods offers an ideal model system for the mechanistic study of orienting and packing anisotropic nanoparticles, which may have great potential in the applications of photovoltaic and field emission devices. Specific objectives include: 1) Synthesize BNPs with controlled functionality at defined positions; 2) synthesize 1D nanorods with defined length via polymer or RNA assisted assembly of TMV or TMV coat proteins; 3) self-assemble and crosslink BNPs and TMV-nanorods at liquid-liquid interfaces; 4) quantitatively characterize the structural organization of the 1D and 2D BNP-assemblies using both small angle neutron scattering and synchrotron small angle X-ray scattering; and 5) develop methods to apply grazing incidence small angle X-ray/neutron scattering to investigate the assemblies of BNPs.

  12. Two Dimensional Electrostrictive Field Effect Transistor (2D-EFET): A sub-60mV/decade Steep Slope Device with High ON current

    PubMed Central

    Das, Saptarshi

    2016-01-01

    This article proposes a disruptive device concept which meets both low power and high performance criterion for post-CMOS computing and at the same time enables aggressive channel length scaling. This device, hereafter refer to as two-dimensional electrostrictive field effect transistor or 2D-EFET, allows sub-60 mV/decade subthreshold swing and considerably higher ON current compared to any state of the art FETs. Additionally, by the virtue of its ultra-thin body nature and electrostatic integrity, the 2D-EFET enjoys scaling beyond 10 nm technology node. The 2D-EFET works on the principle of voltage induced strain transduction. It uses an electrostrictive material as gate oxide which expands in response to an applied gate bias and thereby transduces an out-of-plane stress on the 2D channel material. This stress reduces the inter-layer distance between the consecutive layers of the semiconducting 2D material and dynamically reduces its bandgap to zero i.e. converts it into a semi-metal. Thus the device operates with a large bandgap in the OFF state and a small or zero bandgap in the ON state. As a consequence of this transduction mechanism, internal voltage amplification takes place which results in sub-60 mV/decade subthreshold swing (SS). PMID:27721489

  13. Two Dimensional Electrostrictive Field Effect Transistor (2D-EFET): A sub-60mV/decade Steep Slope Device with High ON current

    NASA Astrophysics Data System (ADS)

    Das, Saptarshi

    2016-10-01

    This article proposes a disruptive device concept which meets both low power and high performance criterion for post-CMOS computing and at the same time enables aggressive channel length scaling. This device, hereafter refer to as two-dimensional electrostrictive field effect transistor or 2D-EFET, allows sub-60 mV/decade subthreshold swing and considerably higher ON current compared to any state of the art FETs. Additionally, by the virtue of its ultra-thin body nature and electrostatic integrity, the 2D-EFET enjoys scaling beyond 10 nm technology node. The 2D-EFET works on the principle of voltage induced strain transduction. It uses an electrostrictive material as gate oxide which expands in response to an applied gate bias and thereby transduces an out-of-plane stress on the 2D channel material. This stress reduces the inter-layer distance between the consecutive layers of the semiconducting 2D material and dynamically reduces its bandgap to zero i.e. converts it into a semi-metal. Thus the device operates with a large bandgap in the OFF state and a small or zero bandgap in the ON state. As a consequence of this transduction mechanism, internal voltage amplification takes place which results in sub-60 mV/decade subthreshold swing (SS).

  14. Two-dimensional (2D) infrared correlation study of the structural characterization of a surface immobilized polypeptide film stimulated by pH

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo

    2016-11-01

    The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.

  15. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    PubMed Central

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-01-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220

  16. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    DOE PAGES

    Disseler, S. M.; Chen, Y.; Yeo, S.; ...

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less

  17. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    SciTech Connect

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  18. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  19. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes.

    PubMed

    Ok, Jong G; Panday, Ashwin; Lee, Taehwa; Jay Guo, L

    2014-12-21

    We present a versatile and simple methodology for continuous and scalable 2D micro/nano-structure fabrication via sequential 1D patterning strokes enabled by dynamic nano-inscribing (DNI) and vibrational indentation patterning (VIP) as well as a 'single-stroke' 2D patterning using a DNI tool in VIP.

  20. Effects of various types of molecular dynamics on 1D and 2D (2)H NMR studied by random walk simulations

    PubMed

    Vogel; Rossler

    2000-11-01

    By carrying out random walk simulations we systematically study the effects of various types of complex molecular dynamics on (2)H NMR experiments in solids. More precisely, we calculate one-dimensional (1D) (2)H NMR spectra and the results of two dimensional (2D) (2)H NMR experiments in time domain, taking into account isotropic as well as highly restricted motions which involve rotational jumps about different finite angles. Although the dynamical models are chosen to mimic the primary and secondary relaxation in supercooled liquids and glasses, we do not intend to describe experimental results quantitatively but rather to show general effects appearing for complex reorientations. We carefully investigate whether 2D (2)H NMR in time domain, which was originally designed to measure correlation times of ultraslow motions (tau >/= 1 ms), can be used to obtain shorter tau, too. It is demonstrated that an extension of the time window to tau >/= 10 &mgr;s is possible when dealing with exponential relaxation, but that it will fail if there is a distribution of correlation times G(lgtau). Vice versa, we show that 1D (2)H NMR spectra, usually recorded to look at dynamics with tau in the microsecond regime, are also applicable for studying ultraslow motions provided that the loss of correlation is achieved step by step. Therefore, it is useful to carry out 1D and 2D NMR experiments simultaneously in order to reveal the mechanism of complex molecular motions. In addition, we demonstrate that highly restricted dynamics can be clearly observed in 1D spectra and in 2D NMR in time domain if long solid-echo delays and large evolution times are applied, respectively. Finally, unexpected observations are described which appear in the latter experiment when considering very broad distributions G(lgtau). Because of these effects, time scale and geometry of a considered motion cannot be extracted from a straightforward analysis of experimental results. Copyright 2000 Academic Press.

  1. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2).

  2. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  3. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  4. 2D Biotope Mapping Using Combined LIDAR, Topographic Survey And Segmented 1D Flow Modelling

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.

    2009-12-01

    Reach averaged habitat availability models such as PHABSIM are limited due principally to their failure to adequately map hydraulic habitat distribution at a representative scale. A lack of morphologic data, represented in the form of sparse geometric cross-sections fails to generate the necessary detail. Advances in data collection, improved spatial modelling algorithms and the advent of cross-section based segmentation routines in 1D hydraulic models provides the opportunity to revisit the issue of hydraulic habitat mapping and modelling. This paper presents a combined technique for habitat characterisation at the sub-bar scale is presented for the River Rede, Northumberland, UK. Terrestrial LIDAR data of floodplain, banks and exposed bar surfaces at an average 0.05 m spacing are combined with sparser total station survey data of submerged morphologic features. These data are interpolated to create a uniform DEM grid at 0.2 m spacing (adequate to detect the smallest variation in hydraulic habitat in this system). The data grid were then imported into the HECRAS 1D hydraulic model to generate a 2 m spaced series of cross-sections along a 220 m sinuous single thread reach exhibiting pool - riffle point-bar morphology. The hydraulic segmentation routine then generated estimates of depth averaged flow velocity, flow depth and sub unit discharge for 40 sub-divisions of the flow width for a series of flows from 0.5 m3s-1 up to bankfull flow of approximately 9 m3s-1. The resultant hydraulic data were exported in the project coordinate system and plotted to reveal the 2D pattern of hydraulic biotopes present across the range of flows modelled. The results reveal broadly realistic patterns consistent with previous empirical studies and compare well with LIDAR based biotope maps. Analysis of the temporal pattern of biotope change indicates that biotope diversity and complexity is at a maximum at lower flows and across shallower area (riffles) and that these dominate the

  5. The Role of the Impedivity in the Magnetotelluric Response of 1D and 2D Structures

    NASA Astrophysics Data System (ADS)

    Esposito, Roberta; Giulia Di Giuseppe, Maria; Troiano, Antonio; Patella, Domenico; Mariano Castelo Branco, Raimundo

    2014-05-01

    ambiguous. Successively, a 2D case is considered, consisting in a magma chamber at a depth of 1 km, buried into a soil. The synthetic responses were performed considering both the non-dispersive and the dispersive case and the differences of the modelled MT curves are compared. As for the 1D case, the dispersion alters the resistivity values, particularly at the boundary of the buried body, leading to an ambiguous interpretation. MT data alone are not sufficient to distinguish polarization effects or can induce to see dispersion where is not present. An approach to solve this problem consists of the combined interpretation of DC geoelectrical and MT data collected at the same site. Review of real cases is also shown.

  6. Beamforming of Ultrasound Signals from 1-D and 2-D Arrays under Challenging Imaging Conditions

    NASA Astrophysics Data System (ADS)

    Jakovljevic, Marko

    Beamforming of ultrasound signals in the presence of clutter, or partial aperture blockage by an acoustic obstacle can lead to reduced visibility of the structures of interest and diminished diagnostic value of the resulting image. We propose new beamforming methods to recover the quality of ultrasound images under such challenging conditions. Of special interest are the signals from large apertures, which are more susceptible to partial blockage, and from commercial matrix arrays that suffer from low sensitivity due to inherent design/hardware limitations. A coherence-based beamforming method designed for suppressing the in vivo clutter, namely Short-lag Spatial Coherence (SLSC) Imaging, is first implemented on a 1-D array to enhance visualization of liver vasculature in 17 human subjects. The SLSC images show statistically significant improvements in vessel contrast and contrast-to-noise ratio over the matched B-mode images. The concept of SLSC imaging is then extended to matrix arrays, and the first in vivo demonstration of volumetric SLSC imaging on a clinical ultrasound system is presented. The effective suppression of clutter via volumetric SLSC imaging indicates it could potentially compensate for the low sensitivity associated with most commercial matrix arrays. The rest of the dissertation assesses image degradation due to elements blocked by ribs in a transthoracic scan. A method to detect the blocked elements is demonstrated using simulated, ex vivo, and in vivo data from the fully-sampled 2-D apertures. The results show that turning off the blocked elements both reduces the near-field clutter and improves visibility of anechoic/hypoechoic targets. Most importantly, the ex vivo data from large synthetic apertures indicates that the adaptive weighing of the non-blocked elements can recover the loss of focus quality due to periodic rib structure, allowing large apertures to realize their full resolution potential in transthoracic ultrasound.

  7. Two-dimensional correlation spectroscopy (2D-COS) variable selection for near-infrared microscopy discrimination of meat and bone meal in compound feed.

    PubMed

    Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia

    2014-01-01

    This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.

  8. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    NASA Astrophysics Data System (ADS)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-12-01

    A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  9. 1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry.

    PubMed

    Miller, Joseph D; Slipchenko, Mikhail N; Mance, Jason G; Roy, Sukesh; Gord, James R

    2016-10-31

    Two-dimensional gas-phase coherent anti-Stokes Raman scattering (2D-CARS) thermometry is demonstrated at 1 kHz in a heated jet. A hybrid femtosecond/picosecond CARS configuration is used in a two-beam phase-matching arrangement with a 100-femtosecond pump/Stokes pulse and a 107-picosecond probe pulse. The femtosecond pulse is generated using a mode-locked oscillator and regenerative amplifier that is synchronized to a separate picosecond oscillator and burst-mode amplifier. The CARS signal is spectrally dispersed in a custom imaging spectrometer and detected using a high-speed camera with image intensifier. 1-kHz, single-shot planar measurements at room temperature exhibit error of 2.6% and shot-to-shot variations of 2.6%. The spatial variation in measured temperature is 9.4%. 2D-CARS temperature measurements are demonstrated in a heated O2 jet to capture the spatiotemporal evolution of the temperature field.

  10. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    PubMed

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  11. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  12. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction

    DOE PAGES

    Peng, Rui; Liang, Liangbo; Hood, Zachary D.; ...

    2016-08-30

    Two-dimensional (2D) single-layer MoS2 nanosheets are demonstrated as efficient photocatalysts for hydrogen evolution reaction (HER) from water reduction, thanks to specific in-plane heterojunctions constructed in the MoS2 monolayer. These functional heterojunctions are formed among the different phases of chemically exfoliated MoS2 monolayers: semiconducting 2H, metallic 1T, and quasi-metallic 1T' phases. The proportion of the three MoS2 phases can be systematically controlled via thermal annealing of the nanosheets. Interestingly, a volcano relationship is observed between the photocatalytic HER activity and the annealing temperature with an optimum activity obtained after annealing at 60 °C. First-principles calculations were integrated with experimental studies tomore » shed light on the role of the multiphases of MoS2 and reveal that optimum photocatalytic HER activity results from the formation of the in-plane heterojunctions between 1T' MoS2 and 2H MoS2. Importantly, this facilitates not only balanced light absorption and charge generation by the 2H phase, efficient charge separation at the 1T'/2H interface, but also favorable HER over the basal sites of 1T' MoS2. Furthermore, our work manifests how the confluence of the optical, electronic and chemical properties of 2D MoS2 monolayers can be fully captured for efficient photocatalytic water reduction.« less

  13. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  14. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  15. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    SciTech Connect

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  16. Advanced Nodal P3/SP3 Axial Transport Solvers for the MPACT 2D/1D Scheme

    SciTech Connect

    Stimpson, Shane G; Collins, Benjamin S

    2015-01-01

    As part of its initiative to provide multiphysics simulations of nuclear reactor cores, the Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing the Virtual Environment for Reactor Applications Core Simulator (VERA-CS). The MPACT code, which is the primary neutron transport solver of VERA-CS, employs the two-dimensional/one-dimensional (2D/1D) method to solve 3-dimensional neutron transport problems and provide sub-pin-level resolution of the power distribution. While 2D method of characteristics is used to solve for the transport effects within each plane, 1D-nodal methods are used axially. There have been extensive studies of the 2D/1D method with a variety nodal methods, and the P3/SP3 solver has proved to be an effective method of providing higher-fidelity solutions while maintaining a low computational burden.The current implementation in MPACT wraps a one-node nodal expansion method (NEM) kernel for each moment, iterating between them and performing multiple sweeps to resolve flux distributions. However, it has been observed that this approach is more sensitive to convergence problems. This paper documents the theory and application two new nodal P3/SP3 approaches to be used within the 2D/1D method in MPACT. These two approaches aim to provide enhanced stability compared with the pre-existing one-node approach. Results from the HY-NEM-SP3 solver show that the accuracy is consistent with the one-node formulations and provides improved convergence for some problems; but the solver has issues with cases in thin planes. Although the 2N-SENM-SP3 solver is still under development, it is intended to resolve the issues with HY-NEM-SP3 but it will incur some additional computational burden by necessitating an additional 1D-CMFD-P3 solver to generate the second moment cell-averaged scalar flux.

  17. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  18. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  19. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction

    SciTech Connect

    Peng, Rui; Liang, Liangbo; Hood, Zachary D.; Boulesbaa, Abdelaziz; Puretzky, Alexander; Ievlev, Anton V.; Come, Jeremy; Ovchinnikova, Olga S.; Wang, Hui; Ma, Cheng; Chi, Miaofang; Sumpter, Bobby G.; Wu, Zili

    2016-08-30

    Two-dimensional (2D) single-layer MoS2 nanosheets are demonstrated as efficient photocatalysts for hydrogen evolution reaction (HER) from water reduction, thanks to specific in-plane heterojunctions constructed in the MoS2 monolayer. These functional heterojunctions are formed among the different phases of chemically exfoliated MoS2 monolayers: semiconducting 2H, metallic 1T, and quasi-metallic 1T' phases. The proportion of the three MoS2 phases can be systematically controlled via thermal annealing of the nanosheets. Interestingly, a volcano relationship is observed between the photocatalytic HER activity and the annealing temperature with an optimum activity obtained after annealing at 60 °C. First-principles calculations were integrated with experimental studies to shed light on the role of the multiphases of MoS2 and reveal that optimum photocatalytic HER activity results from the formation of the in-plane heterojunctions between 1T' MoS2 and 2H MoS2. Importantly, this facilitates not only balanced light absorption and charge generation by the 2H phase, efficient charge separation at the 1T'/2H interface, but also favorable HER over the basal sites of 1T' MoS2. Furthermore, our work manifests how the confluence of the optical, electronic and chemical properties of 2D MoS2 monolayers can be fully captured for efficient photocatalytic water reduction.

  20. Haptic-2D: A new haptic test battery assessing the tactual abilities of sighted and visually impaired children and adolescents with two-dimensional raised materials.

    PubMed

    Mazella, Anaïs; Albaret, Jean-Michel; Picard, Delphine

    2016-01-01

    To fill an important gap in the psychometric assessment of children and adolescents with impaired vision, we designed a new battery of haptic tests, called Haptic-2D, for visually impaired and sighted individuals aged five to 18 years. Unlike existing batteries, ours uses only two-dimensional raised materials that participants explore using active touch. It is composed of 11 haptic tests, measuring scanning skills, tactile discrimination skills, spatial comprehension skills, short-term tactile memory, and comprehension of tactile pictures. We administered this battery to 138 participants, half of whom were sighted (n=69), and half visually impaired (blind, n=16; low vision, n=53). Results indicated a significant main effect of age on haptic scores, but no main effect of vision or Age × Vision interaction effect. Reliability of test items was satisfactory (Cronbach's alpha, α=0.51-0.84). Convergent validity was good, as shown by a significant correlation (age partialled out) between total haptic scores and scores on the B101 test (rp=0.51, n=47). Discriminant validity was also satisfactory, as attested by a lower but still significant partial correlation between total haptic scores and the raw score on the verbal WISC (rp=0.43, n=62). Finally, test-retest reliability was good (rs=0.93, n=12; interval of one to two months). This new psychometric tool should prove useful to practitioners working with young people with impaired vision.

  1. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    NASA Astrophysics Data System (ADS)

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  2. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  3. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  4. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    NASA Astrophysics Data System (ADS)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  5. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  6. 2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan; Moore, Chris; Boerner, Jeremiah

    2015-09-01

    Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. A Comparison of 1D and 2D (Unbiased) Experimental Methods for Measuring CSAsolarDD Cross-Correlated Relaxation

    NASA Astrophysics Data System (ADS)

    Batta, Gy.; Kövér, K. E.; Kowalewski, J.

    1999-01-01

    Conventional and enhanced 1D experiments and different NOESY experiments (the 2D unbiased method) were performed for measuring CSA/DD cross-correlated relaxation on trehalose, a compound which could be approximated as a spherical top, and on simple model compounds comprisingC3vsymmetry (CHCl3, triphenylsilane (TPSi)). The comparison gives experimental evidence for the equivalence of the methods within the limits of the two-spin approach. 1D data are evaluated with both the simple initial rate and the Redfield relaxation matrix approach. The 2D data are obtained from the so-called transfer matrix using the Perrin-Gipe eigenvalue/eigenvector method. For the improved performance of the 2D method, anX-filtered (HHH) NOESY is suggested at the natural abundance of13C (or other dilute, low γ species). Also, experimental parameters crucial for reliable CSA data are tested (e.g., the impact of insufficient relaxation delay). Error estimation is carried out for fair comparison of methods. Revised liquid state1H and13C (29Si) CSA data are presented for chloroform and TPSi.

  8. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    NASA Astrophysics Data System (ADS)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  9. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is

  10. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  11. From 2D graphene to 1D graphene nanoribbons: dimensional crossover signals in the structural thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Dobry, Ariel; Costamagna, Sebastián

    2011-03-01

    I this work, by analyzing the thermal excited rippling in the graphene honeycomb lattice, we find clear signals of an existing dimensional crossover from 2D to 1D while reducing one of the dimensions of the graphene layer. Trough a joint study, using montecarlo atomistic simulations and analytical calculation based, we find that the normal-normal correlation function G (q) does not change the power law behavior valid on the long wavelength limit, however the system size dependency of the quadratic out of plane displacement h2 shows a breakdown of its corresponding scaling law. In this case we show that a new scaling law appear which correspond to a truly 1D system. On the basis of these results, and having explored a wide number of realistic systems size, we conclude that narrow nanoribbons presents strongest corrugations than the square graphene sheets. This result could have important consequences on the electron transport properties of freestanding graphene systems.

  12. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling.

    PubMed

    Lin, Shangchao; Shih, Chih-Jen; Sresht, Vishnu; Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2016-08-03

    The colloidal dispersion stability of 1D and 2D materials in the liquid phase is critical for scalable nano-manufacturing, chemical modification, composites production, and deployment as conductive inks or nanofluids. Here, we review recent computational and theoretical studies carried out by our group to model the dispersion stability of 1D and 2D materials, including single-walled carbon nanotubes, graphene, and graphene oxide in aqueous surfactant solutions or organic solvents. All-atomistic (AA) molecular dynamics (MD) simulations can probe the molecular level details of the adsorption morphology of surfactants and solvents around these materials, as well as quantify the interaction energy between the nanomaterials mediated by surfactants or solvents. Utilizing concepts from reaction kinetics and diffusion, one can directly predict the rate constants for the aggregation kinetics and dispersion life times using MD outputs. Furthermore, the use of coarse-grained (CG) MD simulations allows quantitative prediction of surfactant adsorption isotherms. Combined with the Poisson-Boltzmann equation, the Langmuir isotherm, and the DLVO theory, one can directly use CGMD outputs to: (i) predict electrostatic potentials around the nanomaterial, (ii) correlate surfactant surface coverages with surfactant concentrations in the bulk dispersion medium, and (iii) determine energy barriers against coagulation. Finally, we discuss challenges associated with studying emerging 2D materials, such as, hexagonal boron nitride (h-BN), phosphorene, and transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2). An outlook is provided to address these challenges with plans to develop force-field parameters for MD simulations to enable predictive modeling of emerging 2D materials in the liquid phase.

  13. Self-assembly of silver(I) coordination polymers from aminopyrimidyl derivatives and malonate acid: From 1D chain to 2D layer

    NASA Astrophysics Data System (ADS)

    Sun, Di; Zhang, Na; Xu, Qin-Juan; Luo, Geng-Geng; Huang, Rong-Bin; Zheng, Lan-Sun

    2010-04-01

    Two new silver(I) coordination polymers (CPs) of the formula [Ag 2(dmapym) 4(mal)·H 2O] n ( 1) and [Ag 3(apym) 3(mal)NO 3] n ( 2) (dmapym = 2-amino-4,6-dimethylprimidine, apym = 2-aminopyrimidine, H 2mal = malonate) have been synthesized by reactions of AgNO 3 and 2-aminopyrimidyl ligands with malonate under the ammoniacal condition. Both complexes have been characterized by element analysis, IR and single-crystal X-ray diffraction. The monodentate dmapym and tridentate mal ligands link Ag(I) ions to give complex 1 a one-dimensional (1D) H-shaped chain structure. The complex 2 is a two-dimensional (2D) double sheet structure constructed by (4, 4) single sheet. Additionally, the hydrogen-bonding and C-H⋯π interactions also direct the self-assembly of supramolecular architectures. The photoluminescence properties of the 1 and 2 were investigated in the solid state at room temperature.

  14. Configuration space method for calculating binding energies of exciton complexes in quasi-1D/2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor

    A configuration space method, pioneered by Landau and Herring in studies of molecular binding and magnetism, is developed to obtain universal asymptotic relations for lowest energy exciton complexes (trion, biexciton) in confined semiconductor nanostructures such as nanowires and nanotubes, as well as coupled quantum wells. Trions are shown to be more stable (have greater binding energy) than biexcitons in strongly confined quasi-1D structures with small reduced electron-hole masses. Biexcitons are more stable in less confined quasi-1D structures with large reduced electron-hole masses. The theory predicts a crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases, which might be observed on semiconducting carbon nanotubes of increasing diameters. This method is also efficient in calculating binding energies for trion-type electron-hole complexes formed by indirect excitons in double coupled quantum wells, quasi-2D nanostructures that show new interesting electroabsorption/refraction phenomena. Supported by DOE-DE-SC0007117.

  15. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-03-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.

  16. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    PubMed Central

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  17. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-04

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin "Si-random grating-Si" sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  18. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-02-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future.

  19. Individual speckle diffraction based 1D and 2D Random Grating Fabrication for detector and solar energy harvesting applications

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2016-01-01

    Laser speckles and speckle patterns, which are formed by the random interference of scattered waves from optically rough surfaces, have found tremendous applications in a wide range of metrological and biomedical fields. Here, we demonstrate a novel edge diffraction phenomenon of individual speckle for the fabrication of 1D and 2D micron and sub-micron size random gratings. These random gratings exhibit broadband response with interesting diffusive diffraction patterns. As an immediate application for solar energy harvesting, significant reduction in transmission and enhanced absorption in thin “Si-random grating-Si” sandwich structure is demonstrated. This work has multifaceted significance where we exploited the individual speckle diffraction properties for the first time. Besides the solar harvesting applications, random gratings are suitable structures for fabrication of theoretically proposed random quantum well IR detectors and hence expected that this work will augur well for such studies in the near future. PMID:26842242

  20. Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures

    SciTech Connect

    Cai, Zhengxu; Li, Lianwei; Lo, Wai-Yip; Zhao, Donglin; Wu, Qinghe; Zhang, Na; Su, Yu-An; Chen, Wei; Yu, Luping

    2016-07-05

    A novel series of amphiphilic TC-PEG molecules were designed and synthesized based on the orthogonal cyclophane unit. These molecules were able to self-assemble from 1D nanofibers and nanobelts to 2D ultrathin nanosheets (3 nm thick) in a controlled way by tuning the length of PEG side chains. The special structure of the cyclophane moiety allowed control in construction of nanostructures through programmed noncovalent interactions (hydrophobic hydrophilic interaction and pi-pi interaction). The self-assembled nanostructures were characterized by combining real space imaging (TEM, SEM, and AFM) and reciprocal space scattering (GIWAXS) techniques. This unique supramolecular system may provide a new strategy for the design of materials with tunable nanomorphology and functionality.

  1. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented.

  2. Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

    NASA Astrophysics Data System (ADS)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2015-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.

  3. Study of proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature.

    PubMed

    Sanda, Suresh; Biswas, Soumava; Konar, Sanjit

    2015-02-16

    We report the proton conduction properties of a 2D flexible MOF and a 1D coordination polymer having the molecular formulas {[Zn(C10H2O8)0.5(C10S2N2H8)]·5H2O]}n (1) and {[Zn(C10H2O8)0.5(C10S2N2H8)]·2H2O]}n (2), respectively. Compounds 1 and 2 show high conductivity values of 2.55 × 10(-7) and 4.39 × 10(-4) S cm(-1) at 80 °C and 95% RH. The conductivity value of compound 1 is in the range of those for previously reported flexible MOFs, and compound 2 shows the highest proton conductivity among the carboxylate-based 1D CPs. The dimensionality and the internal hydrogen bonding connectivity play a vital role in the resultant conductivity. Variable-temperature experiments of both compounds at high humidity reveal that the conductivity values increase with increasing temperature, whereas the variable humidity studies signify the influence of relative humidity on high-temperature proton conductivity. The time-dependent measurements for both compounds demonstrate their ability to retain conductivity up to 10 h.

  4. Polarization-driven self-organization of silver nanoparticles in 1D and 2D subwavelength gratings for plasmonic photocatalysis

    NASA Astrophysics Data System (ADS)

    Baraldi, G.; Bakhti, S.; Liu, Z.; Reynaud, S.; Lefkir, Y.; Vocanson, F.; Destouches, N.

    2017-01-01

    One of the main challenges in plasmonics is to conceive large-scale, low-cost techniques suitable for the fabrication of metal nanoparticle patterns showing precise spatial organization. Here, we introduce a simple method based on continuous-wave laser illumination to induce the self-organization of silver nanoparticles within high-index thin films. We show that highly regular and homogeneous nanoparticle gratings can be produced on large areas using laser-controlled self-organization processes. This very versatile technique can provide 1D and 2D patterns at a subwavelength scale with tunable features. It does not need any stabilization or expensive devices, such as those required by optical or electron lithography, and is rapid to implement. Accurate in-plane and in-depth characterizations provide valuable information to explain the mechanisms that lead to pattern formation and especially how 2D self-organization can fall into place with successive laser scans. The regular and homogeneous 2D self-organization of metallic NPs with a single laser scan is also reported for the first time in this article. As the reported nanostructures are embedded in porous TiO2, we also theoretically explore the interesting potential of organization on the photocatalytic activity of Ag-NP-containing TiO2 porous films, which is one of the most promising materials for self-cleaning or remediation applications. Realistic electromagnetic simulations demonstrate that the periodic organization of silver nanoparticles can increase the light intensity within the film more than ten times that produced with randomly distributed nanoparticles, leading as expected to enhanced photocatalytic efficiency.

  5. Mixed micelles of polyethylene glycol (23) lauryl ether with ionic surfactants studied by proton 1D and 2D NMR.

    PubMed

    Gao, Hong-Chang; Zhao, Sui; Mao, Shi-Zhen; Yuan, Han-Zhen; Yu, Jia-Yong; Shen, Lian-Fang; Du, You-Ru

    2002-05-01

    (1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.

  6. Two-dimensional electrophoresis of 1D-encoded B and D glutenin subunits in common wheats with similar omega gliadins.

    PubMed

    Masci, S; Porceddu, E; Lafiandra, D

    1991-08-01

    Gli-D1-encoded omega gliadins of bread wheats show little variation; their electrophoretic patterns can be classified into two main groups which broadly resemble the patterns found in the cultivars Chinese Spring and in Cheyenne. B and D subunits of low molecular weight glutenin encoded by the chromosome 1D loci Glu-D3 and Gli-D1, respectively, also showed little variation. D subunits were found only in bread wheats with "Chinese Spring-type" omega gliadins and they all exhibited the same electrophoretic pattern. This material also showed very similar B subunits. "Cheyenne-type" bread wheats displayed the same electrophoretic distribution of chromosome 1D-encoded B subunits, although they were slightly different from that found in Cheyenne itself.

  7. Comparison between 1D and 1 1/2D Eulerian Vlasov codes for the numerical simulation of stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Ghizzo, A.; Bertrand, P.; Lebas, J.; Shoucri, M.; Johnston, T.; Fijalkow, E.; Feix, M. R.

    1992-10-01

    The present 1 1/2D relativistic Euler-Vlasov code has been used to check the validity of a hydrodynamic description used in a 1D version of the Vlasov code. By these means, detailed numerical results can be compared; good agreement furnishes full support for the 1D electromagnetic Vlasov code, which runs faster than the 1 1/2D code. The results obtained assume a nonrelativistic v(y) velocity.

  8. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  9. Current status of one- and two-dimensional numerical models: Successes and limitations

    NASA Technical Reports Server (NTRS)

    Schwartz, R. J.; Gray, J. L.; Lundstrom, M. S.

    1985-01-01

    The capabilities of one and two-dimensional numerical solar cell modeling programs (SCAP1D and SCAP2D) are described. The occasions when a two-dimensional model is required are discussed. The application of the models to design, analysis, and prediction are presented along with a discussion of problem areas for solar cell modeling.

  10. VERA2D-84: a computer program for two-dimensional analysis of flow, heat, and mass transfer in evaporative cooling towers. Volume 2. User's manual. Final report

    SciTech Connect

    Majumdar, A.K.; Agrawal, N.K.; Keeton, L.W.; Singhal, A.K.

    1985-07-01

    Cooling towers that do not meet design performance standards can add millions of dollars to the long-term operating costs of generating plants. The VERA2D-84 code offers a reliable method for predicting the performance of natural-draft and mechanical-draft towers on the basis of physical design information.

  11. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses

    NASA Astrophysics Data System (ADS)

    Printz Ringbæk, Toke; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens

    2016-06-01

    A ripple filter (RiFi)—also called mini-ridge filter—is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25-30% and 45-49%, respectively.

  12. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe3O4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA)3(TPPO)2/polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe3O4 NP contents, and the highest electrical conductivity can reach up to the order of 10(-2) S cm(-1), and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe3O4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  13. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics.

    PubMed

    Kondo, Tadashi; Hirohashi, Setsuo

    2006-01-01

    Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.

  14. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    SciTech Connect

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  15. Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures.

    PubMed

    Yu, Yiling; Cao, Linyou

    2012-06-18

    We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.

  16. Sonochemical synthesis of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their photocatalytic activity.

    PubMed

    Alammar, Tarek; Mudring, Anja-Verena

    2011-12-16

    Ultrasound synthesis of zinc oxide from zinc acetate and sodium hydroxide in ionic liquids (ILs) is a fast, facile, and effective, yet highly morphology- and size-selective route to zinc oxide nanostructures of various dimensionalities. No additional organic solvents, water, surfactants, or templating agents are required. Depending on the synthetic conditions, the selective manufacturing of 0D, 1D, and 2D ZnO nanostructures is possible: Whereas the formation of rodlike structures is typically favored, ZnO nanoparticles can be obtained either under strongly basic conditions or by use of ILs with a long alkyl chain, such as 1-n-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(n)mim][Tf(2)N]; n>8). A short ultrasound irradiation time favors the formation of ZnO nanosheets. Prolonged irradiation leads to the conversion of the ZnO nanosheets into nanorods. In contrast, ionothermal synthesis (conventional heating) does not allow for morphology tuning by variation of the IL or other synthesis conditions, as the longer reaction times required lead always to the formation of well-developed hexagonal nanocrystals with prismatic tips. The ZnO nanostructures synthesized by using ultrasound were efficient photocatalysts in the photodegradation of methyl orange. The photoactivity was observed to be as high as 95 % for ZnO nanoparticles obtained in [C(10)mim][Tf(2)N].

  17. Reversible penta- and hexacoordination motifs in [Co(TMPP)] resulting in interchange of 1D and 2D supramolecular designs.

    PubMed

    Maji, Suman; Kumar, Anil; Pal, Kuntal; Sarkar, Sabyasachi

    2005-10-17

    meso-Tetrakis(3,4,5-trimethoxyphenyl)cobalt(II) porphyrin [Co(TMPP)] (1) is synthesized by a new method. The X-ray structure of 1 grown in dichloromethane shows square-pyramidal coordination around the Co(II) ion, displaying a 1D polymeric network. When grown in chloroform, 1 displays an octahedral coordination around Co(II), resulting in a 2D coordination network. This solvent-dependent variation in ligation of the O-donor atom(s) of the 4-methoxy groups of the meso-phenyl rings in the axial position(s) of the central Co(II) is reversible, as shown by electronic spectroscopy. The magnetic and electron paramagnetic resonance (EPR) data of these two crystalline forms are dependent on the nature of the axial interaction. Increased axial coordination showed increased splitting between the e and a1 orbitals, resulting in further separation between 2A1 and 2E. The EPR data are consistent with this result. The difference in energy levels in these two forms is in agreement with the magnetic and spectroscopic data.

  18. Real-time 1-D/2-D transient elastography on a standard ultrasound scanner using mechanically induced vibration.

    PubMed

    Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent

    2012-10-01

    Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.

  19. 1D and 2D homochiral metal-organic frameworks built from a new chiral elongated binaphthalene-derived bipyridine.

    PubMed

    Wu, Chuan-De; Zhang, Lin; Lin, Wenbin

    2006-09-04

    Six homochiral coordination polymers 1-6 based on a new enantiopure elongated (S)-2,2'-diethoxy-1,1'-binaphthyl-6,6'-bis(4-vinylpyridine) ligand (L) and divalent metal (Zn, Cd, and Ni) connecting points were synthesized and characterized by single-crystal X-ray diffraction studies. These new homochiral coordination polymers adopt two distinct framework structures: a one-dimensional infinite chain structure with bridging L ligands occupying the axial positions of the metal centers and a two-dimensional rhombic grid structure formed by linking octahedrally coordinated metal centers with four pyridyl groups of bridging L ligands in the equatorial positions. The structures of these coordination polymers are sensitive to the nature of the anions as well as the solvents from which the coordination polymer crystals were grown. Powder X-ray diffraction studies showed that the two-dimensional chiral rhombic grids exhibited porosity, which could potentially find applications in enantioselective separations and catalysis.

  20. Status of the solar and infrared radiation submodels in the LLNL 1-D and 2-D chemical-transport models

    SciTech Connect

    Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.

    1987-07-01

    The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs.

  1. Inorganic Sn-X-complex-induced 1D, 2D, and 3D copper sulfide superstructures from anisotropic hexagonal nanoplate building blocks.

    PubMed

    Li, Xiaomin; Wang, Meijuan; Shen, Huaibin; Zhang, Yongguang; Wang, Hongzhe; Li, Lin Song

    2011-09-05

    A facile route was demonstrated for inorganic Sn-X-complex-induced syntheses of self-assembled 1D columnar, 2D raftlike, and 3D stratiform anisotropic Cu(2)S hexagonal nanoplates. The factors (reaction time, temperature, the concentration of Sn-X complex, and so on) that influence the size, phase, monodispersity, and self-assembly ability of the Cu(2)S hexagonal nanoplates were studied in detail. It was found that the Sn-X complex could inhibit the growth of the <001> direction of monoclinic Cu(2)S nanocrystals, which further induced the formation of the hexagonal lamellar structure. Furthermore, it revealed that the formation of the 1D arrangement was preferred as particles stacked in a face-to-face configuration by maximizing ligand-surface interactions. Then, high ligand density along the side of the 1D columnar arrangement induced well-defined 2D raftlike and 3D stratiform self-assembly.

  2. Bulk anisotropic excitons in type-II semiconductors built with 1D and 2D low-dimensional structures

    NASA Astrophysics Data System (ADS)

    Coyotecatl, H. A.; Del Castillo-Mussot, M.; Reyes, J. A.; Vazquez, G. J.; Montemayor-Aldrete, J. A.; Reyes-Esqueda, J. A.; Cocoletzi, G. H.

    2005-08-01

    We used a simple variational approach to account for the difference in the electron and hole effective masses in Wannier-Mott excitons in type-II semiconducting heterostructures in which the electron is constrained in an one-dimensional quantum wire (1DQW) and the hole is in a two-dimensional quantum layer (2DQL) perpendicular to the wire or viceversa. The resulting Schrodinger equation is similar to that of a 3D bulk exciton because the number of free (nonconfined) variables is three; two coming from the 2DQL and one from the 1DQW. In this system the effective electron-hole interaction depends on the confinement potentials.

  3. 3D and 2D structural characterization of 1D Al/Al2 O3 biphasic nanostructures.

    PubMed

    Miró, M Martinez; Veith, M; Lee, J; Soldera, F; Mücklich, F; Bennewitz, R; Aktas, C

    2015-05-01

    1D Al/Al2 O3 nanostructures have been synthesized by chemical vapour deposition (CVD) of the molecular precursor [(t) BuOAlH2 ]2 . The deposited nanostructures grow chaotically on the substrate forming a layer with a high porosity (80%). Depending on the deposition time, diverse nanostructured surfaces with different distribution densities were achieved. A three-dimensional (3D) reconstruction has been evaluated for every nanostructure density using the Focus Ion Beam (FIB) tomography technique and reconstruction software tools. Several structural parameters such as porosity, Euler number, geometrical tortuosity and aspect ratio have been quantified through the analysis with specified software of the reconstructions. Additionally roughness of the prepared surfaces has been characterized at micro- and nanoscale using profilometry and AFM techniques, respectively. While high aspects ratio around 20-30 indicates a strong anisotropy in the structure, high porosity values (around 80%) is observed as a consequence of highly tangled geometry of such 1D nanostructures.

  4. Design and synthesis of new 1D and 2D R-isophthalic acid-based coordination polymers (R = hydrogen or bromine).

    PubMed

    Zhang, Ren; Gong, Qihan; Emge, Thomas J; Banerjee, Debasis; Li, Jing

    2013-01-01

    Three new R-isophthalic acid-based (R = H or Br) coordination polymers have been designed and synthesized. By changing the N-containing ligand in the system, we are able to tune the dimensionality of coordination polymers from one-dimension (1D) to two-dimensions (2D) with the same basic building unit. Also, different metal ions can be incorporated into the same structures. Compound 1 [Cu(bipa)(py)2]·0.5(H2O) (H2bipa = 5-bromoisophthalic acid; py = pyridine) and compound 2 [Co(bipa)(py)2] are 1D chain structures. Compound 3 [Cu8(ipa)8(bpe)8]·2(bpe)·4(H2O) (bpe=1,2-bis(4-pyridyl)ethane) is a 2D layered structure.

  5. Determination of magnitudes and relative signs of 1H-19F coupling constants through 1D- and 2D-TOCSY experiments.

    PubMed

    Espinosa, Juan F

    2013-12-20

    A novel methodology based on 1D- and 2D-TOCSY experiments is described for a quick and accurate measurement of proton-fluorine coupling constants in fluorinated organic compounds. The magnitude of the (1)H-(19)F coupling was measured from the displacement between the relayed peaks associated with the α or β spin state of the fluorine, and its relative sign was derived from the sense of the displacement.

  6. Evaluation of 1D, 2D and 3D nodule size estimation by radiologists for spherical and non-spherical nodules through CT thoracic phantom imaging

    NASA Astrophysics Data System (ADS)

    Petrick, Nicholas; Kim, Hyun J. Grace; Clunie, David; Borradaile, Kristin; Ford, Robert; Zeng, Rongping; Gavrielides, Marios A.; McNitt-Gray, Michael F.; Fenimore, Charles; Lu, Z. Q. John; Zhao, Binsheng; Buckler, Andrew J.

    2011-03-01

    The purpose of this work was to estimate bias in measuring the size of spherical and non-spherical lesions by radiologists using three sizing techniques under a variety of simulated lesion and reconstruction slice thickness conditions. We designed a reader study in which six radiologists estimated the size of 10 synthetic nodules of various sizes, shapes and densities embedded within a realistic anthropomorphic thorax phantom from CT scan data. In this manuscript we report preliminary results for the first four readers (Reader 1-4). Two repeat CT scans of the phantom containing each nodule were acquired using a Philips 16-slice scanner at a 0.8 and 5 mm slice thickness. The readers measured the sizes of all nodules for each of the 40 resulting scans (10 nodules x 2 slice thickness x 2 repeat scans) using three sizing techniques (1D longest in-slice dimension; 2D area from longest in-slice dimension and corresponding longest perpendicular dimension; 3D semi-automated volume) in each of 2 reading sessions. The normalized size was estimated for each sizing method and an inter-comparison of bias among methods was performed. The overall relative biases (standard deviation) of the 1D, 2D and 3D methods for the four readers subset (Readers 1-4) were -13.4 (20.3), -15.3 (28.4) and 4.8 (21.2) percentage points, respectively. The relative biases for the 3D volume sizing method was statistically lower than either the 1D or 2D method (p<0.001 for 1D vs. 3D and 2D vs. 3D).

  7. Head and Tail Deformations, Torsional Coriolis Coupling, and E(1d)-E(2d) Vibrational Mixing in Ethane-Like Molecules.

    PubMed

    Lattanzi; di Lauro C

    1999-12-01

    The mechanism of torsional Coriolis interaction of E(1d) and E(2d) vibrational modes in ethane-like molecules is investigated, and it is shown that this coupling can drastically affect the torsional splitting in the degenerate vibrational states. A basic point of our treatment is that the sets of coordinates of head and tail which combine with the + sign to generate E(1d) normal coordinates are in general different from those which combine with the - sign to generate E(2d) normal coordinates. It is shown that the zeta(gamma) torsional Coriolis coefficients calculated by the usual methods of normal mode analysis are related to the vibrational angular momenta within head and tail referred to the internal rotor axis systems. With knowledge of the L and L(-1) matrices it is possible to transform these coefficients for reference to the molecule-fixed frame. It is peculiar that torsional Coriolis matrix elements occur between E(1d) and E(2d) vibrational components with the same x or y orientation in the molecule-fixed frame. The matrix elements of the torsional Coriolis operator and other operators responsible for the end-to-end coupling are determined, and a method for calculating vibration-torsion energies, and then torsional splittings, in degenerate vibrational states is outlined. Detailed calculations require a global model, involving all the degenerate vibrational basis states in a complex mechanism of interactions, but it is shown that useful information can be obtained by means of simplified models. Our semiempirical rule that degenerate vibrational states with a large negative value of the diagonal vibration-rotation Coriolis coefficient are likely to deviate much from the behavior of E(1d) or E(2d) vibrational states, with a sensible decrease of the torsional splittings, is confirmed. Copyright 1999 Academic Press.

  8. Data page reconstruction method based on two-dimensional soft output Viterbi algorithm with self reference for holographic data storage

    NASA Astrophysics Data System (ADS)

    Koo, Keunhwi; Kim, Soo-Yong; Jeong, Jae Jin; Kim, Sang Woo

    2014-09-01

    This study introduces a two-dimensional (2D) partial response maximum likelihood (PRML) method to reconstruct a degraded data page having 2D inter-symbol interference for holographic data storage. The proposed 2D PRML method consists of 2D partial response (PR) target, 2D equalizer using least mean square algorithm, and 2D soft output Viterbi algorithm (SOVA) having just two one-dimensional (1D) SOVAs in horizontal and vertical directions. To accurately organize a trellis diagram of the 1D SOVA in structural accordance with the 2D PR target, this study proposes the self-reference process for the extrinsic information in the 1D SOVA. Finally, simulation results show that the proposed method has bit error rate performance similar to that of modified 2D SOVA having four 1D SOVAs despite the relatively low computational complexity. Moreover, parallel processing is possible in the two 1D SOVAs through the self-reference process.

  9. Algorithm of Shaping Multiple-beam Braggs Acousto-optic Diffraction Laser Field Into 1D and 2D Patterns

    NASA Astrophysics Data System (ADS)

    Zakharchenko, S.; Baturin, A.

    2015-09-01

    Algorithm of solving a direct problem of acousto-optic interaction between laser emission and acoustic signal consisting of a set of equidistant frequency components is proposed. An infinite system of coupled wave differential equations is reduced to eigenvalue problem. The contribution of the higher rediffraction orders is analyzed separately. Inverse problem of finding an optimal set of equidistant frequency components of a driving acoustic signal to form the objective diffraction pattern is also considered and a few optimization approaches are analyzed. A naïve heuristic method of splitting 2D pattern into subframes, each suitable for simultaneous projection by two acousto-optical deflectors driven by multifrequency composite signal, is developed.

  10. Observation of ferromagnetic and antiferromagnetic coupling in 1-D and 2-D extended structures of copper(II) terephthalates

    SciTech Connect

    Deakin, L.; Arif, A.M.; Miller, J.S.

    1999-11-01

    The reaction between CuCl{sub 2}{center{underscore}dot}2H{sub 2}O and disodium terephthalate, Na{sub 2}tp, in aqueous solution simultaneously produces chain, bis(aqua)[{mu}-(terephthalato-{kappa}O:{kappa}O{prime})]copper(II), monohydrate, Cutp(OH{sub 2}){sub 2}{center{underscore}dot}H{sub 2}O (1), and layered, bis(aqua)[{mu}-(terephthalato-{kappa}O)]copper(II), Cutp(OH{sub 2}){sub 2} (2), structured materials. 1 (C{sub 8}H{sub 10}CuO{sub 7}) belongs to the orthorhombic P2{sub 1}2{sub 1}2 space group [a = 6.3015(4) {angstrom}, b = 6.8743(4) {angstrom}, c = 22.9972(14) {angstrom}, and Z = 4] and incorporates tp in a bridging bis-monodentate binding mode and Cu(II) in a tetragonally elongated octahedron. 2 (C{sub 8}H{sub 10}CuO{sub 6}) which belongs to the orthorhombic Pmc2{sub 1} space group [a = 10.7421(8) {angstrom}, b = 7.2339(10) {angstrom}, c = 5.7143(13) {angstrom}, and Z = 2] incorporates tp in a mono-bidentate binding mode and Cu(II) in a distorted square pyramid. 1 and 2 exhibit axial X-band powder EPR spectra with G{sub {perpendicular}} = 2.08, g{sub {parallel}} = 2.29 (1) and g{sub {perpendicular}} = 2.07, g{sub {parallel}} = 2.29 (2) at 300 K. 1 obeys the Curie-Weiss law at high temperatures ({theta} = {minus}7.2 K) and at low temperatures behaves as 1-D magnetic chains with an exchange-coupling constant of J/k{sub B} = {minus}9.15 K (H = {minus}2JS{sub 1}{center{underscore}dot}S{sub 2}). This material displays a spontaneous moment below 2 K under small applied magnetic fields, consistent with the presence of spin canting. 2 exhibits ferromagnetic interactions with {theta} = +0.8 K. Along the 1-D chain where coordinated water forms the bridge between metal centers, the coupling between Cu(II) is J/k{sub B} = +0.6 K. The fit of the magnetic susceptibility for 2 using a molecular field correction, which takes into consideration antiferromagnetic interactions between chains via the tp ligand, yields J{prime}/k{sub B} = {minus}0.13 K.

  11. Nanoscale integration of two-dimensional materials by lateral heteroepitaxy.

    PubMed

    Sutter, Peter; Huang, Yuan; Sutter, Eli

    2014-08-13

    Materials integration in heterostructures with novel properties different from those of the constituents has become one of the most powerful concepts of modern materials science. Two-dimensional (2D) crystals represent a new class of materials from which such engineered structures can be envisioned. Calculations have predicted emergent properties in 2D heterostructures with nanoscale feature sizes, but methods for their controlled fabrication have been lacking. Here, we use sequential graphene and boron nitride growth on Ru(0001) to show that lateral heteroepitaxy, the joining of 2D materials by preferential incorporation of different atomic species into exposed 1D edges during chemical vapor deposition on a metal substrate, can be used for the bottom-up synthesis of 2D heterostructures with characteristic dimensions on the nanoscale. Our results suggest that on a proper substrate, this method lends itself to building nanoheterostructures from a wide range of 2D materials.

  12. SOLVING THE TWO-DIMENSIONAL DIFFUSION FLOW MODEL.

    USGS Publications Warehouse

    Hromadka, T.V.; Lai, Chintu

    1985-01-01

    A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion equation. To investigate its capability, the numerical model using the diffusion approach is applied to a hypothetical failure problem of a regional water reservoir. The model is based on an explicit, integrated finite-difference scheme, and the floodplain is simulated by a popular home computer which supports 64K FORTRAN. Though simple, the 2-D model can simulate some interesting flooding effects that a 1-D full dynamic model cannot.

  13. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  14. Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils.

    PubMed

    Hossain, Mohammad M; Scott, Ian M; Berruti, Franco; Briens, Cedric

    2016-12-01

    Valuable chemicals can be separated from agricultural residues by chemical or thermochemical processes. The application of pyrolysis has already been demonstrated as an efficient means to produce a liquid with a high concentration of desired product. The objective of this study was to apply an insect and microorganism bioassay-guided approach to separate and isolate pesticidal compounds from bio-oil produced through biomass pyrolysis. Tobacco leaf (Nicotianata bacum), tomato plant (Solanum lycopersicum), and spent coffee (Coffea arabica) grounds were pyrolyzed at 10°C/min from ambient to 565°C using the mechanically fluidized reactor (MFR). With one-dimensional (1D) MFR pyrolysis, the composition of the product vapors varied as the reactor temperature was raised allowing for the selection of the temperature range that corresponds to vapors with a high concentration of pesticidal properties. Further product separation was performed in a fractional condensation train, or 2D MFR pyrolysis, thus allowing for the separation of vapor components according to their condensation temperature. The 300-400°C tobacco and tomato bio-oil cuts from the 1D MFR showed the highest insecticidal and anti-microbial activity compared to the other bio-oil cuts. The 300-350 and 350-400°C bio-oil cuts produced by 2D MFR had the highest insecticidal activity when the bio-oil was collected from the 210°C condenser. The tobacco and tomato bio-oil had similar insecticidal activity (LC50 of 2.1 and 2.2 mg/mL) when the bio-oil was collected in the 210°C condenser from the 300-350°C reactor temperature gases. The 2D MFR does concentrate the pesticidal products compared to the 1D MFR and thus can reduce the need for further separation steps such as solvent extraction.

  15. 1D Modeling of the Initial Stage of Wire Explosions and 2D Modeling of the m=0 Sausage Instability With Sheared Axial Flow

    NASA Astrophysics Data System (ADS)

    Makhin, Volodymyr; Sotnikov, Vladimir; Bauer, Bruno; Lindemuth, Irvin; Sheehey, Peter

    2001-10-01

    1D modeling of the initial state of wire explosions (“cold start” with updated SESAME tables) was examined using 1D version of the Eulerian Magnetohydrodynamic Radiative Code (MHRDR). Simulations were carried out for two regimes: with (black body radiative model) and without radiative losses. Results of the simulations revealed strong dependence of the time of explosion and expansion speed of the wire on the implemented radiative model. This shows that it is necessary to accurately include radiative losses to model “cold start” wire explosions. 2D modeling of the m=0 sausage instability with sheared axial flow. The MHRDR simulations were used to obtain the growth rate of the m=0 sausage instability in plasma column with initial Bennett equilibrium profile with and without shear flow. These growth rates appeared to be in good agreement with growth rates calculated from the linearized MHD equations.

  16. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Nechiyil, Divya; Ramaprabhu, S.

    2017-02-01

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm-2 showcases equivalent performance with that of pure Pt counter electrode.

  17. 1-D, 2-D and 3-D Negative-Refraction Metamaterials at Optical Frequencies: Optical Nano-Transmission-Line and Circuit Theory

    NASA Astrophysics Data System (ADS)

    Engheta, Nader; Alu, Andrea

    2006-03-01

    In recent years metamaterials have offered new possibilities for overcoming some of the intrinsic limitations in wave propagation. Their realization at microwave frequencies has followed two different paths; one consisting of embedding resonant inclusions in a host dielectric, and the other following a transmission-line approach, i.e., building 1-D, 2-D, or 3-D cascades of circuit elements, respectively, as linear, planar or bulk right- or left-handed metamaterials. The latter is known to provide larger bandwidth and better robustness to ohmic losses. Extending these concepts to optical frequencies is a challenging task, due to changes in material response to electromagnetic waves at these frequencies. However, recently we have studied theoretically how it may be possible to have circuit nano-elements at these frequencies by properly exploiting plasmonic resonances. Here we present our theoretical work on translating the circuit concepts of right- and left-handed metamaterials into optical frequencies by applying the analogy between nanoparticles and nanocircuit elements in transmission lines. We discuss how it is possible to synthesize optical negative-refraction metamaterials by properly cascading plasmonic and non-plasmonic elements in 1-D, 2-D and 3-D geometries.

  18. Data of the recombination loss mechanisms analysis on Al2O3 PERC cell using PC1D and PC2D simulations.

    PubMed

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-04-01

    This data article is related to our recently published article ('20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%', Huang et al., 2017 [1]) where we have presented a systematic evaluation of the overall cell processing and a cost-efficient industrial roadmap for PERC cells. Aside from the information already presented in Huang et al., 2017 [1], here we provide data related to Sectin 3 in Huang et al., 2017 [1] concerning the analysis of the recombination losses׳ mechanisms by PC1D V5.9 and PC2D simulations (Clugston and Basore, 1997, Basore and Cabanas-Holmen, 2011, Cabanas-Holmen and Basore, 2012 and Cabanas-Holmen and Basore, 2012.) [2], [3], [4], [5] on our current industrial Al2O3 PERC cell. The data include: i) PC2D simulations on J02, ii) the calculation of series resistance and back surface recombination velocity (BSRV) on the rear side metallization of PERC cell for the case of a point contact, and iii) the PC1D simulation on the cumulative photo-generation and recombination along the distance from the front surface. Finally, the roadmap of the solar cell efficiency for an industrial PERC technology up to 24% is presented, with the aim of providing a potential guideline for industrial researchers.

  19. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  20. PBE–DFT theoretical study of organic photovoltaic materials based on thiophene with 1D and 2D periodic boundary conditions

    SciTech Connect

    Saïl, K. Bassou, G.; Gafour, M. H.; Miloua, F.

    2015-12-15

    Conjugated organic systems such as thiophene are interesting topics in the field of organic solar cells. We theoretically investigate π-conjugated polymers constituted by n units (n = 1–11) based on the thiophene (Tn) molecule. The computations of the geometries and electronic structures of these compounds are performed using the density functional theory (DFT) at the 6–31 G(d, p) level of theory and the Perdew–Burke–Eenzerhof (PBE) formulation of the generalized gradient approximation with periodic boundary conditions (PBCs) in one (1D) and two (2D) dimensions. Moreover, the electronic properties (HOCO, LUCO, E{sub gap}, V{sub oc}, and V{sub bi}) are determined from 1D and 2D PBC to understand the effect of the number of rings in polythiophene. The absorption properties—excitation energies (E{sub ex}), the maximal absorption wavelength (λ{sub max}), oscillator strengths, and light harvesting—efficiency are studied using the time-dependent DFT method. Our studies show that changing the number of thiophene units can effectively modulate the electronic and optical properties. On the other hand, our work demonstrates the efficiency of theoretical calculation in the PBCs.

  1. Structure and Dynamics of Asymmetric Poly(styrene-b-1,4-isoprene) Diblock Copolymer under 1D and 2D Nanoconfinement.

    PubMed

    Kipnusu, Wycliffe K; Elmahdy, Mahdy M; Mapesa, Emmanuel U; Zhang, Jianqi; Böhlmann, Winfried; Smilgies, Detlef-M; Papadakis, Christine M; Kremer, Friedrich

    2015-06-17

    The impact of 1- and 2-dimensional (2D) confinement on the structure and dynamics of poly(styrene-b-1,4-isoprene) P(S-b-I) diblock copolymer is investigated by a combination of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS), and Broadband Dielectric Spectroscopy (BDS). 1D confinement is achieved by spin coating the P(S-b-I) to form nanometric thin films on silicon substrates, while in the 2D confinement, the copolymer is infiltrated into cylindrical anodized aluminum oxide (AAO) nanopores. After dissolving the AAO matrix having mean pore diameter of 150 nm, the SEM images of the exposed P(S-b-I) show straight nanorods. For the thin films, GISAXS and AFM reveal hexagonally packed cylinders of PS in a PI matrix. Three dielectrically active relaxation modes assigned to the two segmental modes of the styrene and isoprene blocks and the normal mode of the latter are studied selectively by BDS. The dynamic glass transition, related to the segmental modes of the styrene and isoprene blocks, is independent of the dimensionality and the finite sizes (down to 18 nm) of confinement, but the normal mode is influenced by both factors with 2D geometrical constraints exerting greater impact. This reflects the considerable difference in the length scales on which the two kinds of fluctuations take place.

  2. Application of Organophosphonic Acids by One-Step Supercritical CO2 on 1D and 2D Semiconductors: Toward Enhanced Electrical and Sensing Performances.

    PubMed

    Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam

    2015-07-15

    Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.

  3. Molecular tectonics: p-H-thiacalix[4]arene pyridyl appended positional isomers as tectons for the formation of 1D and 2D mercury coordination networks.

    PubMed

    Ovsyannikov, A; Ferlay, S; Solovieva, S E; Antipin, I S; Konovalov, A I; Kyritsakas, N; Hosseini, M W

    2013-07-21

    Three p-H-thiacalix[4]arene pyridyl appended coordinating tectons (2-4) in a 1,3-alternate conformation have been prepared and structurally characterised in the solid state. These compounds are positional isomers differing only by the position of the nitrogen atom on the pyridyl ring. Their combinations with HgCl2 lead to the formation of 1- and 2-D neutral mercury coordination networks. Whereas for tecton 2 (ortho isomer) a 2D architecture resulting from the bridging of consecutive tectons by the mononuclear HgCl2 unit is obtained, for tecton 3 (meta isomer) again a 2D network is formed. However, in that case, the interconnection of consecutive organic tectons 3 takes place through a binuclear Hg2Cl4 species. Finally, in the case of tecton 4 (para position), a 1D ribbon type double chain arrangement resulting from the bridging of consecutive tectons by trinuclear Hg3Cl6 units followed by the interconnection of two chains through the fusion of the trinuclear centres into a hexanuclear node is observed.

  4. Non-native side chain IR probe in peptides: ab initio computation and 1D and 2D IR spectral simulation.

    PubMed

    Zheng, Michael L; Zheng, David C; Wang, Jianping

    2010-02-18

    Infrared frequency region of 2000-2600 cm(-1) (i.e., ca. 4-5 microm in wavelength) is a well-known open spectral window for peptides and proteins. In this work, six unnatural amino acids (unAAs) were designed to have characteristic absorption bands located in this region. Key chemical groups that served as side chains in these unAAs are C[triple bond]C, Phe-C[triple bond]C, N=C=O, N=C=S, P-H, and Si-H, respectively. Cysteine (a natural AA having S-H in side chain) was also studied for comparison. The anharmonic vibrational properties, including frequencies, anharmonicities, and intermode couplings, were examined using the density functional theory. Broadband linear infrared (IR) and two-dimensional (2D) IR spectra were simulated for each molecule. It is found that all of the side chain modes have significant overtone diagonal anharmonicities. All have moderate transition dipole strengths except the C[triple bond]C and S-H stretching modes, in comparison with the C=O stretching mode. In each case, a collection of 2D IR cross peaks were predicted to appear due to the presence of the side chain groups, whose strengths are closely related to the intramolecular anharmonic interactions, and to the transition dipole strengths of the coupled vibrators. Further, potential energy distribution analysis and high-order anharmonic constant computation showed that these IR probes possess a varying degree of mode localization. The results suggest that these IR probes are potentially useful in complementing the well-studied amide-I mode, to investigate structures and dynamics of peptides and proteins.

  5. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

    PubMed

    Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio

    2012-03-12

    We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

  6. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  7. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  8. Resolution of rupture directivity in weak events: 1-D versus 2-D source parameterizations for the 2011, Mw 4.6 and 5.2 Lorca earthquakes, Spain

    NASA Astrophysics Data System (ADS)

    López-Comino, J. A.; Stich, D.; Morales, J.; Ferreira, A. M. G.

    2016-09-01

    Resolving robust source parameters of small-moderate magnitude earthquakes is still a challenge in seismology. We infer directivity from apparent source time functions (ASTFs) at regional distance and quantify the associated uncertainties. ASTFs are used for (i) modeling a propagating 1-D line source from the duration data and (ii) inverting the 2-D slip distribution from the full signals. Slip inversion is performed through a Popperian scheme, where random trial models are either falsified on account of large misfit, or else become members of the solution set of the inverse problem. We assess the resolution of rupture directivity representing centroid shifts from the solution set in a rose diagram. Using as example an event with well-studied rupture directivity, the 2011 Mw 5.2 Lorca (Spain) earthquake, 1-D and 2-D parameterizations yield similar estimates for direction (N213°E and N220°E, respectively) and asymmetry (67:33, 65:35) of rupture propagation, as well as rupture length (2.1 km, 2.7 km) and speed (3.5 km/s, 3.25 km/s). The high rupture velocity ≥ 90% vS may be held primarily responsible for the strong directivity effect of this earthquake. We show that inversion of apparent source durations is intrinsically unable to resolve highly asymmetric bilateral ruptures, while inversion of full ASTFs misses part of the signal's complexity, suggesting the presence of deconvolution artifacts. We extend the analysis to the Mw 4.6 foreshock of the Lorca earthquake, inferring similar directivity parameters and slip pattern as for the mainshock. The rupture toward SW of both earthquakes suggests that this direction could be inherent to the fault segment.

  9. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  10. Layer-by-Layer Polyelectrolyte Assisted Growth of 2D Ultrathin MoS2 Nanosheets on Various 1D Carbons for Superior Li-Storage.

    PubMed

    Qu, Qunting; Qian, Feng; Yang, Siming; Gao, Tian; Liu, Weijie; Shao, Jie; Zheng, Honghe

    2016-01-20

    Transitional metal sulfide/carbon hybrids with well-defined structures could not only maximize the functional properties of each constituent but engender some unique synergistic effects, holding great promise for applications in Li-ion batteries and supercapacitors and for catalysis. Herein, a facile and versatile approach is developed to controllably grow 2D ultrathin MoS2 nanosheets with a large quantity of exposed edges onto various 1D carbons, including carbon nanotubes (CNTs), electrospun carbon nanofibers, and Te-nanowire-templated carbon nanofibers. The typical approach involves the employment of layer-by-layer (LBL) self-assembled polyelectrolyte, which controls spatially the uniform growth and orientation of ultrathin MoS2 nanosheets on these 1D carbons irrespective of their surface properties. Such unique structures of the as-prepared CNTs@MoS2 hybrid are significantly favorable for the fast diffusions of both Li-ions and electrons, satisfying the kinetic requirements of high-power lithium ion batteries. As a result, CNTs@MoS2 hybrids exhibit excellent electrochemical performances for lithium storage, including a high reversible capacity (1027 mAh g(-1)), high-rate capability (610 mAh g(-1) at 5 C), and excellent cycling stability (negligible capacity loss after 200 continuous cycles).

  11. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  12. Analytical calculation of two-dimensional spectra.

    PubMed

    Bell, Joshua D; Conrad, Rebecca; Siemens, Mark E

    2015-04-01

    We demonstrate an analytical calculation of two-dimensional (2D) coherent spectra of electronic or vibrational resonances. Starting with the solution to the optical Bloch equations for a two-level system in the 2D time domain, we show that a fully analytical 2D Fourier transform can be performed if the projection-slice and Fourier-shift theorems of Fourier transforms are applied. Results can be fit to experimental 2D coherent spectra of resonances with arbitrary inhomogeneity.

  13. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain

    PubMed Central

    Sun, Jianjun; Xu, Jinbin; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.

    2012-01-01

    The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors. PMID:23185343

  14. Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that

  15. Strengthening of Ceramic-based Artificial Nacre via Synergistic Interactions of 1D Vanadium Pentoxide and 2D Graphene Oxide Building Blocks

    NASA Astrophysics Data System (ADS)

    Knöller, Andrea; Lampa, Christian P.; Cube, Felix Von; Zeng, Tingying Helen; Bell, David C.; Dresselhaus, Mildred S.; Burghard, Zaklina; Bill, Joachim

    2017-01-01

    Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre’s architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hierarchically arranged, highly flexible ceramic-based papers. The papers’ mechanical properties are found to be strongly influenced by the amount of the integrated GO phase. Nanoindentation tests reveal an out-of-plane decrease in Young’s modulus with increasing GO content. Furthermore, nanotensile tests reveal that the ceramic-based papers with 0.5 wt% GO show superior in-plane mechanical performance, compared to papers with higher GO contents as well as to pristine V2O5 and GO papers. Remarkably, the performance is preserved even after stretching the composite material for 100 nanotensile test cycles. The good mechanical stability and unique combination of stiffness and flexibility enable this material to memorize its micro- and macroscopic shape after repeated mechanical deformations. These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage.

  16. Reconstruction of multidimensional carbon hosts with combined 0D, 1D and 2D networks for enhanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Xia, X. H.; Wang, Y. D.; Wang, X. L.; Tu, J. P.

    2017-02-01

    It is a core task to find solutions to suppress the ;shuttle effect; of polysulfides and improve high rate capability at the sulfur cathode of lithium sulfur batteries. Herein we first time propose a concept of multileveled blocking ;dams; to suppress the diffusion of polysulfides. We report a facile and effective strategy to construct multidimensional conductive carbon hosts for accommodation of active sulfur. Multidimensional ternary carbon networks (MTCNs) with 0D nanospheres, 1D nanotubes and 2D nanoflakes are organically combined together to provide multileveled conductive channels to reserve active sulfur and promote stable sustained reactions. In the light of enhanced conductivity and multileveled blocking ;dams; for polysulfides, the designed MTCNs/S cathode has been demonstrated with noticeable improvement in discharge capacity (1472 mAh g-1 at 0.l C) and long-term cycling stability (65% retention at 5.0 C after 500 cycles). Our research may provide a new insight in the gradient blocking of polysulfides with the help of multidimensional carbon networks.

  17. Strengthening of Ceramic-based Artificial Nacre via Synergistic Interactions of 1D Vanadium Pentoxide and 2D Graphene Oxide Building Blocks

    PubMed Central

    Knöller, Andrea; Lampa, Christian P.; Cube, Felix von; Zeng, Tingying Helen; Bell, David C.; Dresselhaus, Mildred S.; Burghard, Zaklina; Bill, Joachim

    2017-01-01

    Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre’s architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hierarchically arranged, highly flexible ceramic-based papers. The papers’ mechanical properties are found to be strongly influenced by the amount of the integrated GO phase. Nanoindentation tests reveal an out-of-plane decrease in Young’s modulus with increasing GO content. Furthermore, nanotensile tests reveal that the ceramic-based papers with 0.5 wt% GO show superior in-plane mechanical performance, compared to papers with higher GO contents as well as to pristine V2O5 and GO papers. Remarkably, the performance is preserved even after stretching the composite material for 100 nanotensile test cycles. The good mechanical stability and unique combination of stiffness and flexibility enable this material to memorize its micro- and macroscopic shape after repeated mechanical deformations. These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage. PMID:28102338

  18. Simple synthesis of PbSe nanocrystals and their self-assembly into 2D ‘flakes’ and 1D ‘ribbons’ structures

    SciTech Connect

    Díaz-Torres, E.; Ortega-López, M.; Matsumoto, Y.; Santoyo-Salazar, J.

    2016-08-15

    Highlights: • PbSe is obtained in a simple way by the co-precipitation method at low-temperature. • The structural, morphological and optical properties of PbSe were studied. • Adding NH{sub 4}OH to the precursor solutions influences on the morphology. • 2D- and 1D-PbSe structures assemble by oriented attachment. • PbSe can be a potential candidate for thermoelectric applications. - Abstract: This work presents a simple and low-temperature method to prepare a variety of Lead selenide (PbSe) nanostructures, using aqueous solutions of Pb(NO{sub 3}){sub 2} and NaHSe. Nanostructures with different morphology were obtained by varying the Pb:Se molar ratio, as well as the mixing sequence of NH{sub 4}OH with either Pb(NO{sub 3}){sub 2} or NaHSe. Nanoparticles with different shapes (spherical and octahedral), and self-assembled structures (flakes and ribbons) were observed by Transmission Electron Microscopy. X-ray results confirmed that the PbSe rock-salt crystalline structure was obtained for all of the prepared samples. The crystal size is in the order of 7.3 to 8.9 nm for single nanocrystals. The absorption spectra of the samples show exciton absorption bands at 1395 nm and 1660 nm. This material could be used to develop more advanced structures for thermoelectric generators.

  19. Local doping of two-dimensional materials

    DOEpatents

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  20. Two-dimensional topological insulators with large bulk energy gap

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Jia, Jin-Feng; Qian, Dong

    2016-11-01

    Two-dimensional (2D) topological insulators (TIs, or quantum spin Hall insulators) are special insulators that possess bulk 2D electronic energy gap and time-reversal symmetry protected one-dimensional (1D) edge state. Carriers in the edge state have the property of spin-momentum locking, enabling dissipation-free conduction along the 1D edge. The existence of 2D TIs was confirmed by experiments in semiconductor quantum wells. However, the 2D bulk gaps in those quantum wells are extremely small, greatly limiting potential application in future electronics and spintronics. Despite this limitation, 2D TIs with a large bulk gap attracted plenty of interest. In this paper, recent progress in searching for TIs with a large bulk gap is reviewed briefly. We start by introducing some theoretical predictions of these new materials and then discuss some recent important achievements in crystal growth and characterization. Project supported by the National Natural Science Foundation of China (Grant Nos. U1632272, 11574201, and 11521404). D. Q. acknowledges support from the Changjiang Scholars Program, China and the Program for Professor of Special Appointment (Eastern Scholar), China.

  1. Co-nucleus 1D/2D Heterostructures with Bi2S3 Nanowire and MoS2 Monolayer: One-Step Growth and Defect-Induced Formation Mechanism.

    PubMed

    Li, Yongtao; Huang, Le; Li, Bo; Wang, Xiaoting; Zhou, Ziqi; Li, Jingbo; Wei, Zhongming

    2016-09-27

    Heterostructures constructed by low-dimensional (such as 0D, 1D, and 2D) materials have opened up opportunities for exploring interesting physical properties and versatile (opto)electronics. Recently, 2D/2D heterostructures, in particular, atomically thin graphene and transition-metal dichalcogenides, including graphene/MoS2, WSe2/MoS2, and WS2/WSe2, were efficiently prepared (by transfer techniques, chemical vapor deposition (CVD) growth, etc.) and systematically studied. In contrast, investigation of 1D/2D heterostructures was still very challenging and rarely reported, and the understanding of such heterostructures was also not well established. Herein, we demonstrate the one-step growth of a heterostructure on the basis of a 1D-Bi2S3 nanowire and a 2D-MoS2 monolayer through the CVD method. Multimeans were employed, and the results proved the separated growth of a Bi2S3 nanowire and a MoS2 sheet in the heterostructure rather than forming a BixMo1-xSy alloy due to their large lattice mismatch. Defect-induced co-nucleus growth, which was an important growth mode in 1D/2D heterostructures, was also experimentally confirmed and systematically investigated in our research. Such 1D/2D heterostructures were further fabricated and utilized in (opto)electronic devices, such as field-effect transistors and photodetectors, and revealed their potential for multifunctional design in electrical properties. The direct growth of such nanostructures will help us to gain a better comprehension of these specific configurations and allow device functionalities in potential applications.

  2. Detection of Anisotropic Hyperfine Components of Chemically Prepared Carotenoid Radical Cations:1D and 2D ESEEM and Pulsed ENDOR Study

    SciTech Connect

    Konovalova, Tatyana A.; Dikanov, Sergei A.; Bowman, Michael K.; Kispert, Lowell D.

    2001-09-06

    Canthaxanthin and 8'-apo-B-caroten-8'-al radical cations chemically prepared on activated silica-alumina and in CH2CI2 solution containing A1C13 were studied by pulsed EPR and ENDOR spectroscopies. Both the 1D three-pulse ESEEM and the 2D HYSCORE spectra of the carotenoid-A1C13 mixtures exhibited the 27 A1 nuclei peak at 3.75 MHz. This indicates electron-transfer interactions between carotenoids and A1III ions resulting in the formation and stabilization of carotenoid radical cations. Davies ENDOR measurements of the canthaxanthin radical cation on silica-alumina determined the hyperfine couplings of B protons belonging to three different methyl groups with ahI=2.6 MHz, aH2=8.6MHz, and ah3 ca. 13 MHz. The principal components of the proton hyperfine tensors were obtained from HYSCORE spectra in A1C13 solutions and on the solid support. Identification of the protons was made on the basis of isotropic hyperfine couplings determined by RHF-INDO/SP molecular orbital calculations. In frozen A1C13 solution, the C(7, 7')Ha and C(14, 14')-Ha a protons were observed for Canthaxanthin and the C(8 or 14')-Ha, C(15')-Ha were observed for 8'-apo-B-caroten-8'-al. On the silica-alumina support, the C(10, 10')-Ha, C(11, 11')-Ha, and C(15,15')-Ha a protons were measured for Canthaxanthin and the C(12)-Ha and C(15')-Ha were measured for 8' apo-B-caroten-8'-al. Some protons with large isotropic couplings (>10 MHz) determined from HYSCORE analysis could be assigned to B protons, but the principal components of their hyperfine tensors are much more anisotropic than those reported previously for B protons. We suggest that cis/trans isomerization of carotenoids on silica-alumina results in stabilization of di-cis isomers with large isotropic couplings for some a protons which are comparable to those of B protons.

  3. Pressure Tuning of First Dimension Columns in Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Sharif, Khan M; Kulsing, Chadin; Marriott, Philip J

    2016-09-20

    The experimental approach and mechanism of pressure tuning (PT) are introduced for the first stage of a comprehensive two-dimensional gas chromatography (GC × GC) separation. The PT-GC × GC system incorporates a first dimension ((1)D) coupled column ensemble comprising a pair of (1)D columns ((1)D1 and (1)D2) connected via a microfluidic splitter device, allowing variable decompression of carrier gas across each (1)D column, and a conventional (2)D narrow bore column. By variation of junction pressure between the (1)D1 and (1)D2 columns, tunable total (1)D retentions of analytes are readily derived. Separations of a standard mixture comprising a number of different chemical classes (including alkanes, monoaromatics, alcohols, aldehydes, ketones, and esters) and Australian tea tree oil (TTO) were studied as practical examples of the PT-GC × GC system application. This illustrated the change of analyte retention time with experimental conditions depending on void time and retention on the different columns. In addition to void time change, variation of carrier gas relative decompression in the (1)D ensemble leads to tunable contribution of the (1)D1/(1)D2 columns that changes apparent polarity and selectivity of the ensemble. The resulting changes in (1)D elution order further altered elution temperature and thus retention of each analyte on the (2)D column in temperature-programmed GC × GC. 2D orthogonality measurements were then conducted to evaluate overall separation performance under application of different (1)D junction pressure. As a result, distribution and selectivity of particular target compounds, monoterpenes, sesquiterpenes, and oxygenated terpenes in 2D space, and thus orthogonality, could be adequately tuned. This indicates the potential of PT-GC × GC to be applicable for practical sample separation and provides a general approach to tune selectivity of target compounds.

  4. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    PubMed

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  5. Two-dimensional photonic crystal surfactant detection.

    PubMed

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  6. Two-Dimensional Electrons.

    DTIC Science & Technology

    2014-09-26

    linear electronic specific heat disappears in strong magnetic fields if Landau levels are not broadened. Thus, the amplitude of the magnetothermal...Molec. Crys. Liq. Crys. 121, 169 (1984). In consideration of mixing of low-lying Landau levels, the magneto- conductance of two-dimensional electrons...and narrowing can be explained when the Landau level filling factor v is larger than 1. Actually, we have shown that the resonance phenomena are

  7. A deterministic computational model for the two dimensional electron and photon transport

    NASA Astrophysics Data System (ADS)

    Badavi, Francis F.; Nealy, John E.

    2014-12-01

    A deterministic (non-statistical) two dimensional (2D) computational model describing the transport of electron and photon typical of space radiation environment in various shield media is described. The 2D formalism is casted into a code which is an extension of a previously developed one dimensional (1D) deterministic electron and photon transport code. The goal of both 1D and 2D codes is to satisfy engineering design applications (i.e. rapid analysis) while maintaining an accurate physics based representation of electron and photon transport in space environment. Both 1D and 2D transport codes have utilized established theoretical representations to describe the relevant collisional and radiative interactions and transport processes. In the 2D version, the shield material specifications are made more general as having the pertinent cross sections. In the 2D model, the specification of the computational field is in terms of a distance of traverse z along an axial direction as well as a variable distribution of deflection (i.e. polar) angles θ where -π/2<θ<π/2, and corresponding symmetry is assumed for the range of azimuth angles (0<φ<2π). In the transport formalism, a combined mean-free-path and average trajectory approach is used. For candidate shielding materials, using the trapped electron radiation environments at low Earth orbit (LEO), geosynchronous orbit (GEO) and Jupiter moon Europa, verification of the 2D formalism vs. 1D and an existing Monte Carlo code are presented.

  8. Two dimensional vernier

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  9. Fabrication and investigation of 1D and 2D structures in LiNbO 3 thin films by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Meriche, F.; Boudrioua, A.; Kremer, R.; Dogheche, E.; Neiss-Clauss, E.; Mouras, R.; Fischer, A.; Beghoul, M.-R.; Fogarassy, E.; Boutaoui, N.

    2010-09-01

    Lithium niobate thin films were deposited on sapphire substrate by radio-frequency magnetron sputtering technique. One and two dimensional structures have been made using a KrF excimer laser at 248 nm and 6 ns pulse width, under various conditions of ablation, in order to assess the applicability of laser direct-writing of photonic waveguides. The optical and waveguiding properties of LiNbO 3 thin films were studied by prism-coupling technique, while micro-Raman spectroscopy was used for structural and composition characterization, as well as laser processing mechanism investigation. The surface morphology of the processed structures was obtained by a Nomarski optical microscope, an atomic force microscope and a White Light Interferometer Microscope.

  10. Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes.

    PubMed

    Wang, Zhiyong; Li, Hong; Liu, Zheng; Shi, Zujin; Lu, Jing; Suenaga, Kazu; Joung, Soon-Kil; Okazaki, Toshiya; Gu, Zhennan; Zhou, Jing; Gao, Zhengxiang; Li, Guangping; Sanvito, Stefano; Wang, Enge; Iijima, Sumio

    2010-10-06

    Quasi-one-dimensional nanotubes and two-dimensional nanoribbons are two fundamental forms of nanostructures, and integrating them into a novel mixed low-dimensional nanomaterial is fascinating and challenging. We have synthesized a stable mixed low-dimensional nanomaterial consisting of MoS(2) inorganic nanoribbons encapsulated in carbon nanotubes (which we call nanoburritos). This route can be extended to the synthesis of nanoburritos composed of other ultranarrow transition-metal chalcogenide nanoribbons and carbon nanotubes. The widths of previously synthesized MoS(2) ribbons are greater than 50 nm, while the encapsulated MoS(2) nanoribbons have uniform widths down to 1-4 nm and layer numbers down to 1-3, depending on the nanotube diameter. The edges of the MoS(2) nanoribbons have been identified as zigzag-shaped using both high-resolution transmission electron microscopy and density functional theory calculations.

  11. Validating a 0D predator-prey model for LH Transition with its 1D-2D supersets: effects of heating and fueling on Hysteresis and transition dynamics

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick; Miki, Kazuhiro

    2013-10-01

    The LH transition crucially depends on the heat and particle deposition, transport and electric field shear suppression. Despite the inhomogeneity of these phenomena, a popular 0D predator-prey model seems to capture the essential transition dynamics, including the limit cycle pre-H-mode oscillations (or I-mode). However, its predictions regarding hysteresis are inconclusive. This is understandable at least because of the known deep fuel lowering of the transition threshold. The readily available fueling devices are the edge neutral penetration and an internal deposition via the supersonic molecular beam injection (SMBI). This suggests a minimal extension of the 0D model by using bi-modal particle distributions. To formulate this extension accurately, a step-by-step comparison with a 1D treatment is required. Fortunately a suitable 1D numerical model has been recently developed specifically for the LH transition studies. In this work, we use the 1D model for the following purposes. First, we explore fueling effects as occurring both by edge neutral penetration, and internal deposition (SMBI) at a finite depth within the separatrix. Second, as the 0D model responds positively to the oscillating heating power, we include a periodic repetitive SMBI firing. Supported by the US DoE.

  12. Discrete hexamer water clusters and 2D water layer trapped in three luminescent Ag/tetramethylpyrazine/benzene-dicarboxylate hosts: 1D chain, 2D layer and 3D network

    NASA Astrophysics Data System (ADS)

    Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-03-01

    Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.

  13. Defect Characterization Using Two-Dimensional Arrays

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2011-06-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.

  14. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    PubMed

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  15. Studies of Photosynthetic Energy and Charge Transfer by Two-dimensional Fourier transform electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer

    2010-03-01

    Two-dimensional (2D) Fourier transform electronic spectroscopy has recently emerged as a powerful tool for the study of energy transfer in complex condensed-phase systems. Its experimental implementation is challenging but can be greatly simplified by implementing a pump-probe geometry, where the two phase-stable collinear pump pulses are created with an acousto-optic pulse-shaper. This approach also allows the use of a continuum probe pulse, expanding the available frequency range of the detection axis and allowing studies of energy transfer and electronic coupling over a broad range of frequencies. We discuss several benefits of 2D electronic spectroscopy and present 2D data on the D1-D2 reaction center complex of Photosystem II from spinach. We discuss the ability of 2D spectroscopy to distinguish between current models of energy and charge transfer in this system.

  16. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  17. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.

    PubMed

    Trejo, Leonard J; Rosipal, Roman; Matthews, Bryan

    2006-06-01

    We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KPLS classifier to map power spectra of 62-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject's average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: 1) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal electrooculograms (EOG) signals, 2) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from 12 electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular

  18. Two-dimensional Rayleigh model of vapor bubble evolution

    SciTech Connect

    Amendt, P; Friedman, M; Glinsky, M; Gurewitz, E; London, R A; Strauss, M

    1999-01-14

    The understanding of vapor bubble generation in an aqueous tissue near a fiber tip has required advanced two dimensional (2D) hydrodynamic simulations. For 1D spherical bubble expansion a simplified and useful Rayleigh-type model can be applied. For 2D bubble evolution, such a model does not exist. The present work proposes a Rayleigh-type model for 2D bubble expansion that is faster and simpler than the 2D hydrodynamic simulations. The model is based on a flow potential representation of the hydrodynamic motion controlled by a Laplace equation and a moving boundary condition. We show that the 1D Rayleigh equation is a specific case of our model. The Laplace equation is solved for each time step by a finite element solver using a triangulation of the outside bubble region by a fast unstructured mesh generator. Two problems of vapor bubbles generated by short-pulse lasers near a fiber tip-are considered: (a) the outside region has no boundaries except the fiber, (b) the fiber and the bubble are confined in a long channel, which simulates a fiber in a vessel wall. Our simulations for problems of type (a) include features of bubble evolution as seen in experiments, including a collapse away from the fiber tip. A different behavior was obtained for problems of type (b) when the channel boundary is close to the fiber. In this case the bubble's expansion and collapse are both extremely slow in the direction normal to this boundary and distortion of the bubble is observed.

  19. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes.

    PubMed

    Kim, Taehoon; Park, Junyong; Sohn, Jongmoo; Cho, Donghwi; Jeon, Seokwoo

    2016-04-26

    Here we propose a concept of conductive dry adhesives (CDA) combining a gecko-inspired hierarchical structure and an elastomeric carbon nanocomposite. To complement the poor electrical percolation of 1D carbon nanotube (CNT) networks in an elastomeric matrix at a low filler content (∼1 wt %), a higher dimensional carbon material (i.e., carbon black, nanographite, and graphene nanopowder) is added into the mixture as an aid filler. The co-doped graphene and CNT in the composite show the lowest volume resistance (∼100 ohm·cm) at an optimized filler ratio (1:9, total filler content: 1 wt %) through a synergetic effect in electrical percolation. With an optimized conductive elastomer, gecko-inspired high-aspect-ratio (>3) microstructures over a large area (∼4 in.(2)) are successfully replicated from intaglio-patterned molds without collapse. The resultant CDA pad shows a high normal adhesion force (∼1.3 N/cm(2)) even on rough human skin and an excellent cycling property for repeatable use over 30 times without degradation of adhesion force, which cannot be achieved by commercial wet adhesives. The body-attachable CDA can be used as a metal-free, all-in-one component for measuring biosignals under daily activity conditions (i.e., underwater, movements) because of its superior conformality and water-repellent characteristic.

  20. Ground-state phase diagram of the two-dimensional Bose-Hubbard model with anisotropic hopping

    NASA Astrophysics Data System (ADS)

    Schönmeier-Kromer, Janik; Pollet, Lode

    2014-02-01

    We compute the ground-state phase diagram of the two-dimensional (2D) Bose-Hubbard model with anisotropic hopping using quantum Monte Carlo simulations, connecting the one-dimensional (1D) to the 2D system. We find that the tip of the lobe lies on a curve controlled by the 1D limit over the full anisotropy range, while the universality class is always the same as in the isotropic 2D system. This behavior can be derived analytically from the lowest renormalization-group equations and has a shape typical for the underlying Kosterlitz-Thouless transition in one dimension. We also compute the phase boundary of the Mott lobe at unit density for strong anisotropy and compare it to the 1D system. Our calculations shed light on recent cold gas experiments monitoring the dynamics of an expanding cloud.

  1. Intrinsic two-dimensional features as textons

    NASA Technical Reports Server (NTRS)

    Barth, E.; Zetzsche, C.; Rentschler, I.

    1998-01-01

    We suggest that intrinsic two-dimensional (i2D) features, computationally defined as the outputs of nonlinear operators that model the activity of end-stopped neurons, play a role in preattentive texture discrimination. We first show that for discriminable textures with identical power spectra the predictions of traditional models depend on the type of nonlinearity and fail for energy measures. We then argue that the concept of intrinsic dimensionality, and the existence of end-stopped neurons, can help us to understand the role of the nonlinearities. Furthermore, we show examples in which models without strong i2D selectivity fail to predict the correct ranking order of perceptual segregation. Our arguments regarding the importance of i2D features resemble the arguments of Julesz and co-workers regarding textons such as terminators and crossings. However, we provide a computational framework that identifies textons with the outputs of nonlinear operators that are selective to i2D features.

  2. Trends in data processing of comprehensive two-dimensional chromatography: state of the art.

    PubMed

    Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2012-12-01

    The operation of advanced chromatographic systems, namely comprehensive two-dimensional (2D) chromatography coupled to multidimensional detectors, allows achieving a great deal of data that need special care to be processed in order to characterize and quantify as much as possible the analytes under study. The aim of this review is to identify the main trends, research needs and gaps on the techniques for data processing of multidimensional data sets obtained from comprehensive 2D chromatography. The following topics have been identified as the most promising for new developments in the near future: data acquisition and handling, peak detection and quantification, measurement of overlapping of 2D peaks, and data analysis software for 2D chromatography. The rational supporting most of the data processing techniques is based on the generalization of one-dimensional (1D) chromatography although algorithms, such as the inverted watershed algorithm, use the 2D chromatographic data as such. However, for processing more complex N-way data there is a need for using more sophisticated techniques. Apart from using other concepts from 1D chromatography, which have not been tested for 2D chromatography, there is still room for new improvements and developments in algorithms and software for dealing with 2D comprehensive chromatographic data.

  3. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    PubMed Central

    Grechko, Maksim; Zanni, Martin T.

    2012-01-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I′ band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I′ transition dipole vector with respect to the helix axis, our measurements indicate that the amide I′ vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine. PMID:23163364

  4. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  5. Evaluation of the causes of inundation in a repeatedly flooded zone in the city of Cheongju, Korea, using a 1D/2D model.

    PubMed

    Park, In-Hyeok; Lee, Jeong-Yong; Lee, Ji-Heon; Ha, Sung-Ryong

    2014-01-01

    Currently, unprecedented levels of damage arising from major weather events have been experienced in a number of major cities worldwide. Furthermore, the frequency and the scale of these disasters appear to be increasing and this is viewed by some as tangible proof of climate change. In the urbanized areas sewer overflows and resulting inundation are attributed to the conversion of previous surfaces into impervious surfaces, resulting in increased volumes of runoff which exceed the capacity of sewer systems and in particular combined sewer systems. In this study, the characteristics of sewer overflows and inundation have been analyzed in a repeatedly flooded zone in the city of Cheongju in Korea. This included an assessment of inundation in a 50-year storm event with total rainfall of 165 mm. A detailed XP-SWMM 2D model was assembled and run to simulate the interaction of the sewage system overflows and surface inundation to determine if inundation is due to hydraulic capacity limitations in the sewers or limitations in surface inlet capacities or a combination of both. Calibration was undertaken using observation at three locations (PT #1, PT #2, PT #3) within the study area. In the case of the subsurface flow calibration, R(2) value of 0.91 and 0.78 respectively were achieved at PT #1 and PT #2. Extremely good agreement between observed and predicted surface flow depths was achieved also at PT #1 and PT #2. However, at PT #3 the predicted flow depth was 4 cm lower than the observed depth, which was attributed to the impact of buildings on the local flow distribution. Areas subject to flooding were classified as either Type A (due to insufficient hydraulic capacity of a sewer), Type B (which is an area without flooding notwithstanding insufficient hydraulic capacity of a sewer) or Type C (due to inlet limitations, i.e. there is hydraulic capacity in a sewer which is not utilized). In the total flooded zone, 24% was classified as Type A (10.2 ha) and 25% was

  6. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 17. Characterization of Poly(10-((4-Cyano-4’-Biphenyl)oxy) decanyl Vinyl Ether)s by 1-D and 2-D H-NMR Spectroscopy

    DTIC Science & Technology

    1991-10-30

    Spectroscopy by Virril Percec and Myongsoo Lee Department of Macromolecular Science Case Western Reserve University Cleveland, OH 44106-2699 and Peter L ...AUTHOrZ(S) Virgil Percec, Myongsoo Lee, Peter L . Rinaldi and Vincent E. Litman l3a TYPE OF REPORT 1131) TIME COVERED 14. DATE OF REPORT (Year. Afot? Dy I...with CF3SO 3 H/S(CH 3)2 in CH2Cl2 at 0OC and termninated by ammoniacal methanol, by 1 -D and 2-D (COSY) 300 MHz IH-NMR spectroscopy is presented. The

  7. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  8. Difference between fracture of thin brittle sheets and two-dimensional fracture.

    PubMed

    Aström, J A

    2009-10-01

    Recently there has been some suggestions that fragmentation of thin brittle sheets is qualitatively different from pure two-dimensional fragmentation. The obvious reason for such a discrepancy is the possibility of the sheet to deform out of plane. There is a generic crack-branching mechanism that creates power-law fragment size distribution in the small fragment range for two-dimensional (2D) and three-dimensional bulk fragmentation with the power exponent (2D-1)/D. For thin sheets, the power exponent seems to be close to 1.2 which differs from the D=2 exponent 1.5. In order to make a distinct separation between sheet and 2D fragmentation, high-resolution fragment size distributions are required for fragmentation models with minimal differencies other than dimensionality. Here a very efficient numerical model which can be switched from 2D fragmentation to out-of-plane sheet fragmentation with minimal changes is used to produce high-resolution fragment size distribution for the two cases. The model results cast some doubt on the existence of separate universality classes for sheet and 2D fragmentation.

  9. Difference between fracture of thin brittle sheets and two-dimensional fracture

    NASA Astrophysics Data System (ADS)

    Åström, J. A.

    2009-10-01

    Recently there has been some suggestions that fragmentation of thin brittle sheets is qualitatively different from pure two-dimensional fragmentation. The obvious reason for such a discrepancy is the possibility of the sheet to deform out of plane. There is a generic crack-branching mechanism that creates power-law fragment size distribution in the small fragment range for two-dimensional (2D) and three-dimensional bulk fragmentation with the power exponent (2D-1)/D . For thin sheets, the power exponent seems to be close to 1.2 which differs from the D=2 exponent 1.5. In order to make a distinct separation between sheet and 2D fragmentation, high-resolution fragment size distributions are required for fragmentation models with minimal differencies other than dimensionality. Here a very efficient numerical model which can be switched from 2D fragmentation to out-of-plane sheet fragmentation with minimal changes is used to produce high-resolution fragment size distribution for the two cases. The model results cast some doubt on the existence of separate universality classes for sheet and 2D fragmentation.

  10. Rationally synthesized two-dimensional polymers.

    PubMed

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  11. Rationally synthesized two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Colson, John W.; Dichtel, William R.

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  12. No-hair conjecture in two-dimensional dilaton supergravity

    NASA Astrophysics Data System (ADS)

    Gamboa, J.; Georgelin, Y.

    1993-11-01

    We study two-dimensional (2D) dilaton gravity and supergravity following Hamiltonian methods. First, we consider the structure of constraints of 2D dilaton gravity, and then the 2D dilaton supergravity theory is obtained taking the square root of the bosonic constraints. We integrate exactly the equations of motion in both cases, and we show that the solutions of the equation of motion of 2D dilaton supergravity differ from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables; i.e., the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the two-dimensional analogue of the no-hair theorem for supergravity.

  13. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei

    2016-10-01

    Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.

  14. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates.

    PubMed

    Wu, Zhan; Zhang, Long; Sun, Wei; Xu, Xiao-Tian; Wang, Bao-Zong; Ji, Si-Cong; Deng, Youjin; Chen, Shuai; Liu, Xiong-Jun; Pan, Jian-Wei

    2016-10-07

    Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.

  15. Kirigami for Two-Dimensional Electronic Membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zenan; Bahamon, Dario; Campbell, David; Park, Harold

    2015-03-01

    Two-dimensional materials have recently drawn tremendous attention because of their unique properties. In this work, we introduce the notion of two-dimensional kirigami, where concepts that have been used almost exclusively for macroscale structures are applied to dramatically enhance their stretchability. Specifically, we show using classical molecular dynamics simulations that the yield and fracture strains of graphene and MoS2 can be enhanced by about a factor of three using kirigami as compared to standard monolayers. Finally, using graphene as an example, we demonstrate that the kirigami structure may open up interesting opportunities in coupling to the electronic behavior of 2D materials. Authors acknowledge Mechanical Engineering and Physics departments at Boston University, and Mackgrafe at Mackenzie Presbyterian University.

  16. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    NASA Astrophysics Data System (ADS)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  17. Coherent Synchrotron Radiation and Space Charge for a 1-D Bunch on an Arbitrary Planar Orbit

    SciTech Connect

    Warnock, R.L.; /SLAC

    2008-01-08

    Realistic modeling of coherent synchrotron radiation (CSR) and the space charge force in single-pass systems and rings usually requires at least a two-dimensional (2-D) description of the charge/current density of the bunch. Since that leads to costly computations, one often resorts to a 1-D model of the bunch for first explorations. This paper provides several improvements to previous 1-D theories, eliminating unnecessary approximations and physical restrictions.

  18. Two-dimensional relativistic space charge limited current flow in the drift space

    SciTech Connect

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  19. Superlubric-pinned Aubry transition of two dimensional monolayers in optical lattices

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Manini, Nicola; Tosatti, Erio

    Two-dimensional (2D) crystalline colloidal monolayers sliding over a laser-induced optical lattice ``corrugation'' potential emulate friction between ideal crystal surfaces. Static friction is always present when the monolayer and the optical lattices are commensurate, but when they are incommensurate the presence or absence of static friction depends upon the system parameters. In 1D, at the Aubry dynamical phase transition the static friction goes continuously from zero (superlubricity) to finite as the periodic corrugation strength is increased. We look for the Aubry-like transition in the more realistic 2D case of a monolayer in an incommensurate periodic potential using molecular dynamics simulations. Results confirm a clear and sharp 2D superlubric-pinned transition upon increasing corrugation strength. Unlike the 1D Aubry transition which is continuous, the 2D transition is first-order, with a jump of static friction. At the 2D Aubry transition there is no change of symmetry, a sudden rise of the colloid-colloid interaction energy, and a compensating drop of the colloid-corrugation energy. The observability of the superlubric-pinned colloid transition is proposed and discussed. This work has been supported by ERC Advanced Grant N. 320796 MODPHYSFRICT.

  20. Spatially resolved two-dimensional Fourier transform electron spin resonance

    NASA Astrophysics Data System (ADS)

    Ewert, Uwe; Crepeau, Richard H.; Lee, Sanghyuk; Dunnam, Curt R.; Xu, Dajiang; Freed, Jack H.

    1991-09-01

    Fourier transform ESR methods have been extended to permit spatially resolved two-dimensional (2D)-ESR experiments. This is illustrated for the case of 2D-electron-electron double resonance (2D-ELDOR) spectra of nitroxides in a liquid that exhibits appreciable cross-peaks due to Heisenberg spin exchange. The use of spin-echo decays in spatially resolved FT-ESR is also demonstrated.

  1. Predicting Two-Dimensional Silicon Carbide Monolayers.

    PubMed

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  2. Parrondo Games with Two-Dimensional Spatial Dependence

    NASA Astrophysics Data System (ADS)

    Ethier, S. N.; Lee, Jiyeon

    Parrondo games with one-dimensional (1D) spatial dependence were introduced by Toral and extended to the two-dimensional (2D) setting by Mihailović and Rajković. MN players are arranged in an M × N array. There are three games, the fair, spatially independent game A, the spatially dependent game B, and game C, which is a random mixture or non-random pattern of games A and B. Of interest is μB (or μC), the mean profit per turn at equilibrium to the set of MN players playing game B (or game C). Game A is fair, so if μB ≤ 0 and μC > 0, then we say the Parrondo effect is present. We obtain a strong law of large numbers (SLLN) and a central limit theorem (CLT) for the sequence of profits of the set of MN players playing game B (or game C). The mean and variance parameters are computable for small arrays and can be simulated otherwise. The SLLN justifies the use of simulation to estimate the mean. The CLT permits evaluation of the standard error of a simulated estimate. We investigate the presence of the Parrondo effect for both small arrays and large ones. One of the findings of Mihailović and Rajković was that “capital evolution depends to a large degree on the lattice size.” We provide evidence that this conclusion is partly incorrect. A paradoxical feature of the 2D game B that does not appear in the 1D setting is that, for fixed M and N, the mean function μB is not necessarily a monotone function of its parameters.

  3. Dynamics of two-dimensional and quasi-two-dimensional polymers

    NASA Astrophysics Data System (ADS)

    Sung, Bong June; Yethiraj, Arun

    2013-06-01

    The dynamic properties of dense two-dimensional (2D) polymer melts are studied using discontinuous molecular dynamics simulations. Both strictly 2D and quasi-2D systems are investigated. The strictly 2D model system consists of a fluid of freely jointed tangent hard disc chains. The translational diffusion coefficient, D, is strongly system size dependent with D ˜ ln L where L is the linear dimension of the square simulation cell. The rotational correlation time, τrot, is, however, independent of system size. The dynamics is consistent with Rouse behavior with D/ln L ˜ N-1 and τrot ˜ N2 for all area fractions. Analysis of the intermediate scattering function, Fs(k, t), shows that the dynamics becomes slow for N = 256 and the area fraction of 0.454 and that there might be a glass transition for long polymers at sufficiently high area fractions. The polymer mobility is not correlated with the conformation of the molecules. In the quasi-2D system hard sphere chains are confined between corrugated surfaces so that chains cannot go over each other or into the surfaces. The conformational properties are identical to the 2D case, but D and τrot are independent of system size. The scaling of D and τrot with N is similar to that of strictly 2D systems. The simulations suggest that 2D polymers are never entangled and follow Rouse dynamics at all densities.

  4. Cloaking two-dimensional fermions

    SciTech Connect

    Lin, De-Hone

    2011-09-15

    A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.

  5. Fast two-dimensional model

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglass, Anne R.; Stolarski, Richard S.; Guthrie, Paul D.; Thompson, A. M.

    1990-01-01

    A two dimensional (altitude and latitude) model of the atmosphere is used to investigate problems relating to the variability of the dynamics and temperature of the atmosphere on the ozone distribution, solar cycle variations of atmospheric constituents, the sensitivity of model results to tropospheric trace gas sources, and assessment computations of changes in ozone related to manmade influences. In a comparison between two dimensional model results in which the odd nitrogen family was transported together and model results in which the odd nitrogen species was transported separately, it was found that the family approximations are adequate for perturbation scenario calculations.

  6. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning.

    PubMed

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  7. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning

    PubMed Central

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  8. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  9. Quasi-one-dimensional solutions and their interaction with two-dimensional dissipative solitons

    NASA Astrophysics Data System (ADS)

    Descalzi, Orazio; Brand, Helmut R.

    2013-02-01

    We describe the stable existence of quasi-one-dimensional solutions of the two-dimensional cubic-quintic complex Ginzburg-Landau equation for a large range of the bifurcation parameter. By quasi-one-dimensional (quasi-1D) in the present context, we mean solutions of fixed shape in one spatial dimension that are simultaneously fully extended and space filling in a second direction. This class of stable solutions arises for parameter values for which simultaneously other classes of solutions are at least locally stable: the zero solution, 2D fixed shape dissipative solitons, or 2D azimuthally symmetric or asymmetric exploding dissipative solitons. We show that quasi-1D solutions can form stable compound states with 2D stationary dissipative solitons or with azimuthally symmetric exploding dissipative solitons. In addition, we find stable breathing quasi-1D solutions near the transition to collapse. The analogy of several features of the work presented here to recent experimental results on convection by Miranda and Burguete [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.78.046305 78, 046305 (2008); Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.79.046201 79, 046201 (2009)] is elucidated.

  10. Quasi-one-dimensional solutions and their interaction with two-dimensional dissipative solitons.

    PubMed

    Descalzi, Orazio; Brand, Helmut R

    2013-02-01

    We describe the stable existence of quasi-one-dimensional solutions of the two-dimensional cubic-quintic complex Ginzburg-Landau equation for a large range of the bifurcation parameter. By quasi-one-dimensional (quasi-1D) in the present context, we mean solutions of fixed shape in one spatial dimension that are simultaneously fully extended and space filling in a second direction. This class of stable solutions arises for parameter values for which simultaneously other classes of solutions are at least locally stable: the zero solution, 2D fixed shape dissipative solitons, or 2D azimuthally symmetric or asymmetric exploding dissipative solitons. We show that quasi-1D solutions can form stable compound states with 2D stationary dissipative solitons or with azimuthally symmetric exploding dissipative solitons. In addition, we find stable breathing quasi-1D solutions near the transition to collapse. The analogy of several features of the work presented here to recent experimental results on convection by Miranda and Burguete [Phys. Rev. E 78, 046305 (2008); Phys. Rev. E 79, 046201 (2009)] is elucidated.

  11. Polaritons in layered two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Low, Tony; Chaves, Andrey; Caldwell, Joshua D.; Kumar, Anshuman; Fang, Nicholas X.; Avouris, Phaedon; Heinz, Tony F.; Guinea, Francisco; Martin-Moreno, Luis; Koppens, Frank

    2016-11-01

    In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

  12. Buckled two-dimensional Xene sheets

    NASA Astrophysics Data System (ADS)

    Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji

    2017-01-01

    Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice -- similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.

  13. Polaritons in layered two-dimensional materials.

    PubMed

    Low, Tony; Chaves, Andrey; Caldwell, Joshua D; Kumar, Anshuman; Fang, Nicholas X; Avouris, Phaedon; Heinz, Tony F; Guinea, Francisco; Martin-Moreno, Luis; Koppens, Frank

    2017-02-01

    In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

  14. Two-dimensional atomic crystals beyond graphene

    NASA Astrophysics Data System (ADS)

    Kaul, Anupama B.

    2014-06-01

    Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.

  15. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  16. Two dimensional discriminant neighborhood preserving embedding in face recognition

    NASA Astrophysics Data System (ADS)

    Pang, Meng; Jiang, Jifeng; Lin, Chuang; Wang, Binghui

    2015-03-01

    One of the key issues of face recognition is to extract the features of face images. In this paper, we propose a novel method, named two-dimensional discriminant neighborhood preserving embedding (2DDNPE), for image feature extraction and face recognition. 2DDNPE benefits from four techniques, i.e., neighborhood preserving embedding (NPE), locality preserving projection (LPP), image based projection and Fisher criterion. Firstly, NPE and LPP are two popular manifold learning techniques which can optimally preserve the local geometry structures of the original samples from different angles. Secondly, image based projection enables us to directly extract the optimal projection vectors from twodimensional image matrices rather than vectors, which avoids the small sample size problem as well as reserves useful structural information embedded in the original images. Finally, the Fisher criterion applied in 2DDNPE can boost face recognition rates by minimizing the within-class distance, while maximizing the between-class distance. To evaluate the performance of 2DDNPE, several experiments are conducted on the ORL and Yale face datasets. The results corroborate that 2DDNPE outperforms the existing 1D feature extraction methods, such as NPE, LPP, LDA and PCA across all experiments with respect to recognition rate and training time. 2DDNPE also delivers consistently promising results compared with other competing 2D methods such as 2DNPP, 2DLPP, 2DLDA and 2DPCA.

  17. Two-dimensional thermofield bosonization

    SciTech Connect

    Amaral, R.L.P.G.

    2005-12-15

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized.

  18. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  19. Two dimensional unstable scar statistics.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  20. Two-Dimensional Vernier Scale

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  1. Two-Dimensional Potential Flows

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred; Tollmien, W.

    1949-01-01

    Contents include the following: Characteristic differential equations - initial and boundary conditions. Integration of the second characteristic differential equations. Direct application of Meyer's characteristic hodograph table for construction of two-dimensional potential flows. Prandtl-Busemann method. Development of the pressure variation for small deflection angles. Numerical table: relation between deflection, pressure, velocity, mach number and mach angle for isentropic changes of state according to Prandtl-Meyer for air (k = 1.405). References.

  2. Multi-Dark Soliton Solutions of the Two-Dimensional Multi-Component Yajima-Oikawa Systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-03-01

    We present a general form of multi-dark soliton solutions of two-dimensional (2D) multi-component soliton systems. Multi-dark soliton solutions of the 2D and 1D multi-component Yajima-Oikawa (YO) systems, which are often called the 2D and 1D multi-component long wave-short wave resonance interaction systems, are studied in detail. Taking the 2D coupled YO system with two short wave and one long wave components as an example, we derive the general N-dark-dark soliton solution in both the Gram type and Wronski type determinant forms for the 2D coupled YO system via the KP hierarchy reduction method. By imposing certain constraint conditions, the general N-dark-dark soliton solution of the 1D coupled YO system is further obtained. The dynamics of one dark-dark and two dark-dark solitons are analyzed in detail. In contrast with bright-bright soliton collisions, it is shown that dark-dark soliton collisions are elastic and there is no energy exchange among solitons in different components. Moreover, the dark-dark soliton bound states including the stationary and moving ones are discussed. For the stationary case, the bound states exist up to arbitrary order, whereas, for the moving case, only the two-soliton bound state is possible under the condition that the coefficients of nonlinear terms have opposite signs.

  3. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy.

  4. Photodetectors based on two dimensional materials

    NASA Astrophysics Data System (ADS)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  5. Seismic isolation of two dimensional periodic foundations

    SciTech Connect

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  6. Physical Mechanisms of Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    2004-03-01

    Turbulence has slowly yielded its mysteries through over 100 years of persistent effort. Recently experimental techniques and computation power have reached the stage where significant progress has been made on this very challenging problem. Two dimensional turbulence offers some real advantages in terms of reduced degrees of freedom such that the problem can now be thoroughly explored from many perspectives. Further, two-dimensional turbulence exhibits the basic phenomena of direct-enstrophy and inverse-energy cascades thought to apply to oceanic and atmospheric systems. We have investigated the properties of turbulence in two spatial dimensions using experimental measurements of the grid turbulence in a flowing soap film^1 and of the electromagnetically-forced turbulence in a thin salt layer floating on a dense immiscible fluid underlayer. We have also explored 2D turbulence using several different direct numerical simulations of homogeneous, isotropic turbulence in a periodic box^2. The data for both consist of high resolution fields of velocity; some are statistically independent sets and others are temporally resolved for dynamics. From this data we construct conventional Eulerian statistics, directly measure energy and enstrophy transfer^1, identify coherent structures in the flow, determine Lagrangian quantities, and calculate stretching fields. This comprehensive experimental and numerical characterization elucidates the physical mechanisms of two-dimensional turbulence. ^1 M.K. Rivera, W.B. Daniel and R.E. Ecke, Phys. Rev. Lett. 90, 104502 (2003). ^2 S. Chen, R.E. Ecke, G. Eyink, X. Wang, and Z. Xiao, Phys. Rev. Lett. 91, 214501 (2003).

  7. Two-dimensional soft nanomaterials: a fascinating world of materials.

    PubMed

    Zhuang, Xiaodong; Mai, Yiyong; Wu, Dongqing; Zhang, Fan; Feng, Xinliang

    2015-01-21

    The discovery of graphene has triggered great interest in two-dimensional (2D) nanomaterials for scientists in chemistry, physics, materials science, and related areas. In the family of newly developed 2D nanostructured materials, 2D soft nanomaterials, including graphene, Bx Cy Nz nanosheets, 2D polymers, covalent organic frameworks (COFs), and 2D supramolecular organic nanostructures, possess great advantages in light-weight, structural control and flexibility, diversity of fabrication approaches, and so on. These merits offer 2D soft nanomaterials a wide range of potential applications, such as in optoelectronics, membranes, energy storage and conversion, catalysis, sensing, biotechnology, etc. This review article provides an overview of the development of 2D soft nanomaterials, with special highlights on the basic concepts, molecular design principles, and primary synthesis approaches in the context.

  8. Two-dimensional heterostructures: fabrication, characterization, and application

    DOE PAGES

    Wang, Hong; Liu, Fucai; Fu, Wei; ...

    2014-08-13

    Two-dimensional (2D) materials such as graphene, hexagonal boron nitrides (hBN), and transition metal dichalcogenides (TMDs, e.g., MoS2) have attracted considerable attention in the past few years because of their novel properties and versatile potential applications. These 2D layers can be integrated into a monolayer (lateral 2D heterostructure) or a multilayer stack (vertical 2D heterostructure). The resulting artificial 2D structures provide access to new properties and applications beyond their component 2D atomic crystals and hence, they are emerging as a new exciting field of research. Lastly, in this article, we review recent progress on the fabrication, characterization, and applications of variousmore » 2D heterostructures.« less

  9. Two-dimensional heterostructures: fabrication, characterization, and application

    SciTech Connect

    Wang, Hong; Liu, Fucai; Fu, Wei; Fang, Zheyu; Zhou, Wu; Liu, Zheng

    2014-08-13

    Two-dimensional (2D) materials such as graphene, hexagonal boron nitrides (hBN), and transition metal dichalcogenides (TMDs, e.g., MoS2) have attracted considerable attention in the past few years because of their novel properties and versatile potential applications. These 2D layers can be integrated into a monolayer (lateral 2D heterostructure) or a multilayer stack (vertical 2D heterostructure). The resulting artificial 2D structures provide access to new properties and applications beyond their component 2D atomic crystals and hence, they are emerging as a new exciting field of research. Lastly, in this article, we review recent progress on the fabrication, characterization, and applications of various 2D heterostructures.

  10. Molecular assembly on two-dimensional materials.

    PubMed

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-24

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule-substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging from

  11. Molecular assembly on two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  12. Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Ju, Long

    a charge transfer process between graphene and BN when the exposure of visible light is introduced. We show this photo-induced doping in graphene resembles the modulation doping technique in traditional semiconductor heterojunctions, where a charge doping is introduced while the high mobility is maintained. This work reveals importance of interactions between stacked 2D materials on the overall properties and demonstrate a repeatable and convenient way of fabricating high quality graphene devices with active control of doping patterning. Along this direction, we did further STM experiment to visualize and manipulate charged defects in boron nitride with the help of graphene. The last theme is about the interesting properties of bilayer graphene, which is to some extent more interesting than monolayer graphene due to its electric-field dependent band structures. Firstly, we visualized the stacking boundary within exfoliated bilayer graphene by near field infrared microscopy. In dual-gated field-effect-transistor devices fabricated on the boundaries, we demonstrated the existence of topologically protected one dimensional conducting channels at the boundary through electric transport measurement. The 1D boundary states also demonstrated the first graphene-based valleytronic device. The topics we are going to talk about in this thesis are quite diversified. Just like the versatile nature of optical spectroscopy, we never limit ourself to a specific technique and do incremental things. Most of the experiments are driven by the important and interesting problems in the two dimensional materials field and we chose the right tool and conceive the right experiment to answer that question. Both pure optical methods and combinations with electric transport and STM measurements were used. I believe the flexibility of optical spectroscopy and its compatibility with other experimental techniques provide a powerful toolbox to explore many possibilities beyond the reach of a

  13. Two-dimensional swimming behavior of bacteria

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel; Wu, Yilin

    Many bacteria swim by flagella motility which is essential for bacterial dispersal, chemotaxis, and pathogenesis. Here we combined single-cell tracking, theoretical analysis, and computational modeling to investigate two-dimensional swimming behavior of a well-characterized flagellated bacterium Bacillus subtilis at the single-cell level. We quantified the 2D motion pattern of B. subtilis in confined space and studied how cells interact with each other. Our findings shed light on bacterial colonization in confined environments, and will serve as the ground for building more accurate models to understand bacterial collective motion. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: ylwu@phy.cuhk.edu.hk.

  14. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  15. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  16. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  17. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  18. Surface chemistry and catalysis confined under two-dimensional materials.

    PubMed

    Fu, Qiang; Bao, Xinhe

    2016-10-07

    Two-dimensional (2D) materials are characterised by their strong intraplanar bonding but weak interplanar interaction. Interfaces between neighboring 2D layers or between 2D overlayers and substrate surfaces provide intriguing confined spaces for chemical processes, which have stimulated a new area of "chemistry under 2D cover". In particular, well-defined 2D material overlayers such as graphene, hexagonal boron nitride, and transition metal dichalcogenides have been deposited on solid surfaces, which can be used as model systems to understand the new chemistry. In the present review, we first show that many atoms and molecules can intercalate ultrathin 2D materials supported on solid surfaces and the space under the 2D overlayers has been regarded as a 2D nanocontainer. Moreover, chemical reactions such as catalytic reactions, surface adlayer growth, chemical vapor deposition, and electrochemical reactions occur in the 2D confined spaces, which further act as 2D nanoreactors. It has been demonstrated that surface chemistry and catalysis are strongly modulated by the 2D covers, resulting in weakened molecule adsorption and enhanced surface reactions. Finally, we conclude that the confinement effect of the 2D cover leads to new chemistry in a small space, such as "catalysis under cover" and "electrochemistry under cover". These new concepts enable us to design advanced nanocatalysts encapsulated with 2D material shells which may present improved performance in many important processes of heterogeneous catalysis, electrochemistry, and energy conversion.

  19. Two-Dimensional Colloidal Alloys

    NASA Astrophysics Data System (ADS)

    Law, Adam D.; Buzza, D. Martin A.; Horozov, Tommy S.

    2011-03-01

    We study the structure of mixed monolayers of large (3μm diameter) and small (1μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  20. Two-dimensional colloidal alloys.

    PubMed

    Law, Adam D; Buzza, D Martin A; Horozov, Tommy S

    2011-03-25

    We study the structure of mixed monolayers of large (3 μm diameter) and small (1 μm diameter) very hydrophobic silica particles at an octane-water interface as a function of the number fraction of small particles ξ. We find that a rich variety of two-dimensional hexagonal super-lattices of large (A) and small (B) particles can be obtained in this system due to strong and long-range electrostatic repulsions through the nonpolar octane phase. The structures obtained for the different compositions are in good agreement with zero temperature calculations and finite temperature computer simulations.

  1. Two-dimensional material confined water.

    PubMed

    Li, Qiang; Song, Jie; Besenbacher, Flemming; Dong, Mingdong

    2015-01-20

    CONSPECTUS: The interface between water and other materials under ambient conditions is of fundamental importance due to its relevance in daily life and a broad range of scientific research. The structural and dynamic properties of water at an interface have been proven to be significantly difference than those of bulk water. However, the exact nature of these interfacial water adlayers at ambient conditions is still under debate. Recent scanning probe microscopy (SPM) experiments, where two-dimensional (2D) materials as ultrathin coatings are utilized to assist the visualization of interfacial water adlayers, have made remarkable progress on interfacial water and started to clarify some of these fundamental scientific questions. In this Account, we review the recently conducted research exploring the properties of confined water between 2D materials and various surfaces under ambient conditions. Initially, we review the earlier studies of water adsorbed on hydrophilic substrates under ambient conditions in the absence of 2D coating materials, which shows the direct microscopic results. Subsequently, we focus on the studies of water adlayer growth at both hydrophilic and hydrophobic substrates in the presence of 2D coating materials. Ice-like water adlayers confined between hydrophobic graphene and hydrophilic substrates can be directly observed in detail by SPM. It was found that the packing structure of the water adlayer was determined by the hydrophilic substrates, while the orientation of intercalation water domains was directed by the graphene coating. In contrast to hydrophilic substrates, liquid-like nanodroplets confined between hydrophobic graphene and hydrophobic substrates appear close to step edges and atomic-scale surface defects, indicating that atomic-scale surface defects play significant roles in determining the adsorption of water on hydrophobic substrates. In addition, we also review the phenomena of confined water between 2D hydrophilic MoS2 and

  2. Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K

    SciTech Connect

    Rancova, Olga; Abramavicius, Darius; Jankowiak, Ryszard

    2015-06-07

    Two-dimensional (2D) electronic spectroscopy at cryogenic and room temperatures reveals excitation energy relaxation and transport, as well as vibrational dynamics, in molecular systems. These phenomena are related to the spectral densities of nuclear degrees of freedom, which are directly accessible by means of hole burning and fluorescence line narrowing approaches at low temperatures (few K). The 2D spectroscopy, in principle, should reveal more details about the fluctuating environment than the 1D approaches due to peak extension into extra dimension. By studying the spectral line shapes of a dimeric aggregate at low temperature, we demonstrate that 2D spectra have the potential to reveal the fluctuation spectral densities for different electronic states, the interstate correlation of static disorder and, finally, the time scales of spectral diffusion with high resolution.

  3. Effect of solvent evaporation temperature on the structure of two-dimensional melamine networks on Au(111)

    NASA Astrophysics Data System (ADS)

    Okada, Arifumi; Nakata, Yohei; Minou, Kosuke; Yoshimura, Masamichi; Kadono, Kohei

    2016-12-01

    By scanning tunneling microscopy (STM), we investigated two-dimensional (2D) structures of melamine formed on Au(111) surfaces by solvent evaporation. By increasing the evaporation temperature, the well-known ordered honeycomb 2D molecular phase, in which all molecules are linked by hydrogen bonding, changes to four coexisting phases, i.e., a 2D network consisting of linear segments, 1D molecular rows, and hexagonal and distorted hexagonal structures. The first two phases are sometimes observed in ultrahigh vacuum (UHV) on metallic substrates other than Au. The last two phases have lattice parameters close to those of the well-known honeycomb structure. The structural change observed in this study is attributed to local temperature and concentration distributions of the solution and substrate surface during solvent evaporation. From the results, we found that the molecular nanostructures can be tailored by the solvent evaporation method with small changes in temperature.

  4. Experimental study on interface region of two-dimensional Si layers by forming gas annealing

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Suzuki, Yuhya; Kikuchi, Reika; Suzuki, Ayaka; Inoue, Ryohsuke; Yamanaka, Masahiro; Yokoyama, Miki; Nagamine, Yoshiki; Aoki, Takashi; Maeda, Tatsuro

    2016-04-01

    We experimentally studied the SiO2/Si and Si/buried oxide (BOX) interface regions of a two-dimensional (2D) Si layer, by forming gas annealing (FGA). A photoluminescence (PL) result measured at various lattice temperature, T L, values shows that the PL intensity I PL of the 2D-Si layer rapidly increases and then saturates with increasing FGA temperature, T A, and time, t A. I PL also increases with decreasing T L. A one-dimensional (1D) Schroedinger equation simulator indicates that some of the electrons in the 2D-Si layer generated by a PL excitation laser are quantum-mechanically transmitted into Si interface regions. Actually, we experimentally confirmed that the PL spectra of the 2D-Si layer can be fitted by the PL emission from two regions with different PL peak photon energy values, E PH, which consist of a typical 2D-Si and the interface regions of both the surface SiO2/Si and Si/BOX. Thus, this forming gas dependence is probably attributable to the improved lifetime τ of electrons in the surface interface region, because the Si surface is terminated by H atoms. Moreover, the E PH of the interface region is higher than that of the 2D-Si layer, because of the graded increased bandgap in the interface regions. However, the E PH of 2D-Si is independent of both T A and T L, and this T L independence does not agree with that of a 3D-Si layer. Consequently, we experimentally verified the larger impact of the Si interface on the performance of 2D-Si layer.

  5. Mode competition and mode control in free electron lasers with one and two dimensional Bragg resonators

    SciTech Connect

    Yu, P.N.; Ginzburg, N.S.; Sergeev, A.S.

    1995-12-31

    In the report we present a time domain approach to the theory of FELs with one and two dimensional Bragg resonators. It is demonstrated that traditional 1-D Bragg resonators provide possibilities for effective longitudinal mode control. In particular, simulation of the FEL realized in the joint experiment of JINR (Dybna) and IAP (N. Novgord) confirms achievement of the single mode operating regime with high efficiency of about 20%. However, 1-D Bragg resonators lose their selectivity as the transverse size of the system is increased. We simulate mode competition in FELs with coaxial 1-D Bragg resonators and observe a progressively more complicated azimuthal mode competition pattern as the perimeter of the resonator is increased. At the same time, using 2-D Bragg resonators for the same electron beam and microwave system perimeter gives very fast establishment of the single frequency regime with an azimuthally symmetric operating mode. Therefore, FELs utilising 2-D Bragg resonators with coaxial and planar geometry may be considered as attractive sources of high power spatially coherent radiation in the mm and sub-mm wave bands.

  6. Developing Sediment Transport and Dredging Prediction Model of Ohio River at Olmsted Locks and Dams Area using HEC-RAS (1D/2D)By Ganesh Raj Ghimire1 and Bruce A. Devantier 2

    NASA Astrophysics Data System (ADS)

    Ghimire, G. R.

    2015-12-01

    Sediment deposition is a serious issue in the construction and operation of large reservoir and inland navigation projects in the United States and around the world. Olmsted Locks and Dams in the Ohio River navigation system is facing similar challenges of huge sediment deposition during the ongoing in-wet construction methodology since 1993. HEC-RAS 5.0 integrated with ArcGIS, will be used to yield unsteady 2D hydrodynamic model of Ohio River at Olmsted area. Velocity, suspended sediment, bed sediment and hydrographic survey data acquired from public archives of USGS and USACE Louisville District will be input into the model. Calibration and validation of model will be performed against the measured stage, flow and velocity data. It will be subjected to completely unsteady 1D sediment transport modeling new to HEC-RAS 5.0 which incorporates sediment load and bed gradation via a DSS file, commercial dredging and BSTEM model. Sediment model will be calibrated to replicate the historical bed volume changes. Excavated cross-sections at Olmsted area will also be used to predict the sediment volume trapped inside the ditch over the period between excavations and placement of dam shells at site. Model will attempt to replicate historical dredging volume data and compare with the deposition volume from simulation model to formulate the dredging prediction model. Hence, the results of this research will generate a model that can form a basis for scheduling the dredging event prior to the placement of off-shore cast shells replacing the current as and when required approach of dredging plan. 1 Graduate Student, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603 2 Professor, Department of Civil Engineering, Southern Illinois University Carbondale Carbondale, Illinois, 62901-6603

  7. A Simple Robust Orthogonal Background Correction Method for Two-Dimensional Liquid Chromatography

    PubMed Central

    Filgueira, Marcelo R.; Castells, Cecilia; Carr, Peter W.

    2012-01-01

    Background correction is a very important step that must be done before peak detection or any quantification procedure. When successful, this step greatly simplifies such procedures and enhances the accuracy of quantification. In the past, much effort has been invested to correct drifting baseline in one dimensional chromatography. In fast online comprehensive two-dimensional liquid chromatography (LC×LC) coupled with diode array detector (DAD), the change in the refractive index (RI) of the mobile phase in very fast gradients causes extremely serious baseline disturbances. The method reported here can be combined with many of existing baseline correction methods for one dimensional (1D) chromatography in two dimensional (2D) liquid chromatography and recreate the background structure for further correction. When such methods are applied orthogonally to the second dimension (2D), the background correction is dramatically improved. It results in an almost zero mean background level and it provides better background correction than does a simple subtraction of a blank. Indeed, the method proposed does not require running a blank sample. PMID:22702415

  8. Ultrafast two dimensional infrared chemical exchange spectroscopy

    NASA Astrophysics Data System (ADS)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  9. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  10. Elastic models of defects in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.

    2014-12-01

    Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.

  11. Melting behavior of single two-dimensional crystal

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Grieve, R.

    2006-02-01

    In an experimental system millimeter-sized steel balls repel each other through the Coulomb force to imitate a two-dimensional (2D) atomic lattice in a vacuum both topologically and dynamically. Care has been taken to avoid the formation of grain boundaries. This 2D single crystal melts into a liquid via the hexatic state consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young scenario. Initially in the melting process defects of the 2D lattice tend to emerge from the edge of the crystal. These defects are found to be close to the liquid state according to the Lindemann and Born criteria, confirming the idea of edge melting.

  12. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  13. Parallel Stitching of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Lin, Yuxuan; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing; Department of Electrical Engineering; Computer Science, Massachusetts Institute of Technology Team

    Large scale integration of atomically thin metals (e.g. graphene), semiconductors (e.g. transition metal dichalcogenides (TMDs)), and insulators (e.g. hexagonal boron nitride) is critical for constructing the building blocks for future nanoelectronics and nanophotonics. However, the construction of in-plane heterostructures, especially between two atomic layers with large lattice mismatch, could be extremely difficult due to the strict requirement of spatial precision and the lack of a selective etching method. Here, we developed a general synthesis methodology to achieve both vertical and in-plane ``parallel stitched'' heterostructures between a two-dimensional (2D) and TMD materials, which enables both multifunctional electronic/optoelectronic devices and their large scale integration. This is achieved via selective ``sowing'' of aromatic molecule seeds during the chemical vapor deposition growth. MoS2 is used as a model system to form heterostructures with diverse other 2D materials. Direct and controllable synthesis of large-scale parallel stitched graphene-MoS2 heterostructures was further investigated. Unique nanometer overlapped junctions were obtained at the parallel stitched interface, which are highly desirable both as metal-semiconductor contact and functional devices/systems, such as for use in logical integrated circuits (ICs) and broadband photodetectors.

  14. Two-dimensional quantum repeaters

    NASA Astrophysics Data System (ADS)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  15. Two-dimensional capillary origami

    NASA Astrophysics Data System (ADS)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  16. Solution structural characterization of cyanometmyoglobin: Resonance assignment of heme cavity residues by two-dimensional NMR

    SciTech Connect

    Emerson, S.D.; La Mar, G.N. )

    1990-02-13

    Steady-state nuclear Overhauser effects (NOE), two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY), and 2D spin correlation spectroscopy (COSY) have been applied to the fully paramagnetic low-spin, cyanide-ligated complex of sperm whale ferric myoglobin to assign the majority of the heme pocket side-chain proton signals and the remainder of the heme signals. It is shown that the 2D NOESY map reveals essentially all dipolar connectivities observed in ordinary 1D NOE experiments and expected on the basis of crystal coordinates, albeit often more weakly than in a diamagnetic analogue. For extremely broad ({approximately}600-Hz) and rapidly relaxing (T{sub 1} {approximately} 3 ms) signals which show no NOESY peaks, the authors demonstrate that conventional steady-state NOEs obtained under very rapid pulsing conditions still allow detection of the critical dipolar connectivities that allow unambiguous assignments. Numerous critical COSY cross peaks between strongly hyperfine-shifted peaks were resolved and assigned. In all, 95% (53 of 56 signals) of the total proton sets within {approximately}7.5 {angstrom} of the iron, the region experiencing the strongest hyperfine shifts and paramagnetic relaxation, are now unambiguously assigned. Hence it is clear that the 2D methods can be profitably applied to paramagnetic proteins. The scope and limitations of such application are discussed. The resulting hyperfine shift pattern for the heme confirmed expectations based on model compounds.

  17. One- and two-dimensional Stirling machine simulation using experimentally generated flow turbulence models

    NASA Technical Reports Server (NTRS)

    Goldberg, Louis F.

    1990-01-01

    Investigations of one- and two-dimensional (1- or 2-D) simulations of Stirling machines centered around experimental data generated by the U. of Minnesota Mechanical Engineering Test Rig (METR) are covered. This rig was used to investigate oscillating flows about a zero mean with emphasis on laminar/turbulent flow transitions in tubes. The Space Power Demonstrator Engine (SPDE) and in particular, its heater, were the subjects of the simulations. The heater was treated as a 1- or 2-D entity in an otherwise 1-D system. The 2-D flow effects impacted the transient flow predictions in the heater itself but did not have a major impact on overall system performance. Information propagation effects may be a significant issue in the simulation (if not the performance) of high-frequency, high-pressure Stirling machines. This was investigated further by comparing a simulation against an experimentally validated analytic solution for the fluid dynamics of a transmission line. The applicability of the pressure-linking algorithm for compressible flows may be limited by characteristic number (defined as flow path information traverses per cycle); this warrants further study. Lastly the METR was simulated in 1- and 2-D. A two-parameter k-w foldback function turbulence model was developed and tested against a limited set of METR experimental data.

  18. Continuum in MDGC Technology: From Classical Multidimensional to Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Kulsing, Chadin; Nolvachai, Yada; Rawson, Paul; Evans, David J; Marriott, Philip J

    2016-04-05

    Recent advances in multidimensional gas chromatography (MDGC) comprise methods such as multiple heart-cut (H/C) analysis and comprehensive two-dimensional gas chromatography (GC × GC); however, clear approaches to evaluate the MDGC results, choice of the most appropriate method, and optimized separation remain of concern. In order to track the capability of these analytical techniques and select an effective experimental approach, a fundamental approach was developed utilizing a time summation model incorporating temperature-dependent linear solvation energy relationship (LSER). The approach allows prediction of optimized analyte distribution in the 2D space for various MDGC approaches employing different experimental variables such as column lengths, temperature programs, and stationary phase combinations in order to evaluate separation performance (apparent (1)D, (2)D, total number of separated peaks, and orthogonality) for simulated MDGC results. The methodology applied LSER to generate results for nonpolar-polar and polar-nonpolar 2D column configurations for separation of 678 compounds in an oxidized kerosene-based jet fuel sample. Three-dimensional plots were generated in order to illustrate the dependency of separation performance on (2)D column length and number of injections for different stationary phase combinations. With a given limit of analysis time, a MDGC approach to obtain an optimized total separated peak number for a particular column set was proposed depending on (1)D and (2)D analyte peak distribution. This study introduces fundamental concepts and establishes approaches to design effective GC × GC or multiple H/C systems for different column combinations, to provide the best overall separation outcomes with the highest separated peak number and/or orthogonality.

  19. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.

    PubMed

    Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong

    2014-03-01

    In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved.

  20. Discrete and infinite 1D, 2D/3D cage frameworks with inclusion of anionic species and anion-exchange reactions of Ag3L2 type receptor with tetrahedral and octahedral anions.

    PubMed

    Liu, Hong-Ke; Huang, Xiaohua; Lu, Tianhong; Wang, Xiujian; Sun, Wei-Yin; Kang, Bei-Sheng

    2008-06-28

    Complexes [PF6 subset(Ag3(titmb)2](PF6)2 (8) and {SbF6 subset[Ag3(titmb)2](SbF6)2}.H2O.1.5 CH3OH (9) are obtained by reaction of titmb and Ag+ salts with different anions (PF6(-) and SbF6(-)), and crystal structures reveal that they are both M3L2 cage complexes with short Ag...F interactions between the silver atoms and the fluorine atoms of the anions. In complex 8, a novel cage dimer is formed by weak Ag...F contacts; an unique cage tetramer formed via Ag...pi interactions (Ag...eta5-imidazole) between dimers and an infinite 1D cage chain is presented. However, each of the external non-disordered SbF6(-) anions connect with six cage 9s via Ag...F contacts, and each cage 9 in turn connects with three SbF6(-) anions to form a 2D network cage layer; and the layers are connected by pi-pi interactions to form a 3D network. The anion-exchange reactions of four Ag3L2 type complexes ([BF4 subset(Ag3(titmb)2](BF4)2 (6), [ClO4 subset(Ag3(titmb)2](ClO4)2 (7b), [PF6 subset(Ag3(titmb)2](PF6)2 (8) and [SbF6 subset(Ag3(titmb)2](SbF6)2.1.5CH3OH (9)) with tetrahedral and octahedral anions (ClO4(-), BF4(-), PF6(-) and SbF6(-)) are also reported. The anion-exchange experiments demonstrate that the anion selective order is SbF6(-) > PF6(-) > BF4(-), ClO4(-), and this anion receptor is preferred to trap octahedral and tetrahedral anions rather than linear or triangle anions; SbF6(-) is the biggest and most preferable one, so far. The dimensions of cage complexes with or without internal anions, anion-exchange reactions, cage assembly and anion inclusions, silver(I) coordination environments, Ag-F and Ag-pi interactions of Ag3L2 complexes 1-9 are discussed.

  1. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    PubMed

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  2. Emergent elemental two-dimensional materials beyond graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanbo; Rubio, Angel; Le Lay, Guy

    2017-02-01

    Two-dimensional (2D) materials may offer the ultimate scaling beyond the 5 nm gate length. The difficulty of reliably opening a band gap in graphene has led to the search for alternative, semiconducting 2D materials. Emerging classes of elemental 2D materials stand out for their compatibility with existing technologies and/or for their diverse, tunable electronic structures. Among this group, black phosphorene has recently shown superior semiconductor performances. Silicene and germanene feature Dirac-type band dispersions, much like graphene. Calculations show that most group IV and group V elements have one or more stable 2D allotropes, with properties potentially suitable for electronic and optoelectronic applications. Here, we review the advances in these fascinating elemental 2D materials and discuss progress and challenges in their applications in future opto- and nano-electronic devices.

  3. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice

    PubMed Central

    2016-01-01

    Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon–phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2. PMID:28024359

  4. Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.

    PubMed

    Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V

    2016-12-27

    Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.

  5. Two-dimensional Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  6. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  7. Two-dimensional electronic spectroscopy using incoherent light: theoretical analysis.

    PubMed

    Turner, Daniel B; Howey, Dylan J; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2013-07-25

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I((4)) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and new opportunities.

  8. 2D Magneto-Optical Trapping of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Hummon, Matthew T.; Yeo, Mark; Stuhl, Benjamin K.; Collopy, Alejandra L.; Xia, Yong; Ye, Jun

    2013-04-01

    We demonstrate one- and two-dimensional transverse laser cooling and magneto-optical trapping of the polar molecule yttrium (II) oxide (YO). In a 1D magneto-optical trap (MOT), we characterize the magneto-optical trapping force and decrease the transverse temperature by an order of magnitude, from 25 to 2 mK, limited by interaction time. In a 2D MOT, we enhance the intensity of the YO beam and reduce the transverse temperature in both transverse directions. The approach demonstrated here can be applied to many molecular species and can also be extended to 3D.

  9. Two dimensional bias correction of temperature and precipitation copulas in climate models

    NASA Astrophysics Data System (ADS)

    Piani, C.; Haerter, J. O.

    2012-12-01

    In most climate model bias-correction procedures, temperature and precipitation are corrected independently, thereby degrading the dynamical link represented within the model. We propose a methodology that advances the state-of-the-art by correcting not just the independent intensity distributions but the full two-dimensional statistical distribution of temperature and precipitation as described by the copula. To illustrate the methodology and its potential to affect copulas, it was applied to a synthetic temperature and precipitation (T&P) dataset. Figure 1a shows two histograms derived from synthetic 2D T&P datasets. The dashed color-filled contours represent the simulated T&P data histogram while the solid contours represent the observed T&P data. The distribution shown in fig. 1e is the copula extracted from the synthetic observed T&P data set used to derive the non-colored 2D histogram shown in fig. 1a. The copula extracted from the simulated data is flat. In fig 1b (1c) the simulated 2D histogram has been bias corrected using linear (high order) 1D bias corrections separately for temperature and precipitation. Inspection of fig. 1b and 1c will reveal that the simple independent bias corrections of temperature and precipitation improve the 2D histogram greatly without affecting the copula at all. In fact the copulas derived from the 2D colored histograms in fig 1b and 1c are still flat! Finally, in fig. 1d, the full 2D bias correction is applied. Figure 1f shows the copula of the corrected data from fig. 1d. Now that we have applied the full 2D bias correction developed in this study, we obtain some structure in the derived copula. To assess the effectiveness of the proposed method, it is applied to the a regional climate model output and weather station data over Germany. A standard cross-validation is performed by dividing the data into two non overlapping 10 year periods. Results show that the methodology effectively improves the temperature

  10. Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor

    DOEpatents

    Baker, Kevin

    2015-12-08

    A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.

  11. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  12. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems.

  13. Two-dimensional dynamic fluid bowtie attenuators

    PubMed Central

    Hermus, James R.; Szczykutowicz, Timothy P.

    2016-01-01

    Abstract. Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  14. Effects of pH mismatch between the two dimensions of reversed-phase×reversed-phase two-dimensional separations on second dimension separation quality for ionogenic compounds-I. Carboxylic acids.

    PubMed

    Stoll, Dwight R; O'Neill, Kelly; Harmes, David C

    2015-02-27

    Two persistent impediments to wider adoption of two-dimensional liquid chromatography (2D-LC) are the perceptions that 2D methods are generally less sensitive than 1D ones, and that coupling of certain separation modes in a 2D system is difficult because of the negative impact of the effluent of the first separation on the second separation. In this work we address these problems in the specific case where reversed-phase separations are used in both dimensions of a 2D-LC system, but the pH is varied such that the ionization state of carboxylic acid analytes is different (i.e., neutral or negatively charged, in eluents buffered at pH 2 or 7) in the two columns. We first demonstrate that the effect of first dimension ((1)D) effluent on the performance of second dimension ((2)D) separation of ionogenic solutes is much more serious than it is for neutral compounds where the pH of the eluent does not play a role in retention. We have systematically varied the properties of the sample solution injected into the (2)D column (i.e., the (1)D effluent), as well as the (2)D eluent, with the goal of establishing guidelines for conditions that yield acceptable (2)D performance. We find that the organic solvent content of the (1)D effluent and (2)D eluent is not as important as the buffer concentrations in these two solutions, and that the greater the ratio of buffer concentration in the (1)D effluent relative to the (2)D eluent, the smaller the volume one can inject into the (2)D column before dramatic peak splitting occurs. We have then used the information from these simple experiments to guide both 1D experiments that mimic the (2)D separation, and actual 2D separations, to demonstrate that online adjustment of the properties of the (1)D effluent by dilution with a buffered solvent prior to injection into the (2)D column is a very effective solution to the pH mismatch problem. We find that when the buffer capacity of the diluent is high enough to effectively titrate the (1)D

  15. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  16. Two-dimensional wavelength demultiplexing employing multilevel arrayed waveguides.

    PubMed

    Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua; Wang, Yuelin

    2004-03-22

    Two-dimensional (2D) optical wavelength demultiplexing is demonstrated by employing multilevel arrayed waveguides as a 2D diffraction grating, named the 2D arrayed waveguide grating (2D-AWG). Since the monochromatic lightwave is diffracted by the 2D-AWG to a series of periodic spots with 2D diffraction orders in both x and y directions while the dispersion direction is never parallel to the x or y direction, we can obtain 2D wavelength demultiplexing exploiting diffraction orders of either the x or y direction. One of the two dispersion components is designed much larger than the other, and the correspondent spatial free spectral range component is set properly to ensure high diffraction efficiency. The input and output ports can also be designed based on the multilevel lightwave circuit (MLC), and their level planes can be tuned parallel to that of the MLC-based 2D-AWG, which makes it feasible to integrate the 2D-AWG with the input port and/or the output port. It provides a promising way to realize large-scale and high-density optical multiplexers/demultiplexers.

  17. Development of Novel Two-dimensional Layers, Alloys and Heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Zheng

    2015-03-01

    The one-atom-think graphene has fantastic properties and attracted tremendous interests in these years, which opens a window towards various two-dimensional (2D) atomic layers. However, making large-size and high-quality 2D layers is still a great challenge. Using chemical vapor deposition (CVD) method, we have successfully synthesized a wide varieties of highly crystalline and large scale 2D atomic layers, including h-BN, metal dichalcogenides e.g. MoS2, WS2, CdS, GaSe and MoSe2 which belong to the family of binary 2D materials. Ternary 2D alloys including BCN and MoS2xSe2 (1 - x) are also prepared and characterized. In addition, synthesis of 2D heterostructures such as vertical and lateral graphene/h-BN, vertical and lateral TMDs are also demonstrated. Complementary to CVD grown 2D layers, 2D single-crystal (bulk) such as Phosphorene (P), WTe2, SnSe2, PtS2, PtSe2, PdSe2, WSe2xTe2 (1 - x), Ta2NiS5andTa2NiSe5 are also prepared by solid reactions. There work provide a better understanding of the atomic layered materials in terms of the synthesis, atomic structure, alloying and their physical properties. Potential applications of these 2D layers e.g. optoelectronic devices, energy device and smart coating have been explored.

  18. Two-dimensional convective turbulence

    SciTech Connect

    Gruzinov, A.V.; Kukharkin, N.; Sudan, R.N.

    1996-02-01

    We show that 2D {bold E{times}B} ionospheric turbulence of the electron density in the equatorial electrojet is isomorphic to the viscous convection of an ordinary fluid in a porous medium due to temperature gradients. Numerical simulations reveal the strong anisotropy in the turbulence, which consists of rising hot bubbles and falling cool bubbles. These bubbles break up into fingers leading to the formation of stable shear flows. After reaching a quasisteady state, the omnidirectional energy spectrum approaches a {ital k}{sup {minus}2} behavior, rather than {ital k}{sup {minus}5/3} as expected from isotropic turbulence. Physical mechanisms that lead to anisotropy are analyzed. {copyright} {ital 1996 The American Physical Society.}

  19. Two-Dimensional Simulation of Truckee River Hydrodynamics

    DTIC Science & Technology

    2006-09-01

    ANALYSIS: The Truckee River originates from Lake Tahoe , flowing 140 miles (225 km) through Reno, NV, to Pyramid Lake . The downstream boundary of the...riverine restoration design. A two-dimensional (2-D) hydrodynamic model was applied to the McCarran Ranch reach of the Truckee River to evaluate...existing condition and future restoration plan condition hydraulics. The impact of the restoration design is presented in terms of the difference in the

  20. Application of two dimensional periodic molecular dynamics to interfaces.

    NASA Astrophysics Data System (ADS)

    Gay, David H.; Slater, Ben; Catlow, C. Richard A.

    1997-08-01

    We have applied two-dimensional molecular dynamics to the surface of a crystalline aspartame and the interface between the crystal face and a solvent (water). This has allowed us to look at the dynamic processes at the surface. Understanding the surface structure and properties are important to controlling the crystal morphology. The thermodynamic ensemble was constant Number, surface Area and Temperature (NAT). The calculations have been carried out using a 2D Ewald summation and 2D periodic boundary conditions for the short range potentials. The equations of motion integration has been carried out using the standard velocity Verlet algorithm.

  1. Femtosecond phase-coherent two-dimensional spectroscopy.

    PubMed

    Tian, Peifang; Keusters, Dorine; Suzaki, Yoshifumi; Warren, Warren S

    2003-06-06

    Femtosecond phase-coherent two-dimensional (2D) spectroscopy has been experimentally demonstrated as the direct optical analog of 2D nuclear magnetic resonance. An acousto-optic pulse shaper created a collinear three-pulse sequence with well-controlled and variable interpulse delays and phases,which interacted with a model atomic system of rubidium vapor. The desired nonlinear polarization was selected by phase cycling (coadding experimental results obtained with different interpulse phases). This method may enhance our ability to probe the femtosecond structural dynamics of macromolecules.

  2. High-Tc superconductors in the two-dimensional limit:

    PubMed

    Choy; Kwon; Park

    1998-06-05

    The free modulation of interlayer distance in a layered high-transition temperature (high-Tc) superconductor is of crucial importance not only for the study of the superconducting mechanism but also for the practical application of high-Tc superconducting materials. Two-dimensional (2D) superconductors were achieved by intercalating a long-chain organic compound into bismuth-based high-Tc cuprates. Although the intercalation of the organic chain increased the interlayer distance remarkably, to tens of angstroms, the superconducting transition temperature of the intercalate was nearly the same as that of the pristine material, suggesting the 2D nature of the high-Tc superconductivity.

  3. Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures

    NASA Astrophysics Data System (ADS)

    Steiner, Christian; Gebhardt, Julian; Ammon, Maximilian; Yang, Zechao; Heidenreich, Alexander; Hammer, Natalie; Görling, Andreas; Kivala, Milan; Maier, Sabine

    2017-03-01

    The fabrication of nanostructures in a bottom-up approach from specific molecular precursors offers the opportunity to create tailored materials for applications in nanoelectronics. However, the formation of defect-free two-dimensional (2D) covalent networks remains a challenge, which makes it difficult to unveil their electronic structure. Here we report on the hierarchical on-surface synthesis of nearly defect-free 2D covalent architectures with carbonyl-functionalized pores on Au(111), which is investigated by low-temperature scanning tunnelling microscopy in combination with density functional theory calculations. The carbonyl-bridged triphenylamine precursors form six-membered macrocycles and one-dimensional (1D) chains as intermediates in an Ullmann-type coupling reaction that are subsequently interlinked to 2D networks. The electronic band gap is narrowed when going from the monomer to 1D and 2D surface-confined π-conjugated organic polymers comprising the same building block. The significant drop of the electronic gap from the monomer to the polymer confirms an efficient conjugation along the triphenylamine units within the nanostructures.

  4. Hierarchical on-surface synthesis and electronic structure of carbonyl-functionalized one- and two-dimensional covalent nanoarchitectures

    PubMed Central

    Steiner, Christian; Gebhardt, Julian; Ammon, Maximilian; Yang, Zechao; Heidenreich, Alexander; Hammer, Natalie; Görling, Andreas; Kivala, Milan; Maier, Sabine

    2017-01-01

    The fabrication of nanostructures in a bottom-up approach from specific molecular precursors offers the opportunity to create tailored materials for applications in nanoelectronics. However, the formation of defect-free two-dimensional (2D) covalent networks remains a challenge, which makes it difficult to unveil their electronic structure. Here we report on the hierarchical on-surface synthesis of nearly defect-free 2D covalent architectures with carbonyl-functionalized pores on Au(111), which is investigated by low-temperature scanning tunnelling microscopy in combination with density functional theory calculations. The carbonyl-bridged triphenylamine precursors form six-membered macrocycles and one-dimensional (1D) chains as intermediates in an Ullmann-type coupling reaction that are subsequently interlinked to 2D networks. The electronic band gap is narrowed when going from the monomer to 1D and 2D surface-confined π-conjugated organic polymers comprising the same building block. The significant drop of the electronic gap from the monomer to the polymer confirms an efficient conjugation along the triphenylamine units within the nanostructures. PMID:28322232

  5. Controlled Growth of 1D MoSe2 Nanoribbons with Spatially Modulated Edge States.

    PubMed

    Cheng, Fang; Xu, Hai; Xu, Wentao; Zhou, Pinjia; Martin, Jens; Loh, Kian Ping

    2017-02-08

    Two-dimensional (2D) transition metal dichalcogenides (TMDCs) possess interesting one-dimensional (1D) properties at its edges and inversion domain boundaries, where properties markedly different from the 2D basal plane, such as 1D metallicity and charge density waves, can be observed. Although 2D TMDCs crystals are widely grown by chemical vapor deposition (CVD), the fabrication of 1D TMDCs ribbons is challenging due to the difficulty to confine growth in only one dimension. Here we report the controlled growth of MoSe2 nanoribbons with an aspect ratio >100 by using prepatterned Se reconstructions on Au(100). Using scanning tunneling microscope and spectroscopy (STM/STS), the atomic and electronic structure of MoSe2 nanoribbons are studied. The ultranarrow ribbons show metallic behavior, while wider ribbons show a crossover from metallic to semiconducting behavior going from the edge to the center of the ribbon. The observed conductance modulations of the ultranarrow ribbons are attributed to 1D Moiré pattern. Remarkably, it shows a different periodicity compared with the 2D Moiré pattern in wider ribbons indicating that the 1D system is softened due to the high ratio of edge to basal plane bonds. Further, we demonstrated that the nanoribbons are stable against ambient conditions, which suggests that 1D TMDCs can be exploited for further applications.

  6. Two-dimensional assemblies from crystallizable homopolymers with charged termini.

    PubMed

    He, Xiaoming; Hsiao, Ming-Siao; Boott, Charlotte E; Harniman, Robert L; Nazemi, Ali; Li, Xiaoyu; Winnik, Mitchell A; Manners, Ian

    2017-04-01

    The creation of shaped, uniform and colloidally stable two-dimensional (2D) assemblies by bottom-up methods represents a challenge of widespread current interest for a variety of applications. Herein, we describe the utilization of surface charge to stabilize self-assembled planar structures that are formed from crystallizable polymer precursors by a seeded growth approach. Addition of crystallizable homopolymers with charged end-groups to seeds generated by the sonication of block copolymer micelles with crystalline cores yields uniform platelet micelles with controlled dimensions. Significantly, the seeded growth approach is characterized by a morphological memory effect whereby the origin of the seed, which can involve a quasi-hexagonal or rectangular 2D platelet precursor, dictates the observed 2D platelet shape. This new strategy is illustrated using two different polymer systems, and opens the door to the construction of 2D hierarchical structures with broad utility.

  7. Proposed two-dimensional topological insulator in SiTe

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Kou, Liangzhi; Dai, Ying; Heine, Thomas

    2016-11-01

    The two-dimensional (2D) crystal SiTe is identified to be a 2D topological insulator (TI) with bulk band gap of 220 meV by means of first-principles calculations. The synthesis of 2D SiTe has been reported earlier [Phys. Status Solidi RRL 8, 302 (2014), 10.1002/pssr.201409013] as part of a three-dimensional superlattice. The freestanding monolayer is thermally and dynamically stable and only weakly bound within the layered superlattice, offering the possibility of mechanical exfoliation. Our discovery of a topological signature with large band gap raises the expectation that the most apparent showstopper in experimental 2D TI research, the lack of stable materials exposing a quantum spin Hall effect at room temperature, can be overcome. This offers many laboratories an opportunity to participate in investigating exciting new phenomena in condensed matter physics, such as new quasiparticles and dissipationless spin transport.

  8. Nonlinear plasmonics in a two-dimensional plasma layer

    NASA Astrophysics Data System (ADS)

    Eliasson, Bengt; Liu, Chuan Sheng

    2016-05-01

    The nonlinear electron dynamics in a two-dimensional (2D) plasma layer are investigated theoretically and numerically. In contrast to the Langmuir oscillations in a three-dimensional (3D) plasma, a well-known feature of the 2D system is the square root dependence of the frequency on the wavenumber, which leads to unique dispersive properties of 2D plasmons. It is found that for large amplitude plasmonic waves there is a nonlinear frequency upshift similar to that of periodic gravity waves (Stokes waves). The periodic wave train is subject to a modulational instability, leading to sidebands growing exponentially in time. Numerical simulations show the breakup of a 2D wave train into localized wave packets and later into wave turbulence with immersed large amplitude solitary spikes. The results are applied to systems involving massless Dirac fermions in graphene as well as to sheets of electrons on liquid helium.

  9. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography.

    PubMed

    Bieri, Stefan; Marriott, Philip J

    2008-02-01

    A new instrumental approach for collection of retention index data in the first (1D) and second (2D) dimensions of a comprehensive two-dimensional (2D) gas chromatography (GCxGC) experiment has been developed. First-dimension indexes were determined under conventional linear programmed temperature conditions (Van den Dool indexes). To remove the effect that the short secondary column imposes on derived 1D indexes, as well as to avoid handling of pulsed GCxGC peaks, the proposed approach uses a flow splitter to divert part of the primary column flow to a supplementary detector to simultaneously generate a conventional 1D chromatogram, along with the GCxGC chromatogram. The critical 2D indexes (KovAts indexes) are based upon isovolatility curves of normal alkanes in 2D space, providing a reference scale against which to correlate each individual target peak throughout the entire GCxGC run. This requires the alkanes to bracket the analytes in order to allow retention interpolation. Exponential curves produced in the 2D separation space require a novel approach for delivery of alkane standards into the 2D column by using careful solvent-free solid-phase microextraction (SPME) sampling. Sequential introduction of alkane mixtures during GCxGC runs was performed by thermal desorption in a second injector which was directly coupled through a short transfer line to the entrance of the secondary column, just prior to the modulator so that they do not have to travel through the 1D column. Thus, each alkane mixture injection was quantitatively focused by the cryogenic trap, then launched at predetermined times onto the 2D column. The system permitted construction of an alkane retention map upon which bidimensional indexes of a 25-perfume ingredient mixture could be derived. Comparison of results with indexes determined in temperature-variable one-dimensional (1D) GC showed good correlation. Plotting of the separation power in the second dimension was possible by mapping

  10. Selection of column dimensions and gradient conditions to maximize the peak-production rate in comprehensive off-line two-dimensional liquid chromatography using monolithic columns.

    PubMed

    Eeltink, Sebastiaan; Dolman, Sebastiaan; Vivo-Truyols, Gabriel; Schoenmakers, Peter; Swart, Remco; Ursem, Mario; Desmet, Gert

    2010-08-15

    The peak-production rate (peak capacity per unit time) in comprehensive off-line two-dimensional liquid chromatography (LC/x/LC) was optimized for the separation of peptides using poly(styrene-co-divinylbenzene) monolithic columns in the reversed-phase (RP) mode. A first-dimension ((1)D) separation was performed on a monolithic column operating at a pH of 8, followed by sequential analysis of all the (1)D fractions on a monolithic column operating at a pH of 2. To obtain the highest peak-production rate, effects of column length, gradient duration, and sampling time were examined. RP/x/RP was performed at undersampling conditions using a short 10 min (1)D gradient. The peak-production rate was highest using a 50 mm long (2)D column applying an 8-10 min (2)D gradient time and was almost a factor of two higher than when a 250 mm monolithic column was used. The best way to obtain a higher peak-production rate in off-line LC/x/LC proved to be an increase in the number of (1)D fractions collected. Increasing the (2)D gradient time was less effective. The potential of the optimized RP/x/RP method is demonstrated by analyzing proteomics samples of various complexities. Finally, the trade-off between peak capacity and analysis time is discussed in quantitative terms for both one-dimensional RP gradient-elution chromatography and the off-line two-dimensional (RP/x/RP) approach. At the conditions applied, the RP/x/RP approach provided a higher peak-production rate than the (1)D-LC approach when collecting three (1)D fractions, which corresponds to a total analysis time of 60 min.

  11. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  12. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage

    SciTech Connect

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-06-02

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Moreover, synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. Some factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented. The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Some various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. In particular, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films.

  13. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage

    DOE PAGES

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-06-02

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Moreover, synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. Some factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented.more » The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Some various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. In particular, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films.« less

  14. Recent Advances in Two-Dimensional Materials beyond Graphene.

    PubMed

    Bhimanapati, Ganesh R; Lin, Zhong; Meunier, Vincent; Jung, Yeonwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael S; Cooper, Valentino R; Liang, Liangbo; Louie, Steven G; Ringe, Emilie; Zhou, Wu; Kim, Steve S; Naik, Rajesh R; Sumpter, Bobby G; Terrones, Humberto; Xia, Fengnian; Wang, Yeliang; Zhu, Jun; Akinwande, Deji; Alem, Nasim; Schuller, Jon A; Schaak, Raymond E; Terrones, Mauricio; Robinson, Joshua A

    2015-12-22

    The isolation of graphene in 2004 from graphite was a defining moment for the "birth" of a field: two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here, we review significant recent advances and important new developments in 2D materials "beyond graphene". We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene that enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

  15. Two-dimensional gallium nitride realized via graphene encapsulation

    NASA Astrophysics Data System (ADS)

    Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A.; Eichfeld, Sarah M.; Caldwell, Joshua D.; Qin, Xiaoye; Lin, Yu-Chuan; Desario, Paul A.; Stone, Greg; Subramanian, Shruti; Paul, Dennis F.; Wallace, Robert M.; Datta, Suman; Redwing, Joan M.; Robinson, Joshua A.

    2016-11-01

    The spectrum of two-dimensional (2D) and layered materials `beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (~5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides `beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

  16. Two-dimensional Brownian vortices

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2008-12-01

    We introduce a stochastic model of 2D Brownian vortices associated with the canonical ensemble. The point vortices evolve through their usual mutual advection but they experience in addition a random velocity and a systematic drift generated by the system as a whole. The statistical equilibrium state of this stochastic model is the Gibbs canonical distribution. We consider a single species system and a system made of two types of vortices with positive and negative circulations. At positive temperatures, like-sign vortices repel each other (“plasma” case) and at negative temperatures, like-sign vortices attract each other (“gravity” case). We derive the stochastic equation satisfied by the exact vorticity field and the Fokker-Planck equation satisfied by the N-body distribution function. We present the BBGKY-like hierarchy of equations satisfied by the reduced distribution functions and close the hierarchy by considering an expansion of the solutions in powers of 1/N, where N is the number of vortices, in a proper thermodynamic limit. For spatially inhomogeneous systems, we derive the kinetic equations satisfied by the smooth vorticity field in a mean field approximation valid for N→+∞. For spatially homogeneous systems, we study the two-body correlation function, in a Debye-Hückel approximation valid at the order O(1/N). The results of this paper can also apply to other systems of random walkers with long-range interactions such as self-gravitating Brownian particles and bacterial populations experiencing chemotaxis. Furthermore, for positive temperatures, our study provides a kinetic derivation, from microscopic stochastic processes, of the Debye-Hückel model of electrolytes.

  17. A two dimensional artificial reality

    NASA Technical Reports Server (NTRS)

    Krueger, Myron W.

    1991-01-01

    The current presumption is that it is necessary to don goggles, gloves and a data suit to experience artificial reality. However, there is another technology that offers an alternative or complement to the encumbering techniques associated with NASA. In VIDEOPLACE, your image appears in a 2D graphic world created by a computer. The VIDEOPLACE computer can analyze a person's image in 1/30 second and can detect when an object is touched. Thus, it can generate a graphic or auditory response to an illusory contact. VIDEOPLACE technology exists in two formats: the VIDEODESK and the VIDEOPLACE. In the VIDEODESK environment, the image of your hands can be used to perform the normal mouse functions, such as menuing and drawing. In addition, you have the advantage of multipoint control. For instance, you can use the thumbs and forefingers of each hand as control points for a spline curve. Perhaps most important, the image of your hands can be compressed and transmitted to a colleague over an ISDN voice channel to appear on the remote screen superimposed over identical information. Likewise, the image of your colleague's hands can appear on both screens. The result is that the two of you can use your hands to point to features on your respective screens as you speak, exactly as you would if you were sitting together. In the VIDEOPLACE environment, you can interact with graphic creatures and the images of other people in other locations in a graphic world. Your whole body can be moved, scaled and rotated in real-time without regard to the laws of physics. Thus, VIDEOPLACE can be used to create a fantasy world in which the laws of cause and effect are composed by an artist.

  18. Two-dimensional treatment of the level shift and decay rate in photonic crystals

    NASA Astrophysics Data System (ADS)

    Fussell, D. P.; McPhedran, R. C.; Martijn de Sterke, C.

    2005-10-01

    We present a comprehensive treatment of the level shift and decay rate of a model line source in a two-dimensional photonic crystal (2D PC) composed of circular cylinders. The quantities in this strictly two-dimensional system are determined by the two-dimensional local density of states (2D LDOS), which we compute using Rayleigh-multipole methods. We extend the critical point analysis that is traditionally applied to the 2D DOS (or decay rate) to the level shift. With this, we unify the crucial quantity for experiment—the 2D LDOS in a finite PC—with the band structure and the 2D DOS, 2D LDOS, and level shift in infinite PC’s. Consistent with critical point analysis, large variations in the level shift are associated with large variations in the 2D DOS (and 2D LDOS), corroborating a giant anomalous Lamb shift. The boundary of a finite 2D PC can produce resonances that cause the 2D LDOS in a finite 2D PC to differ markedly from the 2D LDOS in an infinite 2D PC.

  19. Two-dimensional treatment of the level shift and decay rate in photonic crystals

    SciTech Connect

    Fussell, D.P.; McPhedran, R.C.; Martijn de Sterke, C.

    2005-10-01

    We present a comprehensive treatment of the level shift and decay rate of a model line source in a two-dimensional photonic crystal (2D PC) composed of circular cylinders. The quantities in this strictly two-dimensional system are determined by the two-dimensional local density of states (2D LDOS), which we compute using Rayleigh-multipole methods. We extend the critical point analysis that is traditionally applied to the 2D DOS (or decay rate) to the level shift. With this, we unify the crucial quantity for experiment - the 2D LDOS in a finite PC - with the band structure and the 2D DOS, 2D LDOS, and level shift in infinite PC's. Consistent with critical point analysis, large variations in the level shift are associated with large variations in the 2D DOS (and 2D LDOS), corroborating a giant anomalous Lamb shift. The boundary of a finite 2D PC can produce resonances that cause the 2D LDOS in a finite 2D PC to differ markedly from the 2D LDOS in an infinite 2D PC.

  20. Two-dimensional treatment of the level shift and decay rate in photonic crystals.

    PubMed

    Fussell, D P; McPhedran, R C; Martijn de Sterke, C

    2005-10-01

    We present a comprehensive treatment of the level shift and decay rate of a model line source in a two-dimensional photonic crystal (2D PC) composed of circular cylinders. The quantities in this strictly two-dimensional system are determined by the two-dimensional local density of states (2D LDOS), which we compute using Rayleigh-multipole methods. We extend the critical point analysis that is traditionally applied to the 2D DOS (or decay rate) to the level shift. With this, we unify the crucial quantity for experiment--the 2D LDOS in a finite PC--with the band structure and the 2D DOS, 2D LDOS, and level shift in infinite PC's. Consistent with critical point analysis, large variations in the level shift are associated with large variations in the 2D DOS (and 2D LDOS), corroborating a giant anomalous Lamb shift. The boundary of a finite 2D PC can produce resonances that cause the 2D LDOS in a finite 2D PC to differ markedly from the 2D LDOS in an infinite 2D PC.

  1. Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.

    PubMed

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Lin, Liangjun; Kasper, F Kurtis; Qin, Yi-Xian; Mikos, Antonios G; Sitharaman, Balaji

    2013-03-11

    This study investigates the efficacy of two-dimensional (2D) carbon and inorganic nanostructures as reinforcing agents for cross-linked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multiwalled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum disulfide nanoplatelets (MSNPs) at 0.01-0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multiwalled carbon nanotubes (SWCNTs, MWCNTs) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35-108%, compressive yield strength = 26-93%, flexural modulus = 15-53%, and flexural yield strength = 101-262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNP nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNP showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2D nanostructures (GONPs, MSNPs) are better reinforcing agents compared to one-dimensional (1D) nanostructures (e.g., SWCNTs). The results also indicated that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicated good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01-0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1-0.2 wt %). The analysis of surface area and aspect ratio

  2. Two-Dimensional Nanostructure- Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Lin, Liangjun; Kasper, F. Kurtis; Qin, Yi-Xian; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    This study investigates the efficacy of two dimensional (2D) carbon and inorganic nanostructures as reinforcing agents of crosslinked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multi-walled graphene oxide nanoribbons (SWGONRs, MWGONRs), graphene oxide nanoplatelets (GONPs), and molybdenum di-sulfite nanoplatelets (MSNPs) at 0.01–0.2 weight% concentrations. Cross-linked PPF was used as the baseline control, and PPF composites reinforced with single- or multi-walled carbon nanotubes (SWCNT, MWCNT) were used as positive controls. Compression and flexural testing show a significant enhancement (i.e., compressive modulus = 35–108%, compressive yield strength = 26–93%, flexural modulus = 15–53%, and flexural yield strength = 101–262% greater than the baseline control) in the mechanical properties of the 2D-reinforced PPF nanocomposites. MSNPs nanocomposites consistently showed the highest values among the experimental or control groups in all the mechanical measurements. In general, the inorganic nanoparticle MSNPs showed a better or equivalent mechanical reinforcement compared to carbon nanomaterials, and 2-D nanostructures (GONP, MSNP) are better reinforcing agents compared to 1-D nanostructures (e.g. SWCNTs). The results also indicate that the extent of mechanical reinforcement is closely dependent on the nanostructure morphology and follows the trend nanoplatelets > nanoribbons > nanotubes. Transmission electron microscopy of the cross-linked nanocomposites indicates good dispersion of nanomaterials in the polymer matrix without the use of a surfactant. The sol-fraction analysis showed significant changes in the polymer cross-linking in the presence of MSNP (0.01–0.2 wt %) and higher loading concentrations of GONP and MWGONR (0.1–0.2 wt%). The analysis of surface area and aspect ratio of

  3. Coexistence of one- and two-dimensional supramolecular assemblies of terephthalic acid on Pd(111) due to self-limiting deprotonation

    SciTech Connect

    Canas-Ventura, M. E.; Klappenberger, F.; Clair, S.; Pons, S.; Kern, K.; Brune, H.; Strunskus, T.; Woell, Ch.; Fasel, R.; Barth, J. V.

    2006-11-14

    The adsorption of terephthalic acid [C{sub 6}H{sub 4}(COOH){sub 2}, TPA] on a Pd(111) surface has been investigated by means of scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy, and near-edge x-ray absorption fine structure spectroscopy under ultrahigh vacuum conditions at room temperature. We find the coexistence of one- (1D) and two-dimensional (2D) molecular ordering. Our analysis indicates that the 1D phase consists of intact TPA chains stabilized by a dimerization of the self-complementary carboxyl groups, whereas in the 2D phase, consisting of deprotonated entities, the molecules form lateral ionic hydrogen bonds. The supramolecular growth dynamics and the resulting structures are explained by a self-limiting deprotonation process mediated by the catalytic activity of the Pd surface. Our models for the molecular ordering are supported by molecular mechanics calculations and a simulation of high resolution STM images.

  4. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  5. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs.

    PubMed

    Zapadlo, Michal; Krupcík, Ján; Májek, Pavel; Armstrong, Daniel W; Sandra, Pat

    2010-09-10

    The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl-95%-methyl)siloxane was used as the first ((1)D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second ((2)D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on (1)D and (2)D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times t(R,i,2D) and t(R,i,1D) of corresponding PCB congeners on both column series. It was demonstrated that the apolar+ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105+127, 81+148 and 118+106).

  6. Measuring Monotony in Two-Dimensional Samples

    ERIC Educational Resources Information Center

    Kachapova, Farida; Kachapov, Ilias

    2010-01-01

    This note introduces a monotony coefficient as a new measure of the monotone dependence in a two-dimensional sample. Some properties of this measure are derived. In particular, it is shown that the absolute value of the monotony coefficient for a two-dimensional sample is between /"r"/ and 1, where "r" is the Pearson's…

  7. Electronic transport in two-dimensional high dielectric constant nanosystems

    PubMed Central

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-01-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials. PMID:25860804

  8. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGES

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  9. Electronic transport in two-dimensional high dielectric constant nanosystems

    SciTech Connect

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  10. Electronic transport in two-dimensional high dielectric constant nanosystems

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-01

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  11. Interaction of two-dimensional magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  12. Linkage analysis by two-dimensional DNA typing

    SciTech Connect

    Meerman, G.J. te; Meulen, M.A. van der ); Mullaart, E.; Morolli, B.; Uitterlinden, A.G. ); Daas, J.H.G. den ); Vijg, J. Beth Israel Hospital, Boston, MA )

    1993-12-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core probes. The 2-D DNA typing method generates a large amount of information on polymorphic loci per gel. Here, the authors demonstrate the potential usefulness of 2-D DNA typing in an empirical linkage study on the red factor in cattle, and the authors show an example of the 2-D DNA typing analysis of a human pedigree. The power efficiency of 2-D DNA typing in general is compared with that of single-locus typing by simulation. The results indicate that, although 2-D DNA typing is very efficient in generating data on polymorphic loci, its power to detect linkage is lower than single-locus typing, because it is not obvious whether a spot represents the presence of one or two alleles. It is possible to compensate for this lower informativeness by increasing the sample size. Genome scanning by 2-D DNA typing has the potential to be more efficient than current genotyping methods in scoring polymorphic loci. Hence, it could become a method of choice in mapping genetic traits in humans and animals. 13 refs., 5 figs., 4 tabs.

  13. Two-Dimensional Atomic Crystals: Paving New Ways for Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Fan, Jincheng; Li, Tengfei; Djerdj, Igor

    2015-11-01

    Two-dimensional (2D) atomic crystals are attractive for use in next-generation nanoelectronics, due to their unique performances, which may lead to the resolution of the technological and fundamental challenges in semiconductor industry. Based on the introduction of 2D atomic crystal-based transistors and ambipolar behavior, the review presents a brief summary of 2D atomic crystal integration circuits, including memory, logic gate, amplifier, inverter, oscillator, mixer, switch and modulator. The devices show promising performances for the application in future nanoelectronics. In particular, the 2D atomic crystals, such as graphene, demonstrate good compatibility with the existing semiconductor process. The quaternary digital modulations have been achieved with flexible and transparent all-graphene circuits. Moreover, the heterojunction based on 2D atomic crystals may enable new devices beyond conventional field-effect transistors. The results make us be optimistic that practical 2D atomic crystal technologies with complex functionality will be achieved in the near future. Therefore, 2D atomic crystals are paving new ways for nanoelectronics.

  14. Two-dimensional electronic spectroscopy of molecular excitons.

    PubMed

    Milota, Franz; Sperling, Jaroslaw; Nemeth, Alexandra; Mancal, Tomás; Kauffmann, Harald F

    2009-09-15

    Understanding of the nuclear and electronic structure and dynamics of molecular systems has advanced considerably through probing the nonlinear response of molecules to sequences of pulsed electromagnetic fields. The ability to control various degrees of freedom of the excitation pulses-such as duration, sequence, frequency, polarization, and shape-has led to a variety of time-resolved spectroscopic methods. The various techniques that researchers use are commonly classified by their dimensionality, which refers to the number of independently variable time delays between the pulsed fields that induce the signal. Though pico- and femtosecond time-resolved spectroscopies of electronic transitions have come of age, only recently have researchers been able to perform two-dimensional electronic spectroscopy (2D-ES) in the visible frequency regime and correlate transition frequencies that evolve in different time intervals. The two-dimensional correlation plots and their temporal evolution allow one to access spectral information that is not exposed directly in other one-dimensional nonlinear methods. In this Account, we summarize our studies of a series of increasingly complex molecular chromophores. We examine noninteracting dye molecules, a monomer-dimer equilibrium of a prototypical dye molecule, and finally a supramolecular assembly of electronically coupled absorbers. By tracing vibronic signal modulations, differentiating line-broadening mechanisms, analyzing distinctly different relaxation dynamics, determining electronic coupling strengths, and directly following excitation energy transfer pathways, we illustrate how two-dimensional electronic spectroscopy can image physical phenomena that underlie the optical response of a particular system. Although 2D-ES is far from being a "turn-key" method, we expect that experimental progress and potential commercialization of instrumentation will make 2D-ES accessible to a much broader scientific audience, analogous to

  15. Strategies for Ultrasound Imaging Using Two-Dimensional Arrays

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2010-02-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. This has clear benefits as real defects and engineering structures are three-dimensional. This paper describes different approaches to optimize 2D array design. Results are shown that illustrate the application of the proposed techniques to modeling and experimental data.

  16. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance.

    PubMed

    Wilson, James B; Blom, Eric; Cunningham, Ryan; Xiao, Yuxuan; Kupfer, Gary M; Jones, Nigel J

    2010-07-07

    The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes

  17. MAGNETOHYDRODYNAMIC SHOCKS IN AND ABOVE POST-FLARE LOOPS: TWO-DIMENSIONAL SIMULATION AND A SIMPLIFIED MODEL

    SciTech Connect

    Takasao, Shinsuke; Nakamura, Naoki; Shibata, Kazunari; Matsumoto, Takuma

    2015-06-01

    Solar flares are an explosive phenomenon where super-sonic flows and shocks are expected in and above the post-flare loops. To understand the dynamics of post-flare loops, a two-dimensional magnetohydrodynamic (2D MHD) simulation of a solar flare has been carried out. We found new shock structures in and above the post-flare loops, which were not resolved in the previous work by Yokoyama and Shibata. To study the dynamics of flows along the reconnected magnetic field, the kinematics and energetics of the plasma are investigated along selected field lines. It is found that shocks are crucial to determine the thermal and flow structures in the post-flare loops. On the basis of the 2D MHD simulation, we developed a new post-flare loop model, which we defined as the pseudo-2D MHD model. The model is based on the one-dimensional (1D) MHD equations, where all variables depend on one space dimension, and all the three components of the magnetic and velocity fields are considered. Our pseudo-2D model includes many features of the multi-dimensional MHD processes related to magnetic reconnection (particularly MHD shocks), which the previous 1D hydrodynamic models are not able to include. We compared the shock formation and energetics of a specific field line in the 2D calculation with those in our pseudo-2D MHD model, and found that they give similar results. This model will allow us to study the evolution of the post-flare loops in a wide parameter space without expensive computational cost or neglecting important physics associated with magnetic reconnection.

  18. Extended quantum jump description of vibronic two-dimensional spectroscopy

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Keß, Martin; Wehner, Johannes G.; Engel, Volker; Zhang, Pan-Pan; Eisfeld, Alexander

    2015-06-07

    We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic method and provides an efficient method for the calculation of the 2D-spectra.

  19. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  20. Two-dimensional optical splitters with polymer optical fibre arrays

    NASA Astrophysics Data System (ADS)

    Wen, Fung Jacky; Sheun Chung, Po

    2007-07-01

    A novel approach for optical beam distribution into two-dimensional (2D) fibre arrays using 2D Dammann gratings is investigated. We report for the first time experimental results of a 2D optical power distribution into 2 × 2 polymer optical fibre arrays using a Dammann grating. This paper focuses on the design and fabrication of the diffractive optical element (DOE) along with investigating the coupling performance of the system. This grating may be applicable to a fibre to the home (FTTH) network as it can support sufficient channels with good output uniformity together with low polarization-dependent loss (PDL). Using an appropriate optimization algorithm, the optimum profile for the Dammann gratings can be calculated. The gratings are then fabricated on indium-doped tin oxide (ITO) glass using electron-beam lithography. This method shows that it can achieve low PDL and good uniformity together with acceptable insertion loss.

  1. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  2. Adsorption of C20 on two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Hussain, M. B.; Xu, L. H.; Xu, Y. X.; Wu, S. Q.; Zhu, Z. Z.

    2017-03-01

    We considered the geometric and electronic properties of C20 molecule adsorbed on various two-dimensional (2D) substrates surfaces, such as graphene, silicene, germanene, stanene, BN and MoS2 by using first-principles calculations based on the density functional theory. For each case, we have considered three adsorption configurations of C20 molecule, i.e. top-site (T), hallow-site (H) and bridge site (B), respectively. Our results show that C20's are strongly bound to silicene, germanene and stanene, however, the adsorbed C20 molecules have only weak interactions with graphene, BN and MoS2 substrates. Moreover, charge density plot implies substantial charge transfer taking place between the constituents of C20 and the substrate of silicene, germanene and stanene. Results indicate that the buckling structure of the 2D material plays important role in determining the reactivity of a 2D substrate.

  3. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  4. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  5. An n-channel two-dimensional covalent organic framework.

    PubMed

    Ding, Xuesong; Chen, Long; Honsho, Yoshihito; Feng, Xiao; Saengsawang, Oraphan; Guo, Jingdong; Saeki, Akinori; Seki, Shu; Irle, Stephan; Nagase, Shigeru; Parasuk, Vudhichai; Jiang, Donglin

    2011-09-21

    Co-condensation of metallophthalocyanine with an electron-deficient benzothiadiazole (BTDA) block leads to the formation of a two-dimensional covalent organic framework (2D-NiPc-BTDA COF) that assumes a belt shape and consists of AA stacking of 2D polymer sheets. Integration of BTDA blocks at the edges of a tetragonal metallophthalocyanine COF causes drastic changes in the carrier-transport mode and a switch from a hole-transporting skeleton to an electron-transporting framework. 2D-NiPc-BTDA COF exhibits broad and enhanced absorbance up to 1000 nm, shows panchromatic photoconductivity, is highly sensitive to near-infrared photons, and has excellent electron mobility as high as 0.6 cm(2) V(-1) s(-1).

  6. Nonlinear optical response of a two-dimensional atomic crystal.

    PubMed

    Merano, Michele

    2016-01-01

    The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.

  7. Two dimensional WS2 lateral heterojunctions by strain modulation

    NASA Astrophysics Data System (ADS)

    Meng, Lan; Zhang, Yuhan; Hu, Song; Wang, Xiangfu; Liu, Chunsheng; Guo, Yandong; Wang, Xinran; Yan, Xiaohong

    2016-06-01

    "Strain engineering" has been widely used to tailor the physical properties of layered materials, like graphene, black phosphorus, and transition-metal dichalcogenides. Here, we exploit thermal strain engineering to construct two dimensional (2D) WS2 in-plane heterojunctions. Kelvin probe force microscopy is used to investigate the surface potentials and work functions of few-layer WS2 flakes, which are grown on SiO2/Si substrates by chemical vapor deposition, followed by a fast cooling process. In the interior regions of strained WS2 flakes, work functions are found to be much larger than that of the unstrained regions. The difference in work functions, together with the variation of band gaps, endows the formation of heterojunctions in the boundaries between inner and outer domains of WS2 flakes. This result reveals that the existence of strain offers a unique opportunity to modulate the electronic properties of 2D materials and construct 2D lateral heterojunctions.

  8. Quasi-two-dimensional Fermi gases at finite temperatures

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea M.; Parish, Meera M.

    2014-12-01

    We consider a Fermi gas with short-range attractive interactions that is confined along one direction by a tight harmonic potential. For this quasi-two-dimensional (quasi-2D) Fermi gas, we compute the pressure equation of state, radiofrequency spectrum, and the superfluid critical temperature Tc using a mean-field theory that accounts for all the energy levels of the harmonic confinement. Our calculation for Tc provides a natural generalization of the Thouless criterion to the quasi-2D geometry, and it correctly reduces to the 3D expression derived from the local density approximation in the limit where the confinement frequency ωz→0 . Furthermore, our results suggest that Tc can be enhanced by relaxing the confinement and perturbing away from the 2D limit.

  9. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  10. Novel stilbene-based Fischer base analog of leuco-TAM - (2E,2'Z)-{2-(4-(E)-styrylphenyl)propane-1,3-diylidene}bis(1,3,3-trimethylindoline) - derivatives: synthesis and structural consideration by 1D NMR and 2D NMR spectroscopy.

    PubMed

    Keum, Sam-Rok; Lim, Hyun-Woo

    2016-02-01

    We report the synthesis of a series of novel stilbene-based (St) Fischer base analogs of leuco-triarylmethane (LTAM) dyes by treating Fischer base with (E)-4-styrylbenzaldehyde derivatives. All St-LTAM molecules examined herein are characterized by 1D and 2D NMR. They were found to exhibit ZE configuration and isomerize to their diastereomers EE and ZZ in 2-3 h. They exhibit type I behavior of diastereomeric isomerization.

  11. Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity

    DOE PAGES

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; ...

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, withmore » the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.« less

  12. Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity

    SciTech Connect

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, with the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.

  13. Two-dimensional fluorescence spectroscopy for application in biotechnology

    NASA Astrophysics Data System (ADS)

    Lindemann, Carsten; Marose, S.; Scheper, Thomas-Helmut; Nielsen, Hans O.; Hitzmann, Bernd; Belgardt, K.-H.

    1999-02-01

    A wide range of excitation and emission wavelengths is measured using the technique of two-dimensional (2D-) fluorescence spectroscopy. In a single, so called, two- dimensional fluorescence spectrum several biogenic fluorophors like proteins, vitamins and coenzymes can be detected simultaneously. This can give important information for bioprocess monitoring and control. An optical sensor (BioViewR) for on line fluorescence measurements at industrial (bio)-processes was used to get the results presented in this paper. This BioViewR-sensor is optimized to work in the harsh environment of production sites in biotechnological industry and -- using an optical light guide system with open-end detection -- it is very well suited for in vivo measurements, because it is non-invasive and the on line data can be performed in-situ.

  14. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  15. Extension of modified power method to two-dimensional problems

    SciTech Connect

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem. - Graphical abstract:.

  16. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  18. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  19. Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes.

    PubMed

    Ryu, Soo Ryeon; Noda, Isao; Lee, Chang-Hee; Lee, Phil Ho; Hwang, Hyonseok; Jung, Young Mee

    2011-04-01

    In this study, we demonstrate the potentials and pitfalls of using various waterfall plots, such as conventional waterfall plots, two-dimensional (2D) gradient maps, moving window two-dimensional analysis (MW2D), perturbation-correlation moving window two-dimensional analysis (PCMW2D), and moving window principal component analysis two-dimensional correlation analysis (MWPCA2D), in the detection of the existence of band position shifts. Waterfall plots of the simulated spectral datasets are compared with conventional 2D correlation spectra. Different waterfall plots give different features in differentiating the behaviors of frequency shift versus two overlapped bands. Two-dimensional correlation spectra clearly show the very characteristic cluster pattern for both band position shifts and two overlapped bands. The vivid pattern differences are readily detectable in various waterfalls plots. Various types of waterfall plots of temperature-dependent infrared (IR) spectra of ethylene glycol, which does not have the actual band shift but only two overlapped bands, and of Fourier transform infrared (FT-IR) spectra of 2 wt% acetone in a mixed solvent of CHCl(3)/CCl(4) demonstrate that waterfall plots are not able to unambiguously detect the difference between real band shift and two overlapped bands. Thus, the presence or lack of the asynchronous 2D butterfly pattern seems like the most effective diagnostic tool for band shift detection.

  20. Two-dimensional correlation analysis of near-infrared spectral intensity variations of ground wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized two-dimensional (2D) correlation analysis was applied to characterize the NIR spectral intensity fluctuations among many spectra of ground wheat with multi-variable variations. Prior to 2D analysis, the spectra having neighboring protein / SDSS reference values were averaged and then new...

  1. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  2. Two-dimensional multiferroics in monolayer group IV monochalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Qian, Xiaofeng

    2017-03-01

    Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with giant strongly-coupled in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.

  3. First-Principles Predication of Two-Dimensional Electrides

    NASA Astrophysics Data System (ADS)

    Ming, Wenmei; Yoon, Mina

    Two-dimensional (2D) electrides have recently received increasing interest due to its promise for electron emitter, surface catalyst and high-mobility electronic devices. However, they are very limited in a few layered alkaline-earth nitrides and rare-earth carbides. Here, we extend the possibility of 2D electrides by structure predication, using density functional theory calculation in conjunction with particle swarm optimization algorithm. Simple-element compounds A2B (A/B = alkali metals/halogen, or A/B = alkaline-earth metals/VA, VIA, VIIA nonmetals) and AB (A/B = alkaline-earth metals/halogen), which have nominal imbalanced oxidation numbers, were investigated. We find several new 2D electrides out of 90 candidates, and uncover that the stabilization of the 2D layered structure, which is required for the success of 2D electrides, strongly depends on the relative size of cation, in such a way that it has to be of similar or larger size than the anion in order to sufficiently screen the repulsion between the excess electrons and anions. We additionally identify the experimental conditions of temperature and chemical potential where the predicted 2D electrides are stabilized against the decomposition into compounds with balanced oxidation numbers. Funding support from LDRD program at ORNL.

  4. Two-Dimensional Ffowcs Williams/Hawkings Equation Solver

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2005-01-01

    FWH2D is a Fortran 90 computer program that solves a two-dimensional (2D) version of the equation, derived by J. E. Ffowcs Williams and D. L. Hawkings, for sound generated by turbulent flow. FWH2D was developed especially for estimating noise generated by airflows around such approximately 2D airframe components as slats. The user provides input data on fluctuations of pressure, density, and velocity on some surface. These data are combined with information about the geometry of the surface to calculate histories of thickness and loading terms. These histories are fast-Fourier-transformed into the frequency domain. For each frequency of interest and each observer position specified by the user, kernel functions are integrated over the surface by use of the trapezoidal rule to calculate a pressure signal. The resulting frequency-domain signals are inverse-fast-Fourier-transformed back into the time domain. The output of the code consists of the time- and frequency-domain representations of the pressure signals at the observer positions. Because of its approximate nature, FWH2D overpredicts the noise from a finite-length (3D) component. The advantage of FWH2D is that it requires a fraction of the computation time of a 3D Ffowcs Williams/Hawkings solver.

  5. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    PubMed

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  6. Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.

    PubMed

    Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan

    2016-11-30

    Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS2, MoSe2, WS2, and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.

  7. Discrete solitons and vortices in the two-dimensional Salerno model with competing nonlinearities

    SciTech Connect

    Gomez-Gardenes, J.; Floria, L. M.; Malomed, B. A.; Bishop, A. R.

    2006-09-15

    An anisotropic lattice model in two spatial dimensions, with on-site and intersite cubic nonlinearities (the Salerno model), is introduced, with emphasis on the case in which the intersite nonlinearity is self-defocusing, competing with on-site self-focusing. The model applies, for example, to a dipolar Bose-Einstein condensate trapped in a deep two-dimensional (2D) optical lattice. Soliton families of two kinds are found in the model: ordinary ones and cuspons, with peakons at the border between them. Stability borders for the ordinary solitons are found, while all cuspons (and peakons) are stable. The Vakhitov-Kolokolov criterion does not apply to cuspons, but for the ordinary solitons it correctly identifies the stability limits. In direct simulations, unstable solitons evolve into localized pulsons. Varying the anisotropy parameter, we trace a transition between the solitons in 1D and 2D versions of the model. In the isotropic model, we also construct discrete vortices of two types, on-site and intersite centered (vortex crosses and squares, respectively), and identify their stability regions. In simulations, unstable vortices in the noncompeting model transform into regular solitons, while in the model with the competing nonlinearities they evolve into localized vortical pulsons, which maintain their topological character. Bound states of regular solitons and vortices are constructed too, and their stability is identified.

  8. Myocardial Strain Imaging Based on Two-Dimensional Displacement Vector Measurement

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Shiina, Tsuyoshi

    2004-05-01

    The abnormalities of myocardial wall motion caused by changes in wall stiffness often appear in the early stage of ischemic heart disease. Since the myocardium exhibits complex and large motion, a two-dimensional (2D) or three-dimensional (3D) assessment of stiffness distribution is required for accurate diagnosis. Although a 3D assessment is ultimately required, as a stepped approach for practical use, we propose novel methods for tracking the 2D motion using a one-dimensional (1D) phased array and for assessing myocardial malfunction by visualizing the invariant of a strain tensor. The feasibilities of the proposed methods were evaluated by numerically simulating the short-axis imaging of a 3D myocardial model. This model includes a hard infarction located between 1 and 3 o’clock, which is difficult to detect by conventional tissue Doppler and strain rate imaging, and the motions of the model were assigned by referring to actual myocardial motion. These results revealed that the proposed imaging methods clearly depicted the hard infarction area which conventional imaging could not detect.

  9. Resonance blocking and passing effects in two-dimensional elastic waveguides with obstacles.

    PubMed

    Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail; Eremin, Artem

    2011-07-01

    Resonance localization of wave energy in two-dimensional (2D) waveguides with obstacles, known as a trapped mode effect, results in blocking of wave propagation. This effect is closely connected with the allocation of natural resonance poles in the complex frequency plane, which are in fact the spectral points of the related boundary value problem. With several obstacles the number of poles increases in parallel with the number of defects. The location of the poles in the complex frequency plane depends on the defect's relative position, but the gaps of transmission coefficient plots generally remain in the same frequency ranges as for every single obstacle separately. This property gives a possibility to extend gap bands by a properly selected combination of various scatterers. On the other hand, a resonance wave passing in narrow bands associated with the poles is also observed. Thus, while a resonance response of a single obstacle works as a blocker, the waveguide with several obstacles becomes opened in narrow vicinities of nearly real spectral poles, just as it is known for one-dimensional (1D) waveguides with a finite number of periodic scatterers. In the present paper the blocking and passing effects are analyzed based on a semi-analytical model for wave propagation in a 2D elastic layer with cracks or rigid inclusions.

  10. Two-dimensional generalized Toda lattice

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Olshanetsky, M. A.; Perelomov, A. M.

    1981-12-01

    The zero curvature representation is obtained for the two-dimensional generalized Toda lattices connected with semisimple Lie algebras. The reduction group and conservation laws are found and the mass spectrum is calculated.

  11. Two-dimensional function photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  12. Two Dimensional Plasmonic Cavities on Moire Surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  13. Two-dimensional interpreter for field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2014-08-15

    An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibrium reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.

  14. Two-dimensional order and disorder thermofields

    SciTech Connect

    Belvedere, L. V.

    2006-11-15

    The main objective of this paper was to obtain the two-dimensional order and disorder thermal operators using the Thermofield Bosonization formalism. We show that the general property of the two-dimensional world according with the bosonized Fermi field at zero temperature can be constructed as a product of an order and a disorder variables which satisfy a dual field algebra holds at finite temperature. The general correlation functions of the order and disorder thermofields are obtained.

  15. Efficient Two-Dimensional-FFT Program

    NASA Technical Reports Server (NTRS)

    Miko, J.

    1992-01-01

    Program computes 64 X 64-point fast Fourier transform in less than 17 microseconds. Optimized 64 X 64 Point Two-Dimensional Fast Fourier Transform combines performance of real- and complex-valued one-dimensional fast Fourier transforms (FFT's) to execute two-dimensional FFT and coefficients of power spectrum. Coefficients used in many applications, including analyzing spectra, convolution, digital filtering, processing images, and compressing data. Source code written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly languages.

  16. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    PubMed

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD).

  17. A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.

    PubMed

    Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M

    2006-07-01

    A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.

  18. Investigation of Membrane Peptides by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanco, Emily Ann; Zanni, Martin T.

    2009-06-01

    Two-dimensional infrared spectroscopy (2D IR) is a useful tool for studying the structure of membrane peptides. Isotope labeling individual amino acids with 13C=18O decouples the isotope labeled amide I from the other amide I modes in the peptide. Work has been done on both the M2 ion channel and ovispirin antimicrobial peptide, studying the diagonal linewidths of the isotope labeled amide I. The diagonal linewidth of the isotope labeled amide I gives information about the local environment of that residue, which in turn gives structural information about the membrane peptide.

  19. Supramolecular Scaffold for Tailoring the Two-Dimensional Assembly of Functional Molecular Units into Organic Thin Films.

    PubMed

    Leung, Franco King-Chi; Ishiwari, Fumitaka; Kajitani, Takashi; Shoji, Yoshiaki; Hikima, Takaaki; Takata, Masaki; Saeki, Akinori; Seki, Shu; Yamada, Yoichi M A; Fukushima, Takanori

    2016-09-14

    Tailoring structurally anisotropic molecular assemblies while controlling their orientation on solid substrates is an important subject for advanced technologies that use organic thin films. Here we report a supramolecular scaffold based on tripodal triptycene assemblies, which enables functional molecular units to assemble into a highly oriented, multilayered two-dimensional (2D) structure on solid substrates. The triptycene building block carries an ethynyl group and three flexible side chains at the 10- and 1,8,13-positions, respectively. These bridgehead-substituted tripodal triptycenes self-assembled on solid substrates to form a well-defined "2D hexagonal + 1D lamellar" structure, which developed parallel to the surface of the substrates. Remarkably, the assembling properties of the triptycene building blocks, particularly for a derivative with tri(oxyethylene)-containing side chains, were not impaired when the alkyne terminal was functionalized with a large molecular unit such as C60, which is comparable in diameter to the triptycene framework. Consequently, thin films with a multilayered 2D assembly of the C60 unit were obtained. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed that the C60 film exhibits highly anisotropic charge-transport properties. Bridgehead-substituted tripodal triptycenes may provide a versatile supramolecular scaffold for tailoring the 2D assembly of molecular units into a highly oriented thin film, and in turn for exploiting the full potential of anisotropic molecular functions.

  20. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  1. A two-dimensional matrix correction for off-axis portal dose prediction errors

    SciTech Connect

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in

  2. Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming

    2015-02-17

    We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer.

  3. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    PubMed

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications.

  4. Band alignment of two-dimensional lateral heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Junfeng; Xie, Weiyu; Zhao, Jijun; Zhang, Shengbai

    2017-03-01

    Recent experimental synthesis of two-dimensional (2D) heterostructures opens a door to new opportunities in tailoring the electronic properties for novel 2D devices. Here, we show that a wide range of lateral 2D heterostructures could have a prominent advantage over the traditional three-dimensional (3D) heterostructures, because their band alignments are insensitive to the interfacial conditions. They should be at the Schottky-Mott limits for semiconductor-metal junctions and at the Anderson limits for semiconductor junctions, respectively. This fundamental difference from the 3D heterostructures is rooted in the fact that, in the asymptotic limit of large distance, the effect of the interfacial dipole vanishes for 2D systems. Due to the slow decay of the dipole field and the dependence on the vacuum thickness, however, studies based on first-principles calculations often failed to reach such a conclusion. Taking graphene/hexagonal-BN and MoS2/WS2 lateral heterostructures as the respective prototypes, we show that the converged junction width can be order of magnitude longer than that for 3D junctions. The present results provide vital guidance to high-quality transport devices wherever a lateral 2D heterostructure is involved.

  5. Generalized non-separable two-dimensional Dammann encoding method

    NASA Astrophysics Data System (ADS)

    Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei

    2017-01-01

    We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.

  6. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  7. Gate-induced superconductivity in two-dimensional atomic crystals

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-09-01

    Two-dimensional (2D) crystals are attracting growing interest in condensed matter physics, since these systems exhibit not only rich electronic and photonic properties but also exotic electronic phase transitions including superconductivity and charge density wave. Moreover, owing to the recent development of transfer methods after exfoliation and electric-double-layer transistors, superconducting 2D atomic crystals, the thicknesses of which are below 1-2 nm, have been successfully obtained. Here, we present a topical review on the recent discoveries of 2D crystalline superconductors by ionic-liquid gating and a series of their novel properties. In particular, we highlight two topics; quantum metallic states (or possible metallic ground states) and superconductivity robust against in-plane magnetic fields. These phenomena can be discussed with the effects of weakened disorder and/or broken spacial inversion symmetry leading to valley-dependent spin-momentum locking (spin-valley locking). These examples suggest the superconducting 2D crystals are new platforms for investigating the intrinsic quantum phases as well as exotic nature in 2D superconductors.

  8. Effects of Adsorption Constant Uncertainty on Contaminant Plume Migration: One and Two Dimensional Numerical Studies

    NASA Astrophysics Data System (ADS)

    Eliassi, M.

    2002-12-01

    In this study, we use one- and two-dimensional (1D and 2D) reactive-transport models to numerically examine variations in predictions due to uncertainty in the adsorption constants. The study specifically focuses on the hydrogeology and mineralogy of the Naturita uranium mill tailings site in Colorado. This work demonstrates the importance of selecting the appropriate adsorption constants when using reactive-transport models to evaluate risk and pollution attenuation at contaminated sites. In our model, uranium is removed from mill tailings leachate through adsorption onto smectite, an abundant clay mineral at the Naturita site. Uranium adsorbs to specific surface sites on both the basal planes and edges of the smectite. Because uranium adsorbs predominantly to the aluminum edge surface sites [>(e)AlOH], we chose to examine uncertainty only in the equilibrium constants associated with these sites. Using the Latin Hypercube Sampling method, one-hundred pairs of adsorption constant (log K) values are selected for the surface species >(e)AlO- and >(e)AlOUO2+, from normal distributions of each log K. Following a grid convergence study, 1D simulation results can be identified by two distinct groups of uranium breakthrough curves. In the first group, the breakthrough curves exhibit a classical sigmoidal shape whereas in the second group the breakthrough curves display higher uranium concentrations in solution over greater distances and times. These two groups are clearly separated by two different ranges of log K >(e)AlO- values or two different ranges for the smectite point of zero charge. Preliminary 2D simulations, in both homogeneous and randomly heterogeneous aquifers demonstrate that plume geometry and migration in longitudinal and transverse directions are also influenced by the choice of adsorption constants.

  9. Soliton nanoantennas in two-dimensional arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.

    2015-06-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  10. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    SciTech Connect

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    2010-04-21

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

  11. Two-dimensional graphitic carbon nitride nanosheets for biosensing applications.

    PubMed

    Xiong, Mengyi; Rong, Qiming; Meng, Hong-Min; Zhang, Xiao-Bing

    2017-03-15

    Two-dimensional graphitic carbon nitride nanosheets (CNNSs) with planar graphene-like structure have stimulated increasingly research interest in recent years due to their unique physicochemical properties. CNNSs possess superior stability, high fluorescence quantum yield, low-toxicity, excellent biocompatibility, unique electroluminescent and photoelectrochemical properties, which make them appropriate candidates for biosensing. In this review, we first introduce the preparation and unique properties of CNNSs, with emphasis on their superior properties for biosensing. Then, recent advances of CNNSs in photoelectrochemical biosensing, electrochemiluminescence biosensing and fluorescence biosensing are highlighted. An additional attention is paid to the marriage of CNNSs and nucleic acids, which exhibits great potentials in both biosensing and intracellular imaging. Finally, current challenges and opportunities of this 2D material are outlined. Inspired by the unique properties of CNNSs and their advantages in biological applications, we expect that more attention will be drawn to this promising 2D material and extensive applications can be found in bioanalysis and diseases diagnosis.

  12. Superfluid response of two-dimensional parahydrogen clusters in confinement

    SciTech Connect

    Idowu, Saheed; Boninsegni, Massimo

    2015-04-07

    We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.

  13. Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics.

    PubMed

    Kan, Erjun; Li, Ming; Hu, Shuanglin; Xiao, Chuanyun; Xiang, Hongjun; Deng, Kaiming

    2013-04-04

    Two-dimensional materials have been the hot subject of studies due to their great potential in applications. However, their applications in spintronics have been blocked by the difficulty in producing ordered spin structures in 2D structures. Here we demonstrated that the ultrathin films of recently experimentally realized wurtzite MnO can automatically transform into a stable graphitic structure with ordered spin arrangement via density functional calculation, and the stability of graphitic structure can be enhanced by external strain. Moreover, the antiferromagnetic ordering of graphitic MnO single layer can be switched into half-metallic ferromagnetism by small hole-doping, and the estimated Curie temperature is higher than 300 K. Thus, our results highlight a promising way toward 2D magnetic materials.

  14. Dispersion-free continuum two-dimensional electronic spectrometer

    PubMed Central

    Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.

    2015-01-01

    Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470

  15. Interferometric Diagnosis of Two-Dimensional Plasma Expansion

    SciTech Connect

    Smith, R F; Moon, S; Dunn, J; Nilsen, J; Shlyaptsev, V N; Hunter, J R; Rocca, J; Filevich, J; Marconi, M C

    2002-07-31

    Recent advances in interferometry has allowed for the characterization of the electron density expansion within a laser produced plasma to within 10 {micro}m of the target surface and over picosecond timescales. This technique employs the high brightness output of the transient gain Ni-like Pd collisional x-ray laser at 14.7 nm to construct an effective moving picture of the two-dimensional (2-D) expansion within the plasma. In this paper we present experimentally measured density profiles from an Al plasma and make comparisons with 1.5-D and 2-D code simulations. The results are discussed along with an analysis of the underlying mechanisms driving the plasma expansion.

  16. Pressure Gradient Effects On Two-Dimensional Plasma Expansion

    SciTech Connect

    Moon, S; Smith, R F; Dunn, J; Keenan, R; Nilsen, J; Hunter, J R; Filevich, J; Rocca, J J; Marconi, M C; Shlyaptsev, V N

    2004-10-05

    Recent advances in interferometry has allowed for the characterization of the electron density expansion within a laser produced plasma to within 10 {micro}m of the target surface and over picosecond timescales. This technique employs the high brightness output of the transient gain Ni-like Pd collisional x-ray laser at 14.7 nm to construct an effective moving picture of the two-dimensional (2-D) expansion of the plasma. We present experimentally measured density profiles of an expanding Al plasma generated through laser irradiation in a 14mm line focus geometry. Significant lateral expansion was observed at all times as well as a pronounced on-axis electron density dip. Detailed modeling with a 2-D plasma physics code gives good agreement to experimental observations. Large pressure gradients associated with the tight focal spot conditions are calculated to dominate in shaping the plasma density profile.

  17. Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range.

    PubMed

    West, Brantley A; Moran, Andrew M

    2012-09-20

    Coherent two-dimensional (2D) spectroscopies conducted at visible and infrared wavelengths are having a transformative impact on the understanding of numerous processes in condensed phases. The extension of 2D spectroscopy to the ultraviolet spectral range (2DUV) must contend with several challenges, including the attainment of adequate laser bandwidth, interferometric phase stability, and the suppression of undesired nonlinearities in the sample medium. Solutions to these problems are motivated by the study of a wide range of biological systems whose lowest-frequency electronic resonances are found in the UV. The development of 2DUV spectroscopy also makes possible the attainment of new insights into elementary chemical reaction dynamics (e.g., electrocyclic ring opening in cycloalkenes). Substantial progress has been made in both the implementation and application of 2DUV spectroscopy in the past several years. In this Perspective, we discuss 2DUV methodology, review recent applications, and speculate on what the future will hold.

  18. Thermal conductivity of disordered two-dimensional binary alloys.

    PubMed

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2016-10-20

    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C1-xNx alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.

  19. Two-dimensional atom localization induced by a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Xu, Jun

    2016-10-01

    A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).

  20. High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography.

    PubMed

    Freye, Chris E; Mu, Lan; Synovec, Robert E

    2015-12-11

    A high-temperature diaphragm valve-based comprehensive two-dimensional gas chromatography (GC×GC) instrument is demonstrated which readily allows separations up to 325°C. Previously, diaphragm valve-based GC×GC was limited to 175°C if the valve was mounted in the oven, or limited to 265°C if the valve was faced mounted on the outside of the oven. A new diaphragm valve has been commercially developed, in which the temperature sensitive O-rings that previously limited the separation temperatures have been replaced with Kalrez O-rings, a perfluoroelastomer, allowing for significantly higher temperatures permitting a greater range of volatile and semi-volatile compounds to be readily separated. In the current investigation, a separation temperature up to 325°C is demonstrated with the valve mounted directly in the oven. Since the temperature limit for most commonly used GC columns is at or below 325°C, the scope of diaphragm valve-based GC×GC is now dramatically broadened to encompass a majority of all column stationary phase chemistries. A 44-component mixture of alkanes, alcohols, and polyaromatic hydrocarbons is used to study this new configuration whose boiling points range from 98°C (n-heptane) to 450°C (n-triacontane). For the test mixture using a modulation period PM of 1.0s, peak shapes on second dimension separations, (2)D, are symmetric with average widths at base of 79.4ms, producing a (2)D peak capacity of (2)nc∼12. Based on the average peak width of 2.4s for the first dimension separation with a run time of 32.5min, the (1)D peak capacity is (1)nc∼800. Thus, the ideal two-dimensional peak capacity [Formula: see text] is 9600. Little variation in within-analyte (2)D peak width was observed with an average %RSD of less than 3.0%. Furthermore, retention time on (2)D was very reproducible with an average %RSD less than 0.5%. Measured peak areas (sum of all (2)D peaks for given analyte) had an average %RSD of 4.4%. The transfer fraction from (1)D

  1. On final states of two-dimensional decaying turbulence

    NASA Astrophysics Data System (ADS)

    Yin, Z.

    2004-12-01

    Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ω-ψ, which is frequently adopted as the characterization of those final states, is merely a sufficient but not necessary condition; moreover, it is not proper to use it as the definition. It is found that the method through the value of the effective area S covered by the scatter ω-ψ plot, initially suggested by Read, Rhines, and White ["Geostrophic scatter diagrams and potential vorticity dynamics," J. Atmos. Sci. 43, 3226 (1986)] is more general and suitable for the definition. Based on this concept, a definition is presented, which covers all existing results in late states of decaying 2D flows (including some previous unexplainable weird double-valued ω-ψ scatter plots). The remaining part of the paper is trying to further study 2D decaying turbulence with the assistance of this definition. Some numerical results, leading to "bar" final states and further verifying the predictive ability of statistical mechanics [Yin, Montgomery, and Clercx, "Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of patches and points," Phys. Fluids 15, 1937 (2003)], are reported. It is realized that some simulations with narrow-band energy spectral initial conditions result in some final states that cannot be very well interpreted by the statistical theory (meanwhile, those final states are still in the scope of the definition).

  2. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    SciTech Connect

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan E-mail: cbp@kias.re.kr

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  3. Materials synthesis: Two-dimensional gallium nitride

    NASA Astrophysics Data System (ADS)

    Koratkar, Nikhil A.

    2016-11-01

    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  4. Mobility anisotropy of two-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  5. Towards application of one- and two-dimensional nanomaterials for reinforcement of polymeric nanocomposite bone grafts

    NASA Astrophysics Data System (ADS)

    Farrshid, Behzad

    One- and two-dimensional (1-D and 2-D) nanomaterials possess extraordinary physiochemical properties such as large surface area, excellent mechanical properties, high surface energy and good dispersivity in organic and biological solvents, therefore, they have been extensively used as reinforcing agents to improve the mechanical properties of polymeric scaffolds for bone tissue engineering applications. Carbon nanomaterials such as carbon nanotubes and graphene have been used as reinforcing agents for biodegradable polymeric scaffolds and composites, however, their short- and long-term in vitro cytotoxicity and in vivo biocompatibility is an area of extensive debate. In this study, we have systematically investigated the effects of addition of low concentrations (0.01-0.2 wt. %) of 1-D and 2-D carbon nanomaterials (graphene oxide nanoplatelets, graphene oxide nanoribbons and carbon nanotubes) and inorganic nanomaterials (boron nitride nanotubes, boron nitride nanoplatelers, tungsten disulfide nanotubes and molybdenum disulfide nanoplatelets) on the mechanical properties, cytocompatibility, and bioactivity of poly(propylene fumarate) (PPF) nanocomposites towards their potential applications as porous and nonporous implants for bone tissue engineering. Addition of nanomaterials in the PPF matrix improved the compressive and flexural mechanical properties of non-porous crosslinked PPF nanocomposites and porous PPF scaffolds. Our results suggest that in addition to high surface roughness and surface area of the nanomaterials, the presence of functional groups on the surface of nanomaterials leads to an increased nanomaterial-polymer interaction and a uniform dispersion of nanomaterials in polymer matrix which may be the key factors responsible for an improved mechanical reinforcement. The in vitro studies showed an excellent cytocompatibility for both carbon and inorganic nanomaterial reinforced PPF nanocomposites and scaffolds. Protein adsorption studies and in vitro

  6. Surfactant mediated one- and two-dimensional ZnO nanostructured thin films for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Mummoorthi, M.; Rajendran, S.; Ravi, G.

    2015-01-01

    One-dimensional (1D) and two-dimensional (2D) nanostructured zinc oxide (ZnO) thin films were electrodeposited from aqueous zinc chloride on FTO glass substrates. The effects of organic surfactant such as cetyltrimethyl ammonium bromide (CTAB) and polyvinyl alcohol (PVA) on structural, morphological, crystal quality and optical properties of electrodeposited ZnO films were investigated. The x-ray diffraction pattern revealed that the prepared thin films were pure wutrzite hexagonal structure. The thin films deposited using organic surfactant in this work showed different morphologies such as nanoplatelet and flower. The hexagonal platelet and flower-like nanostructures were obtained in the presence of CTAB and PVA surfactant, respectively. The crystal quality and atomic vacancies of the prepared nanostructured thin films were investigated by micro Raman spectroscopic technique. The emission properties and optical quality of the films were studied by photoluminescence spectrometry. PEMA-LiClO4-EC gel polymer electrolyte has been used to replace the liquid electrolyte for reducing the leakage problem. Graphene counter electrode was used as an alternative for platinum electrode. Eosin yellow dye was used as a sensitizer. J-V characterizations were carried out for different 1D and 2D nanostructures. The nanoflower structure exhibited higher efficiency (η = 0.073%) than the other two nanostructures.

  7. Investigation of unsteadiness in Shock-particle cloud interaction: Fully resolved two-dimensional simulation and one-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.

    2015-11-01

    Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.

  8. Novel Two-Dimensional Silicon Dioxide with in-Plane Negative Poisson's Ratio.

    PubMed

    Gao, Zhibin; Dong, Xiao; Li, Nianbei; Ren, Jie

    2017-02-08

    Silicon dioxide or silica, normally existing in various bulk crystalline and amorphous forms, was recently found to possess a two-dimensional structure. In this work, we use ab initio calculation and evolutionary algorithm to unveil three new two-dimensional (2D) silica structures whose thermal, dynamical, and mechanical stabilities are compared with many typical bulk silica. In particular, we find that all three of these 2D silica structures have large in-plane negative Poisson's ratios with the largest one being double of penta graphene and three times of borophenes. The negative Poisson's ratio originates from the interplay of lattice symmetry and Si-O tetrahedron symmetry. Slab silica is also an insulating 2D material with the highest electronic band gap (>7 eV) among reported 2D structures. These exotic 2D silica with in-plane negative Poisson's ratios and widest band gaps are expected to have great potential applications in nanomechanics and nanoelectronics.

  9. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  10. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  11. Two-Dimensional Motions of Rockets

    ERIC Educational Resources Information Center

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  12. New two dimensional compounds: beyond graphene

    NASA Astrophysics Data System (ADS)

    Lebegue, Sebastien

    2015-03-01

    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  13. Two-Dimensional Turbulence in Magnetized Plasmas

    ERIC Educational Resources Information Center

    Kendl, A.

    2008-01-01

    In an inhomogeneous magnetized plasma the transport of energy and particles perpendicular to the magnetic field is in general mainly caused by quasi two-dimensional turbulent fluid mixing. The physics of turbulence and structure formation is of ubiquitous importance to every magnetically confined laboratory plasma for experimental or industrial…

  14. Valley excitons in two-dimensional semiconductors

    SciTech Connect

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; Yao, Wang

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibit remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.

  15. Valley excitons in two-dimensional semiconductors

    DOE PAGES

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  16. Two-dimensional fluorescence intensity distribution analysis: theory and applications.

    PubMed

    Kask, P; Palo, K; Fay, N; Brand, L; Mets, U; Ullmann, D; Jungmann, J; Pschorr, J; Gall, K

    2000-04-01

    A method of sample analysis is presented which is based on fitting a joint distribution of photon count numbers. In experiments, fluorescence from a microscopic volume containing a fluctuating number of molecules is monitored by two detectors, using a confocal microscope. The two detectors may have different polarizational or spectral responses. Concentrations of fluorescent species together with two specific brightness values per species are determined. The two-dimensional fluorescence intensity distribution analysis (2D-FIDA), if used with a polarization cube, is a tool that is able to distinguish fluorescent species with different specific polarization ratios. As an example of polarization studies by 2D-FIDA, binding of 5'-(6-carboxytetramethylrhodamine) (TAMRA)-labeled theophylline to an anti-theophylline antibody has been studied. Alternatively, if two-color equipment is used, 2D-FIDA can determine concentrations and specific brightness values of fluorescent species corresponding to individual labels alone and their complex. As an example of two-color 2D-FIDA, binding of TAMRA-labeled somatostatin-14 to the human type-2 high-affinity somatostatin receptors present in stained vesicles has been studied. The presented method is unusually accurate among fluorescence fluctuation methods. It is well suited for monitoring a variety of molecular interactions, including receptors and ligands or antibodies and antigens.

  17. Photonics and optoelectronics of two-dimensional materials beyond graphene

    NASA Astrophysics Data System (ADS)

    Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang

    2016-11-01

    Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

  18. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  19. Line shape analysis of two-dimensional infrared spectra

    PubMed Central

    Guo, Qi; Pagano, Philip; Li, Yun-Liang; Kohen, Amnon; Cheatum, Christopher M.

    2015-01-01

    Ultrafast two-dimensional infrared (2D IR) spectroscopy probes femtosecond to picosecond time scale dynamics ranging from solvation to protein motions. The frequency-frequency correlation function (FFCF) is the quantitative measure of the spectral diffusion that reports those dynamics and, within certain approximations, can be extracted directly from 2D IR line shapes. A variety of methods have been developed to extract the FFCF from 2D IR spectra, which, in principle, should give the same FFCF parameters, but the complexity of real experimental systems will affect the results of these analyses differently. Here, we compare five common analysis methods using both simulated and experimental 2D IR spectra to understand the effects of apodization, anharmonicity, phasing errors, and finite signal-to-noise ratios on the results of each of these analyses. Our results show that although all of the methods can, in principle, yield the FFCF under idealized circumstances, under more realistic experimental conditions they behave quite differently, and we find that the centerline slope analysis yields the best compromise between the effects we test and is most robust to the distortions that they cause. PMID:26049447

  20. Two-dimensional state in driven magnetohydrodynamic turbulence

    SciTech Connect

    Bigot, Barbara; Galtier, Sebastien

    2011-02-15

    The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k{sub ||}=0 and in the area k{sub ||}>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvenic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.

  1. Two dimensional electron spin resonance: Structure and dynamics of biomolecules

    NASA Astrophysics Data System (ADS)

    Saxena, Sunil; Freed, Jack H.

    1998-03-01

    The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.

  2. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  3. Photonics and optoelectronics of two-dimensional materials beyond graphene.

    PubMed

    Ponraj, Joice Sophia; Xu, Zai-Quan; Dhanabalan, Sathish Chander; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang

    2016-11-18

    Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

  4. Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects.

    PubMed

    Liu, Yuanyue; Xiao, Hai; Goddard, William A

    2016-05-11

    Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gap states. We show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.

  5. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    SciTech Connect

    Yue, Yuan; Kan, Yuwei; Clearfield, Abraham; Choi, Hyunho; Liang, Hong

    2015-12-21

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.

  6. Two-dimensional material electronics and photonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    2015-09-01

    Two-dimensional (2D) materials has attracted intense interest in research in recent years. As compared to their bulk counterparts, these 2D materials have many unique properties due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the materials also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and interaction with light. These unique properties of 2D materials open up broad territories of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on graphene and transition metal dichalcogenides.

  7. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Kan, Yuwei; Choi, Hyunho; Clearfield, Abraham; Liang, Hong

    2015-12-01

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (Rh). However, the Rh represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y2O3) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correcting factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.

  8. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATIONS WITH THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR NEUTRINO TRANSPORT

    SciTech Connect

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-20

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation–hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M{sub ⊙} progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M{sub ⊙} progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies E{sub dia} ≳ 0.1–0.5 B (1 B ≡ 10{sup 51} erg) for all considered 2D models within approximately 100–300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino–electron scattering during collapse will lead to a stronger explosion.

  9. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.

  10. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.

    PubMed

    Kang, Joohoon; Sangwan, Vinod K; Wood, Joshua D; Hersam, Mark C

    2017-02-27

    Exfoliation of single-layer graphene from bulk graphite and the subsequent discovery of exotic physics and emergent phenomena in the atomically thin limit has motivated the isolation of other two-dimensional (2D) layered nanomaterials. Early work on isolated 2D nanomaterial flakes has revealed a broad range of unique physical and chemical properties with potential utility in diverse applications. For example, the electronic and optical properties of 2D nanomaterials depend strongly on atomic-scale variations in thickness, enabling enhanced performance in optoelectronic technologies such as light emitters, photodetectors, and photovoltaics. Much of the initial research on 2D nanomaterials has relied on micromechanical exfoliation, which yields high-quality 2D nanomaterial flakes that are suitable for fundamental studies but possesses limited scalability for real-world applications. In an effort to overcome this limitation, solution-processing methods for isolating large quantities of 2D nanomaterials have emerged. Importantly, solution processing results in 2D nanomaterial dispersions that are amenable to roll-to-roll fabrication methods that underlie lost-cost manufacturing of thin-film transistors, transparent conductors, energy storage devices, and solar cells. Despite these advantages, solution-based exfoliation methods typically lack control over the lateral size and thickness of the resulting 2D nanomaterial flakes, resulting in polydisperse dispersions with heterogeneous properties. Therefore, post-exfoliation separation techniques are needed to achieve 2D nanomaterial dispersions with monodispersity in lateral size, thickness, and properties. In this Account, we survey the latest developments in solution-based separation methods that aim to produce monodisperse dispersions and thin films of emerging 2D nanomaterials such as graphene, boron nitride, transition metal dichalcogenides, and black phosphorus. First, we motivate the need for precise thickness

  11. Determination of energy spectrum parameters for two-dimensional carriers from the quantum oscillation beating pattern

    NASA Astrophysics Data System (ADS)

    Dorozhkin, S. I.

    1990-02-01

    Recent experimental results of Das et al. and of Luo et al. on the Shubnikov-de Haas oscillation beatings in two-dimensional electron systems (2D ES) are quantitatively described in terms of a model based on the energy spectrum of a 2D ES with strong spin-orbit coupling. Values of the energy spectrum parameters, including the g factor, are obtained for two-dimensional electrons in InxGa1-xAs/In0.52Al0.48As (x~=0.6) heterostructures.

  12. Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun

    2016-10-01

    The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.

  13. Two-dimensional graphene analogues for biomedical applications.

    PubMed

    Chen, Yu; Tan, Chaoliang; Zhang, Hua; Wang, Lianzhou

    2015-05-07

    The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health.

  14. Two-dimensional materials for novel liquid separation membranes

    NASA Astrophysics Data System (ADS)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  15. Investigation of the partially coherent effects in a 2D Talbot interferometer.

    PubMed

    Ge, Xin; Wang, Zhili; Gao, Kun; Zhang, Kai; Hong, Youli; Wang, Dajiang; Zhu, Zhongzhu; Zhu, Peiping; Wu, Ziyu

    2011-08-01

    The recent use of a one-dimensional (1D) X-ray Talbot interferometer has triggered great interest in X-ray differential phase contrast imaging. As an improved version of a 1D interferometer, the development of two-dimensional (2D) grating interferometry strongly stimulated applications of grating-based imaging. In the framework of Fresnel diffraction theory, we investigated the self-image of 2D-phase gratings under partially coherent illumination. The fringe visibility of the self-image has been analyzed as a function of the spatial coherence length. From the viewpoint of self-image visibility, it is possible to find the optimal 2D grid for 2D X-ray grating interferometer imaging. Numerical simulations have been also carried out for quantitative evaluation. Results, in good agreement with theoretical analysis, indicate the spatial coherence requirements of the radiation illuminating a 2D grating interferometer. Moreover, our results can be used to optimize performances of a 2D grating interferometer and for further theoretical and experimental research on grating-based imaging systems.

  16. Probing electric properties at the boundary of planar 2D heterostructure

    NASA Astrophysics Data System (ADS)

    Park, Jewook

    The quest for novel two-dimensional (2D) materials has led to the discovery of hybridized 2D atomic crystals. Especially, planar 2D heterostructure provides opportunities to explore fascinating electric properties at abrupt one-dimensional (1D) boundaries reminiscent to those seen in the 2D interfaces of complex oxides. By implementing the concept of epitaxy to 2D space, we developed a new growth technique to epitaxially grow hexagonal boron nitride (hBN) from the edges of graphene, forming a coherent planar heterostructure. At the interface of hBN and graphene, a polar-on-nonpolar 1D boundary can be formed which is expected to possess peculiar electronic states associated with the polarity of hBN and edge states of graphene Scanning tunneling microscopy and spectroscopy (STM/S) measurements revealed an abrupt 1D zigzag oriented boundary, with boundary states about 0.6 eV below or above the Fermi level depending on the termination of the hBN at the boundary. The boundary states are extended along the boundary and exponentially decay into the bulk of graphene and hBN. Combined STM/S and first-principles theory study not only disclose spatial and energetic distribution of interfacial state but also reveal the origin of boundary states and the effect of the polarity discontinuity at the interface By probing electric properties at the boundary in the atomic scale, planar 2D heterostructure is demonstrated as a promising platform for discovering emergent phenomena at the 1D interface in 2D materials. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  17. Magnetization study of two dimensional helium three

    NASA Astrophysics Data System (ADS)

    Guo, Lei

    This dissertation discusses a magnetization study of a two dimensional Fermi system. Our group developed a SQUID NMR system to study the magnetization of two dimensional 3He on both GTA grafoil and ZYX Graphite substrates. Benefiting from SQUID technology, our NMR experiments were performed at very low applied magnetic field thus avoid the masking of ordering by strong external field. Monolayer 3He films adsorbed on crystalline graphite are considered a nearly ideal example of a two dimensional system of highly correlated fermions. By controlling the 3He areal density, adsorbed films exhibit a wide range of structures with different temperature- dependent magnetic properties and heat capacities. Our recent experiments on two dimensional 3He adsorbed on ZYX graphite focused on the anti-ferromagnetic 4/7 phase and the ferromagnetic incommensurate solid state of a second 3He monolayer. Ferromagnetic order was observed in two dimensional 3He films on both Grafoil and highly oriented ZYX grade exfoliated graphite. The dipolar field plays an important role in magnetic ordering in two dimensional spin systems. The dipole-dipole interaction leads to a frequency shift of the NMR absorption line. The resulting 3He NMR lineshape on Grafoil was a broad peak shifted towards lower frequency with a background from the randomly oriented regions extending to positive frequencies. Compared to Grafoil, ZYX graphite has a much greater structural coherence and is more highly oriented. When studying magnetism of 3He films on ZYX substrate we found that the features we observed in our original Grafoil experiment were much more pronounced on ZYX graphite. In addition, we observed some multi-peak structure on the 3He NMR lineshape, which suggest a series of spin wave resonances. We also studied the magnetic properties of the second layer of 3He films on ZYX substrate at density around 4/7 phase. To eliminate the paramagnetic signal of the first layer solid, we pre-plated a 4He layer on the

  18. Calibration of Two-dimensional Floodplain Modeling in the Atchafalaya River Basin Using SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Jung, Hahn Chul; Jasinski, Michael; Kim, Jin-Woo; Shum, C. K.; Bates, Paul; Lee, Hgongki; Neal, Jeffrey; Alsdorf, Doug

    2012-01-01

    Two-dimensional (2D) satellite imagery has been increasingly employed to improve prediction of floodplain inundation models. However, most focus has been on validation of inundation extent, with little attention on the 2D spatial variations of water elevation and slope. The availability of high resolution Interferometric Synthetic Aperture Radar (InSAR) imagery offers unprecedented opportunity for quantitative validation of surface water heights and slopes derived from 2D hydrodynamic models. In this study, the LISFLOOD-ACC hydrodynamic model is applied to the central Atchafalaya River Basin, Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for the purpose of demonstrating the utility of InSAR in coupled 1D/2D model calibration. Two calibration schemes focusing on Manning s roughness are compared. First, the model is calibrated in terms of water elevations at a single in situ gage during a 62 day simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in terms of water elevation changes calculated from ALOS PALSAR interferometry during 46 days of the image acquisition interval from 16 April 2008 to 1 June 2009. The best-fit models show that the mean absolute errors are 3.8 cm for a single in situ gage calibration and 5.7 cm/46 days for InSAR water level calibration. The optimum values of Manning's roughness coefficients are 0.024/0.10 for the channel/floodplain, respectively, using a single in situ gage, and 0.028/0.10 for channel/floodplain the using SAR. Based on the calibrated water elevation changes, daily storage changes within the size of approx 230 sq km of the model area are also calculated to be of the order of 107 cubic m/day during high water of the modeled period. This study demonstrates the feasibility of SAR interferometry to support 2D hydrodynamic model calibration and as a tool for improved understanding of complex floodplain hydrodynamics

  19. Synthesis of two-dimensional materials by selective extraction.

    PubMed

    Naguib, Michael; Gogotsi, Yury

    2015-01-20

    CONSPECTUS: Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from

  20. Two-Dimensional Plasmonics in Massive and Massless Electron Gases

    NASA Astrophysics Data System (ADS)

    Yoon, Hosang

    Plasmonic waves in solid-state are caused by collective oscillation of mobile charges inside or at the surface of conductors. In particular, surface plasmonic waves propagating at the skin of metals have recently attracted interest, as they reduce the wavelength of electromagnetic waves coupled to them by up to ˜10 times, allowing one to create miniaturized wave devices at optical frequencies. In contrast, plasmonic waves on two-dimensional (2D) conductors appear at much lower infrared and THz-GHz frequencies, near or in the electronics regime, and can achieve far stronger wavelength reduction factor reaching well above 100. In this thesis, we study the unique machinery of 2D plasmonic waves behind this ultra-subwavelength confinement and explore how it can be used to create various interesting devices. To this end, we first develop a physically intuitive theoretical formulation of 2D plasmonic waves, whose two main components---the Coulomb restoration force and inertia of the collectively oscillating charges---are combined into a transmission-line-like model. We then use this formulation to create various ultra-subwavelength 2D plasmonic devices. For the 2D conductor, we first choose GaAs/AlGaAs heterostructure---a 2D electron gas consisting of massive (m* > 0) electrons---demonstrating plasmonic bandgap crystals, interferometers, and negatively refracting metamaterials. We then examine a 2D plasmonic device based on graphene, a 2D electron gas consisting of effectively massless (m* = 0) electrons. We theoretically show and experimentally demonstrate that the massless electrons in graphene can surprisingly exhibit a collective mass when subjected to a collective excitation, providing the inertia that is essential for the propagation of 2D plasmonic waves. Lastly, we theoretically investigate the thermal current fluctuation behaviors in massive and massless electron gases. While seemingly unrelated on first sight, we show that the thermal current fluctuation is

  1. Synthesis of Two-Dimensional Materials by Selective Extraction

    SciTech Connect

    Naguib, Michael; Gogotsi, Yury

    2014-12-09

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the precursor

  2. Synthesis of Two-Dimensional Materials by Selective Extraction

    DOE PAGES

    Naguib, Michael; Gogotsi, Yury

    2014-12-09

    Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds tomore » form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from the

  3. Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects

    SciTech Connect

    Wells, Jered R.; Dobbins, James T. III

    2012-10-15

    Purpose: The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Methods: Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ/i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. Results: The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm{sup -1}) and approximate circular symmetry at frequencies below 4 mm{sup -1}. While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm{sup -1}. Slit measurement near 45 Degree-Sign revealed radial asymmetry in the MTF resulting from

  4. Effects of extensional rates on characteristic scales of two-dimensional turbulence in polymer solutions

    NASA Astrophysics Data System (ADS)

    Hidema, R.

    2014-08-01

    In order to study the effects of extensional viscosities on turbulent drag reduction, experimental studies using two-dimensional turbulence have been made. Anisotropic structures and variations of energy transfer induced by polymers are considered. Polyethyleneoxide and hydroxypropyl cellulose having different flexibility, which is due to different characteristics of extensional viscosity, are added to 2D turbulence. Variations of the turbulence were visualized by interference patterns of 2D flow, and were analysed by an image processing. The effects of polymers on turbulence in the streamwise and normal directions were also analysed by 2D Fourier transform. In addition, characteristic scales in 2D turbulence were analysed by wavelet transform.

  5. Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms.

    PubMed

    Pan, Tao; Li, Ruliang; Wong, Boon-Seng; Liu, Tong; Gambetti, Pierluigi; Sy, Man-Sun

    2002-06-01

    The common use of one-dimensional (1-D) immunoblot with a single monoclonal antibody (Mab) engenders the notion that the normal or cellular prion protein (PrP(C) ) comprises few and simple forms. In this study we used two-dimensional (2-D) immunoblot with a panel Mabs to various regions of the prion protein to demonstrate the complexity of the PrP(C) present in human brain. We distinguished over 50 immunoblot spots, each representing a distinct PrP(C) species based on combinations of different molecular weights and isoelectric points (pIs). The PrP(C) heterogeneity is due to the presence of a full-length and two major truncated forms as well as to the diversity of the glycans linked to most of these forms. The two major truncated forms result from distinct cleavage sites located at the N-terminus. In addition, enzymatic removal of sialic acid and lectin binding studies indicate that the glycans linked to the full-length and truncated PrP(C) forms differ in their structure and ratios of the glycoforms. The truncation of PrP(C) and the heterogeneity of the linked glycans may play a role in regulating PrP(C) function. Furthermore, the presence of relatively large quantities of different PrP(C) species may provide additional mechanisms by which the diversity of prion strains could be generated.

  6. Cooperative two-dimensional directed transport

    NASA Astrophysics Data System (ADS)

    Zheng, Zhigang; Chen, Hongbin

    2010-11-01

    A mechanism for the cooperative directed transport in two-dimensional ratchet potentials is proposed. With the aid of mutual couplings among particles, coordinated unidirectional motion along the ratchet direction can be achieved by transforming the energy from the transversal rocking force (periodic or stochastic) to the work in the longitude direction. Analytical predictions on the relation between the current and other parameters for the ac-driven cases are given, which are in good agreement with numerical simulations. Stochastic driving forces can give rise to the resonant directional transport. The effect of the free length, which has been explored in experiments on the motility of bipedal molecular motors, is investigated for both the single- and double-channel cases. The mechanism and results proposed in this letter may both shed light on the collective locomotion of molecular motors and open ways on studies in two-dimensional collaborative ratchet dynamics.

  7. Toward two-dimensional search engines

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  8. Electronics based on two-dimensional materials.

    PubMed

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  9. Plasmonics with two-dimensional conductors.

    PubMed

    Yoon, Hosang; Yeung, Kitty Y M; Kim, Philip; Ham, Donhee

    2014-03-28

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics.

  10. Two-dimensional plasmonic nanosurface for photovoltaics

    NASA Astrophysics Data System (ADS)

    Polemi, Alessia; Shuford, Kevin L.

    2011-12-01

    In this paper, we investigate a two-dimensional corrugated plasmonic nanosurface for efficient light trapping in a photovoltaic cell. Inspired by a well-known one-dimensional grating nanosurface, the present configuration is composed of two perpendicular gratings in the metal film that intersect to yield cross-shaped nanoelements. The surface corrugation is then covered by a silicon film. An additional degree of freedom can be introduced into the design by interrupting the grid in both directions. We show that this extra spacing between the array elements can be used to tune the absorption properties of the nanosurface. By including the effect of the solar spectrum, we demonstrate how this two-dimensional configuration is more efficient than its one-dimensional counterpart in terms of the actual short circuit photocurrent density. Finally, we propose possible extensions of this structure design, which can further enhance the solar cell performance.

  11. Two-dimensional optimal sensor placement

    SciTech Connect

    Zhang, H.

    1995-05-01

    A method for determining the optimal two-dimensional spatial placement of multiple sensors participating in a robot perception task is introduced in this paper. This work is motivated by the fact that sensor data fusion is an effective means of reducing uncertainties in sensor observations, and that the combined uncertainty varies with the relative placement of the sensors with respect to each other. The problem of optimal sensor placement is formulated and a solution is presented in the two dimensional space. The algebraic structure of the combined sensor uncertainty with respect to the placement of sensor is studied. A necessary condition for optimal placement is derived and this necessary condition is used to obtain an efficient closed-form solution for the global optimal placement. Numerical examples are provided to illustrate the effectiveness and efficiency of the solution. 11 refs.

  12. Two-Dimensional NMR Lineshape Analysis

    NASA Astrophysics Data System (ADS)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  13. Two-Dimensional NMR Lineshape Analysis

    PubMed Central

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-01-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions. PMID:27109776

  14. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  15. Two-dimensional ranking of Wikipedia articles

    NASA Astrophysics Data System (ADS)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  16. Deeply subrecoil two-dimensional Raman cooling

    SciTech Connect

    Boyer, V.; Phillips, W.D.; Lising, L.J.; Rolston, S.L.

    2004-10-01

    We report the implementation of a two-dimensional Raman cooling scheme using sequential excitations along the orthogonal axes. Using square pulses, we have cooled a cloud of ultracold cesium atoms down to an rms velocity spread of 0.39(5) recoil velocities, corresponding to an effective transverse temperature of 30 nK (0.15T{sub rec}). This technique can be useful to improve cold-atom atomic clocks and is particularly relevant for clocks in microgravity.

  17. Two dimensional echocardiographic detection of intraatrial masses.

    PubMed

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  18. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2