Science.gov

Sample records for 1h 15n shieldings

  1. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. Copyright © 2011 John Wiley & Sons, Ltd.

  3. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    PubMed Central

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  4. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  5. 3D 15N/15N/1H chemical shift correlation experiment utilizing an RFDR-based 1H/1H mixing period at 100 kHz MAS

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yusuke; Malon, Michal; Ishii, Yuji; Ramamoorthy, Ayyalusamy

    2014-07-01

    Homonuclear correlation NMR experiments are commonly used in the high-resolution structural studies of proteins. While 13C/13C chemical shift correlation experiments utilizing dipolar recoupling techniques are fully utilized under MAS, correlation of the chemical shifts of 15N nuclei in proteins has been a challenge. Previous studies have shown that the negligible 15N-15N dipolar coupling in peptides or proteins necessitates the use of a very long mixing time (typically several seconds) for effective spin diffusion to occur and considerably slows down a 15N/15N correlation experiment. In this study, we show that the use of mixing proton magnetization, instead of 15N, via the recoupled 1H-1H dipolar couplings enable faster 15N/15N correlation. In addition, the use of proton-detection under ultrafast MAS overcomes the sensitivity loss due to multiple magnetization transfer (between 1H and 15N nuclei) steps. In fact, less than 300 nL (∼1.1 micromole quantity) sample is sufficient to acquire the 3D spectrum within 5 h. Our results also demonstrate that a 3D 15N/15N/1H experiment can render higher resolution spectra that will be useful in the structural studies of proteins at ultrafast MAS frequencies. 3D 15N/15N/1H and 2D radio frequency-driven dipolar recoupling (RFDR)-based 1H/1H experimental results obtained from a powder sample of N-acetyla-L-15N-valyl-L-15N-leucine at 70 and 100 kHz MAS frequencies are presented.

  6. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  7. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  8. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  9. The role of electrostatic interactions and solvent polarity on the 15N NMR shielding of azines

    NASA Astrophysics Data System (ADS)

    Modesto-Costa, Lucas; Gester, Rodrigo M.; Manzoni, Vinícius

    2017-10-01

    The nitrogen-15 nuclear magnetic resonance (15N NMR) shielding of azines is very sensitive to the chemical environment. Theoretically, specific interactions are important on the calculation of their spectroscopic properties. However, the choice of the solvent model for the description of NMR shielding constants is still a subject of discussion. In this context, we analyse the role of electrostatic interactions on 15N NMR shielding as function of solvent polarity using the sequential-Quantum Mechanics/Molecular Mechanics approach methodology. Excellent agreement with experimental data of the NMR shielding was obtained without the inclusion of explicit solvent molecules either for polar or non polar solvents.

  10. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  11. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.

    PubMed

    Claramunt, Rosa M; Santa María, M Dolores; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2006-05-01

    Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.

  12. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  13. Measurement and interpretation of 15N- 1H residual dipolar couplings in larger proteins

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Akash; Revington, Matthew; Zuiderweg, Erik R. P.

    2010-03-01

    A decade ago, Dr. L.E. Kay and co-workers described an ingenious HNCO-based triple-resonance experiment from which several protein backbone RDCs can be measured simultaneously (Yang et al. (1999) [1]). They implemented a J-scaling technique in the 15N dimension of the 3D experiment to obtain the NH RDCs. We have used this idea to carry out J-scaling in a 2D 15N- 1H-TROSY experiment and have found it to be an excellent method to obtain NH RDCs for larger proteins upto 70 kDa, far superior to commonly used HSQC in-phase/anti-phase and HSQC/TROSY comparisons. Here, this method, dubbed "RDC-TROSY" is discussed in detail and the limits of its utility are assessed by simulations. Prominent in the latter analysis is the evaluation of the effect of amide proton flips on the "RDC-TROSY" linewidths. The details of the technical and computational implementations of these methods for the determination of domain orientations in 45-60 kDa Hsp70 chaperone protein constructs are described.

  14. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  15. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  16. Nitrogen-15 labeled 5S RNA. Identification of uridine base pairs in Escherichia coli 5S RNA by sup 1 H- sup 15 N multiple quantum NMR

    SciTech Connect

    Davis, D.R.; Yamaizumi, Z.; Nishimura, S.; Poulter, C.D. )

    1989-05-02

    Escherichia coli 5S RNA labeled with {sup 15}N at N3 of the uridines was isolated from the S{phi}-187 uracil auxotroph grown on a minimal medium supplemented with (3-{sup 15}N)uracil. {sup 1}H-{sup 15}N multiple quantum filtered and 2D chemical shift correlated spectra gave resonances for the uridine imino {sup 1}H-{sup 15}N units whose protons were exchanging slowly with solvent. Peaks with {sup 1}H/{sup 15}N shifts at 11.6/154.8, 11.7/155.0, 11.8/155.5, 12.1/155.0, and 12.2/155.0 ppm were assigned to GU interactions. Two labile high-field AU resonances at 12.6/156.8 and 12.8/157.3 ppm typical of Au pairs in a shielded environment at the end of a helix were seen. Intense AU signals were also found at 13.4/158.5 and 13.6/159.2 ppm where {sup 1}H-{sup 15}N units in normal Watson-Crick pairs resonate. {sup 1}H resonances at 10.6 and 13.8 ppm were too weak, presumably because of exchange with water, to give peaks in chemical shift correlated spectra. {sup 1}H chemical shifts suggest that the resonance at 13.8 ppm represents a labile AU pair, while the resonance at 10.6 ppm is typical of a tertiary interaction between U and a tightly bound water or a phosphate residue. The NMR data are consistent with proposed secondary structures for 5S RNA.

  17. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  18. 15N CSA tensors and 15N-1H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone 15N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the 15N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the 15N CSA parameters, a more advanced approach based on the ;magic sandwich; SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the 15N-1H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  19. Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda

    PubMed Central

    Di Paolo, Alexandre; Duval, Valérie; Matagne, André

    2010-01-01

    Lysozyme from lambda bacteriophage (λ lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, λ lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of λ lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes λ lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of λ lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the 1H, 13C and 15N backbone resonance assignments for λ lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR. PMID:20300891

  20. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  1. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  2. 1H and 15N nuclear magnetic resonance assignment and secondary structure of the cytotoxic ribonuclease alpha-Sarcin.

    PubMed Central

    Campos-Olivas, R.; Bruix, M.; Santoro, J.; Martínez del Pozo, A.; Lacadena, J.; Gavilanes, J. G.; Rico, M.

    1996-01-01

    The ribosome-inactivating protein alpha-Sarcin (alpha S) is a 150-residue fungal ribonuclease that, after entering sensitive cells, selectively cleaves a single phosphodiester bond in an universally conserved sequence of the major rRNA to inactivate the ribosome and thus exert its cytotoxic action. As a first step toward establishing the structure-dynamics-function relationships in this system, we have carried out the assignment of the 1H and 15N NMR spectrum of alpha S on the basis of homonuclear (1H-1H) and heteronuclear (1H-15N) two-dimensional correlation spectra of a uniformly 15N-labeled sample, and two selectively 15N-labeled (Tyr and Phe) samples, as well as a single three-dimensional experiment. The secondary structure of alpha S, as derived from the characteristic patterns of dipolar connectivities between backbone protons, conformational chemical shifts, and the protection of backbone amide protons against exchange, consists of a long N-terminal beta-hairpin, a short alpha-helical segment, and a C-terminal beta-sheet of five short strands arranged in a + 1, + 1, + 1, + 1 topology, connected by long loops in which the 13 Pro residues are located. PMID:8732769

  3. 1H, 13C and 15N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.

  4. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  5. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis.

    PubMed

    Steinhof, Oliver; Kibrik, Éléonore J; Scherr, Günter; Hasse, Hans

    2014-04-01

    Urea-formaldehyde resins are bulk products of the chemical industry. Their synthesis involves a complex reaction network. The present work contributes to its elucidation by presenting results from detailed NMR spectroscopic studies with different methods. Besides (1)H NMR and (13)C NMR, (15)N NMR spectroscopy is also applied. (15)N-enriched urea was used for the investigations. A detailed NMR signal assignment and a model of the reaction network of the hydroxymethylation step of the synthesis are presented. Because of its higher spectral dispersion and the fact that all key reactions directly involve the nitrogen centers, (15)N NMR provides a much larger amount of detail than do (1)H and (13)C NMR spectroscopy. Symmetric and asymmetric dimethylol urea can be clearly distinguished and separated from monomethylol urea, trimethylol urea, and methylene-bridged urea. The existence of hemiformals of methylol urea is confirmed. 1,3,5-Oxadiazinan-4-on (uron) and its derivatives were not found in the reaction mixtures investigated here but were prepared via alternative routes. The molar ratios of formaldehyde to urea were 1, 2, and 4, the pH values 7.5 and 8.5, and the reaction temperature 60 °C.

  6. Studies on the solution conformation of human thioredoxin using heteronuclear sup 15 N- sup 1 H nuclear magnetic resonance spectroscopy

    SciTech Connect

    Forman-Kay, J.D. Yale Univ., New Haven, CT ); Gronenborn, A.M.; Kay, L.E.; Clore, G.M. ); Wingfield, P.T. )

    1990-02-13

    The solution conformation of uniformly labeled {sup 15}N human thioredoxin has been studied by two-dimensional heteronuclear {sup 15}N-{sup 1}H nuclear magnetic resonance spectroscopy. Assignments of the {sup 15}N resonances of the protein are obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC-correlated (COSY), and relayed HMQC-nuclear Overhauser (NOESY) spectroscopy. Values of the {sup 3}J{sub HN{alpha}} splittings for 87 of the 105 residues of thioredoxin are extracted from a variant of the HMQC-COSY experiment, known as HMQC-J, and analyzed to give accurate {sup 3}J{sub HN{alpha}} coupling constants. In addition, long-range C{sub {alpha}}H(i)-{sup 15}N(i+1) scalar connectivities are identified by heteronuclear multiple bond correlation (HMBC) spectroscopy. The presence of these three-bond scalar connectivities in predominantly {alpha}-helical regions correlates well with the secondary structure determined previously from a qualitative analysis of homonuclear nuclear Overhauser data suggesting that this technique may provide additional information for secondary structure determination a priori. The accuracy with which {sup 3}J{sub HN{alpha}} coupling constants can be obtained from the HMQC-J experiment permits a more precise delineation of the beginnings and ends of secondary structural elements of human thioredoxin and of irregularities in these elements.

  7. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    PubMed

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  8. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  9. 1H, 13C, and 15N resonance assignment of the TIR domain of human MyD88.

    PubMed

    Ohnishi, Hidenori; Tochio, Hidehito; Kato, Zenichiro; Kimura, Takeshi; Hiroaki, Hidekazu; Kondo, Naomi; Shirakawa, Masahiro

    2010-10-01

    Myeloid differentiating factor 88 (MyD88) is one of a critical adaptor molecule in the Toll-like receptor (TLR) signaling pathway. The TIR domain of MyD88 serves as a protein-protein interaction module and interacts with other TIR-containing proteins such as Mal (MyD88 adaptor-like) and Toll-like receptor 4 to form signal initiation complexes. Here we report the (15)N, (13)C, and (1)H chemical shift assignments of the TIR domain of MyD88. The resonance assignments obtained in this work will contribute to the study of heteromeric TIR-TIR interactions between MyD88 and TIR-containing receptors or adaptors.

  10. (1)H, (13)C, and (15)N resonance assignments for the pro-inflammatory cytokine interleukin-36α.

    PubMed

    Goradia, Nishit; Wißbrock, Amelie; Wiedemann, Christoph; Bordusa, Frank; Ramachandran, Ramadurai; Imhof, Diana; Ohlenschläger, Oliver

    2016-10-01

    Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated. The efficacy of complex formation is controlled by N-terminal processing. To obtain a more detailed view on the structure function relationship we performed a heteronuclear multidimensional NMR investigation and here report the (1)H, (13)C, and (15)N resonance assignments for the backbone and side chain nuclei of the pro-inflammatory cytokine interleukin-36α.

  11. Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR.

    PubMed

    Beecher, Consuelo N; Manighalam, Matthew S; Nwachuku, Adanma F; Larive, Cynthia K

    2016-02-01

    Heparin and heparan sulfate (HS) are important in mediating a variety of biological processes through binding to myriad different proteins. Specific structural elements along the polysaccharide chains are essential for high affinity protein binding, such as the 3-O-sulfated N-sulfoglucosamine (GlcNS3S) residue, a relatively rare modification essential for heparin's anticoagulant activity. The isolation of 3-O-sulfated oligosaccharides from complex mixtures is challenging because of their low abundance. Although methods such as affinity chromatography are useful in isolating oligosaccharides that bind specific proteins with high affinity, other important 3-O-sulfated oligosaccharides may easily be overlooked. Screening preparative-scale size-exclusion chromatography (SEC) fractions of heparin or HS digests using [(1)H,(15)N] HSQC NMR allows the identification of fractions containing 3-O-sulfated oligosaccharides through the unique (1)H and (15)N chemical shifts of the GlcNS3S residue. Those SEC fractions containing 3-O-sulfated oligosaccharides can then be isolated using strong anion-exchange (SAX)-HPLC. Compared with the results obtained by pooling the fractions comprising a given SEC peak, SAX-HPLC analysis of individual SEC fractions produces a less complicated chromatogram in which the 3-O-sulfated oligosaccharides are enriched relative to more abundant components. The utility of this approach is demonstrated for tetrasaccharide SEC fractions of the low molecular weight heparin drug enoxaparin facilitating the isolation and characterization of an unsaturated 3-O-sulfated tetrasaccharide containing a portion of the antithrombin-III binding sequence.

  12. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study.

    PubMed

    Hrobárik, Peter; Horváth, Branislav; Sigmundová, Ivica; Zahradník, Pavol; Malkina, Olga L

    2007-11-01

    The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data. (c) 2007 John Wiley & Sons, Ltd.

  13. 1H, 13C and 15N assignment of the C-terminal domain of GNA2132 from Neisseria meningitidis

    PubMed Central

    Esposito, Veronica; Musi, Valeria; Veggi, Daniele; Pizza, Mariagrazia

    2010-01-01

    GNA2132 (Genome-derived Neisseria Antigen 2132) is a surface-exposed lipoprotein discovered by reverse vaccinology and expressed by genetically diverse Neisseria meningitidis strains (Pizza et al. 2000). The protein induces bactericidal antibodies against most strains of Meningococccus and has been included in a multivalent recombinant vaccine against N. meningitidis serogroup B. Structure determination of GNA2132 is important for understanding the antigenic properties of the protein in view of increased efficiency vaccine development. We report practically complete 1H, 13C and 15N assignment of the detectable spectrum of a highly conserved C-terminal region of GNA2132 (residues 245–427) in micellar solution, a medium used to improve the spectral quality. The first 32 residues of our construct up to residue 277 were not visible in the spectrum, presumably because of line broadening due to solvent and/or conformational exchange. Secondary structure predictions based on chemical shift information indicate the presence of an all β-protein with eight β strands. PMID:20300890

  14. 1H, 13C and 15N assignment of the C-terminal domain of GNA2132 from Neisseria meningitidis.

    PubMed

    Esposito, Veronica; Musi, Valeria; Veggi, Daniele; Pastore, Annalisa; Pizza, Mariagrazia

    2010-04-01

    GNA2132 (Genome-derived Neisseria Antigen 2132) is a surface-exposed lipoprotein discovered by reverse vaccinology and expressed by genetically diverse Neisseria meningitidis strains (Pizza et al. 2000). The protein induces bactericidal antibodies against most strains of Meningococccus and has been included in a multivalent recombinant vaccine against N. meningitidis serogroup B. Structure determination of GNA2132 is important for understanding the antigenic properties of the protein in view of increased efficiency vaccine development. We report practically complete (1)H, (13)C and (15)N assignment of the detectable spectrum of a highly conserved C-terminal region of GNA2132 (residues 245-427) in micellar solution, a medium used to improve the spectral quality. The first 32 residues of our construct up to residue 277 were not visible in the spectrum, presumably because of line broadening due to solvent and/or conformational exchange. Secondary structure predictions based on chemical shift information indicate the presence of an all beta-protein with eight beta strands.

  15. Nirtogen-15-labeled oligodeoxynucleotides. 4. Tetraplex formation of d[G({sup 15}N{sup 7})GTTTTTGG] and d[T({sup 15}N{sup 7})GGGT] monitored by {sup 1}H detected {sup 15}N NMR

    SciTech Connect

    Gaffney, B.L.; Chuan Wang; Jones, R.A.

    1992-05-20

    The authors have synthesized two molecules containing [7-{sup 15}N]-labeled 2{prime}-deoxyguanosine, d[G({sup 15}N{sup 7})GTTTTTGG], and d[T({sup 15}N{sup 7})GGGT] which, under appropriate conditions, will form tetramolecular complexes. The {sup 15}N chemical shifts of these molecules and of their Watson-Crick duplexes, d[G({sup 15}N{sup 7})GTTTTTGG]-d[CCAAAAACC] and d[T({sup 15}N{sup 7})GGGT]-d[ACCCA], were monitored as a function of temperature. The {sup 15}N chemical shift of the labeled N7 atom in each tetramolecular complex shows a similar temperature dependence, and the chemical shifts are not signal-averaged. The similarity of the chemical shifts for the tetraplex and single strand structures, and the difference seen for the two duplexes, are consistent with the different degrees of hydrogen bonding to the N7 which could be expected in each case. Thus, although more examples will be required to establish the generality of these observations, a purine [7-{sup 15}N] label appears to be able to monitor groove interactions, including hydration. 28 refs., 6 figs., 5 tabs.

  16. (1)H, (13)C and (15)N resonance assignments for the response regulator CheY3 from Rhodobacter sphaeroides.

    PubMed

    Varela, Lorena; Bell, Christian H; Armitage, Judith P; Redfield, Christina

    2016-10-01

    Rhodobacter sphaeroides has emerged as a model system for studies of the complex chemotaxis pathways that are a hallmark of many non-enteric bacteria. The genome of R. sphaeroides encodes two sets of flagellar genes, fla1 and fla2, that are controlled by three different operons. Each operon encodes homologues of most of the proteins required for the well-studied E. coli chemotaxis pathway. R. sphaeroides has six homologues of the response regulator CheY that are localized to and are regulated by different clusters of chemosensory proteins in the cell and have different effects on chemotaxis. CheY6 is the major CheY stopping the fla1 flagellar motor and associated with a cytoplasmically localised chemosensory pathway. CheY3 and CheY4 are associated with a membrane localised polar chemosensory cluster, and can bind to but not stop the motor. CheY6 and either CheY3 or CheY4 are required for chemotaxis. We are using NMR spectroscopy to characterise and compare the structure and dynamics of CheY3 and CheY6 in solution. We are interested in defining the conformational changes that occur upon activation of these two proteins and to identify differences in their properties that can explain the different functions they play in chemotaxis in R. sphaeroides. Here we present the (1)H, (13)C and (15)N assignments for CheY3 in its active, inactive and Mg(2+)-free apo form. These assignments provide the starting point for detailed investigations of the structure and function of CheY3.

  17. Analysis of the backbone dynamics of interleukin-1. beta. using two-dimensional inverse detected heteronuclear sup 15 N- sup 1 H NMR spectroscopy

    SciTech Connect

    Clore, G.M.; Driscoll, P.C.; Wingfield, P.T.; Gronenborn, A.M. )

    1990-08-14

    The backbone dynamics of uniformly {sup 15}N-labeled interleukin-1{beta} are investigated by using two-dimensional inverse detected heteronuclear {sup 15}N-{sup 1}H NMR spectroscopy. {sup 15}N T{sub 1}, T{sub 2}, and NOE data at a spectrometer frequency of 600 MHz are obtained for 90% of the backbone amide groups. The data provide evidence for motions on three time scales. All the residues exhibit very fast motions on a time scale of {approx lt} 20-50 ps that can be characterized by a single-order parameter with an average value of 0.82 {plus minus} 0.05. Thirty-two residues also display motions on a time scale of 0.5-4 ns, slightly less than the overall rotational correlation time of the protein (8.3 ns). While the simple formulation can account for the {sup 15}N T{sub 1} and T{sub 2} data, it fails to account for the {sup 15}N-{sup 1}H NOE data and yields calculated values for the NOEs that are either too small or negative, whereas the observed NOEs are positive. Another 42 residues are characterized by some sort of motion on the 30-ns-10-ms time scale, which results in {sup 15}N line broadening due to chemical exchange between different conformational substates with distinct {sup 15}N chemical shifts. In general, the motions on both the 0.5-4-ns and 30-ns-10-ms time scales are localized in surface-accessible loops and turns connecting the {beta}-strands, as well as at the beginning and end of strands. Finally, the kinetic and equilibrium properties of a slow conformational equilibrium between a major and a minor species, involving at least 19 residues and located on one contiguous face of the molecule, are characterized by using {sup 1}H-{sup 15}N correlation spectroscopy, {sup 1}H-{sup 15}N heteronuclear multiple quantum coherence-nuclear Overhauser enhancement spectroscopy, and {sup 1}H-{sup 1}H nuclear Overhauser enhancement spectroscopy.

  18. 1H and 15N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton

    PubMed Central

    Pomin, Vitor H.

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  19. Backbone (1)H, (13)C, and (15)N NMR resonance assignments of the Krüppel-like factor 4 activation domain.

    PubMed

    Conroy, Brigid S; Weiss, Emma R; Smith, Steven P; Langelaan, David N

    2017-04-01

    Krüppel-like factor 4 (KLF4) is a transcription factor involved in diverse biological processes, including development, cellular differentiation and proliferation, and maintenance of tissue homeostasis. KLF4 has also been associated with disease states, such as cardiovascular disease and several cancers. KLF4 contains an activation domain, repression domain, and a structurally characterized C-terminal zinc finger domain that mediates its binding to DNA. The structurally uncharacterized KLF4 activation domain is critical for transactivation by KLF4 and mediates its binding to the transcriptional coactivator CBP/p300. Here, we report the (1)H, (15)N, (13)CO, (13)Cα and (13)Cβ NMR chemical shift assignments of KLF41-130, which contains the KLF4 activation domain. Narrow chemical shift dispersion in the (1)H dimension of the (1)H-(15)N HSQC spectrum suggests that the KLF41-130 fragment is intrinsically disordered.

  20. 1H, 13C, and 15N backbone assignment and secondary structure of the receptor-binding domain of vascular endothelial growth factor.

    PubMed Central

    Fairbrother, W. J.; Champe, M. A.; Christinger, H. W.; Keyt, B. A.; Starovasnik, M. A.

    1997-01-01

    Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197]. PMID:9336848

  1. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin. Copyright © 2011 John Wiley & Sons, Ltd.

  2. On the measurement of 15N-{1H} nuclear Overhauser effects. 2. Effects of the saturation scheme and water signal suppression

    PubMed Central

    Ferrage, Fabien; Reichel, Amy; Battacharya, Shibani; Cowburn, David; Ghose, Ranajeet

    2013-01-01

    Measurement of steady-state 15N-{1H} nuclear Overhauser effects forms a cornerstone of most methods to determine protein backbone dynamics from spin-relaxation data, since it is the most reliable probe of very fast motions on the ps-ns timescale. We have, in two previous publications (J. Magn. Reson. 192 (2008), 302-313; J. Am. Chem. Soc. 131 (2009), 6048-6049) reevaluated spin-dynamics during steady-state (or “saturated”) and reference experiments, both of which are required to determine the NOE ratio. Here we assess the performance of several windowed and windowless sequences to achieve effective saturation of protons in steady-state experiments. We also evaluate the influence of the residual water signal due to radiation damping on the NOE ratio. We suggest a recipe that allows one to determine steady-state 15N-{1H} NOE's without artifacts and with the highest possible accuracy. PMID:20951618

  3. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations.

    PubMed

    Gerber, Iann C; Jolibois, Franck

    2015-05-14

    Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.

  4. Sequence-specific 1H, 15N and 13C resonance assignments of Art v 1: a proline-rich allergen of Artemisia vulgaris pollen.

    PubMed

    Razzera, Guilherme; Gadermaier, Gabriele; Almeida, Marcius S; Ferreira, Fatima; Almeida, Fabio C L; Valente, Ana Paula

    2009-06-01

    Art v 1 is the major allergen of Artemisia vulgaris. The IgE raised against Art v 1 not only can cross-react with other proteins from the Asteraceae family members but also with components of various forms of food. Art v 1 is an important target for immunotherapy strategies, including vaccination with hypoallergenic derivatives or chimeras. We report the (1)H, (13)C, and (15)N resonance assignments of the recombinant Art v 1 and identification of secondary structures based on (13)C chemical shifts.

  5. Near-complete 1H, 13C, 15N resonance assignments of dimethylsulfoxide-denatured TGFBIp FAS1-4 A546T.

    PubMed

    Kulminskaya, Natalia V; Yoshimura, Yuichi; Runager, Kasper; Sørensen, Charlotte S; Bjerring, Morten; Andreasen, Maria; Otzen, Daniel E; Enghild, Jan J; Nielsen, Niels Chr; Mulder, Frans A A

    2016-04-01

    The transforming growth factor beta induced protein (TGFBIp) is a major protein component of the human cornea. Mutations occurring in TGFBIp may cause corneal dystrophies, which ultimately lead to loss of vision. The majority of the disease-causing mutations are located in the C-terminal domain of TGFBIp, referred as the fourth fascilin-1 (FAS1-4) domain. In the present study the FAS1-4 Ala546Thr, a mutation that causes lattice corneal dystrophy, was investigated in dimethylsulfoxide using liquid-state NMR spectroscopy, to enable H/D exchange strategies for identification of the core formed in mature fibrils. Isotope-labeled fibrillated FAS1-4 A546T was dissolved in a ternary mixture 95/4/1 v/v/v% dimethylsulfoxide/water/trifluoroacetic acid, to obtain and assign a reference 2D (1)H-(15)N HSQC spectrum for the H/D exchange analysis. Here, we report the near-complete assignments of backbone and aliphatic side chain (1)H, (13)C and (15)N resonances for unfolded FAS1-4 A546T at 25 °C.

  6. (1)H, (13)C and (15)N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa.

    PubMed

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-10-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the (1)H, (13)C and (15)N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. This is further supported by (15)N-{(1)H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif.

  7. Backbone dynamics of (1-71)- and (1-36)bacterioopsin studied by two-dimensional (1)H- (15)N NMR spectroscopy.

    PubMed

    Orekhov, V Y; Pervushin, K V; Korzhnev, D M; Arseniev, A S

    1995-09-01

    The backbone dynamics of uniformly (15)N-labelled fragments (residues 1-71 and 1-36) of bacterioopsin, solubilized in two media (methanol-chloroform (1:1), 0.1 M (2)HCO(2)NH(4), or SDS micelles) have been investigated using 2D proton-detected heteronuclear (1)H-(15)N NMR spectroscopy at two spectrometer frequencies, 600 and 400 MHz. Contributions of the conformational exchange to the transverse relaxation rates of individual nitrogens were elucidated using a set of different rates of the CPMG spin-lock pulse train and were essentially suppressed by the high-frequency CPMG spin-lock. We found that most of the backbone amide groups of (1-71)bacterioopsin in SDS micelles are involved in the conformational exchange process over a rate range of 10(3) to 10(4) s(-1). This conformational exchange is supposed to be due to an interaction between two α-helixes of (1-71)bacterioopsin, since the hydrolysis of the peptide bond in the loop region results in the disappearance of exchange line broadening. (15)N relaxation rates and (1)H-(15)N NOE values were interpreted using the model-free approach of Lipari and Szabo [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559]. In addition to overall rotation of the molecule, the backbone N-H vectors of the peptides are involved in two types of internal motions: fast, on a time scale <20 ps, and intermediate, on a time scale close to 1 ns. The intermediate dynamics in the α-helical stretches was mostly attributed to bending motions. A decrease in the order parameter of intermediate motions was also observed for residues next to Pro(50), indicating an anisotropy of the overall rotational diffusion of the molecule. Distinctly mobile regions are identified by a large decrease in the order parameter of intermediate motions and correspond to the N- and C-termini, and to a loop connecting the α-helixes of (1-71)bacterioopsin. The internal dynamics of the α-helixes on the millisecond and nanosecond time scales should be

  8. Identification and localization of bound internal water in the solution structure of interleukin 1. beta. by heteronuclear three-dimensional sup 1 H rotating-frame Overhauser sup 15 N- sup 1 H multiple quantum coherence NMR spectroscopy

    SciTech Connect

    Clore, G.M.; Bax, A.; Wingfield, P.T.; Gronenborn, A.M. )

    1990-06-19

    The presence and location of bound internal water molecules in the solution structure of interleukin 1{beta} have been investigated by means of three-dimensional {sup 1}H rotating-frame Overhauser {sup 1}H-{sup 15}N multiple quantum coherence spectroscopy (ROESY-HMQC). In this experiment through-space rotating-frame Overhauser (ROE) interactions between NH protons and bound water separated by {le}3.5{angstrom} are clearly distinguished from chemical exchange effects, as the cross-peaks for these two processes are of opposite sign. The identification of ROEs between NH protons and water is rendered simple by spreading out the spectrum into a third dimensional according to the {sup 15}N chemical shift of the directly bonded nitrogen atoms. By this means, the problems that prevent, in all but a very few limited cases, the interpretation, identification, and assignment of ROE peaks between NH protons and water in a 2D {sup 1}H-{sup 1}H ROESY spectrum of a large protein such as interleukin 1{beta}, namely, extensive NH chemical shift degeneracy and ROE peaks obscured by much stronger chemical exchange peaks, are completely circumvented. We demonstrate the existence of 15 NH protons that are close to bound water molecules. From an examination of the crystal structure of interleukin, the results can be attributed to 11 water molecules that are involved in interactions bridging hydrogen-bonding interactions with backbone amide and carbonyl groups which stabilize the 3-fold pseudosymmetric topology of interleukin 1{beta} and thus constitute an integral part of the protein structure in solution.

  9. 1H, 13C, and 15N resonance assignments for Escherichia coli ytfP, a member of the broadly conserved UPF0131 protein domain family

    SciTech Connect

    Aramini, James M.; Swapna, G.V.T.; Huang, Yuanpeng; Rajan, Paranji K.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Cort, John R.; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    Protein ytfP from Escherichia coli (Swiss-Prot ID: YTFP-ECOLI; NESG target ID: ER111; Wunderlich et al., 2004) is a 113-residue member of the UPF0131 protein family (Pfam ID: PF03674) of unknown function. This domain family is found in organisms from all three kingdoms, archaea, eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 97% of backbone and 91% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a mixed a/b topology,????????. BMRB deposit with Accession No. 6448. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  10. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    SciTech Connect

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  11. (1)H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus.

    PubMed

    Pille, Ariane; Kwan, Ann H; Cheung, Ivan; Hampsey, Matthew; Aimanianda, Vishukumar; Delepierre, Muriel; Latge, Jean-Paul; Sunde, Margaret; Guijarro, J Iñaki

    2015-04-01

    Hydrophobins are fungal proteins characterised by their amphipathic properties and an idiosyncratic pattern of eight cysteine residues involved in four disulphide bridges. The soluble form of these proteins spontaneously self-assembles at hydrophobic/hydrophilic interfaces to form an amphipathic monolayer. The RodA hydrophobin of the opportunistic pathogen Aspergillus fumigatus forms an amyloid layer with a rodlet morphology that covers the surface of fungal spores. This rodlet layer bestows hydrophobicity to the spores facilitating their dispersal in the air and rendering the conidia inert relative to the human immune system. As a first step in the analysis of the solution structure and self-association of RodA, we report the (1)H, (13)C and (15)N resonance assignments of the soluble monomeric form of RodA.

  12. 1H, 15N and 13C resonance assignments of light organ-associated fatty acid-binding protein of Taiwanese fireflies.

    PubMed

    Tseng, Kai-Li; Lee, Yi-Zong; Chen, Yun-Ru; Lyu, Ping-Chiang

    2016-04-01

    Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14-C18. However, the structural details are unknown, and the structure-function relationship has remained to be further investigated. In this study, we finished the (1)H, (15)N and (13)C chemical shift assignments of (15)N/(13)C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP.

  13. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments.

    PubMed

    Stockman, Brian J; Kothe, Michael; Kohls, Darcy; Weibley, Laura; Connolly, Brendan J; Sheils, Alissa L; Cao, Qing; Cheng, Alan C; Yang, Lily; Kamath, Ajith V; Ding, Yuan-Hua; Charlton, Maura E

    2009-02-01

    Aberrant activation of the phosphoinositide 3-kinase pathway because of genetic mutations of essential signalling proteins has been associated with human diseases including cancer and diabetes. The pivotal role of 3-phosphoinositide-dependent kinase-1 in the PI3K signalling cascade has made it an attractive target for therapeutic intervention. The N-terminal lobe of the 3-phosphoinositide-dependent kinase-1 catalytic domain contains a docking site which recognizes the non-catalytic C-terminal hydrophobic motifs of certain substrate kinases. The binding of substrate in this so-called PDK1 Interacting Fragment pocket allows interaction with 3-phosphoinositide-dependent kinase-1 and enhanced phosphorylation of downstream kinases. NMR spectroscopy was used to a screen 3-phosphoinositide-dependent kinase-1 domain construct against a library of chemically diverse fragments in order to identify small, ligand-efficient fragments that might interact at either the ATP site or the allosteric PDK1 Interacting Fragment pocket. While majority of the fragment hits were determined to be ATP-site binders, several fragments appeared to interact with the PDK1 Interacting Fragment pocket. Ligand-induced changes in 1H-15N TROSY spectra acquired using uniformly 15N-enriched PDK1 provided evidence to distinguish ATP-site from PDK1 Interacting Fragment-site binding. Caliper assay data and 19F NMR assay data on the PDK1 Interacting Fragment pocket fragments and structurally related compounds identified them as potential allosteric activators of PDK1 function.

  14. Detection and classification of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase.

    PubMed

    Xia, B; Pikus, J D; Xia, W; McClay, K; Steffan, R J; Chae, Y K; Westler, W M; Markley, J L; Fox, B G

    1999-01-12

    T4MOC is a 12.3 kDa soluble Rieske ferredoxin that is obligately required for electron transfer between the oxidoreductase and diiron hydroxylase components of toluene 4-monooxygenase from Pseudomonas mendocina KR1. Our preliminary 1H NMR studies of oxidized and reduced T4MOC [Markley, J. L., Xia, B., Chae, Y. K., Cheng, H., Westler, W. M., Pikus, J. D., and Fox, B. G. (1996) in Protein Structure Function Relationships (Zaidi, Z., and Smith, D., Eds.) pp 135-146, Plenum Press, London] revealed the presence of hyperfine-shifted 1H resonances whose short relaxation times made it impractical to use nuclear Overhauser effect (NOE) measurements for assignment purposes. We report here the use of selective isotopic labeling to analyze the hyperfine-shifted 1H, 2H, and 15N signals from T4MOC. Selective deuteration led to identification of signals from the four Hbeta atoms of cluster ligands C45 and C64 in the oxidized and reduced forms of T4MOC. In the reduced state, the Curie temperature dependence of the Hbeta protons corresponded to that predicted from the simple vector spin-coupling model for nuclei associated with the localized ferric site. The signal at 25.5 ppm in the 1H spectrum of reduced T4MOC was assigned on the basis of selective 2H labeling to the His Hepsilon1 atom of one of the cluster ligands (H47 or H67). This assignment was corroborated by a one bond 1H-13C correlation (at 25.39 ppm 1H and 136.11 ppm 13C) observed in spectra of [U-13C]T4MOC with a 1H-13C coupling constant of approximately 192 Hz. The carbon chemical shift and one bond coupling constant are those expected for 1Hepsilon1-13Cepsilon1 in the imidazolium ring of histidine and are inconsistent with values expected for cysteine 1Halpha-13Calpha. The His Hepsilon1 proton exhibited weak Curie temperature dependence from 283 to 303 K, contrary to the anti-Curie temperature dependence predicted from the spin coupling model for nuclei associated with the localized ferrous site. A 1H peak at -12.3 ppm

  15. 1H, 13C and 15N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa

    PubMed Central

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O.; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the 1H, 13C and 15N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1–β2–β3–α1–β4–β5. This is further supported by 15N–{1H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif. PMID:26983940

  16. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor.

  17. 15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant.

    PubMed

    Gobeil, Sophie M C; Gagné, Donald; Doucet, Nicolas; Pelletier, Joelle N

    2016-04-01

    The widespread use of β-lactam antibiotics has given rise to a dramatic increase in clinically-relevant β-lactamases. Understanding the structure/function relation in these variants is essential to better address the ever-growing incidence of antibiotic resistance. We previously reported the backbone resonance assignments of a chimeric protein constituted of segments of the class A β-lactamases TEM-1 and PSE-4 (Morin et al. in Biomol NMR Assign 4:127-130, 2010. doi: 10.1007/s12104-010-9227-8 ). That chimera, cTEM17m, held 17 amino acid substitutions relative to TEM-1 β-lactamase, resulting in a well-folded and fully functional protein with increased dynamics. Here we report the (1)H, (13)C and (15)N backbone resonance assignments of chimera cTEM-19m, which includes 19 substitutions and exhibits increased active-site perturbation, as well as one of its deconvoluted variants, as the first step in the analysis of their dynamic behaviours.

  18. (1)H, (15)N, (13)C resonance assignments for pyrazinoic acid binding domain of ribosomal protein S1 from Mycobacterium tuberculosis.

    PubMed

    Huang, Biling; Fu, Jinglin; Guo, Chenyun; Wu, Xueji; Lin, Donghai; Liao, Xinli

    2016-10-01

    Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280-368, MtRpsA(CTD)_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsA(CTD)_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the (1)H, (15)N, (13)C resonance assignments of MtRpsA(CTD)_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsA(CTD)_S1 and tmRNA, RNA or POA.

  19. [1H, 15N] heteronuclear single quantum coherence NMR study of the mechanism of aquation of platinum(IV) ammine complexes.

    PubMed

    Davies, Murray S; Hall, Matthew D; Berners-Price, Susan J; Hambley, Trevor W

    2008-09-01

    The aquation and hydrolysis of a series of platinum(IV) complexes of the general form cis, trans, cis-[PtCl 2(X) 2( (15)NH 3) 2] (X = Cl (-), O 2CCH 3 (-), OH (-)) have been followed by [ (1)H, (15)N] Heteronuclear Single Quantum Coherence NMR spectroscopy. Negligible aquation (<5%) is observed for the complexes where X = O 2CCH 3 (-) or OH (-) over 3-4 weeks. Aquation of cis-[PtCl 4( (15)NH 3) 2] ( 1) is observed, and the rate of aquation increases with increasing pH and upon the addition of 0.01 mol equiv of the platinum(II) complex cis-[PtCl 2( (15)NH 3) 2] (cisplatin). The first aquated species formed from cis-[PtCl 4(NH 3) 2] has one of the axial chloro groups (relative to the equatorial NH 3 ligands) replaced by an aqua/hydroxo ligand. The second observed substitution occurs in an equatorial position. Peaks that are consistent with five of the eight possible aquation species were observed in the NMR spectra.

  20. NMR studies of the POU-specific DNA-binding domain of Oct-1: sequential 1H and 15N assignments and secondary structure.

    PubMed

    Cox, M; Dekker, N; Boelens, R; Verrijzer, C P; van der Vliet, P C; Kaptein, R

    1993-06-15

    The 1H and 15N resonances of the POU-specific DNA-binding domain of transcription factor Oct-1 have been assigned sequentially using two-dimensional homo- and heteronuclear NMR techniques, as well as three-dimensional heteronuclear NMR techniques, including TOCSY, 2D NOE, and NOESY-HMQC experiments. A number of typical short- and medium-range NOE contacts, as well as amide proton exchange data, gave evidence for the presence of four alpha-helices, in the peptide segments 1-19, 23-34, 40-49, and 54-71, which are connected by short loops of irregular structure. Interestingly, the second helix contains three glycine residues and the fourth helix a proline in the middle of the helix. Although the regular pattern of hydrogen bonds in the fourth helix is interrupted, due to the absence of an amide proton in proline, the helix is remarkably stable. All four helices are amphipathic, which suggests a packing of the apolar sides of the helices in the folded structure of the protein.

  1. 1H, 13C and 15N resonance assignments and second structure information of Fag s 1: Fagales allergen from Fagus sylvatica.

    PubMed

    Moraes, A H; Asam, C; Batista, A; Almeida, F C L; Wallner, M; Ferreira, F; Valente, A P

    2016-04-01

    Fagales allergens belonging to the Bet v 1 family account responsible for the majority of spring pollinosis in the temperate climate zones in the Northern hemisphere. Among them, Fag s 1 from beech pollen is an important trigger of Fagales pollen associated allergic reactions. The protein shares high similarity with birch pollen Bet v 1, the best-characterized member of this allergen family. Of note, recent work on Bet v 1 and its homologues found in Fagales pollen demonstrated that not all allergenic members of this family have the capacity to induce allergic sensitization. Fag s 1 was shown to bind pre-existing IgE antibodies most likely primarily directed against other members of this multi-allergen family. Therefore, it is especially interesting to compare the structures of Bet v 1-like pollen allergens, which have the potential to induce allergic sensitization with allergens that are mainly cross-reactive. This in the end will help to identify allergy eliciting molecular pattern on Bet v 1-like allergens. In this work, we report the (1)H, (15)N and (13)C NMR assignment of beech pollen Fag s 1 as well as the secondary structure information based on backbone chemical shifts.

  2. Study of conformations and hydrogen bonds in the configurational isomers of pyrrole-2-carbaldehyde oxime by 1H, 13C and 15N NMR spectroscopy combined with MP2 and DFT calculations and NBO analysis.

    PubMed

    Afonin, Andrei V; Ushakov, Igor A; Pavlov, Dmitry V; Ivanov, Andrei V; Mikhaleva, Al'bina I

    2010-09-01

    The (1)H, (13)C and (15)N NMR studies have shown that the E and Z isomers of pyrrole-2-carbaldehyde oxime adopt preferable conformation with the syn orientation of the oxime group with respect to the pyrrole ring. The syn conformation of E and Z isomers of pyrrole-2-carbaldehyde oxime is stabilized by the N-H...N and N-H...O intramolecular hydrogen bonds, respectively. The N-H...N hydrogen bond in the E isomer causes the high-frequency shift of the bridge proton signal by about 1 ppm and increase the (1)J(N, H) coupling by approximately 3 Hz. The bridge proton shows further deshielding and higher increase of the (1)J(N, H) coupling constant due to the strengthening of the N-H...O hydrogen bond in the Z isomer. The MP2 calculations indicate that the syn conformation of E and Z isomers is by approximately 3.5 kcal/mol energetically less favorable than the anti conformation. The calculations of (1)H shielding and (1)J(N, H) coupling in the syn and anti conformations allow the contribution to these constants from the N-H...N and N-H...O hydrogen bondings to be estimated. The NBO analysis suggests that the N-H...N hydrogen bond in the E isomer is a pure electrostatic interaction while the charge transfer from the oxygen lone pair to the antibonding orbital of the N-H bond through the N-H...O hydrogen bond occurs in the Z isomer. 2010 John Wiley & Sons, Ltd.

  3. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  4. Backbone and Ile-δ1, Leu, Val Methyl 1H, 13C and 15N NMR chemical shift assignments for human interferon-stimulated gene 15 protein

    SciTech Connect

    Yin, Cuifeng; Aramini, James M.; Ma, LiChung; Cort, John R.; Swapna, G.V.T.; Krug, R. M.; Montelione, Gaetano

    2011-10-01

    Human interferon-stimulated gene 15 protein (ISG15), also called ubiquitin cross-reactive protein (UCRP), is the first identified ubiquitin-like protein containing two ubiquitin-like domains fused in tandem. The active form of ISG15 is conjugated to target proteins via the C-terminal glycine residue through an isopeptide bond in a manner similar to ubiquitin. The biological role of ISG15 is strongly associated with the modulation of cell immune function, and there is mounting evidence suggesting that many viral pathogens evade the host innate immune response by interfering with ISG15 conjugation to both host and viral proteins in a variety of ways. Here we report nearly complete backbone 1HN, 15N, 13CO, and 13Ca, as well as side chain 13Cb, methyl (Ile-d1, Leu, Val), amide (Asn, Gln), and indole NH (Trp) NMR resonance assignments for the 157-residue human ISG15 protein. These resonance assignments provide the basis for future structural and functional solution NMR studies of the biologically important human ISG15 protein.

  5. Overcoming the overlap problem in the assignment of sup 1 H NMR spectra of larger proteins by use of three-dimensional heteronuclear sup 1 H- sup 15 N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: Application to interleukin 1. beta

    SciTech Connect

    Marion, D.; Driscoll, P.C.; Kay, L.E.; Wingfield, P.T.; Bax, A.; Gronenborn, A.M.; Clore, G.M. )

    1989-07-25

    The application of three-dimensional (3D) heteronuclear NMR spectroscopy to the sequential assignment of the {sup 1}H NMR spectra of larger proteins is presented, using uniformly labeled ({sup 15}N)interleukin 1{beta}, a protein of 153 residues and molecular mass of 17.4 kDa, as an example. The two-dimensional (2D) 600-MHz spectra of interleukin 1{beta} are too complex for complete analysis, owing to extensive cross-peak overlap and chemical shift degeneracy. The authors show that the combined use of 3D {sup 1}H-{sup 15}N Hartmann-Hahn-multiple quantum coherence (HOHAHA-HMQC) and nuclear Overhauser-multiple quantum coherence (NOESY-HMQC) spectroscopy, designed to provide the necessary through-bond and through-space correlations for sequential assignment, provides a practical general-purpose method for resolving ambiguities which severely limit the analysis of conventional 2D NMR spectra. The problem of amide NH chemical shift degeneracy in the {sup 1}H NMR spectrum is therefore effectively removed, and the assignment procedure simply involves inspecting a series of 2D {sup 1}H-{sup 1}H slices edited by the chemical shift of the directly bonded {sup 15}N atom. It is envisaged that the intrinsic simplicity of the 3D heteronuclear spectra, even for proteins of 150-200 residues, will permit the development of efficient computer-assisted or automated sequential assignment methods.

  6. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi; Hadipour, Nasser L

    2007-06-01

    A computational investigation was carried out to characterize the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen. We found that N-H...O and O-H...O hydrogen bonds around the acetaminophen molecule in the crystal lattice have different influences on the calculated (17)O, (15)N and (13)C chemical shielding eigenvalues and their orientations in the molecular frame of axes. The calculations were performed with the B3LYP method and 6-311++G(d, p) and 6-311+G(d) standard basis sets using the Gaussian 98 suite of programs. Calculated chemical shielding tensors were used to evaluate the (17)O, (15)N, and (13)C NMR chemical shift tensors in crystalline acetaminophen, which are in reasonable agreement with available experimental data. The difference between the calculated NMR parameters of the monomer and molecular clusters shows how much hydrogen-bonding interactions affect the chemical shielding tensors of each nucleus. The computed (17)O chemical shielding tensor on O(1), which is involved in two intermolecular hydrogen bonds, shows remarkable sensitivity toward the choice of the cluster model, whereas the (17)O chemical shielding tensor on O(2) involved in one N-H...O hydrogen bond, shows smaller improvement toward the hydrogen-bonding interactions. Also, a reasonably good agreement between the experimentally obtained solid-state (15)N and (13)C NMR chemical shifts and B3LYP/6-311++G(d, p) calculations is achievable only in molecular cluster model where a complete hydrogen-bonding network is considered. Moreover, at the B3LYP/6-311++G(d, p) level of theory, the calculated (17)O, (15)N and (13)C chemical shielding tensor orientations are able to reproduce the experimental values to a reasonably good degree of accuracy.

  7. Experimental characterization of the hydride 1H shielding tensors for HIrX2(PR3)2 and HRhCl2(PR3)2: extremely shielded hydride protons with unusually large magnetic shielding anisotropies.

    PubMed

    Garbacz, Piotr; Terskikh, Victor V; Ferguson, Michael J; Bernard, Guy M; Kędziorek, Mariusz; Wasylishen, Roderick E

    2014-02-20

    The hydride proton magnetic shielding tensors for a series of iridium(III) and rhodium(III) complexes are determined. Although it has long been known that hydridic protons for transition-metal hydrides are often extremely shielded, this is the first experimental determination of the shielding tensors for such complexes. Isolating the (1)H NMR signal for a hydride proton requires careful experimental strategies because the spectra are generally dominated by ligand (1)H signals. We show that this can be accomplished for complexes containing as many as 66 ligand protons by substituting the latter with deuterium and by using hyperbolic secant pulses to selectively irradiate the hydride proton signal. We also demonstrate that the quality of the results is improved by performing experiments at the highest practical magnetic field (21.14 T for the work presented here). The hydride protons for iridium hydride complexes HIrX2(PR3)2 (X = Cl, Br, or I; R = isopropyl, cyclohexyl) are highly shielded with isotropic chemical shifts of approximately -50 ppm and are also highly anisotropic, with spans (=δ11 - δ33) ranging from 85.1 to 110.7 ppm. The hydridic protons for related rhodium complexes HRhCl2(PR3)2 also have unusual magnetic shielding properties with chemical shifts and spans of approximately -32 and 85 ppm, respectively. Relativistic density functional theory computations were performed to determine the orientation of the principal components of the hydride proton shielding tensors and to provide insights into the origin of these highly anisotropic shielding tensors. The results of our computations agree well with experiment, and our conclusions concerning the importance of relativistic effects support those recently reported by Kaupp and co-workers.

  8. Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR.

    PubMed

    Drews, M; Doverskog, M; Ohman, L; Chapman, B E; Jacobsson, U; Kuchel, P W; Häggström, L

    2000-02-28

    1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.

  9. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  10. Study of E/Z isomerization of (arylamino)methylidenefuran-2(3H)-ones by (1) H, (13) C, (15) N spectroscopy and DFT calculations in different solvents.

    PubMed

    Osipov, Alexander K; Anis'kov, Alexander A; Grinev, Vyacheslav S; Yegorova, Alevtina Yu

    2017-08-01

    The structure and configuration of the series of previously unknown arylaminomethylidenefuran-2(3H)-ones have been determined in solution by (1) H, (13) C, (15) N nuclear magnetic resonance spectroscopy including two-dimensional experiments such as (1) H─(1) H COSY, dqCOSY, (1) H─(13) C HSQC, (1) H─(13) C HMBC. It was found that synthesized substances exist as an equilibrium mixture of E- and Z-enamines in solution. It was established on the basis of density functional theory calculations that the exchange between the two push-pull enamines is a simple rotation around an exocyclic partial double bond that depends on the effect of the solvents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. (1)H, (15)N, (13)C backbone resonance assignments of human soluble catechol O-methyltransferase in complex with S-adenosyl-L-methionine and 3,5-dinitrocatechol.

    PubMed

    Czarnota, Sylwia; Baxter, Nicola J; Cliff, Matthew J; Waltho, Jonathan P; Scrutton, Nigel S; Hay, Sam

    2017-04-01

    Catechol O-methyltransferase (COMT) is an enzyme that plays a major role in catechol neurotransmitter deactivation. Inhibition of COMT can increase neurotransmitter levels, which provides a means of treatment for Parkinson's disease, schizophrenia and depression. COMT exists as two isozymes: a soluble cytoplasmic form (S-COMT), expressed in the liver and kidneys and a membrane-bound form (MB-COMT), found mostly in the brain. Here we report the backbone (1)H, (15)N and (13)C chemical shift assignments of S-COMT in complex with S-adenosyl-L-methionine, 3,5-dinitrocatechol and Mg(2+). Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97 % of all backbone resonances were assigned in the complex, with 205 out of a possible 215 residues assigned in the (1)H-(15)N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS+ webserver is in good agreement with published X-ray crystal structures.

  12. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  13. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    PubMed

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Backbone 1H, 13C and 15N assignments of YibK and avariant containing a unique cysteine residue at C-terminus in 8 M urea-denatured states [corrected].

    PubMed

    Hsieh, Shu-Ju Micky; Mallam, Anna L; Jackson, Sophie E; Hsu, Shang-Te Danny

    2014-10-01

    YibK is a tRNA methyltransferase from Haemophilus influenzae, which forms a stable homodimer in solution and contains a deep trefoil 31 knot encompassing the C-terminal helix that threads through a long loop. It has been a model system for investigating knotted protein folding pathways. Recent data have shown that the polypeptide chain of YibK remains loosely knotted under highly denaturing conditions. Here, we report (1)H, (13)C and (15)N chemical shift assignments for YibK and its variant in the presence of 8 M urea. This work forms the basis for further analysis using NMR techniques such as paramagnetic relaxation enhancement, residual dipolar couplings and spin-relaxation dynamics analysis.

  15. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  16. (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for E73 from Sulfolobus spindle-shaped virus ragged hills, a hyperthermophilic crenarchaeal virus from Yellowstone National Park.

    PubMed

    Schlenker, Casey; Menon, Smita; Lawrence, C Martin; Copié, Valérie

    2009-12-01

    Crenarchaeal viruses are commonly found in hyperthermal acidic environments such as those of Yellowstone National Park. These remarkable viruses not only exhibit unusual morphologies, but also display extreme genetic diversity. However, little is known about crenarchaeal viral life cycles, virus-host interactions, and their adaptation to hyperthermophilic environments. In an effort to better understand the functions of crenarchaeal viruses and the proteins encoded by their genomes, we have undertaken detailed structural and functional studies of gene products encoded in the open reading frames of Sulfolobus spindle-shaped virus ragged hills. Herein, we report ((15)N, (13)C, (1)H) resonance assignments of backbone and side chain atoms of a 19.1 kDa homodimeric E73 protein of SSVRH.

  17. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements.

    PubMed

    Platzer, Gerald; Okon, Mark; McIntosh, Lawrence P

    2014-11-01

    The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.

  18. Quantifying the hydrogen-bonding interaction between cation and anion of pure [EMIM][Ac] and evidencing the ion pairs existence in its extremely diluted water solution: Via 13C, 1H, 15N and 2D NMR

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Li, Shehong; Xue, Zhimin; Hao, Mingyang; Mu, Tiancheng

    2015-01-01

    The acetate-based ionic liquid (AcIL) [EMIM][Ac] does not fully dissociated into isolated ions in extremely diluted water solution (0.5 mol% of IL). Still, ion pairs exist via the through-space weak van der Waals force between H6 of the cation and Hb of the anion. In this ion pairs, except for H6 and Hb, all other hydrogen atoms (i.e., H2, H4, H5, H7, H8) are totally hydrated by water; the acetate anion suffers from a more extent of hydration due to its higher hydrophilicity. One dimension (1D) nuclear magnetic resonance (NMR) (1H, 13C, 15N,) and two dimensions (2D) NMR are used in this study. 2D NMR used includes through-space 1H-1H NOSEY (nuclear Overhauser effect spectroscopy), through-bond 1H-13C HSQC COSY (heteronuclear single-quantum correlation spectroscopy), and HMBC COSY (heteronuclear multiple-bond correlation spectroscopy). The much stronger (H245/anion) or weaker (H78/anion) hydrogen-bonding interaction in the pure [EMIM][Ac] disfavors the association of ions in the diluted state due to a better hydrogen-bonding donor or a weaker hydrogen-bonding strength, respectively. However, H6/anion with the moderate hydrogen-bonding strength and the moderate hydrogen-bonding donating ability existed in the pure [EMIM][Ac] plays the role in determining the associating ion pairs. The proportion of hydrogen-bonding interaction between hydrogens in the cation with anion (100%) is approximately quantified in descending order as follows: H2 (42%), H4 (24%), H5 (22%), H6 (6%), H7 (5%), and H8 (1%).

  19. (1)H, (15)N and (13)C resonance assignments for free and IEEVD peptide-bound forms of the tetratricopeptide repeat domain from the human E3 ubiquitin ligase CHIP.

    PubMed

    Zhang, Huaqun; McGlone, Cameron; Mannion, Matthew M; Page, Richard C

    2017-04-01

    The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the (1)H, (13)C, and (15)N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.

  20. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    PubMed

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  1. 1H, 13C, and 15N resonance assignments of an enzymatically active domain from the catalytic component (CDTa, residues 216-420) of a binary toxin from Clostridium difficile.

    PubMed

    Roth, Braden M; Godoy-Ruiz, Raquel; Varney, Kristen M; Rustandi, Richard R; Weber, David J

    2016-04-01

    Clostridium difficile is a bacterial pathogen and is the most commonly reported source of nosocomial infection in industrialized nations. Symptoms of C. difficile infection (CDI) include antibiotic-associated diarrhea, pseudomembranous colitis, sepsis and death. Over the last decade, rates and severity of hospital infections in North America and Europe have increased dramatically and correlate with the emergence of a hypervirulent strain of C. difficile characterized by the presence of a binary toxin, CDT (C. difficile toxin). The binary toxin consists of an enzymatic component (CDTa) and a cellular binding component (CDTb) that together form the active binary toxin complex. CDTa harbors a pair of structurally similar but functionally distinct domains, an N-terminal domain (residues 1-215; (1-215)CDTa) that interacts with CDTb and a C-terminal domain (residues 216-420; (216-420)CDTa) that harbors the intact ADP-ribosyltransferase (ART) active site. Reported here are the (1)H, (13)C, and (15)N backbone resonance assignments of the 23 kDa, 205 amino acid C-terminal enzymatic domain of CDTa, termed (216-420)CDTa. These NMR resonance assignments for (216-420)CDTa represent the first for a family of ART binary toxins and provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.

  2. Determination of the 2H/1H and 15N/14N ratios of Alkylpyrazines from coffee beans (Coffea arabica L. and Coffea canephoravar. robusta) by isotope ratio mass spectrometry.

    PubMed

    Richling, Elke; Preston, Christina; Kavvadias, Dominique; Kahle, Kathrin; Heppel, Christopher; Hummel, Silvia; König, Thorsten; Schreier, Peter

    2005-10-05

    The delta15N(AIR) and delta2H(VSMOW) data for several alkylpyrazines formed during the roasting process of coffee are reported. Samples of commercially available roasted (n = 9) as well as self-roasted (n = 8) coffee beans (Coffea arabica L. and Coffea canephora var. robusta) of different origins were investigated. By use of extracts prepared by simultaneous distillation extraction (SDE) and subsequently fractionated by liquid chromatography on silica gel, on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta15N(AIR) and delta2H(VSMOW) values, respectively. In addition to the constituents of coffee beans, data for commercial synthetic alkylpyrazines and substances declared to be "natural" were determined. The delta15N(AIR) data for coffee alkylpyrazines under study-2-ethyl-5-methylpyrazine (1) and 2-ethyl-6-methylpyrazine (2) (measured as sum 1/2), 2-ethyl-3-methylpyrazine (3), 2-methylpyrazine (4), 2,5-dimethylpyrazine (5) and 2,6-dimethylpyrazine (6) (measured as sum 5/6), and 2,3-dimethylpyrazine (7), as well as 2,3,5-trimethylpyrazine (8)-varied in the range from +8.3 to -10.2 per thousand, thus revealing their biogeneration from amino acids (delta15N(AIR) ranging from +8 per thousand to -10 per thousand). The delta2H(VSMOW) values were determined in the range from -5 per thousand to -127 per thousand. Owing to the analytical differentiation observed between coffee alkylpyrazines and synthetic/"natural" samples of 3, 4, and 7, authenticity assessment of coffee-flavored products seems to be promising, provided that extended data will be available in the future. In the literature, there were no IRMS data available for the alkylpyrazines (1-8) under study.

  3. High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB

    NASA Astrophysics Data System (ADS)

    Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

    2003-12-01

    The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C α, 13C β, 1H α, and 1H β. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H α and 1H β chemical shifts are then coded in the line shape of the cross-peaks of 13C α, 13C β along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

  4. Folding of the KIX domain: characterization of the equilibrium analog of a folding intermediate using 15N/13C relaxation dispersion and fast 1H/2H amide exchange NMR spectroscopy.

    PubMed

    Schanda, Paul; Brutscher, Bernhard; Konrat, Robert; Tollinger, Martin

    2008-07-18

    The KIX domain of the transcription co-activator CBP is a three-helix bundle protein that folds via rapid accumulation of an intermediate state, followed by a slower folding phase. Recent NMR relaxation dispersion studies revealed the presence of a low-populated (excited) state of KIX that exists in equilibrium with the natively folded form under non-denaturing conditions, and likely represents the equilibrium analog of the folding intermediate. Here, we combine amide hydrogen/deuterium exchange measurements using rapid NMR data acquisition techniques with backbone (15)N and (13)C relaxation dispersion experiments to further investigate the equilibrium folding of the KIX domain. Residual structure within the folding intermediate is detected by both methods, and their combination enables reliable quantification of the amount of persistent residual structure. Three well-defined folding subunits are found, which display variable stability and correspond closely to the individual helices in the native state. While two of the three helices (alpha(2) and alpha(3)) are partially formed in the folding intermediate (to approximately 50% and approximately 80%, respectively, at 20 degrees C), the third helix is disordered. The observed helical content within the excited state exceeds the helical propensities predicted for the corresponding peptide regions, suggesting that the two helices are weakly mutually stabilized, while methyl (13)C relaxation dispersion data indicate that a defined packing arrangement is unlikely. Temperature-dependent experiments reveal that the largest enthalpy and entropy changes along the folding reaction occur during the final transition from the intermediate to the native state. Our experimental data are consistent with a folding mechanism where helices alpha(2) and alpha(3) form rapidly, although to different extents, while helix alpha(1) consolidates only as folding proceeds to complete the native state-structure.

  5. 1H, 13C, and 15N backbone, side-chain, and heme chemical shift assignments for oxidized and reduced forms of the monoheme c-type cytochrome ApcA isolated from the acidophilic metal-reducing bacterium Acidiphilium cryptum.

    SciTech Connect

    Cort, John R.; Swenson, Michael; Magnuson, Timothy S.

    2011-03-04

    We report the 1H, 13C, and 15N chemical shift assignments of both oxidized and reduced forms of an abundant periplasmic c-type cytochrome, designated ApcA, from the acidophilic gram-negative facultatively anaerobic metal-reducing alpha-proteobacterium Acidiphilium cryptum. These resonance assignments prove that ApcA is a monoheme cytochrome c2 and the product of the Acry_2099 gene. An absence of resonance peaks in the NMR spectra for the 21 N-terminal residues suggests that a predicted N-terminal signal sequence is cleaved. We also describe the preparation and purification of the protein in labeled form from laboratory cultures of A. cryptum growing on 13C- and 15N- labeled substrates.

  6. Ab initio calculation of the NMR shielding constants for histamine

    NASA Astrophysics Data System (ADS)

    Mazurek, A. P.; Dobrowolski, J. Cz.; Sadlej, J.

    1997-12-01

    The gage-independent atomic orbital (GIAO) approach is used within the coupled Hartree-Fock approximation to compute the 1H, 13C and 15N NMR shielding constants in two tautomeric forms of both the histamine molecule and its protonated form. An analysis of the results shows that the protonation on the end of the chain changes its nitrogen shielding constants of the pyridine and pyrrole type. These changes are much higher for the N(3)-H than for the N(1)-H tautomer.

  7. 15N NMR of 1,4-dihydropyridine derivatives.

    PubMed

    Goba, Inguna; Liepinsh, Edvards

    2013-07-01

    In this article, we describe the characteristic (15)N and (1)HN NMR chemical shifts and (1)J((15)N-(1)H) coupling constants of various symmetrically and unsymmetrically substituted 1,4-dihydropyridine derivatives. The NMR chemical shifts and coupling constants are discussed in terms of their relationship to structural features such as character and position of the substituent in heterocycle, N-alkyl substitution, nitrogen lone pair delocalization within the conjugated system, and steric effects.

  8. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  9. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    PubMed

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  10. Syntheses of all singly labeled [15N]adenines: Mass spectral fragmentation of adenine

    PubMed Central

    Barrio, Maria Del Carmen G.; Scopes, David I. C.; Holtwick, Joseph B.; Leonard, Nelson J.

    1981-01-01

    Syntheses of all five of the singly labeled [15N]adenines are now provided. The presence or absence of two-bond 15N-1H spin couplings in their 1H NMR spectra confirm the location of the isotope in each case. The fragmentation patterns in their mass spectra are indicative of the sequential losses of HCN units and of CH2N2 from adenine upon electron impact. PMID:16593042

  11. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  12. NMR study of the metabolic 15N isotopic enrichment of cyanophycin synthesized by the cyanobacterium Synechocystis sp. strain PCC 6308.

    PubMed

    Suarez, C; Kohler, S J; Allen, M M; Kolodny, N H

    1999-02-02

    1H, 13C and 15N nuclear magnetic resonance (NMR) spectroscopy has been used to characterize cyanophycin, a multi-l-arginyl-poly-[l-aspartic acid] polypeptide from the cyanobacterium Synechocystis sp. strain PCC 6308. 1H, 13C and 15N chemical shifts and 1JHN and 1JCN coupling constants were measured in isolated 15N-labeled cyanophycin, and showed chemical shift values and J-couplings consistent with the reported polypeptide structure. 15N enrichment levels were determined from the extent of 1H-15N J-coupling in 1H NMR spectra of cyanophycin. Similar experiments using 13C-15N coupling in 13C NMR spectra were not useful in determining enrichment levels.

  13. (1)H, (15)N, (13)C resonance assignment of human osteopontin.

    PubMed

    Platzer, Gerald; Żerko, Szymon; Saxena, Saurabh; Koźmiński, Wiktor; Konrat, Robert

    2015-10-01

    Osteopontin (OPN) is a 33.7 kDa intrinsically disordered protein and a member of the SIBLING family of proteins. OPN is bearing a signal peptide for secretion into the extracellular space, where it exerts its main physiological function, the control of calcium biomineralization. It is often involved in tumorigenic processes influencing proliferation, migration and survival, as well as the adhesive properties of cancer cells via CD44 and integrin signaling pathways. Here we report the nearly complete NMR chemical shift assignment of recombinant human osteopontin.

  14. Proton-coupled 15N NMR spectra of neutral and protonated ethenoadenosine and ethenocytidine.

    PubMed Central

    Sierzputowska-Gracz, H; Wiewiórowski, M; Kozerski, L; von Philipsborn, W

    1984-01-01

    The 15N chemical shifts and 15N, 1H spin coupling constants were determined in the title compounds using the INEPT pulse sequence and assigned with the aid of selective proton decoupling. The delta/15N/ and J/N, H/ values are discussed in terms of involvement of the imidazole ring created by ethenobridging in the electronic structure of the whole molecule. Both spectral parameters indicate that the diligant nitrogen in this ring is the primary site of protonation in these modified nucleosides. It is concluded that 15N NMR of nucleoside bases can be largely a complementary method to 1H and 13C NMR studies and, in addition, can serve as a direct probe for studies of nitrogen environment in oligomeric fragments of nucleic acids even at moderately strong magnetic fields due to the higher spectral dispersion compared with 1H and 13C NMR spectra. PMID:6473107

  15. Natural-abundance 15N NMR studies of Turkey ovomucoid third domain. Assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple-quantum coherence

    NASA Astrophysics Data System (ADS)

    Ortiz-Polo, Gilberto; Krishnamoorthi, R.; Markley, John L.; Live, David H.; Davis, Donald G.; Cowburn, David

    Heteronuclear two-dimensional 1H{ 15N} multiple-quantum (MQ) spectroscopy has been applied to a protein sample at natural abundance: ovomucoid third domain from turkey ( Meleagris gallopavo), a serine proteinase inhibitor of 56 amino acid residues. Peptide amide 1H NMR assignments obtained by two-dimensional 1H{ 1H} NMR methods (R. Krishnamoorthi and J. L. Markley, unpublished data) led to identification of the corresponding 1H{ 15N} MQ coherence cross peaks. From these, 15N NMR chemical shifts were determined for several specific backbone amide groups of amino acid residues located around the reactive site region of the inhibitor. The results suggest that amide 15N chemical shifts, which are readily obtained in this way, may serve as sensitive probes for conformational studies of proteins.

  16. A strip-shield improves the efficiency of a solenoid coil in probes for high field solid-state NMR of lossy biological samples

    PubMed Central

    Wu, Chin H.; Grant, Christopher V.; Cook, Gabriel A.; Park, Sang Ho; Opella, Stanley J.

    2009-01-01

    A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800 MHz 1H/15N and 1H/13C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers. PMID:19559634

  17. Effect of protein restriction on (15)N transfer from dietary [(15)N]alanine and [(15)N]Spirulina platensis into urea.

    PubMed

    Hamadeh, M J; Hoffer, L J

    2001-08-01

    Six normal men consumed a mixed test meal while adapted to high (1.5 g. kg(-1) x day(-1)) and low (0.3 g. kg(-1) x day(-1)) protein intakes. They completed this protocol twice: when the test meals included 3 mg/kg of [(15)N]alanine ([(15)N]Ala) and when they included 30 mg/kg of intrinsically labeled [(15)N]Spirulina platensis ([(15)N]SPI). Six subjects with insulin-dependent diabetes mellitus (IDDM) receiving conventional insulin therapy consumed the test meal with added [(15)N]Ala while adapted to their customary high-protein diet. Protein restriction increased serum alanine, glycine, glutamine, and methionine concentrations and reduced those of leucine. Whether the previous diet was high or low in protein, there was a similar increase in serum alanine, methionine, and branched-chain amino acid concentrations after the test meal and a similar pattern of (15)N enrichment in serum amino acids for a given tracer. When [(15)N]Ala was included in the test meal, (15)N appeared rapidly in serum alanine and glutamine, to a minor degree in leucine and isoleucine, and not at all in other circulating amino acids. With [(15)N]SPI, there was a slow appearance of the label in all serum amino acids analyzed. Despite the different serum amino acid labeling, protein restriction reduced the postmeal transfer of dietary (15)N in [(15)N]Ala or [(15)N]SPI into [(15)N]urea by similar amounts (38 and 43%, respectively, not significant). The response of the subjects with IDDM was similar to that of the normal subjects. Information about adaptive reductions in dietary amino acid catabolism obtained by adding [(15)N]Ala to a test meal appears to be equivalent to that obtained using an intrinsically labeled protein tracer.

  18. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  19. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  20. A study of 15N- 15N and 15N- 13C spin couplings in some 15N labeled mesoionic 1-oxa and 1-thia-2,3,4-triazoles

    NASA Astrophysics Data System (ADS)

    Jaźwiński, J.; Staszewska, O.; Stefaniak, L.; Webb, G. A.

    1996-03-01

    15N- 15N and 15N- 13C spin-spin couplings are reported for seven 15N labeled 1-oxa and 1-thia-2,3,4-triazoles and three sydnonimines. For the former class of compounds the spin-spin coupling data show a close similarity between the N2N3 and N3N4 bonds which had not previously been suspected from chemical shift measurements.

  1. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  2. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  3. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  4. Nitrogen input 15N signatures are reflected in plant 15N natural abundances in subtropical forests in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Fang, Yunting; Mao, Qinggong; Hao, Chen; Mo, Jiangming

    2017-05-01

    Natural abundance of 15N15N) in plants and soils can provide time-integrated information related to nitrogen (N) cycling within ecosystems, but it has not been well tested in warm and humid subtropical forests. In this study, we used ecosystem δ15N to assess effects of increased N deposition on N cycling in an old-growth broad-leaved forest and a secondary pine forest in a high-N-deposition area in southern China. We measured δ15N of inorganic N in input and output fluxes under ambient N deposition, and we measured N concentration (%N) and δ15N of major ecosystem compartments under ambient deposition and after decadal N addition at 50 kg N ha-1yr-1, which has a δ15N of -0.7 ‰. Our results showed that the total inorganic N in deposition was 15N-depleted (-10 ‰) mainly due to high input of strongly 15N-depleted NH4+-N. Plant leaves in both forests were also 15N-depleted (-4 to -6 ‰). The broad-leaved forest had higher plant and soil %N and was more 15N-enriched in most ecosystem compartments relative to the pine forest. Nitrogen addition did not significantly affect %N in the broad-leaved forest, indicating that the ecosystem pools are already N-rich. However, %N was marginally increased in pine leaves and significantly increased in understory vegetation in the pine forest. Soil δ15N was not changed significantly by the N addition in either forest. However, the N addition significantly increased the δ15N of plants toward the 15N signature of the added N, indicating incorporation of added N into plants. Thus, plant δ15N was more sensitive to ecosystem N input manipulation than %N in these subtropical forests. We interpret the depleted δ15N of plants as an imprint from the high and 15N-depleted N deposition that may dominate the effects of fractionation that are observed in most warm and humid forests. Fractionation during the steps of N cycling could explain the difference between negative δ15N in plants and positive δ15N in soils, and the increase

  5. Probing site-specific 13C/15N-isotope enrichment of spider silk with liquid-state NMR spectroscopy.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2013-05-01

    Solid-state nuclear magnetic resonance (NMR) has been extensively used to elucidate spider silk protein structure and dynamics. In many of these studies, site-specific isotope enrichment is critical for designing particular NMR methods for silk structure determination. The commonly used isotope analysis techniques, isotope-ratio mass spectroscopy and liquid/gas chromatography-mass spectroscopy, are typically not capable of providing the site-specific isotope information for many systems because an appropriate sample derivatization method is not available. In contrast, NMR does not require any sample derivatization or separation prior to analysis. In this article, conventional liquid-state (1)H NMR was implemented to evaluate incorporation of (13)C/(15)N-labeled amino acids in hydrolyzed spider dragline silk. To determine site-specific (13)C and (15)N isotope enrichments, an analysis method was developed to fit the (1)H-(13)C and (1)H-(15)N J-splitting (J CH and J NH) (1)H NMR peak patterns of hydrolyzed silk fiber. This is demonstrated for Nephila clavipes spiders, where [U-(13)C3,(15)N]-Ala and [1-(13)C,(15)N]-Gly were dissolved in their water supplies. Overall, contents for Ala and Gly isotopomers are extracted for these silk samples. The current methodology can be applied to many fields where site-specific tracking of isotopes is of interest.

  6. 1H, 13C, and 15N assignment of the muscular LIM protein MLP/CRP3.

    PubMed

    Schallus, Thomas; Edlich, Christian; Stier, Gunter; Muhle-Goll, Claudia

    2007-07-01

    The family of CRP proteins comprises three members, which are composed of two LIM domains separated by a long linker of more than 50 residues. We determined the structure of the muscle variant, MLP (CRP3), by nuclear magnetic resonance and show that the two LIM domains are independent of each other.

  7. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    SciTech Connect

    Holliday, Michael; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  8. 1H, 15N and 13C backbone resonance assignments of the archetypal serpin α1-antitrypsin.

    PubMed

    Nyon, Mun Peak; Kirkpatrick, John; Cabrita, Lisa D; Christodoulou, John; Gooptu, Bibek

    2012-10-01

    Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of α(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of α(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.

  9. 1H, 13C and 15N resonance assignment of the cytosolic dithiol glutaredoxin 1 from the pathogen Trypanosoma brucei.

    PubMed

    Stefani, Monica; Sturlese, Mattia; Manta, Bruno; Löhr, Frank; Mammi, Stefano; Comini, Marcelo; Bellanda, Massimo

    2016-04-01

    Trypanosomatids are parasites responsible for several tropical and subtropical diseases, such as Chaga's disease, sleeping sickness and Leishmaniasis. In contrast to the mammalian host, the thiol-redox metabolism of these pathogens depends on trypanothione [bis-glutathionylspermidine, T(SH)2] instead of glutathione (GSH) providing a set of lineage-specific proteins as drug target candidates. Glutaredoxins (Grx) are ubiquitous small thiol-disulfide oxidoreductases that belong to the thioredoxin-fold family. They play a central role in redox homeostasis and iron sulfur-cluster biogenesis. Each species, including trypanosomes, possesses its own set of isoforms distributed in different subcellular compartments. The genome of trypanosomatids encodes for two class I (dithiolic) Grxs named 2-C-Grx1 and 2-C-Grx2. Both proteins were shown to efficiently reduce different disulfides at the expenses of T(SH)2 using a mechanism that involves the two cysteines in the active site. Moreover, the cytosolic Trypanosoma brucei 2-C-Grx1 but not the mitochondrial 2-C-Grx2 was able to coordinate an iron-sulfur cluster with T(SH)2 or GSH as ligand. As a first step to unravel the structural basis for the specificity observed in the trypanosomal glutaredoxins, we present here the NMR resonance assignment of 2-C-Grx1 from the parasite T. brucei brucei.

  10. 1H, 15N and 13C assignments of an intramolecular Lmo2-LIM2/Ldb1-LID complex.

    PubMed

    Wilkinson-White, Lorna E; Dastmalchi, Siavoush; Kwan, Ann H; Ryan, Daniel P; Mackay, Joel P; Matthews, Jacqueline M

    2010-10-01

    Lmo2 is a LIM-only protein involved in hematopoiesis and the development of T-cell acute lymphoblastic leukaemia. Here we report backbone and side chain NMR assignments for an engineered intramolecular complex of the C-terminal LIM domain from Lmo2 tethered to the LIM interaction domain (LID) from LIM domain binding protein 1 (Ldb1).

  11. An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids.

    PubMed

    Nikonowicz, E P; Pardi, A

    1993-08-20

    An efficient method is presented for the assignment of the proton, carbon, and nitrogen resonances in the NMR spectra of isotopically labeled nucleic acids. The assignment strategy starts by identifying all protons and carbons belonging to the same sugar ring through application of a set of 2D or 3D heteronuclear HCCH NMR experiments. Next the individual sugar rings are connected to their corresponding bases through intra-residue 1H-1H nuclear Overhauser effects (NOEs) observed in a 3D (1H, 13C, 1H) NOESY-HMQC experiment. Sequential NOE connectivities observed in this experiment are then used to assign each residue in the nucleotide sequence. The imino protons and nitrogens, and the cytidine amino protons and nitrogens, are assigned by 2D (15N, 1H) HMQC and 3D (1H, 15N, 1H) NOESY-HMQC experiments in H2O. This assignment procedure is illustrated on the 99% 13C/15N labeled RNA duplex r(GGCGCUUGCGUC)2. The application of these multi-dimensional heteronuclear magnetic resonance experiments enormously simplifies the resonance assignment of nucleic acids and allows assignment of many more protons, carbons and nitrogens than was possible using standard techniques on unlabeled molecules. Since a larger percentage of the protons can now be assigned by these experiments, much more NMR structural information can be obtained which will significantly extend the size limit for solution structure determinations of RNAs.

  12. EPIC- and CHANCE-HSQC: Two 15N Photo-CIDNP-Enhanced Pulse Sequences for the Sensitive Detection of Solvent-Exposed Tryptophan

    PubMed Central

    Sekhar, Ashok; Cavagnero, Silvia

    2009-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) of nuclei other than 1H offers a tremendous potential for sensitivity enhancement in liquid state NMR under mild, physiologically relevant conditions. Photo-CIDNP enhancements of 15N magnetization are much larger than those typically observed for 1H. However, the low gyromagnetic ratio of 15N prevents a full fruition of the potential signal-to-noise gains attainable via 15N photo-CIDNP. Here, we propose two novel pulse sequences, EPIC- and CHANCE-HSQC, tailored to overcome the above limitation. EPIC-HSQC exploits the strong 1H polarization and its subsequent transfer to non-equilibrium Nz magnetization prior to 15N photo-CIDNP laser irradiation. CHANCE-HSQC synergistically combines 1H and 15N photo-CIDNP. The above pulse sequences, tested on tryptophan (Trp) and the Trp-containing protein apoHmpH, were found to display up to two-fold higher sensitivity than the reference NPE-SE-HSQC pulse train (based on simple 15N photo-CIDNP followed by N-H polarization transfer), and up to a ca. 3-fold increase in sensitivity over the corresponding dark pulse schemes (lacking laser irradiation). The observed effects are consistent with the predictions from a theoretical model of photo-CIDNP and prove the potential of 15N and 1H photo-CIDNP in liquid state heteronuclear correlation NMR. PMID:19643649

  13. 15N Nuclear magnetic resonance of some pyrazines, 1,2,4-triazines and their N-oxides. Correlation and interrelationship of 15N with 13C chemical shifts of π-deficient heterocyclic systems

    NASA Astrophysics Data System (ADS)

    Jovanovic, Misa V.

    The 15N chemical shifts of a number of pyrazines, 1,2,4-triazines, and their N-oxides are reported. The shielding effects of a substituent ortho to a ring nitrogen on that nitrogen atom depend on the π-deficiency of the heterocyclic ring. These π-deficiency values are related to ortho13C chemical shifts in substituted benzenes. A new relationship between 13C and 15N chemical shifts of several π-deficient heteroaromatic compounds is described. The N-oxides of pyrazine and 1,2,4-triazine show significant "backdonation" to the groundstate of these ring systems. This contribution becomes more important as the number of nitrogens in the ring increases. The "backdonation" is also reflected by a significant shielding of nitrogen atoms α and/or γ to the N-oxide group.

  14. (15)N-ammonium and (15)N-nitrate uptake of a 15-year-old Picea abies plantation.

    PubMed

    Buchmann, N; Schulze, E-D; Gebauer, G

    1995-06-01

    Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either (15)N-ammonium or (15)N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). (15)N-labeling (62 mg (15)N m(-2) under conditions of 1.5 g N m(-2) atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The (15)N recovery within the entire stand (including soils) was 94%±6% of the applied (15)N-ammonium tracer and 100%±6% of the applied (15)N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the (15)N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the (15)N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both (15)N-ammonium and (15)N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. (15)N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered (15)N in spruce; no enrichment could be detected in stem wood. Although (15)N-ammonium and (15)N-nitrate were applied in the same molar quantities ((15)NH 4(+) : (15)NO 3(-) =1:1), the tracers were diluted differently in the inorganic soil N pools ((15)NH 4(+) /NH 4(+) : (15)NO 3(-) /NO 3(-) =1:9). Therefore the measured (15)N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate (15)N uptake from inorganic N pools resulted in a 2-4 times higher ammonium than nitrate uptake by P. abies.

  15. Thermocouple shield

    DOEpatents

    Ripley, Edward B.

    2009-11-24

    A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

  16. Probing platinum azido complexes by 14N and 15N NMR spectroscopy.

    PubMed

    Farrer, Nicola J; Gierth, Peter; Sadler, Peter J

    2011-10-17

    Metal azido complexes are of general interest due to their high energetic properties, and platinum azido complexes in particular because of their potential as photoactivatable anticancer prodrugs. However, azido ligands are difficult to probe by NMR spectroscopy due to the quadrupolar nature of (14)N and the lack of scalar (1)H coupling to enhance the sensitivity of the less abundant (15)N by using polarisation transfer. In this work, we report (14)N and (15)N NMR spectroscopic studies of cis,trans,cis-[Pt(N(3))(2)(OH)(2)(NH(3))] (1) and trans,trans,trans-[Pt(N(3))(2)(OH)(2)(X)(Y)], where X=Y=NH(3) (2); X=NH(3), Y=py (3) (py=pyridine); X=Y=py (4); and selected Pt(II) precursors. These studies provide the first (15)N NMR data for azido groups in coordination complexes. We discuss one- and three-bond J((15)N,(195)Pt) couplings for azido and am(m)ine ligands. The (14)N(α) (coordinated azido nitrogen) signal in the Pt(IV) azido complexes is extremely broad (W(1/2)≈2124 Hz for 4) in comparison to other metal azido complexes, attributable to a highly asymmetrical electric field gradient at the (14)N(α) atom. Through the use of anti-ringing pulse sequences, the (14)N NMR spectra, which show resolution of the broad (14)N(α) peak, were obtained rapidly (e.g., 1.5 h for 10 mM 4). The linewidths of the (14)N(α) signals correlate with the viscosity of the solvent. For (15) N-enriched samples, it is possible to detect azido (15)N resonances directly, which will allow photoreactions to be followed by 1D (15)N NMR spectroscopy. The T(1) relaxation times for 3 and 4 were in the range 5.7-120 s for (15)N, and 0.9-11.3 ms for (14)N. Analysis of the (1)J((15)N,(195)Pt) coupling constants suggests that an azido ligand has a moderately strong trans influence in octahedral Pt(IV) complexes, within the series 2-pic

  17. High-Precision Measurements of 15N15N, 14N15N, and 14N2 in N2 and Potential Applications to Oceanic Nitrogen Cycle Research

    NASA Astrophysics Data System (ADS)

    Li, S.; Yeung, L.; Young, E. D.; Ostrom, N. E.; Haslun, J. A.

    2016-02-01

    The balance of nitrogen fixation and nitrogen loss in the oceans is uncertain. For example, anaerobic ammonia oxidation could account for 50% or more of marine N2 production, although its global importance is still poorly known. Isotopic ratios in fixed nitrogen species (e.g., δ15N and δ18O values of NO2- and NO3-) are widely used to trace preservation and removal of N-bearing compounds and/or isotopic variations of their different sources. However, these approaches in general probe only one side of the nitrogen mass balance—the "fixed" nitrogen reservoir—so they offer few constraints on the ultimate loss of nitrogen from that pool as N2. The rare isotopologue ratio 15N15N/14N2 in N2may provide information about those nitrogen-loss processes directly. We will report the first measurements of Δ30 (the abundance of 15N15N relative to that predicted by chance alone), made on a unique high-resolution mass spectrometer (the Nu Instruments Panorama), and we will discuss the potential utility of Δ30 as an independent tracer of the nitrogen cycle. The parameter Δ30 is insensitive to the bulk 15N/14N isotopic ratio of the reservoir; instead, it reflects isotopic ordering in N2, which is altered when N-N bonds are made or broken. Our preliminary measurements of N2 from denitrifying soils and pure cultures of denitrifiers indicate large kinetic isotopic effects during N-N bond formation that favor 15N15N production during denitrification. We also observed a nonstochastic excess of 15N15N in tropospheric N2 [Δ30 = +19.05 ± 0.12‰ (1σ)]. This excess likely comes from fixed-nitrogen loss processes in the biosphere. Variations in Δ30 of N2 from pure culture experiments (+16.96 to +18.95‰) probably reflect the different isotopic signatures of the enzymes that catalyze denitrification. So, enzyme-specific Δ30 values of dissolved N2 should provide information about the importance of different biochemical pathways of fixed-nitrogen loss (e.g., denitrification vs

  18. Entanglement of Spin States in 15N@C60

    NASA Astrophysics Data System (ADS)

    Scherer, W.; Weidinger, A.; Mehring, M.

    2004-09-01

    The endohedral fullerene 15N@C60 comprises an electron spin S = 3/2 coupled to a nuclear spin I = 1/2 and is therefore ideally suited for experimental testing of basic properties of quantum mechanics. We will show that the 15N@C60 molecule represents a multi qubit system where different kinds of entangled states can be generated.

  19. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data.

    PubMed

    Spyracopoulos, Leo

    2006-12-01

    A suite of Mathematica notebooks has been designed to ease the analysis of protein main chain 15N NMR relaxation data collected at a single magnetic field strength. Individual notebooks were developed to perform the following tasks: nonlinear fitting of 15N-T1 and -T2 relaxation decays to a two parameter exponential decay, calculation of the principal components of the inertia tensor from protein structural coordinates, nonlinear optimization of the principal components and orientation of the axially symmetric rotational diffusion tensor, model-free analysis of 15N-T1, -T2, and {1H}-15N NOE data, and reduced spectral density analysis of the relaxation data. The principle features of the notebooks include use of a minimal number of input files, integrated notebook data management, ease of use, cross-platform compatibility, automatic visualization of results and generation of high-quality graphics, and output of analyses in text format.

  20. Simple Approaches for Estimating Vicinal 1H- 1H Coupling-Constants and for Obtaining Stereospecific Resonance Assignments in Leucine Side Chains

    NASA Astrophysics Data System (ADS)

    Constantine, K. L.; Friedrichs, M. S.; Mueller, L.

    An approach for deriving stereospecific δ-methyl assignments and χ 2 dihedral angle constraints for leucine residues, based on easily recognized patterns of 1H- 1H spin-spin coupling constants and intraresidue nuclear-Overhauser-effect spectroscopy (NOESY) cross-peak intensities, is described. The approach depends on resolved H γ and/or δ-methyl resonances and on initially obtaining stereospecific assignments for H β2 and H β3. As part of the overall strategy, a method is presented for obtaining qualitative or, in favorable cases, semiquantitative estimates of vicinal 1H- 1H coupling constants from peak intensities measured in a short-mixing-time 1H- 1H total correlation spectroscopy (TOCSY) experiment. This method of estimating 1H- 1H spin-spin coupling constants is generally applicable to all side-chain types. The approach is illustrated for several leucine residues within uniformly 15N-labeled and 15N/ 13C-double-labeled isolated light-chain variable domain of the anti-digoxin antibody 26-10. Estimates of 3Jαβ and 3Jβγ coupling constants are derived from a three-dimensional (3D) 13C-edited TOCSY-heteronuclear multiple-quantum coherence (HMQC) spectrum. These data are combined with information from 3D 15N-edited NOESY and 3D 13C-edited NOESY spectra to yield stereospecific H β2, H β3, and δ-methyl assignments, as well as constraints on χ (1) and χ 2 dihedral angles. Although the overall approach is illustrated using 3D 15N-edited and 13C-edited data, it is equally applicable to analysis of two-dimensional 1H- 1H NOESY and TOCSY spectra.

  1. Monitoring the refinement of crystal structures with (15)N solid-state NMR shift tensor data.

    PubMed

    Kalakewich, Keyton; Iuliucci, Robbie; Mueller, Karl T; Eloranta, Harriet; Harper, James K

    2015-11-21

    The (15)N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated (15)N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2-3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X-Y and X-H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of (15)N tensors at natural abundance is challenging and this limitation is overcome by improved (1)H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental (15)N tensors are at least 5 times more sensitive to crystal structure than (13)C tensors due to nitrogen's greater polarizability and larger range of chemical shifts.

  2. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  3. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Pichumani, Kumar; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2012-06-21

    Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.

  4. δ15N Value Does Not Reflect Fasting in Mysticetes

    PubMed Central

    Aguilar, Alex; Giménez, Joan; Gómez–Campos, Encarna; Cardona, Luís; Borrell, Asunción

    2014-01-01

    The finding that tissue δ15N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ15N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ15N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indicatior of nutritive condition. PMID:24651388

  5. Benchmark Theoretical and Experimental Study on (15)N NMR Shifts of Oxidatively Damaged Guanine.

    PubMed

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Yoshiyuki; Nencka, Radim; Sychrovský, Vladimír

    2016-02-11

    The (15)N NMR shifts of 9-ethyl-8-oxoguanine (OG) were calculated and measured in liquid DMSO and in crystal. The OG molecule is a model for oxidatively damaged 2'-deoxyguanosine that occurs owing to oxidative stress in cell. The DNA lesion is repaired with human 8-oxoguanine glycosylase 1 (hOGG1) base-excision repair enzyme, however, the exact mechanism of excision of damaged nucleobase with hOGG1 is currently unknown. This benchmark study on (15)N NMR shifts of OG aims their accurate structural interpretation and calibration of the calculation protocol utilizable in future studies on mechanism of hOGG1 enzyme. The effects of NMR reference, DFT functional, basis set, solvent, structure, and dynamics on calculated (15)N NMR shifts were first evaluated for OG in crystal to calibrate the best performing calculation method. The effect of large-amplitude motions on (15)N NMR shifts of OG in liquid was calculated employing molecular dynamics. The B3LYP method with Iglo-III basis used for B3LYP optimized geometry with 6-311++G(d,p) basis and including effects of solvent and molecular dynamic was the calculation protocol used for calculation of (15)N NMR shifts of OG. The NMR shift of N9 nitrogen of OG was particularly studied because the atom is involved in an N-glycosidic bond that is cleaved with hOGG1. The change of N9 NMR shift owing to oxidation of 9-ethylguanine (G) measured in liquid was -27.1 ppm. The calculated N9 NMR shift of OG deviated from experiment in crystal and in liquid by 0.45 and 0.65 ppm, respectively. The calculated change of N9 NMR shift owing to notable N9-pyramidalization of OG in one previously found polymorph was 20.53 ppm. We therefore assume that the pyramidal geometry of N9 nitrogen that could occur for damaged DNA within hOGG1 catalytic site might be detectable with (15)N NMR spectroscopy. The calculation protocol can be used for accurate structural interpretation of (15)N NMR shifts of oxidatively damaged guanine DNA residue.

  6. Phenylalanine δ15N in Paleo Archives as a New Proxy for δ15N of Exported Primary Production

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Batista, F. C.; Vokhshoori, N. L.; Brown, J. T.; Guilderson, T. P.; Ravelo, A. C.; Sherwood, O.

    2012-12-01

    Compound-specific isotope analysis of individual amino acids (CSI-AA) is emerging as a powerful new tool for studying the paleo nitrogen cycle. Because most detrital organic nitrogen is composed of amino acids, CSI-AA can reveal the mechanistic basis for organic nitrogen diagenesis, preserve a record of past food web structure, and potentially reconstruct the δ15N values of past nitrate and primary production. Within the commonly measured amino acids, the δ15N value of phenylalanine (Phe) appears uniquely promising as a new proxy that reflects the nitrogen isotopic value of the original source. Phe δ15N values remain almost unchanged with trophic transfer through food webs, and also during at least the initial stages of organic matter degradation. Here we synthesize results from both bio-archives and recent sediments, which together suggest that at least in Holocene archives the Phe δ15N value does in fact record the average inorganic nitrogen δ15N value at the base of planktonic food webs. However, several important unknowns also remain. These include the extent of variation in amino acid isotopic fractionation patterns in phylogenetically distinct algal groups. The stability of Phe δ15N values in older sediments where organic matter has undergone extensive diagenesis is also an important research area, which may ultimately establish the temporal limit for application of this approach to study past geological epochs. Together, however, results to date suggest that of Phe δ15N values in paleo archives represent a novel molecular-level proxy which is not tied to any specific organism or group, but rather can provide an integrated estimate of δ15N value of exported primary production.

  7. Proton NMR measurements of bacteriophage T4 lysozyme aided by 15N isotopic labeling: structural and dynamic studies of larger proteins

    SciTech Connect

    McIntosh, L.P.; Griffey, R.H.; Muchmore, D.C.; Nielson, C.P.; Redfield, A.G.; Dahlquist, F.W.

    1987-03-01

    A strategy for resolution and assignment of single proton resonances in proteins of molecular mass up to at least 40 kDa is presented. This approach is based on /sup 15/N (or /sup 13/C) labeling of selected residues in a protein. The resonances from protons directly bonded to labeled atoms are detected in a two-dimensional 1H-/sup 15/N (or /sup 13/C) spectrum. The nuclear Overhauser effects from isotopically tagged protons are selectively observed in one-dimensional isotope-directed measurements. Using this approach, we have observed approximately 160 resonances from /sup 15/N-bonded protons in the backbone and sidechains of uniformly /sup 15/N-labeled T4 lysozyme (molecular mass = 18.7 kDa). Partial proton-deuterium exchange can be used to simplify the 1H-/sup 15/N spectrum of this protein. These resonances are identified by amino acid class using selective incorporation of /sup 15/N-labeled amino acids and are assigned to specific residues by mutational substitution, multiple /sup 15/N and /sup 13/C labeling, and isotope-directed nuclear Overhauser effect measurements. For example, using a phenyl(/sup 15/N)alanine-labeled lysozyme variant containing two consecutive phenylalanine residues in an alpha-helical region, we observe an isotope-directed nuclear Overhauser effect from the amide proton of Phe-66 to that of Phe-67.

  8. Solvent effects on 15N NMR coordination shifts.

    PubMed

    Kleinmaier, Roland; Arenz, Sven; Karim, Alavi; Carlsson, Anna-Carin C; Erdélyi, Máté

    2013-01-01

    (15)N NMR chemical shift became a broadly utilized tool for characterization of complex structures and comparison of their properties. Despite the lack of systematic studies, the influence of solvent on the nitrogen coordination shift, Δ(15)N(coord), was hitherto claimed to be negligible. Herein, we report the dramatic impact of the local environment and in particular that of the interplay between solvent and substituents on Δ(15)N(coord). The comparative study of CDCl(3) and CD(3)CN solutions of silver(I)-bis(pyridine) and silver(I)-bis(pyridylethynyl)benzene complexes revealed the strong solvent dependence of their (15)N NMR chemical shift, with a solvent dependent variation of up to 40 ppm for one and the same complex. The primary influence of the effect of substituent and counter ion on the (15)N NMR chemical shifts is rationalized by corroborating Density-Functional Theory (nor discrete Fourier transform) calculations on the B3LYP/6-311 + G(2d,p)//B3LYP/6-31G(d) level. Cooperative effects have to be taken into account for a comprehensive description of the coordination shift and thus the structure of silver complexes in solution. Our results demonstrate that interpretation of Δ(15)N(coord) in terms of coordination strength must always consider the solvent and counter ion. The comparable magnitude of Δ(15)N(coord) for reported transition metal complexes makes the principal findings most likely general for a broad scale of complexes of nitrogen donor ligands, which are in frequent use in modern organometallic chemistry.

  9. Density functional theory investigation of hydrogen bonding effects on the oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors of anhydrous chitosan crystalline structure.

    PubMed

    Esrafili, Mehdi D; Elmi, Fatemeh; Hadipour, Nasser L

    2007-02-08

    A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, as well as 17O, 15N, 13C and 1H chemical shielding tensors in the anhydrous chitosan crystalline structure. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through a hexameric cluster. The computations were performed with the B3LYP method and 6-311++G(d,p) and 6-31++G(d,p) standard basis sets using the Gaussian 98 suite of programs. Calculated EFG and chemical shielding tensors were used to evaluate the 17O, 14N and 2H nuclear quadrupole resonance, NQR, and 17O, 15N, 13C and 1H nuclear magnetic resonance, NMR, parameters in the hexameric cluster, which are in good agreement with the available experimental data. The difference between the calculated NQR and NMR parameters of the monomer and hexamer cluster shows how much hydrogen bonding interactions affect the EFG and chemical shielding tensors of each nucleus. These results indicate that both O(3)-H(33)...O(5-3) and N-H(22)...O(6-4) hydrogen bonding have a major influence on NQR and NMR parameters. Also, the quantum chemical calculations indicate that the intra- and intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of EFG and chemical shielding principal components in the molecular frame axes.

  10. Corium shield

    DOEpatents

    McDonald, Douglas B.; Buchholz, Carol E.

    1994-01-01

    A shield for restricting molten corium from flowing into a water sump disposed in a floor of a containment vessel includes upper and lower walls which extend vertically upwardly and downwardly from the floor for laterally bounding the sump. The upper wall includes a plurality of laterally spaced apart flow channels extending horizontally therethrough, with each channel having a bottom disposed coextensively with the floor for channeling water therefrom into the sump. Each channel has a height and a length predeterminedly selected for allowing heat from the molten corium to dissipate through the upper and lower walls as it flows therethrough for solidifying the molten corium therein to prevent accumulation thereof in the sump.

  11. (15)N- and (2)H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity.

    PubMed

    Justice, Nicholas B; Li, Zhou; Wang, Yingfeng; Spaudling, Susan E; Mosier, Annika C; Hettich, Robert L; Pan, Chongle; Banfield, Jillian F

    2014-10-01

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged - recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either (15)NH4(+) or deuterium oxide ((2)H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized (15)N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized (15)N-enriched protein in all conditions. There were relatively few (15)N-enriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly (14)N biomass derived from recycled biomolecules. In parallel experiments using (2)H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using (2)H2O. The nearly exclusive ability of Archaea to synthesize proteins using (2)H2O may be due to archaeal heterotrophy, whereby Archaea offset deleterious effects of (2)H by accessing (1)H generated by respiration of organic compounds. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  13. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  14. 3D NMR Experiments for Measuring 15N Relaxation Data of Large Proteins: Application to the 44 kDa Ectodomain of SIV gp41

    NASA Astrophysics Data System (ADS)

    Caffrey, Michael; Kaufman, Joshua; Stahl, Stephen J.; Wingfield, Paul T.; Gronenborn, Angela M.; Clore, G. Marius

    1998-12-01

    A suite of 3D NMR experiments for measuring15N-{1H} NOE,15NT1, and15NT1ρvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H-15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.

  15. ENDOR and ESEEM of the 15N labelled radical cations of chlorophyll a and the primary donor P 700 in photosystem I

    NASA Astrophysics Data System (ADS)

    Käβ, H.; Bittersmann-Weidlich, E.; Andréasson, L.-E.; Bönigk, B.; Lubitz, W.

    1995-05-01

    The hyperfine couplings of the nitrogen nuclei in the radical cations of both 15N-labelled chlorophyll a and the primary donor P 700 in Photosystem I of Synechococcus elongatus and spinach ( Spinacea oleracea) in frozen solutions were investigated by ENDOR and, for confirmation, by two-dimensional ESEEM techniques. In addition, 1H ENDOR experiments were performed on these compounds. The experimental 15N hyperfine couplings of the chlorophyll a radical cation are compared with theoretical ones obtained by RHF-INDO/SP calculations and with the respective hyperfine couplings in the closely related 15N-bacteriochlorophyll a radical cation. Based on the observed 15N and 1H hyperfine couplings two possible models are discussed for P 700+: (a) the special pair model with a strongly asymmetric spin density distribution over the dimer halves; (b) the model of a strongly perturbed chlorophyll a monomer.

  16. 15N fractionation in infrared-dark cloud cores

    NASA Astrophysics Data System (ADS)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  17. Refining cotton-wick method for 15N plant labelling.

    NASA Astrophysics Data System (ADS)

    Fustec, Joëlle; Mahieu, Stéphanie

    2010-05-01

    The symbiosis Fabaceae/Rhizobiaceae plays a critical role in the nitrogen cycle. It gives the plant the ability to fix high amounts of atmospheric N. A part of this N can be transferred to the soil via rhizodeposition. The contribution of Fabaceae to the soil N pool is difficult to measure, since it is necessary for assessing N benefits for other crops, for soil biological activity, and for reducing water pollution in sustainable agriculture (Fustec, 2009). The aim of this study was to test and improve the reliability of the 15N cotton-wick method for measuring the soil N derived from plant rhizodeposition (Mahieu et al., 2007). The effects of the concentration of the 15N-urea labelling solution and of the feeding frequency (continuous or pulses) on the assessment of nitrogen rhizodeposition were studied in two greenhouse experiments using the field pea (Pisum sativum L.) and the non-nodulating isoline P2. The plant parts and the soil were prepared for 15N:14N measurements for assessing N rhizodeposition (Mahieu et al., 2009). The fraction of plants' belowground nitrogen allocated to rhizodeposition in both Frisson pea and P2 was 20 to more than 50% higher when plants were labelled continuously than when they were labelled using fortnightly pulses. Our results suggested that when 15N root enrichment was high, nitrogen rhizodeposition was underestimated only for plants that were 15N-fed by fortnightly pulses, and not in plants 15N-fed continuously. This phenomenon was especially observed for plants relying on symbiotic N fixation for N acquisition; it may be linked to the concentration of the labelling solution. In conclusion, N rhizodeposition assessment was strongly influenced by the 15N-feeding frequency and the concentration of the labelling solution. The estimation of N rhizodeposition was more reliable when plants were labelled continuously with a dilute solution of 15N urea. Fustec et al. 2009. Agron. Sustain. Dev., DOI 10.1051/agro/2009003, in press. Mahieu

  18. Investigation of Uña De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa.

    PubMed

    Muhammad, I; Dunbar, D C; Khan, R A; Ganzera, M; Khan, I A

    2001-07-01

    The C-8-(S) isomer of deoxyloganic acid (7-deoxyloganic acid), together with beta-sitosteryl glucoside, five known stereoisomeric pentacyclic oxindole alkaloids and the tetracyclic oxindole isorhyncophylline, were isolated from the inner bark of Uncaria tomentosa. Structures of the isolated compounds were based on 1H and 13C NMR data, mainly 2D NMR experiments, including 1H-13C HMBC and 1H-1H NOESY correlation. Furthermore, the hitherto unreported 15N chemical shifts of the isomeric oxindole alkaloids, using 1H-15N HMBC experiments, were utilized to facilitate their characterization. Uncarine D showed weak cytotoxic activity against SK-MEL, KB, BT-549 and SK-OV-3 cell lines with IC(50) values between 30 and 40 microg/ml, while uncarine C exhibited weak cytotoxicity only against ovarian carcinoma (IC(50) at 37 microg/ml).

  19. Kinetic 15N-isotope effects on algal growth

    NASA Astrophysics Data System (ADS)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  20. Kinetic 15N-isotope effects on algal growth

    PubMed Central

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-01-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies. PMID:28281640

  1. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  2. Magnetic shielding

    DOEpatents

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  3. Magnetic shielding

    DOEpatents

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  4. Nitrogen and 15N in the Mer Bleue peatland

    NASA Astrophysics Data System (ADS)

    Moore, Tim

    2017-04-01

    Although much of our attention in peatlands has focussed on carbon, as CO2, CH4 and DOC processing and fluxes, N plays an important role in the functioning of these ecosystems. Here, I present information on the distribution of N and 15N in plant and peat tissues and relate them to the cycling of N. N concentration in foliar tissues, ranged from 0.67 to 1.3% in evergreen shrubs and trees and mosses with little seasonal variation, and with a strong seasonal variation from 0.5 to 3.5% in the deciduous forbs, shrubs and trees, with a strong overall relationship to [chlorophyll]. Although the proportion of shrubs and mosses varied with microtopography the spatial foliar mass of N varied little with water table position, resulting in minor spatial variations in photosynthetic potential. Decomposition of plant tissues through litter to peat resulted in a decrease in the C:N ratio from about 50:1 to about 30:1 at the base of the profile, representing peat about 8000 yr old. This marginally larger loss of N through decomposition (mainly as TDN, 0.4 g N m-2 yr-1) compared to C produced a long-term N accumulation rate of 0.9 g N m-2 yr-1, being smaller in the bog phase, 0.6 N m-2 yr-1, and over past 150 yr, 0.8 g N m-2 yr-1. Although N is 'hard won' through N2 fixation, northern peatlands are significant global sinks of N and have limited N availability. del15N in foliar tissues ranged from -4 to -9 ‰ in evergreen and deciduous shrubs and trees, from -4 to -5 ‰ in mosses and from -1 to +1 ‰ in sedges and forbs. This appears to be a function of the mycorhizzal infection of the shrubs and trees, compared to sedges and forbs and the values for mosses may partially reflect the signature of atmospheric N deposition. There was no strong correlation between foliar [N] and del15N. In peat profiles from bog and fen sections of Mer Bleue, del15N values in peat fell from -5 to -2 ‰ in the top 10 cm to values of -1 to +1 ‰ at a depth of 40 cm and remained close to 0 ‰ below

  5. Simple approach for the preparation of (15-15)N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations.

    PubMed

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used (15)N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared (15-15)N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of (15-15)N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add (15-15)N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the (15-15)N2 gas addition to indirectly enhance the (15-15)N2 concentration. This preparation of (15-15)N2-enriched water can be done within 1 h using standard laboratory equipment. The final (15)N-atom% excess was 5% after replacing 2-5% of the incubation volume with (15-15)N2-enriched water. Notably, the addition of (15-15)N2-enriched water can alter levels of trace elements in the incubation water due to the contact of (15-15)N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L(-1) in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with (15-15)N2. The (15-15)N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the (15-15)N2 equilibration. This approach achieved a (15)N-atom% excess of 6.6 ± 1.7% when adding 2 mL (15-15)N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the (15)N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments.

  6. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations

    PubMed Central

    Klawonn, Isabell; Lavik, Gaute; Böning, Philipp; Marchant, Hannah K.; Dekaezemacker, Julien; Mohr, Wiebke; Ploug, Helle

    2015-01-01

    Recent findings revealed that the commonly used 15N2 tracer assay for the determination of dinitrogen (N2) fixation can underestimate the activity of aquatic N2-fixing organisms. Therefore, a modification to the method using pre-prepared 15−15N2-enriched water was proposed. Here, we present a rigorous assessment and outline a simple procedure for the preparation of 15−15N2-enriched water. We recommend to fill sterile-filtered water into serum bottles and to add 15−15N2 gas to the water in amounts exceeding the standard N2 solubility, followed by vigorous agitation (vortex mixing ≥ 5 min). Optionally, water can be degassed at low-pressure (≥950 mbar) for 10 min prior to the 15−15N2 gas addition to indirectly enhance the 15−15N2 concentration. This preparation of 15−15N2-enriched water can be done within 1 h using standard laboratory equipment. The final 15N-atom% excess was 5% after replacing 2–5% of the incubation volume with 15−15N2-enriched water. Notably, the addition of 15−15N2-enriched water can alter levels of trace elements in the incubation water due to the contact of 15−15N2-enriched water with glass, plastic and rubber ware. In our tests, levels of trace elements (Fe, P, Mn, Mo, Cu, Zn) increased by up to 0.1 nmol L−1 in the final incubation volume, which may bias rate measurements in regions where N2 fixation is limited by trace elements. For these regions, we tested an alternative way to enrich water with 15−15N2. The 15−15N2 was injected as a bubble directly to the incubation water, followed by gentle shaking. Immediately thereafter, the bubble was replaced with water to stop the 15−15N2 equilibration. This approach achieved a 15N-atom% excess of 6.6 ± 1.7% when adding 2 mL 15−15N2 per liter of incubation water. The herein presented methodological tests offer guidelines for the 15N2 tracer assay and thus, are crucial to circumvent methodological draw-backs for future N2 fixation assessments. PMID:26300853

  7. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2011-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). By increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate concept MLI blankets for MMOD shields. In conjunction, these MLI blankets and the subsequent MMOD shields were also evaluated for their radiation shielding effectiveness towards protecting crew. These concepts were evaluated against the ISS MLI blankets and the ISS MMOD shield, which acted as the baseline. These radiation shielding assessments were performed using the high charge and energy transport software (HZETRN). This software is based on a one-dimensional formula of the Boltzmann transport equation with a straight-ahead approximation. Each configuration was evaluated against the following environments to provide a diverse view of radiation shielding effectiveness in most space environments within the heliosphere: August 1972 solar particle event, October 1989 solar particle event, 1982 galactic cosmic ray environment (during solar maximum), 1987 galactic cosmic ray environment (during solar minimum), and a low earth orbit environment in 1970 that corresponded to an altitude of 400 km and inclination of 51.6 . Both the absorbed dose and the dose equivalent were analyzed, but the focus of the discussion was on the dose equivalent since the data is most concerned with radiation shielding of the crew. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for

  8. Space reactor shielding fabrication

    NASA Technical Reports Server (NTRS)

    Welch, F. H.

    1972-01-01

    The fabrication of space reactor neutron shielding by a melting and casting process utilizing lithium hydride is described. The first neutron shield fabricated is a large pancake shape 86 inches in diameter, containing about 1700 pounds of lithium hydride. This shield, fabricated by the unique melting and casting process, is the largest lithium hydride shield ever built.

  9. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80-100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05-0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979-21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is

  10. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age

    NASA Astrophysics Data System (ADS)

    Minagawa, Masao; Wada, Eitaro

    1984-05-01

    The isotopic composition of nitrogen was measured in marine and fresh-water animals from the East China Sea, The Bering Sea, Lake Ashinoko and Usujiri intertidal zone. Primary producers, showed average δ15Nversus atmospheric nitrogen of +5.0%. (+3.4 to +7.5) in the Bering Sea and Lake Ashinoko, and +6.8%. (+6.0 to +7.6) in Usujiri intertidal zone. Blue green algae from the East China Sea show an average -0.55%. (-0.8 to +1.2). All consumers, Zooplankton, fish and bird exhibited Stepwise enrichment of 15N with increasing trophic level. The 15N enrichment at a single feeding process ranged from +1.3 to +5.3 averaging +3.4 ± 1.1%.. This isotopic fractionation seems to be independent of habitat. The effect of age in animals was obtained by analyzing two marine mussels. The soft tissue nitrogen showed +2.0%. enrichment relative to that of primary producers, and the magnitude was almost constant with shell ages ranging from 0 to 8 years. A similar 15N enrichment occurs in all Molluscs, Crustaceans, Insecta, Amphibia, Fish, Ave and Mammal species regardless of the difference in the form of excreted nitrogen and in laboratory cultured fish, brine shrimp and mice (+2.9 to +4.9%.). The excreted ammonia from guppy was sufficiently light to balance the concentration of 15N to animal body.

  11. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  12. Marking Drosophila suzukii (Diptera: Drosophilidae) With Rubidium or 15N.

    PubMed

    Klick, J; Yang, W Q; Bruck, D J

    2015-06-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) has caused significant economic damage to berry and stone fruit production regions. Markers that are systemic in plants and easily transferred to target organisms are needed to track D. suzukii exploitation of host resources and trophic interactions. High and low concentrations of the trace element, rubidium (Rb), and the stable isotope, 15N, were tested to mark D. suzukii larvae feeding on fruits of enriched strawberry plants grown in containers under greenhouse conditions. Fly marker content and proportion of flies marked 1, 7, and 14 d after emergence from enriched fruits and fly dry mass were analyzed. Nearly 100% of the flies analyzed 14 d after emerging from 15N-enriched plants were marked, whereas only 30-75% and 0-3% were marked 14 d after emerging from high and low Rb concentration plants, respectively. Rapid Rb decay, strong 15N persistence, and the economics of using these markers in the field to elucidate D. suzukii pest ecology are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. 15N chemical shift referencing in solid state NMR.

    PubMed

    Bertani, Philippe; Raya, Jésus; Bechinger, Burkhard

    2014-01-01

    Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.

  14. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  15. Nitrogen input 15N-signatures are reflected in plant 15N natural abundances of N-rich tropical forest in China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Lu, Xiankai; Gundersen, Per; Yunting, Fang; Mo, Jiangming

    2016-04-01

    In this study, we tested the measurement of natural abundance of 15N15N) for its ability to assess changes in N cycling due to increased N deposition in two forest types; namely, an old-growth broadleaved forest and a pine forest, in southern China. We measured δ15N values of inorganic N in input and output fluxes under ambient N deposition, and N concentration and δ15N of major ecosystem compartments under ambient and increased N deposition. Our results showed that N deposition to the forests was 15N-depleted, and was dominated by NH4-N. Plants were 15N-depleted due to imprint from the 15N-depleted atmospheric N deposition. The old-growth forest had larger N concentration and was more 15N-enriched than the pine forest. Nitrogen addition did not significantly affect N concentration, but it significantly increased δ15N values of plants, and slightly more so in the pine forest, toward the 15N signature of the added N in both forests. The result indicates that the pine forest may rely more on the 15N-depleted deposition N. Soil δ15N values were slightly decreased by the N addition. Our result suggests that ecosystem δ15N is more sensitive to the changes in ecosystem N status and N cycling than N concentration in N-saturated sub-tropical forests.

  16. Overhauser DNP with 15N labelled Frémy's salt at 0.35 Tesla.

    PubMed

    Türke, Maria-Teresa; Parigi, Giacomo; Luchinat, Claudio; Bennati, Marina

    2012-01-14

    The effectiveness of dynamic nuclear polarization (DNP) as a tool to enhance the sensitivity of liquid state NMR critically depends on the choice of the optimal polarizer molecule. In this study the performance of (15)N labelled Frémy's salt as a polarizing agent in Overhauser DNP is investigated in detail at X-band (0.35 T, 9.7 GHz EPR, 15 MHz (1)H NMR) and compared to that of TEMPONE-D,(15)N employed in previous studies. Both radicals provide similar maximum enhancements of the solvent water protons under similar conditions but a different saturation behaviour. The factors determining the enhancement and effective saturation were measured independently by EPR, ELDOR and NMRD and are shown to fulfil the Overhauser equation. In particular, following the theory of EPR saturation we provide analytical solutions for the dependence of the enhancement on the microwave field strength in terms of saturation transfer between two coupled hyperfine lines undergoing spin exchange. The negative charge of the radical in Frémy's salt solutions can explain the peculiar properties of this polarizing agent and indicates different suitable application areas for the two types of nitroxide radicals.

  17. 15 N- and 2 H proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity

    SciTech Connect

    Justice, Nicholas B.; Li, Zhou; Wang, Yingfeng; Spaulding, Susan E.; Mosier, Annika C.; Robert L. Hettich; Pan, Chongle; Banfield, Jillian F.

    2014-05-20

    Understanding how individual species contribute to nutrient transformations in a microbial community is critical to prediction of overall ecosystem function. We conducted microcosm experiments in which floating acid mine drainage (AMD) microbial biofilms were submerged recapitulating the final stage in a natural biofilm life cycle. Biofilms were amended with either 15NH4 + or deuterium oxide (2H2O) and proteomic stable isotope probing (SIP) was used to track the extent to which different members of the community used these molecules in protein synthesis across anaerobic iron-reducing, aerobic iron-reducing and aerobic iron-oxidizing environments. Sulfobacillus spp. synthesized 15N-enriched protein almost exclusively under iron-reducing conditions whereas the Leptospirillum spp. synthesized 15N-enriched protein in all conditions. There were relatively few 15Nenriched archaeal proteins, and all showed low atom% enrichment, consistent with Archaea synthesizing protein using the predominantly 14N biomass derived from recycled biomolecules. In parallel experiments using 2H2O, extensive archaeal protein synthesis was detected in all conditions. In contrast, the bacterial species showed little protein synthesis using 2H2O. The nearly exclusive ability of Archaea to synthesize proteins using 2H2O may be due to archaeal heterotrophy, whereby Archaea off set deleterious effects of 2H by accessing 1H generated byrespiration of organic compounds.

  18. Testing the bioelectric shield.

    PubMed

    Blackmore, Susan J; Rose, Nicholas

    2002-01-01

    A pendant was claimed to provide numerous health benefits, including reduced stress, increased strength, and protection from electromagnetic radiation from computers and mobile phones. Three experiments tested the effectiveness of this pendant's effect as a bioelectric shield. In the first experiment, 12 subjects who work with computers wore shields (6 real, 6 sham) for several weeks and were regularly tested for hand strength and mood changes. Both types of shield increased calmness, but the real shields did not have any greater effect. In 2 further studies (in each N=40) hand strength was measured at baseline, with mobile phone, and with mobile phone and bioelectric or sham shield. The shields did not differ in their effects. Both studies showed a significant correlation between the change in strength with and without the shield and subjects'scores on a questionnaire concerning their belief in and use of alternative therapies. The shields appear to produce a measurable placebo effect but are otherwise ineffective.

  19. 1H relaxation dispersion in solutions of nitroxide radicals: influence of electron spin relaxation.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Kowalewski, J; Rössler, E A; Moscicki, J

    2013-03-28

    The work presents a theory of nuclear ((1)H) spin-lattice relaxation dispersion for solutions of (15)N and (14)N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)]. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The (1)H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the (1)H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against (1)H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-(15)N and 4-oxo-TEMPO-d16-(14)N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both (14)N and (15)N systems and explains the features of (1)H relaxation dispersion resulting from the electron spin relaxation.

  20. 1H relaxation dispersion in solutions of nitroxide radicals: Influence of electron spin relaxation

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-03-01

    The work presents a theory of nuclear (1H) spin-lattice relaxation dispersion for solutions of 15N and 14N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The 1H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the 1H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against 1H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-15N and 4-oxo-TEMPO-d16-14N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both 14N and 15N systems and explains the features of 1H relaxation dispersion resulting from the electron spin relaxation.

  1. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei.

  2. Chemical synthesis of glycoproteins with the specific installation of gradient enriched 15N-labeled amino acids for getting insight into glycoprotein behavior.

    PubMed

    Kajihara, Yasuhiro; Nguyen, Minh Hien; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo

    2017-03-09

    We propose a novel partially 15N-labelling method for the amide backbone of a synthetic glycoprotein. By use of a chemical approach utilizing SPPS and NCL, we inserted thirteen 15N-labeled amino acids at specific positions of the protein backbone, while intentionally varying the enrichment of 15N atoms. This idea enables us to discriminate even the same type of amino acid based on the intensities of 1H-15N HSQC signals, thus allowing us to understand the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied CD spectra and T1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure.

  3. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    PubMed

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  4. NEUTRONIC REACTOR SHIELD

    DOEpatents

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  5. Enhanced Whipple Shield

    NASA Technical Reports Server (NTRS)

    Crews, Jeanne L. (Inventor); Christiansen, Eric L. (Inventor); Williamsen, Joel E. (Inventor); Robinson, Jennifer R. (Inventor); Nolen, Angela M. (Inventor)

    1997-01-01

    A hypervelocity impact (HVI) Whipple Shield and a method for shielding a wall from penetration by high velocity particle impacts where the Whipple Shield is comprised of spaced apart inner and outer metal sheets or walls with an intermediate cloth barrier arrangement comprised of ceramic cloth and high strength cloth which are interrelated by ballistic formulae.

  6. NMR studies on /sup 15/N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    SciTech Connect

    Kenyon, G.L.; Reddick, R.E.

    1986-05-01

    Recently, the authors have synthesized /sup 15/N-2-Cr, /sup 15/N-3-Crn, /sup 15/N-2-Crn, /sup 15/N-3-PCrn, /sup 15/N-3-PCr, and /sup 15/N-2-PCr. /sup 1/H, /sup 15/N, /sup 31/P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the /sup 31/P-/sup 15/N one-bond coupling constant in /sup 15/N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the /sup 14/N//sup 15/N positional isotope exchange of 3-/sup 15/N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity.

  7. Monitoring the refinement of crystal structures with {sup 15}N solid-state NMR shift tensor data

    SciTech Connect

    Kalakewich, Keyton; Eloranta, Harriet; Harper, James K.; Iuliucci, Robbie; Mueller, Karl T.

    2015-11-21

    The {sup 15}N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated {sup 15}N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more than the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of {sup 15}N tensors at natural abundance is challenging and this limitation is overcome by improved {sup 1}H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental {sup 15}N tensors are at least 5 times more sensitive to crystal structure than {sup 13}C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts.

  8. Rotating shielded crane system

    DOEpatents

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  9. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  10. Target-specific NMR detection of protein-ligand interactions with antibody-relayed (15)N-group selective STD.

    PubMed

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. (1)H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed (15)N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A (15)N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  11. Qualitative study of substituent effects on NMR (15)N and (17)O chemical shifts.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Pagola, Gabriel I; Bustamante, Manuel G; Pasqualini, Enrique E; Melo, Juan I; Tormena, Cláudio F

    2009-09-10

    A qualitative approach to analyze the electronic origin of substituent effects on the paramagnetic part of chemical shifts is described and applied to few model systems, where its potentiality can be appreciated. The formulation of this approach is based on the following grounds. The influence of different inter- or intramolecular interactions on a second-order property can be qualitatively predicted if it can be known how they affect the main virtual excitations entering into that second-order property. A set of consistent approximations are introduced in order to analyze the behavior of occupied and virtual orbitals that define some experimental trends of magnetic shielding constants. This approach is applied first to study the electronic origin of methyl-beta substituent effects on both (15)N and (17)O chemical shifts, and afterward it is applied to a couple of examples of long-range substituent effects originated in charge transfer interactions such as the conjugative effect in aromatic compounds and sigma-hyperconjugative interactions in saturated multicyclic compounds.

  12. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance.

    PubMed Central

    Bak, M; Bywater, R P; Hohwy, M; Thomsen, J K; Adelhorst, K; Jakobsen, H J; Sørensen, O W; Nielsen, N C

    2001-01-01

    The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. PMID:11509381

  13. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  14. 15N solid-state NMR provides a sensitive probe of oxidized flavin reactive sites.

    PubMed

    Koder, Ronald L; Walsh, Joseph D; Pometun, Maxim S; Dutton, P Leslie; Wittebort, Richard J; Miller, Anne-Frances

    2006-11-29

    Flavins are central to the reactivity of a wide variety of enzymes and electron transport proteins. There is great interest in understanding the basis for the different reactivities displayed by flavins in different protein contexts. We propose solid-state nuclear magnetic resonance (SS-NMR) as a tool for directly observing reactive positions of the flavin ring and thereby obtaining information on their frontier orbitals. We now report the SS-NMR signals of the redox-active nitrogens N1 and N5, as well as that of N3. The chemical shift tensor of N5 is over 720 ppm wide, in accordance with the predictions of theory and our calculations. The signal of N3 can be distinguished on the basis of coupling to 1H absent for N1 and N5, as well as the shift tensor span of only 170 ppm, consistent with N3's lower aromaticity and lack of a nonbonding lone pair. The isotropic shifts and spans of N5 and N1 reflect two opposite extremes of the chemical shift range for "pyridine-type" N's, consistent with their electrophilic and nucleophilic chemical reactivities, respectively. Upon flavin reduction, N5's chemical shift tensor contracts dramatically to a span of less than 110 ppm, and the isotropic chemical shift changes by approximately 300 ppm. Both are consistent with loss of N5's nonbonding lone pair and decreased aromaticity, and illustrate the responsiveness of the 15N chemical shift principal values to electronic structure. Thus. 15N chemical shift principal values promise to be valuable tools for understanding electronic differences that underlie variations in flavin reactivity, as well as the reactivities of other heterocyclic cofactors.

  15. RADIATION SHIELDING DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-09-23

    ABS>A radiation shield that is suitable for the protection of personnel from both gamma rays and nentrons is described. The shield is comprised of a hollow wall and an aggregate consisting of iron and water in approximately equal amounts by volume substantially filling the wall. A means is provided to circulate the water through the wall to cool the shield when in use.

  16. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  17. Fate of orally administered 15N-labeled polyamines in rats bearing solid tumors.

    PubMed

    Kobayashi, Masaki; Xu, Yong Ji; Samejima, Keijiro; Goda, Hitomi; Niitsu, Masaru; Takahashi, Masakazu; Hashimoto, Yoshiyuki

    2003-03-01

    We studied absorption, distribution, metabolism, and excretion of polyamines (putrescine, spermidine, and spermine) in the gastrointestinal tract using (15)N-labeled polyamines as tracers and ionspray ionization mass spectrometry (IS-MS). The relatively simple protocol using rats bearing solid tumors provided useful information. Three (15)N-labeled polyamines that were simultaneously administered were absorbed equally from gastrointestinal tract, and distributed within tissues at various concentrations. The uptake of (15)N-spermidine seemed preferential to that of (15)N-spermine since the concentrations of (15)N-spermidine in the liver and tumors were higher, whereas those of (15)N-spermine were higher in the kidney, probably due to the excretion of excess extracellular spermine. Most of the absorbed (15)N-putrescine seemed to be lost, suggesting blood and tissue diamine oxidase degradation. Concentrations of (15)N-spermidine and (15)N-spermine in the tumor were low. We also describe the findings from two rats that were administered with (15)N-spermine. The tissue concentrations of (15)N-spermine were unusually high, and significant levels of (15)N-spermidine were derived from (15)N-spermine in these animals.

  18. INTOR radiation shielding for personnel access

    SciTech Connect

    Gohar, Y.; Abdou, M.

    1981-01-01

    The INTOR reactor shield system consists of the blanket, bulk shield, penetration shield, component shield, and biological shield. The bulk shield consists of two parts: (a) the inboard shield; and (b) the outboard shield. The distinction between the different components of the shield system is essential to satisfy the different design constraints and achieve various objectives.

  19. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  20. RF shielded connectors

    NASA Technical Reports Server (NTRS)

    Fisher, A.; Clatterbuck, C.

    1974-01-01

    Gap, where cable joins connector housing, is shielded effectively by composite RF shielding made from suitable potting resin material (fumed silica, thixotropic prepolymer composition), conductive coating (silver-filled, flexible, polyurethane resin), and protective jacket (wax coated housing formed around another wax form having contours shaped to match configuration).

  1. Shielding for thermal neutrons.

    PubMed

    McCall, R C

    1997-01-01

    The problem of calculating the neutron capture gamma-ray dose rate due to thermal neutron capture in a boron or cadmium rectangular shield is considered. An example is given for shielding for a door at the exit of medical accelerator room maze in order to determine the optimum location of lead relative to the borated polyethylene.

  2. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  3. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  4. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    OVERSEEING ORION HEAT SHIELD WORK IN MARSHALL'S SEVEN-AXIS MILLING AND MACHINING FACILITY ARE, FROM LEFT, JOHN KOWAL, MANAGER OF ORION'S THERMAL PROTECTION SYSTEM AT JOHNSON SPACE CENTER; NICHOLAS CROWLEY, AN AMES ENGINEERING TECHNICIAN; AND ROB KORNIENKO, AMES ENGINEERING BRANCH CHIEF. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALE FLIGHT TEST OF ORION IN DECEMBER, 2014

  5. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Treesearch

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, a15N of foliage and soil also increases. We measured foliar a15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  6. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US

    Treesearch

    Linda H. Pardo; Steven G. McNulty; Johnny L. Boggs; Sara Duke

    2007-01-01

    Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, d15N of foliage and soil also increases. We measured foliar d15N at 11 high-elevation spruce-fir stands along an N deposition gradient...

  7. (1)H, (13)C and (15)N backbone resonance assignment for the 40.5 kDa catalytic domain of Ubiquitin Specific Protease 7 (USP7).

    PubMed

    Di Lello, Paola; Rougé, Lionel; Pan, Borlan; Maurer, Till

    2016-10-01

    The deubiquitinase Ubiquitin Specific Protease 7 (USP7) is part of the regulatory cascade of proteins that modulates the activity of the tumor suppressor protein p53. Deubiquitination of its target Murine Double Minute 2 (MDM2) leads to increased proteosomal degradation of p53. Consequently, USP7 has emerged as an attractive oncology target because its inhibition stabilizes p53, thereby promoting p53-dependent apoptosis in cancer cells. Here we report the backbone resonance assignment for the 40.5 kDa catalytic domain of USP7.

  8. 1H, 15N and 13C resonance assignment of imidazole glycerol phosphate (IGP) synthase protein HisF from Thermotoga maritima

    PubMed Central

    Lipchock, James M.; Loria, J. Patrick

    2010-01-01

    HisF comprises one half of the heterodimeric protein complex IGP synthase responsible for the fifth step of histidine biosynthesis. Here we report backbone and sidechain assignments necessary for characterization of protein dynamics involved in the allosteric mechanism of IGP synthase. PMID:19636909

  9. 1H, 15N and 13C resonance assignment of imidazole glycerol phosphate (IGP) synthase protein HisF from Thermotoga maritima.

    PubMed

    Lipchock, James M; Loria, J Patrick

    2008-12-01

    HisF comprises one half of the heterodimeric protein complex imidazole glycerol phosphate (IGP) synthase responsible for the fifth step of histidine biosynthesis. Here we report backbone and side chain assignments necessary for characterization of protein dynamics involved in the allosteric mechanism of IGP synthase.

  10. 1H, 15N, 13C resonance assignment of 9.7 M urea-denatured state of the GTPase effector domain (GED) of dynamin.

    PubMed

    Chugh, Jeetender; Sharma, Shilpy; Kumar, Dinesh; Hosur, Ramakrishna V

    2009-06-01

    The GTPase effector domain (GED) of dynamin, a multi-domain protein involved in endocytosis, forms a megadalton-sized self-assembly (even at micromolar concentrations) in native conditions in vitro. While such large assemblies have remained inaccessible to detailed NMR structural characterization, till date, a significant recent achievement has been the elucidation of the GED association pathway starting from a Gdn-HCl denatured monomer. Since, the nature of the denaturant has a strong influence on the conformational preferences in the denatured states, and hence on the association pathways, or even on the final assembly, we report here the NMR resonance assignment of 9.7 M urea-denatured GED from Homo sapiens. This will form the basis for the characterization of the association pathways and the final assembly driven by urea dilution.

  11. (1)H, (13)C and (15)N resonance assignments of the periplasmic signalling domain of HasR, a TonB-dependent outer membrane heme transporter.

    PubMed

    Malki, Idir; Cardoso de Amorim, Gisele; Simenel, Catherine; Prochnicka-Chalufour, Ada; Delepierre, Muriel; Izadi-Pruneyre, Nadia

    2013-04-01

    TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that internalize nutrients such as vitamin B12, metal complexes, heme, some carbohydrates, etc. In addition to their transport activity, several TBDTs are also involved in a signalling cascade from the cell surface into the cytoplasm, via their periplasmic signalling domain. Here we report the backbone and side chain resonance assignments of the signalling domain of HasR, a TonB-dependent outer membrane heme transporter from Serratia marcescens as a first step towards its structural study.

  12. Sequential assignment of 1H, 15N, 13C resonances and secondary structure of human calmodulin-like protein determined by NMR spectroscopy.

    PubMed Central

    Qian, H.; Rogers, M. S.; Schleucher, J.; Edlund, U.; Strehler, E. E.; Sethson, I.

    1998-01-01

    Human calmodulin-like protein (CLP) is closely related to vertebrate calmodulin, yet its unique cell specific expression pattern, overlapping but divergent biochemical properties, and specific target proteins suggest that it is not an isoform of calmodulin. To gain insight into the structural differences that may underlie the difference target specificities and biochemical properties of CLP when compared to calmodulin, we determined the sequential backbone assignment and associated secondary structure of 144 out of the 148 residues of Ca2+-CLP by using multinuclear multidimensional NMR spectroscopy. Despite a very high overall degree of structural similarity between CLP and calmodulin, a number of significant differences were found mainly in the length of alpha-helices and in the central nonhelical flexible region. Interestingly, the regions of greatest primary sequence divergence between CLP and calmodulin in helices III and VIII displayed only minor secondary structure differences. The data suggest that the distinct differences in target specificity and biochemical properties of CLP and calmodulin result from the sum of several minor structural and side-chain changes spread over multiple domains in these proteins. PMID:9828009

  13. (1)H, (15)N and (13)C resonance assignments of Ixolaris, a tissue factor pathway inhibitor from the tick salivary gland.

    PubMed

    De Paula, V S; Silva, F H S; Francischetti, I M B; Monteiro, R Q; Valente, A P

    2017-08-30

    Ixolaris is a two-Kunitz tick salivary gland protein identified in Ixodes scapularis that presents sequence homology to TFPI (tissue factor pathway inhibitor). It binds to the coagulation enzyme factor Xa (FXa) or to its zymogen form, FX, and further inhibits tissue factor/FVIIa complex (extrinsic Xnase compex). Differently from TFPI, Ixolaris does not bind to the active site cleft of FXa. Instead, complex formation is mediated by the FXa heparin-binding exosite, which may also results in decreased FXa activity into the prothrombinase complex. The Ixolaris-FXa/FX complex formation has been characterized by using a combination of biophysical and biochemical technics although no structural data is currently available. In this study, we reported the NMR chemical shift assignment of Ixolaris, as a first step to further establishing the structure, dynamics and function relationship for this protein.

  14. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein.

  15. 1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpR6012g4 in the red-absorbing dark state.

    PubMed

    Yu, Qinhong; Lim, Sunghyuk; Rockwell, Nathan C; Martin, Shelley S; Clark Lagarias, J; Ames, James B

    2016-04-01

    Cyanobacteriochrome (CBCR) photosensory proteins are phytochrome homologs using bilin chromophores for light sensing across the visible spectrum. NpR6012g4 is a CBCR from Nostoc punctiforme that serves as a model for a widespread CBCR subfamily with red/green photocycles. We report NMR chemical shift assignments for both the protein backbone and side-chain resonances of the red-absorbing dark state of NpR6012g4 (BMRB no. 26582).

  16. Evaluations of Space Shielding

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Shen, S. P.; Heyda, J. F.

    1962-01-01

    A general method of evaluating the efficiency of space vehicle shielding is developed and used to compare various active and passive systems for protection against ionizing radiation. Available permanent magnets are found useless for active shielding, and combined active-passive systems in general are determined to be inefficient. On the other hand, evaluations show that active electrostatic shielding may have possibilities for weight savings if electrical conditions (presently unknown) are favorable therefor in space. Further, a positive potential improvement is calculated for an active shielding system which utilizes superconducting Nb3Sn to provide a confined magnetic flux to deflect incident charged particles; this potential points toward substantial reductions in shield weight for the protection of large vehicles from highly energetic particles. Recommendations are made for further research, particularly for flight experiments to measure directionality of solar flare protons.

  17. TFCX shielding optimization

    SciTech Connect

    Yang, S.; Gohar, Y.

    1985-01-01

    Design analyses and tradeoff studies for the bulk shield of the Tokamak Fusion Core Experiment (TFCX) were performed. Several shielding options were considered to lower the capital cost of the shielding system. Optimization analyses were carried out to reduce the nuclear responses in the TF coils and the dose equivalent in the reactor hall one day after shutdown. Two TFCX designs with different toroidal field (TF) coil configurations were considered during this work. The materials for the shield were selected based upon tradeoff studies and the results from the previous design studies. The main shielding materials are water, concrete, and steel balls (Fe1422 or Nitronic 33). Small amounts of boron carbide and lead are employed to reduce activation, nuclear heating in the TF coils, and dose equivalent after shutdown.

  18. Antiaromaticity proved by the anisotropic effect in 1H NMR spectra.

    PubMed

    Kleinpeter, Erich; Koch, Andreas

    2012-06-14

    The spatial magnetic properties (through-space NMR shieldings, or TSNMRSs) of the antiaromatic 9-oxaanthracene anion 12(-) and of the corresponding 9-dimeric dianion 11(2-) have been calculated by the gauge-invariant atomic orbitals (GIAO) perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to indicate antiaromaticity by paratropic ring currents of the anionic compounds of 11(2-) and 12(-) studied and other neutral and ionic antiaromatic molecules from previous studies because anisotropic effects of functional groups in (1)H NMR spectra have quantitatively proven to be the molecular response property of theoretical spatial nucleus independent chemical shieldings (NICS).

  19. Distribution of 15N Among Plant Parts of Nodulating and Nonnodulating Isolines of Soybeans 1

    PubMed Central

    Shearer, Georgia; Kohl, Daniel H.; Harper, James E.

    1980-01-01

    Differences among plant parts in the natural abundance of 15N are of interest from the point of view of developing a sampling strategy for using 15N measurements to estimate the contribution of symbiotically fixed N to N2 fixing plants, and because they reflect isotopic fractionation associated with degradation, transport, and resynthesis of N-bearing molecules. This paper reports such differences in nodulating and nonnodulating isolines of soybeans (Glycine max [L] (Merrill, variety Harosoy)) grown under several different conditions. Nodules were strikingly enriched in 15N compared to other plant parts (by an average of 8.3‰ excess 15N), and the enrichment increased with time during the growing season. 15N was much more uniformly distributed among other plant parts. Although there were significant differences among other plant parts, the maximum deviation of the 15N abundance of any plant part from that of the entire plant was about 2‰ 15N excess. The 15N abundance of the seed N was most representative of the whole plant. There were significant differences between isolines in the distribution of 15N. The distribution of 15N within plants also varied with experimental conditions. The implications of these results for estimation of N2 fixation from measurements of the natural abundance of 15N are discussed. PMID:16661393

  20. Heat Shield in Pieces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity shows the remains of the rover's heat shield, broken into two key pieces, the main piece on the left side and a broken-off flank piece near the middle of the image. The heat shield impact site is identified by the circle of red dust on the right side of the picture. In this view, Opportunity is approximately 20 meters (66 feet) away from the heat shield, which protected it while hurtling through the martian atmosphere.

    In the far left of the image, a meteorite called 'Heat Shield Rock,' sits nearby, The Sun is reflecting off the silver-colored underside of the internal thermal blankets of the heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is an approximately true-color rendering of the scene acquired around 1:22 p.m. local solar time on Opportunity sol 324 (Dec. 21, 2004) in an image mosaic using panoramic filters at wavelengths of 750, 530, and 430 nanometers.

  1. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.

  2. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  3. Shielding against galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Nealy, J. E.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kim, M.; Kiefer, R.

    1996-01-01

    Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately conntected with the shield transport porperties and is a strong function of shield composition. The systematic behavior of the shield properites in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to convectional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H1OT1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.

  4. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  5. iSHIELD - A Line Source Application of SHIELD11

    SciTech Connect

    Nelson, W.R.; Rokni, S.H.; /SLAC

    2006-04-27

    iSHIELD11 performs a line-source numerical integration of radiation source terms that are defined by the iSHIELD11 computer code[1] . An example is provided to demonstrate how one can use iSHIELD11 to perform a shielding analysis for a 250 GeV electron linear accelerator.

  6. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  7. What Is Radiation Shielding?

    NASA Image and Video Library

    Kerry Lee, NASA Orion radiation system manager, explains how radiation shielding is used to block harmful particles coming into the spacecraft without producing secondary particles that can cause e...

  8. Uptake and Reduction of [15N]Nitrate by Intact Soybean Plants in the Dark

    PubMed Central

    Nicholas, Joseph C.; Harper, James E.

    1985-01-01

    Experiments were conducted to determine if nitrate (15N-labeled) was taken up and assimilated by intact soybean (Glycine max [L.] Merr. cv Williams) plants during extended periods of dark. Nitrate was taken up by soybean roots throughout a 12-hour dark period. The 15N-labeled nitrogen was also translocated to the plant shoots, but at a slower rate than the rate of accumulation in the roots. Much of the nitrogen (15N-labeled) was present in a nonreduced form, although considerable soluble-reduced nitrogen (15N-labeled) accumulated throughout the dark period. The 15N-labeled, soluble-reduced nitrogen fraction accounted for nearly 30% of the total 15N found in plant roots and more than 63% of the total 15N found in plant tops after 12 hours of dark. This provided evidence that intact soybean plants take up and metabolize significant quantities of nitrate to reduced N forms in the dark. In addition to nitrate influx during the dark, it was shown that there was a concomitant loss of 15N-labeled nitrogen compounds from previously 15N-labeled plants to a natural abundance 15N nutrient solution. Thus, evidence was obtained which indicated that light was not directly essential for flux and reduction of nitrate by intact soybean plants. PMID:16664059

  9. Estimation of nitric oxide synthase activity via LC-MS/MS determination of 15N3-citrulline in biological samples

    PubMed Central

    Shin, Beom Soo; Fung, Ho-Leung; Upadhyay, Mahesh; Shin, Soyoung

    2015-01-01

    Rationale We showed that the metabolite peaks of 15N3-citrulline (15N3-CIT) and 15N3-arginine (15N3-ARG) could be detected when 15N4-ARG was metabolized by nitric oxide synthase (NOS) in endothelial cells. The usefulness of these metabolites as potential surrogate indices of nitric oxide (NO) generation is evaluated. Methods A hydrophilic-interaction liquid chromatography electrospray tandem mass spectrometric assay (LC-MS/MS) was utilized for the simultaneous analysis of 15N4-ARG, ARG, CIT, 15N3-CIT and 15N3-ARG. 15N3-CIT and 15N3-ARG from impurities of 15N4-ARG were determined and corrected for the calculation of their concentration. 15N4-ARG-derived NO, i.e., 15NO formation was determined by analyzing 15N-nitrite accumulation by another LC-MS/MS assay. Results After EA.hy926 human endothelial cells were challenged with 15N4-ARG for 2 hours, the peak intensities of 15N3-CIT and 15N3-ARG significantly increased with 15N4-ARG concentration and positively correlated with 15N-nitrite production. The estimated Km values were independent of the metabolite (i.e., 15N3-CIT, 15N3-CIT+15N3-ARG or 15N-nitrite) used for calculation. However, after correction for its presence as a chemical contaminant of 15N4-ARG, 15N3-ARG was only a marginal contributor for the estimation of NOS activity. Conclusions These data suggest that the formation of 15N3-CIT can be used as an indicator of NOS activity when 15N4-ARG is used as a substrate. This approach may be superior to the radioactive 14C-CIT method which can be contaminated by 14C-urea, and to the 14N-nitrite method which lacks sensitivity. PMID:26349467

  10. Crash-Resistant Shield

    NASA Technical Reports Server (NTRS)

    Bixler, Charles H.

    1990-01-01

    Impact-resistant shield designed to consist of aluminum honeycomb structure sandwiched between inner and outer aluminum skins. Intended to protect radioisotope thermoelectric generator of spacecraft from impact with ground or water after free fall from upper atmosphere. Designed to absorb impact energy by buckling, while inner and outer skins designed to protect against shrapnel, overpressure, and impact loads. Concept of shield applicable to crashproof compartments for ground vehicles and aircraft.

  11. Crash-Resistant Shield

    NASA Technical Reports Server (NTRS)

    Bixler, Charles H.

    1990-01-01

    Impact-resistant shield designed to consist of aluminum honeycomb structure sandwiched between inner and outer aluminum skins. Intended to protect radioisotope thermoelectric generator of spacecraft from impact with ground or water after free fall from upper atmosphere. Designed to absorb impact energy by buckling, while inner and outer skins designed to protect against shrapnel, overpressure, and impact loads. Concept of shield applicable to crashproof compartments for ground vehicles and aircraft.

  12. Elucidating mineralisation-immobilisation dynamics in a grassland soil using triple 15N labelling in the field combined with a 15N tracing laboratory approach

    NASA Astrophysics Data System (ADS)

    Kleineidam, Kristina; Müller, Christoph

    2017-04-01

    Mineralisation is a key N transformation process supplying reactive nitrogen (N) to terrestrial ecosystems. The various soil organic matter fractions contribute to the total mineralisation according to their turnover characteristic. However, the exact mechanism and the gross dynamics of the various processes are not well understood. In this study we investigated the mineralisation-immobilisation dynamics in a grassland soil by a combined field-laboratory study. Eighteen microplots were established at a field site receiving 50 kg N ha-1 as ammonium nitrate. In nine (3 x 3) respective plots the ammonium, or the nitrate, or both moieties were 15N labelled at 60 atom%. Previous studies with this soil showed that rapid turnover occurred and available N would partly be immobilised by the microbial biomass increasing the 15N label of the soil organic nitrogen pool in the field. After one year, soil samples were taken from the 15N treated and the so far non-labelled plots and examined in a laboratory study (for details of the setup see: Müller et al., 2004). While the previously differentially 15N labelled field soils were now supplied with unlabelled ammonium nitrate, the previously unlabelled soils were now treated with either 15N labelled ammonium nitrate similar to the 15N treatments established in the field, resulting in six different 15N treatments in total. The incubation study was carried out over a two week period and data were analysed with the Ntrace model to quantify the simultaneously occurring gross N transformations while optimizing a single parameter set for all six treatments. Thus, the appearance of 15N from the previously labelled soils and the dilution of the 15N in the recently labelled treatments were assumed to be driven by the same processes and activities and were used to constrain the 15N tracing model. This approach allowed us to estimate the individual gross N transformation rates with a much higher accuracy than if only a common triple

  13. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  14. [15N-flow after in sacco incubation and feeding of sheep and goats with untreated wheat straw or straw treated with 15N horse urine].

    PubMed

    Schubert, R; Flachowsky, G; Bochröder, B

    1994-01-01

    Chopped wheat straw was homogeneously mixed with urine of horses (5.75 gN per 1, 16.88 atom-% 15N-excess) and airtightly stored in plastic containers for 6 months. Three rumen fistulated sheep and goats each were fed with untreated or urine treated straw. Concentrate was added to straw. Untreated and urine treated straw were given in nylon bags and incubated in the rumen of sheep and goats for 1, 3, 6, 12, 24, 48 and 72 hours. A three compartment exponential function was used to fit the measurements of 15N-excess and 15N-amount of bag content. The curves and the calculated partial Y-values of the three compartments show the inflow and outflow of 15N into or from the bags and allow conclusions about the binding of urine N. Most N of urine was not compactly bound by straw during storage. Primarily microbial N was attached to the straw in the rumen. About 6% of urine N were bound more compact to the straw. Similar curves were calculated for 15N-excess and 15N-amount of nylon bags. The curves allow conclusions about tracer flows without quantitative knowledge. There were no significant differences between animal species.

  15. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  16. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

  17. Enhanced Y1H Assays for Arabidopis

    USDA-ARS?s Scientific Manuscript database

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  18. High-power 1H composite pulse decoupling provides artifact free exchange-mediated saturation transfer (EST) experiments

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Kalyan S.; Ban, David; Pratihar, Supriya; Reddy, Jithender G.; Becker, Stefan; Griesinger, Christian; Lee, Donghan

    2016-08-01

    Exchange-mediated saturation transfer (EST) provides critical information regarding dynamics of molecules. In typical applications EST is studied by either scanning a wide range of 15N chemical shift offsets where the applied 15N irradiation field strength is on the order of hundreds of Hertz or, scanning a narrow range of 15N chemical shift offsets where the applied 15N irradiation field-strength is on the order of tens of Hertz during the EST period. The 1H decoupling during the EST delay is critical as incomplete decoupling causes broadening of the EST profile, which could possibly result in inaccuracies of the extracted kinetic parameters and transverse relaxation rates. Currently two different 1H decoupling schemes have been employed, intermittently applied 180° pulses and composite-pulse-decoupling (CPD), for situations where a wide range, or narrow range of 15N chemical shift offsets are scanned, respectively. We show that high-power CPD provides artifact free EST experiments, which can be universally implemented regardless of the offset range or irradiation field-strengths.

  19. Doubly 15N-substituted diazenylium: THz laboratory spectra and fractionation models

    NASA Astrophysics Data System (ADS)

    Dore, L.; Bizzocchi, L.; Wirström, E. S.; Degli Esposti, C.; Tamassia, F.; Charnley, S. B.

    2017-07-01

    Context. Isotopic fractionation in dense molecular cores has been suggested as a possible origin of large 14N/15N ratio variations in solar system materials. While chemical models can explain some observed variations with different fractionation patterns for molecules with -NH or -CN functional groups, they fail to reproduce the observed ratios in diazenylium (N2H+). Aims: Observations of doubly 15N-substituted species could provide important constraints and insights for theoretical chemical models of isotopic fractionation. However, spectroscopic data are very scarce. Methods: The rotational spectra of the fully 15N-substituted isopologues of the diazenylium ion, 15N2H+ and 15N2D+, have been investigated in the laboratory well into the THz region by using a source-modulation microwave spectrometer equipped with a negative glow discharge cell. An extended chemical reaction network has been used to estimate what ranges of 15N fractionation in doubly 15N-substituted species could be expected in the interstellar medium (ISM). Results: For each isotopologue of the H- and D-containing pair, nine rotational transitions were accurately measured in the frequency region 88 GHz-1.2 THz. The analysis of the spectrum provided very precise rest frequencies at millimeter and sub-millimeter wavelengths, useful for the radioastronomical identification of the rotational lines of 15N2H+ and 15N2D+ in the ISM.

  20. Nutrient Status and δ15N Values in Leaves and Soils: A Cross-Biome Comparison

    NASA Astrophysics Data System (ADS)

    Mayor, J. R.; Schuur, E. A.; Turner, B. L.; Wright, S. J.

    2011-12-01

    Stable nitrogen (N) isotope ratios (δ15N) are often assumed to provide an integrated measure of multiple nitrogen cycling processes. For instance, shifts in the bioavailability of soil N forms are thought to alter plant δ15N values. Demonstrating this relationship is important as ecosystems undergo anthropogenic disturbances. We evaluated patterns and implied mechanisms of the N cycle using ecosystem δ15N values from 16 plots in boreal black spruce (Picea mariana) forest and lowland wet tropical forest. Fertilizer N and phosphorus (P) was applied annually for five and 11 years prior to measurement of ecosystem δ15N values. Full sun canopy foliage and soil extractable nitrate, ammonium, and dissolved organic N (DON) were sampled in fertilized and control plots and analyzed for δ15N. In boreal forest, N fertilization reduced DON concentrations and caused a depletion of δ15N in foliage and fungal sporocarps. Of four species occurring in all plots in the tropical forest, one (Alseis blackiana) had increased foliar δ15N values following N fertilization, one (Tetragastris panamensis) had increased foliar δ15N values following P fertilization, and one (Oenocarpus mapora) had increased foliar δ15N following N+P fertilization. Surprisingly, soil nitrate in the boreal forest became substantially 15N-enriched under P fertilization, whereas nitrate in the tropical forest soil was enriched only under N or N+P fertilization. Collectively, nitrate enrichment is likely due to enhanced rates of soil denitrification as evidenced by elevated resin extractable soil nitrate concentrations and close correlations between δ15N and δ18O values. On average, foliar δ15N in tropical trees corresponded well with δ15N in soil nitrate in control and P fertilized plots, but was 2-3% more enriched than DON under N and N+P fertilization. In boreal forests, N and N+P fertilization increased foliar N concentration and δ15N values indicating substantial use of applied fertilizer. Taken

  1. Through-space (19) F-(15) N couplings for the assignment of stereochemistry in flubenzimine.

    PubMed

    Ghiviriga, Ion; Rubinski, Miles A; Dolbier, William R

    2016-07-01

    Through-space (19) F-(15) N couplings revealed the configuration of flubenzimine, with the CF3 group on N4 pointing towards the lone pair of N5. The (19) F-(15) N coupling constants were measured at natural abundance using a spin-state selective indirect-detection pulse sequence. As (15) N-labelled proteins are routinely synthesized for NMR studies, through-space (19) F-(15) N couplings have the potential to probe the stereochemistry of these proteins by (19) F labelling of some amino acids or can reveal the site of docking of fluorine-containing drugs. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Wilson, J. W.; Youngquist, R. C.

    For the success of NASA s new vision for space exploration to Moon Mars and beyond exposures from the hazards of severe space radiation in deep space long duration missions is a must solve problem The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions The exploration beyond low Earth orbit LEO to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation Galactic Cosmic Rays GCR and Solar Particle Events SPE and minimizing the production of secondary radiation is a great advantage There is a need to look to new horizons for newer technologies The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies The full space radiation environment has been used for the first time to explore the feasibility of electrostatic shielding The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons Conclusions will be drawn should the electrostatic shielding be successful for the future directions of space radiation protection

  3. An investigation of hydrogen-bonding effects on the nitrogen and hydrogen electric field gradient and chemical shielding tensors in the 9-methyladenine real crystalline structure: a density functional theory study.

    PubMed

    Mirzaei, Mahmoud; Hadipour, Nasser L

    2006-04-13

    Hydrogen-bonding effects in the real crystalline structure of 9-methyladenine, 9-MA, were studied using calculated electric field gradient, EFG, and chemical shielding, CS, tensors for nitrogen and hydrogen nuclei via density functional theory. The calculations were carried out at the B3LYP and B3PW91 levels with the 6-311++G basis set via the Gaussian 98 package. Nuclear quadrupole coupling constants, C(Q), and asymmetry parameters, eta(Q), are reported for (14)N and (2)H. The chemical shielding anisotropy, Deltasigma, and chemical shielding isotropy, sigma(iso), are also reported for (15)N and (1)H. The difference between the calculated parameters of the monomer and heptameric layer-like cluster 9-MA shows how much H-bonding interactions affect the EFG and CS tensors of each nucleus. This result indicates that N(10) (imino nitrogen) has a major role in H-bonding interactions, whereas that of N(9) is negligible. There is good agreement between the present calculated parameters and reported experimental data. Although some discrepancies were observed, this could be attributed to the different conditions which were applied for calculation and the experiments.

  4. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.

    PubMed

    Lamley, Jonathan M; Lougher, Matthew J; Sass, Hans Juergen; Rogowski, Marco; Grzesiek, Stephan; Lewandowski, Józef R

    2015-09-14

    Typically, protein dynamics involve a complex hierarchy of motions occurring on different time scales between conformations separated by a range of different energy barriers. NMR relaxation can in principle provide a site-specific picture of both the time scales and amplitudes of these motions, but independent relaxation rates sensitive to fluctuations in different time scale ranges are required to obtain a faithful representation of the underlying dynamic complexity. This is especially pertinent for relaxation measurements in the solid state, which report on dynamics in a broader window of time scales by more than 3 orders of magnitudes compared to solution NMR relaxation. To aid in unraveling the intricacies of biomolecular dynamics we introduce (13)C spin-lattice relaxation in the rotating frame (R1ρ) as a probe of backbone nanosecond-microsecond motions in proteins in the solid state. We present measurements of (13)C'R1ρ rates in fully protonated crystalline protein GB1 at 600 and 850 MHz (1)H Larmor frequencies and compare them to (13)C'R1, (15)N R1 and R1ρ measured under the same conditions. The addition of carbon relaxation data to the model free analysis of nitrogen relaxation data leads to greatly improved characterization of time scales of protein backbone motions, minimizing the occurrence of fitting artifacts that may be present when (15)N data is used alone. We also discuss how internal motions characterized by different time scales contribute to (15)N and (13)C relaxation rates in the solid state and solution state, leading to fundamental differences between them, as well as phenomena such as underestimation of picosecond-range motions in the solid state and nanosecond-range motions in solution.

  5. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals.

    PubMed

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C; Middelburg, Jack J; Sinninghe Damsté, Jaap S

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  6. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  7. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  8. Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.

    PubMed

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raúl; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian

    2017-04-04

    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene, and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonably well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  9. Radiation shielding composition

    DOEpatents

    Quapp, W.J.; Lessing, P.A.

    1998-07-28

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  10. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    2000-12-26

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  11. Radiation shielding composition

    DOEpatents

    Quapp, William J.; Lessing, Paul A.

    1998-01-01

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  12. Shielded, Automated Umbilical Mechanism

    NASA Technical Reports Server (NTRS)

    Barron, Daniel R.; Morrill, Brion F.; Jasulaitis, Vytas

    1995-01-01

    Umbilical mechanism automatically connects and disconnects various fluid couplings and/or electrical contacts while shielding mating parts from debris. Reacts mating and demating loads internally, without additional supporting structures. All functions - extension of plug, mating, and movement of debris shields - actuated by single motor. If mechanism jams or fails at any point in sequence, override feature in drive train allows manual operation. Designed for service in outer space, where its shields protect against micrometeoroids, debris, ultraviolet radiation, and atomic oxygen. Used on Earth to connect or disconnect fluid or electrical utilities in harsh environments like those of nuclear powerplants or undersea construction sites, or in presence of radioactive, chemical, or biological hazards, for example.

  13. Opportunity's Heat Shield Scene

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity reveals the scene of the rover's heat shield impact. In this view, Opportunity is approximately 130 meters (427 feet) away from the device that protected it while hurtling through the martian atmosphere.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is the panoramic camera team's best current attempt at generating a true-color view of what this scene would look like if viewed by a human on Mars. It was generated from a mathematical combination of six calibrated, left-eye panoramic camera images acquired around 1:50 p.m. local solar time on Opportunity's sol 322 (Dec. 19, 2004) using filters ranging in wavelengths from 430 to 750 nanometers.

  14. Space station MMOD shielding

    NASA Astrophysics Data System (ADS)

    Christiansen, Eric L.; Nagy, Kornel; Lear, Dana M.; Prior, Thomas G.

    2009-10-01

    This paper describes the International Space Station (ISS) micro-meteoroid orbital debris (MMOD) impact shielding including the requirements for protection as well as technical approaches to meeting the requirements. Current activities in providing MMOD protection for ISS are described, including efforts to augment MMOD protection by adding shields on-orbit. Another activity is to observe MMOD impact damage on ISS elements and returned hardware, and to compare the observed damage with predicted damage using Bumper code risk assessment software. A conclusion of this paper is that ISS will be protected adequately from MMOD impact after completing augmentation of ISS shielding for service module, and after improving MMOD protection for Soyuz and Progress vehicles. Another conclusion is that impact damage observed to the ISS mini-pressurized logistics module matches the distribution of impacts predicted by Bumper code.

  15. Tracking wind-dispersed seeds using (15)N-isotope enrichment.

    PubMed

    Forster, C; Herrmann, J D

    2014-11-01

    Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long-distance dispersal, has been a difficult task. Marking bird-dispersed seeds with stable (15)N isotopes has been shown to be a user-friendly method to trace seed dispersal. In this study, we determined whether (15)N urea solution could be used to enrich seeds of two common wind-dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in (15)N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti-transpirant affects the intake of externally applied (15)N into seeds. The results demonstrate that (15)N enrichment of seeds can facilitate dispersal experiments with wind-dispersed plants. The use of distilled water in (15)N urea solutions did not increase (15)N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti-transpirant without decreasing the incorporation of (15)N into seeds. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. δ 15 N constraints on long-term nitrogen balances in temperate forests

    EPA Science Inventory

    Natural abundance δ15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated δ15N, across nine Doug...

  17. Increased Plant Uptake of Nitrogen from 15N Depleted Fertilizer Using Plant Growth-Promoting Rhizobacteria

    USDA-ARS?s Scientific Manuscript database

    The techniques of 15N isotope have been very useful for determining the behavior and fate of N in soil, including the use efficiency of applied N fertilizers by plants. Our objective in this study was to use 15N isotope techniques to demonstrate that a model plant growth-promoting rhizobacteria (PGP...

  18. δ(15) N from soil to wine in bulk samples and proline.

    PubMed

    Paolini, Mauro; Ziller, Luca; Bertoldi, Daniela; Bontempo, Luana; Larcher, Roberto; Nicolini, Giorgio; Camin, Federica

    2016-09-01

    The feasibility of using δ(15) N as an additional isotopic marker able to link wine to its area of origin was investigated. The whole production chain (soil-leaves-grape-wine) was considered. Moreover, the research included evaluation of the effect of the fermentation process, the use of different types of yeast and white and red vinification, the addition of nitrogen adjuvants and ultrasound lysis simulating wine ageing. The δ(15) N of grapes and wine was measured in bulk samples and compounds, specifically in proline, for the first time. Despite isotopic fractionation from soil to wine, the δ(15) N values of leaves, grapes, wine and particularly must and wine proline conserved the variability of δ(15) N in the growing soil. Fermentation and ultrasound treatment did not affect the δ(15) N values of grape must, which was therefore conserved in wine. The addition of inorganic or organic adjuvants was able to influence the δ(15) N of bulk wine, depending on the amount and the difference between the δ(15) N of must and that of the adjuvant. The δ(15) N of wine proline was not influenced by adjuvant addition and is therefore the best marker for tracing the geographical origin of wine. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Treesearch

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  20. Disturbance and topography shape nitrogen availability and ä15N over long-term forest succession

    Treesearch

    Steven S. Perakis; Alan J. Tepley; Jana E. Compton

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil ä15N values. We examined soil and foliar patterns in N and ä15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane...

  1. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  2. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  3. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  4. Accessible NMR Experiments Studying the Hydrodynamics of [subscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [subscript 15]N-enriched human ubiquitin. These experiments take advantage of [subscript 15]N direct detection of the NMR signal. The first experiment develops skills in acquiring…

  5. Accessible NMR Experiments Studying the Hydrodynamics of [superscript 15]N-Enriched Ubiquitin at Low Fields

    ERIC Educational Resources Information Center

    Thompson, Laura E.; Rovnyak, David

    2007-01-01

    We have recently developed and implemented two experiments in biomolecular NMR for an undergraduate-level biophysical chemistry laboratory with commercially available [superscript 15]N-enriched human ubiquitin. These experiments take advantage of [superscript 15]N direct detection of the NMR signal. The first experiment develops skills in…

  6. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession

    EPA Science Inventory

    Forest disturbance and long-term succession can promote open N cycling that increases N loss and soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across a topographically complex montane forest landscape influenced by human logging ...

  7. δ 15 N constraints on long-term nitrogen balances in temperate forests

    EPA Science Inventory

    Natural abundance δ15N of ecosystems integrates nitrogen (N) inputs and losses, and thus reflects factors that control the long-term development of ecosystem N balances. We here report N and carbon (C) content of forest vegetation and soils, and associated δ15N, across nine Doug...

  8. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  9. ADEPT Heat Shield Testing

    NASA Image and Video Library

    2015-10-16

    NASA is developing the next generation of heat shield to enable astronauts to go to Mars and other deep space destinations. Called the Adaptive Deployable Entry and Placement Technology or ADEPT, the heat shield is mechanically deployable and uses a flexible woven carbon fabric as its skin. Recently, engineers successfully completed a series of tests in the Ames Arc Jet facility. Other tests conducted in wind tunnels at Ames demonstrated that the ADEPT materials and system perform well under planetary re-entry conditions.

  10. Glove box shield

    DOEpatents

    Brackenbush, Larry W.; Hoenes, Glenn R.

    1981-01-01

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  11. Glove box shield

    DOEpatents

    Brackenbush, L.W.; Hoenes, G.R.

    A shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user wthdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box.

  12. Glove box shield

    SciTech Connect

    Brackenbush, L.W.; Hoenes, G.R.

    1981-02-17

    According to the present invention, a shield for a glove box housing radioactive material is comprised of spaced apart clamping members which maintain three overlapping flaps in place therebetween. There is a central flap and two side flaps, the side flaps overlapping at the interior edges thereof and the central flap extending past the intersection of the side flaps in order to insure that the shield is always closed when the user withdraws his hand from the glove box. Lead loaded neoprene rubber is the preferred material for the three flaps, the extent of lead loading depending upon the radiation levels within the glove box. 2 figs.

  13. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    NASA Astrophysics Data System (ADS)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  14. Symbiotic nitrogen fixation in an arid ecosystem measured by sup 15 N natural abundance

    SciTech Connect

    Johnson, G.V. )

    1990-05-01

    Plants dependent on nitrogen fixation have an {sup 15}N abundance similar to the atmosphere, while non-nitrogen fixing plants usually are enriched in {sup 15}N and are similar to soil nitrogen values. The natural abundance of {sup 15}N in leaf tissues and soils was determined to evaluate symbiotic nitrogen fixation by several legumes and actinorhizal species in the Sevilleta Long-term Ecological Research area in central New Mexico. Comparison of {delta}{sup 15}N values for the legume Prosopis glandulosa (mesquite) to adjacent Atriplex canascens (fourwing saltbush) indicated that P. glandulosa obtained 66% of its nitrogen by fixation. The legume Hoffmanseggia jamesii was found to be utilizing soil nitrogen. The {delta}{sup 15}N values for the actinorhizal plants, Elaeagnus angustifolia and Cercocarpus montanus, while below values for soil nitrogen, did not differ from associated non-fixing plants.

  15. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  16. Preparation and characterization of 15N-enriched, size-defined heparan sulfate precursor oligosaccharides

    PubMed Central

    Sigulinsky, Crystal; Babu, Ponnusamy; Victor, Xylophone V.; Kuberan, Balagurunathan

    2009-01-01

    We report the preparation of size-defined [15N]N-acetylheparosan oligosaccharides from Escherichia coli-derived 15N-enriched N-acetylheparosan. Optimized growth conditions of E. coli in minimal media containing 15NH4Cl yielded [15N]N-acetylheparosan on a preparative scale. Depolymerization of [15N]N-acetylheparosan by heparitinase I yielded resolvable, even-numbered oligosaccharides ranging from disaccharide to icosaccharide. Anion-exchange chromatography-assisted fractionation afforded size-defined [15N]N-acetylheparosan oligosaccharides identifiable by ESI-TOFMS. These isotopically labeled oligosaccharides will prove to be valuable research tools for the chemoenzymatic synthesis of heparin and heparan sulfate oligosaccharides and for the study of their structural biology. PMID:19945695

  17. The effect of manuring on cereal and pulse amino acid δ(15)N values.

    PubMed

    Styring, Amy K; Fraser, Rebecca A; Bogaard, Amy; Evershed, Richard P

    2014-06-01

    Amino acid δ(15)N values of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) grains and rachis and broad bean (Vicia faba) and pea (Pisum sativum) seeds, grown in manured and unmanured soil at the experimental farm stations of Rothamsted, UK and Bad Lauchstädt, Germany, were determined by GC-C-IRMS. Manuring was found to result in a consistent (15)N-enrichment of cereal grain amino acid δ(15)N values, indicating that manuring did not affect the metabolic routing of nitrogen (N) into cereal grain amino acids. The increase in cereal grain δ(15)N values with manuring is therefore due to a (15)N-enrichment in the δ(15)N value of assimilated inorganic-N. Greater variation was observed in the (15)N-enrichment of rachis amino acids with manuring, possibly due to enhanced sensitivity to changes in growing conditions and higher turnover of N in rachis cells compared to cereal grains. Total amino acid δ(15)N values of manured and unmanured broad beans and peas were very similar, indicating that the legumes assimilated N2 from the atmosphere rather than N from the soil, since there was no evidence for routing of (15)N-enriched manure N into any of the pulse amino acids. Crop amino acid δ(15)N values thus provide insights into the sources of N assimilated by non N2-fixing and N2-fixing crops grown on manured and unmanured soils, and reveal an effect of manure on N metabolism in different crop species and plant parts.

  18. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    USGS Publications Warehouse

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  19. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  20. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  1. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  2. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  3. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  4. Hinged Shields for Machine Tools

    NASA Technical Reports Server (NTRS)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  5. Curiosity Heat Shield in Detail

    NASA Image and Video Library

    2012-08-08

    This color full-resolution image showing the heat shield of NASA Curiosity rover was obtained during descent to the surface of Mars. This image shows the inside surface of the heat shield, with its protective multi-layered insulation.

  6. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  7. Hinged Shields for Machine Tools

    NASA Technical Reports Server (NTRS)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  8. Wake Shield Facility (WSF)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.

  9. Lightweight blast shield

    DOEpatents

    Mixon, Larry C.; Snyder, George W.; Hill, Scott D.; Johnson, Gregory L.; Wlodarski, J. Frank; von Spakovsky, Alexis P.; Emerson, John D.; Cole, James M.; Tipton, John P.

    1991-01-01

    A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

  10. Magsat investigation. [Canadian shield

    NASA Technical Reports Server (NTRS)

    Hall, D. H. (Principal Investigator)

    1980-01-01

    A computer program was prepared for modeling segments of the Earth's crust allowing for heterogeneity in magnetization in calculating the Earth's field at Magsat heights. This permits investigation of a large number of possible models in assessing the magnetic signatures of subprovinces of the Canadian shield. The fit between the model field and observed fields is optimized in a semi-automatic procedure.

  11. Shield against radiations

    SciTech Connect

    Grifoni, S.

    1988-02-23

    This patent describes a shield against ionizing radiations that comprises at least one layer of an aggregate-containing cement-based conglomerate or an aggregate-containing cement-based mortar wherein the aggregate consists essentially of floated galena or mixtures thereof which at least one boron mineral.

  12. Shield For Flexible Pipe

    NASA Technical Reports Server (NTRS)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  13. Orion Heat Shield

    NASA Image and Video Library

    2015-03-09

    THE ORION HEAT SHIELD THAT SUCCESSFULLY SURVIVED A HIGH-VELOCITY REENTRY DURING ITS DEC. 5 FLIGHT TEST, IS CONTINUING ITS JOURNEY, NOW AT MARSHALL. IT ARRIVED ON MONDAY, MARCH 9 AND WILL BE INSTALLED IN THE BUILDING 4705 7-AXIS MILLING AND MACHINING CENTER.

  14. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Youngquist, Robert C.

    2008-09-01

    For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.

  15. 15N Content Reflects Development of Mycorrhizae and Nitrogen Dynamics During Primary Succession

    NASA Astrophysics Data System (ADS)

    Hobbie, E. A.; Jumpponen, A.

    2004-05-01

    Mycorrhizal fungi are ubiquitous symbionts on terrestrial plants that are particularly important for plant nitrogen nutrition. 15N content appears to be a useful marker of the mycorrhizal role in plant nitrogen supply because of an apparent fractionation against 15N during transfer of nitrogen from mycorrhizal fungi to host plants. Because plants developing during primary succession are gradually colonized by mycorrhizal fungi, such situations provide good opportunities to study interactions between mycorrhizal colonization and plant 15N content. Here, we present results of a study of nitrogen isotope patterns in ecosystem components during the first 100 years of ecosystem development after glacial retreat, and compare those patterns with those on adjacent mature terrain. Soils in primary succession were depleted in 15N relative to nitrogen-fixing plants. Nonmycorrhizal plants and plants generally colonized by ectomycorrhizal, ericoid, or arbuscular fungi showed similar 15N content very early in succession (-4 to -6‰ ), corresponding to low colonization levels of all plant species. Subsequent colonization of evergreen plants by ectomycorrhizal and ericoid fungi led to a 5-6‰ decline in 15N content, indicating transfer of 15N-depleted N from fungi to plants. The values recorded (-10 to -14‰ ) are among the lowest yet observed in vascular plants. Nonmycorrhizal plants and plants colonized by arbuscular mycorrhizal fungi did not decline in 15N content. Most ectomycorrhizal and saprotrophic fungi were similar in 15N content in early succession (-1 to -3‰ ), with the notable exception of ectomycorrhizal fungi suspected of proteolytic capabilities, which were 15N enriched relative to all other fungi. 15N contents in both plants and soil from the mature site were 5‰ greater than in recently exposed sites. We conclude that 1) the primary nitrogen source to this ecosystem must be atmospheric deposition, 2) low plant 15N content generally corresponds with greater

  16. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  17. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  19. Spacecraft Electrostatic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  20. SSC environmental radiation shielding

    SciTech Connect

    Jackson, J.D.

    1987-07-01

    The environmental radiation shielding requirements of the SSC have been evaluated using currently available computational tools that incorporate the well known processes of energy loss and degradation of high energy particles into Monte Carlo computer codes. These tools permit determination of isodose contours in the matter surrounding a source point and therefore the specification of minimum thicknesses or extents of shielding in order to assure annual dose equivalents less than some specified design amount. For the general public the annual dose equivalent specified in the design is 10 millirem, small compared to the dose from naturally occurring radiation. The types of radiation fall into two classes for the purposes of shielding determinations-hadrons and muons. The sources of radiation at the SSC of concern for the surrounding environment are the interaction regions, the specially designed beam dumps into which the beams are dumped from time to time, and beam clean-up regions where stops remove the beam halo in order to reduce experimental backgrounds. A final, unlikely source of radiation considered is the accidental loss of the full beam at some point around the ring. Conservative choices of a luminosity of 10{sup 34} cm{sup {minus}2}s{sup {minus}1} and a beam current three times design have been made in calculating the required shielding and boundaries of the facility. In addition to determination of minimum distances for the annual dose equivalents, the question of possible radioactivity produced in nearby wells or in municipal water supplies is addressed. The designed shielding distances and beam dumps are such that the induced radioactivity in ground water is safely smaller than the levels permitted by EPA and international agencies.

  1. The structure and properties of 5,6-dinitro-1H-benzotriazole

    NASA Astrophysics Data System (ADS)

    Santa María, Dolores; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2016-06-01

    5,6-Dinitro-1H-benzotriazole crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains the planar 1H-tautomer together with a water molecule of crystallization. Each water molecule is hydrogen bonded to three adjacent 5,6-dinitrobenzotriazoles forming a tape along the b-axis of the crystal. These tapes stack along the c-axis through hydrogen bonds involving the water molecules and one of the nitro groups leading to a bidimensional structure. Solid-state 13C and 15N CPMAS NMR allow to confirm that the tautomer present is the 1H one. In DMSO-d6 solution the results are quite different and, based on GIAO/B3LYP/6-311++G(d,p) calculations, lead us to conclude that the major tautomer is the 5,6-dinitro-2H-benzotriazole, a surprising result that contradicts the rule that the major tautomer in solution coincides with the one present in the crystal. An anhydrous pseudopolymorph of 5,6-dinitro-1H-benzotriazole has been obtained as a non-crystalline form and from solid-state NMR and theoretical calculations, we conclude that it is an 1H-tautomer.

  2. 1-Benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole

    PubMed Central

    Sarmiento-Sánchez, Juan I.; Aguirre, Gerardo; Rivero, Ignacio A.

    2011-01-01

    In the title compound, C19H15N3, the benzyl group is almost perpendicular to the triazole ring [dihedral angle = 80.64 (8)°], while the napthyl group makes an angle of 30.27 (12)° with the plane of the triazole ring. This conformation is different from the 1-benzyl-4-phenyl-1H-1,2,3-triazole analogue, which has the benzyl ring system at an angle of 87.94° and the phenyl group at an angle of 3.35° to the plane of the triazole ring. PMID:21837221

  3. Improved ferrous shielding for flat cables

    NASA Technical Reports Server (NTRS)

    Drechsler, R. J.

    1969-01-01

    To improve shielding of flat multicore cables, a thin, seamless ferrous shield around all cores optimizes low frequency magnetic shielding. Such shielding is covered with an ultrathin seamless coat of highly conductive nonferrous material.

  4. Shielding of substations against direct lightning strokes by shield wires

    SciTech Connect

    Chowdhuri, P. )

    1994-01-01

    A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.

  5. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  6. Nitrogen Fractionation in Protoplanetary Disks from the H13CN/HC15N Ratio

    NASA Astrophysics Data System (ADS)

    Guzmán, V. V.; Öberg, K. I.; Huang, J.; Loomis, R.; Qi, C.

    2017-02-01

    Nitrogen fractionation is commonly used to assess the thermal history of solar system volatiles. With ALMA it is for the first time possible to directly measure {}14{{N}}/{}15{{N}} ratios in common molecules during the assembly of planetary systems. We present ALMA observations of the {{{H}}}13{CN} and {{HC}}15{{N}} J=3-2 lines at 0.″5 angular resolution, toward a sample of six protoplanetary disks, selected to span a range of stellar and disk structure properties. Adopting a typical {}12{{C}}/{}13{{C}} ratio of 70, we find comet-like {}14{{N}}/{}15{{N}} ratios of 80-160 in five of the disks (3 T Tauri and 2 Herbig Ae disks) and lack constraints for one of the T Tauri disks (IM Lup). There are no systematic differences between T Tauri and Herbig Ae disks, or between full and transition disks within the sample. In addition, no correlation is observed between disk-averaged D/H and {}14{{N}}/{}15{{N}} ratios in the sample. One of the disks, V4046 Sgr, presents unusually bright HCN isotopologue emission, enabling us to model the radial profiles of {{{H}}}13{CN} and {{HC}}15{{N}}. We find tentative evidence of an increasing {}14{{N}}/{}15{{N}} ratio with radius, indicating that selective photodissociation in the inner disk is important in setting the {}14{{N}}/{}15{{N}} ratio during planet formation.

  7. Steroselective synthesis and application of L-( sup 15 N) amino acids

    SciTech Connect

    Unkefer, C.J. ); Lodwig, S.N. . Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  8. An evaluation of sources of nitrogen in shallow groundwater using (15)N abundance technique.

    PubMed

    Alva, A K; Dou, H; Paramasivam, S; Wang, F L; Graetz, D A; Sajwan, K S

    2006-01-01

    A (15)N abundance technique was employed to identify the source of NO(3)-N in groundwater under three commercial citrus production sites in central Florida. Water samples were collected from 0 to 300 and 300 to 600 cm depths in the surficial aquifer and analyzed for NO(3)-N and delta N-15 (delta (15)N). Groundwater samples were also collected in a residential area adjacent to one of the citrus groves and analyzed for NO(3)-N and delta (15)N. The delta (15)N values were in the range of (+)1 to (+)10% in both depths underneath the citrus groves. The range of delta (15)N measured in this study represents the range expected for groundwater that was impacted by NO(3)-N originated from mineralization of organic N from the soil as well as from the crop residue. There are occasional high delta (15)N values which are indicative of the effects of NH(3) volatilization losses of applied fertilizer N. The range of delta (15)N values for groundwater samples collected from the residential area adjacent to the citrus groves was very similar to that from the groundwater underneath the citrus groves. Thus, the source of NO(3)-N that impacted the groundwater under the citrus groves also impacted the groundwater in the adjacent residential area.

  9. Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.

    PubMed

    Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg

    2015-02-17

    The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.

  10. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  11. Efficient Measurement of 3JN,Cγ and 3JC‧,Cγ Coupling Constants of Aromatic Residues in 13C, 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Löhr, Frank; Rüterjans, Heinz

    2000-09-01

    An NMR pulse sequence is proposed for the simultaneous determination of side chain χ1 torsion-angle related 3JN,Cγ and 3JC‧,Cγ couplings in aromatic amino acid spin systems. The method is of the quantitative J correlation type and takes advantage of attenuated 15N and 1H transverse relaxation by means of the TROSY principle. Unlike previously developed schemes for the measurement of either of the two coupling types, spectra contain internal reference peaks that are usually recorded in separate experiments. Therefore, the desired information is extracted from a single rather than four data sets. The new method is demonstrated with uniformly 13C/15N labeled Desulfovibrio vulgaris flavodoxin, which contains 14 aromatic out of 147 total amino acid residues.

  12. Interpreting δ15N in Soil Profiles: Insights From the N-Isotopes of Amino Acids

    NASA Astrophysics Data System (ADS)

    Philben, M. J.; Edwards, K. A.; Billings, S. A.; Van Biesen, G.; Podrebarac, F. A.; Ziegler, S. E.

    2016-12-01

    The δ15N of soil organic matter is consistently enriched with depth in soil profiles, although the magnitude of enrichment appears to vary with latitude. This could provide important insights on differences in N cycling among ecosystems, but the mechanism responsible for the depth trend remains controversial. Hypothesized explanations are (1) selective loss of depleted N during decomposition; (2) accumulation of 15N-enriched biomass of decomposers at depth; and (3) transfer of depleted N from depth to the soil surface by mycorrhizal fungi. To constrain these possible mechanisms, we analyzed the δ15N of hydrolyzable amino acids in the L, F, and H soil horizons of 2 boreal forests in southeast Labrador and southwest Newfoundland, Canada, before and after 480-day laboratory incubations of the soils. Most amino acids are both produced and degraded by microbes, but some are not resynthesized. The difference between these groups can be used to isolate the effects of decomposition from other fractionating processes. The amino acid δ15N did not change during the soil incubations, indicating peptide depolymerization does not fractionate N isotopes. This is consistent with a previously conducted fallow experiment in which amino acid δ15N remained unchanged after 68 years of decomposition in the absence of plant inputs. In contrast, the δ15N of most amino acids were enriched by 3-7‰ from the L to the H horizon, similar to the enrichment of bulk δ15N with depth. This pattern suggests these amino acids were resynthesized deeper in the soil profile where the bulk δ15N was more enriched. The δ15N amino acids phenylalanine and hydroxyproline, which are not resynthesized by the microbial community with decomposition, did not change with depth, indicating the depth trend was not due to temporal change in the δ15N of plant inputs to the soil. The enrichment of amino acid δ15N with depth in the soil profiles but not in the incubations or the fallow experiment indicates

  13. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  14. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  15. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; ...

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  16. Nuclear shieldings with the SSB-D functional.

    PubMed

    Armangué, Lluís; Solà, Miquel; Swart, Marcel

    2011-02-24

    The recently reported SSB-D functional [J. Chem. Phys. 2009, 131, 094103] is used to check the performance for obtaining nuclear magnetic resonance (NMR) shielding constants. Four different databases were studied, which contain a diversity of molecules and nuclear shielding constants. The SSB-D functional is compared with its "parent" functionals (PBE, OPBE), the KT2 functional that was designed specially for NMR applications and the coupled cluster CCSD(T) method. The best performance for the experimentally most-used elements ((1)H, (13)C) is obtained for the SSB-D and KT2 functionals.

  17. Roof Shield for Advance and Retreat Mining

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Shield sections change their configuration to suit mining mode. Articulation cylinders raise rear shield to advance position, and locking cylinders hold it there. To change to retreat position articulation cylinders lower shield. Locking pins at edge of outermost shield plate latch shield to chock base. Shield accommodates roof heights ranging from 36 to 60 inches (0.9 to 1.52 meters).

  18. Anthropomorphic 1H MRS head phantom.

    PubMed

    Rice, J R; Milbrandt, R H; Madsen, E L; Frank, G R; Boote, E J; Blechinger, J C

    1998-07-01

    An anthropomorphic 1H MRS head phantom has been developed which mimics the in vivo structure, metabolite concentrations, and relaxation times (for both water and metabolites) of human brain tissue. Different brain regions and two tumor types, fluid-containing ventricles, and air-filled sinus, and subcutaneous fat are all simulated. The main tissue-mimicking materials are gelatin/agar mixtures with metabolites and several other ingredients added. Their composition and method of production are thoroughly described. T1's and T2's of water in the phantom are very close to in vivo values, and metabolite T1's and T2's are considerably more realistic than those in aqueous solutions. Spectra and relaxation times for the pig brain were also acquired and compare well with those of the phantom. The realistic properties of this phantom should be useful for testing spectral quantitation and localization.

  19. Clinical uses of collagen shields.

    PubMed

    Poland, D E; Kaufman, H E

    1988-09-01

    Collagen shields immersed in tobramycin solution for one minute were applied to one eye each of 60 patients who had had cataract extraction, penetrating keratoplasty, or epikeratophakia or who had nonsurgical epithelial healing problems. The shields were well tolerated; one patient had the shield removed and one patient lost the shield in the early postoperative period. The surgical patients showed more rapid healing of epithelial defects after surgery with the use of the collagen shield. Patients with acute nonsurgical epithelial problems, such as contact lens abrasions and recurrent erosion, responded to the use of the collagen shield with improved healing. Patients with chronic epithelial defects responded poorly, presumably because underlying abnormalities in Bowman's layer prevented epithelial growth in the area of the defect. No infections were noted in any of the patients. The collagen shields appear to promote enhanced healing in patients with postsurgical and acute epithelial defects and to provide adequate antibiotic prophylaxis against infection in these vulnerable eyes.

  20. Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling

    PubMed Central

    Fertig, B.; Carruthers, T.J.B.; Dennison, W.C.; Fertig, E.J.; Altabet, M.A.

    2013-01-01

    Stable nitrogen isotopes (δ15N) in bioindicators are increasingly employed to identify nitrogen sources in many ecosystems and biological characteristics of the eastern oyster (Crassostrea virginica) make it an appropriate species for this purpose. To assess nitrogen isotopic fractionation associated with assimilation and baseline variations in oyster mantle, gill, and muscle tissue δ15N, manipulative fieldwork in Chesapeake Bay and corresponding modeling exercises were conducted. This study (1) determined that five individuals represented an optimal sample size; (2) verified that δ15N in oysters from two locations converged after shared deployment to a new location reflecting a change in nitrogen sources; (3) identified required exposure time and temporal integration (four months for muscle, two to three months for gill and mantle); and (4) demonstrated seasonal δ15N increases in seston (summer) and oysters (winter). As bioindicators, oysters can be deployed for spatial interpolation of nitrogen sources, even in areas lacking extant populations. PMID:20381097

  1. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  2. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    NASA Astrophysics Data System (ADS)

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin-lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).

  3. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    PubMed Central

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin–lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C). PMID:28067292

  4. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  5. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  6. Multilayer radiation shield

    SciTech Connect

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  7. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  8. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  9. ITER shielding blanket

    SciTech Connect

    Strebkov, Y.; Blinov, Y.; Avsjannikov, A.

    1994-12-31

    A version of ITER shielding blanket design is presented. Main features of this proposal are: Cu based alloy as structure material of the first wall - integrated in the blanket segment box structure and 316L SS as material of both back/side walls of the box and the shield structure elements; water of medium pressure (up to 4 MPa) as coolant with toroidal direction of flow; two variants of beryllium protection tiles joining (either permanent joints by mince of solid diffusion bonding or demountable attachment with compliant layer; for last versions designs options of tiles attachment units are given). Problems of manufacturing of such blanket segment including its assembly sequence are considered in details. Results of stress problem analysis for thermal, pressure, and electromagnetic loads will be given in this report also.

  10. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    PubMed Central

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  11. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    NASA Astrophysics Data System (ADS)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  12. NMR studies of the stability, protonation States, and tautomerism of (13)C- AND (15)N-labeled aldimines of the coenzyme pyridoxal 5'-phosphate in water.

    PubMed

    Chan-Huot, Monique; Sharif, Shasad; Tolstoy, Peter M; Toney, Michael D; Limbach, Hans-Heinrich

    2010-12-28

    We have measured the pH-dependent (1)H, (13)C, and (15)N NMR spectra of pyridoxal 5'-phosphate ((13)C(2)-PLP) mixed with equal amounts of either doubly (15)N-labeled diaminopropane, (15)N(α)-labeled l-lysine, or (15)N(ε)-labeled l-lysine as model systems for various intermediates of the transimination reaction in PLP-dependent enzymes. At low pH, only the hydrate and aldehyde forms of PLP and the free protonated diamines are present. Above pH 4, the formation of single- and double-headed aldimines (Schiff bases) with the added diamines is observed, and their (13)C and (15)N NMR parameters have been characterized. For 1:1 mixtures the single-headed aldimines dominate. In a similar way, the NMR parameters of the geminal diamine formed with diaminopropane at high pH are measured. However, no geminal diamine is formed with l-lysine. In contrast to the aldimine formed with the ε-amino group of lysine, the aldimine formed with the α-amino group is unstable at moderately high pH but dominates slightly below pH 10. By analyzing the NMR data, both the mole fractions of the different PLP species and up to 6 different protonation states including their pK(a) values were obtained. Furthermore, the data show that all Schiff bases are subject to a proton tautomerism along the intramolecular OHN hydrogen bond, where the zwitterionic form is favored before deprotonation occurs at high pH. This observation, as well as the observation that around pH 7 the different PLP species are present in comparable amounts, sheds new light on the mechanism of the transimination reaction.

  13. Project BioShield

    DTIC Science & Technology

    2005-06-10

    to Congress. Expedited Peer Review . The Project BioShield Act of 2004 authorizes the HHS Secretary to use an expedited award process, rather than the...normal peer review process, for grants, contracts, and cooperative agreements related to biomedical countermeasure R&D activity, if the Secretary... peer review process will reduce the quality of the research.6 Peer review is designed to maximize the chances that only proposals with the greatest

  14. Project BioShield

    DTIC Science & Technology

    2006-09-27

    Expedited Peer Review . The Project BioShield Act of 2004 authorizes the HHS Secretary to use an expedited award process, rather than the normal peer ...such awards, or to many, will depend on what needs the Secretary deems pressing. Some scientists have expressed concerns that an expedited peer review process...will reduce the quality of the research.6 Peer review is designed to maximize the chances that only proposals with the greatest scientific

  15. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  16. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  17. Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii

    Treesearch

    Gregory L. Bruland; Richard A.. Mackenzie

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared δ15N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of δ15N with...

  18. Angular distributions for /sup 16/O(/gamma/,p)/sup 15/N at intermediate energies

    SciTech Connect

    Adams, G.S.; Kinney, E.R.; Matthews, J.L.; Sapp, W.W.; Soos, T.; Owens, R.O.; Turley, R.S.; Pignault, G.

    1988-12-01

    The photoproton knockout reaction on /sup 16/O leaving /sup 15/N in low-lying bound states has been observed over the photon energy range from 196 to 361 MeV. The angular distribution for the reaction populating the ground state of /sup 15/N develops sharp structure as the photon energy is increased but that for population of the excited states is smooth. The results are not explained by existing theoretical models.

  19. Crumpled Heat Shield

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Phoenix Mars Lander's Surface Stereo Imager took this image of the spacecraft's crumpled heat shield on Sept. 16, 2008, the 111th Martian day of the mission.

    The 2-1/2 meter (about 8-1/2 feet) heat shield landed southeast of Phoenix, about halfway between the spacecraft and its backshell/parachute. The backshell/parachute touched ground 300 meters (1,000 ft) to the south of the lander.

    The dark area to the right of the heat shield is the 'bounce mark' it made on impact with the Red Planet. This image is the highest-resolution image that will likely be taken by the lander, and is part of the 1,500-image 'Happily Ever After' panorama.

    The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Skylab Solar Shield

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A sail like sunshade for possible use as a sunscreen for the Skylab Orbital Workshop (OWS) is shown being fabricated in the GE Building across the street from Johnson Space Center, Houston Texas. Three people help the steamstress feed the material through the sewing machine. The three-layered sunshade will be composed of a top layer of aluminized mylar, a middle layer of laminated nylon ripstop, and a bottom layer of thin nylon. Working on the sunshade are from left to right: Dale Gentry, Elizabeth Gauldin, Alyene Baker, and James H. Barnett Jr. Mrs. Baker, a GE employee, operates the double needle Singer sewing machine. Barnett is head of the Crew Equipment Development Section of JSC Crew Systems Division. Mrs. Gauldin is also with the Crew Systems Division. Gentry works for GE. The work shown here is part of the crash program underway to prepare a sunshield for Skylab to replace the orginal shield which was lost when Skylab 1 was launched on May 14, 1973. The improvised solar shield selected to be used will be carried to Earth orbit by the Skylab 2 crewman who will then deploy the reflective parasol to shade part of the OWS from the hot rays of the sun. Loss of the orginal sun shield has caused an overheating problem. in the Orbital Work Shop.

  1. Efficient Synthesis of Nicotinamide-1-15N for Ultrafast NMR Hyperpolarization Using Parahydrogen

    PubMed Central

    2016-01-01

    Nicotinamide (a vitamin B3 amide) is one of the key vitamins as well as a drug for treatment of M. tuberculosis, HIV, cancer, and other diseases. Here, an improved Zincke reaction methodology is presented allowing for straightforward and scalable synthesis of nicotinamide-1-15N with an excellent isotopic purity (98%) and good yield (55%). 15N nuclear spin label in nicotinamide-1-15N can be NMR hyperpolarized in seconds using parahydrogen gas. NMR hyperpolarization using the process of temporary conjugation between parahydrogen and to-be-hyperpolarized biomolecule on hexacoordinate iridium complex via the Signal Amplification By Reversible Exchange (SABRE) method significantly increases detection sensitivity (e.g., >20 000-fold for nicotinamide-1-15N at 9.4 T) as has been shown by Theis T. et al. (J. Am. Chem. Soc.2015, 137, 1404), and hyperpolarized in this fashion, nicotinamide-1-15N can be potentially used to probe metabolic processes in vivo in future studies. Moreover, the presented synthetic methodology utilizes mild reaction conditions, and therefore can also be potentially applied to synthesis of a wide range of 15N-enriched N-heterocycles that can be used as hyperpolarized contrast agents for future in vivo molecular imaging studies. PMID:26999571

  2. Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies

    NASA Astrophysics Data System (ADS)

    Hazrati, Mehrnoosh Khodam; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    Using density functional theory, we have investigated the potential application of a C30B15N15 heterofullerene in anti-cancer isoniazid drug delivery. It was found that isoniazid prefers to attach via its -NH2 group to a boron atom of the C30B15N15 with releasing a large energy of about 21.91 kcal/mol. Our partial density of states analysis demonstrates that the boron atoms significantly contribute in generation of virtual orbitals of C30B15N15 fullerene, indicating that these atoms will be suitable for nucleophilic attack rather than carbon atoms. In addition to the large released energy, the electronic properties C30B15N15 are significantly sensitive to the isoniazid attachment which can recognize the drug trajectory by affecting the fluorescence emission properties. Unlike, different nanostructures whose structures need to be manipulated to be suitable for drug delivery, the C30B15N15 fullerene can be used in the pristine form. We proposed a drug release mechanism in cancer tissues, representing that in the low pH of the cancer cells the drug and C30B15N15 fullerene are considerably protonated, thereby separating the drug from the surface of the fullerene. The reaction mechanism of the drug with the fullerene is changed from covalence in natural environment to hydrogen bonding in acidic cancer cells.

  3. Highly 15N-Enriched Chondritic Clasts in the Isheyevo Meteorite

    SciTech Connect

    Bonal, L; Huss, G R; Krot, A N; Nagashima, K; Ishii, H A; Bradley, J P; Hutcheon, I D

    2009-01-14

    The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock {sup 15}N enrichment ({delta}{sup 15}N up to +1500{per_thousand}), similar to {delta}{sup 15}N values reported in micron-sized regions (hotspots) of Interplanetary Dust Particles (IDPs) of possibly cometary origin and fine-grained matrices of unmetamorphosed chondrites. These {sup 15}N-rich hotspots are commonly attributed to low-temperature ion-molecule reactions in the protosolar molecular cloud or in the outer part of the protoplanetary disk. The nature of the whole-rock {sup 15}N enrichment of the metal-rich chondrites is not understood. We report a discovery of a unique type of primitive chondritic clasts in the CH/CB-like meteorite Isheyevo, which provides important constraints on the origin of {sup 15}N anomaly in metal-rich chondrites and nitrogen-isotope fractionation in the Solar System. These clasts contain tiny chondrules and refractory inclusions (5-15 {micro}m in size), and abundant ferromagnesian chondrule fragments (1-50 {micro}m in size) embedded in the partly hydrated, fine-grained matrix material composed of olivines, pyroxenes, poorly-organized aromatic organics, phyllosilicates and other hydrous phases. The mineralogy and oxygen isotope compositions of chondrules and refractory inclusions in the clasts are similar to those in the Isheyevo host, suggesting formation at similar heliocentric distances. In contrast to the previously known extraterrestrial samples, the fine-grained material in the clasts is highly and rather uniformly enriched in {sup 15}N, with bulk {delta}{sup 15}N values ranging between +1000 and +1300{per_thousand}; the {delta}{sup 15}N values in rare hotspots range from +1400 to +4000{per_thousand}. Since fine-grained matrices in the lithic clasts are the only component containing thermally unprocessed (during CAI and chondrule formation or during impact melting) materials that accreted into the metal rich chondrite parent body(ies), the {sup 15}N

  4. The acyl nitroso Diels-Alder (ANDA) reaction of sorbate derivatives: an X-ray and 15N NMR study with an application to amino-acid synthesis.

    PubMed

    Bollans, Lee; Bacsa, John; Iggo, Jonathan A; Morris, Gareth A; Stachulski, Andrew V

    2009-11-07

    We present a study of the acyl nitroso Diels-Alder (ANDA) reaction of sorbate esters and sorbic alcohol derivatives, using alkoxycarbonyl nitroso dienophiles. An optimisation of the reaction conditions for ethyl sorbate is first presented, and the product is used in an efficient synthesis of 5-methylornithine. Structure-reactivity trends in sorbic alcohol (E,E-2,4-hexadien-1-ol) and its acylated analogues are then discussed. We present single-crystal X-ray structural proof for key adducts in both series and present in detail a novel HMBC/HSQC ((1)H-(15)N) criterion for ready distinction of regioisomers arising from such ANDA reactions.

  5. /sup 18/O isotope shift in /sup 15/N NMR spectroscopy. 2. Synthesis of /sup 15/N, /sup 18/O-labeled hydroxylamine hydrochloride

    SciTech Connect

    Rajendran, G.; Van Etten, R.L.

    1986-03-12

    Since hydroxylamine can serve as a key intermediate in the synthesis of a variety of compounds, the synthesis of (/sup 15/N, /sup 18/O)-labelled hydroxylamine hydrochloride was undertaken. Published procedures for the synthesis of hydroxylamine resulted in poor yields in some cases and in lower percentage of /sup 18/O in the product than expected in other cases. The compound was synthesized in dry tetrahydrofuran (THF) by treating NaNO/sub 2/ with borane-methyl sulfide. The course of the reaction was examined using /sup 11/B NMR spectroscopy, and the product yield was 74%. The /sup 18/O enrichment was demonstrated by both mass spectrometry and /sup 15/N NMR of the isolated acetoxime. 23 references, 1 figure.

  6. Compound-specific δ15N and chlorin preservation in surface sediments of the Peru Margin with implications for ancient bulk δ15N records

    NASA Astrophysics Data System (ADS)

    Junium, Christopher K.; Arthur, Michael A.; Freeman, Katherine H.

    2015-07-01

    Understanding the processes that control the preservation of paleoceanographic proxies is of clear importance. Surface sediments from the Peru Margin oxygen-minimum zone are subject to lateral and downslope transport by bottom currents that decrease organic matter (OM) quality. Indicators of bulk OM quality (pyrolysis hydrogen index, pyrolysis S1 + S2 and C/N) demonstrate significant degradation between 150 and 400 m water depth, within the oxygen-minimum zone. Concentrations of the three most abundant chlorins (chlorophyllone, pheophytin and pyropheophytin) decrease from 750 to 150 nmol g TOC-1 from 150 to 400 m water depth though the relative abundances of the chlorins in an individual sample do not change. This suggests that the three chlorins have similar reactivity over the ambient conditions. Values for δ15N of bulk sediments (δ15Nbulk) decrease by 3‰ from the inner shelf to the upper slope (1000 m) but co-occurring compound-specific δ15N values (δ15Nchlorin) do not decrease downslope. The low variability of δ15Nchlorin values supports a single source for the chlorins, and demonstrates the recalcitrance of δ15Nchlorin values despite degradation. This set of observation raises questions about which type of OM fraction best records 'primary' signatures. We assess two possible models to guide our interpretation of these disparate datasets (1) that decreasing δ15Nbulk values are the result of degradation of a 15N-enriched fraction during downslope transport, and that δ15Nchlorin values reflect primary values; (2) that δ15Nbulk values are primary and that chlorins are derived from material transported from upslope. These data reaffirm that in active sedimentary environments such as the Eastern Tropical Pacific, transport of OM can significantly alter bulk geochemical parameters of OM integrity, but the impacts on the δ15N record of bulk sediments and chlorins are less clear, and require more study to be thoroughly understood.

  7. 1H Photo-CIDNP Enhancements in Heteronuclear Correlation NMR Spectroscopy

    PubMed Central

    Sekhar, Ashok; Cavagnero, Silvia

    2009-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) is usually employed as a probe of solvent exposure, in biomolecular NMR. The potential of the photo-CIDNP effect for sensitivity enhancement, however, remains poorly explored. Here, we introduce 1H-photo-CIDNP in heteronuclear correlation spectroscopy at low laser irradiation power (1 W), and compare the sensitivity of various 1H-Photo-CIDNP-enhanced- (HPE) 1H◻15N heteronuclear correlation pulse sequences, including HSQC, HMQC, and SOFAST-HMQC, in terms of their ability to detect the Trp indole Hε1 resonance. Both Trp and the Trp-containing protein apoHmpH were analyzed using flavin mononucleotide as photosensitizer in aqueous solutions either containing or lacking urea. We find that 1H◻15N photo-CIDNP-SOFAST-HMQC, denoted here as HPE-SOFAST-HMQC, yields a two-fold higher signal-to-noise per unit time than the parent SOFAST-HMQC for the solvent-exposed Trp of urea-unfolded apoHmpH. Thus, HPE-SOFAST-HMQC is the most sensitive heteronuclear correlation pulse sequence for the detection of solvent-exposed Trp. PMID:19462951

  8. Estimate of production of gaseous nitrogen in the human body based on (15)N analysis of breath N2 after administration of [(15)N2]urea.

    PubMed

    Junghans, Peter

    2013-01-01

    After oral administration of [(15)N2]urea (1.5 mmol, 95 atom% (15)N), we found that breath N2 was significantly (15)N-labelled. The result suggests that molecular nitrogen in breath must be partly produced endogenously. Based on a metabolic model, the endogenous N2 production was estimated to be 0.40±0.25 mmol kg(-1) d(-1) or 2.9±1.8 % of the total (urinary and faecal) N excretion in fasted healthy subjects (n=4). In patients infected with Helicobacter pylori (n=5), the endogenous N2 production was increased to 1.24±0.59 mmol kg(-1) d(-1) or 9.0±4.3 % of the total N excretion compared to the healthy controls (p<0.05). We conclude that N balance and gas exchange measurements may be affected by endogenously produced nitrogen, especially in metabolic situations with elevated nitrosation, for instance in oxidative and nitrosative stress-related diseases such as H. pylori infections.

  9. Importance of Nitrate Attenuation In A Small Wetland Following Forest Harvest: 18O/16O, 15N/14N in nitrate and 15N/14N) in vegetation

    NASA Astrophysics Data System (ADS)

    Spoelstra, J.; Schiff, S. L.; Semkin, R. G.; Jeffries, D. S.; Elgood, R. J.

    2004-05-01

    Forest harvest can result in elevated nitrate concentrations in streams and groundwater affecting forest regeneration and downstream aquatic ecosystems. Turkey Lakes Watershed, located near Sault Ste Marie, Ontario (TLW), exhibits relatively high nitrate export due to naturally high rates of nitrification. During a forest harvest experiment at the TLW, stable isotope techniques were used to investigate nitrate attenuation in an intermediate position natural wetland receiving high concentrations of nitrate following forest clear-cutting. Isotopic analysis of nitrate (18O/16O, 15N/14N) and vegetation (15N/14N) demonstrated that denitrification and plant uptake of nitrate resulted in significantly lower nitrate concentrations in wetland outflow compared to incoming stream water and groundwater. The 0.2-hectare forested swamp, too small to show up on standard topographic maps, retained 65 to 100 percent of upgradient nitrate inputs, elevated due to increased nitrification in soils. The 15N/14N enrichment factor associated with nitrate attenuation in wetland surface water was lower than observed during denitrification in groundwaters, suggesting that denitrification proceeded to completion in some areas of the wetland. Even small, shallow, carbon rich pockets of organic matter in topographic depressions can significantly affect biogeochemical fluxes of C, N, S and Ca. Future forest management practices designed to recognize and preserve small wetlands could significantly reduce the potentially detrimental effects of forest harvest on aquatic systems.

  10. Observing in-phase single-quantum 15N multiplets for NH/NH3+ groups with two-dimensional heteronuclear correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Takayama, Yuki; Sahu, Debashish; Iwahara, Junji

    2008-10-01

    Two-dimensional (2D) F1- 1H-coupled HSQC experiments provide 3:1:1:3 and 1:0:1 multiplets for AX 3 and AX 2 spin systems, respectively. These multiplets occur because, in addition to the 2H groups in proteins ( Figs. 2 and 3). Data were collected with Varian 800- or 750-MHz NMR systems. Fig. 2 displays spectra recorded on the Lys57 NH3+ group of the HoxD9 homeodomain bound to 24-bp DNA. Owing to formation of an ion-pair with a DNA phosphate group, this NH3+ group exhibits relatively slow hydrogen-exchange with water molecules and the 1H- 15N cross peak from this group can clearly be observed [2]. Just as expected from considerations above, F1- 1H-coupled HSQC ( Fig. 2A) and F1- 1H-coupled HISQC ( Fig. 2B) exhibits in-phase quartets of 3:1:1:3 and 1:3:3:1 types, respectively. Actual intensity ratios deviate from these numbers because the relaxation rates for inner and outer components of the quartet are different due to cross-correlations [2,5,9]. Fig. 3 shows spectra recorded on side-chain NH 2 groups of glutamine (Gln) residues in proteins. Panels A, B and C display spectra recorded on Gln20 in the 15N-labeled HMGB1 A-domain. The rotational correlation time τr for this protein at 25 °C is 9 ns [10]. The NH 2 group exhibited 1:0:1 triplets in the F1- 1H-coupled HSQC spectrum ( Fig. 3A) and 1:2:1 triplets in the F1- 1H-coupled HISQC spectrum ( Fig. 3B). The J-coupling was measured to be 89 Hz. For a system with a long τr, the relaxation rates of individual triplet components for a AX 2 spin system can be quite different because of cross-correlations between distinct relaxation mechanisms [11]. Such a case is clearly seen in the spectra measured on the Gln12 NH 2 groups in the 2H/ 15N-lableled HoxD9 homeodomain bound to 24-bp DNA at 16 °C ( Fig. 3D, E and F). The value of τr is 15 ns for this system. In this case, the downfield components are substantially shaper than the other components in triplets. Although one may think that removal of 1H-decoupling from the

  11. Justification for Shielded Receiver Tube Additional Lead Shielding

    SciTech Connect

    BOGER, R.M.

    2000-04-11

    In order to reduce high radiation dose rates encountered when core sampling some radioactive waste tanks the addition of 240 lbs. of lead shielding is being considered to the shielded receiver tube on core sample trucks No.1, No.3 and No.4. The lead shielding is 4 inch diameter x 1/2 inch thick half rounds that have been installed around the SR tube over its' full length. Using three unreleased but independently reviewed structural analyses HNF-6018 justifies the addition of the lead shielding.

  12. Sewage derive [sup 15]N in the Baltic traced in fucus

    SciTech Connect

    Hobbie, J.E.; Fry, B. ); Larsson, U.; Elmgren, R. )

    1990-01-09

    Himmerfjarden, a fjord-like bay on the eastern shore of the Baltic, receives treated sewage from 250,000 inhabitants. Because the inorganic N in the effluent is enriched in [sup 15]N through denitrification, nitrification, and ammonia volatilization, an analysis of the distribution of [sup 15]N in the Bay tells how far from the source the sewage nitrogen moves. The attached macroalga Fucus vesiculosus was collected in early May from rocky shore at 0-0.5 m depth and the [sup 15]N content of the tips of the fronds analyzed. This N represents uptake and storage during the previous six months and growth during March and April. The [delta][sup 15]N was uniformly high (11-13[per thousand]) in the main body of the Bay within 15 km from the sewage source. Beyond 15 km values decreased with distance to a low of 4.6[per thousand] at 35 km, where the Bay ends and the coastal waters begin. Using the 11-13 and 4.6[per thousand] as endmembers, the percentage of sewage N making up the Fucus at any point may be calculated. The [delta][sub 15]N of particulate organic matter in the offshore Baltic waters was around 0[per thousand] and Fucus had an [delta][sup 15]N about 1.5[per thousand] higher than the POM. From this and other evidence we conclude that there is a belt of coastal water with an elevated [delta][sup 15]N lying along the east coast of the Baltic. This presumably derives from sewage and perhaps from agriculture and is potentially of use as a tracer of coastal zone/pelagic zone interactions.

  13. Soil N and 15N variation with time in a California annual grassland ecosystem

    USGS Publications Warehouse

    Brenner, D.L.; Amundson, Ronald; Baisden, W. Troy; Kendall, C.; Harden, J.

    2001-01-01

    The %N and ??15N values of soils and plants were measured along a chronosequence spanning 3 to 3000 Ky in a California annual grassland. Total soil N decreased with increasing soil age (1.1 to 0.4 kg N m-2) while the mean ?? 15N values of the soil N increased by several ??? from the youngest to oldest sites (+3.5 to +6.2 ???). The ?? 15N values of plants varied along the gradient, reflecting changing soil N pools and differences in the form of N uptake. The decline in total N storage with time is hypothesized to be due to a shift from N to P limitation with increasing soil age. The general increase in ?? 15N values with time is interpreted using a N mass balance model, and appears to reflect a shift toward an increasing proportional losses of inorganic mineral forms of N (vs. organic forms) with increasing soil age. We develop a quantitative index of this trend (mineral vs. organic forms of N loss) using mass balance considerations and parameters. The %N and ?? 15N values along the California age gradient were compared to the published data for a comparably aged chronosequence in Hawaii. Most striking in this comparison is the observation that the California soil and plant ?? 15N values are several ??? greater than those on comparably aged Hawaiian sites. Multiple explanations are plausible, but assuming the sites have a similar range in ?? 15N values of atmospheric inputs, the isotopic differences suggest that N may be, at least seasonally, in greater excess in the strongly seasonal, semi-arid, California grassland. Copyright ?? 2001 Elsevier Science Ltd.

  14. Nitrogen source tracking with delta(15)N content of coastal wetland plants in Hawaii.

    PubMed

    Bruland, Gregory L; MacKenzie, Richard A

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared delta(15)N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of delta(15)N with land use, human population density, and surface water quality parameters (i.e., nitrate, ammonium, and total dissolved N). The highest delta(15)N values were observed in plants from wetlands on the islands of Oahu (8.7-14.6 per thousand) and Maui (8.9-9.2 per thousand), whereas plants from wetlands on the islands of Kauai, Hawaii, and Molokai had delta(15)N values usually <4 per thousand. The enrichment in delta(15)N values in plant tissues from wetlands on Oahu and Maui was most likely a result of the more developed and densely populated watersheds on these two islands. Urban development within a 1000-m radius and population density were positively correlated to average delta(15)N vegetation values from each wetland site (r = 0.56 and 0.51, respectively; p < 0.001). This suggested that site mean delta(15)N values from mixed stands of wetland plants have potential as indices of N sources in coastal lowland wetlands in Hawaii and that certain sites on Oahu and Maui have experienced significant anthropogenic N loading. This information can be used to monitor future changes in N inputs to coastal wetlands throughout Hawaii and the Pacific.

  15. Why is Mineral-Associated Organic Matter Enriched in 15N? Evidence from Grazed Pasture Soil

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Wells, N. S.; Mudge, P. L.; Clough, T. J.; Schipper, L. A.; Ghani, A.; Stevenson, B.

    2014-12-01

    Throughout the scientific literature, measurements across soil depth and density fractions suggest that, with few exceptions, mineral-associated organic matter (OM) has higher δ15N than non-mineral-associated OM. This implies that the δ15N difference between N inputs and mineral-stabilized OM may characterize the microbial processes involved in stabilization and mineral association. Yet current understanding of observed N isotope fractionation in terrestrial ecosystems suggests the large isotope effects are expressed during inorganic N transformations from NH4 to gaseous loss pathways of NH3 volatilization and denitrification. How can the relative importance of N isotope fractionation during OM stabilization versus loss pathways be resolved? We recently examined N isofluxes when a temporary nitrogen excess is created by urine deposition in a New Zealand dairy pasture. We found that the N isotopic composition of volatilized NH3, and NO3 available for leaching or denitrification could not be linked back to the added N using Rayleigh distillation models. Instead, the results imply that the added N was immobilized, and the N available for losses was increasingly derived from mineralization of organic matter during the course of the experiment. These results are consistent with recent evidence of enhanced OM mineralization in urine patches, understanding of N isotope mass balances and long-standing evidence that gross mineralization and immobilization fluxes greatly exceed net mineralization and nitrification, except at very high N saturation. These results suggest that where 15N enrichment occurs due to fractionating loss pathways, the isotope effects are primarily transmitted to immobilized N, forming 15N enriched stabilized OM. This further explains earlier findings that the δ15N of soil OM represents an integrated indicator of losses, reflecting the intensity and duration of pastoral agriculture. We suggest that development of an indicator based on δ15N in

  16. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    PubMed

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored δ(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15)N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15)N trend is therefore most consistent with a baseline δ(15)N gradient, likely due to the mixing of two source waters: low δ(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15)N values of phenylalanine (δ(15)NPhe), the best AA proxy for baseline δ(15)N values. We hypothesize δ(15)N(Phe) values in intertidal mussels can approximate annual integrated δ(15)N values of coastal phytoplankton primary production. We therefore used δ(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15)N values. We propose that δ(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline δ(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  17. Radiation shielding quality assurance

    NASA Astrophysics Data System (ADS)

    Um, Dallsun

    For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.

  18. A new method to track seed dispersal and recruitment using 15N isotope enrichment.

    PubMed

    Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos

    2009-12-01

    Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could

  19. Nitrogen Isotopic Ratios in Cometary NH2: Implication for 15N-fractionation in Ammonia

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Jehin, Emmanuël; Decock, Alice; Hutsemékers, Damien; Manfroid, Jean; Arai, Akira

    2015-11-01

    Isotopic ratios in cometary molecules are diagnostic for the physico-chemical conditions where molecules formed and are processed, from the interstellar medium to the solar nebula. Usually temperatures at the molecular formation control the fractionation of the heavier element in molecular species, e.g., D-fractionation in water.In cometary volatiles, the 14N/15N ratios in CN have been well observed (Manfroid et al. 2009, A&A, 503, 613, and reference therein) and is consistent with the ratio in HCN (a most probable parent of CN) measured in few comets (Bockelée-Morvan et al. 2008, ApJ, 679, L49). Those ratios are enriched compared to the proto-solar value by a factor of ~3. In contrast to those Nitriles, there are only few reports on 14N/15N ratios in Ammonia (as Amine) (Rousselot et al. 2014, ApJ, 780, L17; Shinnaka et al. 2014, ApJ, 782, L16). Ammonia (NH3) is usually the most abundant and HCN is the second most abundant N-bearing volatiles in cometary ice. Especially, recent observations of 15NH2 revealed the 14N/15N ratios in NH3 are comparable to those of CN. However, from the viewpoint of theoretical work, the enrichment of 15N in cometary NH3 cannot be reproduced by current chemical network models. Information about the diversity of the 14N/15N ratios in NH3 of individual comets is needed to understand the formation mechanisms/environments of NH3 in the early solar system.To clarify the diversity of the 14N/15N ratios in cometary NH3, we determine the 14N/15N ratios in NH3 for more than ten comets individually which include not only Oort cloud comets but also short period comets by using the high-resolution optical spectra of NH2. These spectra were obtained with both the UVES mounted on the VLT in Chile and the HDS on the Subaru Telescope in Hawaii.The derived 14N/15N ratios in NH3 for more than ten comets show high 15N-enrichment compared with the elemental abundances of nitrogen in the Sun by about factor of ~3 and has no large diversity depending on

  20. Balloonlike Shields Against Fast Projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    1993-01-01

    Report proposes use of flexible gas-filled or liquid-filled pouches to shield spacecraft against impacts by small meteoroids and orbiting debris traveling at speeds approximately greater than 2 km/s. Shields made in various forms reminiscent of balloons, pillows, air mattresses, or sealed-air-bubble packing material. Serve as lightweight, easily installed alternatives to heavier, rigid shields made of space aluminum sheets custom-designed and attached to spacecraft only with great difficulty and expense.

  1. Balloonlike Shields Against Fast Projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    1993-01-01

    Report proposes use of flexible gas-filled or liquid-filled pouches to shield spacecraft against impacts by small meteoroids and orbiting debris traveling at speeds approximately greater than 2 km/s. Shields made in various forms reminiscent of balloons, pillows, air mattresses, or sealed-air-bubble packing material. Serve as lightweight, easily installed alternatives to heavier, rigid shields made of space aluminum sheets custom-designed and attached to spacecraft only with great difficulty and expense.

  2. Desert Shield/Storm Logistics

    DTIC Science & Technology

    1993-04-15

    Wc This document may not be retee for open publiarion until it has bm deaed by the Vproprnite military service or gmeanen agency. DESERT SHIELD /STORM...capture what had occurred during Operations DESERT SHIELD and STORM, the commanders of the Division Support Command of the 24th Infantry Division...Mechanized) held a ful. day of discussion centering on what occurted during Operation DESERT STORM and its preceding operation, DESERT SHIELD . The entire

  3. Watching a disappearing shield

    SciTech Connect

    Stolarski, R.S.

    1988-10-01

    The remote-sensing techniques used to monitor atmospheric ozone levels are reviewed, and recent results are discussed. The importance of the ozone layer as a shield for UV radiation is stressed, and the impact of human activities generating ozone-destroying compounds is considered. Ground-based, airborne, balloon-borne, and satellite remote-sensing methods are shown to complement each other to provide both global coverage and detailed structural information. Data obtained with the Nimbus-7 TOMS and solar-backscatter UV instruments are presented in graphs and briefly characterized.

  4. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  5. Orion Heat Shield Testing

    NASA Image and Video Library

    2015-05-28

    THE ORION HEAT SHIELD, WHICH WAS AT NASA’S MARSHALL SPACE FLIGHT CENTER FROM MARCH-MAY 2015 FOR ENGINEERING AND ANALYSIS, IS READIED FOR DEPARTURE AT THE END OF ITS STAY. THE HEAT SHIELD’S ABLATED SURFACE MATERIAL WAS REMOVED AT MARSHALL FOR ANALYSIS, USING THE CENTER’S STATE-OF-THE-ART SEVEN-AXIS MILLING MACHINE. IT NEXT WILL GO TO NASA’S LANGLEY RESEARCH CENTER FOR WATER-IMPACT TESTING. NASA’S JOHNSON SPACE CENTER LEADS THE ORION PROGRAM FOR NASA.

  6. Orion Heat Shield Testing

    NASA Image and Video Library

    2015-05-26

    THE ORION HEAT SHIELD, WHICH WAS AT NASA’S MARSHALL SPACE FLIGHT CENTER FROM MARCH-MAY 2015 FOR ENGINEERING AND ANALYSIS, IS READIED FOR DEPARTURE AT THE END OF ITS STAY. THE HEAT SHIELD’S ABLATED SURFACE MATERIAL WAS REMOVED AT MARSHALL FOR ANALYSIS, USING THE CENTER’S STATE-OF-THE-ART SEVEN-AXIS MILLING MACHINE. IT NEXT WILL GO TO NASA’S LANGLEY RESEARCH CENTER FOR WATER-IMPACT TESTING. NASA’S JOHNSON SPACE CENTER LEADS THE ORION PROGRAM FOR NASA.

  7. The 15N isotope to evaluate fertilizer nitrogen absorption efficiency by the coffee plant.

    PubMed

    Fenilli, Tatiele A B; Reichart, Klaus; Bacchi, Osny O S; Trivelin, Paulo C O; Dourado-Neto, Durval

    2007-12-01

    The use of the 15N label for agronomic research involving nitrogen (N) cycling and the fate of fertilizer-N is well established, however, in the case of long term experimentation with perennial crops like citrus, coffee and rubber tree, there are still shortcomings mainly due to large plant size, sampling procedures, detection levels and interferences on the system. This report tries to contribute methodologically to the design and development of 15N labeled fertilizer experiments, using as an example a coffee crop fertilized with 15N labeled ammonium sulfate, which was followed for two years. The N of the plant derived from the fertilizer was studied in the different parts of the coffee plant in order to evaluate its distribution within the plant and the agronomic efficiency of the fertilizer application practice. An enrichment of the fertilizer-N of the order of 2% 15N abundance was sufficient to study N absorption rates and to establish fertilizer-N balances after one and two years of coffee cropping. The main source of errors in the estimated values lies in the inherent variability among field replicates and not in the measurements of N contents and 15N enrichments of plant material by mass-spectrometry.

  8. Rivermouth Alteration of Agricultural Impacts on Consumer Tissue δ15N

    PubMed Central

    Larson, James H.; Richardson, William B.; Vallazza, Jon M.; Nelson, John C.

    2013-01-01

    Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ15N. In a previous study, this terrestrial-consumer tissue δ15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the ‘rivermouth effect’). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models. PMID:23935980

  9. Rivermouth alteration of agricultural impacts on consumer tissue δ(15)N.

    PubMed

    Larson, James H; Richardson, William B; Vallazza, Jon M; Nelson, John C

    2013-01-01

    Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ(15)N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15)N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15)N. In a previous study, this terrestrial-consumer tissue δ(15)N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15)N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.

  10. Stem injection of 15N-NH4NO3 into mature Sitka spruce (Picea sitchensis).

    PubMed

    Nair, Richard; Weatherall, Andrew; Perks, Mike; Mencuccini, Maurizio

    2014-10-01

    Stem injection techniques can be used to introduce (15)N into trees to overcome a low variation in natural abundance and label biomass with a distinct (15)N signature, but have tended to target small and young trees, of a variety of species, with little replication. We injected 98 atom% (15)N ammonium nitrate (NH4NO3) solution into 13 mature, 9- to 13-m tall edge-profile Sitka spruce trees in order to produce a large quantity of labelled litter, examining the distribution of the isotope throughout the canopy after felling in terms of both total abundance of (15)N and relative distribution of the isotope throughout individual trees. Using a simple mass balance of the canopy alone, based on observed total needle biomass and modelled branch biomass, all of the isotope injected was accounted for, evenly split between needles and branches, but with a high degree of variability both within individual trees, and among trees. Both (15)N abundance and relative within-canopy distribution were biased towards the upper and middle crown in foliage. Recovery of the label in branches was much more variable than in needles, possibly due to differences in nitrogen allocation for both growth and storage, which differ seasonally between foliage and woody biomass.

  11. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs.

    PubMed

    Kaldy, James

    2011-08-01

    Green macroalgae bioassays were used to determine if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in a small harbor. Opportunistic green macroalgae (Ulva spp.) were collected, cultured under nutrient depleted conditions and characterized with regard to N content and δ15N. Samples of algae were used in controlled incubations to evaluate the direction of isotope shift from exposure to CSWWE. Algae samples exposed to CSWWE exhibited an increase of 1-2.5‰ in δ15N values indicating that the CSWWE had an enriched isotope signature. In contrast, algae samples exposed to field conditions exhibited a significant decrease in the observed δ15N indicating that a light N source was used. Isotopically light, riverine nitrogen derived from N2-fixing trees in the watershed may be a N source utilized by algae. These experiments indicate that the δ15N CSWWE signature was not detectable under the CSWWE loading conditions of this experiment.

  12. Rivermouth alteration of agricultural impacts on consumer tissue δ15N

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.

    2013-01-01

    Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ15N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ15N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ15N. In a previous study, this terrestrial-consumer tissue δ15N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the ‘rivermouth effect’). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ15N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.

  13. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  14. EXAMPLES OF RADIATION SHIELDING MODELS

    SciTech Connect

    Willison, J

    2006-07-27

    The attached pictures are examples of shielding models used by WSMS. The models were used in shielding evaluations for Tank 50 pump replacement. They show the relative location of shielding to radiation sources for pumps and pipes. None of the calculations that were associated with these models involved UCNI. The last page contains two pictures from a shielding calculation for the saltstone area. The upper picture is a conceptual drawing. The lower picture is an image copied from the website of a supplier for the project.

  15. Fast and simultaneous determination of (1) H-(1) H and (1) H-(19) F scalar couplings in complex spin systems: Application of PSYCHE homonuclear broadband decoupling.

    PubMed

    Kakita, Veera Mohana Rao; Rachineni, Kavitha; Hosur, Ramakrishna V

    2017-07-21

    The present manuscript focuses on fast and simultaneous determination of (1) H-(1) H and (1) H-(19) F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses (1) H-(1) H scalar couplings; however, it retains (1) H-(19) F scalar couplings (along F1 dimension) for the (19) F coupled protons while preserving the pure-shift nature for (1) H resonances uncoupled to (19) F. In such cases, along the direct dimensions, (1) H-(1) H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the (19) F coupled protons, which facilitates unambiguous discrimination of (19) F coupled (1) H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  17. The position dependent 15N enrichment of nitrous oxide in the stratosphere.

    PubMed

    Röckmann, T; Kaiser, J; Brenninkmeijer, C A; Brand, W A; Borchers, R; Crowley, J N; Wollenhaupt, M; Crutzen, P J

    2001-01-01

    The position dependent 15N fractionation of nitrous oxide (N2O), which cannot be obtained from mass spectrometric analysis on molecular N2O itself, can be determined with high precision using isotope ratio mass spectrometry on the NO+ fragment that is formed on electron impact in the source of an isotope ratio mass spectrometer. Laboratory UV photolysis experiments show that strong position dependent 15N fractionations occur in the photolysis of N2O in the stratosphere, its major atmospheric sink. Measurements on the isotopic composition of stratospheric N2O indeed confirm the presence of strong isotope enrichments, in particular the difference in the fractionation constants for 15N14NO and 14N15NO. The absolute magnitudes of the fractionation constants found in the stratosphere are much smaller, however, than those found in the lab experiments, demonstrating the importance of dynamical and also additional chemical processes like the reaction of N2O with O(1D).

  18. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  19. PBF Cubicle 13. Shield wall details illustrate shielding technique of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cubicle 13. Shield wall details illustrate shielding technique of stepped penetrations and brick layout scheme for valve stem extension sleeve. Aerojet Nuclear Company. Date: May 1976. INEEL index no. 761-0620-00-400-195280 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  20. A Large Volume Double Channel 1H-X RF Probe for Hyperpolarized Magnetic Resonance at 0.0475 Tesla

    PubMed Central

    Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2012-01-01

    In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 μs 13C excitation pulses at 5.3 Watts, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3. PMID:22706029

  1. Nitrate reductase 15N discrimination in Arabidopsis thaliana, Zea mays, Aspergillus niger, Pichea angusta, and Escherichia coli

    PubMed Central

    Carlisle, Eli; Yarnes, Chris; Toney, Michael D.; Bloom, Arnold J.

    2014-01-01

    Stable 15N isotopes have been used to examine movement of nitrogen (N) through various pools of the global N cycle. A central reaction in the cycle involves the reduction of nitrate (NO−3) to nitrite (NO−2) catalyzed by nitrate reductase (NR). Discrimination against 15N by NR is a major determinant of isotopic differences among N pools. Here, we measured in vitro 15N discrimination by several NRs purified from plants, fungi, and a bacterium to determine the intrinsic 15N discrimination by the enzyme and to evaluate the validity of measurements made using 15N-enriched NO−3. Observed NR isotope discrimination ranged from 22 to 32‰ (kinetic isotope effects of 1.022–1.032) among the different isozymes at natural abundance 15N (0.37%). As the fractional 15N content of substrate NO−3 increased from natural abundance, the product 15N fraction deviated significantly from that expected based on substrate enrichment and 15N discrimination measured at natural abundance. Additionally, isotopic discrimination by denitrifying bacteria used to reduce NO−3 and NO−2 in some protocols became a greater source of error as 15N enrichment increased. We briefly discuss potential causes of the experimental artifacts with enriched 15N and recommend against the use of highly enriched 15N tracers to study N discrimination in plants or soils. PMID:25071800

  2. Crystalline 1H-1,2,3-triazol-5-ylidenes

    SciTech Connect

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  3. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    PubMed

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  4. Drip Shield Emplacement Gantry Concept

    SciTech Connect

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  5. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  6. Reactions, characterization and uptake of ammoxidized kraft lignin labeled with 15N.

    PubMed

    Ramírez, F; Varela, G; Delgado, E; López-Dellamary, F; Zúñiga, V; González, V; Faix, O; Meier, D

    2007-05-01

    Ammoxidation of kraft lignin was carried out in a Parr reactor using (15)NH(3) as the main nitrogen source. Reaction parameters were set up until a total nitrogen content of approximately 13 wt.% in lignin was achieved, in accordance with conditions of previous studies. Analytical tools such as FTIR, Py-GC/MS, and solid state NMR were used in this research. The nature of nitrogen bondings is discussed. The incorporation of the (15)N from ammoxidized lignin was followed in pumpkins (Zucchini cucurbita pepo L.) by means of (15)N emission spectroscopy.

  7. Calculation of Dental Exam Room X-Ray Shielding in Walls and Entrances

    DTIC Science & Technology

    2012-08-24

    currently uses 5/16 in drywall on all walls. No specialty shielding products (e.g., lead) are currently being used on any walls. f. The window and...needed for Q (Eq. 2). This calculation assumes the use of a 100-kVp beam. (3) With the use of 5/16 in drywall , no radiation shielding properties are...the doonl’ilay entry t o the room. Both sides of the room contain offices1 single sheet of 5/15n drywall on each side of each \\!Vall to combine

  8. The Continuing Search for the Location of 15N-Enriched Nitrogen in ACFER 182

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Pillinger, C. T.; Arden, J. W.

    1992-07-01

    Acfer 182 is an unusual chondrite, with abundant small chondrules and CAIs (mean diameter ca. 100 micrometers), and rich in metal (ca. 15 vol%). It is closely related to ALH 85085, and, like that meteorite, is highly enriched in ^15N (bulk delta^15N ca. +600o/oo; delta^15N(sub)max = +1584o/oo at 900 degrees C; ref. 1). Stepped combustion of Acfer 182 (see figure) releases ^15N over a wide temperature range, indicating that its carriers must be dispersed throughout the meteorite, possibly occurring in carbonaceous material, fine-grained matrix, clasts, and metal. The highest relative abundance of ^15N is found in phase "N(sub)C", so far unidentified mineralogically, with a C/N ca. 10, which releases its nitrogen on combustion of the whole rock at 850-950 degrees C. N(sub)C is more apparent in Acfer 182 than ALH 85085, accounting for ca. 8 ppm of the total nitrogen inventory of 85.4 ppm. An attempt to isolate NC by physical means proved unsuccessful [1], therefore chemical treatments were tried: an HF/HCl-resistant residue was prepared from 9 g of fragments. Examination of the remaining material confirmed that it was dominantly composed of Mg-Al spinels, chromite, hibonite, and Cr-rich sulphides. Approximately two thirds of the original amount of nitrogen in the sample has been lost on dissolution (see figure), including any associated with Fe-Ni metal. There has been a reduction of over 50% of the nitrogen that was released up to 500 degrees C and presumed present in a carbonaceous component, without significant change in delta^15N value or C/N ratio. The most visible difference between results from the whole-rock and HF/HCl-resistant residue is that the combustion temperature of NC has decreased to 550-700 degrees C, with a concomitant drop in delta^15N from +1584o/oo to +1274o/oo It is unlikely that a minor (even heavier) sub-fraction of the ^15N-rich material has been removed; now that N(sub)C combusts at a temperature closer to the more abundant "organic

  9. Reflective Shields for Artificial Satellites

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1986-01-01

    Report proposes reflective shield that protects spacecraft from radiant energy. Also gives some protection against particle beams and cosmic rays. Conceptual shield essentially advanced version of decorative multifaceted mirror balls often hung over dance floors. Mirror facets disperse radiant energy in many directions.

  10. Reflective Shields for Artificial Satellites

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1986-01-01

    Report proposes reflective shield that protects spacecraft from radiant energy. Also gives some protection against particle beams and cosmic rays. Conceptual shield essentially advanced version of decorative multifaceted mirror balls often hung over dance floors. Mirror facets disperse radiant energy in many directions.

  11. Radiation Shielding Optimization on Mars

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  12. Determination of the mutual orientation of the 15N and 13C NMR chemical shift tensors of 13- 15N double labeled model peptides for silk fibroin from the dipolar-coupled powder patterns

    NASA Astrophysics Data System (ADS)

    Asakura, Tetsuo; Yamazaki, Yasunobu; Seng, Koo Wey; Demura, Makoto

    1998-05-01

    The 15N and 13C chemical shift tensors, and the orientation of the principal axis system relative to the molecular symmetry axes were determined for 15N and 13C carbonyl carbon sites of 13C 15N double labeled model peptides for Bombyx mori silk fibroin, that is, Boc-[1- 13C]Ala[ 15N]Gly-OMe, Boc-[1- 13C]Ala[ 15N]GlyAlaGly-OPac, Boc-AlaGly[1- 13C]Ala[ 15N]GlyAlaGly-OPac, Boc-[1- 13C]Gly[ 15N]AlaGlyAla-OPac, Boc-GlyAla[1- 13C]Gly[ 15N]AlaGlyAla-OPac and Boc-[1- 13C]Gly[ 15N]ValGlyAla-OPac, where Boc is t-butoxycarbonyl, OMe is methyl ester, OPac is phenacyl ester, Ala is alanine, Gly is glycine and Val is valine. From the comparisons of the 15N chemical shift tensors and the orientations of the principal axis system relative to the molecular symmetry axes among three compounds having [1- 13C]Ala[ 15N]Gly units, it is concluded that the intermolecular interactions such as hydrogen bonding are different between Boc-[1- 13C]Ala[ 15N]Gly-OMe and two compounds, Boc-[1- 13C]Ala[ 15N]GlyAlaGly-OPac and Boc-AlaGly[1- 13C]Ala[ 15N]GlyAlaGly-OPac although the latter two compounds have similar structures. A similar conclusion has also been obtained from the 13C chemical shift tensors of these compounds.

  13. Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry.

    PubMed

    Martin, Sarah F; Munagapati, Vijaya S; Salvo-Chirnside, Eliane; Kerr, Lorraine E; Le Bihan, Thierry

    2012-01-01

    Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.

  14. Portable convertible blast effects shield

    SciTech Connect

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2010-10-26

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  15. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A

    2007-05-22

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

  16. Charge shielding in magnetized plasmas

    SciTech Connect

    Wang Shaojie; Stroth, Ulrich; Van Oost, Guido

    2010-11-15

    The shielding of a charge sheet in a magnetized plasma is investigated by taking account of the diamagnetic drift start-up current in addition to the polarization current. For a charge sheet with an infinitesimal width, the shielding is the same as the conventional Debye shielding if the charge sheet is perpendicular to the magnetic field; the shielding length is {radical}(2) times larger than the conventional one if the charge sheet is parallel to the magnetic field. When the scale length of the charge sheet is comparable or smaller than the ion Larmor radius, the electric field is significantly enhanced within the charge sheet, while far away from the charge sheet, the electric field is shielded to the usual 1/{epsilon}{sub r} level (where {epsilon}{sub r} is the diamagnetic coefficient of the magnetized plasma).

  17. Lunar Surface Reactor Shielding Study

    NASA Technical Reports Server (NTRS)

    King, Shawn; Lipinksi, Ronald; McAlpine, William

    2006-01-01

    Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.

  18. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  19. Lunar Surface Reactor Shielding Study

    NASA Technical Reports Server (NTRS)

    King, Shawn; Lipinksi, Ronald; McAlpine, William

    2006-01-01

    Nuclear reactor system could provide power to support a long term human exploration to the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor (GCR) system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency (Wright, 2003). The goals of the shielding studies were to provide optimal material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX code, a Monte Carlo transport code.

  20. Portable convertible blast effects shield

    DOEpatents

    Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler, Lisle B.; Kokko, Edwin; Switzer, Vernon A.

    2011-03-15

    A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

  1. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  2. Silica heat shield sizing

    NASA Technical Reports Server (NTRS)

    Ebbesmeyer, L. H.; Christensen, H. E.

    1975-01-01

    The sensitivity of silica heat shield requirements to gap width, tile edge radius, and heat transfer distribution within tile gaps was investigated. A two-dimensional thermal model was modified and used to determine the effect of two dimensional heat transfer distributions at high temperature reusable surface insulation edges on shuttle thermal protection system (TPS) requirements. The sensitivity of TPS requirements to coating thickness, emissivity, substructure thickness, and changes in gap heating for several locations on shuttle was also studied. An inverse solution technique was applied to temperature data obtained in the Ames 20 MW turbulent duct in order to examine the effect of tile edge radius on TPS requirements. The derived heating values were then used to predict TPS requirements. Results show that increasing tile radius reduces TPS requirements.

  3. Rocket nozzle shield

    NASA Astrophysics Data System (ADS)

    Vollersen, Carl A.; Anderson, Thomas W.; Brown, Wayne M.; Pratt, Lozelle L.

    1991-12-01

    A shield for the nozzle of an underwater launched missile can be formed from a rigid plate. The plate is separated from the end of the nozzle by a gap that is at least equal to the throat area of the nozzle. The gap reduces overpressure of the missile during launch while keeping water out of the nozzle by being directed perpendicular to the water flow direction. Important advantages of the invention are its simplicity and low cost. A further advantage is its strength and the ability to absorb a blow from a water jar. Another advantage is the ability to block the flow of water from behind the rocket without blocking the flow of gas.

  4. Delta15N of soil N and plants in a N-saturated, subtropical forest of southern China.

    PubMed

    Koba, K; Isobe, K; Takebayashi, Y; Fang, Y T; Sasaki, Y; Saito, W; Yoh, M; Mo, J; Liu, L; Lu, X; Zhang, T; Zhang, W; Senoo, K

    2010-09-15

    We investigated the delta(15)N profile of N (extractable NH(4)(+), NO(3)(-), and organic N (EON)) in the soil of a N-saturated subtropical forest. The order of delta(15)N in the soil was EON > NH(4)(+) > NO(3)(-). Although the delta(15)N of EON had been expected to be similar to that of bulk soil N, it was higher than that of bulk soil N by 5 per thousand. The difference in delta(15)N between bulk soil N and EON (Delta(15)N(bulk-EON)) was correlated significantly with the soil C/N ratio. This correlation implies that carbon availability, which determines the balance between N assimilation and dissimilation of soil microbes, is responsible for the high delta(15)N of EON, as in the case of soil microbial biomass delta(15)N. A thorough delta(15)N survey of available N (NH(4)(+), NO(3)(-), and EON) in the soil profiles from the organic layer to 100 cm depth revealed that the delta(15)N of the available N forms did not fully overlap with the delta(15)N of plants. This mismatch in delta(15)N between that of available N and that of plants reflects apparent isotopic fractionation during N uptake by plants, emphasizing the high N availability in this N-saturated forest. Copyright 2010 John Wiley & Sons, Ltd.

  5. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  6. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, E. S.; Adande, G.; Milam, S. N.; Charnley, S. B.; Cordiner, M. A.

    2016-10-01

    We briefly review what is currently known of 14N/15N ratios in interstellar molecules. We summarize the fractionation ratios measured in HCN, HNC, CN, N2 and NH3, and compare these to theoretical predictions and to the isotopic inventory of cometary volatiles.

  7. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  8. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  9. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    NASA Astrophysics Data System (ADS)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  10. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  11. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Treesearch

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  12. Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment

    Treesearch

    Erik A. Hobbie; Linda T.A. van Diepen; Erik A. Lilleskov; Andrew P. Oiumette; Adrien C. Finzi; Kirsten S. Hofmockel

    2014-01-01

    We used natural and tracer nitrogen (N) isotopes in a Pinus taeda free air CO2 enrichment (FACE) experiment to investigate functioning of ectomycorrhizal and saprotrophic fungi in N cycling. Fungal sporocarps were sampled in 2004 (natural abundance and 15N tracer) and 2010 (tracer) and δ15...

  13. Regional assessment of N saturation using foliar and root δ15N

    Treesearch

    L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel

    2006-01-01

    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ

  14. Tracing Nitrogen through Landscapes to Coastal Wetlands using d15N of Larval Fish

    EPA Science Inventory

    Our objective was to evaluate the use of the nitrogen stable isotope value (d15N) of larval fish as an indicator of incipient anthropogenic nitrogen loading to coastal wetlands in the Great Lakes. We sampled coastal wetlands in five Lake Superior south shore tributaries that had ...

  15. Cold brittleness of corrosion-resistant maraging steel 08Kh15N5D2T

    NASA Astrophysics Data System (ADS)

    Makhneva, T. M.

    2012-03-01

    Results of a study of the effect of the method of remelting and of heat treatment modes on the behavior of serial curves of impact toughness and on the position of cold-shortness threshold in steel 08Kh15N5D2T are presented.

  16. Measuring and Modeling Highly Accurate (15) N Chemical Shift Tensors in a Peptide.

    PubMed

    Soss, Sarah E; Flynn, Peter F; Iuliucci, Robbie J; Young, Robert P; Mueller, Leonard J; Hartman, Joshua; Beran, Gregory J O; Harper, James K

    2017-08-18

    NMR studies measuring chemical shift tensors are increasingly being employed to assign structure in difficult-to-crystallize solids. For small organic molecules, such studies usually focus on (13) C sites, but proteins and peptides are more commonly described using (15) N amide sites. An important and often neglected consideration when measuring shift tensors is the evaluation of their accuracy against benchmark standards, where available. Here we measure (15) N tensors in the dipeptide glycylglycine at natural abundance using the slow-spinning FIREMAT method with SPINAL-64 decoupling. The accuracy of these (15) N tensors is evaluated by comparing to benchmark single crystal NMR (15) N measurements and found to be statistically indistinguishable. These FIREMAT experimental results are further used to evaluate the accuracy of theoretical predictions of tensors from four different density functional theory (DFT) methods that include lattice effects. The best theoretical approach provides a root mean square (rms) difference of ±3.9 ppm and is obtained from a fragment-based method and the PBE0 density functional. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Relationships between salmon abundance and tree-ring δ 15N: three objective tests

    Treesearch

    D.C. Drake; Paul J. Sheppard; Robert J. Naiman

    2011-01-01

    Quantification of a relationship between salmon escapement in rivers and riparian tree-ring δ 15N could allow reconstruction of prehistorical salmon abundance. Unfortunately, attempts to quantify this link have met with little success. We examined the feasibility of the approach using natural abundance of δ 15...

  18. (15)N natural abundance of non-fixing woody species in the Brazilian dry forest (caatinga).

    PubMed

    de Freitas, Ana Dolores Santiago; de Sa Barretto Sampaio, Everardo Valadares; Menezes, Romulo Simoes Cezar; Tiessen, Holm

    2010-06-01

    Foliar delta(15)N values are useful to calculate N(2) fixation and N losses from ecosystems. However, a definite pattern among vegetation types is not recognised and few data are available for semi-arid areas. We sampled four sites in the Brazilian caatinga, along a water availability gradient. Sites with lower annual rainfall (700 mm) but more uniform distribution (six months) had delta(15)N values of 9.4 and 10.1 per thousand, among the highest already reported, and significantly greater than those (6.5 and 6.3 per thousand) of sites with higher rainfall (800 mm) but less uniform distribution (three months). There were no significant differences at each site among species or between non-fixing legume and non-legume species, in spite of the higher N content of the first group. Therefore, they constitute ideal reference plants in estimations of legume N(2) fixation. The higher values could result from higher losses of (15)N depleted gases or lower losses of enriched (15)N material.

  19. Production of 15N-labeled α-amanitin in Galerina marginata

    PubMed Central

    DuBois, Brandon; Sgambelluri, R. Michael; Angelos, Evan R.; Li, Xuan; Holmes, Daniel

    2015-01-01

    α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes directly from A. phalloides, the death cap mushroom, which is collected from its natural habitat. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprobic mushroom that grows and produces α-amanitin in culture, we describe a method for producing 15N-labeled α-amanitin using growth media containing 15N as sole nitrogen source. A key to success was preparing 15N-enriched yeast extract via a novel method designated “glass bead-assisted maturation.” In the presence of the labeled yeast extract and 15N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR. PMID:26100667

  20. Production of (15)N-labeled α-amanitin in Galerina marginata.

    PubMed

    Luo, Hong; DuBois, Brandon; Sgambelluri, R Michael; Angelos, Evan R; Li, Xuan; Holmes, Daniel; Walton, Jonathan D

    2015-09-01

    α-Amanitin is the major causal constituent of deadly Amanita mushrooms that account for the majority of fatal mushroom poisonings worldwide. It is also an important biochemical tool for the study of its target, RNA polymerase II. The commercial supply of this bicyclic peptide comes from Amanita phalloides, the death cap mushroom, which is collected from the wild. Isotopically labeled amanitin could be useful for clinical and forensic applications, but α-amanitin has not been chemically synthesized and A. phalloides cannot be cultured on artificial medium. Using Galerina marginata, an unrelated saprotrophic mushroom that grows and produces α-amanitin in culture, we describe a method for producing (15)N-labeled α-amanitin using growth media containing (15)N as sole nitrogen source. A key to success was preparing (15)N-enriched yeast extract via a novel method designated "glass bead-assisted maturation." In the presence of the labeled yeast extract and (15)N-NH4Cl, α-amanitin was produced with >97% isotope enrichment. The labeled product was confirmed by HPLC, high-resolution mass spectrometry, and NMR.

  1. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  2. Application of 15N-enrichment methodologies to estimate nitrogen fixation in Casuarina equisetifolia

    Treesearch

    John A. Parrotta; Dwight D. Baker; Maurice Fried

    1994-01-01

    The 15N-enrichment technique for estimating biological nitrogen fixation in Casuarina equisetifolia J.R. & G. Forst. was evaluated under field conditions in single-species and mixed-species plantings (with a nonfixing reference species, Eucalyptus X robusta J.E. Smith) between...

  3. Estimation of nitrogen fixation in Leucaena leucocephala using 15N-enrichment methodologies

    Treesearch

    John A. Parrotta; Dwight D. Baker; Maurice Fried

    1994-01-01

    An estimation of biological nitrogen fixation by Leucaena leucocephala (Lam.) de Wit in monoculture and mixed-species plantations (with Casuarina equisetifolia L. ex J.R. & G. Forst., and Eucalyptus robusta Sm.) was undertaken over a two-year period in Puerto Rico using the 15N-enrichment...

  4. {sup 15}N(p,{alpha}{sub 0}){sup 12}C S factor

    SciTech Connect

    Barker, F. C.

    2008-10-15

    Experimental values of the astrophysical S factor for the {sup 15}N(p,{alpha}{sub 0}){sup 12}C reaction are available both from direct measurements and from the Trojan horse method. We here use R-matrix formulas to fit these values and to extrapolate to zero energy to obtain values of S(0)

  5. Using a Macroalgal δ15N Bioassay to Detect Cruise Ship Waste Water Effluent Inputs

    EPA Science Inventory

    Nitrogen stable isotopes are a powerful tool for tracking sources of N to marine ecosystems. I used green macroalgae as a bioassay organism to evaluate if the δ15N signature of cruise ship waste water effluent (CSWWE) could be detected in Skagway Harbor, AK. Opportunistic green...

  6. Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1974-01-01

    The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.

  7. Nitrogen turnover of three different agricultural soils determined by 15N triple labelling

    NASA Astrophysics Data System (ADS)

    Fiedler, Sebastian R.; Kleineidam, Kristina; Strasilla, Nicol; Schlüter, Steffen; Reent Köster, Jan; Well, Reinhard; Müller, Christoph; Wrage-Mönnig, Nicole

    2017-04-01

    To meet the demand for data to improve existing N turnover models and to evaluate the effect of different soil physical properties on gross nitrogen (N) transformation rates, we investigated two arable soils and a grassland soil after addition of ammonium nitrate (NH4NO3), where either ammonium (NH4+), or nitrate (NO3-), or both pools have been labelled with 15N at 60 atom% excess (triple 15N tracing method). Besides NH4+, NO3- and nitrite (NO2-) contents with their respective 15N enrichment, nitrous oxide (N2O) and dinitrogen (N2) fluxes have been determined. Each soil was adjusted to 60 % of maximum water holding capacity and pre-incubated at 20˚ C for two weeks. After application of the differently labelled N fertilizer, the soils were further incubated at 20˚ C under aerobic conditions in a He-N2-O2 atmosphere (21 % O2, 76 He, 2% N2) to increase the sensitivity of N2 rates via the 15N gas flux method. Over a 2 week period soil N pools were quantified by 2 M KCl extraction (adjusted to pH 7 to prevent nitrite losses) (Stevens and Laughlin, 1995) and N gas fluxes were measured by gas chromatography in combination with IRMS. Here, we present the pool sizes and fluxes as well as the 15N enrichments during the study. Results are discussed in light of the soil differences that were responsible for the difference in gross N dynamics quantified by the 15N tracing model Ntrace (Müller et al., 2007). References Müller, C., T. Rütting, J. Kattge, R.J. Laughlin, and R.J. Stevens, (2007) Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology & Biochemistry. 39(3): p. 715-726. Stevens, R.J. and R.J. Laughlin, (1995) Nitrite transformations during soil extraction with potassium chloride. Soil Science Society of America Journal. 59(3): p. 933-938.

  8. Vertical δ13C and δ15N changes during pedogenesis

    NASA Astrophysics Data System (ADS)

    Brunn, Melanie; Spielvogel, Sandra; Wells, Andrew; Condron, Leo; Oelmann, Yvonne

    2015-04-01

    The natural abundance of soil organic matter (SOM) stable C and N isotope ratios are subjected to vertical changes throughout the soil profile. This vertical distribution is a widely reported phenomenon across varieties of ecosystems and constitutes important insights of soil carbon cycling. In most ecosystems, SOM becomes enriched in heavy isotopes by several per mill in the first few centimeters of the topsoil. The enrichment of 13C in SOM with soil depth is attributed to biological and physical-chemical processes in soil e.g., plant physiological impacts, microbial decomposition, sorption and transport processes. Such vertical trends in 13C and 15N abundance have rarely been related to SOM composition during pedogenesis. The aims of our study were to investigate short and long-term δ13C and δ15N depth changes and their interrelations under progressing pedogenesis and ecosystem development. We sampled soils across the well studied fordune progradation Haast-chronosequence, a dune ridge system under super-humid climate at the West Coast of New Zealand's South Island (43° 53' S, 169° 3' E). Soils from 11 sites with five replicates each covered a time span of around 2870 yr of soil development (from Arenosol to Podzol). Vertical changes of δ13C and δ15N values of SOM were investigated in the organic layers and in 1-cm depth intervals of the upper 10 cm of the mineral soil. With increasing soil depth SOM became enriched in δ13C by 1.9 ± SE 0.1 o and in δ15N by 6.0 ± 0.4 ‰˙Litter δ13C values slightly decreased with increasing soil age (r = -0.61; p = 0.00) likely due to less efficient assimilation linked to nutrient limitations. Fractionation processes during mycorrhizal transfer appeared to affect δ15N values in the litter. We found a strong decrease of δ15N in the early succession stages ≤ 300 yr B.P. (r = -0.95; p = 0.00). Positive relations of vertical 13C and 15N enrichment with soil age might be related to decomposition and appeared to be

  9. In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics.

    PubMed

    Ippel, Johannes H; Pouvreau, Laurice; Kroef, Toos; Gruppen, Harry; Versteeg, Geurt; van den Putten, Peter; Struik, Paul C; van Mierlo, Carlo P M

    2004-01-01

    Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media. This method has several drawbacks. Here, we demonstrate that it is possible to fully label a plant with (15)N-isotopes. The advantage of in vivo labelling of higher organisms is that all constituting proteins are labelled and become available as functional, post-translationally modified, correctly folded proteins. A hydroponics set-up was used to create the first example of a uniformly (15)N-labelled (> 98%) plant species, the potato plant (Solanum tuberosum L., cv. Elkana). Two plants were grown at low costs using potassium-[(15)N]-nitrate as the sole nitrogen source. At harvest time, a total of 3.6 kg of potato tubers and 1.6 kg of foliage, stolons and roots were collected, all of which were fully (15)N-labelled. Gram quantities of soluble (15)N-labelled proteins (composed mainly of the glycoprotein patatin and Kunitz-type protease inhibitors) were isolated from the tubers. NMR results on the complete proteome of potato sap and on an isolated protease inhibitor illustrate the success of the labelling procedure. The presented method of isotope labelling is easily modified to label other plants. Its envisioned impact in the field of structural proteomics of plants is discussed.

  10. Do Low 15N Values in Paleozoic Epeiric Basins Indicate High Rates of N Fixation?

    NASA Astrophysics Data System (ADS)

    Tuite, M. L.; Macko, S. A.

    2011-12-01

    As a consequence of the high energetic requirements of dinitrogen (N2) fixation, organic N produced by diazotrophic microorganisms typically exhibits δ15N values similar to atmospheric N2 (approximately 0%). Because the δ15N of organic-rich Paleozoic epeiric basin sediments often has values in the vicinity of 0%, it is frequently asserted that N2 fixation was the primary source of new reactive N for productivity. There are two broad reasons why recourse to widespread and intensive N fixation as the primary source of the organic N is problematic. First, there are substantial physiological and ecological constraints on marine N fixation that limit its extent in modern oceans primarily to open ocean basins. Second, preservation of an unaltered isotopic signature of diazotrophy in underlying sediments is not a likely outcome of oxic and anoxic diagenetic alteration and repeated cycles of mineralization and assimilation. Constraining the sources of reactive N for primary productivity is critical to understanding the N cycle in Paleozoic epeiric seas. In this study we report δ15N values from high organic matter Middle Ordovician through Late Devonian dysoxic and euxinic basinal sediments. We propose a nitrogen isotope mass balance model that incorporates the microbial ecology of a stratified water column and the biochemical stoichiometry of primary production and organic matter diagenesis. Results from the model support our contention that high rates of N fixation over extended time periods were not the cause of depleted nitrogen isotope values in organic-rich Paleozoic basinal sediments. Rather, the depleted values were a consequence of a diminished role for nitrification and subsequent N loss via denitrification and anammox, and the preferential preservation of a substantially 15N-depleted chlorophyll-influenced lipid fraction. The model may be applicable to earlier and later geological periods where high organic matter sediments feature depleted δ15N values.

  11. Availability of 15N from pioneer herbaceous plants to pine seedlings in reclaimed burnt soils.

    PubMed

    González-Prieto, S J; Villar, M C; Carballas, T

    2008-09-01

    A pot experiment was used to assess N uptake by pine seedlings during 2 years on a burnt soil to which was added (15)N-labelled ryegrass, obtained from a (15)N-enriched sample of this soil after a fire. The nitrogen concentration in needles, stems and roots of seedlings decreased significantly from the first to the second growing period (from 2.55, 1.30 and 2.19% to 1.19, 0.47 and 1.00%, respectively), with needles accounting for 53-58% of the pine-N. At the end of the experiment, 98.87 +/- 1.12% of the added ryegrass-(15)N was recovered: two-thirds in the soil organic N pool and one-third in the pine seedlings. Therefore, the post-fire pulse of inorganic-N, which was successfully kept in the burnt soil-plant system through its uptake by the pioneer species, is available for trees in the medium term. Pine seedlings assimilated 16.4% and 16.9% of the added ryegrass-(15)N in the first and second year, respectively. This result contrasts with the usual yearly decrease of added N uptake by plants; a possible explanation is the transient increase of available N in burnt soils that would have modified the mineralization pattern of the (15)N-labelled phytomass. The pine-N derived from the ryegrass-N decreased from 4.05% in the first year to 2.53% in the second one, with 3.10% being the 2-year weighed average. In addition to the direct contribution of ryegrass to pine-N nutrition reflected by these figures, the rapid post-fire establishment of a herbaceous cover on the burnt soil also provides important indirect benefits for tree nutrition by reducing organic- and inorganic-N losses. Copyright (c) 2008 John Wiley & Sons, Ltd.

  12. [Characteristics of urea 15N absorption, allocation, and utilization by sweet-cherry (Prunus avium L.)].

    PubMed

    Zhao, Feng-Xia; Jiang, Yuan-Mao; Peng, Fu-Tian; Gao, Xiang-Bin; Liu, Bing-Hua; Wang, Hai-Yun; Zhao, Lin

    2008-03-01

    With five-year old 'Zaodaguo' sweet-cherry (Prunus avium L.) as test material, this paper studied the characteristics of its urea 15N absorption, allocation, and utilization when applied before bud-break. The results showed that the Ndff of different organs increased gradually with time, and was higher in fine roots and storage organs at full-blooming stage. At fruit core-hardening stage, the Ndff of long shoots and leaves increased quickly, reaching to 0.72% and 0.59% , respectively. From fruit core-hardening to harvesting stage, the Ndff of fruit had a rapid increase, with the peak (1.78%) at harvesting stage. After harvest, the Ndff of neonatal organs increased slowly while that of storage organs increased quickly. At full-blooming stage, the absorbed 15N in roots was firstly allocated to storage organs, with the highest allocation rate (54.91%) in large roots. At fruit core-hardening stage, the allocation rate in fine roots and storage organs decreased from 85.43% to 55.11%, while that in neonatal branches and leaves increased to 44.89%. At harvesting stage, the allocation rate in different organs had no significant change, but after harvest, the absorbed 15N had a rapid translocation to storage organs, and the allocation rate in fine roots and storage organs reached the highest (72.26%) at flower bud differentiation stage. The 15N allocation rate in neonatal branches and leaves at flower bud differentiation stage was decreased by 19.31%, compared with that at harvesting stage. From full-blooming to flower bud differentiation stage, the utilization rate of urea 15N was increasing, and reached the peak (16.86%) at flower bud differentiation stage.

  13. Compound-Specific δ15N Amino Acid Measurements in Littoral Mussels in the California Upwelling Ecosystem: A New Approach to Generating Baseline δ15N Isoscapes for Coastal Ecosystems

    PubMed Central

    Vokhshoori, Natasha L.; McCarthy, Matthew D.

    2014-01-01

    We explored δ15N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ15N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ15N values showed a strong linear trend with latitude, increasing from North to South (from ∼7‰ to ∼12‰, R2 = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ15N trend is therefore most consistent with a baseline δ15N gradient, likely due to the mixing of two source waters: low δ15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ15N values of phenylalanine (δ15NPhe), the best AA proxy for baseline δ15N values. We hypothesize δ15NPhe values in intertidal mussels can approximate annual integrated δ15N values of coastal phytoplankton primary production. We therefore used δ15NPhe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ15N values. We propose that δ15NPhe isoscapes derived from filter feeders can directly characterize baseline δ15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives. PMID:24887109

  14. Some properties of the sum C1(h, k)

    NASA Astrophysics Data System (ADS)

    Cetin, Elif

    2017-07-01

    In [10], we have investigated properties of the sum C1(h, k). In this paper, we will give some other arithmetic properties of the sum C1(h, k). Moreover, in the light of the sum B1(h, k), which has also defined in [10], we will give specific values of the sum C1(h, k) when h + k is an odd number. Finally, we will give a relation between the sum C1(h, k) and the Hardy-Berndt sum s5(h, k) for a special case.

  15. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  16. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  17. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  18. Lunar Surface Reactor Shielding Study

    SciTech Connect

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    2006-01-20

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate the mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.

  19. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.

    PubMed

    Olin, Jill A; Hussey, Nigel E; Grgicak-Mannion, Alice; Fritts, Mark W; Wintner, Sabine P; Fisk, Aaron T

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ(15)N diet-tissue discrimination factors (∆(15)N). As ∆(15)N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆(15)N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆(15)N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆(15)N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ(15)N dietary values). Overall, the most suitable species-specific ∆(15)N values decreased with increasing dietary-δ(15)N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆(15)N value was not supported for this speciose group of marine predatory fishes. For example, the ∆(15)N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ(15)N = 9‰) whereas a ∆(15)N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ(15)N = 15‰). These data corroborate the previously reported inverse ∆(15)N-dietary δ(15)N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆(15)N values that reflect the predators' δ(15)N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a

  20. Variable δ15N Diet-Tissue Discrimination Factors among Sharks: Implications for Trophic Position, Diet and Food Web Models

    PubMed Central

    Olin, Jill A.; Hussey, Nigel E.; Grgicak-Mannion, Alice; Fritts, Mark W.; Wintner, Sabine P.; Fisk, Aaron T.

    2013-01-01

    The application of stable isotopes to characterize the complexities of a species foraging behavior and trophic relationships is dependent on assumptions of δ15N diet-tissue discrimination factors (∆15N). As ∆15N values have been experimentally shown to vary amongst consumers, tissues and diet composition, resolving appropriate species-specific ∆15N values can be complex. Given the logistical and ethical challenges of controlled feeding experiments for determining ∆15N values for large and/or endangered species, our objective was to conduct an assessment of a range of reported ∆15N values that can hypothetically serve as surrogates for describing the predator-prey relationships of four shark species that feed on prey from different trophic levels (i.e., different mean δ15N dietary values). Overall, the most suitable species-specific ∆15N values decreased with increasing dietary-δ15N values based on stable isotope Bayesian ellipse overlap estimates of shark and the principal prey functional groups contributing to the diet determined from stomach content analyses. Thus, a single ∆15N value was not supported for this speciose group of marine predatory fishes. For example, the ∆15N value of 3.7‰ provided the highest percent overlap between prey and predator isotope ellipses for the bonnethead shark (mean diet δ15N = 9‰) whereas a ∆15N value < 2.3‰ provided the highest percent overlap between prey and predator isotope ellipses for the white shark (mean diet δ15N = 15‰). These data corroborate the previously reported inverse ∆15N-dietary δ15N relationship when both isotope ellipses of principal prey functional groups and the broader identified diet of each species were considered supporting the adoption of different ∆15N values that reflect the predators’ δ15N-dietary value. These findings are critical for refining the application of stable isotope modeling approaches as inferences regarding a species’ ecological role in their

  1. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  2. New Materials for EMI Shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  3. Flexible Cable Providing EMI Shielding

    DTIC Science & Technology

    1999-06-07

    shielding the electronic 25 equipment by enclosing it in shielded rooms and cabinets, filling 1 any gaps therein with conductive gaskets, and also by...are found in U.S. 15 Patent Nos. 4,948,922 and 4,93 7,128 which disclose conductive 16 elastic gaskets used to fill gaps between openings in shielded...matrix binder which is filled with 5 particles of a high permeability iron-based alloy. The 6 conductive property of the matrix binder provides

  4. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen T.; Sigman, Daniel M.; Cohen, Anne L.; Sinclair, Daniel J.; Sherrell, Robert M.; Cobb, Kim M.; Erler, Dirk V.; Stolarski, Jarosław; Kitahara, Marcelo V.; Ren, Haojia

    2016-05-01

    The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N inputs to reef environments. However, many coral reefs receive their primary N sources from the open ocean, and the CS-δ15N of these corals may provide information on past changes in the open ocean regional and global N cycle. Using a recently developed persulfate/denitrifier-based method, we measured CS-δ15N in modern shallow-water scleractinian corals from 8 sites proximal to the open ocean. At sites with low open ocean surface nitrate concentrations typical of the subtropics and tropics, measured CS-δ15N variation on seasonal and annual timescales is most often less than 2‰. In contrast, a broad range in CS-δ15N (of ∼10‰) is measured across these sites, with a strong correlation between CS-δ15N and the δ15N of the deep nitrate supply to the surface waters near the reefs. While CS-δ15N can be affected by other N sources as well and can vary in response to local reef conditions as well as coral/symbiont physiological changes, this survey indicates that, when considering corals proximal to the open ocean, the δ15N of the subsurface nitrate supply to surface waters drives most of the CS-δ15N variation across the global ocean. Thus, CS-δ15N is a promising proxy for reconstructing the open ocean N cycle in the past.

  5. Estimation of nitric oxide synthase activity via liquid chromatography/tandem mass spectrometric assay determination of 15N3 -citrulline in biological samples.

    PubMed

    Shin, Beom Soo; Fung, Ho-Leung; Upadhyay, Mahesh; Shin, Soyoung

    2015-03-15

    We showed that the metabolite peaks of (15)N(3) -citrulline ((15)N(3) -CIT) and (15)N(3) -arginine ((15)N(3) -ARG) could be detected when (15) N(4) -ARG was metabolized by nitric oxide synthase (NOS) in endothelial cells. The usefulness of these metabolites as potential surrogate indices of nitric oxide (NO) generation is evaluated. A hydrophilic-interaction liquid chromatography/electrospray tandem mass spectrometric assay (LC/MS/MS) was utilized for the simultaneous analysis of (15)N(4) -ARG, ARG, CIT, (15)N(3) -CIT and (15)N(3) -ARG. (15)N(3) -CIT and (15)N(3) -ARG from impurities of (15)N(4) -ARG were determined and corrected for the calculation of their concentration. (15)N(4) -ARG-derived NO, i.e., (15)NO formation was determined by analyzing (15)N-nitrite accumulation by another LC/MS/MS assay. After EA.hy926 human endothelial cells were challenged with (15)N(4) -ARG for 2 hours, the peak intensities of (15)N(3) -CIT and (15)N(3) -ARG significantly increased with (15)N(4) -ARG concentration and positively correlated with (15)N-nitrite production. The estimated Km values were independent of the metabolite (i.e., (15)N(3) -CIT, (15)N(3) -CIT+(15)N(3) -ARG or (15) N-nitrite) used for calculation. However, after correction for its presence as a chemical contaminant of (15)N(4) -ARG, (15)N(3) -ARG was only a marginal contributor for the estimation of NOS activity. These data suggest that the formation of (15)N(3) -CIT can be used as an indicator of NOS activity when (15)N(4) -ARG is used as a substrate. This approach may be superior to the radioactive (14)C-CIT method which can be contaminated by (14)C-urea, and to the (14)N-nitrite method which lacks sensitivity. Copyright © 2015 John Wiley & Sons, Ltd.

  6. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Irwin, P. G. J.; Mousis, O.; Sinclair, J. A.; Giles, R. S.

    2014-08-01

    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA’s Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues (15N/14N) can reveal insights into the molecular carrier (e.g., as N2 or NH3) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm-1) that were relatively clear of terrestrial atmospheric contamination and contained close features of 14NH3 and 15NH3, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter’s 15N/14N ratio (in the range from 1.4×10-3 to 2.5×10-3), which is consistent with both previous space-based studies and with the primordial value of the protosolar nebula. On Saturn, we present the first upper limit on the 15N/14N ratio of no larger than 2.0×10-3 for the 900-cm-1 channel and a less stringent requirement that the ratio be no larger than 2.8×10-3 for the 960-cm-1 channel (1σ confidence). Specifically, the data rule out strong 15N-enrichments such as those observed in Titan’s atmosphere and in cometary nitrogen compounds. To the extent possible with ground-based radiometric uncertainties, the saturnian and jovian 15N/14N ratios appear indistinguishable, implying that 15N-enriched ammonia ices could not have been a substantial contributor to the bulk nitrogen inventory of either planet. This result favours accretion of primordial N2 on both planets, either in the gas phase from the solar nebula, or as ices formed at very low temperatures. Finally, spatially-resolved TEXES observations are used to derive zonal contrasts in tropospheric temperatures, phosphine and 14NH3 on both

  7. Isotopic variability of cave bears (δ15N, δ13C) across Europe during MIS 3

    NASA Astrophysics Data System (ADS)

    Krajcarz, Magdalena; Pacher, Martina; Krajcarz, Maciej T.; Laughlan, Lana; Rabeder, Gernot; Sabol, Martin; Wojtal, Piotr; Bocherens, Hervé

    2016-01-01

    Collagen, the organic fraction of bone, records the isotopic parameters of consumed food for carbon (δ13C) and nitrogen (δ15N). This relationship of isotopic signature between diet and tissue is an important tool for the study of dietary preferences of modern and fossil animal species. Since the first information on the isotopic signature of cave bear was reported, numerous data from Europe have become available. The goal of this work is to track the geographical variation of cave bear collagen isotopic values in Europe during Marine Isotopic Stage 3 (about 60,000-25,000 yr BP). In this study the results of new δ13C and δ15N isotopic analyses of cave bear collagen from four Central-Eastern European sites are presented, as well as a review of all published isotopic data for cave bears of the same period. The main conclusion is a lack of geographical East-West pattern in the variations of δ13C and δ15N values of cave bear collagen. Moreover, no relationship was found between cave bear taxonomy and isotopic composition. The cave bears from Central-Eastern Europe exhibit δ13C and δ15N values near the average of the range of Central, Western and Southern European cave bears. Despite the fact that most cave bear sites follow an altitudinal gradient, separate groups of sites exhibit shift in absolute values of δ13C, what disturbs an altitude-related isotopic pattern. The most distinct groups are: high Alpine sites situated over 1500 m a.s.l. - in terms of δ13C; and two Romanian sites Peştera cu Oase and Urşilor - in case of δ15N. Although the cave bear isotopic signature is driven by altitude, the altitudinal adjustment of isotopic data is not enough to explain the isotopic dissimilarity of these cave bears. The unusually high δ15N signature of mentioned Romanian sites is an isolated case in Europe. Cave bears from relatively closely situated Central-Eastern European sites and other Romanian sites are more similar to Western European than to Romanian

  8. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  9. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  10. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  11. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  12. Shielding against debris

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G.; Avans, Sherman L.

    1988-01-01

    The damage to spacecraft caused by debris and design of the Space Station to minimize damage from debris are discussed. Although current estimates of the debris environment show that fragments bigger than 2 cm are not likely to hit the Space Station, orbital debris from about 0.5 mm to 2 cm will pose a hazard, especially on brittle surfaces, such as glass. Spacesuits are being designed to reduce debris caused dangers to astronauts during EVA. About 5 cm of high-strength aluminum are needed to prevent penetration by a 1 cm piece of aluminum with a mass near 1.5 g colliding at 10 km/sec. Because aluminum bumpers have the drawback of metallic debris ejected outward after a hypervelocity collision, the use of nonmetallic materials for bumpers is being studied. Methods of reducing the weight and volume of the shield for the Space Station are also being researched. A space station habitation module using bumpers has a 99.6 percent chance of avoiding penetration during its lifetime.

  13. Wake Shield Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.

  14. Coherent state transfer between an electron and nuclear spin in (15)N@C(60).

    PubMed

    Brown, Richard M; Tyryshkin, Alexei M; Porfyrakis, Kyriakos; Gauger, Erik M; Lovett, Brendon W; Ardavan, Arzhang; Lyon, S A; Briggs, G Andrew D; Morton, John J L

    2011-03-18

    Electron spin qubits in molecular systems offer high reproducibility and the ability to self-assemble into larger architectures. However, interactions between neighboring qubits are "always on," and although the electron spin coherence times can be several hundred microseconds, these are still much shorter than typical times for nuclear spins. Here we implement an electron-nuclear hybrid scheme which uses coherent transfer between electron and nuclear spin degrees of freedom in order to both effectively turn on or off interqubit coupling mediated by dipolar interactions and benefit from the long nuclear spin decoherence times (T(2n)). We transfer qubit states between the electron and (15)N nuclear spin in (15)N@C(60) with a two-way process fidelity of 88%, using a series of tuned microwave and radio frequency pulses and measure a nuclear spin coherence lifetime of over 100 ms.

  15. Structural/Radiation-Shielding Epoxies

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Hinkley, Jeffrey; Blattnig, Steve; Delozier, Donavon M.; Watson, Kent A.; Ghose, Sayata

    2009-01-01

    A development effort was directed toward formulating epoxy resins that are useful both as structural materials and as shielding against heavy-ion radiation. Hydrogen is recognized as the best element for absorbing heavy-ion radiation, and high-hydrogen-content polymers are now in use as shielding materials. However, high-hydrogen-content polymers (e.g. polyethylene) are typically not good structural materials. In contrast, aromatic polymers, which contain smaller amounts of hydrogen, often have the strength necessary for structural materials. Accordingly, the present development effort is based on the concept that an ideal structural/ heavy-ion-radiation-shielding material would be a polymer that contains sufficient hydrogen (e.g., in the form of aliphatic molecular groups) for radiation shielding and has sufficient aromatic content for structural integrity.

  16. Heat-Shield Gap Filler

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C.; Goldstein, H. E.

    1985-01-01

    Ceramic cloth strips provide flexible, easily replaceable insulating filler. Filler prevents hot gas from flowing between heat-shield tiles while allowing space for thermal expansion and contraction. Strips easily replaced when necessary.

  17. Radiation shielding for neutron guides

    NASA Astrophysics Data System (ADS)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  18. Hybrid Shielding for Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  19. Heat Shield Flank Close Up

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity features an up-close view of the flank piece of the rover's broken heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact. Overall, engineers were interested in evaluating the performance of the heat shield's thermal protection system.

    This is the the panormamic camera team's best current attempt at generating a 'true color' view of what this scene would look like if viewed by a human on Mars. It was generated from a mathematical combination of six calibrated, left-eye panoramic camera images acquired around 3:07 p.m. local solar time on Opportunity's sol 331 (Dec. 28, 2004) using filters ranging in wavelengths from 430 to 750 nanometers.

  20. Shield Yourself from 'Swimmer's Ear'

    MedlinePlus

    ... news/fullstory_167094.html Shield Yourself From 'Swimmer's Ear' Water left behind after a swim can give ... season for the painful infection known as swimmer's ear, but it shouldn't spoil your fun if ...

  1. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    PubMed Central

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-01-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values. PMID:26956399

  2. Mycorrhizal Fungi Provide Most of the Nitrogen for Symbiotic Arctic Plants: 15N Evidence

    NASA Astrophysics Data System (ADS)

    Hobbie, J. E.; Hobbie, E. A.

    2004-12-01

    When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae) in which fine hyphal threads take up soil nitrogen, transport it into plant roots, and in return receive plant sugars. Because the transfer rates are very difficult to measure in nature, ecologists need new tools by which to assess the role of mycorrhizal fungi in carbon and nitrogen cycling. Recent studies indicate that the natural abundance of 15N taken up from the soil by hyphae is changed during transfer of nitrogen to roots; the result is large differences among the natural abundance of 15N in soil, symbiotic plants, and symbiotic fungi that depend on the mass balance of nitrogen in the mycorrhizal symbiosis. Measurements were carried out in acidic tussock tundra at the Toolik Lake LTER site in Arctic Alaska (68\\deg N 149\\deg W). The \\delta15N of soil N was 1.5%, of soil ammonium was 1.5%, of ericoid and ectomycorrhizal plants was -5.0%, and of ectomycorrhizal fungi was 7.0 parts per mille%. The mass balance of the 15N shows that the plants received 61-86% of their nitrogen from the fungal hyphae. These values, when combined with known plant growth rates, reveal that the plants provided 7-16% of their photosynthetic carbon to the fungi for growth and respiration, or about 25% of all carbon allocated to belowground processes. This analytical technique could be readily applied to other nitrogen-limited ecosystems such as many temperate and boreal forests to quantify the importance for terrestrial carbon and nitrogen cycling of mycorrhizally mediated transfers at the plant-soil interface.

  3. The Styrene Probe Applied to 15N and 77Se NMR

    DTIC Science & Technology

    1988-08-01

    ascertain if this was a general phenomenon in X-substituted cinnamate esters for atoms having unshared pairs of electrons, 15N chemical shift correlations...opposite to that predicted by the ’- polarization mechanism. To ascertain if this was a general phenomenon in a-substituted cinnamate esters for atoms...spatially proximate unshared electron pair in Series B. 77Se NXR of the E and Z isomers of ethyl a-(phenylseleno)- cinnamates (Series D) also revealed a

  4. The CN/C15N isotopic ratio towards dark clouds

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.

    2013-09-01

    Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65

  5. (15)N investigation of nitrogen released from tobacco-waste to be utilized by maize crop.

    PubMed

    Karaman, M Rüştü; Brohi, A Reşit; Inal, Ali; Aydeniz, Akgün

    2004-12-01

    The (15)N study aimed to estimate the portion of nitrogen released from tobacco-waste to be utilized by maize crop. Tobacco-waste at the levels of 0, 2, 4, 6 and 8 g pot(-1) and ((15)NH(4))(2)SO(4) as nitrogen fertilizer labelled with 5 at.% exc. at the levels of 0, 4, 8, 12 and 16 mg N pot(-1) together with a basal dressing of some nutrients were added to pots with Pioneer maize variety. After the harvest, dry matter yield was recorded and (15)N determinations and calculations were made. Tobacco-waste had a positive effect on the growth and on the nitrogen uptake of maize crop. Increasing the rates of tobacco-waste increased the dry matter yield of maize crop from 4.64 g pot(-1) (at control) to 7.22 g pot(-1) (at the tobacco-waste treatment of 8 g pot(-1)). The values of (15)N in the plant derived from nitrogenous fertilizer also increased with increasing nitrogen fertilizer levels, whereas they decreased from 0.427 % to 0.249 % with increasing tobacco-waste treatments from 0 to 8 g pot(-1), respectively. The average values of per cent nitrogen derived from nitrogenous fertilizer (Ndff) varied from 4.32 % to 7.95 % at the rates of 4-16 mg N pot(-1), respec-tively. However, Ndff decreased from 8.54 % to 4.99 % with increasing tobacco-waste treatments from 0 to 8 g pot(-1), respectively. Per cent nitrogen derived from tobacco-waste (Ndft) increased from 21.8 % to 38.5 % with increasing tobacco-waste treatments from 2 to 8 g pot(-1), respectively. The results have revealed that (15)N tracer technique was confidently used for the investigation of nitrogen levels released from tobacco-waste as organic waste to be utilized by maize crop.

  6. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.

  7. Asymmetric Induction by a Nitrogen 14N/15N Isotopomer in Conjunction with Asymmetric Autocatalysis

    PubMed Central

    Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi

    2016-01-01

    Abstract Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N 2 ,N 2 ,N 3 ,N 3‐tetramethyl‐2,3‐butanediamine containing nitrogen (14N/15N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis. PMID:27754589

  8. Iron availability influences 15N-isotope fractionation during nitrogen fixation by aerobic chemoheterotroph Azotobacter vinelandii

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kopf, S.; Lee, A. C.

    2016-12-01

    The N stable isotope composition (δ15N) of biomass provides a powerful tool for reconstructing present and past N cycling, but its interpretation hinges on a complete understanding of the isotopic signature of biological nitrogen fixation, which sets the δ15N of newly fixed N. All biological nitrogen fixation is catalyzed by the metalloenzyme nitrogenase in a complex reaction that reduces inert atmospheric N2 gas into bioavailable ammonium. Recent investigations into the metal cofactor variants of nitrogenase revealed that the canonical Mo-, and alternative V-, and Fe-only isoforms of nitrogenase impart different isotope fractionations during N2 fixation in vivo, challenging the traditional view that N2 fixation only imparts small, invariable isotope effects of 0-2‰. However, the mechanistic basis for the fractionation of N2 fixation remains largely unknown. To better understand mechanisms underlying fractionation, we varied Fe availability and measured in vivo fractionations for the aerobic chemoheterotroph Azotobacter vinelandii utilizing Mo- or V-nitrogenase under batch culture conditions. Under all iron conditions, N2 fixation based on Mo-nitrogenase yielded lower fractionations (heavier biomasss δ15N) compared to V-nitrogenase. For fractionations associated with a single metalloenzyme, higher Fe concentrations, which correlated with faster growth rates, yielded small but systematically larger fractionations ( 1 ‰ increase for Mo- and V- nitrogenases). To directly determine the effect of growth rate on fractionation, we grew Mo-nitrogenase expressing A. vinelandii in Fe-replete medium at different growth rates using chemostats and found that growth rate alone does not alter fractionation. The results indicate that Fe availability, in addition to the type of nitrogenase metalloenzyme, controls 15N fractionation during N2 fixation by A. vinelandii.

  9. Negative pion photoproduction from 15N in the region of the Δ resonance

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Choi, H.; Kobayashi, T.; Stoler, P.; Gresko, T.; Keeter, K.; Mitchell, J. H.; Norum, B.; Welch, T. P.; Chung, H. T.; Kim, J. C.; van den Brink, H. B.; Hesselink, W. H.; Bergstrom, J. C.; Hallin, E. L.; Kaplan, H. S.; Skopik, D. M.; Vogt, J. M.

    1995-07-01

    The differential cross section for the reaction 15N(γ,π-)15Ogs has been measured at a photon energy of 220 MeV. We find a discrepancy between our data and a calculation based on the distorted wave impulse approximation which uses phenomenological 1p-shell wave functions. A second calculation, in which higher-shell configurations are included in the wave functions, fails to correct the discrepancy and is even more at odds with the data.

  10. δ15N in the turtle grass from the Mexican Caribbean

    NASA Astrophysics Data System (ADS)

    Talavera-Saenz, A.; Sanchez, A.; Ortiz-Hernandez, M.

    2013-05-01

    Nutrient inputs associated with population growth threaten the integrity of coastal ecosystems. To assess the rapid increase in tourism, we compared the δ15N from Thalassia testudinum collected at sites with different levels of tourism development and population to detect the N inputs of wastewater discharge (WD) along the coast of Quintana Roo. The contributions of nitrogen enriched in 15N are directly related to the increase of WD inputs in areas of high tourism development (Nichupte Lagoon in Cancun, >3 million tourists per year from 2007 to 2011 and 0.7 million of resident population) and decreased towards Bahia Akumal and Tulum (>3 million tourists per year from 2007 to 2011 and 0.15 million of resident population). The δ15N from T. testudinum was significantly lower at Mahahual and Puerto Morelos (about 0.4 million tourists per year in 2007 to 2011 and 0.25 million of resident population) than other the sites. In areas of the lowest development and with tourist activity restricted and small population, such as the Yum Balam Reserve and Sian Ka'an Biosphere Reserve, the δ15N values were in much higher enrichment that Mahahual and Puerto Morelos. Therefore is suggested that Mahahual and Puerto Morelos may be used for baseline isotopic monitoring, over environmental pressure on the reef lagoon ecosystem, where tourist activities and population are growing very slow rate. The anthropogenic N input has the potential to impact, both environmentally and economically, the seagrass meadows and the coral reefs along the coast of Quintana Roo and the Caribbean.

  11. δ15N as a Potential Paleoenvironmental Proxy for Nitrogen Loading in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Black, H. D.; Andrus, C. F.; Rick, T.; Hines, A.

    2013-12-01

    Stable isotope analysis of Eastern Oyster (Crassostrea virginica) and other mollusk shells from archaeological sites is a useful means of acquiring paleoenvironmental data. Recently, nitrogen isotopes have been identified as a potential new proxy in these shells. δ15N content in mollusk shells is affected by numerous anthropogenic and natural influences and may be used as an environmental proxy for nitrogen loading conditions. Chesapeake Bay is well known for both historic and modern pollution problems from numerous anthropogenic sources, such as fertilizer runoff, sewage discharge, and densely populated land use and serves as an ideal study location for long-term nitrogen loading processes. Longer records of these processes may be recorded in abundant archaeological remains around the bay, however, little is known about the stability of δ15N and %N in shell material over recent geologic time. In this study, 90 archaeological C. virginica shells were collected by the Smithsonian Institution from the Rhode River Estuary within Chesapeake Bay and range in age from ~150 to 3200 years old. Twenty-two modern C. virginica shells were also collected from nearby beds in the bay. All shell samples were subsampled from the resilifer region of the calcitic shell using a hand-held micro drill and were analyzed using EA-IRMS analysis to determine the potential temporal variability of δ15N and %N as well as creating a baseline for ancient nitrogen conditions in the bay area. Modern POM water samples and C. virginica soft tissues were also analyzed in this study to determine the degree of seasonal variation of δ15N and %N in Chesapeake Bay.

  12. 15N and 13C NMR Determination of Allantoin Metabolism in Developing Soybean Cotyledons 1

    PubMed Central

    Coker, George T.; Schaefer, Jacob

    1985-01-01

    The metabolism of allantoin by immature cotyledons of soybean (Glycine max L. cv Elf) grown in culture was investigated using solid state 13C and 15N nuclear magnetic resonance. All of the nitrogens of allantoin were incorporated into protein in a manner similar to that of each other and to the amide nitrogen of glutamine. The C-2 of allantoin was not incorporated into cellular material; presumably it was lost as CO2. About 50% of the C-5 of allantoin was incorporated into cellular material as a methylene carbon; the other 50% was presumably also lost as CO2. The 13C-15N bonds of [5-13C;1-15N] and [2-13C;1,3-15N]allantoin were broken prior to the incorporation of the nitrogens into protein. These data are consistent with allantoin's degradation to two molecules of urea and one two-carbon fragment. Cotyledons grown on allantoin as a source of nitrogen accumulated 21% of the nitrogen of cotyledons grown on glutamine. Only 50% of the nitrogen of the degraded allantoin was incorporated into the cotyledon as organic nitrogen; the other 50% was recovered as NH4+ in the media in which the cotyledons had been grown. The latter results suggests that the lower accumulation of nitrogen by cotyledons grown on allantoin was in part due to failure to assimilate NH4+ produced from allantoin. The seed coats had a higher activity of glutamine synthetase and a higher rate of allantoin degradation than cotyledons indicating that seed coats play an important role in the assimilation and degradation of allantoin. PMID:16663995

  13. Asymmetric Induction by a Nitrogen (14) N/(15) N Isotopomer in Conjunction with Asymmetric Autocatalysis.

    PubMed

    Matsumoto, Arimasa; Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi; Soai, Kenso

    2016-12-05

    Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N(2) ,N(2) ,N(3) ,N(3) -tetramethyl-2,3-butanediamine containing nitrogen ((14) N/(15) N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis.

  14. Pseudoentanglement of Spin States in the Multilevel 15N@C60 System

    NASA Astrophysics Data System (ADS)

    Mehring, M.; Scherer, W.; Weidinger, A.

    2004-11-01

    We have prepared combined electron and nuclear spin pseudoentangled states Ψ±27 and Φ±18 out of the total number of eight quantum states in the multilevel quantum system of a nitrogen atom with electron spin 3/2 and nuclear spin 1/2 encaged in the endohedral fullerene 15N@C60. Density matrix tomography was applied to verify the degree of entanglement.

  15. SEARCH FOR AN 80-ms SPONTANEOUS FISSION ACTIVITY IN BOMBARDMENTS OF 249Bk WITH 15N

    SciTech Connect

    Nitschke, J.M.; Fowler, M.; Ghiorso, A.; Leber, R.E.; Nurmia, M.J.; Somerville, L.P.; Williams, K.E.; Hulet, E.K.; Landrum, J.H.; Lougheed, R.W.; Wild, J.F.; Bemis, Jr., C.E.; Silva, R.J.; Eskola, P.

    1980-01-01

    A rotating drum system was used to search for an 80-ms spontaneous fission (sf) activity in the reaction of {sup 15}N with {sup 249}Bk. No such activity was found beyond a cross section limit of 0.3 {+-} 0.3 nb. A sf activity with a half-life of about 20 ms and a formation cross section of 12 nb at 82 MeV was observed. The identity of this activity has not been determined.

  16. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent

    NASA Astrophysics Data System (ADS)

    Hadwen, Wade L.; Arthington, Angela H.

    2007-01-01

    Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.

  17. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf δ15N. We found isotopic signatures of N to differ strongly between the native system (δ15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (δ15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf δ15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  18. Impact of seaweed beachings on dynamics of δ(15)N isotopic signatures in marine macroalgae.

    PubMed

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-08-15

    A fine-scale survey of δ(15)N, δ(13)C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM(∗), COU(∗)). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ(15)N signatures and N contents at GM(∗) and COU(∗). Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ(15)N at GM(∗) were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae.

  19. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  20. The (15)N NMR chemical shift in the characterization of weak halogen bonding in solution.

    PubMed

    Hakkert, Sebastiaan B; Gräfenstein, Jürgen; Erdelyi, Mate

    2017-07-21

    We have studied the applicability of (15)N NMR spectroscopy in the characterization of the very weak halogen bonds of nonfluorinated halogen bond donors with a nitrogenous Lewis base in solution. The ability of the technique to detect the relative strength of iodine-, bromine- and chlorine-centered halogen bonds, as well as solvent and substituent effects was evaluated. Whereas computations on the DFT level indicate that (15)N NMR chemical shifts reflect the diamagnetic deshielding associated with the formation of a weak halogen bond, the experimentally observed chemical shift differences were on the edge of detectability due to the low molar fraction of halogen-bonded complexes in solution. The formation of the analogous yet stronger hydrogen bond of phenols have induced approximately ten times larger chemical shift changes, and could be detected and correlated to the electronic properties of substituents of the hydrogen bond donors. Overall, (15)N NMR is shown to be a suitable tool for the characterization of comparably strong secondary interactions in solution, but not sufficiently accurate for the detection of the formation of thermodynamically labile, weak halogen bonded complexes.

  1. Composite Aerogel Multifoil Protective Shielding

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.

    2013-01-01

    New technologies are needed to survive the temperatures, radiation, and hypervelocity particles that exploration spacecraft encounter. Multilayer insulations (MLIs) have been used on many spacecraft as thermal insulation. Other materials and composites have been used as micrometeorite shielding or radiation shielding. However, no material composite has been developed and employed as a combined thermal insulation, micrometeorite, and radiation shielding. By replacing the scrims that have been used to separate the foil layers in MLIs with various aerogels, and by using a variety of different metal foils, the overall protective performance of MLIs can be greatly expanded to act as thermal insulation, radiation shielding, and hypervelocity particle shielding. Aerogels are highly porous, low-density solids that are produced by the gelation of metal alkoxides and supercritical drying. Aerogels have been flown in NASA missions as a hypervelocity particle capture medium (Stardust) and as thermal insulation (2003 MER). Composite aerogel multifoil protective shielding would be used to provide thermal insulation, while also shielding spacecraft or components from radiation and hypervelocity particle impacts. Multiple layers of foil separated by aerogel would act as a thermal barrier by preventing the transport of heat energy through the composite. The silica aerogel would act as a convective and conductive thermal barrier, while the titania powder and metal foils would absorb and reflect the radiative heat. It would also capture small hypervelocity particles, such as micrometeorites, since it would be a stuffed, multi-shock Whipple shield. The metal foil layers would slow and break up the impacting particles, while the aerogel layers would convert the kinetic energy of the particles to thermal and mechanical energy and stop the particles.

  2. Integral Face Shield Concept for Firefighter's Helmet

    NASA Technical Reports Server (NTRS)

    Abeles, F.; Hansberry, E.; Himel, V.

    1982-01-01

    Stowable face shield could be made integral part of helmet worn by firefighters. Shield, made from same tough clear plastic as removable face shields presently used, would be pivoted at temples to slide up inside helmet when not needed. Stowable face shield, being stored in helmet, is always available, ready for use, and is protected when not being used.

  3. Thermal neutron shield and method of manufacture

    DOEpatents

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  4. Magnetic Shield for Adiabatic Demagnetization Refrigerators (ADR)

    NASA Technical Reports Server (NTRS)

    Chui, Talso C.; Haddad, Nicolas E.

    2013-01-01

    A new method was developed for creating a less expensive shield for ADRs using 1018 carbon steel. This shield has been designed to have similar performance to the expensive vanadium permendur shields, but the cost is 30 to 50% less. Also, these shields can be stocked in a variety of sizes, eliminating the need for special forgings, which also greatly reduces cost.

  5. The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    PubMed Central

    Poupin, Nathalie; Bos, Cécile; Mariotti, François; Huneau, Jean-François; Tomé, Daniel; Fouillet, Hélène

    2011-01-01

    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source. PMID:22132207

  6. The nature of the dietary protein impacts the tissue-to-diet 15N discrimination factors in laboratory rats.

    PubMed

    Poupin, Nathalie; Bos, Cécile; Mariotti, François; Huneau, Jean-François; Tomé, Daniel; Fouillet, Hélène

    2011-01-01

    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are (15)N-enriched relative to their dietary nitrogen sources and this (15)N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ(15)N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ(15)N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally (15)N-enriched relative to their non-protein fraction and to the diet (Δ(15)N>0), with large variations in the Δ(15)N between tissue proteins. Δ(15)N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ(15)N differences between diets differed between tissues. Both between-tissue and between-diet Δ(15)N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ(15)N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ(15)N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source.

  7. Radiation shielding for future space exploration missions

    NASA Astrophysics Data System (ADS)

    DeWitt, Joel Michael

    Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical

  8. Shielding requirements in helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Bochud, F. O.; Verellen, D.; Moeckli, R.

    2007-08-01

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  9. Shielding requirements in helical tomotherapy.

    PubMed

    Baechler, S; Bochud, F O; Verellen, D; Moeckli, R

    2007-08-21

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  10. Measuring space radiation shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  11. Foliar retention of 15N-nitrate and 15N-ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain

    SciTech Connect

    Garten Jr, Charles T; Hanson, Paul J

    1990-07-01

    Studies of nitrogen cycling in forests indicate that trees assimilate atmospheric nitrate and ammonium and that differences between atmospheric deposition to the forest canopy and deposition measured in forest throughfall can be attributed to the removal of these ions from rain by tree leaves. Red maple and white oak leaves were exposed to artificial rain solutions (pH 4.1) containing {sup 15}N-labeled nitrate (3.5 {micro}g N/ml) or ammonium (2.2 {micro}g N/ml). At two time intervals after exposure (2 hr and 2 days) an exposed leaf and a control (non-exposed) leaf were removed from replicate seedlings. Based on results from {sup 15}N analysis, most of the nitrate applied to tree leaves was removed by washing with water; the mean per cent removal ({+-} standard error, N = 4) was 87 {+-} 1 and 73 {+-} 4% of the {sup 15}NO-N Applied to red maple and white oak leaves, respectively. Relative retention of {sup 15}NH{sub 4}-N by the leaves was greater than that observed for {sup 15}NO{sub 3}-N. In red maple and white oak leaves, 58 {+-} 9 and 84 {+-} 7% (mean {+-} standard error, N = 4), respectively, of the applied ammonium was not removed by washing treatments. Our results show that the foliar uptake of {sup 15}NH{sub 4}{sup +} from simulated rain by deciduous tree leaves is greater than that for {sup 15}NO{sub 3}{sup -}. Greater retention of NH{sub 4}{sup +} than NO{sub 3}{sup -} ions by red maple and white oak leaves from simulated rainfall is consistent with field observations showing a preferential retention of ammonium from rainfall by forest canopies. As nitrogen chemistry and the relative importance of nitrogen compounds in the atmosphere change in response to proposed emission reductions (and possibly climate change), an improved understanding of the fate of airborne nitrogen compounds in forest biogeochemical cycles will be necessary.

  12. Spatial variations in larch needle and soil δ(15)N at a forest-grassland boundary in northern Mongolia.

    PubMed

    Fujiyoshi, Lei; Sugimoto, Atsuko; Tsukuura, Akemi; Kitayama, Asami; Lopez Caceres, M Larry; Mijidsuren, Byambasuren; Saraadanbazar, Ariunaa; Tsujimura, Maki

    2017-03-01

    The spatial patterns of plant and soil δ(15)N and associated processes in the N cycle were investigated at a forest-grassland boundary in northern Mongolia. Needles of Larix sibirica Ledeb. and soils collected from two study areas were analysed to calculate the differences in δ(15)N between needle and soil (Δδ(15)N). Δδ(15)N showed a clear variation, ranging from -8 ‰ in the forest to -2 ‰ in the grassland boundary, and corresponded to the accumulation of organic layer. In the forest, the separation of available N produced in the soil with (15)N-depleted N uptake by larch and (15)N-enriched N immobilization by microorganisms was proposed to cause large Δδ(15)N, whereas in the grassland boundary, small Δδ(15)N was explained by the transport of the most available N into larch. The divergence of available N between larch and microorganisms in the soil, and the accumulation of diverged N in the organic layer control the variation in Δδ(15)N.

  13. A novel method for trapping and analyzing 15N in NO for tracing NO sources

    NASA Astrophysics Data System (ADS)

    Kang, Ronghua; Mulder, Jan; Dörsch, Peter

    2016-04-01

    15N isotope tracing is an effective and direct approach to investigate the biological and chemical sources of nitric oxide (NO) in soil. However, NO is highly reactive and rapidly converted to nitrogen dioxide (NO2) in the presence of ozone. Various chemical conversions of NO to the more stable solutes nitrite (NO2-) and nitrate (NO3-) have been proposed, which allow analysing the 15N abundance without major fractionation. However, NO emissions from soils are usually small, posing major challenges to conversion efficiency and background contamination. Here we present a novel method in which NO is oxidized to NO2- by chromium trioxide (CrO3) prior to conversion to NO2- and NO3- in an alkaline hydrogen peroxide (H2O2) solution. Immediately following trapping, manganese dioxide (MnO2) and 5M HCl are added to remove excess H2O2, and to adjust the pH to around 6.0-7.0, respectively. The resulting solution can be stored until analysis and is none-toxic, allowing to use a modified denitrifier method (Zhu et al., submitted), where NO2- and NO3- are reduced quantitatively to nitrous oxide (N2O). Optimum NO conversion rates of > 90% even at extremely low initial NO concentration were obtained with 4% H2O2, 0.5 M NaOH, and 0.5 L min-1 gas flow rate. In a laboratory test, using NO gas with different 15N signals produced from unlabelled and labelled NO2-, we found an overall precision of 0.4‰ for unlabelled and 49.7‰ for NO enriched with 1.0 atom% 15N, respectively. This indicates that this method can be used for both natural abundance studies of NO, as well as in labelling studies tracing NO sources. Zhu J, Yu L, Bakken LR, Mørkved PT, Mulder J, Dörsch P. Controlled induction of denitrification in Pseudomonas aureofaciens: a modified denitrifier method for 15N and 18O analysis in NO3- from natural water samples by IRMS. Submitted.

  14. Nitrogen cycle inferred by δ15N in larch stand in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Hayashi, Mika; Lopez C., Maximo Larry; Nobori, Yoshihiro; Byambasuren, Mijidsuren; Boy, Jens

    2017-04-01

    Mongolia represents the southernmost border of boreal forests and therefore is more sensitive to climate change. In boreal regions forest grow under N-limited conditions and for this reason rely on ectomycorrhizal fungi for the uptake of inorganic and dissolved organic N from the soil solution. A drastic increase in air temperature and a decrease or almost no change in summer precipitation has led to a severe climate induced drought that is expected to impact the nitrogen cycle in this region. Until now there has been no study on the nitrogen dynamics and especially not by means of stable isotope in the entire Eurasian boreal forests. Thus, in this study we evaluate the effect of spatial and climatic characteristics on the soil-tree N exchange in three representative larch forest stands (Larix sibirica) in the forest-steppe zone of central Mongolia. The results showed significant differences in the soil available N content and the influence that this difference exerts on the level of N fractionation from roots to leaves. In this study we observed heavier d15N in fine roots than in short roots (where the ectomycorrhizal fungi is attached) which was used as a proxy for soil available d15N. This value did not match total N d15N in any of the three sites selected for this study even though total N d15N has been used in previous studies as a proxy for available N d15N. Higher fractionation was observed in forest stands where available N was more limited indicating a heavier reliance on ectomycorrhizal fungi for inorganic N uptake. Coincidentally, the site with less available N was the southern site with the lowest precipitation. The opposite was found in the northern sites where available N was higher and thus fractionation showed lower values. Different tree tissues (fine and short-roots, stem, leaves) and litter showed multiple, intra-plant processes that influenced the isotope signal of the source-sink nitrogen dynamics.

  15. Simultaneous measurement of 13C- and 15N-isotopic enrichments of threonine by mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Mermoud, Anne-France; Rémond, Didier; Faure, Magali; Breuille, Denis; Williamson, Gary; Peré-Trepat, Emma; Ramadan, Ziad; Fay, Laurent-Bernard; Kochhar, Sunil

    2009-04-01

    Under conditions of high isotopic dilution, e.g. in a tracer study, the ability to determine accurately and quantitatively small variations in isotopic enrichments of differently labelled chemical compounds (e.g. (13)C and (15)N in threonine) in a single run by gas chromatography/mass spectrometry (GC/MS) is desirable but remains a technological challenge. Here, we report a new, rapid and simple GC/MS method for simultaneously measuring the isotopic enrichments of doubly labelled threonine ([U(13)C] and (15)N) with isotopic enrichment lower than 1.5 Molar Percent Excess (MPE). The long-term reproducibility measured was around 0.09 MPE for both tracers (throughout a 6 week period). The intra-day repeatability was lower than 0.05 and 0.06 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. To calculate both isotopic enrichments, two modes of calculations were used: one based on work by Rosenblatt et al. in 1992 and the other one using a matrix approach. Both methods gave similar results (ANOVA, P >0.05) with close precision for each mode of calculation. The GC/MS method was then used to investigate the differential utilization of threonine in different organs according to its route of administration in minipigs after administration of both tracers. In plasma samples, the lowest isotopic enrichment measured between two successive time points was at 0.01 and 0.02 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. Moreover, the accuracy of GC/MS (13)C-isotopic enrichment measured was validated by analyzing the same plasma samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Statistical analysis showed that both techniques gave the same results (ANOVA, P >0.05). This new GC/MS method offers the possibility to measure (13)C- and (15)N-isotopic enrichments with higher throughput, and using a lower amount of sample, than using GC/C/IRMS.

  16. Paleoenvironmental implications of taxonomic variation among δ 15 N values of chloropigments

    NASA Astrophysics Data System (ADS)

    Higgins, Meytal B.; Wolfe-Simon, Felisa; Robinson, Rebecca S.; Qin, Yelun; Saito, Mak A.; Pearson, Ann

    2011-11-01

    Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ 15N values of chloropigments of photosynthetic organisms to determine the corresponding δ 15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth's history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N 2, NO 3-, and NH 4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ 15N biomass - δ 15N chloropigment) for prokaryotes, with average values for species ranging from -12.2‰ to +11.7‰. We define this difference as ɛpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of ɛpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of ɛpor for freshwater cyanobacterial species is -9.8 ± 1.8‰, while for marine cyanobacteria it is -0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., ɛpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of ɛpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of ɛpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of

  17. Spin-rotation and NMR shielding constants in HCl

    NASA Astrophysics Data System (ADS)

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-12-01

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1H35Cl are CCl = -53.914 kHz and CH = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  18. Spin-rotation and NMR shielding constants in HCl

    SciTech Connect

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  19. Neutronic reactor thermal shield

    DOEpatents

    Lowe, Paul E.

    1976-06-15

    1. The combination with a plurality of parallel horizontal members arranged in horizontal and vertical rows, the spacing of the members in all horizontal rows being equal throughout, the spacing of the members in all vertical rows being equal throughout; of a shield for a nuclear reactor comprising two layers of rectangular blocks through which the members pass generally perpendicularly to the layers, each block in each layer having for one of the members an opening equally spaced from vertical sides of the block and located closer to the top of the block than the bottom thereof, whereby gravity tends to make each block rotate about the associated member to a position in which the vertical sides of the block are truly vertical, the openings in all the blocks of one layer having one equal spacing from the tops of the blocks, the openings in all the blocks of the other layer having one equal spacing from the tops of the blocks, which spacing is different from the corresponding spacing in the said one layer, all the blocks of both layers having the same vertical dimension or length, the blocks of both layers consisting of relatively wide blocks and relatively narrow blocks, all the narrow blocks having the same horizontal dimension or width which is less than the horizontal dimension or width of the wide blocks, which is the same throughout, each layer consisting of vertical rows of narrow blocks and wide blocks alternating with one another, each vertical row of narrow blocks of each layer being covered by a vertical row of wide blocks of the other layer which wide blocks receive the same vertical row of members as the said each vertical row of narrow blocks, whereby the rectangular perimeters of each block of each layer is completely out of register with that of each block in the other layer.

  20. Delta15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status.

    PubMed

    Schmidt, S; Stewart, G R

    2003-03-01

    A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna

  1. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by 15N NMR using magnetization transfer and indirect detection via protons.

    PubMed

    Live, D H; Cowburn, D; Breslow, E

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, 15N labeling being used to identify specific backbone 15N and 1H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence of hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neurophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of 15N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  3. Plant and Soil Natural Abundance delta-15N: Indicators of Nitrogen Cycling in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Lovett, G. M.; Weathers, K.; Arthur, M. A.

    2002-12-01

    We examined the potential use of natural abundance 15N of plants and soils as an indicator of forest nitrogen (N) cycling rates within the Catskill Mountains, NY. These watersheds receive among the highest rates of N deposition in the northeastern United States and are beginning to show signs of N saturation. Many studies have shown a link between increased N cycling rates and 15N enrichment of soil and plant pools. Faster rates of N cycling processes, especially nitrification, lead to fractionation of 14/15N, creating N products that are relatively depleted in 15N. This can lead to enrichment of soil pools, as lighter 14N is lost from the system via leaching or denitrification. Plant N pools can become increasingly enriched as they take up 15N-enriched soil N. Despite similar amounts of N deposition across the Catskill Mountains, forests dominated by different tree species appear to vary in the amount of N retained or lost to nearby streams. To determine if plant and soil 15N could be used as indicators of N cycling rates, we collected foliage, wood, litterfall, organic and mineral soil, and fine roots from single species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine roots and soil 15N were highest within sugar maple stands (p<0.05). Sugar maple soils also had the highest rates of net nitrification and N leaching. Therefore, soil 15N appears to correlate with forest N retention and loss. However, 15N enrichment was highest within foliage, litterfall and wood of beech trees (p<0.05). The decoupling between foliage 15N and N cycling, as well as between 15N of foliage and fine roots, illustrates that it may not be possible to use a single plant pool as an indicator of N cycling rates.

  4. Long-term 15N tracking from biological N fixation across different plant and humus components of the boreal forest

    NASA Astrophysics Data System (ADS)

    Arroniz-Crespo, Maria; Jones, David L.; Zackrisson, Olle; Nilsson, Marie-Charlotte; DeLuca, Thomas H.

    2014-05-01

    Biological N2 fixation by cyanobacteria associated with feather mosses is an important cog in the nitrogen (N) cycle of boreal forests; still, our understanding of the turnover and fate of N fixed by this association remains greatly incomplete. The 15N signature of plants and soil serves as a powerful tool to explore N dynamics in forest ecosystems. In particular, in the present study we aimed to investigate the contribution of N2 fixation to δ15N signatures of plants and humus component of the boreal forest. Here we present results from a long-term (7 years) tacking of labelled 15N2 across the humus layer, seedlings of the tree species Pinus sylvestris, two common dwarf shrub species (Empetrum hermaphroditum and Vaccinium vitis-idaea) and the feather moss Pleurozium schreibery. The enriched experiment was conducted in 2005 in a natural boreal forest in northern Sweden. Two different treatments (10% 15N2 headspace enrichment and control) were setup in nine different plots (0.5 x 0.5 m) within the forest. We observed a significant reduction of δ15N signature of the 15N-enriched moss that could be explained by a growth dilution effect. Nevertheless, after 5 years since 15N2 enrichment some of the label 15N was still detected on the moss and in particular in the dead tissue. We could not detect a clear transfer of the labelled 15N2 from the moss-cyanobacteria system to other components of the ecosystem. However, we found consistence relationship through time between increments of δ15N signature of some of the forest components in plots which exhibited higher N fixation rates in the moss. In particular, changes in natural abundance δ15N that could be associated with N fixation were more apparent in the humus layer, the dwarf shrub Vaccinium vitis-idaea and the pine seedlings when comparing across plots and years.

  5. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  6. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-01-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.

  7. Localization of 15N uptake in a Tibetan alpine Kobresia pasture

    NASA Astrophysics Data System (ADS)

    Schleuß, Per-Marten; Kuzyakov, Yakov

    2014-05-01

    The Kobresia Pygmea ecotone covers approximately 450.000 km2 and is of large global and regional importance due several socio-ecological aspects. For instance Kobresia pastures store high amounts of carbon, nitrogen and other nutrients, represent large grazing areas for herbivores, provide a fast regrowth after grazing events and protect against mechanical degradation and soil erosion. However, Kobresia pastures are assumed to be a grazing induced and are accompanied with distinct root mats varying in thickness between 5-30 cm. Yet, less is known about the morphology and the functions of this root mats, especially in the background of a progressing degradation due to changes of climate and management. Thus we aimed to identify the importance of single soil layers for plant nutrition. Accordingly, nitrogen uptake from different soil depths and its remain in above-ground biomass (AGB), belowground biomass (BGB) and soil were determined by using a 15N pulse labeling approach during the vegetation period in summer 2012. 15N urea was injected into six different soil depths (0.5 cm, 2.5 cm, 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm / for each 4 replicates) and plots were sampled 45 days after the labeling. For soil and BGB samples were taken in strict sample intervals of 0-1 cm, 1-5 cm, 5-10 cm, 10-15 cm, 15-20 cm, 20-25 cm. Results indicate that total recovery (including AGB, BGB and soil) was highest, if tracer was injected into the top 5 cm and subsequently decreased with decreasing injection depth. This is especially the case for the 15N recovery of BGB, which is clearly attributed to the root density and strongly decreased with soil depth. In contrast, the root activity derived from the 15N content of roots increased with soil depth, which is primary associated to a proportionate increase of living roots related to dead roots. However, most 15N was captured in plant biomass (67.5-85.3 % of total recovery), indicating high 15N uptake efficiency possibly due to N limitation

  8. The response of tree ring δ15N to whole-watershed urea fertilization at the Fernow Experimental Forest, WV

    Treesearch

    Mark B. Burnham; Brenden E. McNeil; Mary Beth Adams; William T. Peterjohn

    2016-01-01

    Plant tissue δ15N is frequently used as a proxy for N availability and N cycle dynamics, and the δ15N signature of tree rings could potentially be used to reconstruct past changes in the N cycle due to forest disturbance or anthropogenic N deposition. However, there are substantial uncertainties regarding how effectively...

  9. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    PubMed

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  10. The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters

    NASA Astrophysics Data System (ADS)

    Sigman, D. M.; Altabet, M. A.; McCorkle, D. C.; Francois, R.; Fischer, G.

    1999-12-01

    We report nitrogen isotope data for nitrate from transects of hydrocast and surface samples collected in the eastern Indian and Pacific sectors of the Southern Ocean, focusing here on the data from the upper water column to study the effect of nitrate consumption by phytoplankton. The δ15N of nitrate increases by 1-2‰ from deep water into the Antarctic summertime surface layer, due to kinetic isotopic fractionation during nitrate uptake. Estimation of the nitrate uptake isotope effect from Antarctic depth profiles yields values in the range of 5-6‰ in east Indian sector and 4-5‰ in the east Pacific sector. Surface transect data from the Pacific sector also yield values of 4-5‰. The major uncertainty in the profile-based estimation of the isotope effect involves the δ15N of nitrate from the temperature minimum layer below the summertime Antarctic surface layer, which deviates significantly from the predictions of simple models of isotope fractionation. For the Subantarctic surface, it is possible to distinguish between nitrate supplied laterally from the surface Antarctic and nitrate supplied vertically from the Subantarctic thermocline because of the distinctive relationships between the δ15N and concentration of nitrate in these two potential sources. Our Subantarctic samples, collected during the summer and fall, indicate that nitrate is supplied to the Subantarctic surface largely by northward transport of Antarctic surface water. Isotopic data from the Pacific sector of the Subantarctic suggest an isotope effect of 4.5‰, indistinguishable from the Antarctic estimates in this sector.

  11. Tracking the flow of bacterially derived 13C and 15N through soil faunal feeding channels.

    PubMed

    Crotty, F V; Blackshaw, R P; Murray, P J

    2011-06-15

    The soil food web has been referred to as a 'black box', a 'poor man's tropical rainforest' and an 'enigma', due to its opacity, diversity and the limited insight into feeding specificity. Here we investigate the flow of C and N through the soil food web as a way to gain understanding of the feeding interactions occurring. A bacterium, Pseudomonas lurida, was introduced to soil cores from two different habitats, a grassland and a woodland with the same soil type, enriched to 99 atom% in (13)C and (15)N, to trace the flow of bacterial C and N through the soil food web. Throughout the experiment the soil remained enriched in (13)C and (15)N. Almost all the invertebrates tested gained C and N enrichment indicative of the labelled bacteria, implying that bacterial feeding is a common mechanism within the soil. Only three groups were significantly enriched in both (13)C and (15)N in both habitats. These were Collembola (Entomobryomorpha), Acari (Oribatida), and Nematoda, indicating that these organisms are consuming the most bacteria within both systems. When the invertebrates were grouped into hypothesised trophic