Science.gov

Sample records for 1h 1h 2h

  1. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  2. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  3. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  4. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  5. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  6. Inhibition of myeloperoxidase: evaluation of 2H-indazoles and 1H-indazolones.

    PubMed

    Roth, Aaron; Ott, Sean; Farber, Kelli M; Palazzo, Teresa A; Conrad, Wayne E; Haddadin, Makhluf J; Tantillo, Dean J; Cross, Carroll E; Eiserich, Jason P; Kurth, Mark J

    2014-11-15

    Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1μM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO/H2O2/HOCl/HOBr system.

  7. (2)H-decoupling-accelerated (1)H spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons.

    PubMed

    Negoro, M; Nakayama, K; Tateishi, K; Kagawa, A; Takeda, K; Kitagawa, M

    2010-10-21

    In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.

  8. Hydrochemistry and 18O/16O and 2H/1H Ratios of Ugandan Waters

    NASA Astrophysics Data System (ADS)

    Gebremichael, M. G.; Jasechko, S.

    2013-12-01

    Today, 70% of the 35 million people living in Uganda have access to an improved water source, ranking Uganda 148 out of 179 nations reporting in 2010 (Millennium Development Goals Indicators). 80% of Ugandans rely on groundwater as their primary drinking water source, collecting at springs or from shallow wells. Similarly, 80% of Ugandans rely upon agriculture - usually rain fed - as their primary income source. Despite lack of access to protected water sources faced by 10 million Ugandans, and the importance of the blue economy to Uganda's continued development, a country-wide investigation of the chemistry and the stable oxygen and hydrogen isotope compositions of waters has yet to be completed. Here we present 250 analyses of 18O/16O, 2H/1H and dissolved ion concentrations of Ugandan lakes, rivers, groundwaters and springs collected during July, 2013. We use the new data to characterize regional scale groundwater recharge sources, advection pathways and interactions with surface waters. Large lakes - Albert, Edward and Victoria - show increases in 18O/16O and 2H/1H ratios consistent with open water evaporation, and are shown to be distinct from nearby groundwaters, suggesting minimal recharge from large lakes to the subsurface. Salinities of eastern Ugandan groundwaters are elevated relative to samples collected from the central and western regions, suggesting that longer groundwater residence times and enhanced water-rock interactions characterize these waters. Springs from western Uganda show a shift in 18O/16O to higher values as a result of hydrothermal water-rock exchanges. Dissolved ion and noble gas concentrations show potential for use in assessing geothermal energy resources, perhaps aiding the Ugandan Ministry for Energy, Minerals and Development to meet their goal of increasing renewable energy from 4% (current) to 61% of total use by 2017 (Nyakabwa-Atwoki, 2013). Millennium Development Goals Indicators. mdgs.un.org/unsd/mdg/data.aspx Nyakabwa

  9. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was

  10. Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Eley, Yvette; Dawson, Lorna; Black, Stuart; Andrews, Julian; Pedentchouk, Nikolai

    2014-03-01

    Interpretation of sedimentary n-alkyl lipid δ2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked δ2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35‰ depending on marsh sub-environment, and exhibited site-specific seasonal shifts in δ2H up to a maximum of 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed seasonally by a maximum of 29‰. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100‰ throughout the 2012 growing season, resulting in an interspecies range in the ɛwax/leaf water values of -79‰ to -227‰. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane δ2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane δ2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate

  11. Controls on compound specific 2H/1H of leaf waxes along a North American monsoonal transect

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Tipple, B. J.; Hambach, B.; Ehleringer, J. R.

    2013-12-01

    The use of hydrogen isotope ratios of sedimentary n-alkanes from leaf waxes has become an important method for the reconstruction of paleohydrologic conditions. Ideally, the relationship between lipid 2H/1H values and source water is one-to-one. But the extent to which the 2H/1H values are altered between initial source water and lipid 2H/1H values varies by plant type and environment. Additionally, these variables may be confounded by use of varied source waters by plants in the same ecosystem. Here, we use a transect study across the arid southwestern landscape of the United States, which is heavily influenced by the North American Monsoon, to study the variability in 2H/1H values of leaf waxes in co-occurring plants from Tucson, Arizona to Salt Lake City, Utah. Perennials, including rabbit brush (Chrysothamnus nauseosus), sagebrush (Artemisia tridentata), and gambel oak (Quercus gambelii) and an annual plant, sunflower (Helianthus annuus), were chosen for their wide geographic distribution along the entire transect. Our results indicate that n-alkane distribution for each plant was similar and generally showed no relationship to environmental variables (elevation, mean annual precipitation, latitude, and temperature). However, we find evidence of n-alkane 2H/1H value relating to transect latitude, a relationship that is weaker for all samples combined than the strong individual correlation for each plant species. Further, these 2H/1H values suggest that not all plants in the monsoon region utilize monsoon-delivered precipitation. These results imply an adaptation to discontinuous spatial coverage and amount of monsoonal precipitation and suggest care must be taken when assuming consistent source water for different plants, particularly in regions with highly seasonal precipitation delivery.

  12. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity.

    PubMed

    Büchel, Gabriel E; Stepanenko, Iryna N; Hejl, Michaela; Jakupec, Michael A; Keppler, Bernhard K; Heffeter, Petra; Berger, Walter; Arion, Vladimir B

    2012-08-01

    A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.

  13. Measurements of intracellular volumes by 59Co and 2H/1H NMR and their physiological applications.

    PubMed

    Askenasy, Nadir; Navon, Gil

    2005-04-01

    Determination of the intracellular water volumes using NMR spectroscopy was performed using the NMR-visible nuclei: 59Co and 2H or 1H. Accurate measurement of intracellular water in cell suspensions and perfused organs is an important physiological parameter in the context of electrolyte homeostasis and energy metabolism, in particular when these parameters are monitored by non-invasive NMR spectroscopy. Furthermore, repeated or continuous monitoring of intracellular water provided significant insights into the physiology of cardiac muscle and sarcolemmal membrane permeability and integrity.

  14. New pyrazole derivative 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole: synthesis and assessment of some biological activities.

    PubMed

    de Oliveira, Lanussy Porfiro; da Silva, Daiany Priscilla Bueno; Florentino, Iziara Ferreira; Fajemiroye, James Oluwagbamigbe; de Oliveira, Thiago Sardinha; Marcelino, Renato Ivan de Ávila; Pazini, Francine; Lião, Luciano Morais; Ghedini, Paulo César; de Moura, Soraia Santana; Valadares, Marize Campos; de Carvalho, Verônica Vale; Vaz, Boniek Gontijo; Menegatti, Ricardo; Costa, Elson Alves

    2017-01-01

    The molecular modification and synthesis of compounds is vital to discovering drugs with desirable pharmacological and toxicity profiles. In response to pyrazole compounds' antipyretic, analgesic, and anti-inflammatory effects, this study sought to evaluate the analgesic, anti-inflammatory, and vasorelaxant effects, as well as the mechanisms of action, of a new pyrazole derivative, 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole. During the acetic acid-induced abdominal writhing test, treatments with 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole reduced abdominal writhing, while during the formalin test, 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole reduced licking times in response to both neurogenic pain and inflammatory pain, all without demonstrating any antinociceptive effects, as revealed during the tail flick test. 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole also reduced carrageenan-induced paw edema and cell migration during the carrageenan-induced pleurisy test. As demonstrated by the model of the isolated organ, 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole exhibits a vasorelaxant effect attenuated by Nω-nitro-l-arginine methyl ester, 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one, tetraethylammonium or glibenclamide. 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole also blocked CaCl2 -induced contraction in a dose-dependent manner. Suggesting a safe toxicity profile, 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole reduced the viability of 3T3 cells at higher concentrations and was orally tolerated, despite signs of toxicity in doses of 2000 mg/kg. Lastly, the compounds' analgesic activity might be attributed to the involvement of the NO/cGMP pathway and K(+) channels observed in the vasorelaxant effect.

  15. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Sachs, Julian P.; Maloney, Ashley E.; Gregersen, Josh; Paschall, Christopher

    2016-09-01

    Salinity and temperature dictate the buoyancy of seawater, and by extension, ocean circulation and heat transport. Yet there remain few widely applicable proxies for salinity with the precision necessary to infer all but the largest hydrographic variations in the past. In the last decade the hydrogen isotope composition (2H/1H or δ2H) of microalgal lipids has been shown to increase systematically with salinity, providing a foundation for its use as a paleosalinity proxy. Culture and field studies have indicated a wide range of sensitivities for this response, ranging from about 0.6-3.3‰ ppt-1 depending on the lipid, location and/or culturing conditions. Lacking in these studies has been the controlled conditions necessary to isolate the response to salinity while keeping all other growth parameters constant. Here we show that the hydrogen isotope composition of lipids in the marine coccolithophorid Emiliania huxleyi grown in chemostats increased by 1.6 ± 0.3‰ ppt-1 (p < 0.05) in eight individual alkenones and by 2.0 ± 0.1‰ ppt-1 (p < 0.05) in three individual fatty acids over the salinity range 20-42 ppt. Hydrogen isotope ratios of phytol and the sterol 24-methyl-cholest-5,22-dien-3β-ol (brassicasterol) also increased with salinity but correlations were weaker than for the acetogenic lipids. For eight individual alkenones, linear regression analyses of the fractionation factors on salinity yielded slopes of 1.2-2.2‰ ppt-1. This sensitivity of δ2Halkenone to salinity is 45-71% of that previously reported for E. huxleyi, which can be attributed to the fact that previous experiments were performed with batch cultures in which growth rates and other parameters differed between salinity treatments. The underlying cause of this response to salinity remains unknown, but may result from changes in (1) the proportion of lipid hydrogen derived from NADPH versus water, (2) the proportion of lipid hydrogen derived from NADPH from Photosystem I versus the oxidative

  16. 2H/(1)H and (13)C/(12)C isotope ratios of trans-anethole using gas chromatography-isotope ratio mass spectrometry.

    PubMed

    Bilke, Steffi; Mosandl, Armin

    2002-07-03

    Authenticity assessment of trans-anethole is deduced from (2)H/(1)H and (13)C/(12)C isotope ratios, determined by gas chromatography-isotope ratio mass spectrometry (GC-IRMS). For that purpose, self-prepared anise and fennel oils, and synthetic and "natural" samples of trans-anethole, as well as commercially available anise and fennel oils have been investigated. Authenticity ranges of (2)H/(1)H and (13)C/(12)C isotope ratios of trans-anethole were defined. Scope and limitations of the applied online GC-IRMS techniques are discussed.

  17. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  18. 1H and 2H NMR spin-lattice relaxation probing water: PEG molecular dynamics in solution.

    PubMed

    Clop, Eduardo M; Perillo, María A; Chattah, Ana K

    2012-10-04

    Nuclear magnetic resonance spin-lattice relaxation times (T(1)) measurements were performed in aqueous solutions of poly(ethylene glycol) (PEG) of 6000 Da molecular mass to study the dynamical relation between PEG and water molecules at different solute concentrations. (1)H-T(1) experiments were carried on at a low magnetic field in the time domain (20 MHz) and at a high field (400 MHz) to obtain spectral resolution. Two contributing components were identified in each proton system, PEG and water, presenting values of T(1) with very different orders of magnitude. The approximate matching between the shorter (1)H-T(1) values associated with water and PEG has lead us to conclude that there exists a network of interactions (hydrogen bonds) between the solute and the solvent, which results in the presence of an ordered and dehydrated structure of PEG folded or self-assembled in equilibrium with a more flexible monomer structure. Dynamic light scattering results were consistent with the formation of PEG aggregates, showing a mean size between 40 and 100 nm.

  19. A study of dipolar interactions and dynamic processes of water molecules in tendon by 1H and 2H homonuclear and heteronuclear multiple-quantum-filtered NMR spectroscopy.

    PubMed

    Eliav, U; Navon, G

    1999-04-01

    The effect of proton exchange on the measurement of 1H-1H, 1H-2H, and 2H-2H residual dipolar interactions in water molecules in bovine Achilles tendons was investigated using double-quantum-filtered (DQF) NMR and new pulse sequences based on heteronuclear and homonuclear multiple-quantum filtering (MQF). Derivation of theoretical expressions for these techniques allowed evaluation of the 1H-1H and 1H-2H residual dipolar interactions and the proton exchange rate at a temperature of 24 degrees C and above, where no dipolar splitting is evident. The values obtained for these parameters at 24 degrees C were 300 and 50 Hz and 3000 s-1, respectively. The results for the residual dipolar interactions were verified by repeating the above measurements at a temperature of 1.5 degrees C, where the spectra of the H2O molecules were well resolved, so that the 1H-1H dipolar interaction could be determined directly from the observed splitting. Analysis of the MQF experiments at 1.5 degrees C, where the proton exchange was in the intermediate regime for the 1H-2H dipolar interaction, confirmed the result obtained at 24 degrees C for this interaction. A strong dependence of the intensities of the MQF signals on the proton exchange rate, in the intermediate and the fast exchange regimes, was observed and theoretically interpreted. This leads to the conclusion that the MQF techniques are mostly useful for tissues where the residual dipolar interaction is not significantly smaller than the proton exchange rate. Dependence of the relaxation times and signal intensities of the MQF experiments on the orientation of the tendon with respect to the magnetic field was observed and analyzed. One of the results of the theoretical analysis is that, in the fast exchange regime, the signal decay rates in the MQF experiments as well as in the spin echo or CPMG pulse sequences (T2) depend on the orientation as the square of the second-rank Legendre polynomial.

  20. A general and efficient approach to 2H-indazoles and 1H-pyrazoles through copper-catalyzed intramolecular N-N bond formation under mild conditions.

    PubMed

    Hu, Jiantao; Cheng, Yongfeng; Yang, Yiqing; Rao, Yu

    2011-09-28

    A new efficient copper-catalyzed intramolecular amination reaction has been developed to readily synthesise a wide variety of multi-substituted 2H-indazole and 1H-pyrazole derivatives from easily accessible starting materials under mild conditions. A highly selective ligand for estrogen receptor β was prepared in three steps by employing this method.

  1. Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors

    PubMed Central

    Breunig, Eva; Michel, Klaus; Zeller, Florian; Seidl, Stefan; v Weyhern, Claus Werner Hann; Schemann, Michael

    2007-01-01

    Histamine is a major mast cell mediator of immunoneural signalling in the gut and mast cells play a role in the pathophysiology of functional and inflammatory bowel diseases. Histamine receptors are therefore promising drug targets to treat gut disorders. We aimed to study the so far unknown effect of histamine on neural activity in the human enteric nervous system (ENS) and to identify the pharmacology of histamine response. We used fast imaging techniques in combination with the potentiometric dye di-8-ANEPPS to monitor directly membrane potential changes and thereby neuronal excitability in the human submucous plexus from surgical specimens of 110 patients (2137 neurones, 273 ganglia). Local microejection of histamine resulted in action potential discharge in 37% of neurones. This excitatory effect was mimicked by the H1 agonist HTMT-dimaleat, H2 agonist dimaprit, H3 agonist (R)-(−)-α-methylhistamine and H4 agonist 4-methylhistamine. The excitatory actions of the agonists were specifically and selectively blocked by the H1, H2, H3 or H4 receptor antagonists pyrilamine, ranitidine, clobenpropit or J1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ 7777120), respectively. Clobenproprit reduced the excitatory response to histamine. Unlike in the guinea-pig ENS (R)-(−)-α-methylhistamine had no presynaptic actions in human submucous plexus. Application of agonists revealed receptor clustering which was as follows: 29% H1/H3, 27% H2, 20% H1/H2/H3, 10% H3, 7% H1/H2 and 7% H2/H3. Histamine excites human enteric neurones and this effect involves all four histamine receptors; most striking was the identification of an excitatory H3 mediated component and the discovery of H4 mediated neuronal excitation. These data may form the basis of identification of new targets to treat inflammatory and functional gut disorders. PMID:17627982

  2. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana

    PubMed Central

    Sachs, Julian P.; Kawka, Orest E.

    2015-01-01

    The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains

  3. The Davis-Beirut reaction: N1,N2-disubstituted-1H-indazolones via 1,6-electrophilic addition to 3-alkoxy-2H-indazoles.

    PubMed

    Conrad, Wayne E; Fukazawa, Ryo; Haddadin, Makhluf J; Kurth, Mark J

    2011-06-17

    A variety of electrophiles (anhydrides, acid chlorides, carbonochloridates, sulfonyl chlorides, and alkyl bromides) react with 3-methoxy-2H-indazole (1a), benzoxazin[3,2-b]indazole (1d), and oxazolino[3,2-b]indazole (1e) - substrates available by the Davis-Beirut reaction - to yield a diverse set of N(1),N(2)-disubstituted-1H-indazolones. With certain electrophiles, an AERORC (Addition of the Electrophile, Ring Opening, and Ring Closure) process on indazole 1d results in indazoloindazolone formation. An intriguing aspect of these N(1),N(2)-disubstituted-1H-indazolones is that they are poised for diversification through, for example, azide-alkyne cycloaddition chemistry reported here.

  4. Synthesis and complete assignment of the 1H and 13C NMR spectra of 6-substituted and 2,6-disubstituted pyridazin-3(2H)-ones.

    PubMed

    Besada, Pedro; Costas, Tamara; Vila, Noemi; Chessa, Carla; Terán, Carmen

    2011-07-01

    Several pyridazin-3(2H)-one derivatives were synthesized starting from alkyl furans using oxidation with singlet oxygen to give 4-methoxy or 4-hydroxybutenolides, key intermediates of the synthetic strategy followed. For all pyridazinones reported, a complete assignment of the (1)H and (13)C NMR spectra using one- and two-dimensional NMR spectroscopic methods, which included NOE, DEPT, COSY, HSQC and HMBC experiments, was accomplished. Correlations between the chemical shifts of the heterocyclic ring atoms and substituents at N-2 and C-6 were analyzed.

  5. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  6. Towards understanding mechanistic linkages between climate and leaf wax biomarker 2H/1H: an elevational transect in the Wasatch Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Tipple, B. J.; Ehleringer, J.; Roden, J. S.

    2012-12-01

    Two significant challenges exist in establishing linkages between long-term biomarkers recorded in soils and sediments and often used in paleoclimatic reconstructions, and the much shorter timescale information obtained through other approaches, such as tree-ring analysis, often used in ecological reconstructions. The first of these challenges is to understand the mechanistic basis of how the biological proxy records environmental information. The second is understanding whether or not the phenological (temporal) production of a biomarker adequately integrates the climate on an annual or seasonal basis. Both aspects are of interest in climate reconstruction, but the limited temporal production of the biomarkers can result in different patterns. In order to address these questions, we analyzed the 2H/1H of long-chain n-alkanes from the leaves of Populus angustifolia (Cottonwood) along an elevational transect in Big Cottonwood Canyon near Salt Lake City, Utah (40°37'N, 111°48'W to 40°38'N, 111°40'W) that spanned a relatively short distance (13 km) but included a large 810 m elevation change (1433-2243 m). We compared these leaf wax observations to 2H/1H cellulose data sets along the same elevational gradient. Riparian P. angustifolia were selected because these trees exhibit a constant water source along the entire gradient. The elevational transect was collected during several time periods in 1997, 2011, and 2012 in order to evaluate both inter- and intra-annual variability with changes in environmental conditions over this interval. Our results suggest that there may be a mismatch between the seasonally integrating values of tree rings relative to the leaf wax biomarkers that tend to record only the beginning parts of a growing season.

  7. Detection and classification of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase.

    PubMed

    Xia, B; Pikus, J D; Xia, W; McClay, K; Steffan, R J; Chae, Y K; Westler, W M; Markley, J L; Fox, B G

    1999-01-12

    T4MOC is a 12.3 kDa soluble Rieske ferredoxin that is obligately required for electron transfer between the oxidoreductase and diiron hydroxylase components of toluene 4-monooxygenase from Pseudomonas mendocina KR1. Our preliminary 1H NMR studies of oxidized and reduced T4MOC [Markley, J. L., Xia, B., Chae, Y. K., Cheng, H., Westler, W. M., Pikus, J. D., and Fox, B. G. (1996) in Protein Structure Function Relationships (Zaidi, Z., and Smith, D., Eds.) pp 135-146, Plenum Press, London] revealed the presence of hyperfine-shifted 1H resonances whose short relaxation times made it impractical to use nuclear Overhauser effect (NOE) measurements for assignment purposes. We report here the use of selective isotopic labeling to analyze the hyperfine-shifted 1H, 2H, and 15N signals from T4MOC. Selective deuteration led to identification of signals from the four Hbeta atoms of cluster ligands C45 and C64 in the oxidized and reduced forms of T4MOC. In the reduced state, the Curie temperature dependence of the Hbeta protons corresponded to that predicted from the simple vector spin-coupling model for nuclei associated with the localized ferric site. The signal at 25.5 ppm in the 1H spectrum of reduced T4MOC was assigned on the basis of selective 2H labeling to the His Hepsilon1 atom of one of the cluster ligands (H47 or H67). This assignment was corroborated by a one bond 1H-13C correlation (at 25.39 ppm 1H and 136.11 ppm 13C) observed in spectra of [U-13C]T4MOC with a 1H-13C coupling constant of approximately 192 Hz. The carbon chemical shift and one bond coupling constant are those expected for 1Hepsilon1-13Cepsilon1 in the imidazolium ring of histidine and are inconsistent with values expected for cysteine 1Halpha-13Calpha. The His Hepsilon1 proton exhibited weak Curie temperature dependence from 283 to 303 K, contrary to the anti-Curie temperature dependence predicted from the spin coupling model for nuclei associated with the localized ferrous site. A 1H peak at -12.3 ppm

  8. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  9. Molecular dynamics of poly(L-lactide) biopolymer studied by wide-line solid-state 1H and 2H NMR spectroscopy.

    PubMed

    Nozirov, Farhod; Nazirov, Alovidin; Jurga, Stefan; Fu, Riqiang

    2006-06-01

    The molecular dynamics of poly(L-lactide) (PLLA) biopolymer was characterized through analyses of 1H and 2H NMR line-shapes and spin-lattice relaxation times at different temperatures. At low temperatures (e.g. 90 K), the methyl group rotation is dominant leading to a significant reduction in the proton second moment. Fast methyl group reorientation occurs at ca. 130 K. In additional to the fast methyl group rotation, hydroxyl groups start to reorient as the temperature increases further, eventually leading to the breakdown of the segments of the biopolymer chains above its glass transition temperature Tg of 323 K. The analyses of the 2H NMR line-shapes indicate that both the methyl and hydroxyl reorientations can be described by the so-called cone model, in which the former has three equilibrium positions with theta(C-D) = 70.5 degrees and phi = 120 degrees while the latter one exhibits two equilibrium positions with theta(O-D) = 78 degrees and phi = 180 degrees .

  10. Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ring‐down laser spectroscopy

    PubMed Central

    Mather, Ian; Rolfe, James; Evans, Nicholas P.; Herwartz, Daniel; Staubwasser, Michael; Hodell, David A.

    2015-01-01

    Rationale The recent development of cavity ring‐down laser spectroscopy (CRDS) instruments capable of measuring 17O‐excess in water has created new opportunities for studying the hydrologic cycle. Here we apply this new method to studying the triple oxygen (17O/16O, 18O/16O) and hydrogen (2H/1H) isotope ratios of gypsum hydration water (GHW), which can provide information about the conditions under which the mineral formed and subsequent post‐depositional interaction with other fluids. Methods We developed a semi‐automated procedure for extracting GHW by slowly heating the sample to 400°C in vacuo and cryogenically trapping the evolved water. The isotopic composition (δ17O, δ18O and δ2H values) of the GHW is subsequently measured by CRDS. The extraction apparatus allows the dehydration of five samples and one standard simultaneously, thereby increasing the long‐term precision and sample throughput compared with previous methods. The apparatus is also useful for distilling brines prior to isotopic analysis. A direct comparison is made between results of 17O‐excess in GHW obtained by CRDS and fluorination followed by isotope ratio mass spectrometry (IRMS) of O2. Results The long‐term analytical precision of our method of extraction and isotopic analysis of GHW by CRDS is ±0.07‰ for δ17O values, ±0.13‰ for δ18O values and ±0.49‰ for δ2H values (all ±1SD), and ±1.1‰ and ±8 per meg for the deuterium‐excess and 17O‐excess, respectively. Accurate measurement of the 17O‐excess values of GHW, of both synthetic and natural samples, requires the use of a micro‐combustion module (MCM). This accessory removes contaminants (VOCs, H2S, etc.) from the water vapour stream that interfere with the wavelengths used for spectroscopic measurement of water isotopologues. CRDS/MCM and IRMS methods yield similar isotopic results for the analysis of both synthetic and natural gypsum samples within analytical error of the two methods. Conclusions We

  11. Method for determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H (tritium) concentrations of xylem waters and subsurface waters using time-series sampling

    SciTech Connect

    1999-11-09

    This application describes a method for the determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H concentrations of xylem and subsurface waters using time-series sampling, insulating sampling chambers, and combined {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 3}H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen ({sup 18}O/{sup 16}O) and hydrogen ({sup 2}H/{sup 1}H and/or {sup 3}H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  12. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    DOEpatents

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  13. Hydrogen isotope systematics in C3 and C4 saltmarsh plants: the importance of biochemical processes in controlling interspecies variation in n-alkane 2H/1H composition

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Pedentchouk, N.

    2013-12-01

    Palaeohydrological studies have increasingly utilised the 2H/1H composition of leaf wax n-alkyl lipids to extract information from the geological record. Interpretation of the sedimentary biomarker δ2H signal, however, requires detailed understanding of the mechanisms controlling hydrogen isotope fractionation between source water and n-alkyl lipids (ɛl/w). The existence of large ranges in published n-alkyl δ2H and ɛl/w among modern plant species growing at a single location suggests that the lipid signal incorporated into the sedimentary record could be sensitive to relatively small-scale changes in vegetation assemblages. The mechanisms responsible for these interspecies differences are currently poorly constrained. Previous research has had limited success explaining n-alkyl δ2H by reference to physical processes controlling the movement of water inside/outside and within the leaf, while the relative importance of biochemical processes remains largely unexplored. This project aims to identify the mechanisms controlling interspecies variation in n-alkane 2H/1H among a range of C3 and C4 plants from a Norfolk saltmarsh in the UK. To distinguish between environmental, physical and biochemical controls, we conducted 2H/1H analysis of soil, xylem, and leaf waters and n-alkanes (i) across multiple sampling sites within the marsh, (ii) throughout the 2012 growth season, and (iii) at different times of the day. We also measured the 2H/1H of chloroplast phytol in 7 samples collected at the end of 2012. Leaf wax n-alkane δ2H varied among the sampled species by over 100‰ throughout the 2012 growth season. Environmental processes that could influence control source water 2H/1H did not fully account for this interspecies variation - soil water 2H/1H varied by only 35‰ with marsh sub-environment and exhibited site-specific seasonal shifts by no more than 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed by only 29‰. We

  14. One-pot synthesis and antibacterial activities of novel 1H-pyridazino[1,2-a]indazole-1,6,9(2H,11H)-triones.

    PubMed

    Sayyafi, Maryam; Soorki, Ali Abolhasani; Bazgir, Ayoob

    2008-09-01

    Synthesis of novel 1H-pyridazino[1,2-a]indazole-1,6,9(2H,11H)-triones using one-pot, three components reaction of 1,2-dihydropyridazine-3,6-dione, dimedone and aldehydes under solvent-free conditions has been reported. These products were evaluated in vitro for their antibacterial activities.

  15. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  16. Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.

    PubMed

    Tipple, Brett J; Berke, Melissa A; Hambach, Bastian; Roden, John S; Ehleringer, James R

    2015-06-01

    The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.

  17. Enantioselective Synthesis of 3,4-Dihydro-1,2-oxazepin-5(2H)-ones and 2,3-Dihydropyridin-4(1H)-ones from β-Substituted β-Hydroxyaminoaldehydes

    PubMed Central

    2015-01-01

    The synthesis of 3,4-dihydro-1,2-oxazepin-5(2H)-ones and 2,3-dihydropyridin-4(1H)-ones from β-substituted β-hydroxyaminoaldehydes is reported. The β-hydroxyaminoaldehydes were prepared by enantioselective organocatalytic 1,4-addition of N-tert-butyl (tert-butyldimethylsilyl)oxycarbamate to α,β-unsaturated aldehydes (MacMillan protocol). Alkyne addition to the aldehydes followed by alcohol oxidation furnished N-Boc O-TBS-protected β-aminoynones. Removal of the TBS protecting group initiated a 7-endo-dig cyclization to yield previously unknown 3,4-dihydro-1,2-oxazepin-5(2H)-ones. Reductive cleavage of the N–O bond of the oxazepinones and Boc-deprotection provided 2-substituted 2,3-dihydropyridin-4(1H)-ones via 6-endo-trig cyclization. 2,3-Dihydropyridin-4(1H)-ones are versatile intermediates that have been used for the synthesis of many alkaloids. The new protocol allows the synthesis of 3-dihydropyridin-4(1H)-ones carrying an array of substituents at C2 that cannot be prepared from commercial β-amino acids or by one-carbon homologation of proteinogenic amino acids. The use of readily available β-hydroxylaminoaldehydes expands the utility of our previously reported method to prepare 2,3-dihydropyridin-4(1H)-ones from β-amino acids as the source of diversity and chirality. A broad substrate scope is possible because β-aminoaldehydes can be prepared from α,β-unsaturated aldehydes by an enantioselective organocatalytic process. PMID:24785413

  18. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water.

    PubMed

    Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M

    2011-11-15

    Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves.

  19. Synthesis of New 2-Halo-2-(1H-tetrazol-5-yl)-2H-azirines via a Non-Classical Wittig Reaction.

    PubMed

    Cardoso, Ana L; Sousa, Carmo; Henriques, Marta S C; Paixão, José A; Pinho e Melo, Teresa M V D

    2015-12-12

    The synthesis and reactivity of tetrazol-5-yl-phosphorus ylides towards N-halosuccinimide/TMSN₃ reagent systems was explored, opening the way to new haloazidoalkenes bearing a tetrazol-5-yl substituent. These compounds were obtained as single isomers, except in one case. X-ray crystal structures were determined for three derivatives, establishing that the non-classical Wittig reaction leads to the selective synthesis of haloazidoalkenes with (Z)-configuration. The thermolysis of the haloazidoalkenes afforded new 2-halo-2-(tetrazol-5-yl)-2H-azirines in high yields. Thus, the reported synthetic methodologies gave access to important building blocks in organic synthesis, vinyl tetrazoles and 2-halo-2-(tetrazol-5-yl)-2H-azirine derivatives.

  20. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna.

  1. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  2. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by (1)H-, (2)H-, (31)P-NMR and Electron Spin Resonance.

    PubMed

    Debouzy, Jean-Claude; Crouzier, David; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by (1)H-NMR in solution and its membrane interactions were studied by (1)H-NMR in small unilamellar vesicles and by (31)P (2)H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. (1)H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level ((31)P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.

  3. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  4. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  5. Capture and dissociation in the complex-forming CH(v = 0,1) + D2 → CHD + D, CD2 + H, CD + HD reactions and comparison with CH(v = 0,1) + H2.

    PubMed

    González, Miguel; Mayneris-Perxachs, Jordi; Saracibar, Amaia; Garcia, Ernesto

    2011-08-14

    Rate coefficients for the CH(v = 0,1) + D(2) reaction have been determined for all possible channels (T: 200-1200 K), using the quasiclassical trajectory method and a suitable treatment of the zero point energy. Calculations have also been performed on the CH(v = 1) + H(2) reaction and the CH(v = 1) + D(2) → CH(v = 0) + D(2) process. Most of the results can be understood considering the key role played by the deep minimum of the potential energy surface (PES), the barrierless character of the PES, the energy of the reaction channels, and the kinematics. The good agreement found between theory and experiment for the rate coefficients of the capture process of CH(v = 0) + D(2), the total reactivity of CH(v = 1) + D(2), H(2), as well as the good agreement observed for the related CH(v = 0) + H(2) system (capture and abstraction), gives confidence on the theoretical rate coefficients obtained for the capture processes of CH(v = 1) + D(2), H(2), the individual reactive processes of CH(v = 1) + D(2), H(2), the abstraction and abstraction-exchange reactions for CH(v = 0) + D(2), and the inelastic process mentioned above, for which there are no experimental data available, and that can be useful in combustion chemistry and astrochemistry.

  6. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Synthesis, crystal structure and vibrational spectroscopic analysis of tetrakis(5-amino-1-H-1,2,4-triazol-4-ium) decachlorodibismuthate(III):[C2H5N4]4Bi2Cl10

    NASA Astrophysics Data System (ADS)

    Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Nasr, C. Ben

    2015-10-01

    Physico-chemical properties of a new organic bismuthate(III), [C2H5N4]4Bi2Cl10 are discussed on the basis of X-ray crystal structure investigation. This compound crystallizes in the monoclinic space group C2/c, with a = 16.3622(3), b = 12.7941(2), c = 14.8178(2) Å, β = 98.5660(10)°, V = 3067.35(8) Å3 and Z = 4. The crystal structure consists of discrete binuclear [Bi2Cl10]4- anions and 3-amino-1-H-1,2,4-triazolium cations. The crystal packing is governed by strong Nsbnd H⋯N and weak Nsbnd H⋯Cl hydrogen bonds and Π-Π stacking interactions to form three-dimensional network. The 13C CP-MAS NMR spectrum is in agreement with the X-ray structure. The infrared study confirms the presence of the organic cation [C2H5N4]+. The vibrational absorption bands were identified by infrared spectroscopy and DFT calculations allowed their attribution.

  8. Cardiotonic agents. 7. Prodrug derivatives of 4-ethyl-1,3-dihydro- 5-[4-(2-methyl-1H-imidazol-1-yl)benzoyl]-2H-imidazol-2-one.

    PubMed

    Shaw, K J; Erhardt, P W; Hagedorn, A A; Pease, C A; Ingebretsen, W R; Wiggins, J R

    1992-04-03

    The cardiotonic agent 4-ethyl-1,3-dihydro-5-4-(2-methyl-1H-imidazol-1-yl)benzoyl]-2H- imidazol-2-one (1) was found to have low bioavailability when administered orally to rats and dogs. A series of N-acyl derivatives, an underutilized prodrug of acidic NH compounds, has been synthesized and tested for their ability to improve the oral bioavailability of 1. Reaction of the monosodium salt of 1 with various anhydrides afforded the N-1 monoacylimidazolones with surprisingly high regioselectivity. In addition to the prodrugs, acylation of 1 with propionic or phenylacetic anhydride led to the novel 3H-pyrrolo[1,2-c]imidazole-3,5(2H)-diones 6. The prodrugs showed a significant increase in the partition coefficients with a minor decrease in the aqueous solubility. The benzoyl derivative 4b exhibited the highest stability in both pH 1.5 and 7.4 buffer solutions. Further evaluation of 4b showed rapid conversion to 1 in canine plasma (t1/2 = 38 min), and human plasma (t1/2 = 10 min). Oral studies indicated that the bioavailability of 4b was increased to greater than 75% (compared to less than 20% for 1), and hemodynamic studies demonstrated that the selective inotropic profile of 1 was retained.

  9. Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug–Drug Interactions

    PubMed Central

    Mandíková, Jana; Volková, Marie; Pávek, Petr; Navrátilová, Lucie; Hyršová, Lucie; Janeba, Zlatko; Pavlík, Jan; Bárta, Pavel; Trejtnar, František

    2016-01-01

    Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug–drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir. PMID:26779022

  10. Structure vs. composition: A solid-state 1H and 29Si NMR study of quenched glasses along the Na 2O-SiO 2-H 2O join

    NASA Astrophysics Data System (ADS)

    Cody, George D.; Mysen, Bjorn O.; Lee, Sung Keun

    2005-05-01

    A suite of six hydrous (7 wt.% H 2O) sodium silicate glasses spanning sodium octasilicate to sodium disilicate in composition were analyzed using 29Si single pulse (SP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, 1H- 29Si cross polarization (CP) MAS NMR, and fast MAS 1H-NMR. From the 29Si SPMAS data it is observed that at low sodium compositions dissolved water significantly depolymerizes the silicate network. At higher sodium contents, however, dissolved H 2O does not affect a significant increase in depolymerization over that predicted based on the Na/Si ratio alone. The fast MAS 1H-NMR data reveal considerable complexity in proton environments in each of the glasses studied. The fast MAS 1H-NMR spectra of the highest sodium concentration glasses do not exhibit evidence of signficantly greater fractions of dissolved water as molecular H 2O than the lower sodium concentration glasses requiring that the decrease in polymerization at high sodium contents involves a change in sodium solution mechanism. Variable contact time 1H- 29Si cross polarization (CP) MAS NMR data reveal an increase in the rotating frame spin lattice relaxation rate constant ( T1ρ*) for various Q n species with increasing sodium content that correlates with a reduction in the average 1H- 29Si coupling strength. At the highest sodium concentration, however, T1ρ* drops significantly, consistent with a change in the Na 2O solution mechanism.

  11. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.

  12. Spectral (FT-IR, FT-Raman, UV, and fluorescence), DFT, and solid state interaction analyses of (E)-4-(3,4-dimethoxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Sayed; Lee, Dong-Ung

    2017-01-01

    Here, the authors report a combined experimental and theoretical study on the molecular structure and vibrational spectral analyses of (E)-4-(3,4-dimethoxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (DMBADPP), a pyrazolone-based bioactive molecule. Density functional theory (DFT) calculations were carried out to obtain the ground state optimized geometry of the molecule using the B3LYP method and the 6-311G(d,p) basis set. Calculated results agreed well with X-ray data. The vibrational spectra of DMBADPP were calculated at the same level of theory and theoretical scaled vibrational frequencies and assignments were found to agree well with experimental FT-IR and FT-Raman values. Partial atomic charge and molecular electrostatic potential (MEP) surface map analyses were performed to study reactive sites. Calculated frontier molecular orbitals (FMOs) energies and chemical reactivity parameters indicated that the DMBADPP exhibits high polarizability and low kinetic susceptibility. Excitation energy, wavelength, and oscillator strength were calculated using the Time Dependant-DFT/B3LYP/6-311G(d,p) method and compared with experimental UV-Vis spectra obtained in ethanol. However, UV-Vis and fluorescence spectroscopic experiments showed that DMBADPP has good absorption and fluorescent properties and a large Stokes shift. In addition, the solid state behaviors of molecules in crystals were analyzed quantitatively and qualitatively using 3D Hirshfeld surface analysis and associated 2D fingerprint plots.

  13. Synthesis and crystal structure of a copper complex with (E)-2-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one ligand

    SciTech Connect

    Sun, Shu-Wen; Zhang, Xiao; Wang, Gao-Feng

    2015-12-15

    The title compound, C{sub 35}H{sub 23}CuF{sub 6}N{sub 3}O{sub 5}S{sub 2} (1), was synthesized by the reaction of Cu(tta){sub 2} and L{sup 1}, (L{sup 1} = (E)-2-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one) in the dichloromethane solution. It crystallizes in the monoclinic, space group P2{sub 1}/c with a = 33.8388(5), b = 9.3874(2), c = 21.8194(4) Å, β = 95.522(2), V = 6898.9(2) Å{sup 3}, Z = 8, D{sub x} = 1.554 Mg/m{sup 3}, F(000) = 3272, µ = 0.834 mm{sup –1}, R{sub 1} = 0.0639, wR{sub 2} = 0.1637. The copper(II) ion of 1 is in a distorted square-pyramidal environment with four O atoms of the two tta ligands and one N atom of triazole ligand L{sup 1}. Single-crystal X-ray diffraction data revealed that the hydrogen bonds, weak C–H···π and π···π interactions in the crystals link the coordination units to form 3D supramolecular structures.

  14. Crystalline 1H-1,2,3-triazol-5-ylidenes

    SciTech Connect

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  15. Kinetic isotope effects and tunneling in cyclic double and triple proton transfer between acetic acid and methanol in tetrahydrofuran studied by dynamic /sup 1/H and /sup 2/H NMR spectroscopy

    SciTech Connect

    Gerritzen, D.; Limbach, H.H.

    1984-02-22

    Previous studies of proton exchange and hydrogen bonding between acetic acid (A) and methanol (B) in tetrahydrofuran-d/sub 8/ have been extended to the study of the primary kinetic H/D isotope effects of the exchange. For this purpose a new combination of dynamic /sup 1/H and /sup 2/H NMR spectroscopy has been used to perform an ''NMR proton inventory''. The following rate law was obtained at deuterium fractions D=0 and D=1 of the exchangeable protonic sites: NU=k/sup LL/ C/sub A/C/sub B/+k/sub LLL/C/sub A//sup 2/C/sub B/ (L=H,D). This was attributed to a superposition of cyclic double and triple proton exchange involving one and two molecules of acetic acid and one molecule of methanol. Additional experiments were carried out at intermediate deuterium fractions. Thus, the kinetic HH/HD/DD and HHH/HHD/DDD isotope effects of the exchange as a function of the temperature was measured successfully. This has been achieved for the first time for well-defined intermolecular multiple-proton-transfer reactions. The possibility of determining the number of protons transferred in a chemical reaction by performing an NMR proton inventory is discussed. The rule of the geometric mean (RGM) is fulfilled for the kinetic isotope effects of the LLL process, which are almost independent of temperature within the margin of error. By contrast, the RGM is not fullfilled for the LL process, and the kinetic isotope effects depend strongly on the temperature. The energies of activation and frequency factors fit Bell's criteria of tunneling. The kinetic results are in good agreement with predictions of transition-state theory but can be explained by an intermolecular tunneling model. The results are proof that acetic acid and methanol form cyclic hydrogen-bonded 1:1 and 2:1 complexes which have very low concentration in tetrahydrofuran.

  16. Human PIV-2 recombinant Sendai virus (rSeV) elicits durable immunity and combines with two additional rSeVs to protect against hPIV-1, hPIV-2, hPIV-3, and RSV.

    PubMed

    Jones, Bart; Zhan, Xiaoyan; Mishin, Vasiliy; Slobod, Karen S; Surman, Sherri; Russell, Charles J; Portner, Allen; Hurwitz, Julia L

    2009-03-13

    The human parainfluenza viruses (hPIVs) and respiratory syncytial viruses (RSVs) are the leading causes of hospitalizations due to respiratory viral disease in infants and young children, but no vaccines are yet available. Here we describe the use of recombinant Sendai viruses (rSeVs) as candidate vaccine vectors for these respiratory viruses in a cotton rat model. Two new Sendai virus (SeV)-based hPIV-2 vaccine constructs were generated by inserting the fusion (F) gene or the hemagglutinin-neuraminidase (HN) gene from hPIV-2 into the rSeV genome. The inoculation of either vaccine into cotton rats elicited neutralizing antibodies toward both homologous and heterologous hPIV-2 virus isolates. The vaccines elicited robust and durable antibodies toward hPIV-2, and cotton rats immunized with individual or mixed vaccines were fully protected against hPIV-2 infections of the lower respiratory tract. The immune responses toward a single inoculation with rSeV vaccines were long-lasting and cotton rats were protected against viral challenge for as long as 11 months after vaccination. One inoculation with a mixture of the hPIV-2-HN-expressing construct and two additional rSeVs (expressing the F protein of RSV and the HN protein of hPIV-3) resulted in protection against challenge viruses hPIV-1, hPIV-2, hPIV-3, and RSV. Results identify SeV vectors as promising vaccine candidates for four different paramyxoviruses, each responsible for serious respiratory infections in children.

  17. Pressure and temperature effects on 2H spin-lattice relaxation times and 1H chemical shifts in tert-butyl alcohol- and urea-D2O solutions

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Ibuki, Kazuyasu; Ueno, Masakatsu

    1998-01-01

    The pressure and temperature effects of hydrophobic hydration were studied by NMR spectroscopy. The 1H chemical shifts (δ) were measured at 7.7, 29.9, and 48.4 °C under high pressure up to 294 MPa for HDO contained as impurity in neat D2O, 1 mol kg-1 tert-butyl alcohol (TBA)-D2O, and 1 mol kg-1 urea-D2O solutions, for the methyl group of TBA in the TBA-D2O solution, and for the amino group of urea in the urea-D2O solution. The 2H spin-lattice relaxation times (T1) were measured under the same conditions as the chemical shift measurements for D2O in neat D2O, TBA-D2O and urea-D2O solutions with organic contents up to 8 mol%. The following features are observed for the pressure effect on δ (HDO) and 2H-T1 in TBA-D2O solutions: (1) The δ (HDO) exhibits a downfield shift relative to that in neat D2O, and the difference of δ (HDO) between TBA solution and neat D2O becomes larger with increasing pressure at lower temperature. (2) The decrement of the rotational correlation time of water in the hydration shell of TBA (τcs) relative to the value at atmospheric pressure is smaller than that in the bulk (τc0). (3) The pressure coefficients of T1 are positive in dilute solutions but are negative in more than 4 to 5 mol% solutions. These results suggest that the hydrophobic hydration shell of TBA is different than the open structure of water present in bulk, and resists pressure more strongly than the open structure of water in the bulk. In solutions of 4 to 5 mol%, the hydration shell collapses. On the other hand, the τcs in the hydration shell of urea is slightly larger than that in bulk water at lower pressure, but is obviously larger at higher pressure. In view of the rotational motion of water molecules, urea seems to strengthen the water structure slightly rather than weaken it, although δ (HDO) approaches that in the bulk with pressure. It is difficult to classify urea into a structure maker or a breaker.

  18. Ultrasonic degradation of 1-H-benzotriazole in water.

    PubMed

    Zúñiga-Benítez, Henry; Soltan, Jafar; Peñuela, Gustavo

    2014-01-01

    This paper reports on the effect of different parameters of ultrasonic power, pollutant initial concentration, pH and the presence of co-existing chemical species (oxygen, nitrogen, ozone, and radical scavengers) on the ultrasonic degradation of the endocrine disruptor 1-H-benzotriazole. Increasing the 1-H-benzotriazole initial concentration from 41.97 to 167.88 μM increased the pollutant degradation rate by 40%. Likewise, a high applied ultrasonic power enhanced the extent of 1-H-benzotriazole removal and its initial degradation rate, which was accelerated in the presence of ozone and oxygen, but inhibited by nitrogen. The most favorable pH for the ultrasonic degradation was acidic media, reaching ∼90% pollutant removal in 2 h. The hydroxyl free radical concentration in the reaction medium was proportional to the ultrasound power and the irradiation time. Kinetic models based on a Langmuir-type mechanism were used to predict the pollutant sonochemical degradation. It was concluded that degradation takes place at both the bubble-liquid interfacial region and in the bulk solution, and OH radicals were the main species responsible for the reaction. Hydroxyl free radicals were generated by water pyrolysis and then diffused into the interfacial region and the bulk solution where most of the solute molecules were present.

  19. Electronic structures and selective fluoride sensing features of Os(bpy)2(HL(2-)) and [{Os(bpy)2}2(μ-HL(2-))](2+) (H3L: 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid).

    PubMed

    Das, Ankita; Agarwala, Hemlata; Kundu, Tanaya; Ghosh, Prabir; Mondal, Sudipta; Mobin, Shaikh M; Lahiri, Goutam Kumar

    2014-10-07

    The article deals with the newly designed mononuclear and asymmetric dinuclear osmium(ii) complexes Os(II)(bpy)2(HL(2-)) (1) and [(bpy)2Os(II)(μ-HL(2-))Os(II)(bpy)2](Cl)2 ([2](Cl)2)/[(bpy)2Os(II)(μ-HL(2-))Os(II)(bpy)2](ClO4)2 ([2](ClO4)2), respectively, (H3L = 5-(1H-benzo[d]imidazol-2-yl)-1H-imidazole-4-carboxylic acid and bpy = 2,2'-bipyridine). The identity of 1 has been established by its single crystal X-ray structure. The ligand (HL(2-))-based primary oxidation process (E, 0.23 V versus SCE) along with the partial metal contribution (∼20%) in 1 has been revealed by the ligand-dominated HOMO of 1 (HL(2-): 88%, Os: 8%), as well as by the Mulliken spin density distribution of 1(+) (HL(2-): 0.878, Os: 0.220). Accordingly, 1(+) exhibits a free radical type EPR at 77 K with a partial metal-based anisotropic feature (g1 = 2.127, g2 = 2.096, g3 = 2.046; = 2.089; Δg = 0.08). (1)H-NMR of the dinuclear 2(2+) in CDCl3 suggests an intimate mixture of two diastereomeric forms in a 1 : 1 ratio. The DFT-supported predominantly Os(ii)/Os(iii)-based couples of asymmetric 2(2+) at 0.24 V and 0.50 V versus SCE result in a comproportionation constant (Kc) value of 8.2 × 10(4). The class I mixed valent state of 2(3+) (S = 1/2) has, however, been corroborated by the Mulliken spin density distribution of Os1: 0.887, Os2: 0.005, HL(2-): 0.117, as well as by the absence of a low-energy IVCT (intervalence charge transfer) band in the near-IR region (up to 2000 nm). The appreciable spin accumulation on the bridge in 2(3+) or 2(4+) (S = 1, Os1: 0.915, Os2: 0.811 and HL(2-): 0.275) implies a mixed electronic structural form of [(bpy)2Os(III)(μ-HL(2-))Os(II)(bpy)2](3+)(major)/[(bpy)2Os(II)(μ-HL˙(-))Os(II)(bpy)2](3+)(minor) or [(bpy)2Os(III)(μ-HL(2-))Os(III)(bpy)2](4+)(major)/[(bpy)2Os(III)(μ-HL˙(-))Os(II)(bpy)2](4+) (minor), respectively. The mixed valent {Os(III)(μ-HL(2-))Os(II)} state in 2(3+), however, fails to show EPR at 77 K due to the rapid spin relaxation

  20. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  1. An oxazolo[3,2-b]indazole route to 1H-indazolones.

    PubMed

    Oakdale, James S; Solano, Danielle M; Fettinger, James C; Haddadin, Makhluf J; Kurth, Mark J

    2009-07-02

    The novel heterocycle 2,3-dihydrooxazolo[3,2-b]indazole has been synthesized and utilized to provide easy access to 1H-indazolones, particularly the previously unreported 2-(2-alkoxyethyl)-1H-indazol-3(2H)-ones. Mechanistic as well as optimization and reaction scope studies are reported.

  2. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential.

    PubMed

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.

  3. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  4. Onflow liquid chromatography at critical conditions coupled to (1)H and (2)H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition.

    PubMed

    Hehn, Mathias; Sinha, Pritish; Pasch, Harald; Hiller, Wolf

    2015-03-27

    The present work addresses a major challenge in polymer chromatography by developing a method to separate and analyze polymers with identical molar masses, chemical structures and tacticities that is solely based on differences in isotope composition. For the first time, liquid chromatography at critical conditions (LCCC) was used to separate PMMA regarding the H and D isotopes. At critical conditions of H-PMMA, D-PMMA eluted in the adsorption mode and vice versa. By online onflow LCCC-NMR, both PMMA species were clearly identified. Different from other detectors, NMR can distinguish between H and D. Onflow LCCC-H/NMR and LCCC-D/NMR measurements were carried out and the H/D-blend components were detected. (1)H and (13)C NMR provided the tacticity of protonated PMMA. Double resonance (13)C{H} and triple resonance (13)C{H,D} provided the tacticity of the deuterated samples. Samples with similar tacticities were used to ensure that separation occurs solely regarding the isotope labeling.

  5. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  6. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  7. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; ...

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  8. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  9. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  10. Nuclear receptor NR1H3 in familial multiple sclerosis

    PubMed Central

    Wang, Zhe; Sadovnick, A. Dessa; Traboulsee, Anthony L.; Ross, Jay P.; Bernales, Cecily Q.; Encarnacion, Mary; Yee, Irene M.; de Lemos, Madonna; Greenwood, Talitha; Lee, Joshua D.; Wright, Galen; Ross, Colin J.; Zhang, Si; Song, Weihong; Vilariño-Güell, Carles

    2016-01-01

    SUMMARY Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS. PMID:27253448

  11. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  12. Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012.

    PubMed

    Huang, S Y; Yang, J R; Lin, Y J; Yang, C H; Cheng, M C; Liu, M T; Wu, H S; Chang, F Y

    2015-10-01

    In Taiwan, avian influenza virus (AIV) subtypes H5N2, H6N1 and H7N3 have been identified in domestic poultry, and several strains of these subtypes have become endemic in poultry. To evaluate the potential of avian-to-human transmission due to occupational exposure, an exploratory analysis of AIV antibody status in poultry workers was conducted. We enrolled 670 poultry workers, including 335 live poultry vendors (LPVs), 335 poultry farmers (PFs), and 577 non-poultry workers (NPWs). Serum antibody titres against various subtypes of viruses were analysed and compared. The overall seropositivity rates in LPVs and PFs were 2·99% (10/335) and 1·79% (6/335), respectively, against H5N2; and 0·6% (2/335) and 1·19% (4/335), respectively, for H7N3 virus. Of NPWs, 0·35% (2/577) and 0·17% (1/577) were seropositive for H5N2 and H7N3, respectively. Geographical analysis revealed that poultry workers whose workplaces were near locations where H5N2 outbreaks in poultry have been reported face greater risks of being exposed to viruses that result in elevated H5N2 antibody titres. H6N1 antibodies were detected in only one PF, and no H7N9 antibodies were found in the study subjects. Subclinical infections caused by H5N2, H6N1 and H7N3 viruses were thus identified in poultry workers in Taiwan. Occupational exposure is associated with a high risk of AIV infection, and the seroprevalence of particular avian influenza strains in humans reflects the endemic strains in poultry in this region.

  13. HIST1H2AA — EDRN Public Portal

    Cancer.gov

    HIST1H2AA, a member of the histone 2A family, is a core component of the nucleosome. The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (the octamer wraps approximately 147 bp of DNA). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. The HIST1H2AA gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene contain a palindromic termination element.

  14. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  15. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  16. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  17. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  18. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  19. Complete assignment of NMR data of 22 phenyl-1H-pyrazoles' derivatives.

    PubMed

    de Oliveira, Aline Lima; Alves de Oliveira, Carlos Henrique; Mairink, Laura Maia; Pazini, Francine; Menegatti, Ricardo; Lião, Luciano Morais

    2011-08-01

    Complete assignment of (1)H and (13)C NMR chemical shifts and J((1)H/(1)H and (1)H/(19)F) coupling constants for 22 1-phenyl-1H-pyrazoles' derivates were performed using the concerted application of (1)H 1D and (1)H, (13)C 2D gs-HSQC and gs-HMBC experiments. All 1-phenyl-1H-pyrazoles' derivatives were synthesized as described by Finar and co-workers. The formylated 1-phenyl-1H-pyrazoles' derivatives were performed under Duff's conditions.

  20. Differentiation between cortical atrophy and hydrocephalus using 1H MRS.

    PubMed

    Bluml, S; McComb, J G; Ross, B D

    1997-03-01

    Quantitative 1H MRS to determine cerebral metabolite patterns and MRI to determine CSF flow were applied to 12 patients with ventricular dilation-Group A, cortical atrophy (N = 5); or Group B, hydrocephalus (N = 7)- and in 9 normal controls. While mean brain water (Group A = 80% +/- 6; Group B = 86% +/- 5; normal = 85% +/- 4) did not differ between the two groups of patients and controls, 1H MRS distinguished those patients with cortical atrophy (Group A) (N-acetylaspartate/ creatine (NAA/Cr) = 0.69 +/- 0.17, versus normal = 1.06 +/- 0.16; P < 0.002; [NAA] = 5.9 +/- 1.3 mmoles/kg, versus normal 8.0 +/- 1.4; P < 0.02) from those with hydrocephalus (Group B) (NAA/Cr = 1.16 +/- 0.11; [NAA] = 9.2 +/- 1.2; P > 0.13 and P > 0.07). Lactate levels were elevated in 3/5 patients with cortical atrophy, but in 0/7 of those with hydrocephalus. Mean absolute concentrations (mmoles/kg) of the five major cerebral osmolytes were 41 +/- 4 (Group A), 43 +/- 6 (Group B), and 42 +/- 4 (normal), so that despite massive brain deformation, constant osmolality was maintained. 1H MRS may directly benefit surgical planning in hydrocephalus infants by clearly identifying those with cortical atrophy who do not require CSF diversion. Thinning of the cortical mantle in hydrocephalus may result from osmotically driven reduction in individual cell volumes, (shrinkage), rather than brain-compression.

  1. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  2. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  3. 23Na and (1)H NMR microimaging of intact plants.

    PubMed

    Olt, S; Krötz, E; Komor, E; Rokitta, M; Haase, A

    2000-06-01

    (23)Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using (23)Na as well as (1)H NMR microimaging. Experiments were performed at 11.75 T with a double resonant (23)Na-(1)H probehead. The probehead was homebuilt and equipped with a climate chamber. T(1) and T(2) of (23)Na were measured in the cross section of the hypocotyl. Within 85 min (23)Na images with an in-plane resolution of 156 x 156 micrometer were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, (23)Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  4. Metabolomic insight into soy sauce through (1)H NMR spectroscopy.

    PubMed

    Ko, Bong-Kuk; Ahn, Hyuk-Jin; van den Berg, Frans; Lee, Cherl-Ho; Hong, Young-Shick

    2009-08-12

    Soy sauce, a well-known seasoning in Asia and throughout the world, consists of many metabolites that are produced during fermentation or aging and that have various health benefits. However, their comprehensive assessment has been limited due to targeted or instrumentally specific analysis. This paper presents for the first time a metabolic characterization of soy sauce, especially that aged up to 12 years, to obtain a global understanding of the metabolic variations through (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Elevated amino acids and organic acids and the consumption of carbohydrate were associated with continuous involvement of microflora in aging for 12 years. In particular, continuous increases in the levels of betaine were found during aging for up to 12 years, demonstrating that microbial- or enzyme-related metabolites were also coupled with osmotolerant or halophilic bacteria present during aging. This work provides global insights into soy sauce through a (1)H NMR-based metabolomic approach that enhances the current understanding of the holistic metabolome and allows assessment of soy sauce quality.

  5. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    PubMed Central

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  6. Crystal structure of (E)-2-[(2-bromopyridin-3-yl)methyl-idene]-6-meth-oxy-3,4-di-hydro-naphthalen-1(2H)-one and 3-[(E)-(6-meth-oxy-1-oxo-1,2,3,4-tetra-hydro-naphthalen-2-ylidene)meth-yl]pyridin-2(1H)-one.

    PubMed

    Zingales, Sarah K; Moore, Morgan E; Goetz, Andrew D; Padgett, Clifford W

    2016-07-01

    The title compounds C17H14BrNO2, (I), and C17H15NO3, (II), were obtained from the reaction of 6-meth-oxy-3,4-di-hydro-2H-naphthalen-1-one and 2-bromo-nicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π-π inter-actions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent mol-ecules, A and B, in the asymmetric unit; both are non-planar, the dihedral angles between the meth-oxy-benzene and 1H-pyridin-2-one mean planes being 35.07 (9)° in A and 35.28 (9)°in B. In each mol-ecule, the 1H-pyridin-2-one unit participates in inter-molecular N-H⋯O hydrogen bonding to another mol-ecule of the same type (A to A or B to B). The structure also displays π-π inter-actions between the pyridyl and the benzene rings of non-equivalent mol-ecules (viz., A to B and B to A).

  7. Crystal structure of 1H,1'H-[2,2'-biimid-azol]-3-ium hydrogen tartrate hemi-hydrate.

    PubMed

    Gao, Xiao-Li; Bian, Li-Fang; Guo, Shao-Wei

    2014-11-01

    In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

  8. The structure and properties of 5,6-dinitro-1H-benzotriazole

    NASA Astrophysics Data System (ADS)

    Santa María, Dolores; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2016-06-01

    5,6-Dinitro-1H-benzotriazole crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains the planar 1H-tautomer together with a water molecule of crystallization. Each water molecule is hydrogen bonded to three adjacent 5,6-dinitrobenzotriazoles forming a tape along the b-axis of the crystal. These tapes stack along the c-axis through hydrogen bonds involving the water molecules and one of the nitro groups leading to a bidimensional structure. Solid-state 13C and 15N CPMAS NMR allow to confirm that the tautomer present is the 1H one. In DMSO-d6 solution the results are quite different and, based on GIAO/B3LYP/6-311++G(d,p) calculations, lead us to conclude that the major tautomer is the 5,6-dinitro-2H-benzotriazole, a surprising result that contradicts the rule that the major tautomer in solution coincides with the one present in the crystal. An anhydrous pseudopolymorph of 5,6-dinitro-1H-benzotriazole has been obtained as a non-crystalline form and from solid-state NMR and theoretical calculations, we conclude that it is an 1H-tautomer.

  9. Liver Metabolite Concentrations Measured with 1H MR Spectroscopy

    PubMed Central

    Pettigrew, Roderic I.; Gharib, Ahmed M.

    2012-01-01

    Purpose: To determine the feasibility of measuring choline and glycogen concentrations in normal human liver in vivo with proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy. Materials and Methods: Signed consent to participate in an institutional review board–approved and HIPAA-compliant study was obtained from 46 subjects (mean age, 46 years ± 17 [standard deviation]; 24 women) consecutively recruited during 285 days. Navigator-gated MR images were used to select 8-mL volumes for point-resolved spectroscopy (PRESS) with a 35-msec echo time. Line widths were minimized with fast breath-hold B0 field mapping and further manual shimming. Navigator-gated spectra were recorded with and without water suppression to determine metabolite concentrations with water signals as an internal reference. In three subjects, echo time was varied to determine the glycogen and choline T2. Linear regression analysis was used to examine relations between choline, hepatic lipid content, body mass index, glycogen content, and age. Results: Choline concentrations could be determined in 46 of 48 studies and was found to be 8.6 mmol per kilogram of wet weight ± 3.1 (range, 3.8–17.6; n = 44). Twenty-seven spectra in 25 individuals with narrow line widths and low lipid content were adequate for quantitation of glycogen. The glycogen (glucosyl unit) concentration was 38.1 mmol/kg wet weight ± 14.4. The T2 of combined glycogen peaks in the liver of three subjects was 36 msec ± 8. Choline levels showed a weak but significant correlation with glycogen (r2 = 0.15; P < .05) but not with lipid content. Conclusion: Navigator-gated and gradient-echo shimmed PRESS 1H MR spectroscopy may allow quantification of liver metabolites that are important for understanding and identifying disorders of glucose and lipid metabolism. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112344/-/DC1 PMID:22891360

  10. Hexamethyldisiloxane-based nanoprobes for (1) H MRI oximetry.

    PubMed

    Gulaka, Praveen K; Rastogi, Ujjawal; McKay, Madalyn A; Wang, Xianghui; Mason, Ralph P; Kodibagkar, Vikram D

    2011-12-01

    Quantitative in vivo oximetry has been reported using (19) F MRI in conjunction with reporter molecules, such as perfluorocarbons, for tissue oxygenation (pO(2) ). Recently, hexamethyldisiloxane (HMDSO) has been proposed as a promising alternative reporter molecule for (1) H MRI-based measurement of pO(2) . To aid biocompatibility for potential systemic administration, we prepared various nanoemulsion formulations using a wide range of HMDSO volume fractions and HMDSO to surfactant ratios. Calibration curves (R(1) versus pO(2) ) for all emulsion formulations were found to be linear and similar to neat HMDSO for low surfactant concentrations (<10% v/v). A small temperature dependence in the calibration curves was observed, similar to previous reports on neat HMDSO, and was characterized to be approximately 1 Torr/ °C under hypoxic conditions. To demonstrate application in vivo, 100 µL of this nanoemulsion was administered to healthy rat thigh muscle (Fisher 344, n=6). Dynamic changes in mean thigh tissue pO(2) were measured using the PISTOL (proton imaging of siloxanes to map tissue oxygenation levels) technique in response to oxygen challenge. Changing the inhaled gas to oxygen for 30 min increased the mean pO(2) significantly (p<0.001) from 39 ± 7 to 275 ± 27 Torr. When the breathing gas was switched back to air, the tissue pO(2) decreased to a mean value of 45 ± 6 Torr, not significantly different from baseline (p>0.05), in 25 min. A first-order exponential fit to this part of the pO(2) data (i.e. after oxygen challenge) yielded an oxygen consumption-related kinetic parameter k=0.21 ± 0.04 min(-1) . These results demonstrate the feasibility of using HMDSO nanoemulsions as nanoprobes of pO(2) and their utility to assess oxygen dynamics in vivo, further developing quantitative (1) H MRI oximetry.

  11. Mapping of prostate cancer by 1H MRSI.

    PubMed

    Kobus, Thiele; Wright, Alan J; Scheenen, Tom W J; Heerschap, Arend

    2014-01-01

    In many studies, it has been demonstrated that (1)H MRSI of the human prostate has great potential to aid prostate cancer management, e.g. in the detection and localisation of cancer foci in the prostate or in the assessment of its aggressiveness. It is particularly powerful in combination with T2 -weighted MRI. Nevertheless, the technique is currently mainly used in a research setting. This review provides an overview of the state-of-the-art of three-dimensional MRSI, including the specific hardware required, dedicated data acquisition sequences and information on the spectral content with background on the MR-visible metabolites. In clinical practice, it is important that relevant MRSI results become available rapidly, reliably and in an easy digestible way. However, this functionality is currently not fully available for prostate MRSI, which is a major obstacle for routine use by inexperienced clinicians. Routine use requires more automation in the processing of raw data than is currently available. Therefore, we pay specific attention in this review on the status and prospects of the automated handling of prostate MRSI data, including quality control. The clinical potential of three-dimensional MRSI of the prostate is illustrated with literature examples on prostate cancer detection, its localisation in the prostate, its role in the assessment of cancer aggressiveness and in the selection and monitoring of therapy.

  12. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  13. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  14. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  15. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  16. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  17. Detection of Apoptosis and Necrosis in Normal Human Lung Cells Using 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Chwen-Ming; Ko, Wun-Chang; Yang, Liang-Yo; Lin, Chien-Ju; Wu, Jui-Sheng; Lo, Tsui-Yun; Wang, Shwu-Huey; Chen, Chien-Tsu

    2005-05-01

    This study aimed to detect apoptosis and necrosis in MRC-5, a normal human lung cell line, by using noninvasive proton nuclear magnetic resonance (1H NMR). Live MRC-5 cells were processed first for 1H NMR spectroscopy; subsequently their types and the percentage of cell death were assessed on a flow cytometer. Cadmium (Cd) and mercury (Hg) induced apoptosis and necrosis in MRC-5 cells, respectively, as revealed by phosphatidylserine externalization on a flow cytometer. The spectral intensity ratio of methylene (CH2) resonance (at 1.3 ppm) to methyl (CH3) resonance (at 0.9 ppm) was directly proportional to the percentage of apoptosis and strongly and positively correlated with PI staining after Cd treatment (r2 = 0.9868, P < 0.01). In contrast, this ratio only increased slightly within 2-h Hg treatment, and longer Hg exposure failed to produce further increase. Following 2-h Hg exposure, the spectral intensity of choline resonance (at 3.2 ppm) was abolished, but this phenomenon was absent in Cd-induced apoptosis. These findings together demonstrate that 1H NMR is a novel tool with a quantitative potential to distinguish apoptosis from necrosis as early as the onset of cell death in normal human lung cells.

  18. Synthesis of 1H-indazoles and 1H-pyrazoles via FeBr3/O2 mediated intramolecular C-H amination.

    PubMed

    Zhang, Tianshui; Bao, Weiliang

    2013-02-01

    A new synthesis of substituted 1H-indazoles and 1H-pyrazoles from arylhydrazones via FeBr(3)/O(2) mediated C-H activation/C-N bond formation reactions is reported. The corresponding 1,3-diaryl-substituted indazoles and trisubstituted pyrazoles were obtained in moderate to excellent yields under mild conditions.

  19. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate

    PubMed Central

    Diop, Mouhamadou Birame; Diop, Libasse; Plasseraud, Laurent; Cattey, Hélène

    2016-01-01

    Single crystals of the title mol­ecular salt, C4H7N2 +·HC2O4 −·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N—H⋯(O,O) hydrogen bonds. The water mol­ecules of crystallization link the chains into (10-1) bilayers, with the methyl groups of the cations organized in an isotactic manner. PMID:27536393

  20. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  1. [Study on derivatives of 5-amino-4-acylamino-1H-pyrazole as inhibitors of furin].

    PubMed

    Kibirev, V K; Osadchuk, T V; Vadziuk, O B; Shablykin, O V; Kozachenko, A P; Chumachenko, S A; Popil'nichenko, S V; Brovarets, V S

    2011-01-01

    A series of 5-amino-1H-pyrazoles was synthesized and studied as inhibitors of furin. The most potent compound, 5-amino-4-acetylamino-3-(4-methylphenylamino)1H-pyrazole, was found to retard the activity of furin by mixed-type inhibition with K = 288 microM. These findings permit to plan new ways for chemical modifications of the 5-amino-1H-pyrazole structure and design more potent furin inhibitors of non-peptide nature.

  2. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    PubMed Central

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  3. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance.

    PubMed

    Jeukendrup, A; Brouns, F; Wagenmakers, A J; Saris, W H

    1997-02-01

    Carbohydrate-electrolyte (CE) feedings have been shown to improve endurance performance at moderate intensities (60-75% VO2max) and or more than 2 h duration. The effects of CE feedings during high intensity exercise (i.e. > or = 80% VO2 max) of shorter duration (approximately 1 h) are less clear. Therefore the purpose of the present study was to investigate the effect of the ingestion of a 7.6% CE solution during exercise on time trial cycling performance of approximately 1 h. This type of performance testing has been shown to be more reproducible (coefficient of variation 3.35%) than the traditional exercise test to exhaustion. On two occasions and in random order nineteen endurance trained cyclists completed an exercise test requiring the accomplishment of a set amount of work as fast as possible (time trial) under strictly standardized conditions. As the start and during the trials they drank in total 14 ml/kg of either a 7.6% CE solution or artificially flavored and colored water (placebo). Time to complete the set amount of work was significantly reduced and thus performance was significantly increase (p < 0.001) with the CE drink by 2.3%. Time to complete the set amount of work was 58.74 +/- 0.52 min with CE and 60.15 +/- 0.65 min with placebo (p < 0.001). Average workload during the time trials was 297.5 +/- 1.4W and 291.0 +/- 10.3 W, respectively. Subjects exercised at 76.4 +/- 0.7% of their maximal work rate (Wmax) with CE and at 74.8% Wmax with placebo (p < 0.001). It was concluded tht also in relative short term (1h) high intensity (75% Wmax) cycling exercise ingestion of a carbohydrate-electrolyte solution compared to placebo improves performance.

  4. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean.

    PubMed

    Barraza, Aarón; Cabrera-Ponce, José L; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation.

  5. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean

    PubMed Central

    Barraza, Aarón; Cabrera-Ponce, José L.; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation. PMID:26284093

  6. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-01-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.

  7. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1.

    PubMed

    De Lucca, Anthony J; Heden, Lars-Olof; Ingber, Bruce; Bhatnagar, Deepak

    2011-07-13

    Wheat ( Triticum spp.) histones H1, H2, H3, and H4 were extracted, and H1 was further purified. The effect of these histones on specific fungi that may or may not be pathogenic to wheat was determined. These fungi included Aspergillus flavus , Aspergillus fumigatus , Aspergillus niger , Fusarium oxysporum , Fusarium verticillioides , Fusarium solani , Fusarium graminearum , Penicillium digitatum , Penicillium italicum , and Greeneria uvicola . Non-germinated and germinating conidia of these fungi were bioassayed separately. The non-germinated and germinating conidia of all Fusarium species were highly susceptible to the mixture (H1-H4) as well as pure H1, with viability losses of 99-100% found to be significant (p < 0.001) at ≤10 μM or less for the histone mixture and pure H1. F. graminearum was the most sensitive to histone activity. The histones were inactive against all of the non-germinated Penicillium spp. conidia. However, they significantly reduced the viability of the germinating conidia of the Penicillium spp. conidia, with 95% loss at 2.5 μM. Non-germinated and germinating conidia viability of the Aspergillus spp. and G. uvicola were unaffected when exposed to histones up to 10 μM. Results indicate that Fusarium spp. pathogenic to wheat are susceptible to wheat histones, indicating that these proteins may be a resistance mechanism in wheat against fungal infection.

  8. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  9. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  10. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy.

    PubMed

    Bazzucchi, Moira; Bertolotti, Luigi; Giammarioli, Monica; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-02-23

    We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h.

  11. A critical evaluation of heteronuclear TOCSY (HEHAHA) experiments for 1H,6Li spin pairs.

    PubMed

    Bergander, Klaus; Hüls, Dietmar; Glaser, Steffen J; Günther, Harald; Luy, Burkhard

    2014-12-01

    Heteronuclear TOCSY (HEHAHA) experiments for (1) H,(6) Li spin pairs in organolithium compounds with adjacent strongly coupled (1) H,(1) H spin systems showed unexpected cross peak behaviour: for n-butyllithium (1) H,(6) Li cross peaks were completely missing, whereas for the dimer of (Z)-2-lithio-1-(o-lithiophenyl)ethane, a cross peak for remote protons was observed even at very short mixing times. It was assumed that strong magnetization transfer within the proton spin systems was responsible for these results, which prevented unambiguous chemical shift assignments. Selective experiments with the (6) Li,(1) H-HET-PLUSH-TACSY sequence then showed the expected (6) Li,(1) H cross peaks for the transfer via the directly coupled (1) H and (6) Li nuclei. For n-butyllithium transfer to H(Cα) via an unresolved heteronuclear coupling constant below 0.1 Hz is unambiguously observed. Cross peaks in the 2D (6) Li,(1) H-HET-PLUSH-TACSY spectra for the dimer of (Z)-2-lithio-1-(o-lithiophenyl)ethane are readily explained by the measured coupling network and the corresponding active mixing conditions.

  12. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  13. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy

    PubMed Central

    Bazzucchi, Moira; Bertolotti, Luigi; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-01-01

    ABSTRACT We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h. PMID:28232427

  14. Increasing 14N NQR signal by 1H-14N level crossing with small magnetic fields.

    PubMed

    Thurber, Kent R; Sauer, Karen L; Buess, Michael L; Klug, Christopher A; Miller, Joel B

    2005-11-01

    NQR detection of materials, such as TNT, is hindered by the low signal-to-noise ratio at low NQR frequencies. Sweeping small (0-26 mT) magnetic fields to shift the (1)H NMR frequency relative to the (14)N NQR frequencies can provide a significant increase of the (14)N NQR signal-to-noise ratio. Three effects of (1)H-(14)N level crossing are demonstrated in diglycine hydrochloride and TNT. These effects are (1) transferring (1)H polarization to one or more of the (14)N transitions, including the use of an adiabatic flip of the (1)H polarization during the field sweep, (2) shortening the effective (14)N T(1) by the interaction of (1)H with the (14)N transitions, (3) "level transfer" effect where the third (14)N (spin 1) energy level or other (14)N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured (14)N transition by the (1)H. The (14)N NQR signal-to-noise ratio can be increased by a factor of 2.5 for one (14)N site in diglycine hydrochloride (and 2.2 in TNT), even though the maximum (1)H frequency used in this work, 111 6 kHz, is only 30% larger than the measured (14)N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

  15. 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.

    PubMed

    Nolan, Christine M; Gelbaum, Leslie T; Lyon, L Andrew

    2006-10-01

    We describe investigations of insulin release from thermoresponsive microgels using variable temperature (1)H NMR. Microgel particles composed of poly(N-isopropylacrylamide) were loaded with the peptide via a swelling technique, and this method was compared to simple equilibrium partitioning. Variable temperature (1)H NMR studies suggest that the swelling loading method results in enhanced entrapment of the peptide versus equilibrium partitioning. A centrifugation-loading assay supports this finding. Pseudo-temperature jump (1)H NMR measurements suggest that the insulin release rate is partially decoupled from microgel collapse. These types of direct release investigations could prove to be useful methods in the future design of controlled macromolecule drug delivery devices.

  16. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  17. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  18. Crystal structure of (E)-2-[(2-bromopyridin-3-yl)methyl­idene]-6-meth­oxy-3,4-di­hydro­naphthalen-1(2H)-one and 3-[(E)-(6-meth­oxy-1-oxo-1,2,3,4-tetra­hydro­naphthalen-2-ylidene)meth­yl]pyridin-2(1H)-one

    PubMed Central

    Zingales, Sarah K.; Moore, Morgan E.; Goetz, Andrew D.; Padgett, Clifford W.

    2016-01-01

    The title compounds C17H14BrNO2, (I), and C17H15NO3, (II), were obtained from the reaction of 6-meth­oxy-3,4-di­hydro-2H-naphthalen-1-one and 2-bromo­nicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π–π inter­actions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent mol­ecules, A and B, in the asymmetric unit; both are non-planar, the dihedral angles between the meth­oxy­benzene and 1H-pyridin-2-one mean planes being 35.07 (9)° in A and 35.28 (9)°in B. In each mol­ecule, the 1H-pyridin-2-one unit participates in inter­molecular N—H⋯O hydrogen bonding to another mol­ecule of the same type (A to A or B to B). The structure also displays π–π inter­actions between the pyridyl and the benzene rings of non-equivalent mol­ecules (viz., A to B and B to A). PMID:27555939

  19. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  20. Deproto-metallation using a mixed lithium-zinc base and computed CH acidity of 1-aryl 1H-benzotriazoles and 1-aryl 1H-indazoles.

    PubMed

    Nagaradja, Elisabeth; Chevallier, Floris; Roisnel, Thierry; Dorcet, Vincent; Halauko, Yury S; Ivashkevich, Oleg A; Matulis, Vadim E; Mongin, Florence

    2014-03-07

    1-Aryl-1H-benzotriazoles and -1H-indazoles were synthesized, and their deproto-metallation using the base prepared by mixing LiTMP with ZnCl2·TMEDA (1/3 equiv.) was studied. In the indazole series, reactions occurring at the 3 position were followed by ring opening, and functionalization of the substrate was only found possible (on the sulfur ring) using 2-thienyl as aryl group. In the benzotriazole series, either mono- or bis-deprotonation (depending on the amount of base employed) was achieved with phenyl, 4-methoxyphenyl and 2-thienyl as aryl group, and bis-deprotonation in the case of 4-chlorophenyl and 4-trifluoromethylphenyl. The experimental results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method.

  1. 1H NMR quantitative determination of photosynthetic pigments from green beans (Phaseolus vulgaris L.).

    PubMed

    Valverde, Juan; This, Hervé

    2008-01-23

    Using 1H nuclear magnetic resonance spectroscopy (1D and 2D), the two types of photosynthetic pigments (chlorophylls, their derivatives, and carotenoids) of "green beans" (immature pods of Phaseolus vulgaris L.) were analyzed. Compared to other analytical methods (light spectroscopy or chromatography), 1H NMR spectroscopy is a fast analytical way that provides more information on chlorophyll derivatives (allomers and epimers) than ultraviolet-visible spectroscopy. Moreover, it gives a large amount of data without prior chromatographic separation.

  2. Practical Methylation Procedure for (1H)-1,2,4-Triazole (Postprint)

    DTIC Science & Technology

    2007-09-01

    Francis Group, LLC. 14. ABSTRACT Conversion of (1H)-1,2,4-triazole to its sodium salt with methanolic sodium methoxide is followed by reaction ...From - To) 04-06-2007 Journal Article 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Practical Methylation Procedure for (1H)-1,2,4-Triazole (Postprint...continuous extraction (chloroform/water) with a final short-path distillation under a controlled vacuum to obtain spectroscopically pure 1- methyl -1,2,4

  3. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  4. Alternative determination of blood alcohol concentration by (1)H NMR spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K

    2016-02-05

    A rapid, accurate and specific proton nuclear magnetic resonance ((1)H NMR) spectroscopic method is developed to determine ethanol in blood, known as the blood alcohol concentration (BAC). The limits of detection and quantification are 0.02g/L and 0.07g/L, respectively. The (1)H NMR spectra show linearity for whole blood and serum samples of a concentration range of 0.00-3.00g/L (R(2)>0.9995). The (1)H NMR method is applied and validated for whole blood as the sample media. Real driving under influence case samples are analyzed with the reference enzyme-based alcohol dehydrogenase and headspace gas chromatography techniques by the Forensic Medicine in Bonn. The reference results are compared with the (1)H NMR spectroscopic results. The validation and comparison indicate that (1)H NMR is suitable for the quantification of BAC in whole blood. This technique has the advantages of automated analysis with good measurement precision and fast sample throughput. A drop of blood (V=20μL) is adequate for an analysis leading to a possible simplification of the sample collection. Due to the non-destructive method, follow-up examinations by (1)H NMR spectroscopy or DNA determinations by different techniques (PCR, in situ hybridization) are possible in resolving legal disputes.

  5. Construction of recombinant pEGFP-N1-hPer2 plasmid and its expression in osteosarcoma cells.

    PubMed

    Cheng, Anyuan; Zhang, Yan; Mei, Hongjun; Fang, Shuo; Ji, Peng; Yang, Jian; Yu, Ling; Guo, Weichun

    2016-04-01

    The aim of this study was to construct the eukaryotic expression vector pEGFP-N1-hPer2 and assess its expression in the human osteosarcoma cell line MG63. Total mRNA was extracted from human osteosarcoma MG63 cells, the human period 2 (hPer2) gene was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into the pEGFP-N1 vector, then the recombinant pEGFP-N1-hPer2 plasmid was constructed and transfected into MG63 cells using Lipofectamine 2000. The expression of hPer2 in MG63 cells was measured by quantitative RT-PCR and western blot analysis. The accurate construction of pEGFP-N1-hPer2 was verified by double enzyme digestion and DNA sequencing. hPer2 gene expression in the transfected cells was assessed by RT-qPCR and western blot analysis. In conclusion, the recombinant pEGFP-N1-hPer2 plasmid was constructed successfully, and expressed effectively in MG63 cells.

  6. Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.

    PubMed

    Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

    2013-01-01

    Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately σ: 9.3 derived from H-16 of carthamin to those of the HMD signal at σ: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable.

  7. A disc wind interpretation of the strong Fe Kα features in 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Tomaru, Ryota; Watanabe, Shin; Takahashi, Tadayuki

    2016-10-01

    1H 0707-495 is the most convincing example of a supermassive black hole with an X-ray spectrum being dominated by extremely smeared, relativistic reflection, with the additional requirement of strongly supersolar iron abundance. However, here we show that the iron features in its 2-10 keV spectrum are rather similar to the archetypal wind dominated source, PDS 456. We fit all the 2-10 keV spectra from 1H 0707-495 using the same wind model as used for PDS 456, but viewed at higher inclination so that the iron absorption line is broader but not so blueshifted. This gives a good overall fit to the data from 1H 0707-495, and an extrapolation of this model to higher energies also gives a good match to the NuSTAR data. Small remaining residuals indicate that the iron line emission is stronger than in PDS 456. This is consistent with the wider angle wind expected from a continuum-driven wind from the super-Eddington mass accretion rate in 1H 0707-495, and/or the presence of residual reflection from the underlying disc though the presence of the absorption line in the model removes the requirement for highly relativistic smearing, and highly supersolar iron abundance. We suggest that the spectrum of 1H 0707-495 is sculpted more by absorption in a wind than by extreme relativistic effects in strong gravity.

  8. 1H relaxation dispersion in solutions of nitroxide radicals: influence of electron spin relaxation.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Kowalewski, J; Rössler, E A; Moscicki, J

    2013-03-28

    The work presents a theory of nuclear ((1)H) spin-lattice relaxation dispersion for solutions of (15)N and (14)N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)]. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The (1)H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the (1)H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against (1)H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-(15)N and 4-oxo-TEMPO-d16-(14)N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both (14)N and (15)N systems and explains the features of (1)H relaxation dispersion resulting from the electron spin relaxation.

  9. 1H relaxation dispersion in solutions of nitroxide radicals: Influence of electron spin relaxation

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-03-01

    The work presents a theory of nuclear (1H) spin-lattice relaxation dispersion for solutions of 15N and 14N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The 1H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the 1H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against 1H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-15N and 4-oxo-TEMPO-d16-14N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both 14N and 15N systems and explains the features of 1H relaxation dispersion resulting from the electron spin relaxation.

  10. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  11. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  12. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  13. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  14. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values.

    PubMed

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  15. Nanoscale electrodeposition of Al on n -Si(1 1 1) : H from an ionic liquid

    NASA Astrophysics Data System (ADS)

    Aravinda, C. L.; Burger, B.; Freyland, W.

    2007-02-01

    The H-terminated Si(1 1 1)/ionic liquid interface has been imaged by scanning tunneling microscopy (STM) for the first time. Employing the ionic liquid AlCl-[Cmim]+ nanoscale electrodeposition of Al on Si(1 1 1) : H substrates has been investigated by in situ electrochemical scanning probe techniques at room temperature. No underpotential deposition of Al is found. Nucleation of Al begins at the Nernst potential with the formation of large islands spread all over the substrate. Under the influence of the scanning STM tip, these islands are easily disturbed which makes it difficult to image the initial stages of electrochemical phase formation. We explain this by a relatively high mobility of the islands due to the poor wetting of Al on the Si(1 1 1) : H substrate. The 3D growth of Al on Si(1 1 1) : H follows a Volmer-Weber growth mode. Scanning tunneling spectra of larger Al clusters show clearly metallic characteristics.

  16. Aminosilanes derived from 1H-benzimidazole-2(3H)-thione.

    PubMed

    Palomo-Molina, Juliana; García-Báez, Efrén V; Contreras, Rosalinda; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-09-01

    Two new molecular structures, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C-H···π interactions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R2(2)(8) rings via N-H···S interactions, along with parallel π-π interactions between imidazole and benzene rings.

  17. Amino­silanes derived from 1H-benzimidazole-2(3H)-thione

    PubMed Central

    Palomo-Molina, Juliana; García-Báez, Efrén V.; Contreras, Rosalinda; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-01-01

    Two new mol­ecular structures, namely 1,3-bis­(tri­methyl­silyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-tri­methyl­silyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π inter­actions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R 2 2(8) rings via N—H⋯S inter­actions, along with parallel π–π inter­actions between imidazole and benzene rings. PMID:26322611

  18. Measurement of rates of transport across erythrocyte membranes by 1H nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Guy, Robert D.; Tahir Razi, M.; Rabenstein, Dallas L.

    The use of 1H NMR to monitor the transport of small molecules across the membrane of erythrocytes is evaluated. Cells are separated, as a function of time, from a suspension medium containing the small molecule of interest, and then analyzed for the small molecule by 1H NMR. 1H NMR spectra of either the intact cells or cell lysate are measured by the protein saturation pulse/Fourier transform (PSP/FT) technique. With this technique, interfering hemoglobin resonances are suppressed with a selective presaturation pulse and high-resolution spectra are obtained for small molecules. The detection limit is on the order of 0. 10 m M Membrane transport rates were measured for alanine, penicillamine, N-acetylpenicillamine, and S-methylcysteine.

  19. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  20. Congenital Cataracts and Gut Dysmotility in a DYNC1H1 Dyneinopathy Patient

    PubMed Central

    Gelineau-Morel, Rose; Lukacs, Marshall; Weaver, K. Nicole; Hufnagel, Robert B.; Gilbert, Donald L.; Stottmann, Rolf W.

    2016-01-01

    Whole exome sequencing continues to end the diagnostic odyssey for a number of patients and expands our knowledge of phenotypes associated with gene mutations. We describe an 11-year-old female patient with a constellation of symptoms including congenital cataracts, gut dysmotility, sensory neuropathy, and bifrontal polymicrogyria. Whole exome sequencing was performed and identified a de novo heterozygous missense mutation in the ATPase motor domain of cytoplasmic dynein heavy chain 1 (DYNC1H1), which is known to be involved in neuronal migration and retrograde axonal transport. The mutation was found to be highly damaging by multiple prediction programs. The residue is highly conserved, and reported mutations in this gene result in a variety of phenotypes similar to that of our patient. We report only the second case of congenital cataracts and the first of gut dysmotility in a patient with DYNC1H1, thus expanding the spectrum of disease seen in DYNC1H1 dyneinopathies. PMID:27754416

  1. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-06

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  2. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  3. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  4. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  5. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  6. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  7. Elevated Glutamatergic Compounds in Pregenual Anterior Cingulate in Pediatric Autism Spectrum Disorder Demonstrated by 1H MRS and 1H MRSI

    PubMed Central

    Bejjani, Anthony; O'Neill, Joseph; Kim, John A.; Frew, Andrew J.; Yee, Victor W.; Ly, Ronald; Kitchen, Christina; Salamon, Noriko; McCracken, James T.; Toga, Arthur W.; Alger, Jeffry R.; Levitt, Jennifer G.

    2012-01-01

    Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy (1H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging (1H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD. PMID:22848344

  8. Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head.

    PubMed

    Murphy-Boesch, J; Srinivasan, R; Carvajal, L; Brown, T R

    1994-02-01

    The four-ring birdcage resonator, a new class of dual-tuned birdcage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  9. Two Configurations of the Four-Ring Birdcage Coil for 1H Imaging and 1H-Decoupled 31P Spectroscopy of the Human Head

    NASA Astrophysics Data System (ADS)

    Murphyboesch, J.; Srinivasan, R.; Carvajal, L.; Brown, T. R.

    The four-ring birdcage resonator, a new class of dual-tuned birdeage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  10. 1-(2,4,6-Trialkylphenyl)-1H-Phospholes with a Flattened P-Pyramid: Synthesis and Reactivity

    NASA Astrophysics Data System (ADS)

    Keglevich, György

    The 1H-phospholes with a 2,4,6-trialkylphenyl substituent on the phosphorus atom synthesized in our laboratories are of aromatic character due to their flattened P-pyramid. Hence, they may undergo aromatic electrophilic substitution, such as Friedel-Crafts acylations. The arylphospholes were functionalized via the regioselective reaction with phosphorus tribromide to give substituted phospholes that may be ligands in rhodium complexes used in hydro-formylations. Despite their aromaticity, the arylphospholes may be involved in Diels-Alder cycloaddition with dienophiles to provide 7-phosphanorbornene derivatives useful in fragmentation - related phosphorylations. At elevated temperature, the aryl-1H-phospholes were converted to the 2H-derivatives by a sigmatropic rearrangement to furnish, after trapping, 1-phosphanorbornadienes. The complexation and the oxidation reactions of the sterically hindered arylphospholes are also discussed.

  11. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  12. A practical, metal-free synthesis of 1H-indazoles.

    PubMed

    Counceller, Carla M; Eichman, Chad C; Wray, Brenda C; Stambuli, James P

    2008-03-06

    The synthesis of 1H-indazoles is achieved from o-aminobenzoximes by the selective activation of the oxime in the presence of the amino group. The reaction occurs with a variety of substituted o-aminobenzoximes using a slight excess of methanesulfonyl chloride and triethylamine at 0-23 degrees C and is amenable to scale-up. The synthesis of 1H-indazoles under these conditions is extremely mild compared with previous synthetic approaches and affords the desired compounds in good to excellent yields.

  13. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  14. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images.

  15. 32 CFR 1630.15 - Class 1-H: Registrant not subject to processing for induction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for induction. 1630.15 Section 1630.15 National Defense Other Regulations Relating to National Defense... induction. In Class 1-H shall be placed any registrant who is not eligible for Class 1-A and is not currently subject to processing for induction....

  16. 32 CFR 1630.15 - Class 1-H: Registrant not subject to processing for induction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for induction. 1630.15 Section 1630.15 National Defense Other Regulations Relating to National Defense... induction. In Class 1-H shall be placed any registrant who is not eligible for Class 1-A and is not currently subject to processing for induction....

  17. Investigation of 1H MRS for quantification of hepatic triglyceride in lean and obese cats.

    PubMed

    Clark, M H; Larsen, R; Lu, W; Hoenig, M

    2013-10-01

    (1)H magnetic resonance spectroscopy ((1)H MRS) is the preferred technique for noninvasive quantification of hepatic triglyceride in humans. Domestic cats are subject to liver lipid accumulation, but MRS has not been investigated for quantification of liver fat in cats. The purpose of this project was to explore a technique for (1)H MRS measurement of hepatic triglyceride in lean and obese cats. Hepatic (1)H MRS was performed, using a 3T imaging unit and a single-voxel spin-echo spectroscopy sequence, on 6 lean (3.3-4.6 kg) and 12 obese cats (5.2-9.8 kg). Median liver fat percentages in lean and obese cats were 1.3% and 6.8%, respectively. Results are biologically plausible, based on chemical assay in a separate group of cats; however, full validation of the method is necessary before other conclusions can be drawn. This report should provide a foundation for the further development of spectroscopic techniques for studying hepatic lipid accumulation in cats.

  18. Experimental test of Bell's inequality via the 1H(d,2He)n reaction

    SciTech Connect

    Saito, T.; Sakai, H.; Kuboki, H.; Sasano, M.; Yako, K.; Ikeda, T.; Itoh, K.; Kawabata, T.; Maeda, Y.; Suda, K.; Uesaka, T.; Matsui, N.; Satou, Y.; Sekiguchi, K.; Tamii, A.

    2005-05-06

    To test Bell's inequality, measurements of spin correlations between two protons in the spin singlet state have been performed. Proton pairs in the singlet state were produced by the 1H(d,2He)n reaction at Ed = 270 MeV.

  19. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  20. Aminosilanes derived from 1H-benzimidazole-2(3H)-thione

    SciTech Connect

    Palomo-Molina, Juliana; García-Báez, Efrén V.; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-08-12

    In two trimethylsilyl-substituted 1H-benzimidazole-2(3H)-thiones, noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe{sub 3} groups form helicoidal arrangements in one, and dimerization results in the formation of R{sub s} {sup 2}(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings, in the second compound. Two new molecular structures, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, C{sub 13}H{sub 22}N{sub 2}SSi{sub 2}, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, C{sub 10}H{sub 14}N{sub 2}SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe{sub 3} groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R{sub 2}{sup 2}(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings.

  1. Synthesis of 1H-indazoles from N-tosylhydrazones and nitroaromatic compounds.

    PubMed

    Liu, Zhenxing; Wang, Long; Tan, Haocheng; Zhou, Shiyi; Fu, Tianren; Xia, Ying; Zhang, Yan; Wang, Jianbo

    2014-05-21

    A new method for the synthesis of 1H-indazoles from readily available N-tosylhydrazones and nitroaromatic compounds has been developed. This transformation occurs under transition-metal-free conditions and shows a wide substrate scope. The method has been successfully applied to the formal synthesis of a bioactive compound, WAY-169916.

  2. Synthesis of 1H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis.

    PubMed

    Wang, Qiang; Li, Xingwei

    2016-05-06

    Nitrosobenzenes have been used as a convenient aminating reagent for the efficient synthesis of 1H-indazoles via rhodium and copper catalyzed C-H activation and C-N/N-N coupling. The reaction occurred under redox-neutral conditions with high efficiency and functional group tolerance. Moreover, a rhodacyclic imidate complex has been identified as a key intermediate.

  3. One-pot synthesis of novel 2,3-dihydro-1H-indazoles.

    PubMed

    Breton, Gary W; Lepore, Antonio J

    2011-11-16

    A copper(I)-mediated one-pot synthesis of 2,3-dihydro-1H-indazole heterocycles has been developed. This synthetic route provides the desired indazoles in moderate to good yields (55%-72%) which are substantially better than those achievable with an alternative two-step reaction sequence. The reaction is tolerant of functionality on the aromatic ring.

  4. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy

    PubMed Central

    Harms, M.B.; Ori-McKenney, K.M.; Scoto, M.; Tuck, E.P.; Bell, S.; Ma, D.; Masi, S.; Allred, P.; Al-Lozi, M.; Reilly, M.M.; Miller, L.J.; Jani-Acsadi, A.; Pestronk, A.; Shy, M.E.; Muntoni, F.; Vallee, R.B.

    2012-01-01

    Objective: To identify the gene responsible for 14q32-linked dominant spinal muscular atrophy with lower extremity predominance (SMA-LED, OMIM 158600). Methods: Target exon capture and next generation sequencing was used to analyze the 73 genes in the 14q32 linkage interval in 3 SMA-LED family members. Candidate gene sequencing in additional dominant SMA families used PCR and pooled target capture methods. Patient fibroblasts were biochemically analyzed. Results: Regional exome sequencing of all candidate genes in the 14q32 interval in the original SMA-LED family identified only one missense mutation that segregated with disease state—a mutation in the tail domain of DYNC1H1 (I584L). Sequencing of DYNC1H1 in 32 additional probands with lower extremity predominant SMA found 2 additional heterozygous tail domain mutations (K671E and Y970C), confirming that multiple different mutations in the same domain can cause a similar phenotype. Biochemical analysis of dynein purified from patient-derived fibroblasts demonstrated that the I584L mutation dominantly disrupted dynein complex stability and function. Conclusions: We demonstrate that mutations in the tail domain of the heavy chain of cytoplasmic dynein (DYNC1H1) cause spinal muscular atrophy and provide experimental evidence that a human DYNC1H1 mutation disrupts dynein complex assembly and function. DYNC1H1 mutations were recently found in a family with Charcot-Marie-Tooth disease (type 2O) and in a child with mental retardation. Both of these phenotypes show partial overlap with the spinal muscular atrophy patients described here, indicating that dynein dysfunction is associated with a range of phenotypes in humans involving neuronal development and maintenance. PMID:22459677

  5. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  6. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy

    PubMed Central

    Scoto, Mariacristina; Rossor, Alexander M.; Harms, Matthew B.; Cirak, Sebahattin; Calissano, Mattia; Robb, Stephanie; Manzur, Adnan Y.; Martínez Arroyo, Amaia; Rodriguez Sanz, Aida; Mansour, Sahar; Fallon, Penny; Hadjikoumi, Irene; Klein, Andrea; Yang, Michele; De Visser, Marianne; Overweg-Plandsoen, W.C.G. (Truus); Baas, Frank; Taylor, J. Paul; Benatar, Michael; Connolly, Anne M.; Al-Lozi, Muhammad T.; Nixon, John; de Goede, Christian G.E.L.; Foley, A. Reghan; Mcwilliam, Catherine; Pitt, Matthew; Sewry, Caroline; Phadke, Rahul; Hafezparast, Majid; Chong, W.K. “Kling”; Mercuri, Eugenio; Baloh, Robert H.; Reilly, Mary M.

    2015-01-01

    Objective: To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. Methods: Patients with a phenotype suggestive of a motor, non–length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1. Results: We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features. Conclusion: Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions. PMID:25609763

  7. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  8. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  9. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal.

    PubMed

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-21

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups P1 and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline P1 structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  10. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-01

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups Poverline{1} and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline Poverline{1} structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  11. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Polissiou, Moschos G; Consonni, Roberto

    2015-04-15

    In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w).

  12. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology.

  13. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    PubMed

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  14. The morphology of C–S–H: Lessons from {sup 1}H nuclear magnetic resonance relaxometry

    SciTech Connect

    Valori, A.; McDonald, P.J.; Scrivener, K.L.

    2013-07-15

    {sup 1}H nuclear magnetic resonance has been applied to cement pastes, and in particular calcium silicate hydrate (C–S–H), for the characterisation of porosity and pore water interactions for over three decades. However, there is now renewed interest in the method, given that it has been shown to be non-invasive, non-destructive and fully quantitative. It is possible to make measurements of pore size distribution, specific surface area, C–S–H density and water fraction and water dynamics over 6 orders of magnitude from nano- to milli-seconds. This information comes in easily applied experiments that are increasingly well understood, on widely available equipment. This contribution describes the basic experiments for a cement audience new to the field and reviews three decades of work. It concludes with a summary of the current state of understanding of cement pore morphology from the perspective of {sup 1}H NMR.

  15. Inclusion complex of benzocaine and β-cyclodextrin: 1H NMR and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan

    2013-11-01

    The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.

  16. 4(1H)-Quinolones with liver stage activity against Plasmodium berghei.

    PubMed

    Lacrue, Alexis N; Sáenz, Fabián E; Cross, R Matthew; Udenze, Kenneth O; Monastyrskyi, Andrii; Stein, Steven; Mutka, Tina S; Manetsch, Roman; Kyle, Dennis E

    2013-01-01

    With the exception of primaquine, tafenoquine, and atovaquone, there are very few antimalarials that target liver stage parasites. In this study, a transgenic Plasmodium berghei parasite (1052Cl1; PbGFP-Luc(con)) that expresses luciferase was used to assess the anti-liver stage parasite activity of ICI 56,780, a 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), as well as two 3-phenyl-4(1H)-quinolones (P4Q), P4Q-146 and P4Q-158, by using bioluminescent imaging (BLI). Results showed that all of the compounds were active against liver stage parasites; however, ICI 56,780 and P4Q-158 were the most active, with low nanomolar activity in vitro and causal prophylactic activity in vivo. This potent activity makes these compounds ideal candidates for advancement as novel antimalarials.

  17. 1H NMR profiling as an approach to differentiate conventionally and organically grown tomatoes.

    PubMed

    Hohmann, Monika; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2014-08-20

    This study describes the approach of (1)H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between (1)H NMR spectra of organically and conventionally grown tomatoes.

  18. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    PubMed

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  19. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    PubMed

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.

  20. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    NASA Astrophysics Data System (ADS)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  1. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  2. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  3. Shaft Sinking at the Nevada Test Site, U1h Shaft Project

    SciTech Connect

    B. Briggs; R. Musick

    2001-03-01

    The U1h Shaft Project is a design/build subcontract to construct one 6.1 meter (m) (20 feet (ft)) finished diameter shaft to a depth of 321.6 m (1,055 ft.) at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the U.S. Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 321.6 m (1,055 ft.) of concrete lined shaft, development of a shaft station at a depth of 297.5 m (976 ft.), and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper will describe the design phase, the excavation and lining operation, shaft station construction and the contractual challenges encountered on this project.

  4. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  5. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  6. Lipid and water suppression by selective 1H homonuclear polarization transfer.

    PubMed

    Hardy, C J; Dumoulin, C L

    1987-07-01

    A pulse sequence is presented which uses Polarization Transfer by a Selective Homonuclear Technique (POTSHOT) to retain all resonances, in phase, from a selected coupled spin system while suppressing all other peaks, from both coupled and noncoupled spins. This technique, which is a selective form of Homonuclear Polarization Transfer (HPT), has been used in a 1.5-T whole-body system to generate edited 1H lactate spectra from lactate/oil phantoms and from excised dog hearts.

  7. 1H and 13C NMR assignments for two new angular furanocoumarin glycosides from Peucedanum praeruptorum.

    PubMed

    Chang, Haitao; Okada, Yoshihito; Okuyama, Toru; Tu, Pengfei

    2007-07-01

    Two novel angular-type furanocoumarin glycosides, peucedanoside A (1) and peucedanoside B (2), along with a known compound apterin (3), were isolated from the roots of Peucedanum praeruptorum Dunn. Their chemical structures were determined by MS, NMR spectroscopy and chemical analysis. Complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments including DEPT, HSQC, HMBC and ROESY.

  8. Characterization of various magnesium oxides by XRD and {sup 1}H MAS NMR spectroscopy

    SciTech Connect

    Aramendia, M.A.; Benitez, J.A.; Borau, V.; Jimenez, C.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.

    1999-04-01

    A magnesium oxide obtained by thermal decomposition of commercially available magnesium hydroxide was refluxed in water and acetone in order to improve its chemical and textural properties with the purpose of using it as a support for metals in heterogeneous catalysts. X-ray diffraction, CO{sub 2} chemisorption, and {sup 1}H magic-angle spinning nuclear magnetic resonance were used to identify crystal phases, the number of basic sites, and the nature of OH groups in the oxide, respectively.

  9. 3-Hydroxy-2-phenyl-4(1H)-quinolinones as promising biologically active compounds.

    PubMed

    Hradil, P; Hlavác, J; Soural, M; Hajdúch, M; Kolár, M; Vecerová, R

    2009-06-01

    2-Phenyl-3-hydroxy-4(1H)-quinolinones can be considered as aza-analogues of flavones, compounds which are known for the wide-range of their biological activity. These quinolinones were studied as inhibitors of topoisomerase, gyrase and IMPDH. They were tested for anticancer activity in-vitro and were also shown to possess immunosuppressive properties. This review is the first summarizing the synthesis and activity of the mentioned quinolinones.

  10. Aromatic derivatives of 2,3-dihydro-1H-1,5-benzodiazepine

    SciTech Connect

    Orlov, V.D.; Desenko, S.M.; Kiroga, Kh.

    1987-09-01

    The formation of 2,2,4-trisubstituted 2,3-dihydro-1H-1,5-benzodiazepines in the reactions of acetylarenes with 4-ethoxy- and 3,5-dimethyl-1,2-phenylenediamine was studied. The effect of the substituents on the individual stages of the reactions is discussed. A quantum-chemical calculation of the relative nucleophilicity of 1,2-phenylenediamine, 2,3-diaminopyridine, and 3,4-diaminofurazan was undertaken.

  11. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.

  12. [Study on three different species tibetan medicine sea buckthorn by 1H-NMR-based metabonomics].

    PubMed

    Su, Yong-Wen; Tan, Er; Zhang, Jing; You, Jia-Li; Liu, Yue; Liu, Chuan; Zhou, Xiang-Dong; Zhang, Yi

    2014-11-01

    The 1H-NMR fingerprints of three different species tibetan medicine sea buckthorn were established by 1H-HMR metabolomics to find out different motablism which could provide a new method for the quality evaluation of sea buckthorn. The obtained free induction decay (FID) signal will be imported into MestReNova software and into divide segments. The data will be normalized and processed by principal component analysis and.partial least squares discriminant analysis to perform pattern recognition. The results showed that 25 metabolites belonging to different chemical types were detected from sea buckthorn,including flavonoids, triterpenoids, amino acids, carbohydrates, fatty acids, etc. PCA and PLS-DA analysis showed three different varietiest of sea buckthorn that can be clearly separated by the content of L-quebrachitol, malic acid and some unidentified sugars, which can be used as the differences metabolites of three species of sea buckthorn. 1H-NMR-based metabonomies method had a holistic characteristic with sample preparation and handling. The results of this study can offer an important reference for the species identification and quality control of sea buckthorn.

  13. Metabolic Alterations in Parkinson's Disease after Thalamotomy, as Revealed by 1H MR Spectroscopy

    PubMed Central

    Baik, Hyun-Man; Lee, Hyoung-Koo; Suh, Tae-Suk; Son, Byung-Chul; Lee, Jae-Mun

    2002-01-01

    Objective To determine, using proton magnetic resonance spectroscopy (1H MRS) whether thalamotomy in patients with Parkinson's disease gives rise to significant changes in regional brain metabolism. Materials and Methods Fifteen patients each underwent stereotactic thalamotomy for the control of medically refractory parkinsonian tremor. Single-voxel 1H MRS was performed on a 1.5T unit using a STEAM sequence (TR/TM/TE, 2000/14/20 msec), and spectra were obtained from substantia nigra, thalamus and putamen areas, with volumes of interest of 7-8ml, before and after thalamotomy. NAA/Cho, NAA/Cr and Cho/Cr metabolite ratios were calculated from relative peak area measurements, and any changes were recorded and assessed. Results In the substantia nigra and thalamus, NAA/Cho ratios were generally low. In the substantia nigra of 80% of patients (12/15) who showed clinical improvement, decreased NAA/Cho ratios were observed in selected voxels after thalamic surgery (p < 0.05). In the thalamus of 67% of such patients (10/15), significant decreases were also noted (p < 0.05). Conclusion Our results suggest that the NAA/Cho ratio may be a valuable criterion for the evaluation of Parkinson's disease patients who show clinical improvement following surgery. By highlighting variations in this ratio, 1H MRS may help lead to a better understanding of the pathophysiologic processes occurring in those with Parkinson's disease. PMID:12271163

  14. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer.

  15. Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues.

    PubMed

    Krucker, Manfred; Lienau, Annette; Putzbach, Karsten; Grynbaum, Marc David; Schuler, Paul; Albert, Klaus

    2004-05-01

    Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.

  16. A Comprehensive Review of the (1)H-MRS Metabolite Spectrum in Autism Spectrum Disorder.

    PubMed

    Ford, Talitha C; Crewther, David P

    2016-01-01

    Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy ((1)H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current (1)H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in (1)H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders.

  17. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol)-1H Indole

    PubMed Central

    ASGARI, Qasem; KESHAVARZ, Hossein; REZAEIAN, Mostafa; SADEGHPOUR, Hossein; MIRI, Ramin; MOTAZEDIAN, Mohammad Hossein

    2015-01-01

    Background: This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio)-1H-indole. Methods: Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio)-1H-indole (25–800 μM) for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS). To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v) were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice. Results: The LD50 of 2-(naphthalene-2-ylthio)-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite. Conclusion: Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines. PMID:26246814

  18. REGIONAL METABOLIC PATTERNS IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE A 1H MRS STUDY

    PubMed Central

    Kantarci, K.; Jack, C.R.; Xu, Y.C.; Campeau, N.G.; O'Brien, P.C.; Smith, G.E.; Ivnik, R.J.; Boeve, B.F.; Kokmen, E.; Tangalos, E.G.; Petersen, R.C.

    2009-01-01

    Background: Mild cognitive impairment (MCI) is a recently described transitional clinical state between normal aging and Alzheimer's disease (AD). With the assumption that amnestic MCI patients had pathologic changes corresponding to an early phase and probable AD patients to a later phase of the disease progression, we could approximate the temporal course of proton magnetic resonance spectroscopy (1H-MRS) alterations in AD with a cross-sectional sampling scheme. Methods: We compared 1H-MRS findings in the superior temporal lobe, posterior cingulate gyri and medial occipital lobe among 21 patients with MCI, 21 patients with probable AD, and 63 elderly controls. These areas are known to be involved at different neurofibrillary pathologic stages of AD. Results: The N-acetyl aspartate (NAA) /creatine (Cr) ratios were significantly lower in AD patients compared to both MCI and normal control subjects in the left superior temporal and the posterior cingulate volumes of interest (VOI) and there were no between-group differences in the medial occipital VOI. Myoinositol (MI) /Cr ratios measured from the posterior cingulate VOI were significantly higher in both MCI and AD patients than controls. The choline (Cho) /Cr ratios measured from the posterior cingulate VOI were higher in AD patients compared to both MCI and control subjects. Conclusion: These findings suggest that the initial 1H MRS change in the pathologic progression of AD is an increase in MI /Cr. A decrease in NAA /Cr and an increase in Cho /Cr develop later in the disease course. PMID:10908893

  19. Effect of biological factors on successful measurements with skeletal-muscle 1H-MRS

    PubMed Central

    Isobe, Tomonori; Okamoto, Yoshikazu; Hirano, Yuji; Ando, Hiroki; Takada, Kenta; Sato, Eisuke; Shinoda, Kazuya; Tadano, Kiichi; Takei, Hideyuki; Kamizawa, Satoshi; Mori, Yutaro; Suzuki, Hiroaki

    2016-01-01

    Background Our purpose in this study was to clarify whether differences in subject group attributes could affect data acquisition in proton magnetic resonance spectroscopy (1H-MRS). Methods Subjects without diabetes mellitus (DM) were divided into two groups (group A, in their 20s; group B, 30–60 years old). Subjects with DM formed group C (30–60 years old). The numbers of subjects were 19, 27, and 22 for group A, B, and C respectively. For all subjects, 1H-MRS measurements were taken of the soleus muscle (SOL) and the anterior tibial muscle (AT). We defined the success of the measurements by the detection of intramyocellular lipids. Moreover, we also measured the full width at half maximum of the water peaks for all subjects. Results The success rate was significantly higher for the AT (100%) than for the SOL (81.6%) (P<0.01). For the SOL, the success rate was 100% in group A, 85.2% in group B, and 77.3% in group C. There was a significant difference (P<0.05) between groups A and B, as well as between groups A and C. In all subjects, there was a significant difference (P<0.01) in the full width at half maximum (Hz) of the water peak between the AT and SOL measurements. Conclusion We conclude that differences in the age and DM history of subjects could affect the probability of successful 1H-MRS data acquisition. PMID:27499626

  20. A Comprehensive Review of the 1H-MRS Metabolite Spectrum in Autism Spectrum Disorder

    PubMed Central

    Ford, Talitha C.; Crewther, David P.

    2016-01-01

    Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy (1H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current 1H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in 1H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders. PMID:27013964

  1. (1)H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool.

    PubMed

    Zira, Athina N; Theocharis, Stamatios E; Mitropoulos, Dionisios; Migdalis, Vasilios; Mikros, Emmanuel

    2010-08-06

    (1)H NMR based metabonomic approach was applied in order to monitor the alterations of plasma metabolic profile in Renal Cell Carcinoma (RCC) patients and controls. (1)H NMR spectra of plasma samples from 32 RCC patients and 13 controls (patients exhibiting benign urologic disease) were recorded and analyzed using multivariate statistical techniques. Alterations in the levels of LDL/VLDL, NAC, lactate, and choline were observed between RCC patients and controls discriminating these groups in Principal Component Analysis (PCA) plots. Post OSC PLS-DA presented a satisfactory clustering between T1 with T3 RCC patients. Decrease in plasma lipid concentrations in RCC patients was verified using conventional clinical chemistry analysis. The results suggest that combination of (1)H NMR spectroscopy with PCA has potential in cancer diagnosis; however, a limitation of the method to monitor RCC is that major biomarkers revealed (lipoproteins and choline) in this metabolic profile are not unique to RCC but may be the result of the presence of any malignancy.

  2. Investigation of 1H NMR chemical shifts of organic dye with hydrogen bonds and ring currents.

    PubMed

    Park, Sung Soo; Won, Yong Sun; Lee, Woojin; Kim, Jae Hong

    2011-04-07

    The (1)H NMR chemical shifts were theoretically computed for the organic dyes 2-(2,6-dimethyl-4H-pyran-4-ylidene)-malononitrile (1), cyano-(2,6-dimethyl-4H-pyran-4-ylidene)-acetic acid methyl ester (2), 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-malononitrile (3), and methyl 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate (4) at the GIAO/B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory. Moreover, the intramolecular rotational barriers of the molecules were calculated to evaluate the internal flexibility with respect to the torsional degrees of freedom, and the nuclear-independent chemical shifts (NICS) were employed to analyze the ring currents. The difference was explained in terms of intramolecular hydrogen bonds and ring currents of the molecules. The (1)H NMR spectra were reproduced by experiments for the comparison with computationally constructed data. Our results suggest a good guideline in interpreting (1)H NMR chemical shifts using computational methods and furthermore a reliable perspective for designing molecular structures.

  3. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  4. Synthesis and antiproliferative activity of 3-amino-N-phenyl-1H-indazole-1-carboxamides.

    PubMed

    Raffa, Demetrio; Maggio, Benedetta; Cascioferro, Stella; Raimondi, Maria Valeria; Schillaci, Domenico; Gallo, Giorgio; Daidone, Giuseppe; Plescia, Salvatore; Meneghetti, Fiorella; Bombieri, Gabriella; Di Cristina, Antonietta; Pipitone, Rosaria M; Grimaudo, Stefania; Tolomeo, Manlio

    2009-01-01

    A series of new 3-amino-N-phenyl-1H-indazole-1-carboxamides 10 have been prepared from commercially available phenyl isocyanate precursors 8 and 3-aminoindazole 9. Some of the synthesized compounds were evaluated for their in vitro antineoplastic activity against 60 human cell lines derived from seven clinically isolated cancer types (lung, colon, melanoma, renal, ovarian, brain, and leukemia) according to the NCI standard protocol. The test results indicated that 3-amino-1H-indazole-1-carboxamides 10 were endowed with an interesting antiproliferative activity. The most active compounds of this series, 10d,e, were able to inhibit cell growth of many neoplastic cell lines at concentrations lower than 1 microM (0.0153 microM in SR leukemia) causing a block in G0-G1 phase of cell cycle. Analysis of pRb expression showed that these two compounds increased the ratio between underphosphorylated pRb and total pRb. The X-ray structure of 10w, confirmed the 3-amino-N-phenyl-1H-indazole-1-carboxamide structure of compounds 10.

  5. The structures of two scorpionates: thallium tetrakis(3-phenyl-1H-pyrazol-1-yl)borate and potassium tetrakis(3-cyclopropyl-1H-pyrazol-1-yl)borate.

    PubMed

    Infantes, Lourdes; Claramunt, Rosa M; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2016-11-01

    The introduction of poly(1H-pyrazolyl)borate anions, better known as scorpionates, as negatively charged ligands for a great diversity of metal cations has had a tremendous influence in coordination chemistry. The structures of two salts of tetrakispyrazolylborate, namely [tetrakis(3-phenyl-1H-pyrazol-1-yl)borato]thallium(I), [Tl(C36H28BN8)], and catena-poly[potassium-[μ2-tetrakis(3-cyclopropyl-1H-pyrazol-1-yl)borato

  6. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  7. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight.

    PubMed

    Mastroleo, Felice; Van Houdt, Rob; Leroy, Baptiste; Benotmane, M Abderrafi; Janssen, Ann; Mergeay, Max; Vanhavere, Filip; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    2009-12-01

    In view of long-haul space exploration missions, the European Space Agency initiated the Micro-Ecological Life Support System Alternative (MELiSSA) project targeting the total recycling of organic waste produced by the astronauts into oxygen, water and food using a loop of bacterial and higher plant bioreactors. In that purpose, the alpha-proteobacterium, Rhodospirillum rubrum S1H, was sent twice to the International Space Station and was analyzed post-flight using a newly developed R. rubrum whole genome oligonucleotide microarray and high throughput gel-free proteomics with Isotope-Coded Protein Label technology. Moreover, in an effort to identify a specific response of R. rubrum S1H to space flight, simulation of microgravity and space-ionizing radiation were performed on Earth under identical culture set-up and growth conditions as encountered during the actual space journeys. Transcriptomic and proteomic data were integrated and permitted to put forward the importance of medium composition and culture set-up on the response of the bacterium to space flight-related environmental conditions. In addition, we showed for the first time that a low dose of ionizing radiation (2 mGy) can induce a significant response at the transcriptomic level, although no change in cell viability and only a few significant differentially expressed proteins were observed. From the MELiSSA perspective, we could argue the effect of microgravity to be minimized, whereas R. rubrum S1H could be more sensitive to ionizing radiation during long-term space exploration mission.

  8. Applications of high-resolution 1H solid-state NMR.

    PubMed

    Brown, Steven P

    2012-02-01

    This article reviews the large increase in applications of high-resolution (1)H magic-angle spinning (MAS) solid-state NMR, in particular two-dimensional heteronuclear and homonuclear (double-quantum and spin-diffusion NOESY-like exchange) experiments, in the last five years. These applications benefit from faster MAS frequencies (up to 80 kHz), higher magnetic fields (up to 1 GHz) and pulse sequence developments (e.g., homonuclear decoupling sequences applicable under moderate and fast MAS). (1)H solid-state NMR techniques are shown to provide unique structural insight for a diverse range of systems including pharmaceuticals, self-assembled supramolecular structures and silica-based inorganic-organic materials, such as microporous and mesoporous materials and heterogeneous organometallic catalysts, for which single-crystal diffraction structures cannot be obtained. The power of NMR crystallography approaches that combine experiment with first-principles calculations of NMR parameters (notably using the GIPAW approach) are demonstrated, e.g., to yield quantitative insight into hydrogen-bonding and aromatic CH-π interactions, as well as to generate trial three-dimensional packing arrangements. It is shown how temperature-dependent changes in the (1)H chemical shift, linewidth and DQ-filtered signal intensity can be analysed to determine the thermodynamics and kinetics of molecular level processes, such as the making and breaking of hydrogen bonds, with particular application to proton-conducting materials. Other applications to polymers and biopolymers, inorganic compounds and bioinorganic systems, paramagnetic compounds and proteins are presented. The potential of new technological advances such as DNP methods and new microcoil designs is described.

  9. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  10. Toxicogenomic Response of Rhodospirillum rubrum S1H to the Micropollutant Triclosan▿

    PubMed Central

    Pycke, Benny F. G.; Vanermen, Guido; Monsieurs, Pieter; De Wever, Heleen; Mergeay, Max; Verstraete, Willy; Leys, Natalie

    2010-01-01

    In the framework of the Micro-Ecological Life Support System Alternative (MELiSSA) project, a pilot study was performed to identify the effects of triclosan on the MELiSSA carbon-mineralizing microorganism Rhodospirillum rubrum S1H. Triclosan is a biocide that is commonly found in human excrement and is considered an emerging pollutant in wastewater and the environment. Chronic exposure to MELiSSA-relevant concentrations (≥25 μg liter−1) of triclosan resulted in a significant extension of the lag phase of this organism but hardly affected the growth rate. Analytical determinations gave no indication of triclosan biodegradation during the growth experiment, and flow cytometric viability analyses revealed that triclosan is bacteriostatic and only slightly toxic to R. rubrum S1H. Using microarray analyses, the genetic mechanisms supporting the reversibility of triclosan-induced inhibition were scrutinized. An extremely triclosan-responsive cluster of four small adjacent genes was identified, for which there was up to 34-fold induction with 25 μg liter−1 triclosan. These four genes, for which the designation muf (micropollutant-upregulated factor) is proposed, appear to be unique to R. rubrum and are shown here for the first time to be involved in the response to stress. Moreover, numerous other systems that are associated with the proton motive force were shown to be responsive to triclosan, but they were never as highly upregulated as the muf genes. In response to triclosan, R. rubrum S1H induced transcription of the phage shock protein operon (pspABC), numerous efflux systems, cell envelope consolidation mechanisms, the oxidative stress response, beta-oxidation, and carbonic anhydrase, while there was downregulation of bacterial conjugation and carboxysome synthesis genes. The muf genes and three efflux-related genes showed the most potential to be low-dose biomarkers. PMID:20363786

  11. (1)H MRS: a potential biomarker of in utero placental function.

    PubMed

    Macnaught, Gillian; Gray, Calum; Walker, Jane; Simpson, Mary; Norman, Jane; Semple, Scott; Denison, Fiona

    2015-10-01

    The placenta is a temporary organ that is essential for a healthy pregnancy. It performs several important functions, including the transport of nutrients, the removal of waste products and the metabolism of certain substances. Placental disorders have been found to account for over 50% of stillbirths. Despite this, there are currently no methods available to directly and non-invasively assess placental function in utero. The primary aim of this pilot study was to investigate the use of (1)H MRS for this purpose. (1)H MRS offers the possibility to detect several placental metabolites, including choline, lipids and the amino acids glutamine and glutamate (Glx), which are vital to fetal development and placental function. Here, in utero placental spectra were acquired from nine small for gestational age (SGA) pregnancies, a cohort who are at increased risk of perinatal morbidity and mortality, and from nine healthy gestation-matched pregnancies. All subjects were between 26 and 39 weeks of gestation. Placenta Glx, choline and lipids at 1.3 and 0.9 ppm were quantified as amplitude ratios to that of intrinsic H2O. Wilcoxon signed rank tests indicated a significant difference in Glx/H2O (p = 0.024) between the two groups, but not in choline/H2O (p = 0.722) or in either lipid/H2O ratio (1.3 ppm, p = 0.813; 0.9 ppm, p = 0.058). This study has demonstrated that (1)H MRS has potential for the detection of placental metabolites in utero. This warrants further investigation as a tool for the monitoring of placental function.

  12. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  13. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H Irradiation Report

    SciTech Connect

    Debra J. Utterbeck; Gray Chang

    2005-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. These experiments are high burnup analogs to previously irradiated experiments and are to be irradiated to = 20 atom % burnup. Results of the evaluations show that AFC-1D will remain in the ATR for approximately 100 additional effective full power days (EFPDs), and AFC-1G and AFC-1H for approximately 300 additional EFPDs in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  14. Ethyl 2-(2-methyl-1H-benzimidazol-1-yl)acetate

    PubMed Central

    Xu, Guang-Hai; Wang, Wei

    2008-01-01

    A new benzimidazole compound, C12H14N2O2, has been synthesized by the reaction of 2-methyl-1H-benzimidazole and ethyl 2-bromo­acetate. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains. π⋯π Contacts (centroid⋯centroid distance = 3.713 Å) are observed. A C—H⋯π inter­action is also present. The N—C—C—O torsion angle is 178.4 (2)°. PMID:21201788

  15. [1H-NMR studies of the ACTH-like immunoregulatory peptides].

    PubMed

    Khristoforov, V S; Kutyshenko, V P; Abramov, V M; Zav'ialov, V P

    1997-01-01

    A comparative study of the conformational and dynamics properties of the ACTH-like linear peptides, sequences of which correspond to amino acid residues 11-20 of the heavy chain of human immunoglobulin G1 Eu, residues 78-85 of human pro-interleukin-1 alpha and site 10-18 of human ACTH, was performed in aqueous solution and dimethylsulfoxide by 1H-NMR spectroscopy at 400 MHz. The peptides were shown to possess an unordered unfolded flexible conformation in aqueous solution. The revealed structural and dynamic features of the peptides are discussed together with biological activity of this class of compounds.

  16. Spin-Resolved Photoemission of Surface States of W(110)-(1×1)H

    NASA Astrophysics Data System (ADS)

    Hochstrasser, M.; Tobin, J. G.; Rotenberg, Eli; Kevan, S. D.

    2002-11-01

    The surface electronic states of W(110)-(1×1)H have been measured using spin- and angle-resolved photoemission. We directly demonstrate that the surface bands are both split and spin-polarized by the spin-orbit interaction in association with the loss of inversion symmetry near a surface. We observe 100% spin polarization of the surface states, with the spins aligned in the plane of the surface and oriented in a circular fashion relative to the S¯ symmetry point. In contrast, no measurable polarization of nearby bulk states is observed.

  17. V/STOL AND digital avionics system for UH-1H

    NASA Technical Reports Server (NTRS)

    Liden, S.

    1978-01-01

    A hardware and software system for the Bell UH-1H helicopter was developed that provides sophisticated navigation, guidance, control, display, and data acquisition capabilities for performing terminal area navigation, guidance and control research. Two Sperry 1819B general purpose digital computers were used. One contains the development software that performs all the specified system flight computations. The second computer is available to NASA for experimental programs that run simultaneously with the other computer programs and which may, at the push of a button, replace selected computer computations. Other features that provide research flexibility include keyboard selectable gains and parameters and software generated alphanumeric and CRT displays.

  18. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  19. 1-Benzyl-4-(naphthalen-1-yl)-1H-1,2,3-triazole

    PubMed Central

    Sarmiento-Sánchez, Juan I.; Aguirre, Gerardo; Rivero, Ignacio A.

    2011-01-01

    In the title compound, C19H15N3, the benzyl group is almost perpendicular to the triazole ring [dihedral angle = 80.64 (8)°], while the napthyl group makes an angle of 30.27 (12)° with the plane of the triazole ring. This conformation is different from the 1-benzyl-4-phenyl-1H-1,2,3-triazole analogue, which has the benzyl ring system at an angle of 87.94° and the phenyl group at an angle of 3.35° to the plane of the triazole ring. PMID:21837221

  20. Brainstem involvement in Unverricht-Lundborg disease (EPM1): An MRI and (1)H MRS study.

    PubMed

    Mascalchi, M; Michelucci, R; Cosottini, M; Tessa, C; Lolli, F; Riguzzi, P; Lehesjoki, A E; Tosetti, M; Villari, N; Tassinari, C A

    2002-06-11

    MRI of the brain and proton MRS ((1)H MRS) of the pons and dentate were obtained in 10 patients with genetically confirmed Unverricht-Lundborg disease (EPM1) and 20 control subjects. Patients with EPM1 showed (p < or = 0.01) loss of bulk of the basis pontis, medulla, and cerebellar hemispheres. Cerebral atrophy was present in six patients. The N-acetylaspartate/creatine and choline/creatine ratios were reduced in the pons but not in the dentate (p < or = 0.005). Brainstem involvement could play a role in pathophysiology of EPM1.

  1. Conformational studies by 1H and 13C NMR of lisinopril

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishi, Tomoko

    1993-10-01

    Lisinopril, N-N-[( s-1-carboxy-3-phenylpropyl]- L-lysyl- L-proline) (MK-521), is an inhibitor of angiotensin-converting enzyme and a new drug for the treatment of hypertension. 1H and 13C NMR studies have shown that the s-cis equilibrium about the amide bond is strongly dependent on the configuration of the chiral centres. Vicinal coupling constants of stereochemical significance were obtained in deuterated solvent using NMR techniques. Comparison with values calculated for lisinopril using potential energy calculations and NMR show that lisinopril exists in preferred optimum conformation in solution.

  2. (1) H and (13) C NMR characterization of new cycloartane triterpenes from Mangifera indica.

    PubMed

    Escobedo-Martínez, Carolina; Concepción Lozada, M; Hernández-Ortega, Simón; Villarreal, María Luisa; Gnecco, Dino; Enríquez, Raúl G; Reynolds, William

    2012-01-01

    From the stem bark of Mangifera indica, seven cycloartane-type secondary metabolites were isolated. Compound 1 has been isolated for the first time from M. indica, whereas compounds 2 (2a and 2b, as an epimeric mixture), 3, and 4 are new triterpenoid-type cycloartanes. Unambiguous (13) C and (1) H NMR assignments for these compounds and the known compounds mangiferonic acid (compound 5), isomangiferolic acid (compound 6), ambolic acid (compound 7), and friedelin (compound 8) are reported; the latter because full NMR data for these compounds are not available in the literature.

  3. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry

    PubMed Central

    Yong, Wei Peng; Yeow, Chen Hua

    2016-01-01

    Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS. PMID:27611679

  4. 1H NMR investigation of self-association of vanillin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bogdan, Mircea; Floare, Calin G.; Pîrnau, Adrian

    2009-08-01

    A self-association of vanillin have been studied by 1H NMR spectroscopy using the analysis of proton chemical shifts changes in aqueous solution as a function of concentration. The experimental results have been analysed using indefinite non-cooperative and cooperative models of molecular self-association, enabling the determination of equilibrium constants, parameters of cooperativity and the limiting values of vanillin proton chemical shifts in the complex. It was found that the dimer formation creates energetically favourable conditions for subsequent molecular association.

  5. V/STOLAND avionics system flight-test data on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Baker, F. A.; Jaynes, D. N.; Corliss, L. D.; Liden, S.; Merrick, R. B.; Dugan, D. C.

    1980-01-01

    The flight-acceptance test results obtained during the acceptance tests of the V/STOLAND (versatile simplex digital avionics system) digital avionics system on a Bell UH-1H helicopter in 1977 at Ames Research Center are presented. The system provides navigation, guidance, control, and display functions for NASA terminal area VTOL research programs and for the Army handling qualities research programs at Ames Research Center. The acceptance test verified system performance and contractual acceptability. The V/STOLAND hardware navigation, guidance, and control laws resident in the digital computers are described. Typical flight-test data are shown and discussed as documentation of the system performance at acceptance from the contractor.

  6. High-resolution /sup 1/H NMR study of the solution structure of alamethicin

    SciTech Connect

    Esposito, G.; Carver, J.A.; Boyd, J.; Campbell, I.D.

    1987-02-24

    A /sup 1/H NMR study of the peptide alamethicin, which forms voltage-gated ion channels in membranes, is described. The molecule was studied in methanol as a function of temperature and pH. A complete assignment of the spectra is given, including several stereospecific assignments. Alamethicin was found to have a structure substantially similar to the crystal although, in solution, the C-terminal dipeptide adopts a somewhat extended conformation. The overall conformation was insensitive to the ionization of the side chain of the ionizable group, Glu-18.

  7. Investigations of La Rioja terroir for wine production using 1H NMR metabolomics.

    PubMed

    López-Rituerto, Eva; Savorani, Francesco; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M; Engelsen, Søren Balling

    2012-04-04

    In this study, La Rioja wine terroir was investigated by the use of (1)H NMR metabolomics on must and wine samples. Rioja is a small wine region in central northern Spain which can geographically be divided into three subareas (Rioja Alta, Rioja Baja, and Rioja Alavesa). The winemaking process from must, through alcoholic and malolactic fermentation, was followed by NMR metabolomics and chemometrics of nine wineries in the Rioja subareas (terroirs). Application of interval extended canonical variate analysis (iECVA) showed discriminative power between wineries which are geographically very close. Isopentanol and isobutanol compounds were found to be key biomarkers for this differentiation.

  8. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts

    PubMed Central

    Sripakdeevong, Parin; Cevec, Mirko; Chang, Andrew T.; Erat, Michèle C.; Ziegeler, Melanie; Zhao, Qin; Fox, George E.; Gao, Xiaolian; Kennedy, Scott D.; Kierzek, Ryszard; Nikonowicz, Edward P.; Schwalbe, Harald; Sigel, Roland K. O.; Turner, Douglas H.; Das, Rhiju

    2014-01-01

    Structured non-coding RNAs underline fundamental cellular processes, but determining their 3D structures remains challenging. We demonstrate herein that integrating NMR 1H chemical shift data with Rosetta de novo modeling can consistently return high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 blind targets, Chemical-Shift-ROSETTA for RNA (CS-ROSETTA-RNA) recovered the experimental structures with high accuracy (0.6 to 2.0 Å all-heavy-atom rmsd) in 18 cases. PMID:24584194

  9. 1H and 13C NMR study on some substituted azolidine derivatives

    NASA Astrophysics Data System (ADS)

    Cerioni, Giovanni; Cristiani, Franco; Devillanova, Francesco A.; Diaz, Angelo; Verani, Gaetano

    The 1H and 13C NMR spectra carried out on R overlineN·CH 2·CH 2·X·C O (where for R = H, X = NH, NMe, NEt, CH 2, S, O; for R = Me, X = NMe, CH 2; for R = Et, X = NEt) are reported. The comparison of these results with those obtained for the thionic and selonic isologues shows that sulphur and selenium have a greater deshielding effect on the ring than oxygen. The resonance of the carbons not involved in the π system have been correlated with the σ charges calculated by the DEL RE method.

  10. 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives

    NASA Astrophysics Data System (ADS)

    Xu, Jingkun; Hou, Jian; Zhou, Weiqiang; Nie, Guangming; Pu, Shouzhi; Zhang, Shusheng

    2006-03-01

    The existence of N sbnd H bond according to the hydrogen nuclear magnetic resonance ( 1H NMR) spectra of polyindole and its derivatives, such as poly(5-bromoindole), poly(5-cyanoindole), poly(5-nitroindole), poly(5-methylindole), proved polymerization of high-quality polyindoles, which were electrosynthesized from middle strong Lewis acid boron trifluoride diethyl etherate (BFEE) and its mixed electrolytes with additional diethyl ether, occurred at 2,3-position. The elongation of the conjugation length made the chemical shift of all the protons of polyindoles to lower field in comparison with those of monomers.

  11. (1)H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw (1)H NMR data were made available in Microsoft Excel workbook format (.xls).

  12. Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors

    SciTech Connect

    Demaerel, P.; Johannik, K.; Van Hecke, P.; Van Ongeval, C.; Verellen, S.; Marchal, G.; Wilms, G.; Plets, C.; Goffin, J.; Van Calenbergh, F. )

    1991-01-01

    Fifty patients with newly diagnosed, untreated intracranial tumors were examined with 1H nuclear magnetic resonance single-volume spectroscopy (MRS) using a 1.5 T whole-body MR system. Prior to the MRS, contrast enhanced MR and/or CT imaging studies were carried out. Histological verification was obtained in all patients except one. All tumor spectra revealed distinct abnormalities as compared with the normal brain spectra. Although most meningiomas showed a rather characteristic spectral pattern, generally features specific for the various tumor types were not observed. For instance, though a strong lactic acid signal was seen in most malignant tumors, this signal was also evident in five benign neoplasms.

  13. Synthesis of substituted 1H-indazoles from arynes and hydrazones.

    PubMed

    Li, Pan; Wu, Chunrui; Zhao, Jingjing; Rogness, Donald C; Shi, Feng

    2012-04-06

    The 1H-indazole skeleton can be constructed by a [3 + 2] annulation approach from arynes and hydrazones. Under different reaction conditions, both N-tosylhydrazones and N-aryl/alkylhydrazones can be used to afford a variety of indazoles. The former reaction affords 3-substituted indazoles either via in situ generated diazo compounds or through an annulation/elimination process. The latter reaction leads to 1,3-disubstituted indazoles likely through an annulation/oxidation process. The reactions operate under mild conditions and can accommodate aryl, vinyl, and less satisfactorily, alkyl groups.

  14. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  15. Microwave-assisted Cu(I)-catalyzed, three-component synthesis of 2-(4-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benzo[d]imidazoles

    PubMed Central

    Kumar, Yogesh; Bahadur, Vijay; Singh, Anil Kumar; Parmar, Virinder Singh; Van der Eycken, Erik V

    2014-01-01

    Summary A microwave-assisted synthesis of 2-(4-((1-phenyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benzo[d]imidazoles from a phenylazide, propargyloxybenzaldehyde and a 1,2-diaminobenzene is proposed. PMID:24991296

  16. A novel one-pot pseudo-five-component condensation reaction towards bifunctional diazepine-tetrazole containing compounds: synthesis of 1H-tetrazolyl-1H-1,4-diazepine-2,3-dicarbonitriles and 1H-tetrazolyl-benzo[b][1,4]diazepines.

    PubMed

    Mofakham, Hamid; Shaabani, Ahmad; Mousavifaraz, Sajjad; Hajishaabanha, Fatemeh; Shaabani, Shabnam; Ng, Seik Weng

    2012-05-01

    A novel and efficient method has been developed for the one-pot synthesis of bifunctional diazepine-tetrazole containing compounds. 1H-Tetrazolyl-1H-1,4-diazepine-2, 3-dicarbonitrile and 1H-tetrazolyl-benzo[b][1,4]diazepine derivatives were synthesized in good yields using 2,3-diaminomaleonitrile or an aromatic diamine, ketones, trimethylsilyl azide, and an isocyanide in the presence of p-toluenesulfonic acid as a catalyst in methanol at room temperature.

  17. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.

    PubMed

    Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A

    2013-08-15

    Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively.

  18. (1)H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio).

    PubMed

    Yoon, Changshin; Yoon, Dahye; Cho, Junghee; Kim, Siwon; Lee, Heonho; Choi, Hyeonsoo; Kim, Suhkmann

    2017-04-03

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to study the response of zebrafish (Danio rerio) to increasing concentrations of bisphenol A (4,4'-(propane-2,2-diyl)diphenol, BPA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to detect aberrant metabolomic profiles after 72 h of BPA exposure at all levels tested (0.01, 0.1, and 1.0 mg/L). The OPLS-DA score plots showed that BPA exposure caused significant alterations in the metabolome. The metabolomic changes in response to BPA exposure generally exhibited nonlinear patterns, with the exception of reduced levels of several metabolites, including glutamine, inosine, lactate, and succinate. As the level of BPA exposure increased, individual metabolite patterns indicated that the zebrafish metabolome was subjected to severe oxidative stress. Interestingly, ATP levels increased significantly at all levels of BPA exposure. In the present study, we demonstrated the applicability of (1)H-NMR-based metabolomics to identify the discrete nature of metabolic changes.

  19. The molecular structure and vibrational, (1)H and (13)C NMR spectra of lidocaine hydrochloride monohydrate.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2016-01-05

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G(∗∗) calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The (1)H and (13)C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical (1)H and (13)C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21ppm, respectively.

  20. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  1. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy

    PubMed Central

    Tikunov, Andrey P.; Johnson, Christopher B.; Lee, Haakil; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding 1H NMR peak assignments for future NMR-based metabolomic studies in oysters. PMID:21116407

  2. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  3. Early metabolic changes measured by 1H MRS in healthy and dystrophic muscle after injury.

    PubMed

    Xu, Su; Pratt, Stephen J P; Spangenburg, Espen E; Lovering, Richard M

    2012-09-01

    Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic (mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo (1)H MRS regarding skeletal muscle injury.

  4. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat.

  5. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach.

    PubMed

    Dong, Ge; Wang, Junsong; Guo, Pingping; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2015-02-01

    Arisaematis Rhizoma (AR), a famous traditional Chinese medicine, has been widely used in Asia over thousands of years. Documented with noticeable toxicity in ancient books, AR has been used to treat various diseases in the clinic. Therefore, it is important to assess the toxicity of AR dynamically and holistically. In this study, a (1)H NMR-based metabolomics approach complemented with serum chemistry and histopathology has been applied to investigate the toxicity of AR. Rats were intragastrically administered with AR (0, 0.5 and 1 g kg(-1) body weight) for 30 days, and serum and urine samples were collected. Their (1)H NMR profiles were analyzed by multivariate pattern recognition techniques to denote metabolic variations induced by AR, and 13 metabolites in urine and 6 metabolites in serum were significantly altered, which suggested that disturbances in energy metabolism, perturbation of the gut microflora environment, membrane damage, folate deficiency and injury of kidneys are produced by AR. Histopathology showed a slight vacuolization of the glomerular matrix and edema of renal tubular epithelial cells in kidneys of AR administered rats, which were evidenced by increased levels of blood urea nitrogen and creatinine in serum chemistry. Our results indicated that oral administration of crude AR was found to induce slight renal toxicity. Therefore, precautions should be made to monitor the potential nephrotoxicity of AR in clinical use. The metabolomics approach provided a promising tool for the study and better understanding of TCM-induced toxicity dynamically and holistically.

  6. Neurochemical abnormalities in unmedicated bipolar depression and mania: a 2D 1H MRS investigation.

    PubMed

    Xu, Jun; Dydak, Ulrike; Harezlak, Jaroslaw; Nixon, Jonathan; Dzemidzic, Mario; Gunn, Abigail D; Karne, Harish S; Anand, Amit

    2013-09-30

    The neurobiology and neurochemistry of bipolar disorder and its different phases are poorly understood. This study investigated metabolite abnormalities in both unmedicated bipolar depression as well as mania using 2D 1H magnetic resonance spectroscopy imaging (MRSI). MRSI data were obtained from 24 unmedicated bipolar disorder (BP) subjects (12 (hypo)manic (BPM)) and 12 depressed (BPD), and 20 closely matched healthy controls. 2D 1H MRSI data were collected from a 15-mm axial slice placed along the anterior commissure-posterior commissure (AC-PC) line to measure brain metabolites bilaterally in the thalamus and also the anterior and posterior cingulate cortex (ACC and PCC). Brain Lac/Cr levels were significantly increased in the BP group as a whole compared to healthy controls. Glutamate abnormalities varied across bipolar state as well as brain region: significantly increased Glx/Cr values were found in the left thalamus in BPD, but BPM had decreased Glu/Cr and Glx/Cr levels in the PCC when compared to healthy controls and decreased Glu/Cr levels even when compared to the BPD subjects group. The findings of the study point to state-related abnormalities of oxidative and glutamate metabolism in bipolar disorder.

  7. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  8. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1

    PubMed Central

    Capper, Michael J.; O’Neill, Paul M.; Fisher, Nicholas; Strange, Richard W.; Moss, Darren; Ward, Stephen A.; Berry, Neil G.; Lawrenson, Alexandre S.; Hasnain, S. Samar; Biagini, Giancarlo A.; Antonyuk, Svetlana V.

    2015-01-01

    Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles. PMID:25564664

  9. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum.

    PubMed

    Boechat, Núbia; Ferreira, Maria de Lourdes G; Pinheiro, Luiz C S; Jesus, Antônio M L; Leite, Milene M M; Júnior, Carlos C S; Aguiar, Anna C C; de Andrade, Isabel M; Krettli, Antoniana U

    2014-09-01

    Malaria is one of the most prevalent parasitic diseases in the world. The global importance of this disease, current vector control limitations, and the absence of an effective vaccine make the use of therapeutic antimalarial drugs the main strategy to control malaria. Chloroquine is a cost-effective antimalarial drug with a relatively robust safety profile, or therapeutic index. However, chloroquine is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of chloroquine-resistant strains, which have also been reported for Plasmodium vivax. However, the activity of 1,2,3-triazole derivatives against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum has been reported in the literature. To enhance the anti-P. falciparum activity of quinoline derivatives, we synthesized 11 new quinoline-1H-1,2,3-triazole hybrids with different substituents in the 4-positions of the 1H-1,2,3-triazole ring, which were assayed against the W2-chloroquine-resistant P. falciparum clone. Six compounds exhibited activity against the P. falciparum W2 clone, chloroquine-resistant, with IC50 values ranging from 1.4 to 46 μm. None of these compounds was toxic to a normal monkey kidney cell line, thus exhibiting good selectivity indexes, as high 351 for one compound (11).

  10. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  11. (1)H-(14)N cross-relaxation spectrum analysis in sildenafil and sildenafil citrate.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Seliger, Janez

    2016-09-01

    Here we describe a method for the extraction of (14)N quadrupole parameters from a (1)H-(14)N cross-relaxation spectrum by fitting the lineshapes of the (14)N quadrupole transitions. The procedures used typically to fit quadrupole lineshapes are not directly applicable to fit the (1)H-(14)N cross-relaxation spectrum, because the presence of proton homonuclear dipolar interaction broadens the lineshapes considerably and prevents a reliable determination of Cq and η from a single lineshape. Instead, one must fit two or even three lineshapes originating from the same nitrogen site simultaneously. The problem is to identify which lineshapes belong together when many are observed due to the existence of several nitrogen sites. We solve this problem by fitting the spectrum for all possible combinations and find the best-fitting one. This combination then most likely correctly identifies lineshapes belonging to the same nitrogen site. There are two main advantages of our method compared to the typically used method, which relies only on lineshape singularities: (i) the method is "automatic" and does not require knowledge of nitrogen quadrupole parameters in similar environments to aid dip pairing and (ii) the accuracy of quadrupole parameters is better, as proton linewidth is included in the fits. We use sildenafil and sildenafil citrate as model compounds, each with six non-equivalent nitrogen sites.

  12. In vivo 1H MR spectra analysis by means of second derivative method.

    PubMed

    Sokół, M

    2001-05-01

    Short echo time (TE) in vivo PRESS 1H MR spectra (2 T, TE=35 ms) of normal brain were fitted in the frequency domain using the second derivative method. In this approach, local maxima and hidden peaks are found as local minima of spectrum second derivative. The Lorentzian robust minimisation procedure (referred to as maximum likelihood or m-estimate fitting) using Levenburg-Marquardt non-linear fitting engine was applied. Spectral lines were approximated under the assumption of the mixed Lorentzian/Gaussian lineshapes. The same procedure was applied to 18 proton spectra. The number of peaks found within the range of 0.74/4.2 parts per million (ppm) was 52+/-3 and their positions were almost the same. The fitted lines were assigned on the basis of the J-pattern recalculated for the field strength of 2 T and by comparing the chemical shifts with the shifts in the single compound spectra. The ratios of main metabolites, such as NAA/Cr, Cho/Cr, Cho/NAA and mI/Cr, are in accord with those obtained earlier using the software supplied with the MR imager and the absolute concentrations of N-acetylaspartate (NAA), choline containing compounds (Cho), myoInositol (mI), glucose (Glc) and glutamate (Glu) obtained from the fit agree with those reported in literature, which confirms the usefulness of the second derivative method in routine analyses of 1H MR brain spectra.

  13. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  14. 1H Photo-CIDNP Enhancements in Heteronuclear Correlation NMR Spectroscopy

    PubMed Central

    Sekhar, Ashok; Cavagnero, Silvia

    2009-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) is usually employed as a probe of solvent exposure, in biomolecular NMR. The potential of the photo-CIDNP effect for sensitivity enhancement, however, remains poorly explored. Here, we introduce 1H-photo-CIDNP in heteronuclear correlation spectroscopy at low laser irradiation power (1 W), and compare the sensitivity of various 1H-Photo-CIDNP-enhanced- (HPE) 1H◻15N heteronuclear correlation pulse sequences, including HSQC, HMQC, and SOFAST-HMQC, in terms of their ability to detect the Trp indole Hε1 resonance. Both Trp and the Trp-containing protein apoHmpH were analyzed using flavin mononucleotide as photosensitizer in aqueous solutions either containing or lacking urea. We find that 1H◻15N photo-CIDNP-SOFAST-HMQC, denoted here as HPE-SOFAST-HMQC, yields a two-fold higher signal-to-noise per unit time than the parent SOFAST-HMQC for the solvent-exposed Trp of urea-unfolded apoHmpH. Thus, HPE-SOFAST-HMQC is the most sensitive heteronuclear correlation pulse sequence for the detection of solvent-exposed Trp. PMID:19462951

  15. 1H-NMR characterization of poly(ethylene glycol) and polydimethylsiloxane copolymer

    NASA Astrophysics Data System (ADS)

    Zainuddin, Ain Athirah; Othaman, Rizafizah; Noor, Wan Syaidatul Aqma Wan Mohd; Anuar, Farah Hannan

    2016-11-01

    This paper describes the synthesis and characterization of poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) copolymers. The copolymers were synthesized by reacting hydroxyl group (-OH) of poly(ethylene glycol) (PEG) and polydimetylsiloxane (PDMS) with isocyanate group (R-N=C=O) of 1,6-hexamethylene diisocyanate (HMDI). The reaction was carried out at room temperature. The copolymers were synthesized in three different compositions which differ in molar ratios of PEG to PDMS. The ratios (PEG:PDMS) used were 2:6. 3:5 and 4:4. The formation of the copolymers was characterized by 1H Nuclear Magnetic Resonance (1H-NMR) for structural determination. The presence of proton signal at 4.80 ppm which belongs to the proton of urethane group indicates the formation of urethane links. The formation of urethane links showed that two homopolymers were linked together by HMDI to form longer copolymer chains. It is worth to note that the sequence of PEG and PDMS along the copolymer chain is random.

  16. 1H, 13C NMR and DFT Study of Hydrogen Bonding in Imidazolium-based Ionic Liquids.

    PubMed

    Balevičius, Vytautas; Gdaniec, Zofia; Džiaugys, Lukas; Kuliešius, Feliksas; Maršalka, Arūnas

    2011-09-01

    The ionic liquid 1-decyl-3-methyl-imidazolium bromide [C10mim][Br], the neat material, and also dissolved (~0.01 mole fraction) in various dielectric media (acetonitrile, benzene, chloroform, dichloromethane, methanol, 2-butanol and H2O) was studied using 1H and 13C NMR spectroscopy. The most important interaction in this compound is considered to be the Br-...H-C2+ hydrogen bond, which is formed between the anions and cations. The obtained results show that dielectric medium influence mostly the behavior of the Br-...H-C2+ bridge proton. The changes observed in 1H and 13C NMR spectra of [C10mim][Br] with increasing solvents polarity and temperature can be explained applying the model of the lengthening of the H2...Br- bond with the accompanying thickening of the solvation shell of bromine anion and C2-H bond contraction. The short-range order effects related to the configuration of neighboring dipoles of solvent molecules are more important for the solvation ability of small anions than the bulk solvent field effect. However, the solvents, molecules of which tend to associate via hydrogen bonding, can significantly affect the dynamics of anions.

  17. Combinatorial synthesis of heterocycles: solid-phase synthesis of 2-amino-4(1H)-quinazolinone derivatives.

    PubMed

    Gopalsamy, A; Yang, H

    2000-01-01

    A new solid-phase synthesis of various substituted 2-amino-4(1H)-quinazolinones from a resin bound amine component is described. The amine was readily converted to the corresponding polymer bound S-methylthiopseudourea. Condensation with different substituted isatoic anhydrides afforded 2-amino-4(1H)-quinazolinone derivatives. The method is amenable for combinatorial library generation.

  18. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  19. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  20. 40 CFR 180.228 - S-Ethyl hexahydro-1H-aze-pine-1-carbothioate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false S-Ethyl hexahydro-1H-aze-pine-1-carbothioate; tolerances for residues. 180.228 Section 180.228 Protection of Environment ENVIRONMENTAL... FOOD Specific Tolerances § 180.228 S-Ethyl hexahydro-1H-aze-pine-1-carbothioate; tolerances...

  1. Diaqua-(5-methyl-1H-pyrazole-3-carboxyl-ato)(4-nitro-benzoato)copper(II).

    PubMed

    Hu, Fei-Long; Yin, Xian-Hong; Feng, Yu; Mi, Yan; Zhang, Shan-Shan

    2009-01-23

    In the title complex, [Cu(C(7)H(4)NO(4))(C(5)H(5)N(2)O(2))(H(2)O)(2)], the Cu(II) ion is coordinated in a slightly distorted square-pyramidal enviroment. The basal plane is formed by an N atom and an O atom from a 5-methyl-1H-pyrazole-3-carboxyl-ate ligand and by two O atoms from two water ligands. The apical position is occupied by a carboxylate O atom from a 4-nitro-benzoate ligand. In the crystal structure, inter-molecular O-H⋯O and N-H⋯O hydrogen bonds link complex moleclues, forming extended chains parallel to the a axis.

  2. Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts.

    PubMed

    Rodríguez-Rodríguez, Aurora; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Botta, Mauro; Tripier, Raphaël; Platas-Iglesias, Carlos

    2012-12-17

    calculations. Our results show that spin polarization effects dominate the (1)H A(iso) values. The X-ray crystal structures of [Ln(Me-DODPA)](PF(6))·2H(2)O (Ln = Eu or Lu) are also reported.

  3. A novel approach for baseline correction in 1H-MRS signals based on ensemble empirical mode decomposition.

    PubMed

    Parto Dezfouli, Mohammad Ali; Dezfouli, Mohsen Parto; Rad, Hamidreza Saligheh

    2014-01-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) is a non-invasive diagnostic tool for measuring biochemical changes in the human body. Acquired (1)H-MRS signals may be corrupted due to a wideband baseline signal generated by macromolecules. Recently, several methods have been developed for the correction of such baseline signals, however most of them are not able to estimate baseline in complex overlapped signal. In this study, a novel automatic baseline correction method is proposed for (1)H-MRS spectra based on ensemble empirical mode decomposition (EEMD). This investigation was applied on both the simulated data and the in-vivo (1)H-MRS of human brain signals. Results justify the efficiency of the proposed method to remove the baseline from (1)H-MRS signals.

  4. Can {sup 1}H MR Spectroscopy be Used to Assess the Success of Uterine Artery Embolisation?

    SciTech Connect

    Macnaught, Gillian; Ananthakrishnan, G.; Hinksman, L.; Yadavali, R.; Bryden, F.; Lassman, S.; Ritchie, M.; Gallacher, K.; Hay, C.; Moss, J. G.

    2016-03-15

    PurposeAbsence of contrast on contrast enhanced MRI (CEMRI) and reduction in uterine volume at 6 months post-uterine artery embolisation (UAE) currently indicate the successful disruption of the fibroid blood supply by UAE. This study assesses whether {sup 1}H MR spectroscopy ({sup 1}H MRS) can also indicate the success of UAE.Method20 patients with symptomatic fibroids were randomised 1:1 to undergo UAE with either Gelfoam or Embospheres. CEMRI and spectra (1.5 T) were acquired pre-, 24-h and 6 months post-UAE. LCModel was used to detect significant levels of choline, creatine and lactate in fibroid spectra. Uterine volumes were measured and paired t tests (p < 0.05) assessed volume reduction over time. Qualitative assessments of CEMRI were performed.ResultsCholine was detected in 17/18 spectra pre-UAE, 12/14 at 24-h and 6/16 at 6 months post-UAE. Choline was not detected in the 7/7 spectra available for the Embospheres group at 6 months. These fibroids were non-enhancing on CEMRI and associated with a significant reduction in mean uterine volume at 6 months (mean/min/max 396.5/84.1/997.5 cm{sup 3}, p = 0.003). Choline was detected in 6/9 fibroid spectra available for the Gelfoam group at 6 months. Of these fibroids, four demonstrated persistent enhancement on CEMRI and two were non-enhancing. This group did not demonstrate significant uterine volume reduction (mean/min/max 117.2/−230.6/382.6 cm{sup 3}, p = 0.15). The negative minimum value indicates fibroid growth.ConclusionsThis study has demonstrated the potential of {sup 1}H MRS to provide an additional marker of the success of UAE.

  5. Synthesis of Functionalized 1H-Indenes and Benzofulvenes through Iodocyclization of o-(Alkynyl)styrenes.

    PubMed

    García-García, Patricia; Sanjuán, Ana M; Rashid, Muhammad A; Martínez-Cuezva, Alberto; Fernández-Rodríguez, Manuel A; Rodríguez, Félix; Sanz, Roberto

    2017-01-20

    A convenient method for the preparation of synthetically useful 3-iodoindene derivatives has been developed. This protocol, based on the 5-endo iodocyclization reaction of o-(alkynyl)styrenes, represents one of the scarce examples of halocyclizations using olefins as nucleophilic counterparts and allows the synthesis of both 3-iodo-1H-indenes (from β-alkyl-β-alkyl/aryl-o-(alkynyl)styrenes) and 3-iodobenzofulvenes (from β,β-diaryl-o-(alkynyl)styrenes) in good yields under mild reaction conditions. In addition, related alkoxyiodocyclization processes are described, which are particularly interesting in their intramolecular version because they allow the synthesis of heteropolycyclic structures containing the indene core. Finally, the usefulness of the prepared 3-iodoindenes has been demonstrated by the synthesis of several polysubstituted indene derivatives through conventional palladium-catalyzed cross-coupling reactions and iodine-lithium exchange processes.

  6. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    PubMed Central

    Tavel, Laurette; Fontana, Francesca; Garcia Manteiga, Josè Manuel; Mari, Silvia; Mariani, Elisabetta; Caneva, Enrico; Sitia, Roberto; Camnasio, Francesco; Marcatti, Magda; Cenci, Simone; Musco, Giovanna

    2016-01-01

    Multiple myeloma (MM) is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions. PMID:27809247

  7. 1H-NMR-based metabolomic study on toxicity of methomyl and methidathion in fish.

    PubMed

    Yoon, Dahye; Kim, Siwon; Lee, Minji; Yoon, Changshin; Kim, Suhkmann

    2016-12-01

    A (1)H-nuclear magnetic resonance (NMR) spectroscopy with multivariate analysis was applied to detect the toxicity of antiacetylcholinesterase insecticides, methomyl (methyl (1E)-N-(methylcarbamoyloxy)ethanimidothioate) and methidathion (3-(dimethoxyphosphinothioyl sulfanylmethyl)-5-methoxy-1,3,4-thiadiazol-2-one), using zebrafish (Danio rerio) and Chinese bleak (Aphyocypris chinensis). Generally, methomyl and methidathion have been believed not to highly accumulate in fish tissues. However, these pesticides showed their toxicity by altering patterns of whole-body metabolites in neurotransmitter balance, energy metabolism, oxidative stress, and muscle maintenance in low concentrations. We used Pearson correlation analysis to contextualize the metabolic markers in pesticide treated groups. We observed that the positive correlations of choline with acetate and betaine in untreated control were shifted to null correlations showing acetylcholinesterase specific toxicity. This research demonstrated the applicability and potential of NMR metabolomics in detecting toxic effects of insecticide with a modicum of concentrations in aquatic environment.

  8. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  9. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  10. Theoretical and experimental investigation of the 1H NMR spectrum of putrescine

    NASA Astrophysics Data System (ADS)

    Allouche, A. R.; Graveron-Demilly, D.; Fauvelle, F.; Aubert-Frécon, M.

    2008-12-01

    Chemical shifts δ and spin-spin coupling constants J have been calculated for the putrescine molecule, a polyamine present in prostate tissue, through a DFT/B3LYP/6-311++G(d,p)/PCM/(GIAO) approach, which has been shown to be accurate in previous work. From δ and J values, calculated for the first time for the isolated and the solvated putrescine, the 1H NMR spectra have been simulated. Comparisons between the calculated and the experimental NMR spectra at 400 MHz show a good agreement and allow to propose reliable values for the NMR spin Hamiltonian parameters of putrescine to be used as good starting values for further quantitation methods of metabolites in prostate tissue.

  11. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones

    PubMed Central

    Wube, Abraham A.; Hüfner, Antje; Thomaschitz, Christina; Blunder, Martina; Kollroser, Manfred; Bauer, Rudolf; Bucar, Franz

    2011-01-01

    A series of 23 new 1-methyl-2-alkenyl-4(1H)quinolones have been synthesized and evaluated in vitro for their antimycobacterial activities against fast growing species of mycobacteria, such as Mycobacterium fortuitum, M. smegmatis and M. phlei. The compounds displayed good to excellent inhibition of the growth of the mycobacterial test strains with improved antimycobacterial activity compared to the hit compound, evocarpine. The most active compounds, which possessed chain length of 11–13 carbons at position-2 displayed potent inhibitory effects with an MIC value of 1.0 mg/L. In a human diploid embryonic lung cell line, MRC-5 cytotoxicity assay, the alkaloids showed weak to moderate cytotoxic activity. Biological evaluation of these evocarpine analogues on the less pathogenic fast growing strains of mycobacteria showed an interesting antimycobacterial profile and provided significant insight into the structure–activity relationships. PMID:21106378

  12. Composition of beer by 1H NMR spectroscopy: effects of brewing site and date of production.

    PubMed

    Almeida, Cláudia; Duarte, Iola F; Barros, António; Rodrigues, João; Spraul, Manfred; Gil, Ana M

    2006-02-08

    A principal component analysis (PCA) of 1H NMR spectra of beers differing in production site (A, B, C) and date is described, to obtain information about composition variability. First, lactic and pyruvic acids contents were found to vary significantly between production sites, good reproducibility between dates being found for site A but not for sites B and C beers. Second, site B beers were clearly distinguished by the predominance of linear dextrins, while A and C beers were richer in branched dextrins. Carbohydrate reproducibility between dates is poorer for site C with dextrin branching degree varying significantly. Finally, all production sites were successfully distinguished by their contents in adenosine/inosine, uridine, tyrosine/tyrosol, and 2-phenylethanol, reproducibility between dates being again poorer for site C. Interpretation of the above compositional differences is discussed in terms of the biochemistry taking place during brewing, and possible applications of the method in brewing process control are envisaged.

  13. Synthesis of certain 2-substituted-1H-benzimidazole derivatives as antimicrobial and cytotoxic agents.

    PubMed

    Taher, Azza Taher; Khalil, Nadia Abdalla; Ahmed, Eman Mohamed; Ragab, Yasser Mohamed

    2012-01-01

    A series of 2-substituted-1H-benzimidazole derivatives were synthesized and evaluated for antimicrobial, antifungal and cytotoxic activities. The results showed that all tested compounds showed potent antimicrobial activity against some species of Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi) and fungi (Candida albicans) with minimum inhibitory concentrations (MICs) lower than 0.016 µg/mL. In contrast, all tested compounds were inactive against Staphylococcus aureus (Gram-positive bacterium). The final targets were also tested for their antitumor activity in vitro on cervical carcinoma (HeLa) cell line. Eight of the test compounds displayed more potent cytotoxic effect than doxorubicin at nanomolar concentrations. Compounds 2c and 3c exerted the strongest cytoyoxic effect with IC(50) 15 and 13 nM, respectively.

  14. Discovery, Synthesis, and Optimization of Antimalarial 4(1H)-Quinolone-3-Diarylethers

    PubMed Central

    2014-01-01

    The historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class of orally active antimalarial 4(1H)-quinolone-3-diarylethers. The initial prototype, ELQ-233, exhibited low nanomolar IC50 values against all tested strains including clinical isolates harboring resistance to atovaquone. ELQ-271 represented the next critical step in the iterative optimization process, as it was stable to metabolism and highly effective in vivo. Continued analoging revealed that the substitution pattern on the benzenoid ring of the quinolone core significantly influenced reactivity with the host enzyme. This finding led to the rational design of highly selective ELQs with outstanding oral efficacy against murine malaria that is superior to established antimalarials chloroquine and atovaquone. PMID:24720377

  15. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  16. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    PubMed

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  17. Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update

    PubMed Central

    Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996

  18. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  19. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Cloud point, fluorimetric and 1H NMR studies of ibuprofen-polymer systems

    NASA Astrophysics Data System (ADS)

    Khan, Iqrar Ahmad; Anjum, Kahkashan; Koya, P. Ajmal; Qadeer, Atiytul; Kabir-ud-Din

    2014-01-01

    Influence of six polymers viz. hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium carboxy methyl cellulose (NaCMC) and dextran sulfate (DxS) on solution properties of amphiphilic drug ibuprofen (IBF) has been described in this work. As only HPMC showed the clouding behavior (among the polymers employed herein), its cloud point (CP) was studied in detail in presence of varying amounts of IBF containing different fixed concentrations of inorganic salts (NaCl, NaNO3, Na2SO4, KBr and KNO3). Presence of all these salts had CP reducing effect. By means of steady state fluorescence quenching studies, average aggregation number of IBF aggregates (Nagg) in the presence of varying amounts of the mentioned polymers were evaluated and discussed. 1H NMR studies show that the magnitude of chemical shifts (δ) varies with the nature of the polymer.

  1. Double tuned 23Na 1H nuclear magnetic resonance birdcage for application on mice in vivo

    NASA Astrophysics Data System (ADS)

    Lanz, Titus; Ruff, Jan; Weisser, Alexander; Haase, Axel

    2001-05-01

    The design and the characterization of a double tuned nuclear magnetic birdcage resonator is presented. It abandons quadrature drive and uses the two orthogonal modes of the birdcage for two different frequencies. In order to tune the birdcage to frequencies that are far apart, the number of legs is reduced to only four. This limits the homogeneity of the rf field, but enables the birdcage to be tuned to very different frequencies without further B1 field distortions. Following a brief explanation of the theory of the coil design, a 23Na 1H four leg birdcage for in vivo measurements on mice is presented. The performance of the coil is demonstrated in experiments on both a phantom and a mouse.

  2. (1) H-NMR with Multivariate Analysis for Automobile Lubricant Comparison.

    PubMed

    Kim, Siwon; Yoon, Dahye; Lee, Dong-Kye; Yoon, Changshin; Kim, Suhkmann

    2017-02-23

    Identification of suspected automobile-related lubricants could provide valuable information in forensic cases. We examined that automobile lubricants might exhibit the chemometric characteristics to their individual usages. To compare the degree of clustering in the plots, we co-plotted general industrial oils that were highly dissimilar with automobile lubricants in additive compositions. (1) H-NMR spectroscopy was used with multivariate statistics as a tool for grouping, clustering, and identification of automobile lubricants in laboratory conditions. We analyzed automobile lubricants including automobile engine oils, automobile transmission oils, automobile gear oils, and motorcycle oils. In contrast to the general industrial oils, automobile lubricants showed relatively high tendencies of clustering to their usages. Our pilot study demonstrated that the comparison of known and questioned samples to their usages might be possible in forensic fields.

  3. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  4. Structural analysis of complex saponins of Balanites aegyptiaca by 800 MHz 1H NMR spectroscopy.

    PubMed

    Staerk, Dan; Chapagain, Bishnu P; Lindin, Therese; Wiesman, Zeev; Jaroszewski, Jerzy W

    2006-10-01

    The main saponin (1) present in the mesocarp of Balanites aegyptiaca fruit is a mixture of 22R and 22S epimers of 26-(O-beta-D-glucopyranosyl)-3-beta-[4-O-(beta-D-glucopyranosyl)-2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyloxy]-22,26-dihydroxyfurost-5-ene. This structure differs from a previously reported saponin isolated from this source by the site of attachment of the rhamnosyl residue, and presumably represents a structural revision of the latter. The main saponin (2) present in the kernel is a xylopyranosyl derivative of 1. The use of high-field NMR enabled the practically complete assignment of 1H and 13C chemical shifts of these complex saponins, existing as a mixture of C-22 epimers. Moreover, the work represents a new approach to structural elucidation of saponins: direct preparative-scale HPLC-RID of crude extracts followed by high-field NMR investigations supported by ESI-MSn.

  5. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  6. Experimental and theoretical investigation of optical nonlinearities in (nitrovinyl)-1H-pyrazole derivative

    NASA Astrophysics Data System (ADS)

    Dwivedi, Y.; de Boni, L.; Gonçalves, P. J.; Mairink, L. M.; Menegatti, R.; Fonseca, T. L.; Zilio, S. C.

    2013-03-01

    This work reports on the optical nonlinearities of a newly synthesized pyrazole derivative, namely (E)-1-(4-chlorophenyl)-4-(2-nitrovinyl)-1H-pyrazole. The Z-scan technique with femtosecond laser pulses was used to determine the two-photon absorption (2PA) cross-section spectrum, which presents a maximum of 67 GM at 690 nm. We have combined hyper-Rayleigh scattering (HRS) experiments and second-order Møller-Plesset perturbation theory (MP2) calculations to study the first hyperpolarizability (βHRS). It was found that the MP2/6-311+G(d) model, taking into account solvent and dispersion effects, provides the βHRS value of 40 × 10-30 cm5/esu for the compound, in good agreement with the experimental result of 45 ± 2 × 10-30 cm5/esu.

  7. A subzero 1H NMR relaxation investigation of water dynamics in tomato pericarp.

    PubMed

    Foucat, Loïc; Lahaye, Marc

    2014-09-01

    (1)H NMR relaxation times (T1 and T2) were measured at low field (0.47 T) in pericarp tissues of three tomato genotypes (Ferum, LA0147 and Levovil) at subzero temperature (-20 °C) and two ripening stages (mature green and red). The unfrozen water dynamics was characterised by two T1 and three T2 components. The relaxation time values and their associated relative populations allowed differentiating the ripening stage of only LA0147 and Levovil lines. But the three genotypes were unequivocally discriminated at the red ripe stage. The unfrozen water distribution was discussed in terms of specific interactions, especially with sugars, in relation with their osmoprotectant effects.

  8. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  9. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  10. Thermal degradation in a trimodal poly(dimethylsiloxane) network studied by (1)H multiple quantum NMR.

    PubMed

    Giuliani, Jason R; Gjersing, Erica L; Chinn, Sarah C; Jones, Ticora V; Wilson, Thomas S; Alviso, Cynthia T; Herberg, Julie L; Pearson, Mark A; Maxwell, Robert S

    2007-11-15

    Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.

  11. (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice.

    PubMed

    Li, Matthew; Vassiliou, Christophoros C; Colucci, Lina A; Cima, Michael J

    2015-08-01

    Dehydration is a prevalent pathology, where loss of bodily water can result in variable symptoms. Symptoms can range from simple thirst to dire scenarios involving loss of consciousness. Clinical methods exist that assess dehydration from qualitative weight changes to more quantitative osmolality measurements. These methods are imprecise, invasive, and/or easily confounded, despite being practiced clinically. We investigate a non-invasive, non-imaging (1)H NMR method of assessing dehydration that attempts to address issues with existing clinical methods. Dehydration was achieved by exposing mice (n = 16) to a thermally elevated environment (37 °C) for up to 7.5 h (0.11-13% weight loss). Whole body NMR measurements were made using a Bruker LF50 BCA-Analyzer before and after dehydration. Physical lean tissue, adipose, and free water compartment approximations had NMR values extracted from relaxation data through a multi-exponential fitting method. Changes in before/after NMR values were compared with clinically practiced metrics of weight loss (percent dehydration) as well as blood and urine osmolality. A linear correlation between tissue relaxometry and both animal percent dehydration and urine osmolality was observed in lean tissue, but not adipose or free fluids. Calculated R(2) values for percent dehydration were 0.8619 (lean, P < 0.0001), 0.5609 (adipose, P = 0.0008), and 0.0644 (free fluids, P = 0.3445). R(2) values for urine osmolality were 0.7760 (lean, P < 0.0001), 0.5005 (adipose, P = 0.0022), and 0.0568 (free fluids, P = 0.3739). These results suggest that non-imaging (1)H NMR methods are capable of non-invasively assessing dehydration in live animals.

  12. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Anjum, Ayesha; Pandey, S. B.

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  13. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  14. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    SciTech Connect

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  15. Determination of polydimethylsiloxanes by 1H-NMR in wine and edible oils.

    PubMed

    Mojsiewicz-Pieńkowska, K; Jamrógiewicz, Z; Łukasiak, J

    2003-05-01

    Fourier transform (1)H-nuclear magnetic resonance (NMR) spectroscopy was suitable for the quantitative determination of polydimethylsiloxanes (PDMS) in wine and edible oil samples. This approach offers highly specific qualitative and quantitative analysis due to silicone-specific location of proton signals linked to carbon atoms located directly next to silicon atoms (0-0.5 ppm), as well as a different location of signals in the range for different organosilicon structures. The method can be used for the control of PDMS at regulatory limits in foodstuffs (10 mg kg(-1)) using hexamethyldisiloxane (HDMS) as an internal standard. Samples were prepared by extraction under suitable conditions to separate the analyte, and with analyte enrichment before (1)H-NMR analysis. Analytical procedures were developed to permit the determination of PDMS at 0.06 mg kg(-1) in wine and at 6 mg kg(-1) in edible oils samples using readily available NMR instrumentation. It was, however, possible to lower the limit of detection to 6 microg kg(-1) for wine and to 60 microg kg(-1) for edible oils using a higher field instrument (500 MHz). Relative standard deviations (S(r)) were obtained for wine (0.028) and for oil samples (0.043), which when compared with values obtained for samples spiked with PDMS (0.021) indicated that the sample preparation was the main factor determining the precision of the method. The average recovery rates for PDMS were 97 and 95% for wine and edible oils, respectively. PDMS was detected in four brands of Italian wine, with Chianti-Rafaello containing the highest concentration (0.35 mg kg(-1)), and in four types of edible oils, highest concentration (11.9 mg kg(-1)) being found in Italian corn oil. None of the levels of PDMS found in the food samples exceeded the permissible standards laid down by the Codex Alimentarius Commission (10 mg kg(-1)), with the exception of the one corn oil sample.

  16. In vivo 1H MRS in the assessment of the therapeutic response of breast cancer patients.

    PubMed

    Sharma, Uma; Baek, Hyeon Man; Su, Min Ying; Jagannathan, Naranamangalam R

    2011-07-01

    MRI and in vivo MRS have rapidly evolved as sensitive tools for diagnosis and therapeutic monitoring in cancer research. In vivo MRS provides information on tumor metabolism, which is clinically valuable in the diagnosis and assessment of tumor response to therapy for the management of women with breast diseases. Several centers complement breast MRI studies with (1)H MRS to improve the specificity of diagnosis. Malignant breast tissues show elevated water-to-fat ratio and choline-containing compounds (total choline, tCho), and any effect of therapy on tissue viability or metabolism will be manifested as changes in these levels. Sequential (1)H MRS studies have shown significantly reduced tCho levels during the course of therapy in patients who were responders. However, there are challenges in using in vivo MRS because of the relatively low sensitivity in detecting the tCho resonance with decreased lesion size or significant reduction in the tumor volume during therapy. MRS is also technically challenging because of the low signal-to-noise ratio and heterogeneous distribution of fat and glandular tissues in the breast. MRS is best utilized for the diagnosis of focal masses, most commonly seen in patients with ductal-type neoplasms; however, it has limitations in detecting nonfocal masses, such as the linear pattern of tumors seen in invasive lobular carcinoma. Further work is required to assess the clinical utility of quantitative MRS, with the goal of automation, which will reduce the subjectivity currently inherent in both qualitative and semi-quantitative MRS.

  17. BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments

    NASA Astrophysics Data System (ADS)

    Ehni, Sebastian; Luy, Burkhard

    2013-07-01

    Shaped pulses designed for broadband excitation, inversion and refocusing are important tools in modern NMR spectroscopy to achieve robust pulse sequences especially in heteronuclear correlation experiments. A large variety of mostly computer-optimized pulse shapes exist for different desired bandwidths, available rf-field strengths, and tolerance to B1-inhomogeneity. They are usually derived for a single spin 1/2, neglecting evolution due to J-couplings. While pulses with constant resulting phase are selfcompensated for heteronuclear coupling evolution as long as they are applied exclusively on a single nucleus, the situation changes for concurrently applied pulse shapes. Using the example of a 1H,13C two spin system, two J-compensated pulse pairs for the application in INEPT-type transfer elements were optimized: a point-to-point pulse sandwich called BEBEtr, consisting of a broadband excitation and time-reversed excitation pulse, and a combined universal rotation and point-to-point pulse pair called BUBI, which acts as a refocusing pulse on 1H and a corresponding inversion pulse on 13C. After a derivation of quality factors and optimization protocols, a theoretical and experimental comparison with conventionally derived BEBOP, BIBOP, and BURBOP-180° pulses is given. While the overall transfer efficiency of a single pulse pair is only reduced by approximately 0.1%, resulting transfer to undesired coherences is reduced by several percent. In experiments this can lead to undesired phase distortions for pairs of uncompensated pulse shapes and even differences in signal intensities of 5-10% in HSQC and up to 68% in more complex COB-HSQC experiments.

  18. Application of ICA to realistically simulated 1H-MRS data

    PubMed Central

    Kalyanam, Ravi; Boutte, David; Hutchison, Kent E; Calhoun, Vince D

    2015-01-01

    Introduction 1H-MRS signals from brain tissues capture information on in vivo brain metabolism and neuronal biomarkers. This study aims to advance the use of independent component analysis (ICA) for spectroscopy data by objectively comparing the performance of ICA and LCModel in analyzing realistic data that mimics many of the known properties of in vivo data. Methods This work identifies key features of in vivo 1H-MRS signals and presents methods to simulate realistic data, using a basis set of 12 metabolites typically found in the human brain. The realistic simulations provide a much needed ground truth to evaluate performances of various MRS analysis methods. ICA is applied to collectively analyze multiple realistic spectra and independent components identified with our generative model to obtain ICA estimates. These same data are also analyzed using LCModel and the comparisons between the ground-truth and the analysis estimates are presented. The study also investigates the potential impact of modeling inaccuracies by incorporating two sets of model resonances in simulations. Results The simulated fid signals incorporating line broadening, noise, and residual water signal closely resemble the in vivo signals. Simulation analyses show that the resolution performances of both LCModel and ICA are not consistent across metabolites and that while ICA resolution can be improved for certain resonances, ICA is as effective as, or better than, LCModel in resolving most model resonances. Conclusion The results show that ICA can be an effective tool in comparing multiple spectra and complements existing approaches for providing quantified estimates. PMID:26221570

  19. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets

    PubMed Central

    Barone, Francesca; Elmi, Alberto; Romagnoli, Noemi; Bacci, Maria Laura

    2016-01-01

    When it comes to neuroscience, pigs represent an important animal model due to their resemblance with humans’ brains for several patterns including anatomy and developmental stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can provide important information about neurological health and function, proving its importance as both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scientific interest and value to obtain more standard physiological information regarding its composition and dynamics for both swine pathology and the refinement of experimental protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been applied in order to analyze the metabolomic profile of this biological fluid, and results showed the technique to be highly reproducible and reliable. The aim of the present study was to investigate in both qualitative and quantitative manner the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference in metabolites concentration between age groups, related to age and Blood-Brain-Barrier maturation. On each of the analyzed samples, 30 molecules could be observed above their limit of quantification, accounting for 95–98% of the total area of the spectra. The concentrations of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were found to decrease between P05 and P50, while the concentrations of glutamine, creatinine, methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 comparison was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules showed at P30 concentrations

  20. Room Temperature ICl-Induced Dehydration/Iodination of 1-Acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles. A Selective Route to Substituted 1-Acyl-4-iodo-1H-pyrazoles

    PubMed Central

    Waldo, Jesse P.; Mehta, Saurabh

    2013-01-01

    A number of new functionally substituted 1-acyl-5-hydroxy-4,5-dihydro-1H-pyrazoles have been prepared in moderate to excellent yields from the corresponding 2-alkyn-1-ones. The resulting dihydropyrazoles undergo dehydration and iodination in the presence of ICl and Li2CO3 at room temperature to provide 1-acyl-4-iodo-1H-pyrazoles. PMID:18665643

  1. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  2. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  3. Elevated levels of GABA+ in migraine detected using (1) H-MRS.

    PubMed

    Aguila, Maria-Eliza R; Lagopoulos, Jim; Leaver, Andrew M; Rebbeck, Trudy; Hübscher, Markus; Brennan, Patrick C; Refshauge, Kathryn M

    2015-07-01

    γ-Aminobutyric acid (GABA) has been implicated in several pain conditions, yet no study has systematically evaluated GABA levels in migraine using (1) H-MRS. The accurate detection, separation and quantification of GABA in individuals with migraine could elucidate the role of this neurotransmitter in migraine pathophysiology. Such information may eventually be useful in the diagnosis and development of more effective treatments for migraine. The aims of this study were therefore to compare the concentration of GABA+ in individuals with migraine with that in asymptomatic individuals, and to determine the diagnostic potential of GABA+ in the classification of those with or without migraine. In this case-control study, GABA+ levels in the brain were determined in 19 participants with migraine and 19 matched controls by (1) H-MRS using Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence. The diagnostic accuracy of GABA+ for the detection of migraine and the optimal cut-off value were determined by receiver operating characteristic analysis. GABA+ levels were significantly higher (p = 0.002) in those with migraine [median, 1.41 institutional units (IU); interquartile range, 1.31-1.50 IU] than in controls (median, 1.18 IU; interquartile range, 1.12-1.35 IU). The GABA+ concentration appears to have good accuracy for the classification of individuals with or without migraine [area under the curve (95% confidence interval), 0.837 (0.71-0.96); p < 0.001]. The optimal GABA+ cut-off value for migraine was 1.30 IU, with a sensitivity of 84.2%, specificity of 68.4% and positive likelihood ratio of +2.67. The outcomes of this study suggest altered GABA metabolism in migraine. These results add to the scarce evidence on the putative role of GABA in migraine and provide a basis to further explore the causal relationship between GABA+ and the pathophysiology of migraine. This study also demonstrates that GABA+ concentration has good diagnostic accuracy for migraine

  4. S187 : SCP 1 (H2): A Curved Molecular Hydrogen Outflow

    NASA Astrophysics Data System (ADS)

    Salas, Luis; Cruz-González, Irene; Porras, Alicia

    1998-06-01

    We imaged in the near-infrared the region associated with IRAS 01202+6133, which lies to the southeast of the Sharpless H II region S187, designated as S187 IR. We report the discovery of a curved molecular hydrogen outflow that extends over a region of 76" (0.38 pc at D = 1 kpc), identified as S187:SCP 1 (H2). The outflow changes direction by more than 90° in a continuous way and is the most dramatic example of direction variability in a jet source known to date. The outflow-driving source is probably an extreme T Tauri star identified as NIRS 1 located at the apex of the curved structure. The curved jetlike structure shows a sinuous chain of several emission knots located along an extended H2 nebulosity. The similarity with the properties of optical Herbig-Haro jets observed in the near-IR allows us to conclude that S187:SCP 1 (H2) is a Herbig-Haro object. We discuss whether the supersonic side-wind model proposed by Cantó & Raga provides the best physical scenario for the curved outflow seen in S187 IR. According to this model, the initial angle of the jet is nearly opposite to the wind direction, and the wind action turns the jet through 150°, resulting in a minimum radius of curvature of 0.14 pc. Assuming typical values for T Tauri stars in molecular environments (Ṁ=10-7 M⊙ yr-1, vjet = 150 km s-1, vsound ≡ s = 10 km s-1, na = 104 cm-3), the required wind velocity is 10 km s-1, which is of the same order of magnitude as the typical velocities of T Tauri stars relative to their surrounding molecular clouds. Furthermore, the predicted position of the stagnation point, where the hydrostatic pressure in the jet equals the ram pressure of the wind, coincides with an observed H2 emission maximum along the curved part of the outflow. The predicted curve extends to a bow-shock-like H2 nebulosity located 2' (0.46 pc at D = 1 kpc) away from the curved outflow. Based on observations obtained at the Observatorio Astronómico Nacional at San Pedro Mártir, B

  5. Monitoring the on-line titration of enantiomeric omeprazole employing continuous-flow capillary microcoil 1H NMR spectroscopy.

    PubMed

    Hentschel, Petra; Holtin, Karsten; Steinhauser, Lisa; Albert, Klaus

    2012-12-01

    The titration of the (S)-enantiomer of omeprazole with the (R)-enantiomer in chloroform-d(1) is monitored by continuous-flow capillary microcoil (1)H NMR spectroscopy employing a microcoil with a detection volume of 1.5 µl. The observed changes of the (1)H NMR chemical shifts indicate the formation of a heterochiral (R,S) dimer of omeprazole via its sulfinyl group and the NH group of the benzimidazole ring.

  6. A Synthesis of 1H-Indazoles via a Cu(OAc)2-Catalyzed N-N Bond Formation.

    PubMed

    Chen, Cheng-yi; Tang, Guangrong; He, Fengxian; Wang, Zhaobin; Jing, Hailin; Faessler, Roger

    2016-04-01

    A facile synthesis of 1H-indazoles featuring a Cu(OAc)2-catalyzed N-N bond formation using oxygen as the terminal oxidant is described. The reaction of readily available 2-aminobenzonitriles with various organometallic reagents led to o-aminoaryl N-H ketimine species. The subsequent Cu(OAc)2-catalyzed N-N bond formation in DMSO under oxygen afforded a wide variety of 1H-indazoles in good to excellent yields.

  7. Bis[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide methanol hemisolvate.

    PubMed

    Seredyuk, Maksym; Sharkina, Natalia O; Gumienna-Kontecka, Elzbieta; Kapshuk, Anatoly A

    2014-02-01

    The asymmetric unit of the title compound, C18H16N6Se·0.5CH3OH, contains two independent mol-ecules of bis-[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide with similar C-Se-C bond angles [99.30 (14) and 98.26 (13)°], and a methanol molecule of solvation. In one mol-ecule, the dihedral angles between pyrazole and neighbouring pyridine rings are 18.3 (2) and 15.8 (2)°, and the corresponding angles in the other mol-ecule are 13.5 (2) and 8.3 (2)°. In the crystal, the selenide and solvent mol-ecules are linked by classical O-H⋯N and N-H⋯N hydrogen bonds, as well as by weak C-H⋯O and C-H⋯π inter-actions, forming a three-dimensional supra-molecular architecture.

  8. 1-Alkyl-1H-imidazole-based dipolar organic compounds for dye-sensitized solar cells.

    PubMed

    Velusamy, Marappan; Hsu, Ying-Chan; Lin, Jiann T; Chang, Che-Wei; Hsu, Chao-Ping

    2010-01-04

    A series of donor-pi-acceptor-type organic dyes based on 1-alkyl-1H-imidazole spacers 1-5 have been developed and characterized. The two electron donors are at positions 4 and 5 of the imidazole, while the electron-accepting cyanoacrylic acid is incorporated at position 2 by a spacer-containing heteroaromatic rings, such as thiophene and thiazole. Detailed investigation on the relationship between the structure, spectral and electrochemical properties, and performance of DSSC is described here. Dye-sensitized solar cells (DSSCs) using dyes as the sensitizers exhibit good efficiencies, ranging from 3.06 to 6.35 %, which reached 42-87 % with respect to that of N719-based device (7.33 %) fabricated and measured under similar conditions. Time-dependent density functional theory (TDDFT) calculations have been performed on the dyes, and the results show that both electron donors can contribute to electron injection upon photo-excitation, either directly or indirectly by internal conversion to the lowest excited state.

  9. Identification of a de novo DYNC1H1 mutation via WES according to published guidelines

    PubMed Central

    Ding, Dongxue; Chen, Zhao; Li, Kai; Long, Zhe; Ye, Wei; Tang, Zhaoli; Xia, Kun; Qiu, Rong; Tang, Beisha; Jiang, Hong

    2016-01-01

    De novo mutations that contribute to rare Mendelian diseases, including neurological disorders, have been recently identified. Whole-exome sequencing (WES) has become a powerful tool for the identification of inherited and de novo mutations in Mendelian diseases. Two important guidelines were recently published regarding the investigation of causality of sequence variant in human disease and the interpretation of novel variants identified in human genome sequences. In this study, a family with supposed movement disorders was sequenced via WES (including the proband and her unaffected parents), and a standard investigation and interpretation of the identified variants was performed according to the published guidelines. We identified a novel de novo mutation (c.2327C > T, p.P776L) in DYNC1H1 gene and confirmed that it was the causal variant. The phenotype of the affected twins included delayed motor milestones, pes cavus, lower limb weakness and atrophy, and a waddling gait. Electromyographic (EMG) recordings revealed typical signs of chronic denervation. Our study demonstrates the power of WES to discover the de novo mutations associated with a neurological disease on the whole exome scale, and guidelines to conduct WES studies and interpret of identified variants are a preferable option for the exploration of the pathogenesis of rare neurological disorders. PMID:26846447

  10. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.

    PubMed

    Son, Hong-Seok; Hwang, Geum-Sook; Kim, Ki Myong; Kim, Eun-Young; van den Berg, Frans; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2009-02-01

    (1)H NMR spectroscopy coupled with multivariate statistical analysis was used for the first time to investigate metabolic changes in musts during alcoholic fermentation and wines during aging. Three Saccharomyces cerevisiae yeast strains (RC-212, KIV-1116, and KUBY-501) were also evaluated for their impacts on the metabolic changes in must and wine. Pattern recognition (PR) methods, including PCA, PLS-DA, and OPLS-DA scores plots, showed clear differences for metabolites among musts or wines for each fermentation stage up to 6 months. Metabolites responsible for the differentiation were identified as valine, 2,3-butanediol (2,3-BD), pyruvate, succinate, proline, citrate, glycerol, malate, tartarate, glucose, N-methylnicotinic acid (NMNA), and polyphenol compounds. PCA scores plots showed continuous movements away from days 1 to 8 in all musts for all yeast strains, indicating continuous and active fermentation. During alcoholic fermentation, the highest levels of 2,3-BD, succinate, and glycerol were found in musts with the KIV-1116 strain, which showed the fastest fermentation or highest fermentative activity of the three strains, whereas the KUBY-501 strain showed the slowest fermentative activity. This study highlights the applicability of NMR-based metabolomics for monitoring wine fermentation and evaluating the fermentative characteristics of yeast strains.

  11. 1H NMR relaxation of water: a probe for surfactant adsorption on kaolin.

    PubMed

    Totland, Christian; Lewis, Rhiannon T; Nerdal, Willy

    2011-11-01

    In this study, (1)H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T(1) and T(2) measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T(1) values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T(1) data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T(1) and T(2) measurements were taken in the temperature range 278-338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.

  12. Hypoxic encephalopathy after near-drowning studied by quantitative 1H-magnetic resonance spectroscopy.

    PubMed Central

    Kreis, R; Arcinue, E; Ernst, T; Shonk, T K; Flores, R; Ross, B D

    1996-01-01

    Early prediction of outcome after global hypoxia of the brain requires accurate determination of the nature and extent of neurological injury and is cardinal for patient management. Cerebral metabolites of gray and white matter were determined sequentially after near-drowning using quantitative 1H nuclear magnetic resonance spectroscopy (MRS) in 16 children. Significant metabolite abnormalities were demonstrated in all patients compared with their age-matched normal controls. Severity of brain damage was quantified from metabolite concentrations and ratios. Loss of N-acetylaspartate, a putative neuronal marker, from gray matter preceded that observed in white matter and was more severe. Total creatine decreased, while lactate and glutamine/glutamate concentrations increased. Changes progressed with time after injury. A spectroscopic prognosis index distinguished between good outcome (n = 5) and poor outcome (n = 11) with one false negative (bad outcome after borderline MRS result) and no false positive results (100% specificity). The distinction was made with 90% sensitivity early (after 48 h) and became 100% later (by days 3 and 4). This compared with 50-75% specificity and 70-100% sensitivity based upon single clinical criteria. MRS performed sequentially in occipital gray matter provides useful objective information which can significantly enhance the ability to establish prognosis after near-drowning. PMID:8636425

  13. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum

    PubMed Central

    Teng, Rongwei; Lehane, Adele M.; Winterberg, Markus; Shafik, Sarah H.; Summers, Robert L.; Martin, Rowena E.; van Schalkwyk, Donelly A.; Junankar, Pauline R.; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  14. Quantification of acesulfame potassium in processed foods by quantitative 1H NMR.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Abe, Yutaka; Sugimoto, Naoki; Akiyama, Hiroshi

    2015-01-01

    Acesulfame potassium (AceK), a high-intensity and non-caloric artificial sweetener, is used in various processed foods as a food additive. In this study, we established and validated a method for determining the AceK content in various processed foods by solvent extraction and quantitative (1)H NMR, using a certified reference material as the internal standard. In the recovery test, the proposed method gave satisfactory recoveries (88.4-99.6%) and repeatabilities (0.6-5.6%) for various processed foods. The limit of quantification was confirmed as 0.13 g kg(-1), which was sufficiently low for the purposes of monitoring AceK levels. In the analysis of commercially processed foods containing AceK, all AceK contents determined by the proposed method were in good agreement with those obtained by a conventional method based on dialysis and HPLC. Moreover, this method can achieve rapid quantification and yields analytical data with traceability to the International System of Units (SI) without the need for an authentic analyte standard. Therefore, the proposed method is a useful and practical tool for the determination of AceK in processed foods.

  15. 1H NMR study of robustoxin, the lethal neurotoxin from the funnel web spider Atrax robustus.

    PubMed

    Temple, M D; Hinds, M G; Sheumack, D D; Howden, M E; Norton, R S

    1999-03-01

    Robustoxin, the lethal neurotoxin from the Sydney funnel web spider Atrax robustus, is a polypeptide of 42 residues cross-linked by four disulfide bonds. This paper describes the sequence-specific assignment of resonances in the 1H nuclear magnetic resonance spectrum of robustoxin in aqueous solution. Several broad backbone amide resonances were encountered in spectra recorded at 27 degrees C, making the assignments at that temperature incomplete. In spectra recorded at lower temperatures these amide resonances became sharper, but others that were sharp at 27 degrees C became broad, indicative of conformational averaging on the millisecond timescale for certain regions of the structure. Nevertheless, it was possible to establish that robustoxin contains a small, triple-stranded, antiparallel beta-sheet and several reverse turns, but no alpha-helix. These observations indicate that this toxin may adopt the inhibitor cystine knot structure found in polypeptides from a diverse range of species, including a number of spiders. Analysis of the pH dependence of the spectrum yielded pKa values for Tyr22 and Tyr25, one of the three carboxyl groups, and the Lys residues.

  16. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  17. Stopping power of 1H and 4He in lithium niobate

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Marques, J. G.; Alves, E.

    2014-08-01

    Lithium niobate is an important material for applications in bulk optoelectronics and integrated optics devices. Ion beam analysis methods are often used to study this material. However, to our knowledge a single study has been presented in 1996 on measurement of stopping powers in LiNbO3 at velocities usual in ion beam analysis, for protons and deuterons near the stopping power maximum. The results were 15% lower than the values calculated from the elemental Li, Nb and O stopping powers then available together with the Bragg rule. In practice, all ion beam analysis studies of LiNbO3 still use the Bragg rule. We have used a bulk method, previously developed by us and applied successfully to other systems, to determine experimentally the stopping power of lithium niobate for 1H and 4He ions in the energy range 0.3-2.3 MeV. The results of our measurements and bulk method analysis are presented and discussed in the context of currently available stopping power calculations.

  18. Combined Analysis of Stable Isotope, (1)H NMR, and Fatty Acid To Verify Sesame Oil Authenticity.

    PubMed

    Kim, Jeongeun; Jin, Gyungsu; Lee, Yunhee; Chun, Hyang Sook; Ahn, Sangdoo; Kim, Byung Hee

    2015-10-14

    The aim of this study was to verify the authenticity of sesame oils using combined analysis of stable isotope ratio, (1)H NMR spectroscopy, and fatty acid profiles of the oils. Analytical data were obtained from 35 samples of authentic sesame oils and 29 samples of adulterated sesame oils currently distributed in Korea. The orthogonal projection to latent structure discriminant analysis technique was used to select variables that most effectively verify the sesame oil authenticity. The variables include δ(13)C value, integration values of NMR peaks that signify the CH3 of n-3 fatty acids, CH2 between two C═C, protons from sesamin/sesamolin, and 18:1n-9, 18:3n-3, 18:2t, and 18:3t content values. The authenticity of 65 of 70 blind samples was correctly verified by applying the range of the eight variables found in the authentic sesame oil samples, suggesting that triple analysis is a useful approach to verify sesame oil authenticity.

  19. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  20. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  1. Biochemical effects of venlafaxine on astrocytes as revealed by (1)H NMR-based metabolic profiling.

    PubMed

    Sun, Lu; Fang, Liang; Lian, Bin; Xia, Jin-Jun; Zhou, Chan-Juan; Wang, Ling; Mao, Qiang; Wang, Xin-Fa; Gong, Xue; Liang, Zi-Hong; Bai, Shun-Jie; Liao, Li; Wu, Yu; Xie, Peng

    2017-01-31

    As a serotonin-norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects. Accumulating evidence shows that venlafaxine may target astrocytes to exert its antidepressant activity, although the underlying pharmacological mechanisms remained largely unknown. Here, we used a (1)H nuclear magnetic resonance (NMR)-based metabonomics method coupled with multivariate statistical analysis to characterize the metabolic profiling of astrocytes treated with venlafaxine to explore the potential mechanism of its antidepressant effect. In total, 31 differential metabolites involved in energy, amino acid and lipid metabolism were identified. Ingenuity pathway analysis was used to identify the predicted pathways and biological functions with venlafaxine and fluoxetine. The most significantly altered network was "amino acid metabolism, cellular growth and proliferation", with a score above 20. Certain metabolites (lysine, tyrosine, glutamate, methionine, ethanolamine, fructose-6-phosphate, and phosphorylethanolamine) are involved in and play a central role in this network. Collectively, the biological effects of venlafaxine on astrocytes provide us with the further understanding of the mechanisms by which venlafaxine treats major depressive disorder.

  2. Tissue metabolic profiling of lymph node metastasis of colorectal cancer assessed by 1H NMR.

    PubMed

    Zhang, Hailong; Qiao, Liang; Li, Xiaopeng; Wan, Yang; Yang, Li; Wang, Huijuan

    2016-12-01

    Lymph node metastasis is a decisive prognostic and therapeutic staging factor for colorectal cancer (CRC), which is one of the most prevalent types of cancer and a malignant tumor. The metabolic profiling of tissue samples from a large cohort of lymph node non‑metastatic CRC patients (n=73), lymph node metastatic CRC patients (n=52) and normal controls (n=41) was performed using 1H nuclear magnetic resonance (NMR) together with multivariate statistical analyses. Excellent separation was obtained between CRC patients and normal controls, and CRC patients were also perfectly classified according to lymph node metastasis. Forty‑two distinguishing metabolites were identified, which revealed disturbance of glycolysis, glutaminolysis, fatty acid metabolism, choline metabolism and amino acids, suggesting that cellular functions in energy production, macromolecular synthesis, oxidative stress and immune escape of cancer cells are affected in CRC. In total, 10 tissue metabolites were significantly disturbed between non‑metastatic and metastatic CRC patients. The present study firstly staged CRC patients by lymph node metastasis by metabolomic approach. The identified metabolites may be associated with the neoplasia, invasion and metastasis of the tumor. The results suggest the promising application of these metabolites in clinical therapy, and further understanding of the related mechanism warrants further investigation.

  3. Psychophysical determination of load carrying capacity for a 1-h work period by Chinese males.

    PubMed

    Wu, S P; Chen, C C

    2001-09-15

    This study used the psychophysical approach to examine the effects of container width, the presence or absence of container handles, and different load-carrying frequencies and distances on the maximum acceptable weight carried and the resulting response (heart rate and rating of perceived exertion) by well-conditioned males for a 1-h work period. After training, 12 male subjects performed a load-carrying task at knuckle height. Each subject performed 30 different carrying combinations. The conditions examined were container width, from 15.2 to 55.9 cm; carrying frequency, from 1 carry to 5 carries/min; and carrying distance from 1 to 6 m. The results were compared with prior studies and led to the following conclusions: (1) the use of container handles leads to the subjects carrying a significantly higher maximum acceptable weight than when containers do not have handles, which differs from the results of a previous study by Morrissey and Liou; (2) there were significant reductions in the maximum acceptable carrying weight with increases in container width, frequency and distance; (3) the presence or absence of container handles, different frequencies and load-carrying distances had significant effects on heart rate, although the effect of container width was not significant. In addition, the various frequencies and distances for load carrying had significant interaction effects on heart rate; (4) the effects of various frequencies and load-carrying distances on the rating of perceived exertion were statistically significant. The most stressed body parts were the wrists and arms.

  4. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  5. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  6. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method.

  7. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables.

    PubMed

    Miglietta, M L; Lamanna, R

    2006-07-01

    Carotenoids are linear C40 tetraterpenoid hydrocarbons and represent a wide category of natural pigments. They are components of the pigment system of chloroplasts and are involved in the primary light absorption and the photon canalization of photosynthesis. Moreover, they also behave as quenchers of singlet oxygen, protecting cells and organisms against lipid peroxidation. Carotenoids have a strong lipophilic character and are usually analyzed in organic solvents. However, because of their biological activity, the characterization of these compounds in an aqueous environment or in the natural matrix is very important. One of the most important dietary carotenoids is beta-carotene, which has been extensively studied both in vivo and in model systems, but because of the low concentration and strong interaction with the biological matrix, beta-carotene has never been observed by NMR in solid aqueous samples.In the present work, a model system has been developed for the detection and identification of beta-carotene in solid aqueous samples by 1H HR-MAS NMR. The efficiency of the model has led to the identification of beta-carotene in a raw vegetable matrix.

  8. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  9. Neuroimaging in autism spectrum disorders: 1H-MRS and NIRS study.

    PubMed

    Mori, Kenji; Toda, Yoshihiro; Ito, Hiromichi; Mori, Tatsuo; Mori, Keiko; Goji, Aya; Hashimoto, Hiroko; Tani, Hiroe; Miyazaki, Masahito; Harada, Masafumi; Kagami, Shoji

    2015-01-01

    Using proton magnetic resonance spectroscopy ((1)H-MRS), we measured chemical metabolites in the left amygdala and the bilateral orbito-frontal cortex (OFC) in children with autism spectrum disorders (ASD). The concentrations of N-acetylaspartate (NAA) in these regions of ASD were significantly decreased compared to those in the control group. In the autistic patients, the NAA concentrations in these regions correlated with their social quotient. These findings suggest the presence of neuronal dysfunction in the amygdala and OFC in ASD. Dysfunction in the amygdala and OFC may contribute to the pathogenesis of ASD. We performed a near-infrared spectroscopy (NIRS) study to evaluate the mirror neuron system in children with ASD. The concentrations of oxygenated hemoglobin (oxy-Hb) were measured with frontal probes using a 34-channel NIRS machine while the subjects imitated emotional facial expressions. The increments in the concentration of oxy-Hb in the pars opercularis of the inferior frontal gyrus in autistic subjects were significantly lower than those in the controls. However, the concentrations of oxy-Hb in this area were significantly elevated in autistic subjects after they were trained to imitate emotional facial expressions. The results suggest that mirror neurons could be activated by repeated imitation in children with ASD.

  10. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy

    PubMed Central

    2012-01-01

    1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

  11. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  12. Complete 1H and 13C NMR assignments of six saponins from Sapindus trifoliatus.

    PubMed

    Grover, Rajesh K; Roy, Abhijeet D; Roy, Raja; Joshi, S K; Srivastava, Vandita; Arora, Sudershan K

    2005-12-01

    Complete 1H and 13C spectral assignments are reported for six saponins from the pericarp of Sapindus trifoliatus (Hindi name: Reetha) collected from Madhya Pradesh and Maharashtra, India, using only 1D and 2D NMR methods. The structures of the compounds were elucidated as hederagenin 3-O-(3-O-acetyl-beta-D-xylopyranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-ara-binopyranoside, hederagenin 3-O-(4-O-acetyl-beta-D-xylop-yranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinop-yranoside, hederagenin 3-O-(3,4-O-diacetyl-beta-D-xylopy-ranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopy-ranoside, hederagenin 3-O-(3,4-O-diacetyl-alpha-L-arabinop-yranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinop-yranoside, hederagenin 3-O-(beta-D-xylopyranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopyranoside and he-deragenin 3-O-(alpha-L-arabinopyranosyl)-(1-3)-alpha-L-rhamno-pyranosyl-(1-2)-alpha-L-arabinopyranoside. It is concluded that saponins of this complexity approach the limit of structural complexity, which can be solved by NMR alone, precisely and quickly.

  13. The (1)H NMR structure of bovine Pb(2+)-osteocalcin and implications for lead toxicity.

    PubMed

    Dowd, T L; Li, L; Gundberg, C M

    2008-11-01

    Structural information on the effect of Pb(2+) on proteins under physiologically relevant conditions is largely unknown. We have previously shown that low levels of lead increased the amount of osteocalcin bound to hydroxyapatite (BBA 1535:153). This suggested that lead induced a more compact structure in the protein. We have determined the 3D structure of Pb(2+)-osteocalcin (49 amino acids), a bone protein from a target tissue, using (1)H 2D NMR techniques. Lead, at a stoichiometry of only 1:1, induced a similar fold in the protein as that induced by Ca(2+) at a stoichiometry of 3:1. The structure consisted of an unstructured N-terminus and an ordered C-terminal consisting of a hydrophobic core (residues 16-49). The genetic algorithm-molecular dynamics simulation predicted the lead ion was coordinated by the Gla 24 and Gla 21 residues. It is proposed that mineral binding occurs via uncoordinated Gla oxygen ions binding to calcium in hydroxyapatite. A comparison of Pb(2+)- and Ca(2+)-osteocalcin suggests Pb(2+), at a lower stoichiometry, may induce similar conformational changes in proteins and subsequent molecular processes normally controlled by calcium alone. This may contribute to a molecular mechanism of lead toxicity for calcium binding proteins. Lead exposure may alter the amount of mineral bound osteocalcin and contribute to abnormal bone remodeling.

  14. Strong impact of the solvent on the photokinetics of a 2(1H)-pyrimidinone.

    PubMed

    Ryseck, G; Villnow, T; Hugenbruch, S; Schaper, K; Gilch, P

    2013-08-01

    Pyrimidinones are part of the (6-4) photolesions which may be formed from two pyrimidine bases adjacent on a DNA strand. In relation to the secondary photochemistry of the (6-4) lesion, i.e. its transformation into a Dewar valence isomer, photophysical and photochemical properties of 1-methyl-2(1H)-pyrimidinone (1MP) in water, acetonitrile, methanol, and 1,4-dioxane are reported here. As deduced from steady state fluorescence and femtosecond transient absorption spectroscopy the S1 lifetime of 1MP is strongly affected by the solvent. The lifetimes range from 400 ps for water to 40 ps for 1,4-dioxane. Internal conversion (IC) and intersystem crossing (ISC) contribute to the S1 decay. The solvent effect on the IC rate constant is more pronounced than on the ISC constant. The quantum yields for the consumption of 1MP (values for nitrogen purged solvents) are large for methanol (0.35) and 1,4-dioxane (0.24) and small for acetonitrile (0.02) and water (0.003). Hydrogen abstraction from the solvent by the triplet state of 1MP may rationalize this.

  15. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  16. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-05

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product.

  17. Polypharmacotherapy in rheumatology: 1H NMR analysis of binding of phenylbutazone and methotrexate to serum albumin

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.; Bojko, B.; Szkudlarek-Haśnik, A.; Knopik, M.; Sułkowski, W. W.

    2011-05-01

    The influence of phenylbutazone (Phe) and methotrexate (MTX) on binding of MTX and Phe to human (HSA) and bovine (BSA) serum albumin in the low-affinity binding sites is investigated. The strength and kind of interactions between serum albumin (SA) and drugs used in combination therapy were found using 1H NMR spectroscopy. A stoichiometric molar ratios for Phe-SA and MTX-SA complexes are 36:1 and 31:1, respectively. It appeared these molar ratios are higher for the ternary systems than it were in the binary ones. The presence of the additional drug (MTX or Phe) causes the increase of an affinity of albumin towards Phe and MTX. It was found that the aliphatic groups of MTX are more resistant to the influence of Phe on the MTX-SA complex than the aromatic rings. The results showed the important impact of another drug (MTX or Phe) on the affinity of SA towards Phe and MTX in the low-affinity binding sites. This work is a subsequent part of the spectroscopic study on Phe-MTX-SA interactions (Maciążek-Jurczyk, 2009 [1]).

  18. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  19. Regional age-related effects in the monkey brain measured with 1H magnetic resonance spectroscopy.

    PubMed

    Ronen, Itamar; Fan, Xiaoying; Schettler, Steve; Jain, Sahil; Murray, Donna; Kim, Dae-Shik; Killiany, Ronald; Rosene, Douglas

    2011-06-01

    The rhesus monkey is a useful model for examining age-related effects on the brain, because of the extensive neuroanatomical homology between the monkey and the human brain, the tight control for neurological diseases as well as the possibility of obtaining relevant behavioral data and post-mortem tissue for histological analyses. Here, proton magnetic resonance spectroscopy ((1)H-MRS) was used together with high-resolution anatomical MRI images to carefully assess regional concentrations of brain metabolites in a group of 20 rhesus monkeys. In an anterior volume of interest (VOI) that covered frontal and prefrontal areas, significant positive correlations of myo-inositol and of total creatine concentrations with age were detected, whereas N-acetyl aspartate (NAA) and choline compounds (Cho) were not significantly correlated with age. In an occipito-parietal VOI, all metabolites showed no statistically significant age-dependent trend. Strong correlations were found between NAA concentration and gray matter fraction in the VOIs as well as between choline compounds and white matter fraction.

  20. 1H-HRMAS NMR study of smoked Atlantic salmon (Salmo salar).

    PubMed

    Castejón, David; Villa, Palmira; Calvo, Marta M; Santa-María, Guillermo; Herraiz, Marta; Herrera, Antonio

    2010-09-01

    High-resolution magic angle spinning (HRMAS) NMR spectroscopic data of smoked Atlantic salmon (Salmo salar) were fully assigned by combination of one- and two-dimensional-HRMAS experiments. Complete representative spectra, obtained after few minutes of analysis time, revealed a large number of minor and major compounds in the sample. The methodology is limited by the low sensitivity of NMR, and therefore HRMAS only enables the determination of the most relevant components. These were fatty acids (FAs), carbohydrates, nucleoside derivatives, osmolytes, amino acids, dipeptides and organic acids. For the first time, spectra were resolved sufficiently to allow semiquantitative determination in intact muscle of the highly polyunsaturated FA 22:6 omega-3. Additionally, the feasibility of (1)H-HRMAS NMR metabolite profiling was tested to identify some bioactive compounds during storage. This profiling was carried out by the non-destructive and direct analysis (i.e. without requiring sample preparation and multiple step procedures) of intact salmon muscle. The proposed procedure can be applied to a large number of samples with high throughput due to the short time of analysis and quick evaluation of the data.

  1. 1H-NMR and 13C-NMR lipid profiles of human renal tissues.

    PubMed

    Tugnoli, V; Bottura, G; Fini, G; Reggiani, A; Tinti, A; Trinchero, A; Tosi, M R

    2003-01-01

    Lipids from human renal tissues are studied by means of (1)H- and (13)C-NMR spectroscopy. The total lipid fractions obtained from healthy kidneys, malignant renal cell carcinomas, and benign oncocytomas are characterized and analyzed to elucidate the main differences between the functional and neoplastic tissues. In all cases the lipid components are well identified. The healthy kidney is characterized by high amounts of triglycerides and the presence of cholesterol in its free form. On the contrary, renal cell carcinomas contain high amounts of cholesterol that are almost completely esterified as oleate, suggesting an intracellular localization of the cholesteryl esters synthesis. Cholesteryl esters are considered markers of renal cell carcinomas, thus supporting recent theories that these compounds play a leading role in cell proliferation. Oncocytomas are particularly rich in phosphatidylcholine and, analogous to the healthy kidney, are completely lacking in cholesteryl esters. Healthy kidneys and oncocytomas appear to have other similarities if compared with renal cell carcinomas: a very high fatty acyl/cholesterol ratio, the presence of dolichols, and a higher grade of unsaturation. The (13)C data suggest a new method for the direct evaluation of the saturated/unsaturated fatty acyl ratio.

  2. The Reaction ^1H(^28Si,A)x at 80 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Romero, J. L.; Brady, F. P.; Cebra, D. A.; Chance, J.; Kintner, J. C.; Osborne, J. H.; Acevedo-Bolton, G.; Morrissey, D. J.; Fauerbach, M.; Pfaff, R.; Powell, C. F.; Sherrill, B. M.; Tang, H. H. K.

    1996-05-01

    Differential cross sections of charged fragments near 0 degrees were measured for the ^1H(^28Si,A)x reaction at 80 MeV/nucleon, using the A1200 zero degree spectrometer at NSCL.footnote G.A. Souliotis et al., Phys. Rev. C46, 1383 (1992) CH2 and C targets were used. The fragments detected ranged from A=5 through A=28. Results are compared with the intranuclear cascade-statistical model.(H.H.K. Tang et al., Phys. Rev. C42, 1598 (1990)) We also present results for the ^12C(^28Si,A) reaction at 80 MeV/nucleon. The overall objective is to characterize the heavy recoils in proton-induced reactions and to complement previous studies of light ions from reactions like ^28Si(p,x).(H.H.K. Tang, IBM J. Res. Dev. (1996) (in press)) Due to applications such as single event upsets in microelectronic systems and dosimetry problems in particle beam-based radiology, there are new demands for recoil data, especially in the energy regime around 100 MeV/nucleon. This work demonstrates the feasibility of reverse kinematics as an accurate means to obtain recoil spectra. This is also the first experiment of a projected program involving similar measurements using O, N and C beams.

  3. Enantioseparation of cetirizine by chromatographic methods and discrimination by 1H-NMR.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-03-01

    Cetirizine is an antihistaminic drug used to prevent and treat allergic conditions. It is currently marketed as a racemate. The H1-antagonist activity of cetirizine is primarily due to (R)-levocetirizine. This has led to the introduction of (R)-levocetirizine into clinical practice, and the chiral switching is expected to be more selective and safer. The present work represents three methods for the analysis and chiral discrimination of cetirizine. The first method was based on the enantioseparation of cetirizine on silica gel TLC plates using different chiral selectors as mobile phase additives. The mobile phase enabling successful resolution was acetonitrile-water 17: 3, (v/v) containing 1 mM of chiral selector, namely hydroxypropyl-beta-cyclodextrin, chondroitin sulphate or vancomycin hydrochloride. The second method was a validated high performance liquid chromatography (HPLC), based on stereoselective separation of cetirizine and quantitative determination of its eutomer (R)-levocetirizine on a monolithic C18 column using hydroxypropyl-beta-cyclodextrin as a chiral mobile phase additive. The resolved peaks of (R)-levocetirizine and (S)-dextrocetirizine were confirmed by further mass spectrometry. The third method used a (1)H-NMR technique to characterize cetirizine and (R)-levocetirizine. These methods are selective and accurate, and can be easily applied for chiral discrimination and determination of cetirizine in drug substance and drug product in quality control laboratory. Moreover, chiral purity testing of (R)-levocetirizine can also be monitored by the chromatographic methods.

  4. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  5. Interplay of Nitrogen-Atom Inversion and Conformational Inversion in Enantiomerization of 1H-1-Benzazepines.

    PubMed

    Ramig, Keith; Subramaniam, Gopal; Karimi, Sasan; Szalda, David J; Ko, Allen; Lam, Aaron; Li, Jeffrey; Coaderaj, Ani; Cavdar, Leyla; Bogdan, Lukasz; Kwon, Kitae; Greer, Edyta M

    2016-04-15

    A series of 2,4-disubstituted 1H-1-benzazepines, 2a-d, 4, and 6, were studied, varying both the substituents at C2 and C4 and at the nitrogen atom. The conformational inversion (ring-flip) and nitrogen-atom inversion (N-inversion) energetics were studied by variable-temperature NMR spectroscopy and computations. The steric bulk of the nitrogen-atom substituent was found to affect both the conformation of the azepine ring and the geometry around the nitrogen atom. Also affected were the Gibbs free energy barriers for the ring-flip and the N-inversion. When the nitrogen-atom substituent was alkyl, as in 2a-c, the geometry of the nitrogen atom was nearly planar and the azepine ring was highly puckered; the result was a relatively high-energy barrier to ring-flip and a low barrier to N-inversion. Conversely, when the nitrogen-atom substituent was a hydrogen atom, as in 2d, 4, and 6, the nitrogen atom was significantly pyramidalized and the azepine ring was less puckered; the result here was a relatively high energy barrier to N-inversion and a low barrier to ring-flip. In these N-unsubstituted compounds, it was found computationally that the lowest-energy stereodynamic process was ring-flip coupled with N-inversion, as N-inversion alone had a much higher energy barrier.

  6. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  7. Arrangement and mobility of water in vermiculite hydrates followed by 1H NMR spectroscopy.

    PubMed

    Sanz, J; Herrero, C P; Serratosa, J M

    2006-04-20

    The arrangement of water molecules in one- and two-layer hydrates of high-charged vermiculites, saturated with alkaline (Li(+), Na(+)) and alkali-earth (Mg(2+), Ca(2+), Ba(2+)) cations, has been analyzed with (1)H NMR spectroscopy. Two different orientations for water molecules have been found, depending on the hydration state and the sites occupied by interlayer cations. As the amount of water increases, hydrogen bond interactions between water molecules increase at expenses of water-silicate interactions. This interaction favors water mobility in vermiculites. A comparison of the temperature dependence of relaxation times T(1) and T(2) for one and two-layer hydrates of Na-vermiculite shows that the rotations of water molecules around C(2)-axes and that of cation hydration shells around the c-axis is favored in the two-layer hydrate. In both hydrates, the anisotropic diffusion of water takes place at room temperature, preserving the orientation of water molecules relative to the silicate layers. Information obtained by NMR spectroscopy is compatible with that deduced by infrared spectroscopy and with structural studies carried out with X-ray and neutron diffraction techniques on single-crystals of vermiculite.

  8. Installation of C-6533(XE-2)/ARC ICS in UH-1H helicopter

    NASA Astrophysics Data System (ADS)

    Hnat, J. A.

    1980-07-01

    This report documents the results of the installation of the C-6533(XE-2)/ARC ICS in UH-1H helicopter. Installation was performed at the AEL, Inc., Monmouth County Airport facility. Design of each installation was coordinated and approved by the Government. The mechanical and electrical installation drawings for the helicopter are attached as Appendix A of this report. The new ICS system consisted of new cabling, new intercoms and helmets rewired with new microphones. All four crew stations of the helicopter were reconfigured with the new system. Existing cabling for the standard ICS system remained in the aircraft but was securely stowed for later restoration of the aircraft. The helmets (4) were rewired using separate jacks for headphones and microphone lines. Transmit and receive cables were installed in the aircraft with a minimum separation of one inch between cables. A junction box was fabricated and installed on the aft end of the console to house the fan-out terminal strips. Transmit and receive lines' separation was maintained in the junction box. During the test phase the onboard radios were used with the new ICS system.

  9. 1H NMR characterization of a hen ovalbumin tyrosinamide N-linked oligosaccharide library.

    PubMed

    Corradi Da Silva, M L; Stubbs, H J; Tamura, T; Rice, K G

    1995-04-20

    A library of 15 N-linked oligosaccharide structures was prepared from ovalbumin and characterized using high-field NMR and mass spectrometry. The oligosaccharides were enzymatically released from ovalbumin glycopeptides, and the reducing ends were reacted with ammonium bicarbonate to form oligosaccharide-glycosylamines. These reacted with Boc-tyrosine-N-hydroxysuccinimide ester, resulting in a mixture of tyrosinamide-oligosaccharides. The Boc group was removed to expose an amine terminus which enhanced the resolution of tyrosinamide-oligosaccharides when chromatographed on reverse-phase HPLC. Ten major and five minor oligosaccharides were purified on a micromole scale and characterized using 1H NMR and FAB-MS. The structures include high-mannose, hybrid, and complex oligosaccharides possessing from two to five antenna, providing the most complete definition of ovalbumin N-linked oligosaccharides to date. The resulting library is well suited to biological studies due to the presence of a single terminal tyrosine residue on each oligosaccharide that allows radioiodination or the attachment of additional probes to these glycoconjugates prior to biological studies.

  10. Rapid determination of coenzyme Q10 in food supplements using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Ingrid; Kuballa, Thomas; Lerch, Christiane; Lachenmeier, Dirk W

    2013-01-01

    A methodology utilizing 1H NMR spectroscopy has been developed to measure the concentration of coenzyme Q10 (CoQ10) in dietary supplements. For sample preparation, a very simple dilution with deuterated chloroform and addition of internal standard is sufficient. CoQ10 produces a distinct peak of the CH groups in the isoprene side chain of the molecule in the δ 5.15 - 5.05 ppm range, where it can be distinguished from other matrix compounds. The method was shown to be of adequate sensitivity with a limit of detection (LOD) of 7.8 mg/L, to control the CoQ10 content in the majority of the products. The precision expressed as relative standard deviation was around 5 %; linearity was observed from 14 to 2000 mg/L (R = 0.99). The developed methodology was applied for the analysis of 21 food supplements (capsules, tablets, and liquid products). On the basis of the labeled amounts, only two products contained substantially lower concentrations of CoQ10 (57 % and 51 %). All other concentrations varied between 83 % and 190 % with respect to labeling. The developed NMR method may be used by quality assurance laboratories for routine control of CoQ10 products.

  11. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  12. Metabolite signature of developmental foregut cyst on in vivo and in vitro (1)H MR spectroscopy.

    PubMed

    Santhosh, Kannath; Thomas, Bejoy; Varma, Luxmi; Sandhyamany, S; Kesavadas, Chandrasekharan; Appukuttan, P S; Srinivas, G; Gupta, Arun Kumar; Kapilamoorthy, T R; Unnikrishnan, M

    2008-08-01

    Foregut duplication cysts are developmental anomalies of the bronchopulmonary foregut and are common cystic lesions of the mediastinum. We describe a case of mediastinal foregut duplication cyst with in vivo (1)H MR spectroscopy on a 1.5T magnet showing a large metabolite peak at 2.02 ppm, attributable to N-acetylated compounds, in addition to a smaller peak at 1.33 ppm, considered to represent lipids. In vitro NMR spectroscopy (7.05T) of cyst fluid confirmed the presence of these peaks. In addition, a broad multiplet centered at 3.7 ppm, possibly from various protons of the hexose ring system, was also noted. Chemical analysis of the cyst fluid demonstrated the presence of N-acetylhexosamines, proteins, and lipids. Again, in vitro spectra of pure samples of N-acetylglucosamine and N-acetylgalactosamine were obtained for comparison, which better resolved the N-acetyl peak and the peaks at 3.7 ppm. The mucus secreted by respiratory epithelium and the mucous glands of the foregut cysts contains glycoproteins that have N-acetylhexosamines as components and lipid breakdown products that are thought to contribute to the observed spectrum. This information might be useful in predicting the cyst content and, in turn, the lining of the epithelium and the glandular elements.

  13. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  14. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  15. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems.

  16. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  17. ATP6V1H Deficiency Impairs Bone Development through Activation of MMP9 and MMP13.

    PubMed

    Zhang, Yihan; Huang, Haigen; Zhao, Gexin; Yokoyama, Tadafumi; Vega, Hugo; Huang, Yan; Sood, Raman; Bishop, Kevin; Maduro, Valerie; Accardi, John; Toro, Camilo; Boerkoel, Cornelius F; Lyons, Karen; Gahl, William A; Duan, Xiaohong; Malicdan, May Christine V; Lin, Shuo

    2017-02-01

    ATP6V1H is a component of a large protein complex with vacuolar ATPase (V-ATPase) activity. We identified two generations of individuals in which short stature and osteoporosis co-segregated with a mutation in ATP6V1H. Since V-ATPases are highly conserved between human and zebrafish, we generated loss-of-function mutants in atp6v1h in zebrafish through CRISPR/Cas9-mediated gene knockout. Homozygous mutant atp6v1h zebrafish exhibited a severe reduction in the number of mature calcified bone cells and a dramatic increase in the expression of mmp9 and mmp13. Heterozygous adults showed curved vertebra that lack calcified centrum structure and reduced bone mass and density. Treatment of mutant embryos with small molecule inhibitors of MMP9 and MMP13 significantly restored bone mass in the atp6v1h mutants. These studies have uncovered a new, ATP6V1H-mediated pathway that regulates bone formation, and defines a new mechanism of disease that leads to bone loss. We propose that MMP9/MMP13 could be therapeutic targets for patients with this rare genetic disease.

  18. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75 mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR).

  19. ATP6V1H Deficiency Impairs Bone Development through Activation of MMP9 and MMP13

    PubMed Central

    Zhao, Gexin; Yokoyama, Tadafumi; Huang, Yan; Bishop, Kevin; Maduro, Valerie; Accardi, John; Toro, Camilo; Boerkoel, Cornelius F.; Gahl, William A.; Duan, Xiaohong; Malicdan, May Christine V.; Lin, Shuo

    2017-01-01

    ATP6V1H is a component of a large protein complex with vacuolar ATPase (V-ATPase) activity. We identified two generations of individuals in which short stature and osteoporosis co-segregated with a mutation in ATP6V1H. Since V-ATPases are highly conserved between human and zebrafish, we generated loss-of-function mutants in atp6v1h in zebrafish through CRISPR/Cas9-mediated gene knockout. Homozygous mutant atp6v1h zebrafish exhibited a severe reduction in the number of mature calcified bone cells and a dramatic increase in the expression of mmp9 and mmp13. Heterozygous adults showed curved vertebra that lack calcified centrum structure and reduced bone mass and density. Treatment of mutant embryos with small molecule inhibitors of MMP9 and MMP13 significantly restored bone mass in the atp6v1h mutants. These studies have uncovered a new, ATP6V1H-mediated pathway that regulates bone formation, and defines a new mechanism of disease that leads to bone loss. We propose that MMP9/MMP13 could be therapeutic targets for patients with this rare genetic disease. PMID:28158191

  20. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    PubMed

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  1. Fragmentation of peptide radical cations containing a tyrosine or tryptophan residue: structural features that favor formation of [x(n-1) + H]˙⁺ and [z(n-1) + H]˙⁺ ions.

    PubMed

    Mädler, Stefanie; Lau, Justin Kai-Chi; Williams, Declan; Wang, Yating; Saminathan, Irine S; Zhao, Junfang; Siu, K W Michael; Hopkinson, Alan C

    2014-06-12

    Peptide radical cations A(n)Y(•+) (where n = 3, 4, or 5) and A5W(•+) have been generated by collision-induced dissociation (CID) of [Cu(II)(tpy)(peptide)](•2+) complexes. Apart from the charge-driven fragmentation at the N-Cα bond of the hetero residue producing either [c + 2H](+) or [z - H](•+) ions and radical-driven fragmentation at the Cα-C bond to give a(+) ions, unusual product ions [x + H](•+) and [z + H](•+) are abundant in the CID spectra of the peptides with the hetero residue in the second or third position of the chain. The formation of these ions requires that both the charge and radical be located on the peptide backbone. Energy-resolved spectra established that the [z + H](•+) ion can be produced either directly from the peptide radical cation or via the fragment ion [x + H](•+). Additionally, backbone dissociation by loss of the C-terminal amino acid giving [b(n-1) - H](•+) increases in abundance with the length of the peptides. Mechanisms by which peptide radical cations dissociate have been modeled using density functional theory (B3LYP/6-31++G** level) on tetrapeptides AYAG(•+), AAYG(•+), and AWAG(•+).

  2. Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis.

    PubMed

    Olson, D L; Lacey, M E; Webb, A G; Sweedler, J V

    1999-08-01

    Recent advances in the analysis of nanoliter volumes using 1H NMR microcoils have led to the application of microcoils as detectors for capillary electrophoresis (CE). Custom NMR probes consisting of 1-mm-long solenoidal microcoils are fabricated from 50-micron diameter wire wrapped around capillaries to create nanoliter-volume detection cells. For geometries in which the capillary and static magnetic field are not parallel, the electrophoretic current induces a magnetic field gradient which degrades the spectroscopic information obtainable from CE/NMR. To reduce this effect and allow longer analyte observation times, the electrophoretic voltage is periodically interrupted so that 1-min high-resolution NMR spectra are obtained for every 15 s of applied voltage. The limits of detection (LODs; based on S/N = 3) for CE/NMR for arginine are 57 ng (330 pmol; 31 mM) and for triethylamine (TEA) are 9 ng (88 pmol; 11 mM). Field-amplified stacking is used for sample preconcentration. As one example, a 290-nL injection of a mixture of arginine and TEA both at 50 mM (15 nmol of each injected) is stacked severalfold for improved concentration LODs while achieving a separation efficiency greater than 50,000. Dissolving a sample in a mixture of 10% H2O/90% D2O allows H2O to serve as the nearly ideal neutral tracer and allows direct observation of the parabolic and flat flow profiles associated with gravimetric and electrokinetic injection, respectively. The unique capabilities of CE and the rich spectral information provided by NMR spectroscopy combine to yield a valuable analytical tool, especially in the study of mass-limited samples.

  3. Classification of iron-sulfur cores in ferredoxins by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Nagayama, K; Ozaki, Y; Kyogoku, Y; Hase, T; Matsubara, H

    1983-09-01

    A 1H nuclear magnetic resonance (NMR) study was carried out on various ferredoxins which possess one of three types of iron-sulfur clusters, (2Fe-2S), (3Fe-3S), or (4Fe-4S). In the isolated form, (2Fe-2S) ferredoxins from spinach (Spinacea oleracia), pokeweed (Phytolacca americana), a blue-green alga (Spirulina platensis), and a halobacterium (Halobacterium halobium) exhibited two broad resonances common in chemical shift at the region downfield of 10 ppm. In their reduced forms, seven contact-shifted resonances appeared spread over 30 ppm. Although the positions of the contact-shifted resonances in the reduced state differed among the four, a common trend in the temperature dependence of their resonance positions was recognized. Two (4Fe-4S) ferredoxins from Bacillus stearothermophilus and Bacillus thermoproteolyticus exhibited almost indistinguishable spectral patterns in both the oxidized and reduced forms. The ferricyanide-treated ferredoxins of B. stearothermophilus and B. thermoproteolyticus showed characteristic contact-shifted resonances distinct from the spectra of the original (4Fe-4S) ferredoxins. This corresponds to the recent finding of the interconversion of (4Fe-4S) and (3Fe-3S) clusters with ferricyanide in the ferredoxin. Based on our data together with reported NMR data on other ferredoxins, contact-shift resonances of three types of clusters were tabulated. The reliability of NMR classification increases when we compare the NMR spectra of a ferredoxin with the classification standards at the two redox states. Moreover, not only the absolute values of the chemical shifts of contact-shifted resonances but also their temperature dependence give distinctive information applicable to iron core identification.

  4. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  5. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  6. 1H NMR to investigate metabolism and energy supply in rhesus macaque sperm.

    PubMed

    Lin, Ching-Yu; Hung, Pei-hsuan; VandeVoort, Catherine A; Miller, Marion G

    2009-07-01

    Sperm ATP is derived primarily from either glycolysis or mitochondrial oxidative phosphorylation. In the present studies, (1)H NMR spectroscopy was used to characterize the metabolite profile in primate sperm treated either with alpha-chlorohydrin (ACH), a known inhibitor of sperm glycolysis or pentachlorophenol (PCP), an uncoupler of oxidative phosphorylation. Sperm were collected from monkeys in the fall and spring, washed and incubated with either the media control, ACH (0.5mM) or PCP (50 microM). Using principal components analysis, PC1 scores plot indicated that the greatest level of variance was found between fall and spring samples and not chemical-treated samples. However, PC4 scores plot did show a consistent effect of ACH treatment. From the PC1 loadings plot, metabolites contributing to the seasonal differences were higher levels of formate in the fall and higher levels of carnitine and acetylcarnitine in the spring as well as possible differences in lipoprotein content. The PC4 loadings plot indicated that ACH treatment decreased lactate and ATP consistent with inhibition of glycolysis. Carnitine also was decreased and acetylcarnitine increased although the latter was not statistically significant. With PCP-treated sperm, no difference between control and treated samples could be discerned suggesting either that primate sperm are insensitive to uncoupling agents or that glycolysis played the more important role in maintaining sperm ATP levels. Overall, NMR studies may prove useful in the development of metabolomic markers that signal sperm metabolic impairments and have the potential to provide useful biomarkers for reproductive health.

  7. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility

    PubMed Central

    Eckle, Veit-Simon; Shcheglovitov, Aleksandr; Vitko, Iuliia; Dey, Deblina; Yap, Chan Choo; Winckler, Bettina; Perez-Reyes, Edward

    2014-01-01

    T-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca2+ channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy. We and others have found that these mutations may influence neuronal excitability either by altering the biophysical properties of the channels or by increasing their surface expression. The goals of the present study were to investigate the excitability of neurons expressing Cav3.2 with the epilepsy mutation, C456S, and to elucidate the mechanisms by which it influences neuronal properties. We found that expression of the recombinant C456S channels substantially increased the excitability of cultured neurons by increasing the spontaneous firing rate and reducing the threshold for rebound burst firing. Additionally, we found that molecular determinants in the I–II loop (the region in which most childhood absence epilepsy-associated mutations are found) substantially increase the surface expression of T-channels but do not alter the relative distribution of channels into dendrites of cultured hippocampal neurons. Finally, we discovered that expression of C456S channels promoted dendritic growth and arborization. These effects were reversed to normal by either the absence epilepsy drug ethosuximide or a novel T-channel blocker, TTA-P2. As Ca2+-regulated transcription factors also increase dendritic development, we tested a transactivator trap assay and found that the C456S variant can induce changes in gene transcription. Taken together, our findings suggest that gain-of-function mutations in Cav3.2 T-type Ca2+ channels increase seizure susceptibility by directly altering neuronal electrical properties and indirectly by changing gene expression. PMID:24277868

  8. Bipolar disorder comorbid with alcoholism: a 1H magnetic resonance spectroscopy study.

    PubMed

    Nery, Fabiano G; Stanley, Jeffrey A; Chen, Hua-Hsuan; Hatch, John P; Nicoletti, Mark A; Monkul, E Serap; Lafer, Beny; Soares, Jair C

    2010-04-01

    Alcoholism is highly prevalent among bipolar disorder (BD) patients, and its presence is associated with a worse outcome and refractoriness to treatment of the mood disorder. The neurobiological underpinnings that characterize this comorbidity are unknown. We sought to investigate the neurochemical profile of the dorsolateral prefrontal cortex (DLPFC) of BD patients with comorbid alcoholism. A short-TE, single-voxel (1)H spectroscopy acquisition at 1.5T from the left DLFPC of 22 alcoholic BD patients, 26 non-alcoholic BD patients and 54 healthy comparison subjects (HC) were obtained. Absolute levels of N-acetyl aspartate, phosphocreatine plus creatine, choline-containing compounds, myo-inositol, glutamate plus glutamine (Glu+Gln) and glutamate were obtained using the water signal as an internal reference. Analysis of co-variance was used to compare metabolite levels among the three groups. In the primary comparison, non-alcoholic BD patients had higher glutamate concentrations compared to alcoholic BD patients. In secondary comparisons integrating interactions between gender and alcoholism, non-alcoholic BD patients presented significantly higher glutamate plus glutamine (Glu+Gln) than alcoholic BD patients and HC. These results appeared to be driven by differences in male subjects. Alcoholic BD patients with additional drug use disorders presented significantly lower myo-inositol than BD patients with alcoholism alone. The co-occurrence of BD and alcoholism may be characterized by neurochemical abnormalities related to the glutamatergic system and to the inositol second messenger system and/or in glial pathology. These abnormalities may be the neurochemical correlate of an increased risk to develop alcoholism in BD, or of a persistently worse clinical and functional status in BD patients in remission from alcoholism, supporting the clinical recommendation that efforts should be made to prevent or early diagnose and treat alcoholism in BD patients.

  9. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.

  10. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    PubMed Central

    Cocco, Eleonora; Murgia, Federica; Lorefice, Lorena; Barberini, Luigi; Poddighe, Simone; Frau, Jessica; Fenu, Giuseppe; Coghe, Giancarlo; Murru, Maria Rita; Murru, Raffaele; Del Carratore, Francesco; Atzori, Luigi

    2015-01-01

    Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS. PMID:26740964

  11. Change of translational-rotational coupling in liquids revealed by field-cycling 1H NMR

    NASA Astrophysics Data System (ADS)

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-01

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the 1H spin-lattice relaxation rate, R 1 ω = T1 - 1 ω , is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz-20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R 1 ω , x (x denotes mole fraction PG) allow to extract the rotational time constant τrot(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τrot(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τrot(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  12. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.

    PubMed

    de Graaf, Robin A; Behar, Kevin L

    2014-07-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays a central role in cellular metabolism both as a coenzyme for electron-transfer enzymes as well as a substrate for a wide range of metabolic pathways. In the current study NAD(+) was detected on rat brain in vivo at 11.7T by 3D localized (1)H MRS of the NAD(+) nicotinamide protons in the 8.7-9.5 ppm spectral region. Avoiding water perturbation was critical to the detection of NAD(+) as strong, possibly indirect cross-relaxation between NAD(+) and water would lead to a several-fold reduction of the NAD(+) intensity in the presence of water suppression. Water perturbation was minimized through the use of localization by adiabatic spin-echo refocusing (LASER) in combination with frequency-selective excitation. The NAD(+) concentration in the rat cerebral cortex was determined at 296 ± 28 μm, which is in good agreement with recently published (31) P NMR-based results as well as results from brain extracts in vitro (355 ± 34 μm). The T1 relaxation time constants of the NAD(+) nicotinamide protons as measured by inversion recovery were 280 ± 65 and 1136 ± 122 ms in the absence and presence of water inversion, respectively. This confirms the strong interaction between NAD(+) nicotinamide and water protons as observed during water suppression. The T2 relaxation time constants of the NAD(+) nicotinamide protons were determined at 60 ± 13 ms after confounding effects of scalar coupling evolution were taken into account. The simplicity of the MR sequence together with the robustness of NAD(+) signal detection and quantification makes the presented method a convenient choice for studies on NAD(+) metabolism and function. As the method does not critically rely on magnetic field homogeneity and spectral resolution it should find immediate applications in rodents and humans even at lower magnetic fields.

  13. Synthesis of annulated bis-indoles through Au(i)/Brønsted acid-catalyzed reactions of (1H-indol-3-yl)(aryl)methanols with 2-(arylethynyl)-1H-indoles.

    PubMed

    Inamdar, Suleman M; Gonnade, Rajesh G; Patil, Nitin T

    2017-01-25

    A general method to access annulated bis-indoles from (1H-indol-3-yl)(aryl)methanols and 2-(arylethynyl)-1H-indoles under the catalysis of the Ph3PAuOTf/Brønsted acid binary catalyst system has been developed. The reaction was found to proceed in a highly efficient manner and benefit from easy-to-make starting materials, broad substrate scope and operational simplicity. The potential of this method has also been exemplified for the synthesis of pyrrole-annulated indoles using 2-(phenylethynyl)-1H-indoles and phenyl(1H-pyrrol-2-yl)methanols. Furthermore, the use of a ternary catalyst system, involving PdCl2/Brønsted acid/Ph3PAuOTf catalysts, has been realized for the synthesis of annulated bis-indoles starting directly from 2-(phenylbuta-1,3-diyn-1-yl)aniline and (1H-indol-3-yl)(aryl)methanol. Mechanistically, this reaction is very interesting since the overall process involves three different catalytic cycles catalyzed by three different catalysts in a relay fashion.

  14. Synthesis, structure, photoluminescence and antitumour activity of zinc complex based on 2-(2-(1H-benzo-[d]imidazol-2-yl)benzyl)-1H-benzo-[d]imidazole

    NASA Astrophysics Data System (ADS)

    Che, Zhijian; Wang, Shaoxiang; Liu, Shenggui; Li, Guobi; Wu, Qiting; Lin, Chunyu; Kong, Linglang; Wang, Sheng

    2015-01-01

    A new complex [Zn(bbb)Cl2]·DMF, where bbb is 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole, was synthesized and characterized by element analysis, 1H NMR and X-ray single crystal structure analyses. For complex: crystal system, triclinic, space group, P-1, a = 9.4661(13), b = 10.3534(14), c = 13.0025(18) Å, α = 73.477(2), β = 80.743(2), γ = 88.658(2)°, V = 1205.5(3) Å3, Z = 2. In this complex, the Zn2+ distorted tetrahedron geometry is coordinated by two nitrogen atoms from 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole and two Cl-. The complex emits yellow green luminescence with the maximal emission peak at 550 nm in DMF solution. The complex exhibits inhibition on the growth of Eca109 cancer cell with IC50 value of 8.9 ± 1.1 μM, which was lower than that of cisplatin (14.3 ± 1.4 μM). This complex has potential application in treatment of esophageal cancer.

  15. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE PAGES

    Alam, Todd M.; Liao, Zuolei; Nyman, May; ...

    2016-04-27

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6·5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H–1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization of local hydrogen-bond environments in uranyl U24 capsules andmore » of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  16. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  17. Delivering strong (1)H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange.

    PubMed

    Rayner, Peter J; Burns, Michael J; Olaru, Alexandra M; Norcott, Philip; Fekete, Marianna; Green, Gary G R; Highton, Louise A R; Mewis, Ryan E; Duckett, Simon B

    2017-04-04

    Hyperpolarization turns typically weak NMR and MRI responses into strong signals so that ordinarily impractical measurements become possible. The potential to revolutionize analytical NMR and clinical diagnosis through this approach reflect this area's most compelling outcomes. Methods to optimize the low-cost parahydrogen-based approach signal amplification by reversible exchange with studies on a series of biologically relevant nicotinamides and methyl nicotinates are detailed. These procedures involve specific (2)H labeling in both the agent and catalyst and achieve polarization lifetimes of ca 2 min with 50% polarization in the case of methyl-4,6-d2 -nicotinate. Because a 1.5-T hospital scanner has an effective (1)H polarization level of just 0.0005% this strategy should result in compressed detection times for chemically discerning measurements that probe disease. To demonstrate this technique's generality, we exemplify further studies on a range of pyridazine, pyrimidine, pyrazine, and isonicotinamide analogs that feature as building blocks in biochemistry and many disease-treating drugs.

  18. Geometry of the antitumor drug ditercalinium bisintercalated into d(CpGpCpG)2 by 1H NMR.

    PubMed Central

    Delbarre, A; Delepierre, M; Garbay, C; Igolen, J; Le Pecq, J B; Roques, B P

    1987-01-01

    Rigid 7H-pyrido[4,3-c]carbazole dimers, such as Ditercalinium, are DNA bisintercalators that display high DNA affinity and strong antitumor properties. This activity appears crucially dependent on the geometry of their complexes with DNA. Therefore, structures of the complexes formed by the self-complementary tetranucleotide d(CpGpCpG) with Ditercalinium and with a related monomer were investigated in 0.1 M [2H]acetate buffer (pH 5.5) by using 400-MHz 1H NMR. In both cases, d(CpGpCpG) retained a right-handed duplex structure as shown by exchangeable-proton analysis and intramolecular nuclear Overhauser effect measurements. According to the large upfield shifts measured on the base protons (including the imino proton) and on the aromatic protons of the pyridocarbazole rings, the monomer appears to monointercalate and the dimer to bisintercalate into the tetranucleotide duplex. Ditercalinium dissociates from its complex about 100-1000 times slower than does the monomer. The negative intermolecular nuclear Overhauser effects observed on protons corresponding to the convex edge of the pyridocarbazole rings when the sugar protons are saturated suggest that both ligands intercalate with their chain oriented to the wide groove side of the helix, a situation mimicking that encountered with repressors. Antitumor activity of 7H-pyridocarbazole derivatives is discussed in terms of geometry of the intercalated complexes. PMID:3470783

  19. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    PubMed

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  20. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    PubMed Central

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  1. Protein-Observed Fluorine NMR Is a Complementary Ligand Discovery Method to (1)H CPMG Ligand-Observed NMR.

    PubMed

    Urick, Andrew K; Calle, Luis Pablo; Espinosa, Juan F; Hu, Haitao; Pomerantz, William C K

    2016-11-18

    To evaluate its potential as a ligand discovery tool, we compare a newly developed 1D protein-observed fluorine NMR (PrOF NMR) screening method with the well-characterized ligand-observed (1)H CPMG NMR screen. We selected the first bromodomain of Brd4 as a model system to benchmark PrOF NMR because of the high ligandability of Brd4 and the need for small molecule inhibitors of related epigenetic regulatory proteins. We compare the two methods' hit sensitivity, triaging ability, experiment speed, material consumption, and the potential for false positives and negatives. To this end, we screened 930 fragment molecules against Brd4 in mixtures of five and followed up these studies with mixture deconvolution and affinity characterization of the top hits. In selected examples, we also compare the environmental responsiveness of the (19)F chemical shift to (1)H in 1D-protein observed (1)H NMR experiments. To address concerns of perturbations from fluorine incorporation, ligand binding trends and affinities were verified via thermal shift assays and isothermal titration calorimetry. We conclude that for the protein understudy here, PrOF NMR and (1)H CPMG have similar sensitivity, with both being effective tools for ligand discovery. In cases where an unlabeled protein can be used, 1D protein-observed (1)H NMR may also be effective; however, the (19)F chemical shift remains significantly more responsive.

  2. Correlation of fractional anisotropy and metabolite concentrations measured using 1H-MRS of cerebral white matter in healthy adults.

    PubMed

    Cheng, Sainan; Liu, Qiang; Lv, Yubo; Han, Wenwen; Yu, Ke; Li, Yuchao; Gong, Tao; Zhang, Yi

    2014-01-01

    Fractional anisotropy (FA) is currently an ideal index capable of reflecting the white matter structure. 1H magnetic resonance spectroscopy (1H-MRS) is often used as a noninvasive concentration measurement of important neurochemicals in vivo. This study was conducted to investigate the relationship between FA and metabolite concentrations by comparing 1H-MRS of bilateral medium corona radiata in healthy adults. The data of diffusion tensor imaging (DTI) and 1H-MRS were acquired from 31 healthy adults using a 3.0 T MR system. All subjects were divided into three groups: the total group (mean age=42 years), the junior group (mean age=29 years) and the senior group (mean age=56 years). There was a negative correlation between FA and age in three groups (r=-0.146, r=-0.204, r=-0.162, p<0.05). The positive correlation of FA with corresponding concentrations of N-acetylaspartate (NAA) was significant in three groups (r=0.339, r=0.213, r=0.430, respectively, p<0.05). The positive correlation of FA with the corresponding NAA/Cr was only significant difference between the total 353 samples and the junior group (r=0.166, r=0.305, respectively, p<0.05). Combining 1H-MRS with DTI reveals the relationship between structure and metabolic characteristics of white matter.

  3. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  4. Structure and properties of bis(1-phenyl-1h-tetrazole-5-thiolate)diiron tetranitrosyl

    NASA Astrophysics Data System (ADS)

    Sanina, N. A.; Kozub, G. I.; Kondrat'eva, T. A.; Shilov, G. V.; Korchagin, D. V.; Emel'yanova, N. S.; Poleshchuk, O. Kh.; Chernyak, A. V.; Kulikov, A. V.; Mushenok, F. B.; Ovanesyan, N. S.; Aldoshin, S. M.

    2013-06-01

    New tetranitrosyl binuclear iron complex [Fe2(SС7H5N4)2(NO)4] (I) has been synthesized by interaction of aqueous solutions of anionic salts [Fе(S2O3)2(NO)2]3- and [SС7H5N4]-. The latter one was synthesized by reduction of bis-(1-phenyl-1H-tetrazole-5-yl) disulfide with hydrazine hydrate in ethanol at T = 25 °C. Molecular and crystalline structure of I was determined by X-ray analysis; the complex has binuclear structure of "μ-SCN" type with ˜4.02 Å between the iron atoms. Shortened О⋯О contacts (2.81 Å) between the NO groups of similar type are observed. Parameters of Mössbauer spectrum for I are: isomer shift δFe = 0.311(1) mm/s, quadrupole splitting ΔEQ = 1.044(1) mm/s, line width Γ = 0.267(1) mm/s at 85 K. From SQUID magnetometry data, the temperature and field dependences of the magnetic moment of I are well described in the frame of a simple model of binuclear iron complex with magnetic centers S1 = S2 = ½. In solution, binuclear structure of the complex remains, though the NO groups are non-equivalent. For solutions of I five-line hyperfine structure of spectrum (HFS) is observed, g-factor = 2.03. For polycrystals of I, no HFS was observed due to averaged exchange interaction between the electron spins of adjacent complexes. In polycrystals of I, the number of spins per one binuclear complex is <2, this being the evidence of antiferromagnetic exchange interaction of unpaired electrons of two iron atoms. The average number of spins in crystals (0.65) and solutions (0.55) are close. The maximum amount of NO generated by I in 1% dimethylsulfoxide (DMSO) aqueous solution is ˜13.8 nM, it halves in 8 min after decomposition starts, and reaches ˜3.8 nM in anaerobic conditions at Т = 25 °С, pH 7.0. This is due, according to quantum-chemical calculations, to the presence of a more stable Fesbnd NO bond in I than in its isostructural analog - nitrosyl iron complex with 1-methyltetrazole-5-yl (II).

  5. Application of Single Voxel 1H Magnetic Resonance Spectroscopy in Hepatic Benign and Malignant Lesions

    PubMed Central

    Yang, Zifeng; Sun, Shiqiang; Chen, Yuanli; Li, Rui

    2016-01-01

    Background To quantify the metabolite changes in hepatic tumors by single-voxel 1H magnetic resonance spectroscopy (MRS) at 3.0 T and explore the application value of 1HMRS in the diagnosis of hepatic benign and malignant lesions. Material/Methods A total of 45 patients (55 lesions) diagnosed with hepatic lesions by ultrasound and/or computer topography (CT) from November 2006 to March 2007 were included in this study. All patients underwent 3D-dynamic enhanced scan with liver acquisition with acceleration volume acquisition (LAVA) sequence and single-voxel 1HMRS imaging with PRESS (point-resolved spectroscopy) sequence. The metabolite concentrations such as choline (Cho) and lipids (Lip) were measured. Results There was significant difference regarding the occurrence rate of the obvious elevated Cho peaks between benign and malignant tumors (7/27 vs. 21/28, p=0.000). There was statistical significant differences regarding the Cho/Lip ratios in hepatic benign (0.0686±0.0283, 95% CI: 0.0134–0.1245) and malignant (0.1266±0.1124, 95% CI: 0.0937–0.2203) lesions (p<0.05). When compared with the pathological results, the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were 85.7% (24/28), 92.6% (25/27), 92.3% (24/26), 86.2% (25/29), and 89.1% (49/55) respectively for the MRI assessment, and 92.6% (26/28), 88.9% (24/27), 89.7 (26/29), 92.3 (24/26), and 90.9% (50/55) respectively for 1HMRS combined with MRI assessment. Conclusions Single Cho peaks or Lip peaks cannot be used for the diagnosis of hepatic benign and malignant lesions. Combined use of 1HMRS and MRI can greatly improve the application value of MRI assessment in the diagnosis of hepatic benign and malignant lesions with a higher sensitivity, negative predictive value, and overall accuracy. PMID:27992399

  6. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.

    PubMed

    Caligiani, Augusta; Palla, Luigi; Acquotti, Domenico; Marseglia, Angela; Palla, Gerardo

    2014-08-15

    This study reports for the first time the use of (1)H NMR technique combined with chemometrics to study the metabolic profile of cocoa (Theobroma cacao L.) beans of different varieties, origin and fermentation levels. Results of PCA applied to cocoa bean (1)H NMR dataset showed that the main factor influencing the cocoa bean metabolic profile is the fermentation level. In fact well fermented brown beans form a group clearly separated from unfermented, slaty, and underfermented, violet, beans, independently of the variety or geographical origin. Considering only well fermented beans, the metabolic profile obtained by (1)H NMR permitted to discriminate between some classes of samples. The National cocoa of Ecuador, known as Arriba, showed the most peculiar characteristics, while the samples coming from the African region showed some similar traits. The dataset obtained, representative of all the classes of soluble compounds of cocoa, was therefore useful to characterise fermented cocoa beans as a function of their origin and fermentation level.

  7. E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies.

    PubMed

    Fukuyo, Y; Mogi, K; Tsunematsu, Y; Nakajima, T

    2004-07-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) comprise multiple regulatory factors and play crucial roles in the maintenance of cellular integrity, while unregulated activation of PML-NBs induces death and premature senescence. Hence, the function of PML-NBs must be directed properly; however, the mechanism that regulates PML-NBs remains unclear. In this paper, we show that PML-NBs are disintegrated by an AT-rich interaction domain family protein E2FBP1/hDril1 through specific desumoylation of promyelocytic leukemia protein (PML) in vivo and in vitro. RNA interference-mediated downregulation of E2FBP1/hDril1 results in hyperplasis of PML-NBs and consequent commitment to PML-dependent premature senescence. Thus, the function of E2FBP1/hDril1 is required for maintenance of survival potential of the cells. Our data suggest a novel mechanism to govern cellular integrity through the modulation of nuclear depots.

  8. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    PubMed

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO.

  9. Dipolar cross-relaxation modulates signal amplitudes in the 1H NMR spectrum of hyperpolarized [ 13C]formate

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Harrison, Crystal; Mander, William; Malloy, Craig R.; Dean Sherry, A.

    2007-12-01

    The asymmetry in the doublet of a spin coupled to hyperpolarized 13C has been used previously to measure the initial polarization of 13C. We tested the hypothesis that a single observation of the 1H NMR spectrum of hyperpolarized 13C formate monitors 13C polarization. Depending on the microwave frequency during the polarization process, in-phase or out-of-phase doublets were observed in the 1H NMR spectrum. Even in this simple two-spin system, 13C polarization was not reflected in the relative area of the JCH doublet components due to strong heteronuclear cross-relaxation. The Solomon equations were used to model the proton signal as a function of time after polarization and to estimate 13C polarization from the 1H NMR spectra.

  10. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  11. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.

    PubMed

    Mazzei, Pierluigi; Spaccini, Riccardo; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2013-11-13

    We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir.

  12. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    SciTech Connect

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

  13. Reduction of C,N-chelated chloroborane: straightforward formation of the unprecedented 1H-2,1-benzazaborolyl potassium salt.

    PubMed

    Hejda, Martin; Jambor, Roman; Růžička, Aleš; Lyčka, Antonín; Dostál, Libor

    2014-06-28

    Reduction of C,N-chelated chloroborane [2-(CH=NtBu)C6H4]BPhCl () with the potassium metal afforded (3,3')-bis(1-Ph-2-tBu-1H-2,1-benzazaborole) (2). Compound 2 is formed via C-C reductive coupling reaction. Subsequent reduction of 2 with two equivalents of the potassium metal produced orange crystals of 1Ph-2tBu-1H-2,1-benzazaborolyl (Bab) potassium salt K(THF)(Bab) (3). Compound 3 is able to react with simple electrophiles (MeI or Me3SiCl) resulting in the formation of substituted 1H-2,1-benzazaboroles.

  14. Kinetics of the in vivo31P 1H nuclear overhauser effect of the human-calf-muscle phosphocreatine resonance

    NASA Astrophysics Data System (ADS)

    Bachert, Peter; Bellemann, Matthias E.

    In 31P 1H double-resonance experiments in a 1.5 T whole-body MR system, we observed in vivo the truncated driven, transient, and steady-state 31P- 1H nuclear Overhauser effect of the phosphocreatine resonance in 31P MR spectra of human gastrocnemius muscle. Maximum signal enhancements of 0.52 ± 0.01, 0.20 ± 0.01, and 0.79 ± 0.02 were measured, respectively. Fitting the data with theoretical functions which solve the multispin Solomon equations for N protons (S spins) dipolar coupled to a 31P nucleus (I spin) yields cross-relaxation times {2}/{[Σ i=1-N σIS(i) ] } in the order of 20 s. In vivo experiments are feasible for studying relaxation mechanisms in coupled 31P 1H spin systems in intact tissue.

  15. Synthesis of substituted 3-amino-N-phenyl-1H-indazole-1-carboxamides endowed with antiproliferative activity.

    PubMed

    Maggio, Benedetta; Raimondi, Maria Valeria; Raffa, Demetrio; Plescia, Fabiana; Cascioferro, Stella; Plescia, Salvatore; Tolomeo, Manlio; Di Cristina, Antonietta; Pipitone, Rosaria Maria; Grimaudo, Stefania; Daidone, Giuseppe

    2011-01-01

    Several new N-phenyl-1H-indazole-1-carboxamides 1c-h and 4l,m were prepared by reacting phenyl isocyanate derivatives 3a,b with 3-amino-1H-indazole derivatives 2c,e,g or 1H-indazole 2l respectively. Chemical transformations of compounds 1a,b and 1g,h gave 3-acetamido-N-phenyl-1H-indazole-1-carboxamide derivatives 5a,b, and 3,5-diamino-N-phenyl-1H-indazole-1-carboxamide derivatives 4i,j respectively. Finally, 3,5-diacetamido-N-phenyl-1H-indazole-1-carboxamide derivatives 6a,b were prepared by acetylation of 4i,j. Some of synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell lines panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). Compound 1c, the most active of the series, was able to inhibit cell growth showing GI(50) values in the 0.041-33.6 μM range, mean GI(50) 1.90 μM, being very effective against colon and melanoma cell lines. Cell cycle analysis in K562 cells showed that 1c causes a marked increase of cells in G0-G1 phase. Moreover, it increases the ratio between hypophosphorylated pRb and total pRb.

  16. Triclinic modification of diaqua-bis-(5-carb-oxy-1H-imidazole-4-carboxyl-ato-κ(2)N(3),O(4))iron(II).

    PubMed

    Ohshima, Eriko; Yoshida, Kazuki; Sugiyama, Kazumasa; Uekusa, Hidehiro

    2012-08-01

    The title compound, [Fe(C(5)H(3)N(2)O(4))(2)(H(2)O)(2)], is a triclinic modification of a monoclinic form recently reported by Du et al. [Acta Cryst. (2011) ▶, E67, m997]. The Fe(II) ion lies at an inversion center and is coordinated by two N and two O atoms from two 5-carb-oxy-1H-imidazole-4-carboxyl-ate ligands in trans positions, together with two water mol-ecules, completing a slightly distorted octahedral coordination. Inter-molecular N-H⋯O hydrogen bonding between the N-H group of the imidazole ring and the deprotonated carboxyl-ate group builds a chain of 5-carb-oxy-1H-imidazole-4-carboxyl-ate anions along the [101] direction. The water molecules form intermolecular hydrogen bonds to O-C and O=C sites of the carboxylate group in adjacent layers.

  17. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    PubMed Central

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  18. Identification and Mapping of Mechanically Exfoliated 1H-MoS2 Flakes for Field-Effect Transistors

    DTIC Science & Technology

    2014-08-01

    Following the discovery of graphene , there has been increased interest in materials that allow for the construction of two- dimensional (2D) devices. In this...project we will focus on 1H-molybdenum disulfide (MoS2), which, like graphene , is a monolayer; unlike graphene , however, it has a band gap. 1H-MoS2...differs from silicon in that its band gap is direct and, like graphene , can be mechanically exfoliated (ME) to isolate it as a single molecular layer

  19. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    NASA Astrophysics Data System (ADS)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  20. Dehydrozingerone based 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles: Synthesis, characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    Ratković, Zoran; Muškinja, Jovana; Burmudžija, Adrijana; Ranković, Branislav; Kosanić, Marijana; Bogdanović, Goran A.; Marković, Bojana Simović; Nikolić, Aleksandar; Arsenijević, Nebojša; Đorđevic, Snežana; Vukićević, Rastko D.

    2016-04-01

    A small series of 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles (aryl = 4-hydroxy-3-methoxyphenyl and 4-alkoxy-3-methoxyphenyl) was prepared, starting from 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, dehydrozingerone, and its alkyl derivatives. Their in vitro cytotoxic activity against some cancer cell lines was tested, showing significant anticancer activity. All the new compounds were well characterized by IR, 1H, 13C NMR and ESI-MS spectroscopy and physical data, whereas structures of two of them were determined by single crystal X-ray analysis.

  1. The influence of sulfur configuration in (1) H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    PubMed

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Synthesis of 8-Phenylphenalenones: 2-Hydroxy-8-(4-hydroxyphenyl)-1H-phenalen-1-one from Eichhornia crassipes.

    PubMed

    Ospina, Felipe; Hidalgo, William; Cano, Marisol; Schneider, Bernd; Otálvaro, Felipe

    2016-02-05

    2-Hydroxy-8-(4-hydroxyphenyl)-1H-phenalen-1-one (1), the first reported 8-phenylphenalenone from the roots of Eichhornia crassipes (water hyacinth), was synthesized starting from 2-methoxynaphthalene in 11 steps and with an overall yield of 2%. A cascade Friedel-Crafts/Michael annulation reaction between acryloyl chloride and 2-methoxynaphthalene afforded 9-methoxyperinaphthanone that, after transformation to 9-methoxy-2-(4-methoxyphenyl)-1H-phenalen-1-one by means of standard Suzuki-Miyaura methodology, was subjected to a reductive carbonyl transposition to afford 8-(4-methoxyphenyl)perinaphthanone. Dehydrogenation, epoxidation, and demethylation of the latter afforded 1.

  3. Evaluation of short-TE (1)H MRSI for quantification of metabolites in the prostate.

    PubMed

    Basharat, Meer; Jafar, Maysam; deSouza, Nandita M; Payne, Geoffrey S

    2014-04-01

    Back-to-back (1)H MRSI scans, using an endorectal and phased-array coil combination, were performed on 18 low-risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer-volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved with the quantitation using quantum estimation (QUEST) routine. Metabolite nulling experiments in an additional five patients found that there were negligible macromolecule background signals in prostate spectra at TE = 32 ms. Metabolite visibility was judged using the criterion Cramér-Rao lower bound (CRLB)/amplitude < 20%, and metabolite concentrations were corrected for relaxation effects and referenced to the data acquired in corresponding water-unsuppressed MRSI scans. For the first time, the prostate metabolites spermine and myo-inositol were quantified individually in vivo, together with citrate, choline and creatine. All five metabolite visibilities were higher in TE = 32 ms MRSI than in TE = 100 ms MRSI. At TE = 32 ms, citrate was visible in 99.0% of lipid-free spectra, whereas, at TE = 100 ms, no metabolite simulation of citrate matched the in vivo peaks. Spermine, choline and creatine were visualised separately in 30.4% more spectra at TE = 32 ms than at TE = 100 ms, and myo-inositol in 72.5% more spectra. T2 values were calculated for spermine (53 ± 16 ms), choline (62 ± 17 ms) and myo-inositol (90 ± 48 ms). Data from the TE = 32 ms spectra showed that the concentrations of citrate and spermine secretions were positively correlated in both the peripheral zone and central gland (R(2)  = 0.73 and R(2)  = 0.43, respectively), and that the citrate content was significantly higher in the former at 64 ± 22 mm than in the latter at 32 ± 16 mm (p = 0.01). However, lipid

  4. Solution behavior and complete sup 1 H and sup 13 C NMR assignments of the coenzyme B sub 12 derivative (5 prime -deoxyadenosyl)cobinamide using modern 2D NMR experiments, including 600-MHz sup 1 H NMR data

    SciTech Connect

    Pagano, T.G.; Yohannes, P.G.; Marzilli, L.G. ); Hay, B.P.; Scott, J.R.; Finke, R.G. )

    1989-02-15

    Two-dimensional (2D) NMR methods have been used to assign completely the {sup 1}H and {sup 13}C NMR spectra of the (5{prime}-deoxyadenosyl)cobinamide cation (AdoCbi{sup +}) in D{sub 2}O. Most of the {sup 1}H spectral assignments were made by using 2D homonuclear shift correlation spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), absorption-mode (phase sensitive) 2D nuclear Overhauser effect (NOE) spectroscopy, and spin-locked NOE spectroscopy (also called ROESY, for rotating-frame Overhauser enhancement spectroscopy). Most of the protonated carbon resonances were assigned by using {sup 1}H-detected heteronuclear multiple-quantum coherence (HMQC) spectroscopy. The nonprotonated carbon resonances, as well as the remaining unassigned {sup 1}H and {sup 13}C NMR signals, were assigned from long-range {sup 1}H-{sup 13}C connectivities determined from {sup 1}H-detected multiple-bond heteronuclear multiple-quantum coherence spectroscopy (HMBC). Comparison of the {sup 13}C chemical shifts and {sup 1}H NOEs of AdoCbi{sup +} with those of coenzyme B{sup 12} ((5{prime}-deoxyadenosyl)cobalamin) and its benzimidazole-protonated, base-off form indicates that the electronic properties and structure of AdoCbi{sup +} are similar to that of coenzyme B{sup 12} in the protonated, base-off form. The {sup 13}C chemical shifts of most of the carbons of AdoCbi{sup +} do not vary significantly from those of base-off, benzimidazole-protonated coenzyme B{sup 12}, indicating that the electronic environment of the corrin ring is also similar in both compounds. However, significant differences in the chemical shifts of some of the corresponding carbons of the b, d, e, and f corrin side chains in AdoCbi{sup +} and in base-off, benzimidazole-protonated coenzyme B{sub 12} indicate that the positions of these side chains may be different in AdoCbi{sup +} compared to base-off coenzyme B{sup 12}.

  5. Novel dynein DYNC1H1 neck and motor domain mutations link distal SMA and abnormal cortical development

    PubMed Central

    Fiorillo, Chiara; Moro, Francesca; Yi, Julie; Weil, Sarah; Brisca, Giacomo; Astrea, Guja; Severino, Mariasavina; Romano, Alessandro; Battini, Roberta; Rossi, Andrea; Minetti, Carlo; Bruno, Claudio; Santorelli, Filippo M.; Vallee, Richard

    2014-01-01

    DYNC1H1 encodes the heavy chain of cytoplasmic dynein 1, a motor protein complex implicated in retrograde axonal transport, neuronal migration, and other intracellular motility functions. Mutations in DYNC1H1 have been described in autosomal dominant Charcot-Marie-Tooth type 2 and in families with distal spinal muscular atrophy (SMA) predominantly affecting the legs (SMA-LED). Recently, defects of cytoplasmic dynein 1 were also associated with a form of mental retardation and neuronal migration disorders. Here we describe two unrelated patients presenting a combined phenotype of congenital motor neuron disease associated with focal areas of cortical malformation. In each patient we identified a novel de novo mutation in DYNC1H1: c.3581A>G (p.Gln1194Arg) in one case and c.9142G>A (p.Glu3048Lys) in the other. The mutations lie in different domains of the dynein heavy chain, and are deleterious to protein function as indicated by assays for Golgi recovery after nocodazole washout in patient fibroblasts. Our results expand the set of pathological mutations in DYNC1H1, reinforce the role of cytoplasmic dynein in disorders of neuronal migration and provide evidence for a syndrome including spinal nerve degeneration and brain developmental problems. PMID:24307404

  6. A synthesis of functionalized dihydro-1H-pyrrolizines and spiropyrrolizines via [Formula: see text] cycloaddition reactions.

    PubMed

    Yavari, Issa; Baoosi, Leila; Halvagar, Mohammad R

    2017-02-12

    A one-pot synthesis of dihydro-1H-pyrrolizine derivatives via [Formula: see text] cycloaddition reaction of azomethine ylides, prepared in situ from proline and ninhydrin, with dialkyl acetylenedicarboxylates, in alcohols, is described. When sarcosine was used instead of proline, functionalized spiropyrrolizines were obtained. Under these conditions, alkyl propiolates produced stable spirans.

  7. GET-SERF, a new gradient encoded SERF experiment for the trivial edition of 1H-19F couplings.

    PubMed

    Di Pietro, Maria Enrica; Aroulanda, Christie; Merlet, Denis

    2013-09-01

    A new spatially encoded heteronuclear (1)H-(19)F selective refocusing NMR experiment (GET-SERF) is proposed. This sequence allows editing in one single 2D experiment all couplings between a selected fluorine site and all the proton nuclei of the molecule. Its efficiency is illustrated in the case of diflunisal, a difluorinated anti-inflammatory drug, in isotropic and anisotropic media.

  8. 1H and 13C NMR signal assignments of a novel Baeyer-Villiger originated diterpene lactone.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Gunatilaka, A A Leslie; Boaventura, Maria Amélia D

    2006-02-01

    A highly rearranged novel dilactone was the single product isolated from Baeyer-Villiger oxidation of a norketone prepared from grandiflorenic acid, a natural kaurane diterpene. The complete 1H and 13C NMR assignment is presented for this novel compound that showed discrete in vitro antibacterial activity.

  9. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  10. Application of cryoprobe 1H nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey.

    PubMed

    Donarski, James A; Jones, Stephen A; Charlton, Adrian J

    2008-07-23

    Proton nuclear magnetic resonance spectroscopy ((1)H NMR) and multivariate analysis techniques have been used to classify honey into two groups by geographical origin. Honey from Corsica (Miel de Corse) was used as an example of a protected designation of origin product. Mathematical models were constructed to determine the feasibility of distinguishing between honey from Corsica and that from other geographical locations in Europe, using (1)H NMR spectroscopy. Honey from 10 different regions within five countries was analyzed. (1)H NMR spectra were used as input variables for projection to latent structures (PLS) followed by linear discriminant analysis (LDA) and genetic programming (GP). Models were generated using three methods, PLS-LDA, two-stage GP, and a combination of PLS and GP (PLS-GP). The PLS-GP model used variables selected by PLS for subsequent GP calculations. All models were generated using Venetian blind cross-validation. Overall classification rates for the discrimination of Corsican and non-Corsican honey of 75.8, 94.5, and 96.2% were determined using PLS-LDA, two-stage GP, and PLS-GP, respectively. The variables utilized by PLS-GP were related to their (1)H NMR chemical shifts, and this led to the identification of trigonelline in honey for the first time.

  11. Praseodymium methanesulfonate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones.

    PubMed

    Wang, Min; Song, Zhiguo; Gong, Hong; Jiang, Heng

    2008-01-01

    A series of 3,4-dihydropyrimidin-2-(1H)-ones compounds was synthesized efficiently by a one-pot cyclocondensation of an aldehyde, 1,3-dicarbonyl compound, and urea in absolute ethanol under refluxing temperature using praseodymium methanesulfonate as catalyst. After the reaction, the catalyst can be easily recovered and reused several times without distinct decrease in reaction yields.

  12. A Large Volume Double Channel 1H-X RF Probe for Hyperpolarized Magnetic Resonance at 0.0475 Tesla

    PubMed Central

    Coffey, Aaron M.; Shchepin, Roman V.; Wilkens, Ken; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2012-01-01

    In this work we describe a large volume 340 mL 1H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. 1H/13C and 1H/15N probe configurations are demonstrated with the potential for extension to 1H/129Xe. The primary applications of this probe are preparation and quality assurance of 13C and 15N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 μs 13C excitation pulses at 5.3 Watts, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to 13C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with 13C hyperpolarized 2-hydroxyethyl propionate-1-13C,2,3,3-d3. PMID:22706029

  13. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst.

    PubMed

    Yu, Yang; Liu, Di; Liu, Chunsheng; Luo, Genxiang

    2007-06-15

    A simple and effective synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives from aldehydes, 1,3-dicarbonyl compounds and urea or thiourea using chloroacetic acid as catalyst under solvent-free conditions is described. Compared with the classical Biginelli reaction conditions, this new method has the advantage of good to excellent yields and short reaction time.

  14. Xenobiotic monitoring in plants by sup 19 F and sup 1 H nuclear magnetic resonance imaging and spectroscopy

    SciTech Connect

    Rollins, A.; Barber, J.; Wood, B. ); Elliott, R. )

    1989-12-01

    {sup 19}F and {sup 1}H nuclear magnetic resonance imaging and spectroscopy have been used to monitor the uptake of trifluoroacetic acid in stems and leaves of Lycopersicon esculentum. The movement and location of a xenobiotic have been demonstrated in vivo by a noninvasive technique.

  15. Removal of Nuisance Signals from Limited and Sparse 1H MRSI Data Using a Union-of-Subspaces Model

    PubMed Central

    Ma, Chao; Lam, Fan; Johnson, Curtis L.; Liang, Zhi-Pei

    2015-01-01

    Purpose To remove nuisance signals (e.g., water and lipid signals) for 1H MRSI data collected from the brain with limited and/or sparse (k, t)-space coverage. Methods A union-of-subspace model is proposed for removing nuisance signals. The model exploits the partial separability of both the nuisance signals and the metabolite signal, and decomposes an MRSI dataset into several sets of generalized voxels that share the same spectral distributions. This model enables the estimation of the nuisance signals from an MRSI dataset that has limited and/or sparse (k, t)-space coverage. Results The proposed method has been evaluated using in vivo MRSI data. For conventional CSI data with limited k-space coverage, the proposed method produced “lipid-free” spectra without lipid suppression during data acquisition at 130 ms echo time. For sparse (k, t)-space data acquired with conventional pulses for water and lipid suppression, the proposed method was also able to remove the remaining water and lipid signals with negligible residuals. Conclusions Nuisance signals in 1H MRSI data reside in low-dimensional subspaces. This property can be utilized for estimation and removal of nuisance signals from 1H MRSI data even when they have limited and/or sparse coverage of (k, t)-space. The proposed method should prove useful especially for accelerated high-resolution 1H MRSI of the brain. PMID:25762370

  16. 1H, 13C and 15N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.

  17. Quantification of (1) H-MRS signals based on sparse metabolite profiles in the time-frequency domain.

    PubMed

    Parto Dezfouli, Mohammad Ali; Parto Dezfouli, Mohsen; Ahmadian, Alireza; Frangi, Alejandro F; Esmaeili Rad, Melika; Saligheh Rad, Hamidreza

    2017-02-01

    MRS is an analytical approach used for both quantitative and qualitative analysis of human body metabolites. The accurate and robust quantification capability of proton MRS ((1) H-MRS) enables the accurate estimation of living tissue metabolite concentrations. However, such methods can be efficiently employed for quantification of metabolite concentrations only if the overlapping nature of metabolites, existing static field inhomogeneity and low signal-to-noise ratio (SNR) are taken into consideration. Representation of (1) H-MRS signals in the time-frequency domain enables us to handle the baseline and noise better. This is possible because the MRS signal of each metabolite is sparsely represented, with only a few peaks, in the frequency domain, but still along with specific time-domain features such as distinct decay constant associated with T2 relaxation rate. The baseline, however, has a smooth behavior in the frequency domain. In this study, we proposed a quantification method using continuous wavelet transformation of (1) H-MRS signals in combination with sparse representation of features in the time-frequency domain. Estimation of the sparse representations of MR spectra is performed according to the dictionaries constructed from metabolite profiles. Results on simulated and phantom data show that the proposed method is able to quantify the concentration of metabolites in (1) H-MRS signals with high accuracy and robustness. This is achieved for both low SNR (5 dB) and low signal-to-baseline ratio (-5 dB) regimes.

  18. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

  19. 40 CFR 721.8965 - 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8965 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  20. 40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 6-Methoxy-1H-benz isoquinoline-2 -dione derivative (generic). 721.9078 Section 721.9078 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  1. 40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 6-Methoxy-1H-benz isoquinoline-2 -dione derivative (generic). 721.9078 Section 721.9078 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  2. 40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 6-Methoxy-1H-benz isoquinoline-2 -dione derivative (generic). 721.9078 Section 721.9078 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  3. 40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 6-Methoxy-1H-benz isoquinoline-2 -dione derivative (generic). 721.9078 Section 721.9078 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  4. 40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 6-Methoxy-1H-benz isoquinoline-2 -dione derivative (generic). 721.9078 Section 721.9078 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances...

  5. Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis.

    PubMed

    Tarachiwin, Lucksanaporn; Masako, Osawa; Fukusaki, Eiichiro

    2008-07-23

    (1)H NMR spectrometry in combination with multivariate analysis was considered to provide greater information on quality assessment over an ordinary sensory testing method due to its high reliability and high accuracy. The sensory quality evaluation of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) was carried out by means of (1)H NMR-based metabolomics. Multivariate analyses by partial least-squares projections to latent structures-discrimination analysis (PLS-DA) and PLS-regression offered extensive information for quality differentiation and quality evaluation, respectively. The impact of watermelon and rootstock cultivars on the sensory qualities of watermelon was determined on the basis of (1)H NMR metabolic fingerprinting and profiling. The significant metabolites contributing to the discrimination were also identified. A multivariate calibration model was successfully constructed by PLS-regression with extremely high reliability and accuracy. Thus, (1)H NMR-based metabolomics with multivariate analysis was considered to be one of the most suitable complementary techniques that could be applied to assess and predict the sensory quality of watermelons and other horticultural plants.

  6. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.

  7. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  8. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  9. Microscale Synthesis and (super 1)H NMR Analysis of Zn(super II) and Ni(super II) Tetraphenylporphyrins

    ERIC Educational Resources Information Center

    Saucedo, Laura; Mink, Larry M.

    2005-01-01

    A multisection undergraduate laboratory involving the microscale synthesis and spectroscopic analysis of unmetalled porphyrins and their corresponding metalloporphyins is described. The microscale synthesis involving the isolation of the metalloporphyrins as solids and their corresponding (super 1)H NMR spectra are presented.

  10. Water Solvent Effect on Theoretical Evaluation of (1)H NMR Chemical Shifts: o-Methyl-Inositol Isomer.

    PubMed

    Dos Santos, Hélio F; Chagas, Marcelo A; De Souza, Leonardo A; Rocha, Willian R; De Almeida, Mauro V; Anconi, Cleber P A; De Almeida, Wagner B

    2017-04-13

    In this paper, density functional theory calculations of nuclear magnetic resonance (NMR) chemical shifts for l-quebrachitol isomer, previously studied in our group, are reported with the aim of investigating in more detail the water solvent effect on the prediction of (1)H NMR spectra. In order to include explicit water molecules, 20 water-l-quebrachitol configurations obtained from Monte Carlo simulation were selected to perform geometry optimizations using the effective fragment potential method encompassing 60 water molecules around the solute. The solvated solute optimized geometries were then used in B3LYP/6-311+G(2d,p) NMR calculations with PCM-water. The inclusion of explicit solvent in the B3LYP NMR calculations resulted in large changes in the (1)H NMR profiles. We found a remarkable improvement in the agreement with experimental NMR profiles when the explicit hydrated l-quebrachitol structure is used in B3LYP (1)H NMR calculations, yielding a mean absolute error (MAE) of only 0.07 ppm, much lower than reported previously for the gas phase optimized structure (MAE = 0.11 ppm). In addition, a very improved match between theoretical and experimental (1)H NMR spectrum measured in D2O was achieved with the new hydrated optimized l-quebrachitol structure, showing that a fine-tuning of the theoretical NMR spectra can be accomplished once solvent effects are properly considered.

  11. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  12. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  13. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes

    PubMed Central

    Hoang, Ha Thi; Schlager, Max A.; Carter, Andrew P.

    2017-01-01

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein’s core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein–dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo–motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility. PMID:28196890

  14. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes.

    PubMed

    Hoang, Ha Thi; Schlager, Max A; Carter, Andrew P; Bullock, Simon L

    2017-02-28

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.

  15. Efficient synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation.

    PubMed

    Chen, Bao-Hua; Li, Ji-Tai; Chen, Guo-Feng

    2015-03-01

    Synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-one derivatives catalyzed by dodecylbenzenesulfonic acid was carried out in 80-92% yields at 40-42 °C within 1-2 h in aqueous media via one-pot three-component condensation of isatoic anhydride, aromatic aldehyde and amine under ultrasound irradiation. Convenient work-up procedures, mild reaction conditions, avoiding the use of organic solvents, and friendly to environment are the salient features of this protocol.

  16. Synthesis, thermal behavior, and energetic properties of diuronium 1H,1‧H-5,5‧-bistetrazole-1,1‧-diolate salt

    NASA Astrophysics Data System (ADS)

    Shang, Yu; Jin, Bo; Liu, Qiangqiang; Peng, Rufang; Guo, Zhicheng; Zhang, Qingchun

    2017-04-01

    A new nitrogen-rich energetic salt called diuronium 1H,1‧H-5,5‧-bistetrazole-1,1‧-diolate (DUBTO) was first synthesized by reacting urea with 1H,1‧H-5,5‧-bistetrazole-1,1‧-diolate dihydrate (H2BTO 2H2O). The structure of this new energetic salt was fully characterized through single-crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, and elemental analysis. DUBTO was crystallized in the monoclinic space group P21/n. The thermal stability was investigated through differential scanning calorimetry (DSC) and thermogravimetric tandem infrared spectrometry. Results showed that DUBTO contained one endothermic process and two exothermic processes. The second exothermic process is mainly intense exothermic decomposition with a mass loss of approximately 69.3% in the temperature range of 523.8-594.6 K. The non-isothermal kinetic parameters of the main exothermic process were calculated based on methods proposed by Kissinger and Ozawa-Doyle. Based on the Kamlet-Jacobs formula, the detonation velocity and detonation pressure of DUBTO were calculated as 8267 m s-1 and 29.15 GPa, respectively.

  17. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2016-09-01

    Three new metal coordination complexes, namely, [Co(BPO)2(H2O)4](BS)2(H2O)2 (1), [Co(BPO)2(H2O)4](ABS)2(H2O)2 (2), [Co(BPO)2(H2O)4](MBS)2(H2O)2 (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1-3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O-H···O/N) and packing interactions (C-H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time.

  18. An iron(III) complex salt containing pyrazole as both ligand and counter-ion: bis(1H-pyrazol-2-ium) pentacyanido(1H-pyrazole-κN(2))ferrate(III).

    PubMed

    Wang, Yu-Feng; Yu, Chun-Hua; Zhu, Run-Qiang

    2014-05-01

    The title compound, (C3H5N2)2[Fe(CN)5(C3H4N2)], is composed of a mononuclear [Fe(CN)5(pyrazole)](2-) dianion and two 1H-pyrazol-2-ium cations. A three-dimensional supramolecular network is formed through a rich scheme of N-H...N hydrogen bonds and C-H...π interactions among the cations and anions.

  19. Conformational behavior and tautomer selective photochemistry in low temperature matrices: the case of 5-(1H-tetrazol-1-yl)-1,2,4-triazole.

    PubMed

    Pagacz-Kostrzewa, M; Reva, I D; Bronisz, R; Giuliano, B M; Fausto, R; Wierzejewska, M

    2011-06-09

    The conformational properties and the photolysis behavior of one of the simplest N-C bonded bicyclic azoles, 5-(1H-tetrazol-1-yl)-1,2,4-triazole (T), were studied in argon and xenon matrices by infrared spectroscopy. Analysis of the experimental results was supported by extensive theoretical calculations carried out at the B3LYP/6-311++G(2d,2p) level of approximation. Out of the eight T minima located on the potential energy surface, the three most stable species were detected in low temperature matrices, namely, 5-(1H-tetrazol-1-yl)-1H-1,2,4-triazole (T1) and two conformers of 5-(1H-tetrazol-1-yl)-2H-1,2,4-triazole (T2a and T2b). With increase of the substrate temperature either during deposition of the matrices or during annealing the T2b → T2a conversion took place, in agreement with the predicted low energy barrier for this transformation (5.38 kJ mol(-1)). Both broad band and narrow band laser UV irradiations of T isolated in Xe and Ar matrices induce unimolecular decomposition involving cleavage of the tetrazole ring of T1 and T2a (T2b) that leads to the production of 1H-1,2,4-triazol-5-yl carbodiimide (P1) and 1H-1,2,4-triazol-3-yl carbodiimide (P2), respectively. When the laser is used, in addition to the main P1 and P2 photoproducts, several minor products could be successfully identified in the matrices: N-cyanocarbodiimide HNCNCN (detected for the first time) associated with nitrilimine HNNCH and HCN. An interesting phenomenon of tautomer-selective photochemistry was observed for the matrix-isolated compound. It could be explained by the different LUMO-HOMO energy gaps estimated for T1, T2a, and T2b, connected with different threshold energies necessary to start the photolysis of T1 and T2a (T2b).

  20. 1-(3,5-Dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT) and its energetic salts: highly thermally stable energetic materials with high-performance.

    PubMed

    Li, Chuan; Zhang, Man; Chen, Qishan; Li, Yingying; Gao, Huiqi; Fu, Wei; Zhou, Zhiming

    2016-11-28

    A novel energetic heat-resistant explosive, 1-(3,5-dinitro-1H-pyrazol-4-yl)-3-nitro-1H-1,2,4-triazol-5-amine (HCPT), has been synthesized along with its salts. An intensive characterization of the compounds is given, including (1)H and (13)C NMR spectroscopy, IR spectroscopy, and elemental analysis. The crystal structures of neutral HCPT (3), its triaminoguanidinium salt (10), 3,4,5-triamino-1,2,4-triazolium salt (12), and copper(ii) complex (16) were determined by single-crystal X-ray diffraction. The physicochemical properties of the compounds, such as density, thermal stability, and sensitivity towards impact and friction were evaluated; all energetic compounds exhibited excellent thermal stabilities with decomposition temperatures ranging from 215 °C to 340 °C, and high positive heats of formation between 622.8 kJ mol(-1) and 1211.7 kJ mol(-1). The detonation pressures and velocities for the energetic compounds were calculated using EXPLO5 (V6.01) based on experimental densities and calculated heats of formation, and the corresponding values were in the ranges of 26.5 GPa to 37.8 GPa and 8236 m s(-1) to 9167 m s(-1). Based on thermal stability values and energetic parameters, compounds 3 and 7 were superior to those of all of the commonly used heat-resistant explosives, which may find potential application as heat-resistant energetic materials.

  1. Synthesis, molecular structure, DFT studies and antimicrobial activities of some novel 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives and its molecular docking studies

    NASA Astrophysics Data System (ADS)

    Rajaraman, D.; Sundararajan, G.; Loganath, N. K.; Krishnasamy, K.

    2017-01-01

    A new series of 3-(1-(3,4-dimethoxyphenethyl)-4,5-diphenyl-1H-imidazol-2-yl)-1H-indole derivatives (5a-5j) are conveniently synthesized and characterized by IR, 1H NMR and 13C NMR spectral techniques. The compound 5f was also confirmed by single crystal XRD analysis and optimized bond parameters were calculated by density functional theory (DFT) at B3LYP/6-31G (d, p) level. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single crystal XRD data. The experimentally observed FT-IR and FT-Raman bands were assigned to different normal modes of the molecule. The stability and charge delocalization of the molecule were also studied by Natural Bond Orbital (NBO) analysis. The overlapping of atomic orbital along with their predicted energy is explained on the basis of HOMO-LUMO energy gap calculations. Molecular Electrostatic Potential map (MEP) was studied for predicting the reactive sites. The reported molecule used as a potential NLO material since it has high μβ0 value. The antibacterial activities of these derivatives were studied using molecular docking studies and it is compared with their experimental results.

  2. Diagnosis of cerebral cryptococcoma using a computerized analysis of 1H NMR spectra in an animal model.

    PubMed

    Dzendrowskyj, Theresa E; Dolenko, Brion; Sorrell, Tania C; Somorjai, Rajmund L; Malik, Richard; Mountford, Carolyn E; Himmelreich, Uwe

    2005-06-01

    Viable cryptococci load in biopsy material from an animal model of cerebral cryptococcoma were correlated with 1H NMR spectra and metabolite profiles. A statistical classification strategy was applied to distinguish among high-resolution 1H NMR spectra acquired from cryptococcomas, glioblastomas, and normal brain tissue. The overall classification accuracy was 100% when a genetic-algorithm-based optimal region selection preceded the development of linear discriminant analysis-based classifiers. The method remained robust despite differences in the microbial load of the cryptococcoma group when harvested at different time points. These results indicate the feasibility of the method for diagnosis without isolation of the pathogenic microorganism and its potential for in vivo diagnosis based on computerized analysis of magnetic resonance spectra.

  3. Synthesis, structure characterization and antimicrobial evaluation of 4-(substituted phenylazo)-3,5-diacetamido-1H-pyrazoles

    NASA Astrophysics Data System (ADS)

    Kinali-Demirci, Selin; Demirci, Serkan; Kurt, Mustafa

    2013-04-01

    The present article deals with the synthesis, spectral characterization and antimicrobial activity of phenylazo dyes. All of the synthesized phenylazo dyes were characterized using ATR-FTIR, FT-Raman, 1H NMR, 13C NMR, elemental analysis and mass spectroscopic techniques. Solvent effects on the UV-Vis absorption spectra of these phenylazo dyes were studied. Acid and base effects on the visible absorption maxima of the phenylazo dyes were also reported. The structural and spectroscopic analysis of the molecules were carried out using Density Functional Theory (DFT) employing the standard 6-31G(d) basis set, and the optimized geometries and calculated vibrational frequencies were evaluated via comparison with experimental values. The antimicrobial activity of 4-(substituted phenylazo)-3,5-diacetamido-1H-pyrazoles was reported against bacteria, including B. cereus (RSKK 863), S. aureus (ATCC 259231), M. luteus (NRRL B-4375), E. coli (ATCC 11230) and the yeast C. albicans (ATCC 10239).

  4. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.

    PubMed

    Dufour, Anthony; Castro-Diaz, Miguel; Brosse, Nicolas; Bouroukba, Mohamed; Snape, Colin

    2012-07-01

    The thermochemical conversion of lignocellulosic biomass feedstocks offers an important potential route for the production of biofuels and value-added green chemicals. Pyrolysis is the first phenomenon involved in all biomass thermochemical processes and it controls to a major extent the product composition. The composition of pyrolysis products can be affected markedly by the extent of softening that occurs. In spite of extensive work on biomass pyrolysis, the development of fluidity during the pyrolysis of biomass has not been quantified. This paper provides the first experimental investigation of proton mobility during biomass pyrolysis by in situ (1)H NMR spectroscopy. The origin of mobility is discussed for cellulose, lignin and xylan. The effect of minerals on cellulose mobility is also investigated. Interactions between polymers in the native biomass network are revealed by in situ (1)H NMR analysis.

  5. A thorough study on the use of quantitative 1H NMR in Rioja red wine fermentation processes.

    PubMed

    López-Rituerto, Eva; Cabredo, Susana; López, Martina; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2009-03-25

    In this study, we focused our attention on monitoring the levels of important metabolites of wine during the alcoholic and malolactic fermentation processes by quantitative nuclear magnetic resonance (qNMR). Therefore, using (1)H NMR, the method allows the simultaneous quantification of ethanol, acetic, malic, lactic, and succinic acids, and the amino acids proline and alanine, besides the ratio proline/arginine through fermentation of must of grapes corresponding to the Tempranillo variety. Each (1)H NMR spectrum gives direct and visual information concerning these metabolites, and the effectiveness of each process was assessed and compared by carrying out analyses using infrared spectroscopy to ethanol and acetic acid. The quantitative data were explained with the aid of chemometric algorithms.

  6. A study by (1)H NMR on the influence of some factors affecting lipid in vitro digestion.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2016-11-15

    This article focuses on the impact of several experimental factors, including gastric acidification, intestinal transit time, presence of gastric lipase, sample/digestive fluids ratio, concentration and nature of the enzymes in intestinal juice, and bile concentration, on the extent of in vitro lipolysis when using a static model that simulates human digestion processes in mouth, stomach and small intestine. The study was carried out by Proton Nuclear Magnetic Resonance ((1)H NMR). This technique provides a complete molecular picture of lipolysis, evidencing for the first time, whether preferential hydrolysis of certain glycerides over others occurs. A lipolysis degree similar to that reported in vivo was reached by varying certain variables within a physiological range; among them, bile concentration was found to be crucial. The holistic view of this (1)H NMR study provides information of paramount importance to design sound in vitro digestion models to determine the bioaccessibility and bioavailability of lipophilic compounds.

  7. Towards 20 A negative hydrogen ion beams for up to 1 h: Achievements of the ELISE test facility (invited)

    SciTech Connect

    Fantz, U. Heinemann, B.; Wünderlich, D.; Riedl, R.; Kraus, W.; Nocentini, R.; Bonomo, F.

    2016-02-15

    The large-scale RF-driven ion source of the test facility extraction from a large ion source experiment is aimed to deliver an accelerated ion current of 20 A D{sup −} (23 A H{sup −}) with an extracted electron-to-ion ratio below one for up to 1 h. Since the first plasma pulses for 20 s in volume operation in early 2013, followed by caesiation of the ion source, substantial progress has been achieved in extending the pulse length and the RF power. The record pulses in hydrogen are stable 400 s pulses with an extracted ion current of 18.3 A at 180 kW total RF power and 9.3 A at 80 kW stable for 1 h. For deuterium pulse, length and RF power are limited by the amount of co-extracted electrons.

  8. FT-IR and {sup 1}H NMR characterization of the products of an ethylene inverse diffusion flame

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Molina, Alejandro; Marsh, Nathan D.; Eddings, Eric G.; Sarofim, Adel F.

    2006-07-15

    Knowledge of the chemical structure of young soot and its precursors is very useful in the understanding of the paths leading to soot particle inception. This paper presents analyses of the chemical functional groups, based on FT-IR and {sup 1}H NMR spectroscopy of the products obtained in an ethylene inverse diffusion flame. The trends in the data indicate that the soluble fraction of the soot becomes progressively more aromatic and less aliphatic as the height above the burner increases. Results from {sup 1}H NMR spectra of the chloroform-soluble soot samples taken at different heights above the burner corroborate the infrared results based on proton chemical shifts (Ha, H{alpha}, H{beta}, and H{gamma}). The results indicate that the aliphatic {beta} and {gamma} hydrogens suffered the most drastic reduction, while the aromatic character increased considerably with height, particularly in the first half of the flame. (author)

  9. In vitro interaction of selected phospholipid species with mercuric chloride using Fourier transform sup 1 H-NMR

    SciTech Connect

    Shinada, Masayuki; Muto, Hajime; Takizawa, Yukio )

    1991-09-01

    Many studies on the mercury toxicities have been accumulated since the outbreak of Minamata Disease.' There have been few reports on the reaction mechanisms of mercurials with phospholipids which substantially locate in biological membranes, although the interactions of nucleotides or nucleosides with mercurials have been reported. Recently, the study on the interaction of mercuric chloride (HgCl{sub 2}) with amino polar heads of model membranes containing phosphatidylserine (PS) and phosphatidylethanolamine (PE) has been reported, as the results from the fluorescence polarization analysis using 1,6-diphenyl-1,3,5-hexatriene. The authors demonstrate here the interactions of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) with HgCl{sub 2}, using Fourier transform {sup 1}H-NMR ({sup 1}H-FT-NMR).

  10. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  11. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania.

    PubMed

    Spiteri, Marc; Rogers, Karyne M; Jamin, Eric; Thomas, Freddy; Guyader, Sophie; Lees, Michèle; Rutledge, Douglas N

    2017-02-15

    Manuka honey is a product produced essentially in New Zealand, and has been widely recognised for its antibacterial properties and specific taste. In this study, 264 honeys from New Zealand and Australia were analysed using proton NMR spectroscopy coupled with chemometrics. Known manuka markers, methylglyoxal and dihydroxyacetone, have been characterised and quantified, together with a new NMR marker, identified as being leptosperin. Manuka honey profiling using 1H NMR is shown to be a possible alternative to chromatography with the added advantage that it can measure methylglyoxal (MGO), dihydroxyacetone (DHA) and leptosperin simultaneously. By combining the information from these three markers, we established a model to estimate the proportion of manuka in a given honey. Markers of other botanical origins were also identified, which makes 1H NMR a convenient and efficient tool, complementary to pollen analysis, to control the botanical origin of Oceania honeys.

  12. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  13. Synthesis, structural, theoretical studies and biological activities of 3-(arylamino)-2-phenyl-1H-inden-1-one derivative

    NASA Astrophysics Data System (ADS)

    El-Sheshtawy, Hamdy S.; Abou Baker, Ahmed M.

    2014-06-01

    Five derivatives of 2-phenyl-1H-indene-1-one have been prepared and fully characterized. Spectroscopic techniques such as FT-IR, 1H NMR, mass spectrometry, and elemental analysis were used to investigate the chemical structures and physical properties of the prepared compounds. The optimized structures and the distribution of the frontier molecular orbital were obtained using density functional theory (DFT) at B3LYP/6-311++G(d,p) level of theory. Additionally, the UV spectral properties of the indene compounds were corroborated by frontier orbital (HOMO and LUMO) calculations. Intramolecular charge transfer (ICT) peak has been observed in the UV spectra of the compounds and theoretically confirmed by the HOMO and LUMO analysis. The potential use of these compounds as antibacterial agents was investigated. The results show that indene-1-one derivatives have an antibacterial activity for both gram-negative (Pseudomonas aeruginosa) and gram-positive (Methicillin Resistant Staphylococcus aureus) bacteria.

  14. The structure of the 1H-imidazol-3-ium lawsonate salt aided by ab initio gas-phase calculations.

    PubMed

    Ribeiro, Marcos Antônio; Oliveira, Willian Xerxes Coelho; Stumpf, Humberto Osório; Pinheiro, Carlos Basílio

    2013-04-01

    For the new organic salt 1H-imidazol-3-ium 1,4-dioxo-1,4-dihydronaphthalen-2-olate, C3H5N2(+)·C10H5O3(-), ab initio calculations of the gas-phase structures of the lawsonate and imidazolium ions were performed to help in the interpretation of the structural features observed. Three different types of hydrogen bond are responsible for the three-dimensional packing of the salt.

  15. Light induced E-Z isomerization in a multi-responsive organogel: elucidation from (1)H NMR spectroscopy.

    PubMed

    Mondal, Sanjoy; Chakraborty, Priyadarshi; Bairi, Partha; Chatterjee, Dhruba P; Nandi, Arun K

    2015-07-07

    A multiresponsive organogel of (E)-N'-(anthracene-10-ylmethylene)-3,4,5-tris(dodecyloxy)benzohydrazide (I) showed a decrease of fluorescence intensity, decrease in mechanical strength and a change in gel morphology on irradiation with a wavelength of 365 nm. This is attributed to the E-Z isomerization across the C=N bond of I as evidenced from (1)H NMR spectroscopy.

  16. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  17. On the role of experimental imperfections in constructing (1)H spin diffusion NMR plots for domain size measurements.

    PubMed

    Nieuwendaal, Ryan C

    2016-01-01

    We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra.

  18. Characterization of the principal metabolite of quinine in human urine by 1H-n.m.r. spectroscopy.

    PubMed

    Bolaji, O O; Babalola, C P; Dixon, P A

    1991-04-01

    1. The major metabolite of quinine in human urine, which is also the sole metabolite in human plasma and saliva, has been identified and characterized by chemical ionization mass spectrometry and 1H-n.m.r. spectrometry. 2. The mass spectrum showed that an oxygen atom is incorporated in the quinuclidine nucleus, and the exact position of the oxidation was established from the n.m.r. spectrum to be at the C-3 position.

  19. Novel multicomponent one-pot synthesis of tetrahydro-1H-1,5-benzodiazepine-2-carboxamide derivatives.

    PubMed

    Shaabani, Ahmad; Maleki, Ali; Mofakham, Hamid

    2008-01-01

    A new approach to the design of multicomponent reactions is introduced. As a result, the novel one-pot synthesis of 2,3,4,5-tetrahydro-1 H-1,5-benzodiazepine-2-carboxamide derivatives using an aromatic diamine, a linear or cyclic ketone, an isocyanide, and water in the presence of a catalytic amount of p-toluenesulfonic acid at ambient temperature in high yields is described.

  20. Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals

    NASA Astrophysics Data System (ADS)

    Castañar, Laura; Nolis, Pau; Virgili, Albert; Parella, Teodor

    2014-07-01

    The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods.

  1. Complete assignments of 1H and 13C NMR data for three new arylnaphthalene lignan from Justicia procumbens.

    PubMed

    Liu, Guorui; Wu, Jun; Si, Jianyong; Wang, Junmei; Yang, Meihua

    2008-03-01

    Three new arylnaphthalene lignans, named neojusticin C (1), procumbenoside C (2) and procumbenoside D (3), have been isolated from the whole plant of Justicia procumbens, together with three known ones, justicidinoside B (4), justicidinoside C (5), and diphyllin-1-O-beta-D-apiofuranoside (6). The complete assignments of 1H and 13C NMR data for three new lignans were first obtained by means of 2D NMR techniques, including HSQC and HMBC.

  2. Qualitative and quantitative analyses of Compound Danshen extract based on (1)H NMR method and its application for quality control.

    PubMed

    Yan, Kai-Jing; Chu, Yang; Huang, Jian-Hua; Jiang, Miao-Miao; Li, Wei; Wang, Yue-Fei; Huang, Hui-Yong; Qin, Yu-Hui; Ma, Xiao-Hui; Zhou, Shui-Ping; Sun, Henry; Wang, Wei

    2016-11-30

    In this study, a new approach using (1)H NMR spectroscopy combined with chemometrics method was developed for qualitative and quantitative analyses of extracts of Compound Danshen Dripping Pills (CDDP). For the qualitative analysis, some metabolites presented in Compound Danshen extract (CDE, extraction intermediate of CDDP) were detected, including phenolic acids, saponins, saccharides, organic acids and amino acids, by the proposed (1)H NMR method, and metabolites profiles were further analyzed by selected chemometrics algorithms to define the threshold values for product quality evaluation. Moreover, three main phenolic acids (danshensu, salvianolic acid B, and procatechuic aldehyde) in CDE were determined simultaneously, and method validation in terms of linearity, precision, repeatability, accuracy, and stability of the dissolved target compounds in solution was performed. The average recoveries varied between 84.20% and 110.75% while the RSDs were below 6.34% for the three phenolic acids. This (1)H NMR method offers an integral view of the extract composition, allows the qualitative and quantitative analysis of CDDP, and has the potential to be a supplementary tool to UPLC/HPLC for quality assessment of Chinese herbal medicines.

  3. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-03

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  4. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  5. An XMM-Newton Observation of the Seyfert 1 Galaxy 1H 0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0), which exhibits broad features that can be modelled myth the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was 'X-ray bright' indicates the dominant spectral variability occurs via a steep power law component.

  6. An XMM-Newton Observation of the Seyfert Galaxy 1H0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; O'Brien, P. T.

    2003-01-01

    Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.

  7. Orally Bioavailable 6-Chloro-7-methoxy-4(1H)-quinolones Efficacious against Multiple Stages of Plasmodium

    PubMed Central

    2015-01-01

    The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology. Structure–activity and structure–property relationship studies were conducted to generate a set of compounds with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with a variety of phenyl moieties possessing various properties. Extensive physicochemical evaluation of the quinolone series was carried out to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67, which possessed low-nanomolar EC50 values against W2 and TM90-C2B as well as improved microsomal stability. Additionally, in vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were efficacious for the reduction of parasitemia at >99% after 6 days. PMID:25148516

  8. Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium.

    PubMed

    Cross, R Matthew; Flanigan, David L; Monastyrskyi, Andrii; LaCrue, Alexis N; Sáenz, Fabián E; Maignan, Jordany R; Mutka, Tina S; White, Karen L; Shackleford, David M; Bathurst, Ian; Fronczek, Frank R; Wojtas, Lukasz; Guida, Wayne C; Charman, Susan A; Burrows, Jeremy N; Kyle, Dennis E; Manetsch, Roman

    2014-11-13

    The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology. Structure-activity and structure-property relationship studies were conducted to generate a set of compounds with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with a variety of phenyl moieties possessing various properties. Extensive physicochemical evaluation of the quinolone series was carried out to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67, which possessed low-nanomolar EC50 values against W2 and TM90-C2B as well as improved microsomal stability. Additionally, in vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were efficacious for the reduction of parasitemia at >99% after 6 days.

  9. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  10. 1H NMR study of the phase transitions of trissarcosine calcium chloride single crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Lee, Kyuhong; Lee, Moohee; Lee, Kwang Sei; Lim, Ae Ran

    2005-10-01

    The 1H NMR line-width and spin lattice relaxation time T1 of TSCC single crystals were studied. Variations in the temperature dependence of the spin lattice relaxation time were observed near 65 and 130 K, indicating drastic alterations of the spin dynamics at the phase transition temperatures. The changes in the temperature dependence of T1 near 65 and 130 K correspond to phase transitions of the crystal. The anomalous decrease in T1 around 130 K is due to the critical slowing down of the soft mode. The abrupt change in relaxation time at 65 K is associated with a structural phase transition. The proton spin lattice relaxation time of this crystal also has a minimum value in the vicinity of 185 K, which is governed by the reorientation of the CH3 groups of the sarcosine molecules. From this result, we conclude that the two phase transitions at 65 and 130 K can be discerned from abrupt variations in the 1H NMR relaxation behavior, and that 1H nuclei play important roles in the phase transitions of the TSCC single crystal.

  11. Identification and quantification by (1)H nuclear magnetic resonance spectroscopy of seven plasticizers in PVC medical devices.

    PubMed

    Genay, Stéphanie; Feutry, Frédéric; Masse, Morgane; Barthélémy, Christine; Sautou, Valérie; Odou, Pascal; Décaudin, Bertrand; Azaroual, Nathalie

    2017-02-01

    Medical devices are generally made of polyvinyl chloride plasticized by six authorized plasticizers as alternatives to di-(2-ethylhexyl)-phthalate (DEHP) classified as reprotoxic class 1b. These are acetyl tri-n-butyl citrate (ATBC), di-(2-ethylhexy) adipate (DEHA), di-(2-ethylhexyl) terephthalate (DEHT), di-isononyl cyclohexane-1,2-dicarboxylate (DINCH), di-isononyl phthalate (DINP), and tri-octyl trimellitate (TOTM). The main objective of this study was to propose a new method using (1)H NMR spectroscopy to determine and quantify these seven plasticizers in PVC sheets, standard infusion tubings, and commercially available medical devices. Two techniques were compared: dissolution in deuterated tetrahydrofuran and extraction by deuterated chloroform. Plasticizer (1)H NMR spectra were very similar in both deuterated solvents; dissolution and extraction provided similar results. The sensitivity of this method enabled us to detect and quantify the presence of minor plasticizers in PVC. In nine commercially available samples, the major plasticizer was identified and quantified by (1)H NMR. In six samples, one, two, or three minor plasticizers were identified and also quantified. DEHP was detected in only one tubing. NMR is therefore very convenient for studying plasticizers contained in medical devices. Only small quantities of solvents and sample are required. It is not necessary to dilute samples to enter a quantification range, and it is sufficiently sensitive to detect contaminants.

  12. The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones

    PubMed Central

    Liu, Wallace H; Roemer, Sarah C; Zhou, Yeyun; Shen, Zih-Jie; Dennehey, Briana K; Balsbaugh, Jeremy L; Liddle, Jennifer C; Nemkov, Travis; Ahn, Natalie G; Hansen, Kirk C; Tyler, Jessica K; Churchill, Mair EA

    2016-01-01

    The histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4)2 histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex. Cac1 alone not only binds H3/H4 with high affinity, but also promotes histone tetramerization independent of the other subunits. Moreover, we identify a minimal region in the C-terminus of Cac1, including the structured winged helix domain and glutamate/aspartate-rich domain, which is sufficient to induce (H3/H4)2 tetramerization. These findings reveal a key role of Cac1 in histone tetramerization, providing a new model for CAF-1-H3/H4 architecture and function during eukaryotic replication. DOI: http://dx.doi.org/10.7554/eLife.18023.001 PMID:27690308

  13. Robust algorithms for automated chemical shift calibration of 1D 1H NMR spectra of blood serum.

    PubMed

    Pearce, Jake T M; Athersuch, Toby J; Ebbels, Timothy M D; Lindon, John C; Nicholson, Jeremy K; Keun, Hector C

    2008-09-15

    In biofluid NMR spectroscopy, the frequency of each resonance is typically calibrated by addition of a reference compound such as 3-(trimethylsilyl)-propionic acid- d 4 (TSP) to the sample. However biofluids such as serum cannot be referenced to TSP, due to shifts resonance caused by binding to macromolecules in solution. In order to overcome this limitation we have developed algorithms, based on analysis of derivative spectra, to locate and calibrate (1)H NMR spectra to the alpha-glucose anomeric doublet. We successfully used these algorithms to calibrate 77 serum (1)H NMR spectra and demonstrate the greater reproducibility of the calculated chemical-shift corrections ( r = 0.97) than those generated by manual alignment ( r = 0.8-0.88). Hence we show that these algorithms provide robust and reproducible methods of calibrating (1)H NMR of serum, plasma, or any biofluid in which glucose is abundant. Precise automated calibration of complex biofluid NMR spectra is an important tool in large-scale metabonomic or metabolomic studies, where hundreds or even thousands of spectra may be analyzed in high-resolution by pattern recognition analysis.

  14. Synthesis and biological evaluation of phenyl-1H-1,2,3-triazole derivatives as anti-inflammatory agents.

    PubMed

    Kim, Tae Woo; Yong, Yeonjoong; Shin, Soon Young; Jung, Hyeryoung; Park, Kwan Ha; Lee, Young Han; Lim, Yoongho; Jung, Kang-Yeoun

    2015-04-01

    Rapid and efficient synthesis of a phenyl-1H-1,2,3-triazole library enabled cost-effective biological testing of a range of novel non-steroidal anti-inflammatory drugs with potential for improved drug efficacy and toxicity profiles. Anti-inflammatory activities of the phenyl-1H-1,2,3-triazole analogs synthesized in this report were assessed using the xylene-induced ear edema model in mice. At least four analogs, 2a, 2b, 2c, and 4a, showed more potent effects than the reference anti-inflammatory drug diclofenac at the same dose of 25 mg/kg. To explore relationships between the structural properties of phenyl-1H-1,2,3-triazole analogs and their anti-inflammatory activities in xylene-induced ear edema, comparative molecular field analysis was performed, and pharmacophores showing good anti-inflammatory activities were identified based on an analysis of contour maps obtained from comparative molecular field analysis. The anti-inflammatory effect on the molecular level was tested by the expression of tumor necrosis factor-alpha induced COX-2 using Western blots. Because the addition of the analog 2c caused the expression change of TNF-α induced COX-2, the molecular binding mode between 2c and COX-2 was elucidated using in silico docking.

  15. Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo (1)H functional magnetic resonance spectroscopy.

    PubMed

    Stanley, Jeffrey A; Burgess, Ashley; Khatib, Dalal; Ramaseshan, Karthik; Arshad, Muzamil; Wu, Helen; Diwadkar, Vaibhav A

    2017-03-29

    fMRI has provided vibrant characterization of regional and network responses associated with associative learning and memory; however, their relationship to functional neurochemistry is unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance spectroscopy ((1)H fMRS) to investigate the dynamics of hippocampal glutamate during paired-associated learning and memory in healthy young adults. We show that the temporal dynamics of glutamate differed significantly during processes of memory consolidation and retrieval. Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that fast learners were characterized by a significant increase in glutamate levels early in learning, whereas this increase was only observed later in slow learners. The observed functional dynamics of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory formation may be expressed in glutamate dynamics, which the novel application of (1)H MRS is sensitive to. The novel application of (1)H fMRS can provide highly innovative vistas for characterizing brain function in vivo, with significant implications for studying glutamatergic neurotransmission in health and disorders such as schizophrenia.

  16. sup 1 H NMR study of renal trimethylamine responses to dehydration and acute volume loading in man

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nixon, T.W.; Long, W.S.; Siegel, N.J. )

    1991-07-15

    The authors have used volume-localized {sup 1}H NMR spectroscopy to detect and measure changes in medullary trimethylamines (TMAs) in the human kidney in vivo. Localized water-suppressed {sup 1}H spectra were collected from a volume of interest located within the renal medulla by using a stimulated echo-based localization scheme. The principal resonances in the medullary {sup 1}H spectrum were residual water, lipid, and TMAs. The TMA line width was 7-15 Hz before filtering, and the signal-to-noise ratio was 40:1. In four normal volunteers, 15 hr of dehydration led to a significant increase in urine ismolality and decrease in body weight and an increase in medullary TMAs. A subsequent water load caused a transient water diuresis, a return to euvolemic body weight, and a significant reduction in medullary TMAs within 4 hr. These results suggest that TMAs may play an osmoregulatory role in the medulla of the normal human kidney.

  17. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Grinhut, Tzafrir; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Hadar, Yitzhak; Chen, Yona

    2011-04-01

    Enzymatic activities involved in decay processes of natural aromatic macromolecules, such as humic acids (HA) and lignin by white rot fungi, have been widely investigated. However, the physical and chemical analysis of degradation products of these materials has not been intensively explored. Fourier transform cyclotron resonance mass spectrometry (FTICR MS) and 1H NMR as well as CHNOS and size exclusion chromatography were employed to study the mechanisms of HA degradation by Trametes sp. M23 and Phanerochaete sp. Y6. Size exclusion chromatography analyses demonstrate and provide evidence for HA breakdown into low MW compounds. The 1H NMR analysis revealed oxidation, a decrease in the aromatic content, and an indication of demethylation of the HA during biodegradation. Evidence for oxidation was also obtained using CHNOS. Analysis of FTICR MS results using a new software program developed by our group (David Mass Sort) revealed consecutive series of masses suggesting biochemical degradation trends such as oxidation, aromatic cleavage, and demethylation. These results are in agreement with the 1H NMR analysis and with the suggested role of the ligninolytic system leading to HA degradation.

  18. Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single-voxel (1)H MRS.

    PubMed

    Vellido, A; Romero, E; Julià-Sapé, M; Majós, C; Moreno-Torres, Á; Pujol, J; Arús, C

    2012-06-01

    This article investigates methods for the accurate and robust differentiation of metastases from glioblastomas on the basis of single-voxel (1)H MRS information. Single-voxel (1)H MR spectra from a total of 109 patients (78 glioblastomas and 31 metastases) from the multicenter, international INTERPRET database, plus a test set of 40 patients (30 glioblastomas and 10 metastases) from three different centers in the Barcelona (Spain) metropolitan area, were analyzed using a robust method for feature (spectral frequency) selection coupled with a linear-in-the-parameters single-layer perceptron classifier. For the test set, a parsimonious selection of five frequencies yielded an area under the receiver operating characteristic curve of 0.86, and an area under the convex hull of the receiver operating characteristic curve of 0.91. Moreover, these accurate results for the discrimination between glioblastomas and metastases were obtained using a small number of frequencies that are amenable to metabolic interpretation, which should ease their use as diagnostic markers. Importantly, the prediction can be expressed as a simple formula based on a linear combination of these frequencies. As a result, new cases could be straightforwardly predicted by integrating this formula into a computer-based medical decision support system. This work also shows that the combination of spectra acquired at different TEs (short TE, 20-32 ms; long TE, 135-144 ms) is key to the successful discrimination between glioblastomas and metastases from single-voxel (1)H MRS.

  19. Synthesis and structure of interaction products of quinoline-2(1H)-thione with molecular iodine.

    PubMed

    Chernov'yants, Margarita S; Starikova, Zoya A; Kolesnikova, Tatiana S; Karginova, Anastasia O; Lyanguzov, Nikolay V

    2015-03-15

    The behavior of quinoline-2(1H)-thione, which is a potential antithyroid drug toward molecular iodine, was investigated. The ability of quinoline-2(1H)-thione to form the outer-sphere charge-transfer complex C9H7NS·I2 with iodine molecular in dilute chloroform solution has been studied by UV-vis spectroscopy (lgβ=3.85). The crystal structure of the new salt 2-(quinoline-2-yldisulfanyl)quinolinium triiodide - product of irreversible oxidation of quinoline-2(1H)-thione was determined by X-ray diffraction. The 2-(quinoline-2-yldisulfanyl)quinolinium cations form dimers through π-π-stacking interaction between quinoline rings. Strong intramolecular interactions are observed between iodine - sulfur atoms and iodine - hydrogen atoms with shortened contacts (less of sum of van der Waals contacts). It is noteworthy that two perfectly centrosymmetrical anions I3(-) form a very short contact I(3)⋯I(3') 3.7550(5) so we can state the formation of the dianion I(6)(2-). Therefore the formation and topology of polyiodide species depend on the characteristics, such as shape, size and charge, etc., of the counter cation, 2-(quinoline-2-yldisulfanyl)quinolinium, which is considered as templating agent.

  20. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Buonocore, Michael H; Tanase, Costin

    2011-08-15

    Vigorous exercise increases lactate and glucose uptake by the brain in excess of the increase in brain oxygen uptake. The metabolic fate of this non-oxidized carbohydrate entering the brain is poorly understood, but accumulation of lactate in the brain and/or increased net synthesis of amino acid neurotransmitters are possible explanations. Previous proton magnetic resonance spectroscopy (1H-MRS) studies using conventional pulse sequences have not detected changes in brain lactate following exercise. This contrasts with 1H-MRS studies showing increased brain lactate when blood lactate levels are raised by an intravenous infusion of sodium lactate. Using a J-editing 1H-MRS technique for measuring lactate, we demonstrated a significant 19% increase in lactate in the visual cortex following graded exercise to approximately 85% of predicted maximum heart rate. However, the magnitude of the increase was insufficient to account for more than a small fraction of the non-oxidized carbohydrate entering the brain with exercise. We also report a significant 18% increase in Glx (combined signal from glutamate and glutamine) in visual cortex following exercise, which may represent an activity-dependent increase in glutamate. Future studies will be necessary to test the hypothesis that non-oxidized carbohydrate entering the brain during vigorous exercise is directed, in part, toward increased net synthesis of amino acid neurotransmitters. The possible relevance of these findings to panic disorder and major depression is discussed.

  1. Structural characterization of two tetra-chlorido-zincate salts of 4-carb-oxy-1H-imidazol-3-ium: a salt hydrate and a co-crystal salt hydrate.

    PubMed

    Martens, Sean J; Geiger, David K

    2017-02-01

    Imidazole-containing compounds exhibit a myriad of pharmacological activities. Two tetra-chlorido-zincate salts of 4-carb-oxy-1H-imidazol-3-ium, ImHCO2H(+), are reported. Bis(4-carb-oxy-1H-imidazol-3-ium) tetra-chlorido-zincate monohydrate, (C4H5N2O2)2[ZnCl4]·H2O, (I), crystallizes as a monohydrate salt, while bis-(4-carb-oxy-1H-imidazol-3-ium) tetra-chlorido-zincate bis-(1H-imidazol-3-ium-4-carboxyl-ato) monohydrate, (C4H5N2O2)2[ZnCl4]·2C4H4N2O2·H2O, (II), is a co-crystal salt with six residues: two ImHCO2H(+) cations, two formula units of the zwitterionic 1H-imidazol-3-ium-4-carboxyl-ate, ImHCO2, one tetra-chlorido-zincate anion and one water mol-ecule disordered over two sites in a 0.60 (4):0.40 (4) ratio. The geometric parameters of the ImHCO2H(+) and the ImHCO2 moieties are the same within the standard uncertainties of the measurements. Both compounds exhibit extensive hydrogen bonding, including involvement of the tetra-chlorido-zincate anion, resulting in inter-connected chains of anions joined by water mol-ecules.

  2. Increases in Brain 1H-MR Glutamine and Glutamate Signals Following Acute Exhaustive Endurance Exercise in the Rat

    PubMed Central

    Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł

    2017-01-01

    Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle

  3. Reduced Brain GABA in Primary Insomnia: Preliminary Data from 4T Proton Magnetic Resonance Spectroscopy (1H-MRS)

    PubMed Central

    Winkelman, John W.; Buxton, Orfeu M.; Jensen, J. Eric; Benson, Kathleen L.; O'Connor, Shawn P.; Wang, Wei; Renshaw, Perry F.

    2008-01-01

    Study Objectives: Both basic and clinical data suggest a potential significant role for GABA in the etiology and maintenance of primary insomnia (PI). Proton magnetic resonance spectroscopy (1H-MRS) can non-invasively determine GABA levels in human brain. Our objective was to assess GABA levels in unmedicated individuals with PI, using 1H-MRS. Design and Setting: Matched-groups, cross-sectional study conducted at two university-based hospitals. Participants: Sixteen non-medicated individuals (8 women) with PI (mean age = 37.3 +/− 8.1) and 16 (7 women) well-screened normal sleepers (mean age = 37.6 +/− 4.5). Methods and Measurements: PI was established with an unstructured clinical interview, a Structured Clinical Interview for DSM-IV (SCID), sleep diary, actigraphy and polysomnography (PSG). 1H-MRS data were collected on a Varian 4 Tesla magnetic resonance imaging/spectroscopy scanner. Global brain GABA levels were averaged from samples in the basal ganglia, thalamus, and temporal, parietal, and occipital white-matter and cortex. Results: Average brain GABA levels were nearly 30% lower in patients with PI (.18 +/− .06) compared to controls (.25 +/− .11). GABA levels were negatively correlated with wake after sleep onset (WASO) on two independent PSGs (r = −0.71, p = 0.0024 and −0.70, p = 0.0048). Conclusions: Our preliminary finding of a global reduction in GABA in non-medicated individuals with PI is the first demonstration of a neurochemical difference in the brains of those with PI compared to normal sleeping controls. 1H-MRS is a valuable tool to assess GABA in vivo, and may provide a means to shed further light on the neurobiology of insomnia. Citation: Winkelman JW; Buxton OM; Jensen JE; Benson KL; O'Connor SP; Wang W; Renshaw PF. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). SLEEP 2008;31(11):1499–1506. PMID:19014069

  4. Increases in Brain (1)H-MR Glutamine and Glutamate Signals Following Acute Exhaustive Endurance Exercise in the Rat.

    PubMed

    Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł

    2017-01-01

    Objective: Proton magnetic resonance spectroscopy ((1)H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60-80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on (1)H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in (1)H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. (1)H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in (1)H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu

  5. Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy: effects of raw material quality and brine salting.

    PubMed

    Aursand, Ida G; Veliyulin, Emil; Böcker, Ulrike; Ofstad, Ragni; Rustad, Turid; Erikson, Ulf

    2009-01-14

    The effect of different Atlantic salmon raw materials (prerigor, postrigor and frozen/thawed) on water mobility and salt uptake after brine salting was investigated by using LF 1H NMR T2 relaxation,1H and 23Na MRI and light microscopy. Distributed exponential analysis of the T2 relaxation data revealed two main water pools in all raw materials, T21 and T22, with relaxation times in the range of 20-100 ms and 100-300 ms, respectively. Raw material differences were reflected in the T2 relaxation data. Light microscopy demonstrated structural differences between unsalted and salted raw materials. For prerigor fillets, salting induced a decrease in T21 population coupled with a more open microstructure compared to unsalted fillets, whereas for frozen/thawed fillets, an increase in T21 population coupled with salt-induced swelling of myofibers was observed. The result implies that the T21 population was directly affected by the density of the muscle myofiber lattice. MR imaging revealed significant differences in salt uptake between raw materials, prerigor salted fillets gained least salt (1.3-1.6% NaCl), whereas the frozen/thawed fillets gained most salt (2.7-2.9% NaCl), and obtained the most even salt distribution due to the more open microstructure. This study demonstrates the advantage of LF NMR T2 relaxation and 1H and 23Na MRI as effective tools for understanding of the relationship between the microstructure of fish muscle, its water mobility and its salt uptake.

  6. Separation of the longitudinal and transverse cross sections in the {sup 1}H(e,e{prime} K{sup +}){Lambda} and {sup 1}H(e,e{prime} K{sup +}){Sigma}{sup 0} reactions

    SciTech Connect

    R.M. Mohring; David Abbott; Abdellah Ahmidouch; Thomas Amatuni; Pawel Ambrozewicz; Tatiana Angelescu; Christopher Armstrong; John Arrington; Ketevi Assamagan; Steven Avery; Kevin Bailey; Kevin Beard; S Beedoe; Elizabeth Beise; Herbert Breuer; Roger Carlini; Jinseok Cha; C. Chang; Nicholas Chant; Evaristo Cisbani; Glenn Collins; William Cummings; Samuel Danagoulian; Raffaele De Leo; Fraser Duncan; James Dunne; Dipangkar Dutta; T Eden; Rolf Ent; Laurent Eyraud; Lars Ewell; John Finn; H. Terry Fortune; Valera Frolov; Salvatore Frullani; Christophe Furget; Franco Garibaldi; David Gaskell; Donald Geesaman; Paul Gueye; Kenneth Gustafsson; Jens-Ole Hansen; Mark Harvey; Wendy Hinton; Ed Hungerford; Mauro Iodice; Ceasar Jackson; Cynthia Keppel; Wooyoung Kim; Kouichi Kino; Douglas Koltenuk; Serge Kox; Laird Kramer; Antonio Leone; Allison Lung; David Mack; Richard Madey; M Maeda; Stanislaw Majewski; Pete Markowitz; T Mart; C Martoff; David Meekins; A. Mihul; Joseph Mitchell; Hamlet Mkrtchyan; Sekazi Mtingwa; Maria-Ioana Niculescu; R. Perrino; David Potterveld; John Price; Brian Raue; Jean Sebastien Real; Joerg Reinhold; Philip Roos; Teijiro Saito; Geoff Savage; Reyad Sawafta; Ralph Segel; Stepan Stepanyan; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Liliana Teodorescu; Tatsuo Terasawa; Hiroaki Tsubota; Guido Urciuoli; Jochen Volmer; William Vulcan; T. Welch; Robert Williams; Stephen Wood; Chen Yan; Benjamin Zeidman

    2003-05-19

    We report measurements of cross sections for the reaction {sup 1}H(e,e{prime} K{sup +})Y, for both the {Lambda} and {Sigma}{sup 0} hyperon states, at an invariant mass of W = 1.84 GeV and four-momentum transfers 0.5 < Q{sup 2} < 2 (GeV/c){sup 2}. Data were taken for three values of virtual photon polarization {epsilon}, allowing the decomposition of the cross sections into longitudinal and transverse components. The {Lambda} data are a revised analysis of prior work, whereas the {Sigma}{sup 0} results have not been previously reported.

  7. A new three-dimensional zinc(II) coordination polymer involving 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole and benzene-1,4-dicarboxylate ligands.

    PubMed

    Jian, Shou Jun; Han, Qian Qian; Yang, Huai Xia; Meng, Xiang Ru

    2016-07-01

    Metal-organic frameworks (MOFs) based on multidentate N-heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-benzimidazole (tmb) ligand has four potential N-atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen-bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three-dimensional coordination polymer, poly[[bis(μ2-benzene-1,4-dicarboxylato)-κ(4)O(1),O(1'):O(4),O(4');κ(2)O(1):O(4)-bis{μ2-2-[(1H-1,2,4-triazol-1-yl)methyl-κN(4)]-1H-benzimidazole-κN(3)}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene-1,4-dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic(2-) ligands [bdic(2-)(A) and bdic(2-)(B)] in the structure which adopt different coordination modes. The Zn(II) ions are bridged by tmb ligands, leading to one-dimensional helical chains with different handedness, and adjacent helices are linked by bdic(2-)(A) ligands, forming a two-dimensional network structure. The two-dimensional layers are further connected by bdic(2-)(B) ligands, resulting in a three-dimensional framework with the topological notation 6(6). The IR spectra and thermogravimetric curves are consistent with the results of the X-ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature.

  8. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.

  9. 40 CFR 721.8485 - 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. 721.8485 Section 721.8485 Protection of...-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. (a) Chemical substance and...-, (octahydro-4,7-methano- 1H- indene-5-diyl)bis(methylene) ester (PMN P-99-1075; CAS No. 43048-08-4) is...

  10. 40 CFR 721.8485 - 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. 721.8485 Section 721.8485 Protection of...-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. (a) Chemical substance and...-, (octahydro-4,7-methano- 1H- indene-5-diyl)bis(methylene) ester (PMN P-99-1075; CAS No. 43048-08-4) is...

  11. Synthesis of 2,3-dihydro-1H-indazoles by Rh(III)-catalyzed C-H cleavage of arylhydrazines.

    PubMed

    Yao, Jinzhong; Feng, Ruokun; Lin, Cong; Liu, Zhanxiang; Zhang, Yuhong

    2014-08-07

    A rhodium-catalyzed efficient method for the synthesis of 2,3-dihydro-1H-indazoles is described. The reaction of arylhydrazines with olefins results in the corresponding 2,3-dihydro 1H-indazoles with exclusive regioselectivity via C-H bond activation. The utility of the methodology is illustrated by a rapid synthesis of 1H-indazoles under mild reaction conditions in half an hour.

  12. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Bachert, Peter

    2003-10-01

    Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength ( Sk) and the difference in resonance frequencies of the coupled spins (Δ ω) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Δ ω. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.

  13. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor.

    PubMed

    Barrett, Terrance D; Palomino, Heather L; Brondstetter, Theresa I; Kanelakis, Kimon C; Wu, Xiaodong; Haug, Peter V; Yan, Wen; Young, Andrew; Hua, Hong; Hart, Juliet C; Tran, Da-Thao; Venkatesan, Hariharan; Rosen, Mark D; Peltier, Hillary M; Sepassi, Kia; Rizzolio, Michele C; Bembenek, Scott D; Mirzadegan, Tara; Rabinowitz, Michael H; Shankley, Nigel P

    2011-06-01

    The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors. JNJ-42041935, was a potent (pK(I) = 7.3-7.9), 2-oxoglutarate competitive, reversible, and selective inhibitor of PHD enzymes. In addition, JNJ-42041935 was used to compare the effect of selective inhibition of PHD to intermittent, high doses (50 μg/kg i.p.) of an exogenous erythropoietin receptor agonist in an inflammation-induced anemia model in rats. JNJ-42041935 (100 μmol/kg, once a day for 14 days) was effective in reversing inflammation-induced anemia, whereas erythropoietin had no effect. The results demonstrate that JNJ-42041935 is a new pharmacological tool, which can be used to investigate PHD inhibition and demonstrate that PHD inhibitors offer great promise for the treatment of inflammation-induced anemia.

  14. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules

    NASA Astrophysics Data System (ADS)

    Almutairi, Maha S.; Xavier, S.; Sathish, M.; Ghabbour, Hazem A.; Sebastian, S.; Periandy, S.; Al-Wabli, Reem I.; Attia, Mohamed I.

    2017-04-01

    Methyl 5-methoxy-1H-indole-2-carboxylate (MMIC) was prepared via esterification of commercially available 5-methoxyindole-2-carboxylic acid. The title molecule MMIC was characterised using FT-IR and FT-Raman in the ranges of 4000-500 and 4000-50 cm-1, respectively. The fundamental modes of the vibrations were assigned and the UV-visible spectrum of the MMIC molecule was recorded in the range of 200-400 nm to explore its electronic nature. The HOMO-LUMO energy distribution was calculated and the bonding and anti-bonding structures of the title molecule were studied and analysed using the natural bond orbital (NBO) approach. The reactivity of the MMIC molecule was also investigated and both the positive and negative centres of the molecule were identified using chemical descriptors and molecular electrostatic potential (MEP) analysis. The chemical shifts of the 1H and 13C NMR spectra were noted and the magnetic field environment of the MMIC molecule are discussed. The non-linear optical (NLO) properties of the title molecule were studied based on its calculated values of polarisability and hyperpolarisability. All computations were obtained by DFT methods using the 6-311++G (d,p) basis set.

  15. Evidence of Polymorphism on the Antitrypanosomal Naphthoquinone (4E)-2-(1H-Pyrazol-3-ylamino)-4-(1H-pyrazol-3-ylimino)naphthalen-1(4H)-one

    PubMed Central

    Sperandeo, Norma R.; Faudone, Sonia N.

    2013-01-01

    The aim of this study was to characterize the solid state properties of (4E)-2-(1H-pyrazol-3-ylamino)-4-(1H-pyrazol-3-ylimino)naphthalen-1(4H)-one (BiPNQ), a compound with a significant inhibitory activity against Trypanosoma cruzi, the etiological agent of Chagas disease (American trypanosomiasis). Methods used included Differential Scanning Calorimetry (DSC), Thermogravimetry (TG), Fourier Transform Infrared Spectroscopy (FTIR), Powder X-Ray Diffraction (PXRD), Hot Stage, and Confocal Microscopy. Two BiPNQ samples were obtained by crystallization from absolute methanol and 2-propanol-water that exhibited different thermal behaviours, PXRD patterns, and FTIR spectra, indicating the existence of an anhydrous form (BiPNQ-I) and a solvate (BIPNQ-s), which on heating desolvated leading to the anhydrous modification BiPNQ-I. It was determined that FTIR, DSC, and PXRD are useful techniques for the characterization and identification of the crystalline modifications of BiPNQ. PMID:24106678

  16. Two tautomers in the same crystal: 3-(4-fluoro-phen-yl)-1H-pyrazole and 5-(4-fluoro-phen-yl)-1H-pyrazole.

    PubMed

    Yamuna, Thammarse S; Kaur, Manpreet; Jasinski, Jerry P; Anderson, Brian J; Yathirajan, H S

    2014-09-01

    The title co-crystal, 3-(4-fluoro-phen-yl)-1H-pyrazole-5-(4-fluoro-phen-yl)-1H-pyrazole (1/1), C9H7FN2, crystallizes with four independent mol-ecules (A, B, C and D) in the asymmetric unit exhibiting two tautomeric forms (A and D; B and C) due to N-H proton exchange between the two N atoms of the pyrazole ring. The dihedral angles between the mean planes of the pyrazole and benzene rings are 15.6 (1), 19.8 (9), 14.0 (1) and 10.7 (7)° in mol-ecules A, B, C and D, respectively. In the crystal, N-H⋯N hydrogen bonds link the four mol-ecules in the asymmetric unit into a ring with an R 4 (4)(12) motif. Furthermore, weak C-H⋯F inter-actions link the mol-ecules into a three-dimensional network.

  17. 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.

    PubMed Central

    Potts, B. C.; Carlström, G.; Okazaki, K.; Hidaka, H.; Chazin, W. J.

    1996-01-01

    The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers. PMID:8931135

  18. Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors: (1)H-MRS study.

    PubMed

    Artzi, Moran; Liberman, Gilad; Vaisman, Nachum; Bokstein, Felix; Vitinshtein, Faina; Aizenstein, Orna; Ben Bashat, Dafna

    2017-04-01

    Normal brain cells depend on glucose metabolism, yet they have the flexibility to switch to the usage of ketone bodies during caloric restriction. In contrast, tumor cells lack genomic and metabolic flexibility and are largely dependent on glucose. Ketogenic-diet (KD) was suggested as a therapeutic option for malignant brain cancer. This study aimed to detect metabolic brain changes in patients with malignant brain gliomas on KD using proton magnetic-resonance-spectroscopy ((1)H-MRS). Fifty MR scans were performed longitudinally in nine patients: four patients with recurrent glioblastoma (GB) treated with KD in addition to bevacizumab; one patient with gliomatosis-cerebri treated with KD only; and four patients with recurrent GB who did not receive KD. MR scans included conventional imaging and (1)H-MRS acquired from normal appearing-white-matter (NAWM) and lesion. High adherence to KD was obtained only in two patients, based on high urine ketones; in these two patients ketone bodies, Acetone and Acetoacetate were detected in four MR spectra-three within the NAWM and one in the lesion area -4 and 25 months following initiation of the diet. No ketone-bodies were detected in the control group. In one patient with gliomatosis-cerebri, who adhered to the diet for 3 years and showed stable disease, an increase in glutamin + glutamate and reduction in N-Acetyl-Aspartate and myo-inositol were detected during KD. (1)H-MRS was able to detect ketone-bodies in patients with brain tumors who adhered to KD. Yet it remains unclear whether accumulation of ketone bodies is due to increased brain uptake or decreased utilization of ketone bodies within the brain.

  19. Quantification of ethanol methyl 1H magnetic resonance signal intensity following intravenous ethanol administration in primate brain

    PubMed Central

    Flory, Graham S.; O’Malley, Jean; Grant, Kathleen A.; Park, Byung; Kroenke, Christopher D.

    2009-01-01

    In vivo 1H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl 1H MRS signal intensity relates to tolerance to ethanol’s intoxicating effects. More recently, the ethanol 1H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T2 within these environments. The methods presented here extend ethanol MRS techniques to nonhuman primate subjects. Twelve monkeys were administered ethanol while sedated and positioned within a 3T MRI system. Chemical shift imaging (CSI) measurements were performed following intravenous infusion of 1g/kg ethanol. Magnetic resonance imaging (MRI) data were also recorded for each monkey to provide volume fractions of GM, WM, and CSF for each CSI spectrum. To estimate co-variance of ethanol MRS intensity with GM, WM, and CSF volume fractions, the relative contribution of each tissue subtype was determined following corrections for radiofrequency pulse profile non-uniformity, chemical shift artifacts, and differences between the point spread function in the CSI data and the imaging data. The ethanol MRS intensity per unit blood ethanol concentration was found to differ between GM, WM, and CSF. Individual differences in MRS intensity were larger in GM than WM. This methodology demonstrates the feasibility of ethanol MRS experiments and analysis in nonhuman primate subjects, and suggests GM may be a site of significant variation in ethanol MRS intensity between individuals. PMID:20018244

  20. Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours.

    PubMed

    Julià-Sapé, Margarida; Coronel, Indira; Majós, Carles; Candiota, Ana Paula; Serrallonga, Marta; Cos, Mònica; Aguilera, Carles; Acebes, Juan José; Griffiths, John R; Arús, Carles

    2012-04-01

    The purpose of this study was to evaluate whether single-voxel (1)H MRS could add useful information to conventional MRI in the preoperative characterisation of the type and grade of brain tumours. MRI and MRS examinations from a prospective cohort of 40 consecutive patients were analysed double blind by radiologists and spectroscopists before the histological diagnosis was known. The spectroscopists had only the MR spectra, whereas the radiologists had both the MR images and basic clinical details (age, sex and presenting symptoms). Then, the radiologists and spectroscopists exchanged their predictions and re-evaluated their initial opinions, taking into account the new evidence. Spectroscopists used four different systems of analysis for (1)H MRS data, and the efficacy of each of these methods was also evaluated. Information extracted from (1)H MRS significantly improved the radiologists' MRI-based characterisation of grade IV tumours (glioblastomas, metastases, medulloblastomas and lymphomas) in the cohort [area under the curve (AUC) in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.85], and also of the less malignant glial tumours (AUC in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.81). One of the MRS analysis systems used, the INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance) decision support system, outperformed the others, as well as being better than the MRI evaluation for the characterisation of grade III astrocytomas. Thus, preoperative MRS data improve the radiologists' performance in diagnosing grade IV tumours and, for those of grade II-III, MRS data help them to recognise the glial lineage. Even in cases in which their diagnoses were not improved, the provision of MRS data to the radiologists had no negative influence on their predictions.