Science.gov

Sample records for 1h 1h 2h

  1. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  2. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  3. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  4. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  5. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  6. Inhibition of Myeloperoxidase: Evaluation of 2H-Indazoles and 1H-Indazolones

    PubMed Central

    Roth, Aaron; Ott, Sean; Farber, Kelli M.; Palazzo, Teresa A.; Conrad, Wayne E.; Haddadin, Makhluf J.; Tantillo, Dean J.; Cross, Carroll E.; Eiserich, Jason P.; Kurth, Mark J.

    2014-01-01

    Myeloperoxidase (MPO) produces hypohalous acids as a key component of the innate immune response; however, release of these acids extracellularly results in inflammatory cell and tissue damage. The two-step, one-pot Davis-Beirut reaction was used to synthesize a library of 2H-indazoles and 1H-indazolones as putative inhibitors of MPO. A structure-activity relationship study was undertaken wherein compounds were evaluated utilizing taurine-chloramine and MPO-mediated H2O2 consumption assays. Docking studies as well as toxicophore and Lipinski analyses were performed. Fourteen compounds were found to be potent inhibitors with IC50 values <1 μM, suggesting these compounds could be considered as potential modulators of pro-oxidative tissue injury pertubated by the inflammatory MPO:H2O2:HOCl/HOBr system. PMID:25438766

  7. Equilibrium 2H/ 1H fractionations in organic molecules: I. Experimental calibration of ab initio calculations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Carbon-bound hydrogen in sedimentary organic matter can undergo exchange over geologic timescales, altering its isotopic composition. Studies investigating the natural abundance distribution of 1H and 2H in such molecules must account for this exchange, which in turn requires quantitative knowledge regarding the endpoint of exchange, i.e., the equilibrium isotopic fractionation factor ( α eq). To date, relevant data have been lacking for molecules larger than methane. Here we describe an experimental method to measure α eq for C-bound H positions adjacent to carbonyl group (H α) in ketones. H at these positions equilibrates on a timescale of days as a result of keto-enol tautomerism, allowing equilibrium 2H/ 1H distributions to be indirectly measured. Molecular vibrations for the same ketone molecules are then computed using Density Functional Theory at the B3LYP/6-311G∗∗ level and used to calculate α eq values for H α. Comparison of experimental and computational results for six different straight and branched ketones yields a temperature-dependent linear calibration curve with slope = 1.081-0.00376 T and intercept = 8.404-0.387 T, where T is temperature in degrees Celsius. Since the dominant systematic error in the calculation (omission of anharmonicity) is of the same size for ketones and C-bound H in most other linear compounds, we propose that this calibration can be applied to analogous calculations for a wide variety of organic molecules with linear carbon skeletons for temperatures below 100 °C. In a companion paper ( Wang et al., 2009) we use this new calibration dataset to calculate the temperature-dependent equilibrium isotopic fractionation factors for a range of linear hydrocarbons, alcohols, ethers, ketones, esters and acids.

  8. Equilibrium 2H/1H fractionation in organic molecules: III. Cyclic ketones and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A.

    2013-04-01

    Quantitative interpretation of stable hydrogen isotope ratios (2H/1H) in organic compounds is greatly aided by knowledge of the relevant equilibrium fractionation factors (ɛeq). Previous efforts have combined experimental measurements and hybrid Density Functional Theory (DFT) calculations to accurately predict equilibrium fractionations in linear (acyclic) organic molecules (Wang et al., 2009a,b), but the calibration produced by that study is not applicable to cyclic compounds. Here we report experimental measurements of equilibrium 2H/1H fractionation in six cyclic ketones, and use those data to evaluate DFT calculations of fractionation in diverse monocyclic and polycyclic compounds commonly found in sedimentary organic matter and petroleum. At 25, 50, and 75 °C, the experimentally measured ɛeq values for secondary and tertiary Hα in isotopic equilibrium with water are in the ranges of -130‰ to -150‰ and +10‰ to -40‰ respectively. Measured data are similar to DFT calculations of ɛeq for axial Hα but not equatorial Hα. In tertiary Cα positions with methyl substituents, this can be understood as a result of the methyl group forcing Hα atoms into a dominantly axial position. For secondary Cα positions containing both axial and equatorial Hα atoms, we propose that axial Hα exchanges with water significantly faster than the equatorial Hα does, due to the hyperconjugation-stabilized transition state. Interconversion of axial and equatorial positions via ring flipping is much faster than isotopic exchange at either position, and as a result the steady-state isotopic composition of both H's is strongly weighted toward that of axial Hα. Based on comparison with measured ɛeq values, a total uncertainty of 10-30‰ remains for theoretical ɛeq values. Using DFT, we systematically estimated the ɛeq values for individual H positions in various cyclic structures. By summing over all individual H positions, the molecular equilibrium fractionation was

  9. Hydrochemistry and 18O/16O and 2H/1H Ratios of Ugandan Waters

    NASA Astrophysics Data System (ADS)

    Gebremichael, M. G.; Jasechko, S.

    2013-12-01

    Today, 70% of the 35 million people living in Uganda have access to an improved water source, ranking Uganda 148 out of 179 nations reporting in 2010 (Millennium Development Goals Indicators). 80% of Ugandans rely on groundwater as their primary drinking water source, collecting at springs or from shallow wells. Similarly, 80% of Ugandans rely upon agriculture - usually rain fed - as their primary income source. Despite lack of access to protected water sources faced by 10 million Ugandans, and the importance of the blue economy to Uganda's continued development, a country-wide investigation of the chemistry and the stable oxygen and hydrogen isotope compositions of waters has yet to be completed. Here we present 250 analyses of 18O/16O, 2H/1H and dissolved ion concentrations of Ugandan lakes, rivers, groundwaters and springs collected during July, 2013. We use the new data to characterize regional scale groundwater recharge sources, advection pathways and interactions with surface waters. Large lakes - Albert, Edward and Victoria - show increases in 18O/16O and 2H/1H ratios consistent with open water evaporation, and are shown to be distinct from nearby groundwaters, suggesting minimal recharge from large lakes to the subsurface. Salinities of eastern Ugandan groundwaters are elevated relative to samples collected from the central and western regions, suggesting that longer groundwater residence times and enhanced water-rock interactions characterize these waters. Springs from western Uganda show a shift in 18O/16O to higher values as a result of hydrothermal water-rock exchanges. Dissolved ion and noble gas concentrations show potential for use in assessing geothermal energy resources, perhaps aiding the Ugandan Ministry for Energy, Minerals and Development to meet their goal of increasing renewable energy from 4% (current) to 61% of total use by 2017 (Nyakabwa-Atwoki, 2013). Millennium Development Goals Indicators. mdgs.un.org/unsd/mdg/data.aspx Nyakabwa

  10. Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Paaske, Berit; Oschkinat, Hartmut; Akbey, Ümit; Nielsen, Niels Chr.

    2012-01-01

    We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from 1H and 2H spins, taking advantage of their different T1 relaxation times. Different 1H- and 2H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) 1H → 13C/ 2H → 13C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly 2H, 15N, 13C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile 2H to 1H. It is demonstrated how 1D 13C CP/MAS or 2D 13C- 13C correlation spectra initialized with polarization from either 1H or 2H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D 13C- 13C correlation spectra may be recorded interleaved with 2H- 13C correlation spectra to obtain 13C- 13C correlations along with information about dynamics from 2H sideband patterns.

  11. Understanding 2H/1H systematics of leaf wax n-alkanes in coastal plants at Stiffkey saltmarsh, Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Eley, Yvette; Dawson, Lorna; Black, Stuart; Andrews, Julian; Pedentchouk, Nikolai

    2014-03-01

    Interpretation of sedimentary n-alkyl lipid δ2H data is complicated by a limited understanding of factors controlling interspecies variation in biomarker 2H/1H composition. To distinguish between the effects of interrelated environmental, physical and biochemical controls on the hydrogen isotope composition of n-alkyl lipids, we conducted linked δ2H analyses of soil water, xylem water, leaf water and n-alkanes from a range of C3 and C4 plants growing at a UK saltmarsh (i) across multiple sampling sites, (ii) throughout the 2012 growing season, and (iii) at different times of the day. Soil waters varied isotopically by up to 35‰ depending on marsh sub-environment, and exhibited site-specific seasonal shifts in δ2H up to a maximum of 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed seasonally by a maximum of 29‰. Leaf wax n-alkane 2H/1H, however, consistently varied by over 100‰ throughout the 2012 growing season, resulting in an interspecies range in the ɛwax/leaf water values of -79‰ to -227‰. From the discrepancy in the magnitude of these isotopic differences, we conclude that mechanisms driving variation in the 2H/1H composition of leaf water, including (i) spatial changes in soil water 2H/1H, (ii) temporal changes in soil water 2H/1H, (iii) differences in xylem water 2H/1H, and (iv) differences in leaf water evaporative 2H-enrichment due to varied plant life forms, cannot explain the range of n-alkane δ2H values we observed. Results from this study suggests that accurate reconstructions of palaeoclimate regimes from sedimentary n-alkane δ2H require further research to constrain those biological mechanisms influencing species-specific differences in 2H/1H fractionation during lipid biosynthesis, in particular where plants have developed biochemical adaptations to water-stressed conditions. Understanding how these mechanisms interact with environmental conditions will be crucial to ensure accurate

  12. Controls on compound specific 2H/1H of leaf waxes along a North American monsoonal transect

    NASA Astrophysics Data System (ADS)

    Berke, M. A.; Tipple, B. J.; Hambach, B.; Ehleringer, J. R.

    2013-12-01

    The use of hydrogen isotope ratios of sedimentary n-alkanes from leaf waxes has become an important method for the reconstruction of paleohydrologic conditions. Ideally, the relationship between lipid 2H/1H values and source water is one-to-one. But the extent to which the 2H/1H values are altered between initial source water and lipid 2H/1H values varies by plant type and environment. Additionally, these variables may be confounded by use of varied source waters by plants in the same ecosystem. Here, we use a transect study across the arid southwestern landscape of the United States, which is heavily influenced by the North American Monsoon, to study the variability in 2H/1H values of leaf waxes in co-occurring plants from Tucson, Arizona to Salt Lake City, Utah. Perennials, including rabbit brush (Chrysothamnus nauseosus), sagebrush (Artemisia tridentata), and gambel oak (Quercus gambelii) and an annual plant, sunflower (Helianthus annuus), were chosen for their wide geographic distribution along the entire transect. Our results indicate that n-alkane distribution for each plant was similar and generally showed no relationship to environmental variables (elevation, mean annual precipitation, latitude, and temperature). However, we find evidence of n-alkane 2H/1H value relating to transect latitude, a relationship that is weaker for all samples combined than the strong individual correlation for each plant species. Further, these 2H/1H values suggest that not all plants in the monsoon region utilize monsoon-delivered precipitation. These results imply an adaptation to discontinuous spatial coverage and amount of monsoonal precipitation and suggest care must be taken when assuming consistent source water for different plants, particularly in regions with highly seasonal precipitation delivery.

  13. Energetic derivatives of 5-(5-amino-2H-1,2,3-triazol-4-yl)-1H-tetrazole.

    PubMed

    Izsák, Dániel; Klapötke, Thomas M; Pflüger, Carolin

    2015-10-21

    This study presents the preparation of the novel nitrogen-rich compound 5-(5-amino-2H-1,2,3-triazol-4-yl)-1H-tetrazole (5) from commercially available chemicals in a five step synthesis. The more energetic derivatives with azido (6) and nitro (7) groups, as well as a diazene bridge (8) were also successfully prepared. The energetic compounds were comprehensively characterized by various means, including vibrational (IR, Raman) and multinuclear ((1)H, (13)C, (14)N, (15)N) NMR spectroscopy, mass spectrometry and differential thermal analysis. The sensitivities towards important outer stimuli (impact, friction, electrostatic discharge) were determined according to BAM standards. The enthalpies of formation were calculated on the CBS-4M level of theory, revealing highly endothermic values, and were utilized to calculate the detonation parameters using EPXLO5 (6.02). PMID:26361356

  14. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1) H,(1) H,(2) H,(2) H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties.

    PubMed

    Politakos, Nikolaos; Azinas, Stavros; Moya, Sergio Enrique

    2016-04-01

    Polymer brushes have a large potential for controlling properties such as surface lubrication or wetting through facile functionalization. Polymer chemistry, chain density, and length impact on the wetting properties of brushes. This study explores the use of diblock copolymer brushes with different block length and spatial arrangement of the blocks to tune surface wettability. Block copolymer brushes of the polyelectrolyte [2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMETAC) with a contact angle of 17° and a hydrophobic block of (1) H, (1) H, (2) H, (2) H-perfluorodecyl Acrylate (PPFDA) with a contact angle of 130° are synthesized by RAFT polymerization. By changing the sequence of polymerization either block is synthesized as top or bottom block. By varying the concentration of initiator the length of the blocks is varied. Contact angle values with intermediate values between 17° and 130° are measured. In addition, by changing solvent pH and in presence of a different salt the contact angle of the copolymer brushes can be fine tuned. Brushes are characterized by atomic force microscopy, Raman confocal microscopy, and X-ray photoelectron spectroscopy. PMID:26872001

  15. Structural, vibrational and DFT studies on 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione.

    PubMed

    Arjunan, V; Saravanan, I; Ravindran, P; Mohan, S

    2009-10-15

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione have been measured in the range of 4000-400 and 4000-100 cm(-1), respectively. Complete vibrational assignment and analysis of the fundamental modes of the compounds were performed using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constraints using the DFT/B3LYP method with 6-31G(d,p) and 6-311++G(d,p) basis sets. The vibrational frequencies determined experimentally are compared with those obtained theoretically from DFT gradient calculations employing the B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) methods for the optimised geometry of the compounds. The structural parameters and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The force fields obtained from DFT method were utilised and the potential energy distributions of all the fundamental vibrations of the compounds were calculated. PMID:19660980

  16. Structural, vibrational and DFT studies on 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.

    2009-10-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione have been measured in the range of 4000-400 and 4000-100 cm -1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compounds were performed using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constraints using the DFT/B3LYP method with 6-31G(d,p) and 6-311++G(d,p) basis sets. The vibrational frequencies determined experimentally are compared with those obtained theoretically from DFT gradient calculations employing the B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) methods for the optimised geometry of the compounds. The structural parameters and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The force fields obtained from DFT method were utilised and the potential energy distributions of all the fundamental vibrations of the compounds were calculated.

  17. Synthesis of 1H-pyrrolo[3,2-h]quinoline-8-amine derivatives that target CTG trinucleotide repeats.

    PubMed

    Matsumoto, Jun; Li, Jinxing; Dohno, Chikara; Nakatani, Kazuhiko

    2016-08-01

    We describe a new molecular design, synthesis, and investigation of small molecules that bind to CTG trinucleotide repeats in DNA. 1H-Pyrrolo[3,2-h]quinoline-8-amine (PQA) has a tricyclic aromatic system with unique non-linear hydrogen-bonding surface complementary to thymine. We have synthesized a series of PQA derivatives with different alkylamino linkers. These PQAs showed binding to pyrimidine bulge DNAs and CNG (N=T and C) repeats depending on the linker structure, while quinoline derivatives lacking the pyrrole ring showed much lower binding affinity. PQA is a useful molecular unit for both CTG and CCG repeat binding. PMID:27287365

  18. First real-time measurement of the evolving 2H/1H ratio during water evaporation from plant leaves.

    PubMed

    Kerstel, Erik R T; Wel, L Gerko van der; Meijer, Harro A J

    2005-09-01

    We have studied the temporal behaviour of the deuterium isotope ratio of water vapour emerging from a freshly cut plant leaf placed in a dry nitrogen atmosphere. The leaf material was placed directly inside the sample gas cell of the stable isotope ratio infrared spectrometer. At the reduced pressure ( approximately 40 mbar) inside the cell, the appearance of water evaporating from the leaf is easily probed by the spectrometer, as well as the evolving isotope ratios, with a precision of about 1 per thousand. The demonstration experiment we describe measures the 2H/1H isotope ratio only, but the experiment can be easily extended to include the 18O/16O and 17O/16O isotope ratios. Plant leaf water isotope ratios provide important information towards quantification of the different components in the ecosystem water and carbon dioxide exchange. PMID:16126516

  19. Equilibrium 2H/ 1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sessions, Alex L.; Nielsen, Robert J.; Goddard, William A., III

    2009-12-01

    Equilibrium 2H/ 1H fractionation factors (α eq) for various H positions in alkanes, alkenes, ketones, carboxylic acids, esters, alcohols, and ethers were calculated between 0 and 100 °C using vibrational frequencies from ab initio QM calculations (B3LYP/6-311G**). Results were then corrected using a temperature-dependent linear calibration curve based on experimental data for H α in ketones ( Wang et al., 2009). The total uncertainty in reported α eq values is estimated at 10-20‰. The effects of functional groups were found to increase the value of α eq for H next to electron-donating groups, e.g. sbnd OR, sbnd OH or sbnd O(C dbnd O)R, and to decrease the value of α eq for H next to electron-withdrawing groups, e.g. sbnd (C dbnd O)R or sbnd (C dbnd O)OR. Smaller but significant functional group effects are also observed for H β and sometimes H γ. By summing over individual H positions, we estimate the equilibrium fractionation relative to water to be -90‰ to -70‰ for n-alkanes and around -100‰ for pristane and phytane. The temperature dependence of these fractionations is very weak between 0 and 100 °C. Our estimates of α eq agree well with field data for thermally mature hydrocarbons (δ 2H values between -80‰ and -110‰ relative to water). Therefore the observed δ 2H increase of individual hydrocarbons and the disappearance of the biosynthetic δ 2H offset between n-alkyl and linear isoprenoid lipids during maturation of organic matter can be confidently attributed to H exchange towards an equilibrium state. Our results also indicate that many n-alkyl lipids are biosynthesized with δ 2H values that are close to equilibrium with water. In these cases, constant down-core δ 2H values for n-alkyl lipids cannot be reliably used to infer a lack of isotopic exchange.

  20. Effect of salinity on 2H/1H fractionation in lipids from continuous cultures of the coccolithophorid Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Sachs, Julian P.; Maloney, Ashley E.; Gregersen, Josh; Paschall, Christopher

    2016-09-01

    Salinity and temperature dictate the buoyancy of seawater, and by extension, ocean circulation and heat transport. Yet there remain few widely applicable proxies for salinity with the precision necessary to infer all but the largest hydrographic variations in the past. In the last decade the hydrogen isotope composition (2H/1H or δ2H) of microalgal lipids has been shown to increase systematically with salinity, providing a foundation for its use as a paleosalinity proxy. Culture and field studies have indicated a wide range of sensitivities for this response, ranging from about 0.6-3.3‰ ppt-1 depending on the lipid, location and/or culturing conditions. Lacking in these studies has been the controlled conditions necessary to isolate the response to salinity while keeping all other growth parameters constant. Here we show that the hydrogen isotope composition of lipids in the marine coccolithophorid Emiliania huxleyi grown in chemostats increased by 1.6 ± 0.3‰ ppt-1 (p < 0.05) in eight individual alkenones and by 2.0 ± 0.1‰ ppt-1 (p < 0.05) in three individual fatty acids over the salinity range 20-42 ppt. Hydrogen isotope ratios of phytol and the sterol 24-methyl-cholest-5,22-dien-3β-ol (brassicasterol) also increased with salinity but correlations were weaker than for the acetogenic lipids. For eight individual alkenones, linear regression analyses of the fractionation factors on salinity yielded slopes of 1.2-2.2‰ ppt-1. This sensitivity of δ2Halkenone to salinity is 45-71% of that previously reported for E. huxleyi, which can be attributed to the fact that previous experiments were performed with batch cultures in which growth rates and other parameters differed between salinity treatments. The underlying cause of this response to salinity remains unknown, but may result from changes in (1) the proportion of lipid hydrogen derived from NADPH versus water, (2) the proportion of lipid hydrogen derived from NADPH from Photosystem I versus the oxidative

  1. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  2. A Reestimate of the Protosolar (^2^H/^1^H)_p_ ratio from (^3^He/^4^He)_SW_ solar wind measurements.

    NASA Astrophysics Data System (ADS)

    Gautier, D.; Morel, P.

    1997-07-01

    We reanalyze the inference of the protosolar abundance of deuterium made by Geiss (1993, in Origin and Evolution of the Elements, Eds., N. Prantzos, E. Vangioni-Flam, M. Casse, Cambridge University Press, p. 90) from measurements of (^3^He/^4^He)_SW_ in the solar wind. We use an evolutionary solar model with microscopic diffusion, constrained to fit the present age, radius and luminosity, as well as the observed ratio of heavy elements to hydrogen. The protosolar (^2^H/^1^H)_p_ is obtained from the best fit of (^3^He/^4^He)_SW_. Taking for the protosolar (^3^He/^4^He)_p_ the value measured in Jupiter by the Galileo probe (Niemann et al., 1996Sci...272..846N), we derive (^2^H/^1^H)_p_=(3.01+/-0.17)x10^-5^. Compared to the present interstellar medium value (Linsky et al., 1993ApJ...402..694L), this result is compatible with models of the chemical evolution of the Galaxy in the solar neighborhood; it is also marginally compatible with the Jovian (^2^H/^1^H)_J_=(5+/-2)x10^-5^ ratio measured by Galileo.

  3. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana

    PubMed Central

    Sachs, Julian P.; Kawka, Orest E.

    2015-01-01

    The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains

  4. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling.

    PubMed

    Schmidt-Rohr, K; Rawal, A; Fang, X-W

    2007-02-01

    A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical

  5. Continuous flow 2H/1H and 18O/16O analysis of water samples with dual inlet precision.

    PubMed

    Gehre, M; Geilmann, H; Richter, J; Werner, R A; Brand, W A

    2004-01-01

    A method for isotope ratio analysis of water samples is described comprising an on-line high-temperature reduction technique in a helium carrier gas. Using a gas-tight syringe, injection of 0.5 to 1 microL sample is made through a heated septum into a glassy carbon reactor at temperatures in excess of 1300 degrees C. More than 150 injections can be made per day and both isotope ratios of interest, delta2H and delta18O, can be measured with the same setup. The technique has the capability to transfer high-precision stable isotope ratio analysis of water samples from a specialized to a routine laboratory task compatible with other common techniques (automated injection for GC, LC, etc.). Experiments with an emphasis on the reactor design were made in two different laboratories using two different commercially available high-temperature elemental analyser (EA) systems. In the Jena TC/EA unit, sample-to-sample memory (single injection) has been reduced to approximately 1% and high precision of about 0.1 per thousand for delta18O and < 1 per thousand for delta2H has been achieved by a redesign of the glassy carbon reactor and by redirecting the gas flow of the commercial TC/EA unit. With the modified reactor, the contact of water vapour with surfaces other than glassy carbon is avoided completely. The carrier gas is introduced at the bottom of the reactor thereby flushing the outer tube compartment of the tube-in-tube assembly before entering the active heart of the reactor.With the Leipzig high-temperature reactor (HTP) similar precision was obtained with a minor modification (electropolishing) of the injector metal sleeve. With this system, the temperature dependence of the reaction has been studied between 1100 and 1450 degrees C. Complete yield and constant isotope ratio information has been observed only for temperatures above 1325 degrees C. For temperatures above 1300 degrees C the reactor produces an increasing amount of CO background from reaction of glass

  6. 2H/1H composition of soil n-alkanes along two altitudinal transects in East Africa

    NASA Astrophysics Data System (ADS)

    Coffinet, Sarah; Huguet, Arnaud; Pedentchouk, Nikolai; Omuombo, Christine; Williamson, David; Bergonzini, Laurent; Wagner, Thomas; Derenne, Sylvie

    2015-04-01

    Long chains n-alkanes are components of terrestrial plant leaf waxes that are ubiquitously found in geological archives. They have been extensively used to track environmental and ecological variations in the past, notably changes in vegetation communities. Recent analytical developments led to the possibility of measuring their deuterium to hydrogen isotopic ratio (δ2Hwax). This parameter is suggested to be linked to hydrogen isotope ratio of precipitations (δ2Hp). In 2008, Jia et al. proposed to use soil derived δ2 Hwax as a paleoelevation proxy since precipitations are known to get more depleted in deuterium with altitude. They found a linear correlation (R2 0.73) between δ2Hwax in surface soils and altitude along Mt. Gongga (China). Since then, the correlation between δ2Hwax and δ2Hp was shown for several other altitudinal transects. Contrary to these previous observations, however, no trend with altitude was observed in East Africa along an altitudinal gradient in Mt. Kilimanjaro (North eastern, Tanzania, Peterse et al., 2009 and Zech et al., 2014). What is the reason for this absence of trend? Is it because of a difference between African and Asian soils? Or is it specific to Mt. Kilimanjaro? To get an insight into this problem, we determined δ2Hwax in 41 surface soils sampled along two altitudinal transects: from 500 to 2800 m in Mt. Rungwe (South-western Tanzania) and from 1897 to 3268 m in Mt. Kenya (Central Kenya). The goal of the study was to further investigate the conditions of applicability of this proxy in East Africa. A correlation between soil derived δ2Hwax and altitude was observed along Mt. Kenya (δ2Hwax=20.2*ALT-88.0, R2=0.51) but not along Mt. Rungwe - similarly to Mt. Kilimanjaro (Peterse et al., 2009; Zech et al., 2014). This contrast between Mt. Kenya on one hand and Mts. Rungwe and Kilimanjaro on the other hand may be explained by differences in topography. These results highlight the complexity of the signal recorded by δ2H, and

  7. Study of the A(e,e'$\\pi^+$) Reaction on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au

    SciTech Connect

    Qian, X; Clasie, B; Arrington, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Bosted, P; Bruell, A; Christy, M E; Chudakov, E; Dalton, M M; Daniel, A; Day, D; Dutta, D; El Fassi, L; Ent, R; Fenker, H C; Ferrer, J; Fomin, N; Gao, H; Garrow, K; Gaskell, D; Gray, C; Huber, G M; Jones, M K; Kalantarians, N; Keppel, C E; Kramer, K; Li, Y; Liang, Y; Lung, A F; Malace, S; Markowitz, P; Matsumura, A; Meekins, D G; Mertens, T; Miyoshi, T; Mkrtchyan, H; Monson, R; Navasardyan, T; Niculescu, G; Niculescu, I; Okayasu, Y; Opper, A K; Perdrisat, C; Punjabi, V; Rauf, A W; Rodriquez, V M; Rohe, D; Seely, J; Segbefia, E; Smith, G R; Sumihama, M; Tadevosyan, V; Tang, L; Villano, A; Vulcan, W F; Wesselmann, F R; Wood, S A; Yuan, L; Zheng, X

    2010-05-01

    Cross sections for the p($e,e'\\pi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $\\sigma_L$ and $\\sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,e'\\pi^{+}$)n reaction from nuclear targets.

  8. Structural stabilization of transthyretin by a new compound, 6-benzoyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione.

    PubMed

    Yokoyama, Takeshi; Takaki, Shun; Chosa, Keisuke; Sato, Takashi; Suico, Mary Ann; Teranishi, Yuriko; Shuto, Tsuyoshi; Mizuguchi, Mineyuki; Kai, Hirofumi

    2015-12-01

    Familial amyloid polyneuropathy (FAP) is a genetic, adult-onset, neurodegenerative disorder caused by amyloid formation of transthyretin (TTR), a thyroxine-binding protein. Mutation in TTR causes a propensity of TTR tetramer to dissociate to monomer, which is the first step to amyloidosis. Thus, a drug that can stabilize the tetramer structure will have therapeutic benefit. Here, by virtual screening and biochemical assays, we identified small molecule 6-benzoyl-2-hydroxy-1H-benzo[de]isoquinoline-1,3(2H)-dione (L6) that can prevent the dissociation of TTR to monomer. X-ray crystallography reveals that L6 binds to the T4 binding pocket of TTR. These findings show that L6 is a candidate TTR stabilizer. PMID:26639444

  9. U1h shaft project

    SciTech Connect

    Brian Briggs; R. G. Musick

    2000-06-30

    The U1h shaft project is a design/build subcontract to construct one 20 foot (ft) finished diameter shaft to a depth of 1,045 ft at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 1,045 ft of concrete lined shaft, development of a shaft station at a depth of 976 ft, and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper should be of interest to those involved with the construction of relatively deep shafts and underground excavations.

  10. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  11. Radical Rearrangement Catalysis in an Enzyme at 190-207 K: Mechanistic Features Revealed by Substrate ^1H/^2H Isotope Effects

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Warncke, Kurt

    2009-11-01

    The decay kinetics of both the natural abundance and [1,1,2,2-^2H4]-aminoethanol generated Co^II-substrate radical pair catalytic intermediate in ethanolamine ammonia-lyase (EAL) from Salmonella typhimrium have been measured by using time-resolved, full-spectrum X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy in frozen aqueous solution from 190 to 207 K. The decay reaction proceeds through sequential radical covalent rearrangement and hydrogen atom transfer (HT) steps. In the temperature range from 190 to 207 K, the decay is biexponential, and the two phases correspond to distinct populations [1]. The ^1H/^2H isotope effects (IE) on the fast phase and slow phase are 1.3 and 0.8, respectively. These IE are not caused by a primary kinetic IE. Therefore, HT is rapid, relative to rearrangement. We propose that the fast phase is rate-determined by the rearrangement step, and that the slow phase is rate-determined by a step after rearrangement that is associated with protein guidance of the reactions. The results reveal microscopic features of the core reaction chemistry and protein dynamics participation in the reaction, which are not accessible at ambient temperatures.[4pt] [1] Zhu, C., Warncke, K. Biophys. J. 95, 5890 (2008). Supported by grant DK54514 from NIDDK/NIH.

  12. Analyzing powers for the {sup 2}H({ital {rvec p}},{ital pn}){sup 1}H reaction at 200 MeV

    SciTech Connect

    Pairsuwan, W.; Watson, J.W.; Ahmad, M.; Chant, N.S.; Flanders, B.S.; Madey, R.; Pella, P.J.; Roos, P.G. ||

    1995-11-01

    We measured the analyzing power {ital A}{sub {ital y}} and the triple differential cross section {ital d}{sup 3}{sigma}/{ital d}{Omega}{sub {ital pd}}{Omega}{sub {ital ndE}}{sub {ital p}} for the {sup 2}H({ital {rvec p}},{ital pn}){sup 1}H reaction at 200 MeV. Coplanar coincidence data were taken for all combinations of neutron angles {theta}{sub {ital n}}=35{degree}, 45{degree}, or 55{degree} with proton angles {theta}{sub {ital p}}=35{degree}, 45{degree}, or 52{degree}. Protons were detected with a {Delta}{ital E}-{ital E} telescope with a 1000-{mu}m silicon surface barrier {Delta}{ital E} detector and a plastic scintillator {ital E} detector. Neutrons were detected with large-volume plastic scintillators at flight paths of 17.5 or 18 m. The overall neutron separation-energy resolution was about 3 MeV. Data are compared with plane-wave impulse-approximation calculations with a Hulthen deuteron wave function and {ital p}-{ital n} cross sections and analyzing powers obtained from {ital N}-{ital N} phase shifts. The agreement between these calculations and the data is generally good for the cross sections. The agreement for the analyzing powers is good near the point of zero recoil momentum. Our results suggest that the deuteron is a good ``neutron target`` for recoil momenta {lt}100 MeV/{ital c}.

  13. Spin-spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2014-10-01

    The indirect spin-spin coupling of hydrogen deuteride, J(D, H), was determined from a series of 1H and 2H NMR spectra acquired at various densities of gaseous solvents (He, Ar, CO2, and N2O). The analysis of these spectra shows that accurate determination of J(D, H) from this experimental data requires careful examination of the effects of nuclear relaxation and of HD-solvent gas interactions on hydrogen deuteride line shapes. Particularly, it was found that the first-order corrections of the peak-to-peak separations between HD multiplet peaks due to weak van der Waals interactions are proportional to solvent gas density, while these corrections for nuclear relaxation of the proton and the deuteron are proportional to the second power of the inverse of the gas density. Analysis of the data indicates that J(D, H), obtained by correcting for the effects of nuclear relaxation and intermolecular interactions, is 43.136(7) Hz at 300 K.

  14. Method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H (tritium) concentrations of xylem waters and subsurface waters using time series sampling

    SciTech Connect

    Smith, Brian; Menchaca, Leticia

    1999-01-01

    A method for determination of .sup.18 O/.sup.16 O and .sup.2 H/.sup.1 H ratios and .sup.3 H concentrations of xylem and subsurface waters using time series sampling, insulating sampling chambers, and combined .sup.18 O/.sup.16 O, .sup.2 H/.sup.1 H and .sup.3 H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen (.sup.18 O/.sup.16 O) and hydrogen (.sup.2 H/.sup.1 H and/or .sup.3 H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  15. Method for determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H (tritium) concentrations of xylem waters and subsurface waters using time-series sampling

    SciTech Connect

    1999-11-09

    This application describes a method for the determination of {sup 18}O/{sup 16}O and {sup 2}H/{sup 1}H ratios and {sup 3}H concentrations of xylem and subsurface waters using time-series sampling, insulating sampling chambers, and combined {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 3}H concentration data on transpired water. The method involves collecting water samples transpired from living plants and correcting the measured isotopic compositions of oxygen ({sup 18}O/{sup 16}O) and hydrogen ({sup 2}H/{sup 1}H and/or {sup 3}H concentrations) to account for evaporative isotopic fractionation in the leafy material of the plant.

  16. Hydrogen isotope systematics in C3 and C4 saltmarsh plants: the importance of biochemical processes in controlling interspecies variation in n-alkane 2H/1H composition

    NASA Astrophysics Data System (ADS)

    Eley, Y.; Pedentchouk, N.

    2013-12-01

    Palaeohydrological studies have increasingly utilised the 2H/1H composition of leaf wax n-alkyl lipids to extract information from the geological record. Interpretation of the sedimentary biomarker δ2H signal, however, requires detailed understanding of the mechanisms controlling hydrogen isotope fractionation between source water and n-alkyl lipids (ɛl/w). The existence of large ranges in published n-alkyl δ2H and ɛl/w among modern plant species growing at a single location suggests that the lipid signal incorporated into the sedimentary record could be sensitive to relatively small-scale changes in vegetation assemblages. The mechanisms responsible for these interspecies differences are currently poorly constrained. Previous research has had limited success explaining n-alkyl δ2H by reference to physical processes controlling the movement of water inside/outside and within the leaf, while the relative importance of biochemical processes remains largely unexplored. This project aims to identify the mechanisms controlling interspecies variation in n-alkane 2H/1H among a range of C3 and C4 plants from a Norfolk saltmarsh in the UK. To distinguish between environmental, physical and biochemical controls, we conducted 2H/1H analysis of soil, xylem, and leaf waters and n-alkanes (i) across multiple sampling sites within the marsh, (ii) throughout the 2012 growth season, and (iii) at different times of the day. We also measured the 2H/1H of chloroplast phytol in 7 samples collected at the end of 2012. Leaf wax n-alkane δ2H varied among the sampled species by over 100‰ throughout the 2012 growth season. Environmental processes that could influence control source water 2H/1H did not fully account for this interspecies variation - soil water 2H/1H varied by only 35‰ with marsh sub-environment and exhibited site-specific seasonal shifts by no more than 31‰. Maximum interspecies variation in xylem water was 38‰, while leaf waters differed by only 29‰. We

  17. Copper-catalyzed domino synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving C-C bond cleavage with a 1,3-dicarbonyl unit as a leaving group.

    PubMed

    Yang, Yan; Ni, Fan; Shu, Wen-Ming; Wu, An-Xin

    2014-09-01

    Although 2-imino-1H-imidazol-5(2H)-ones have important biological activities in metabolism, their synthesis has rarely been investigated. Quinoxalines as "privileged scaffolds" in medicinal chemistry have been extensively investigated, but the development of novel and efficient synthetic methods remains very attractive. Herein, we have developed two copper-catalyzed domino reactions for the synthesis of 2-imino-1H-imidazol-5(2H)-ones and quinoxalines involving CC bond-cleavage with a 1,3-dicarbonyl unit as a leaving group. The domino sequence for the synthesis of 2-imino-1H-imidazol-5(2H)-ones includes aza-Michael addition, intramolecular cyclization, CC bond-cleavage, 1,2-rearrangement, and aerobic dehydrogenation reaction, whereas the domino sequence for the synthesis of quinoxalines includes aza-Michael addition, intramolecular cyclization, elimination reaction, and CC bond-cleavage reaction. The two domino reactions have significant advantages including high efficiency, mild reaction conditions, and high tolerance of various functional groups. PMID:25079446

  18. Both water source and atmospheric water impact leaf wax n-alkane 2H/1H values of hydroponically grown angiosperm trees

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Roden, J. S.; Ehleringer, J. R.

    2013-12-01

    The extent to which both water source and leaf water 2H-enrichment affect the δ2H values of terrestrial plant leaf waxes is an area of active research as ecologists seek a mechanistic understanding of the environmental determinants of leaf wax isotope values before applying δ2H values of leaf waxes to reconstruct past hydrologic conditions. To elucidate the effects of both water source and atmospheric water vapor on δ2H values of leaf waxes for broad-leaved angiosperms, we analyzed hydrogen isotope ratios of high-molecular weight n-alkanes from two tree species that were grown throughout the spring and summer (five months) in a hydroponic system under controlled atmospheric conditions. Here, 12 subpopulations each of Populus fremontii and Betula occidentalis saplings were grown under one of six source different waters ranging in hydrogen isotope ratio values from -120 to +180 ‰ and under either 40 % or 75 % relative humidity conditions. We found n-alkane δ2H values of both species were linearly related to source water δ2H values with differences in slope associated with differing atmospheric humidity. A Craig-Gordon model was used to predict the δ2H values of leaf water and, by extension, n-alkane δ2H values under the range of growth conditions. The modeled leaf water values were found to be linearly related to observed n-alkane δ2H values with a statistically indistinguishable slope between the high and low humidity treatments. These leaf wax observations support a constant biosynthetic fractionation factor between evaporatively-enriched leaf water and n-alkanes for each species. However, we found the calculated biosynthetic fractionation between modeled leaf-water and n-alkane to be different between the two species. We submit that these dissimilarities were due to model inputs and not differences in the specific-species biochemistry. Nonetheless, these results are significant as they indicated that the δ2H value of atmospheric water vapor and

  19. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel non-basic 1-(2H-indazole-5-yl)pyridin-2(1H)-one derivatives and mitigation of mutagenicity in Ames test.

    PubMed

    Igawa, Hideyuki; Takahashi, Masashi; Ikoma, Minoru; Kaku, Hiromi; Kakegawa, Keiko; Kina, Asato; Aida, Jumpei; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Hotta, Natsu; Yamamoto, Syunsuke; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    To develop non-basic melanin-concentrating hormone receptor 1 (MCHR1) antagonists with a high probability of target selectivity and therapeutic window, we explored neutral bicyclic motifs that could replace the previously reported imidazo[1,2-a]pyridine or 1H-benzimidazole motif. The results indicated that the binding affinity of a chemically neutral 2H-indazole derivative 8a with MCHR1 (hMCHR1: IC50=35nM) was comparable to that of the imidazopyridine and benzimidazole derivatives (1 and 2, respectively) reported so far. However, 8a was positive in the Ames test using TA1537 in S9- condition. Based on a putative intercalation of 8a with DNA, we introduced a sterically-hindering cyclopropyl group on the indazole ring to decrease planarity, which led to the discovery of 1-(2-cyclopropyl-3-methyl-2H-indazol-5-yl)-4-{[5-(trifluoromethyl)thiophen-3-yl]methoxy}pyridin-2(1H)-one 8l without mutagenicity in TA1537. Compound 8l exerted significant antiobesity effects in diet-induced obese F344 rats and exhibited promising safety profile. PMID:27117261

  20. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water.

    PubMed

    Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M

    2011-11-15

    Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves. PMID:22006400

  1. Synthesis of New 2-Halo-2-(1H-tetrazol-5-yl)-2H-azirines via a Non-Classical Wittig Reaction.

    PubMed

    Cardoso, Ana L; Sousa, Carmo; Henriques, Marta S C; Paixão, José A; Pinho e Melo, Teresa M V D

    2015-01-01

    The synthesis and reactivity of tetrazol-5-yl-phosphorus ylides towards N-halosuccinimide/TMSN₃ reagent systems was explored, opening the way to new haloazidoalkenes bearing a tetrazol-5-yl substituent. These compounds were obtained as single isomers, except in one case. X-ray crystal structures were determined for three derivatives, establishing that the non-classical Wittig reaction leads to the selective synthesis of haloazidoalkenes with (Z)-configuration. The thermolysis of the haloazidoalkenes afforded new 2-halo-2-(tetrazol-5-yl)-2H-azirines in high yields. Thus, the reported synthetic methodologies gave access to important building blocks in organic synthesis, vinyl tetrazoles and 2-halo-2-(tetrazol-5-yl)-2H-azirine derivatives. PMID:26703533

  2. Dynamic stereochemistry of erigeroside by measurement of 1H- 1H and 13C- 1H coupling constants

    NASA Astrophysics Data System (ADS)

    Tafazzoli, Mohsen; Ghiasi, Mina; Moridi, Mahdi

    2008-07-01

    Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and 1H, 13C, 13C{ 1H}, 1H- 1H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ( 1JC-H, 2JC-H, 3JC-H and 3JH-H) values within the exocyclic hydroxymethyl group (CH 2OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of 1J, 2J and 3J involving 1H and 13C on the C 5'-C 6' ( ω), C 6'-O 6' ( θ) and C 1'-O 1' ( φ) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for 1JC1',H1', 2JC5',H6'R, 2JC5',H6'S, 2JC6',H5', 3JC4',H6'R, 3JC4',H6'S and 2JH6'R-H5'S as well as 3JH5',H6'R were obtained and used to derive Karplus equations to correlate these couplings to ω, θ and φ. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.

  3. Hydration of DNA by tritiated water and isotope distribution: a study by /sup 1/H, /sup 2/H, and /sup 3/H NMR spectroscopy

    SciTech Connect

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-06-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent /sup 3/HHO. The combined effects of temperature (-6 to -40/sup 0/C) and H/sub 2/O//sup 2/H/sub 2/O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by /sup 3/HHO (internal radiation source) localizes close to /sup 3/H due to the short range and low energy of /sup 3/H ..beta.. rays.

  4. Sauna, sweat and science - quantifying the proportion of condensation water versus sweat using a stable water isotope ((2)H/(1)H and (18)O/(16)O) tracer experiment.

    PubMed

    Zech, Michael; Bösel, Stefanie; Tuthorn, Mario; Benesch, Marianne; Dubbert, Maren; Cuntz, Matthias; Glaser, Bruno

    2015-01-01

    Most visitors of a sauna appreciate the heat pulse that is perceived when water is poured on the stones of a sauna stove. However, probably only few bathers are aware that this pleasant heat pulse is caused by latent heat being released onto our skin due to condensation of water vapour. In order to quantify the proportion of condensation water versus sweat to dripping water of test persons we conducted sauna experiments using isotopically labelled (δ(18)O and δ(2)H) thrown water as tracer. This allows differentiating between 'pure sweat' and 'condensation water'. Two ways of isotope mass balance calculations were applied and yielded similar results for both water isotopes. Accordingly, condensation contributed considerably to dripping water with mean proportions of 52 ± 12 and 54 ± 7% in a sauna experiment in winter semester 2011/12 and 30 ± 13 and 33 ± 6% in a sauna experiment in winter semester 2012/13, respectively, depending on the way of calculating the isotope mass balance. It can be concluded from the results of our dual isotope labelling sauna experiment that it is not all about sweat in the sauna. PMID:26110629

  5. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    PubMed Central

    Debouzy, Jean-Claude; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD. PMID:24883210

  6. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  7. Synthesis and antibacterial activity of a new series of 3-[3-(substituted phenyl)-1-isonicotinoyl-1H-pyrazol-5-yl]-2H-chromen-2-one derivatives.

    PubMed

    Aragade, Prashant; Maddi, Veeresh; Khode, Suresh; Palkar, Mahesh; Ronad, Pradeepkumar; Mamledesai, Shivalingarao; Satyanarayana, Darbhamulla

    2009-06-01

    A novel series of 3-[3-(substituted phenyl)-1-isonicotinoyl-1H-pyrazol-5-yl]-2H-chromen-2-one derivatives 4a-k have been synthesized by the reaction of 3-[2,3-dibromo-3-(substituted phenyl) propanoyl]-2H-chromen-2-one 3a-k and isonicotinic acid hydrazide in the presence of triethylamine in absolute ethanol, characterized by spectral data and screened for their in-vitro antibacterial activity against Gram-positive and Gram-negative bacteria. Among the series, compounds 4e, 4i, and 4k displayed an encouraging antibacterial activity profile as compared to the reference drug ampicillin against tested bacterial strains. PMID:19475595

  8. 1H- and 2H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H(+)-ATPase. Conformational properties and lipid-peptide interactions.

    PubMed

    Beswick, V; Roux, M; Navarre, C; Coïc, Y M; Huynh-Dinh, T; Goffeau, A; Sanson, A; Neumann, J M

    1998-01-01

    PMP1 is a 38-residue polypeptide associated with the yeast plasma membrane H(+)-ATPase, found to regulate the enzyme activity. To investigate the molecular basis of the PMP1 biological function, the conformational properties of a synthetic PMP1 fragment, A18-F38, comprising the predicted C-terminal cytoplasmic domain and a part of the transmembrane anchor have been studied by 1H- and 2H-NMR spectroscopies. High resolution 1H-NMR experiments showed that, in deuterated DPC micelles, the A18-G34 segment adopts a well defined helix conformation. Our data suggest that the whole PMP1 molecule forms a unique helix whose axis might be slightly tilted with respect to the bilayer normal. Protonated DPC, DMPC and DMPS were incorporated in deuterated micelles containing the PMP1 fragment for studying lipid-peptide interactions. Unusually strong and selective intermolecular NOEs between lipid chain and peptide side chain protons, especially those of the unique Trp residue, were observed. Solid state 2H-NMR experiments performed on pure deuterated POPC and mixed deuterated POPC:POPS (5:1) bilayers revealed that the PMP1 fragment specifically interacts with negatively charged PS lipids. PMID:9782385

  9. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies.

    PubMed Central

    Kuroda, Y; Ogawa, M; Nasu, H; Terashima, M; Kasahara, M; Kiyama, Y; Wakita, M; Fujiwara, Y; Fujii, N; Nakagawa, T

    1996-01-01

    To study the molecular mechanisms of local anesthesia, locations of local anesthetic dibucaine in model membranes and the interactions of dibucaine with a Na+ channel inactivation gate peptide have been studied by 2H- and 1H-NMR spectroscopies. The 2H-NMR spectra of dibucaine-d9 and dibucaine-d1, which are deuterated at the butoxy group and at the 3 position in its quinoline ring, respectively, have been observed in multilamellar dispersions of the lipid mixture composed of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. 2H-NMR spectra of deuterated palmitic acids incorporated, as a probe, into the lipid mixture containing cholesterol have also been observed. An order parameter, SCD, for each carbon segment was calculated from the observed quadrupole splittings. Combining these results, we concluded that first, the butoxy group of dibucaine is penetrating between the acyl chains of lipids in the model membranes, and second, the quinoline ring of dibucaine is located at the polar region of lipids but not at the hydrophobic acyl chain moiety. These results mean that dibucaine is situated in a favorable position that permits it to interact with a cluster of hydrophobic amino acids (Ile-Phe-Met) within the intracellular linker between domains III and IV of Na+ channel protein, which functions as an inactivation gate. To confirm whether the dibucaine molecule at the surface region of lipids can really interact with the hydrophobic amino acids, we synthesized a model peptide that includes the hydrophobic amino acids (Ac-GGQDIFMTEEQK-OH, MP-1), the amino acid sequence of which corresponds to the linker part of rat brain type IIA Na+ channel, and the one in which Phe has been substituted by Gln (MP-2), and measured 1H-NMR spectra in both phosphate buffer and phosphatidylserine liposomes. It was found that the quinoline ring of dibucaine can interact with the aromatic ring of Phe by stacking of the rings; moreover, the interaction can be reinforced by

  10. Synthesis, crystal structure and vibrational spectroscopic analysis of tetrakis(5-amino-1-H-1,2,4-triazol-4-ium) decachlorodibismuthate(III):[C2H5N4]4Bi2Cl10

    NASA Astrophysics Data System (ADS)

    Aloui, Z.; Ferretti, V.; Abid, S.; Lefebvre, F.; Rzaigui, M.; Nasr, C. Ben

    2015-10-01

    Physico-chemical properties of a new organic bismuthate(III), [C2H5N4]4Bi2Cl10 are discussed on the basis of X-ray crystal structure investigation. This compound crystallizes in the monoclinic space group C2/c, with a = 16.3622(3), b = 12.7941(2), c = 14.8178(2) Å, β = 98.5660(10)°, V = 3067.35(8) Å3 and Z = 4. The crystal structure consists of discrete binuclear [Bi2Cl10]4- anions and 3-amino-1-H-1,2,4-triazolium cations. The crystal packing is governed by strong Nsbnd H⋯N and weak Nsbnd H⋯Cl hydrogen bonds and Π-Π stacking interactions to form three-dimensional network. The 13C CP-MAS NMR spectrum is in agreement with the X-ray structure. The infrared study confirms the presence of the organic cation [C2H5N4]+. The vibrational absorption bands were identified by infrared spectroscopy and DFT calculations allowed their attribution.

  11. Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug–Drug Interactions

    PubMed Central

    Mandíková, Jana; Volková, Marie; Pávek, Petr; Navrátilová, Lucie; Hyršová, Lucie; Janeba, Zlatko; Pavlík, Jan; Bárta, Pavel; Trejtnar, František

    2016-01-01

    Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug–drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir. PMID:26779022

  12. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses. PMID:27309064

  13. Discovery and pharmacological profile of new 1H-indazole-3-carboxamide and 2H-pyrrolo[3,4-c]quinoline derivatives as selective serotonin 4 receptor ligands.

    PubMed

    Furlotti, Guido; Alisi, Maria Alessandra; Apicella, Claudia; Capezzone de Joannon, Alessandra; Cazzolla, Nicola; Costi, Roberta; Cuzzucoli Crucitti, Giuliana; Garrone, Beatrice; Iacovo, Alberto; Magarò, Gabriele; Mangano, Giorgina; Miele, Gaetano; Ombrato, Rosella; Pescatori, Luca; Polenzani, Lorenzo; Rosi, Federica; Vitiello, Marco; Di Santo, Roberto

    2012-11-26

    Since the discovery of the serotonin 4 receptor (5-HT(4)R), a large number of receptor ligands have been studied. The safety concerns and the lack of market success of these ligands have mainly been attributed to their lack of selectivity. In this study we describe the discovery of N-[(4-piperidinyl)methyl]-1H-indazole-3-carboxamide and 4-[(4-piperidinyl)methoxy]-2H-pyrrolo[3,4-c]quinoline derivatives as new 5-HT(4)R ligands endowed with high selectivity over the serotonin 2A receptor and human ether-a-go-go-related gene potassium ion channel. Within these series, two molecules (11 ab and 12 g) were identified as potent and selective 5-HT(4)R antagonists with good in vitro pharmacokinetic properties. These compounds were evaluated for their antinociceptive action in two analgesia animal models. 12 g showed a significant antinociceptive effect in both models and is proposed as an interesting lead compound as a 5-HT(4)R antagonist with analgesic action. PMID:23043420

  14. Synthesis and crystal structure of a copper complex with (E)-2-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one ligand

    SciTech Connect

    Sun, Shu-Wen; Zhang, Xiao; Wang, Gao-Feng

    2015-12-15

    The title compound, C{sub 35}H{sub 23}CuF{sub 6}N{sub 3}O{sub 5}S{sub 2} (1), was synthesized by the reaction of Cu(tta){sub 2} and L{sup 1}, (L{sup 1} = (E)-2-(4-(1H-1,2,4-triazol-1-yl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one) in the dichloromethane solution. It crystallizes in the monoclinic, space group P2{sub 1}/c with a = 33.8388(5), b = 9.3874(2), c = 21.8194(4) Å, β = 95.522(2), V = 6898.9(2) Å{sup 3}, Z = 8, D{sub x} = 1.554 Mg/m{sup 3}, F(000) = 3272, µ = 0.834 mm{sup –1}, R{sub 1} = 0.0639, wR{sub 2} = 0.1637. The copper(II) ion of 1 is in a distorted square-pyramidal environment with four O atoms of the two tta ligands and one N atom of triazole ligand L{sup 1}. Single-crystal X-ray diffraction data revealed that the hydrogen bonds, weak C–H···π and π···π interactions in the crystals link the coordination units to form 3D supramolecular structures.

  15. Synthesis and crystal structure of a copper complex with ( E)-2-(4-(1 H-1,2,4-triazol-1-yl)benzylidene)-3,4-dihydronaphthalen-1(2 H)-one ligand

    NASA Astrophysics Data System (ADS)

    Sun, Shu-Wen; Zhang, Xiao; Wang, Gao-Feng

    2015-12-01

    The title compound, C35H23CuF6N3O5S2 ( 1), was synthesized by the reaction of Cu( tta)2 and L 1, ( L 1 = ( E)-2-(4-(1 H-1,2,4-triazol-1-yl)benzylidene)-3,4-dihydronaphthalen-1(2 H)-one) in the dichloromethane solution. It crystallizes in the monoclinic, space group P21/ c with a = 33.8388(5), b = 9.3874(2), c = 21.8194(4) Å, β = 95.522(2), V = 6898.9(2) Å3, Z = 8, D x = 1.554 Mg/m3, F(000) = 3272, µ = 0.834 mm-1, R 1 = 0.0639, wR 2 = 0.1637. The copper(II) ion of 1 is in a distorted square-pyramidal environment with four O atoms of the two tta ligands and one N atom of triazole ligand L 1. Single-crystal X-ray diffraction data revealed that the hydrogen bonds, weak C-H···π and π···π interactions in the crystals link the coordination units to form 3D supramolecular structures.

  16. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  17. Crystalline 1H-1,2,3-triazol-5-ylidenes

    DOEpatents

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  18. sup 17 O, sup 1 H, and sup 2 H electron nuclear double resonance characterization of solvent, substrate, and inhibitor binding to the (4Fe-4S) sup + cluster of aconitase

    SciTech Connect

    Werst, M.M.; Hoffman, B.M. ); Kennedy, M.C.; Beinert, H. )

    1990-11-01

    {sup 17}O electron nuclear double resonance (ENDOR) studies at X-band (9-GHz) and Q-band (35-GHz) microwave frequencies reveal that the (4Fe-4S){sup {plus}} cluster of substrate-free aconitase (citrate (isocitrate) hydro-lyase, EC 4.2.1.3) binds solvent, H{sub x}O (x = 1,2). Previous {sup 17}O ENDOR studies had disclosed that H{sub x}{sup 17}O binds to the enzyme-substrate complex and also to complexes of enzyme with the substrate analogues trans-aconitate and nitroisocitrate (1-hydroxy-2-nitro-1,3-propanedicarboxylate). The authors have used {sup 1}H and {sup 2}H ENDOR to characterize these solvent species. The authors propose that the fourth ligand of Fe{sub a} in substrate-free enzyme is a hydroxyl ion from the solvent; upon binding of substrate or substrate analogues at this Fe{sub a} site, the solvent species becomes protonated to form a water molecule. Previous {sup 17}O and {sup 13}C ENDOR studies showed that only a single carboxyl, at C-2 of the propane backbone of cis-aconitate or at C-1 of the inhibitor nitroisocitrate, coordinates to the cluster. Together, these results imply that enzyme-catalyzed interconversion of citrate and isocitrate does not involve displacement of an endogenous fourth ligand, but rather addition of the anionic carboxylate ligand and a change in protonation state of a solvent species bound to Fe{sub a}. The authors further report the {sup 17}O hyperfine tensor parameters of the C-2 carboxyl oxygen of substrate bound to the cluster as determined by the field dependence of the {sup 17}O ENDOR signals. {sup 17}O ENDOR studies also show that the carboxyl group of the inhibitor trans-aconitate binds similarly to that off substrate.

  19. N'-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya; Ajees, A Abdul; Pai, K S R; Biswas, Shubankar

    2016-09-14

    A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties. PMID:27187865

  20. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  1. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    NASA Astrophysics Data System (ADS)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  2. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  3. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  4. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential.

    PubMed

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  5. Cross Polarization for 1H NMR Image Contrast in Solids

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; Fukunaga, Yasuhiro; Nonaka, Masayuki; Matsui, Shigeru; Inouye, Tamon

    1998-09-01

    A novel1H imaging method for solids, yielding images reflecting1H-13C dipolar interactions through cross relaxation timeTIS, is presented. Phase-alternating multiple-contact cross polarization (PAMC CP) was incorporated into the magic-echo frequency-encoding imaging scheme; the PAMC CP sequence may partly but efficiently destroy the initial1H magnetization depending on theTISvalues. A theory describing the effects of the PAMC CP sequence was developed, which was used for the assessment of the sequence as well as the analysis for the experimental results. It was demonstrated that theTIS-weighted1H image and theTISmapping for a phantom, constituted of adamantane and ferrocene, can distinguish these compounds clearly.

  6. High resolution 1H solid state NMR studies of polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Cheung, T. T. P.; Gerstein, B. C.; Ryan, L. M.; Taylor, R. E.; Dybowski, D. R.

    1980-12-01

    Molecular motions and spatial properties of the solid polymer polyethyleneterephthalate have been investigated using high resolution 1H solid state NMR techniques. The longitudinal spin relaxation time T1ρ of protons (1H) in the rotating frame was measured for a spin locking field ranging from 5 to 20 G. The decay of the 1H magnetization indicated the existence of two distinct T1ρ's and their field dependence shows that they are associated with two mobile phases of the polymer. The 1H magnetization also relaxes under the dipolar narrowed Carr-Purcell (DNCP) multipulse sequence with two dintinct T1y relaxation times. The ratios T1y's and T1ρ's deviate significantly from the expected theoretical values. The combined experiment with magic angle spinning and the DNCP sequence followed by homonuclear dipolar decoupling reveals the individual T1y relaxation of the resolved methylene and aromatic protons. These two species of protons were found to relax with the same T1y's, thus implying that spin diffusion must have taken place under the homonuclear dipolar decoupling multipulse. The qualitative description of spin diffusion under homonuclear decoupling is given. The combined experiment with spin locking and the DNCP sequence yields the correspondence between the two T1ρ's and the two T1y's. The long T1ρ corresponds to the short T1y whereas the short T1ρ corresponds to the long T1y. Communication between the two spatial phases via spin diffusion was also observed in this experiment by monitoring the recovery of the 1H magnitization associated with the short T1ρ after it has been eliminated during the spin locking. The total 1H magnetization is allowed to equilibrate in the laboratory frame for a variable time much shorter than T1 after the spin locking field has been turned off. The spatial relationship between the two phases is discussed.

  7. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  8. Determination of the 2H/1H and 15N/14N ratios of Alkylpyrazines from coffee beans (Coffea arabica L. and Coffea canephoravar. robusta) by isotope ratio mass spectrometry.

    PubMed

    Richling, Elke; Preston, Christina; Kavvadias, Dominique; Kahle, Kathrin; Heppel, Christopher; Hummel, Silvia; König, Thorsten; Schreier, Peter

    2005-10-01

    The delta15N(AIR) and delta2H(VSMOW) data for several alkylpyrazines formed during the roasting process of coffee are reported. Samples of commercially available roasted (n = 9) as well as self-roasted (n = 8) coffee beans (Coffea arabica L. and Coffea canephora var. robusta) of different origins were investigated. By use of extracts prepared by simultaneous distillation extraction (SDE) and subsequently fractionated by liquid chromatography on silica gel, on-line capillary gas chromatography-isotope ratio mass spectrometry was employed in the combustion (C) and pyrolysis (P) modes (HRGC-C/P-IRMS) to determine the delta15N(AIR) and delta2H(VSMOW) values, respectively. In addition to the constituents of coffee beans, data for commercial synthetic alkylpyrazines and substances declared to be "natural" were determined. The delta15N(AIR) data for coffee alkylpyrazines under study-2-ethyl-5-methylpyrazine (1) and 2-ethyl-6-methylpyrazine (2) (measured as sum 1/2), 2-ethyl-3-methylpyrazine (3), 2-methylpyrazine (4), 2,5-dimethylpyrazine (5) and 2,6-dimethylpyrazine (6) (measured as sum 5/6), and 2,3-dimethylpyrazine (7), as well as 2,3,5-trimethylpyrazine (8)-varied in the range from +8.3 to -10.2 per thousand, thus revealing their biogeneration from amino acids (delta15N(AIR) ranging from +8 per thousand to -10 per thousand). The delta2H(VSMOW) values were determined in the range from -5 per thousand to -127 per thousand. Owing to the analytical differentiation observed between coffee alkylpyrazines and synthetic/"natural" samples of 3, 4, and 7, authenticity assessment of coffee-flavored products seems to be promising, provided that extended data will be available in the future. In the literature, there were no IRMS data available for the alkylpyrazines (1-8) under study. PMID:16190651

  9. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  10. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  11. Serial 1H-MRS in GM2 gangliosidoses.

    PubMed

    Assadi, Mitra; Baseman, Susan; Janson, Christopher; Wang, Dah-Jyuu; Bilaniuk, Larissa; Leone, Paola

    2008-03-01

    GM2 gangliosidoses are a group of neuronal storage disorders caused by deficiency in the lysosomal enzyme hexosaminidase A. Clinically, the disease is marked by a relentless encephalopathy. Proton magnetic resonance spectroscopy (1H-MRS) provides in-vivo measurement of various brain metabolites including N-acetyl aspartate+N-acetyl aspartate glutamate (NAA), myo-inositol (mI), choline (Cho) and creatine (Cr). The NAA represents neuronal integrity while elevation in the mI reflects abnormal inflammation and gliosis in the brain tissue. An elevation in the Cho levels suggest cell membrane breakdown and demyelination. We report the clinical and laboratory data in two patients with GM2 gangliosidoses. Serial 1H-MRS evaluations were performed to drive metabolite ratios of NAA/Cr, mI/Cr and Cho/Cr. We acquired the data from four regions of interest (ROI) according to a standard protocol. The results documented a progressive elevation in mI/Cr in all four ROI in patient one and only one ROI (occipital gray matter) in patient 2. We also documented a decline in the NAA/Cr ratios in both cases in most ROI. These results were compared to six age-matched controls and confirmed statistically significant elevation in the mI in our cases. In conclusion, 1H-MRS alterations were suggestive of neuronal loss and inflammation in these patients. 1H-MRS may be a valuable tool in monitoring the disease progress and response to therapy in GM2 gangliosidoses. Elevation in the mI may prove to be more sensitive than the other metabolite alterations. PMID:17387512

  12. Laundering and Deinking Applications of 1H NMR Imaging

    NASA Astrophysics Data System (ADS)

    Tutunjian, P. N.; Borchardt, J. K.; Prieto, N. E.; Raney, K. H.; Ferris, J. A.

    One-dimensional 1H NMR imaging techniques are used to visualize oil removal from fabrics and paper fibers immersed in aqueous solutions of nonionic detergents. The method provides a unique approach to the study of oil-removal kinetics in nonionic detergent systems where traditional optical techniques fail due to solution turbidity. The only requirement of the NMR experiment is the use of deuterated water in order to selectively image the hydrocarbon phase. Preliminary applications to laundering and paper deinking are discussed.

  13. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  14. Identification of 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid (setipiprant/ACT-129968), a potent, selective, and orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonist.

    PubMed

    Fretz, Heinz; Valdenaire, Anja; Pothier, Julien; Hilpert, Kurt; Gnerre, Carmela; Peter, Oliver; Leroy, Xavier; Riederer, Markus A

    2013-06-27

    Herein we describe the discovery of the novel CRTh2 antagonist 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid 28 (setipiprant/ACT-129968), a clinical development candidate for the treatment of asthma and seasonal allergic rhinitis. A lead optimization program was started based on the discovery of the recently disclosed CRTh2 antagonist 2-(2-benzoyl-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid 5. An already favorable and druglike profile could be assessed for lead compound 5. Therefore, the lead optimization program mainly focused on the improvement in potency and oral bioavailability. Data of newly synthesized analogs were collected from in vitro pharmacological, physicochemical, in vitro ADME, and in vivo pharmacokinetic studies in the rat and the dog. The data were then analyzed using a traffic light selection tool as a visualization device in order to evaluate and prioritize candidates displaying a balanced overall profile. This data-driven process and the excellent results of the PK study in the rat (F = 44%) and the dog (F = 55%) facilitated the identification of 28 as a potent (IC50 = 6 nM), selective, and orally available CRTh2 antagonist. PMID:23721423

  15. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  16. Hydrogen concentration dependence of 1H Knight shift in NbH x studied by 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-08-01

    Hydrogen concentration dependence of the Knight shift of protons in NbH x(0.05≤×≤1.05) has been studied by means of 1H MAS (magic angle sample spinning) NMR. In the mixed-phase samples of the α and β phases (0.05<×≤0.7), it is found that the 1H Knight shift of β-NbH x depends on the phase fraction. The shift variation in the β phase can be correlated with the unit cell volume, being explained by the variation of the density of electronic states at the Fermi level N(0) due to the compression of the crystal lattice. On the other hand, in the single β-phase samples (0.7<×≤1.05), the 1H Knight shift becomes smaller as the hydrogen concentration increases. This variation can be explained by increase in the number of electrons in the unit cell with the hydrogen concentration, resulting in the N(0) increase.

  17. Dynamic 1H NMR Studies of Schiff Base Derivatives

    NASA Astrophysics Data System (ADS)

    Köylü, M. Z.; Ekinci, A.; Böyükata, M.; Temel, H.

    2016-01-01

    The spin-lattice relaxation time T 1 and the spin-spin relaxation time T 2 of two Schiff base derivatives, N,N'-ethylenebis(salicylidene)-1,2-diaminoethane (H2L1) and N,N'-ethylenebis (salicylidene)-1,3-diaminopropane (H2L2), in DMSO-d6 solvent were studied as a function of temperature in the range of 20-50°C using a Bruker Avance 400.132 MHz 1H NMR spectrometer. Based on the activation energy ( E a) and correlation time (τc), we believe that the Schiff base derivatives perform a molecular tumbling motion.

  18. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  19. Design and syntheses of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione and N-(benzothiazol-5-yl)isoindoline-1,3-dione as potent protoporphyrinogen oxidase inhibitors.

    PubMed

    Jiang, Li-Li; Zuo, Yang; Wang, Zhi-Fang; Tan, Yin; Wu, Qiong-You; Xi, Zhen; Yang, Guang-Fu

    2011-06-01

    Discovery of protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors has been one of the hottest research areas in the field of herbicide development for many years. As a continuation of our research work on the development of new PPO-inhibiting herbicides, a series of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-diones (1a-p) and N-(benzothiazol-5-yl)isoindoline-1,3-diones (2a-h) were designed and synthesized according to the ring-closing strategy of two ortho-substituents. The bioassay results indicated that some newly synthesized compounds exhibited higher PPO inhibition activity than the control of sulfentrazone. Compound 1a, S-(5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl) O-methyl carbonothioate, was identified as the most potent inhibitor with k(i) value of 0.08 μM, about 9 times higher than that of sulfentrazone (k(i) = 0.72 μM). Further green house assay showed that compound 1b, methyl 2-((5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl)thio)acetate, exhibited herbicidal activity comparable to that of sulfentrazone even at a concentration of 37.5 g ai/ha. In addition, among six tested crops, wheat exhibited high tolerance to compound 1b even at a dosage of 300 g ai/ha. These results indicated that compound 1b might have the potential to be developed as a new herbicide for weed control of wheat field. PMID:21517076

  20. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  1. Crystal structure of (E)-2-[(2-bromopyridin-3-yl)methyl-idene]-6-meth-oxy-3,4-di-hydro-naphthalen-1(2H)-one and 3-[(E)-(6-meth-oxy-1-oxo-1,2,3,4-tetra-hydro-naphthalen-2-ylidene)meth-yl]pyridin-2(1H)-one.

    PubMed

    Zingales, Sarah K; Moore, Morgan E; Goetz, Andrew D; Padgett, Clifford W

    2016-07-01

    The title compounds C17H14BrNO2, (I), and C17H15NO3, (II), were obtained from the reaction of 6-meth-oxy-3,4-di-hydro-2H-naphthalen-1-one and 2-bromo-nicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π-π inter-actions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent mol-ecules, A and B, in the asymmetric unit; both are non-planar, the dihedral angles between the meth-oxy-benzene and 1H-pyridin-2-one mean planes being 35.07 (9)° in A and 35.28 (9)°in B. In each mol-ecule, the 1H-pyridin-2-one unit participates in inter-molecular N-H⋯O hydrogen bonding to another mol-ecule of the same type (A to A or B to B). The structure also displays π-π inter-actions between the pyridyl and the benzene rings of non-equivalent mol-ecules (viz., A to B and B to A). PMID:27555939

  2. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    PubMed Central

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  3. Predictability of 1-h postload plasma glucose concentration: A 10-year retrospective cohort study

    PubMed Central

    Kuang, Lifen; Huang, Zhimin; Hong, Zhenzhen; Chen, Ailing; Li, Yanbing

    2015-01-01

    Aims/Introduction Elevated 1-h postload plasma glucose concentration (1hPG) during oral glucose tolerance test has been linked to an increased risk of type 2 diabetes and a poorer cardiometabolic risk profile. The present study analyzed the predictability and cut-off point of 1hPG in predicting type 2 diabetes in normal glucose regulation (NGR) subjects, and evaluated the long-term prognosis of NGR subjects with elevated 1hPG in glucose metabolism, kidney function, metabolic states and atherosclerosis. Materials and Methods A total of 116 Han Chinese classified as NGR in 2002 at the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China, were investigated. Follow-up was carried out in 2012 to evaluate the progression of glucose metabolism, kidney function, metabolic syndrome and carotid atherosclerosis. Results The areas under receiver operating characteristic curves were higher for 1hPG than FPG or 2hPG (0.858 vs 0.806 vs 0.746). The cut-off value of 1hPG with the maximal sum of sensitivity and specificity in predicting type 2 diabetes in NGR subjects was 8.85 mmol/L. The accumulative incidence of type 2 diabetes in subjects with 1hPG ≥8.85 mmol/L was higher than those <8.85 mmol/L (46.2% vs 3.3%, P = 0.000; relative risk 13.846, 95% confidence interval 4.223–45.400). On follow up, the prevalence of metabolic syndrome and abnormal carotid intima-media thickness in the subjects with 1hPG ≥8.85 mmol/L tended to be higher compared with those <8.85 mmol/L. Conclusions 1hPG is a good predictor of type 2 diabetes in NGR subjects, and the best cut-off point is 8.85 mmol/L. Some tendency indicates that NGR subjects with 1hPG ≥8.85 mmol/L are more prone to metabolic syndrome and carotid atherosclerosis. PMID:26543538

  4. Synthesis, structural elucidation and spectroscopic analysis of 3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno[1,2-d]imidazolidin-2-iminium chloride

    NASA Astrophysics Data System (ADS)

    Uma Devi, T.; Priya, S.; Selvanayagam, S.; Ravikumar, K.; Anitha, K.

    2012-11-01

    Ninhydrin guanidinium chloride (3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno [1,2-d]imidazolidin-2-iminium chloride) a semiorganic crystal was synthesized. The structure was determined using X-ray single crystal technique. Comparisons between the FT-IR spectrum of ninhydrin guanidinium chloride with ninhydrin were made. Melting point was found using thermal measurements. The molecular geometry, vibrational frequencies and Mulliken charges of the compound in the ground state have been calculated by the density functional theory (DFT) method with 3-21G(d,p) basis set and theoretical frequencies were compared with the experimental FT-IR spectrum. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, natural bond orbitals (NBO) and thermodynamic properties at various temperatures of the compound were investigated by theoretical calculations.

  5. The structure and properties of 5,6-dinitro-1H-benzotriazole

    NASA Astrophysics Data System (ADS)

    Santa María, Dolores; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2016-06-01

    5,6-Dinitro-1H-benzotriazole crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains the planar 1H-tautomer together with a water molecule of crystallization. Each water molecule is hydrogen bonded to three adjacent 5,6-dinitrobenzotriazoles forming a tape along the b-axis of the crystal. These tapes stack along the c-axis through hydrogen bonds involving the water molecules and one of the nitro groups leading to a bidimensional structure. Solid-state 13C and 15N CPMAS NMR allow to confirm that the tautomer present is the 1H one. In DMSO-d6 solution the results are quite different and, based on GIAO/B3LYP/6-311++G(d,p) calculations, lead us to conclude that the major tautomer is the 5,6-dinitro-2H-benzotriazole, a surprising result that contradicts the rule that the major tautomer in solution coincides with the one present in the crystal. An anhydrous pseudopolymorph of 5,6-dinitro-1H-benzotriazole has been obtained as a non-crystalline form and from solid-state NMR and theoretical calculations, we conclude that it is an 1H-tautomer.

  6. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS.

    PubMed

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid. PMID:26065628

  7. Verification of the Major Metabolic Oxidation Path for the Naphthoyl Group in Chemoattractant Receptor-Homologous Molecule Expressed on Th2 Cells (CRTh2) Antagonist 2-(2-(1-Naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic Acid (Setipiprant/ACT-129968).

    PubMed

    Risch, Philippe; Pfeifer, Thomas; Segrestaa, Jerome; Fretz, Heinz; Pothier, Julien

    2015-10-22

    Various racemic and enantioenriched (trans)-X,Y-dihydroxy-X,Y-dihydronaphthoyl analogues as well as X-hydroxy-naphthoyl analogues of CRTh2 antagonist 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid (1, Setipiprant/ACT-129968) were synthesized in order to gain insight into regio- and enantioselectivity of the metabolic oxidation of 1 and to verify the structures of four metabolites that were proposed earlier in a clinical ADME study. Analytical data of the synthetic standards were compared with data from samples of biological origin. The two major metabolites M7 and M9 were unambiguously verified as 2-(2-((trans)-3,4-dihydroxy-3,4-dihydronaphthalene-1-carbonyl)- and 2-(2-((trans)-5,6-dihydroxy-5,6-dihydronaphthalene-1-carbonyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid, respectively, each composed of two enantiomers with 68% and 44% ee in favor of (+)-(3S,4S)-M7 and (+)-(5S,6S)-M9, respectively. Likewise, minor metabolites M3 and M13 were identified as 2-(8-fluoro-2-(5-hydroxy-1-naphthoyl)- and 2-(8-fluoro-2-(4-hydroxy-1-naphthoyl)-1,2,3,4-tetrahydro-5H-pyrido[4,3-b]indol-5-yl)acetic acid, respectively. PMID:26398218

  8. 1H NMR metabolomics study of age profiling in children

    PubMed Central

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Hainline, Bryan E.; Shanaiah, Narasimhamurthy; Asiago, Vincent; Nagana Gowda, G. A.; Raftery, Daniel

    2014-01-01

    Metabolic profiling of urine provides a fingerprint of personalized endogenous metabolite markers that correlate to a number of factors such as gender, disease, diet, toxicity, medication, and age. It is important to study these factors individually, if possible to unravel their unique contributions. In this study, age-related metabolic changes in children of age 12 years and below were analyzed by 1H NMR spectroscopy of urine. The effect of age on the urinary metabolite profile was observed as a distinct age-dependent clustering even from the unsupervised principal component analysis. Further analysis, using partial least squares with orthogonal signal correction regression with respect to age, resulted in the identification of an age-related metabolic profile. Metabolites that correlated with age included creatinine, creatine, glycine, betaine/TMAO, citrate, succinate, and acetone. Although creatinine increased with age, all the other metabolites decreased. These results may be potentially useful in assessing the biological age (as opposed to chronological) of young humans as well as in providing a deeper understanding of the confounding factors in the application of metabolomics. PMID:19441074

  9. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood. PMID:16485652

  10. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  11. The Conformations and Structures of 1H-NONAFLUOROBUTANE

    NASA Astrophysics Data System (ADS)

    Fournier, Joseph A.; Bohn, Robert K.; Montgomery, John A.; , Jr.

    2012-06-01

    The all trans conformers of perfluorocarbons, unlike hydrocarbons, are helical with C-C-C-C dihedral angles about 1640. Fluorocarbons with H substitution can replace chlorofluorocarbons as propellants and compressor fluids without the disadvantage of causing ozone depletion in the upper atmosphere. 1H-perfluorobutane, CHF_2CF_2CF_2CF_3, has been studied by pulsed-jet Fourier transform microwave spectroscopy. The spectrum is very rich. Quantum chemical calculations identify five stable conformers with relative energies up to 1.1 kcal/mol. Thus far three conformers have been characterized and many lines remain unassigned. The assigned species have CCCCanti/CCCH gauche as well as the anti/anti and gauche/anti forms. Rotational constant values are 1428.9501(2) MHz, 593.323877(6) MHz, and 546.43578(6) MHz for the anti/gauche species, 1323.664(3) MHz, 617.6051(5) MHz for the ant/anti species, and 1066.9384(4) MHz, 768.4736(4) MHz, and 671.3145(4) MHz for the gauche/anti form.

  12. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  13. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  14. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  15. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  16. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  17. 1H and 13C Solid-state NMR of Gossypium barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiments pro...

  18. 1H and 13C Solid-state NMR of G. barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated with 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiment...

  19. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate.

    PubMed

    Diop, Mouhamadou Birame; Diop, Libasse; Plasseraud, Laurent; Cattey, Hélène

    2016-08-01

    Single crystals of the title mol-ecular salt, C4H7N2 (+)·HC2O4 (-)·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N-H⋯(O,O) hydrogen bonds. The water mol-ecules of crystallization link the chains into (10-1) bilayers, with the methyl groups of the cations organized in an isotactic manner. PMID:27536393

  20. Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dihydrate

    PubMed Central

    Diop, Mouhamadou Birame; Diop, Libasse; Plasseraud, Laurent; Cattey, Hélène

    2016-01-01

    Single crystals of the title mol­ecular salt, C4H7N2 +·HC2O4 −·2H2O, were isolated from the reaction of 2-methyl-1H-imidazole and oxalic acid in a 1:1 molar ratio in water. In the crystal, the cations and anions are positioned alternately along an infinite [010] ribbon and linked together through bifurcated N—H⋯(O,O) hydrogen bonds. The water mol­ecules of crystallization link the chains into (10-1) bilayers, with the methyl groups of the cations organized in an isotactic manner. PMID:27536393

  1. Development of tricyclic hydroxy-1H-pyrrolopyridine-trione containing HIV-1 integrase inhibitors.

    PubMed

    Zhao, Xue Zhi; Maddali, Kasthuraiah; Metifiot, Mathieu; Smith, Steven J; Vu, B Christie; Marchand, Christophe; Hughes, Stephen H; Pommier, Yves; Burke, Terrence R

    2011-05-15

    New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3'-processing. PMID:21493066

  2. 4-Amino-1H-1,2,4-triazol-1-ium nitrate

    PubMed Central

    Matulková, Irena; Císařová, Ivana; Němec, Ivan

    2011-01-01

    The non-centrosymmetric crystal structure of the novel semi-organic title compound, C2H5N4 +·NO3 −, is based on alternating layers of 4-amino-1H-1,2,4-triazolinium cations (formed by parallel chains of cations mediated by weak C—H⋯N hydrogen bonds) and nitrate anions inter­connected via linear and bifurcated N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds link the anions and cations. PMID:21522685

  3. Metallothionein 1 h tumour suppressor activity in prostate cancer is mediated by euchromatin methyltransferase 1

    PubMed Central

    Han, Yu-Chen; Zheng, Zhong-Liang; Zuo, Ze-Hua; Yu, Yan P; Chen, Rui; Tseng, George C; Nelson, Joel B; Luo, Jian-Hua

    2014-01-01

    Metallothioneins (MTs) are a group of metal binding proteins thought to play a role in the detoxification of heavy metals. Here we showed by microarray and validation analyses that MT1h, a member of MT, is down-regulated in many human malignancies. Low expression of MT1h was associated with poor clinical outcomes in both prostate and liver cancer. We found that the promoter region of MT1h was hypermethylated in cancer and that demethylation of the MT1h promoter reversed the suppression of MT1h expression. Forced expression of MT1h induced cell growth arrest, suppressed colony formation, retarded migration, and reduced invasion. SCID mice with tumour xenografts with inducible MT1h expression had lower tumour volumes as well as fewer metastases and deaths than uninduced controls. MT1h was found to interact with euchromatin histone methyltransferase 1 (EHMT1) and enhanced its methyltransferase activity on histone 3. Knocking down of EHMT1 or a mutation in MT1h that abrogates its interaction with EHMT1 abrogated MT1h tumour suppressor activity. This demonstrates tumour suppressor activity in a heavy metal binding protein that is dependent on activation of histone methylation. PMID:23355073

  4. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean

    PubMed Central

    Barraza, Aarón; Cabrera-Ponce, José L.; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation. PMID:26284093

  5. Co(III)-Carbene Radical Approach to Substituted 1H-Indenes.

    PubMed

    Das, Braja Gopal; Chirila, Andrei; Tromp, Moniek; Reek, Joost N H; Bruin, Bas de

    2016-07-20

    A new strategy for the catalytic synthesis of substituted 1H-indenes via metalloradical activation of o-cinnamyl N-tosyl hydrazones is presented, taking advantage of the intrinsic reactivity of a Co(III) carbene radical intermediate. The reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of functionalized 1H-indene derivatives. The cheap and easy to prepare low spin cobalt(II) complex [Co(II)(MeTAA)] (MeTAA = tetramethyltetraaza[14]annulene) proved to be the most active catalyst among those investigated, which demonstrates catalytic carbene radical reactivity for a nonporphyrin cobalt(II) complex, and for the first time catalytic activity of [Co(II)(MeTAA)] in general. The methodology has been successfully applied to a broad range of substrates, producing 1H-indenes in good to excellent yields. The metallo-radical catalyzed indene synthesis in this paper represents a unique example of a net (formal) intramolecular carbene insertion reaction into a vinylic C(sp(2))-H bond, made possible by a controlled radical ring-closure process of the carbene radical intermediate involved. The mechanism was investigated computationally, and the results were confirmed by a series of supporting experimental reactions. Density functional theory calculations reveal a stepwise process involving activation of the diazo compound leading to formation of a Co(III)-carbene radical, followed by radical ring-closure to produce an indanyl/benzyl radical intermediate. Subsequent indene product elimination involving a 1,2-hydrogen transfer step regenerates the catalyst. Trapping experiments using 2,2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) radical or dibenzoylperoxide (DBPO) confirm the involvement of cobalt(III) carbene radical intermediates. Electron paramagnetic resonance spectroscopic spin-trapping experiments using phenyl N-tert-butylnitrone (PBN) reveal the radical nature of the reaction. PMID

  6. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    PubMed Central

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  7. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  8. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  9. CHHC and 1H-1H Magnetization Exchange: Analysis by Experimental Solid-State NMR and 11-Spin Density-Matrix Simulations

    PubMed Central

    Aluas, Mihaela; Tripon, Carmen; Griffin, John M.; Filip, Xenia; Ladizhansky, Vladimir; Griffin, Robert G.; Brown, Steven P.; Filip, Claudiu

    2009-01-01

    A protocol is presented for correcting the effect of non-specific cross polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the 1H-1H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH2 or CH3 moiety. Experimental CHHC buildup curves are presented for L-Tyrosine.HCl samples where either all or only one in ten molecules are U-13C labeled. Good agreement between experiment and 11-spin SPINEVOLUTION simulation (including only isotropic 1H chemical shifts) is demonstrated for the initial buildup (tmix < 100 μs) of CHHC peak intensity corresponding to an intramolecular close (2.5 Å) H-H proximity. Differences in the initial CHHC buildup are observed between the 1 in 10 dilute and 100 % samples for cases where there is a close intermolecular H-H proximity in addition to a close intramolecular H-H proximity. For the dilute sample, CHHC cross peak intensities tended to significantly lower values for long mixing times (500 μs) as compared to the 100 % sample. This difference is explained as being due to the dependence of the limiting total magnetization on the ratio Nobs/Ntot between the number of protons that are directly attached to a 13C nucleus and hence contribute significantly to the observed 13C CHHC NMR signal, and the total number of 1H spins into the system. 1H-1H magnetization exchange curves extracted from CHHC spectra for the 100 % L-Tyrosine.HCl sample exhibit a clear sensitivity to the root sum squared dipolar coupling, with fast build-up being observed for the shortest intramolecular distances (2.5 Å) and slower, yet observable build-up for the longer intermolecular distances (up to 5 Å). PMID:19467890

  10. The complete genome sequence of the Arcobacter butzleri cattle isolate 7h1h

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arcobacter butzleri strain 7h1h was isolated in the UK from a clinically healthy dairy cow. The genome of this isolate was sequenced to completion. Here we present the annotation and analysis of the completed 7h1h genome, as well as comparison of this genome to the existing A. butzleri RM4018 and ED...

  11. Using Si(100) - 2 x 1:H as a Platform for Patterned Silicon Growth

    NASA Astrophysics Data System (ADS)

    Sztelle, Matthew M.; Schmucker, Scott W.; Lyding, Joseph W.

    2006-03-01

    An ultra-high vacuum scanning tunneling microscope (UHV-STM) is used to create patterns at the atomic level by desorbing hydrogen atoms from the Si(100) -- 2 x 1:H surface thereby creating a clean silicon template for selective area chemical vapor deposition (CVD). Disilane (Si2H6) gas, when introduced, repassivates the clean silicon pattern with an inert mix of hydride and silicon-hydride species. Subsequent layers can be grown through repeated patterning allowing controlled silicon growth at the nanometer scale. Amorphous silicon growth has been demonstrated at room temperature with nanometer scale control over feature sizes. Results will also be presented on our attempts to grow single crystal silicon features by performing these experiments at elevated temperatures to promote silicon surface diffusion.

  12. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  13. Synthesis, in vitro protoporphyrinogen oxidase inhibition, and herbicidal activity of N-(benzothiazol-5-yl)hexahydro-1H-isoindole-1,3-diones and N-(benzothiazol-5-yl)hexahydro-1H-isoindol-1-ones.

    PubMed

    Wu, Qiong-You; Jiang, Li-Li; Zuo, Yang; Wang, Zhi-Fang; Xi, Zhen; Yang, Guang-Fu

    2014-10-01

    Protoporphyrinogen oxidase (EC 1.3.3.4) is one of the most significant targets for a large family of herbicides. As part of our continuous efforts to search for novel protoporphyrinogen oxidase-inhibiting herbicides, N-(benzothiazol-5-yl)tetrahydroisoindole-1,3-dione was selected as a lead compound for structural optimization, leading to the syntheses of a series of novel N-(benzothiazol-5-yl)hexahydro-1H-isoindole-1,3-diones (1a-o) and N-(benzothiazol-5-yl)hexahydro-1H-isoindol-1-ones (2a-i). These newly prepared compounds were characterized by elemental analyses, (1) H NMR, and ESI-MS, and the structures of 1h and 2h were further confirmed by X-ray diffraction analyses. The bioassays indicated that some compounds displayed comparable or higher protoporphyrinogen oxidase inhibition activities in comparison with the commercial control. Very promising, compound 2a, ethyl 2-((6-fluoro-5-(4,5,6,7-tetrahydro-1-oxo-1H-isoindol-2(3H)-yl)benzo[d]thiazol-2-yl)-sulfanyl)acetate, was recognized as the most potent candidate with K(i) value of 0.0091 μm. Further greenhouse screening results demonstrated that some compounds exhibited good herbicidal activity against Chenopodium album at the dosage of 150 g/ha. PMID:24803371

  14. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    PubMed

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. PMID:26593470

  15. Transcriptional regulation of α1H T-type calcium channel under hypoxia.

    PubMed

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M; Wu, Songwei

    2014-10-01

    The low-voltage-activated T-type Ca(2+) channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5'-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site -1,173cacgc-1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  16. Transcriptional regulation of α1H T-type calcium channel under hypoxia

    PubMed Central

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.

    2014-01-01

    The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  17. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  18. Intermolecular Interactions between Eosin Y and Caffeine Using (1)H-NMR Spectroscopy.

    PubMed

    Okuom, Macduff O; Wilson, Mark V; Jackson, Abby; Holmes, Andrea E

    2013-12-31

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using (1)H-NMR, (1)H-COSY, and (1)H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  19. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  20. Crystal structure of (E)-2-[(2-bromopyridin-3-yl)methyl­idene]-6-meth­oxy-3,4-di­hydro­naphthalen-1(2H)-one and 3-[(E)-(6-meth­oxy-1-oxo-1,2,3,4-tetra­hydro­naphthalen-2-ylidene)meth­yl]pyridin-2(1H)-one

    PubMed Central

    Zingales, Sarah K.; Moore, Morgan E.; Goetz, Andrew D.; Padgett, Clifford W.

    2016-01-01

    The title compounds C17H14BrNO2, (I), and C17H15NO3, (II), were obtained from the reaction of 6-meth­oxy-3,4-di­hydro-2H-naphthalen-1-one and 2-bromo­nicotinaldehyde in ethanol. Compound (I) was the expected product and compound (II) was the oxidation product from air exposure. In the crystal structure of compound (I), there are no short contacts or hydrogen bonds. The structure does display π–π inter­actions between adjacent benzene rings and adjacent pyridyl rings. Compound (II) contains two independent mol­ecules, A and B, in the asymmetric unit; both are non-planar, the dihedral angles between the meth­oxy­benzene and 1H-pyridin-2-one mean planes being 35.07 (9)° in A and 35.28 (9)°in B. In each mol­ecule, the 1H-pyridin-2-one unit participates in inter­molecular N—H⋯O hydrogen bonding to another mol­ecule of the same type (A to A or B to B). The structure also displays π–π inter­actions between the pyridyl and the benzene rings of non-equivalent mol­ecules (viz., A to B and B to A). PMID:27555939

  1. 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution.

    PubMed

    Ramesh, V; Bradbury, J H

    1987-10-01

    The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in 2H2O by 1H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn2+) and the addition of Zn2+ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn2+ or not bound to Zn2+. The pK' values of the B5 and B10 histidines were determined in 60% 2H2O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for 1H NMR (approximately 1 mM) at 37 degrees C in 2H2O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni2+ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn2+. Addition of Co2+ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd2+ and of Cd2+ and Ca2+ produced changes that were similar to each other but were different from those observed on addition of Zn2+, probably due to the binding of Cd2+ and Ca2+ at glutamate B13. PMID:3310894

  2. /sup 1/H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution

    SciTech Connect

    Ramesh, V.; Bradbury, J.H.

    1987-10-01

    The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in /sup 2/H/sub 2/O by /sup 1/H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn/sup 2 +/) and the addition of Zn/sup 2 +/ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn/sup 2 +/ or not bound to Zn/sup 2 +/. The pK' values of the B5 and B10 histidines were determined in 60% /sup 2/H/sub 2/O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for /sup 1/H NMR (approximately 1 mM) at 37 degrees C in /sup 2/H/sub 2/O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni/sup 2 +/ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn/sup 2 +/. Addition of Co/sup 2 +/ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd/sup 2 +/ and of Cd/sup 2 +/ and Ca/sup 2 +/ produced changes that were similar to each other but were different from those observed on addition of Zn/sup 2 +/, probably due to the binding of Cd/sup 2 +/ and Ca/sup 2 +/ at glutamate B13.

  3. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  4. Regioselectively Controlled Synthesis of N-Substituted (Trifluoromethyl)pyrimidin-2(1H)-ones.

    PubMed

    da Silva, Andreia M P W; da Silva, Fabio M; Bonacorso, Helio G; Frizzo, Clarissa P; Martins, Marcos A P; Zanatta, Nilo

    2016-05-01

    A simple and regioselectively controlled method for the preparation of both 1,4- and 1,6-regioisomers of 1-substituted 4(6)-trifluoromethyl-pyrimidin-2(1H)-ones is described. Both regioisomers were synthesized from the cyclocondensation reaction of 4-substituted 1,1,1-trifluoro-4-methoxybut-3-en-2-ones: with nonsymmetric ureas for the 1-substituted 4-(trifluoromethyl)pyrimidin-2(1H)-ones (1,4-isomer) and with nonsymmetric 1-substituted 2-methylisothiourea sulfates for the synthesis of 1-substituted 6-(trifluoromethyl)pyrimidin-2(1H)-ones (1,6-isomer). Each method furnished only the respective isomer in very good yields. The structure of the products was assigned based on the (1)H and (13)C NMR as well as 2D HMBC spectral analysis. PMID:27070191

  5. Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting.

    PubMed

    Aliferis, Konstantinos A; Materzok, Sylwia; Paziotou, Georgia N; Chrysayi-Tokousbalides, Maria

    2009-08-01

    A validated method applying (1)H NMR fingerprinting for the study of metabolic changes caused in Lemna minor L. by various phytotoxic substances is presented. (1)H NMR spectra of crude extracts from untreated and treated colonies with the herbicides glyphosate, mesotrione, norflurazon, paraquat and the phytotoxin pyrenophorol were subjected to multivariate analyses for detecting differences between groups of treatments. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were carried out in order to discriminate and classify treatments according to the observed changes in the metabolome of the plant. Although the compounds at the concentrations used did not cause macroscopically observable symptoms of phytotoxicity, characteristic metabolic changes were detectable by analyzing (1)H NMR spectra. Analyses results revealed that metabonomics applying (1)H NMR fingerprinting is a potential method for the investigation of toxicological effects of xenobiotics on L. minor, and possibly on other duckweed species, helping in the understanding of such interactions. PMID:19443011

  6. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  7. One-Pot Synthesis of Substituted Trifluoromethylated 2,3-Dihydro-1H-imidazoles.

    PubMed

    Deutsch, Amrei; Jessen, Christoph; Deutsch, Carl; Karaghiosoff, Konstantin; Hoffmann-Röder, Anja

    2016-07-15

    An operationally simple one-pot reaction for the preparation of a novel class of racemic trifluoromethylated 2,3-dihydro-1H-imidazoles derived from electron-poor N,O-acetals and aryl Grignard reagents is described. In addition, access to highly functionalized 2-trifluoromethyl-2,3-dihydro-1H-imidazoles was accomplished by reaction of N-aryl hemiaminal ethers and N-aryl trifluoroethylamines in the presence of an excess of n-butyllithium. PMID:27359260

  8. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  9. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2. PMID:26878852

  10. [(1)H] magnetic resonance spectroscopy of urine: diagnosis of a guanidinoacetate methyl transferase deficiency case.

    PubMed

    Tassini, Maria; Zannolli, Raffaella; Buoni, Sabrina; Engelke, Udo; Vivi, Antonio; Valensin, Gianni; Salomons, Gajja S; De Nicola, Anna; Strambi, Mirella; Monti, Lucia; Morava, Eva; Wevers, Ron A; Hayek, Joseph

    2010-01-01

    For the first time, the use of urine [(1)H] magnetic resonance spectroscopy has allowed the detection of 1 case of guanidinoacetate methyl transferase in a database sample of 1500 pediatric patients with a diagnosis of central nervous system impairment of unknown origin. The urine [(1)H] magnetic resonance spectroscopy of a 9-year-old child, having severe epilepsy and nonprogressive mental and motor retardation with no apparent cause, revealed a possible guanidinoacetic acid increase. The definitive assignment of guanidinoacetic acid was checked by addition of pure substance to the urine sample and by measuring [(1)H]-[(1)H] correlation spectroscopy. Diagnosis of guanidinoacetate methyl transferase deficiency was further confirmed by liquid chromatography-mass spectrometry, brain [(1)H] magnetic resonance spectroscopy, and mutational analysis of the guanidinoacetate methyl transferase gene. The replacement therapy was promptly started and, after 1 year, the child was seizure free. We conclude that for this case, urine [(1)H] magnetic resonance spectroscopy screening was able to diagnose guanidinoacetate methyl transferase deficiency. PMID:19461121

  11. Higher energy electronic transitions of HC(2n+1)H+ (n=2-7) and HC(2n+1)H (n=4-7) in neon matrices.

    PubMed

    Fulara, Jan; Nagy, Adam; Garkusha, Iryna; Maier, John P

    2010-07-14

    Electronic absorption spectra of linear HC(2n+1)H(+) (n=2-7) were recorded in 6 K neon matrices following their mass-selective deposition. Four new electronic band systems are identified; the strongest E (2)Pi(g/u)<--X (2)Pi(u/g) lies in the UV and the second most intense C (2)Pi(g/u)<--X (2)Pi(u/g) is located in the visible range. The known A (2)Pi(g/u)<--X (2)Pi(u/g) absorption is an order of magnitude weaker than C (2)Pi(g/u)<--X (2)Pi(u/g). Transitions to the B and D states are also discussed. The wavelengths of the HC(2n+1)H(+) (n=2-7) electronic systems obey a linear relation as a function of the size of the cations, similar to other carbon chains. The B (3)Sigma(u)(-)<--X (3)Sigma(g)(-) transition in the UV of neutral HC(2n+1)H (n=4-7) has also been identified upon photobleaching of the cations trapped in the matrices. PMID:20632752

  12. Construction of recombinant pEGFP-N1-hPer2 plasmid and its expression in osteosarcoma cells

    PubMed Central

    CHENG, ANYUAN; ZHANG, YAN; MEI, HONGJUN; FANG, SHUO; JI, PENG; YANG, JIAN; YU, LING; GUO, WEICHUN

    2016-01-01

    The aim of this study was to construct the eukaryotic expression vector pEGFP-N1-hPer2 and assess its expression in the human osteosarcoma cell line MG63. Total mRNA was extracted from human osteosarcoma MG63 cells, the human period 2 (hPer2) gene was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into the pEGFP-N1 vector, then the recombinant pEGFP-N1-hPer2 plasmid was constructed and transfected into MG63 cells using Lipofectamine 2000. The expression of hPer2 in MG63 cells was measured by quantitative RT-PCR and western blot analysis. The accurate construction of pEGFP-N1-hPer2 was verified by double enzyme digestion and DNA sequencing. hPer2 gene expression in the transfected cells was assessed by RT-qPCR and western blot analysis. In conclusion, the recombinant pEGFP-N1-hPer2 plasmid was constructed successfully, and expressed effectively in MG63 cells. PMID:27073550

  13. 14N quadrupole resonance and 1H T1 dispersion in the explosive RDX.

    PubMed

    Smith, John A S; Blanz, Martin; Rayner, Timothy J; Rowe, Michael D; Bedford, Simon; Althoefer, Kaspar

    2011-12-01

    The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2∗ of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels. PMID:21978662

  14. Diaqua­bis­{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl-κN)-1H-1,2,4-triazol-1-ido-κN 1}zinc

    PubMed Central

    Wang, You-Song; Qiu, Guang-Mei; Wang, Cui-Juan

    2012-01-01

    The centrosymmetric mol­ecule of the title compound, [Zn(C16H11N6)2(H2O)2], contains one Zn2+ ion located on a center of symmetry, two 3-[4-(1H-imidazol-1-yl)phen­yl]-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ide (Ippyt) ligands and two coordinating water mol­ecules. The ZnII ion is six-coordinated in a distorted octa­hedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two water mol­ecules. Adjacent units are inter­connected though O—H⋯N hydrogen bonds, forming a three-dimensional network. PMID:22969477

  15. Neutron-hole states in 45Ar from 1H(46Ar, d) 45Ar reactions

    NASA Astrophysics Data System (ADS)

    Lu, F.; Lee, Jenny; Tsang, M. B.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Lynch, W. G.; Rogers, A. M.; Sanetullaev, A.; Sun, Z. Y.; Youngs, M.; Charity, R. J.; Sobotka, L. G.; Famiano, M.; Hudan, S.; Horoi, M.; Ye, Y. L.

    2013-07-01

    To improve the effective interactions in the pf shell, it is important to measure the single-particle and single-hole states near the N = 28 shell gap. In this paper, the neutron spectroscopic factors of hole states from the unstable neutron-rich 45Ar (Z = 18,N = 27) nucleus have been studied using the 1H(46Ar,d) 45Ar transfer reaction in inverse kinematics. Comparison of our results with the particle states of 45Ar produced in 2H(44Ar, p) 45Ar reaction shows that the two reactions populate states with different angular momenta. Using the angular distributions, we are able to confirm the spin assignments of four low-lying states of 45Ar. These are the ground state (f7/2), the first-excited state (p3/2), and the s1/2 and d3/2 states. While large basis shell-model predictions describe spectroscopic properties of the ground and p3/2 states very well, they fail to describe the s1/2 and d3/2 hole states.

  16. Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla.

    PubMed

    Grgac, Ksenija; van Zijl, Peter C M; Qin, Qin

    2013-10-01

    Knowledge of blood (1)H2O T1 is critical for perfusion-based quantification experiments such as arterial spin labeling and cerebral blood volume-weighted MRI using vascular space occupancy. The dependence of blood (1)H2O T1 on hematocrit fraction (Hct) and oxygen saturation fraction (Y) was determined at 7 T using in vitro bovine blood in a circulating system under physiological conditions. Blood (1)H2O R1 values for different conditions could be readily fitted using a two-compartment (erythrocyte and plasma) model, which are described by a monoexponential longitudinal relaxation rate constant dependence. It was found that T1 = 2171 ± 39 ms for Y = 1 (arterial blood) and 2010 ± 41 ms for Y = 0.6 (venous blood), for a typical Hct of 0.42. The blood (1)H2O T1 values in the normal physiological range (Hct from 0.35 to 0.45, and Y from 0.6 to 1.0) were determined to range from 1900 to 2300 ms. The influence of oxygen partial pressure (pO2) and the effect of plasma osmolality for different anticoagulants were also investigated. It is discussed why blood (1)H2O T1 values measured in vivo for human blood may be about 10-20% larger than found in vitro for bovine blood at the same field strength. PMID:23169066

  17. A statistical approach for analyzing the development of 1H multiple-quantum coherence in solids.

    PubMed

    Mogami, Yuuki; Noda, Yasuto; Ishikawa, Hiroto; Takegoshi, K

    2013-05-21

    A novel statistical approach for analyzing (1)H multiple-quantum (MQ) spin dynamics in so-called spin-counting solid-state NMR experiments is presented. The statistical approach is based on the percolation theory with Monte Carlo methods and is examined by applying it to the experimental results of three solid samples having unique hydrogen arrangement for 1-3 dimensions: the n-alkane/d-urea inclusion complex as a one-dimensional (1D) system, whose (1)H nuclei align approximately in 1D, and magnesium hydroxide and adamantane as a two-dimensional (2D) and a three-dimensional (3D) system, respectively. Four lattice models, linear, honeycomb, square and cubic, are used to represent the (1)H arrangement of the three samples. It is shown that the MQ dynamics in adamantane is consistent with that calculated using the cubic lattice and that in Mg(OH)2 with that calculated using the honeycomb and the square lattices. For n-C20H42/d-urea, these 4 lattice models fail to express its result. It is shown that a more realistic model representing the (1)H arrangement of n-C20H42/d-urea can describe the result. The present approach can thus be used to determine (1)H arrangement in solids. PMID:23580152

  18. Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H

    PubMed Central

    Shen, Tao; Sun, Chuang; Zhang, Zhengmao; Xu, Ningyi; Duan, Xueyan; Feng, Xin-Hua; Lin, Xia

    2014-01-01

    Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of structurally related signaling proteins that regulate a wide array of cellular functions. The key step in BMP signal transduction is the BMP receptor-mediated phosphorylation of transcription factors Smad1, 5, and 8 (collectively Smad1/5/8), which leads to the subsequent activation of BMP-induced gene transcription in the nucleus. In this study, we describe the identification and characterization of PPM1H as a novel cytoplasm-localized Smad1/5/8-specific phosphatase. PPM1H directly interacts with Smad1/5/8 through its Smad-binding domain, and dephosphorylates phospho-Smad1/5/8 (P-Smad1/5/8) in the cytoplasm. Ectopic expression of PPM1H attenuates BMP signaling, whereas loss of PPM1H activity or expression greatly enhances BMP-dependent gene regulation and mesenchymal differentiation. In conclusion, this study suggests that PPM1H acts as a gatekeeper to prevent excessive BMP signaling through dephosphorylation and subsequent nuclear exclusion of P-Smad1/5/8 proteins. PMID:24732009

  19. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents.

    PubMed

    Fortes, Margiani P; da Silva, Paulo B N; da Silva, Teresinha G; Kaufman, Teodoro S; Militão, Gardenia C G; Silveira, Claudio C

    2016-08-01

    A novel series of twenty 3-thiocyanato-1H-indoles, carrying diversification at positions N-1, C-2 and C-5 of the heterocyclic core, were synthesized; their antiproliferative activity against four human cancer cell lines (HL60, HEP-2, NCI-H292 and MCF-7) was evaluated, employing doxorubicin as positive control. Indole, N-methylindole and 2-(4-chlorophenyl)-N-methylindole demonstrated to be essentially inactive, whereas several of their congener 3-thiocyanato-1H-indoles displayed good to excellent levels of potency (IC50 ≤ 6 μM), while being non-hemolytic. N-Phenyl-3-thiocyanato-1H-indole and 1-methyl-2-(4-chlorophenyl)-3-thiocyanato-1H-indole showed good to high potency against all the cell lines. On the other side, the N-(4-chlorophenyl)-, 2-(4-chlorophenyl)- and 2-phenyl- 3-thiocyanato-1H-indole derivatives were slightly less active against the test cell lines. Overall, these results suggest that the indole-3-thiocyanate motif can be suitably decorated to afford highly cytotoxic compounds and that the substituted indole can be employed as a useful scaffold toward more potent compounds. PMID:27116711

  20. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  1. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  2. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  3. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  4. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  5. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  6. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  7. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  8. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  9. 1H-1,2,4-diazaphospholes: Synthesis, structural characterization, and DFT calculation

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Wen; Ding, Ling-Yan; Wang, Bing-Qiang; He, Yao-Yun; Guo, Yue; Jia, Xue-Feng; Zheng, Wenjun

    2014-01-01

    A few 1H-1,2,4-diazaphospholes H[3,5-R2dp] (R = methyl (5a), p-tolyl (5b), 1-naphthyl (5c), 2-furanyl (5d), 2-thienyl (5e), and isopropyl (5f)) were prepared and structurally characterized by a substantial experimental modification of the synthetic protocol. The molecules of all compounds are linked into oligomers via the bridges of NH⋯N hydrogen bonds in solid state. The tetrameric feature of 5a, and 5d-f represents a new motif of hydrogen-bonded 1H-1,2,4-diazaphospholes in solid state. The DFT calculation at the B3LYP/6-311++G** level suggested the possible proton disorder with intermolecular solid state proton transfer (ISSPT) between 1H-1,2,4-diazaphosphole rings.

  10. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole.

    PubMed

    Saglam, S; Disli, A; Erdogdu, Y; Marchewka, M K; Kanagathara, N; Bay, B; Güllüoğlu, M T

    2015-01-25

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, (1)H NMR, (13)C-APT and LC-MS spectroscopy techniques. The FT-IR, (1)H NMR and (13)C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G(**), cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G(**) basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities. PMID:25171051

  11. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole

    NASA Astrophysics Data System (ADS)

    Saglam, S.; Disli, A.; Erdogdu, Y.; Marchewka, M. K.; Kanagathara, N.; Bay, B.; Güllüoğlu, M. T.

    2015-01-01

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, 1H NMR, 13C-APT and LC-MS spectroscopy techniques. The FT-IR, 1H NMR and 13C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G** basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities.

  12. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  13. Amino­silanes derived from 1H-benzimidazole-2(3H)-thione

    PubMed Central

    Palomo-Molina, Juliana; García-Báez, Efrén V.; Contreras, Rosalinda; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-01-01

    Two new mol­ecular structures, namely 1,3-bis­(tri­methyl­silyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-tri­methyl­silyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π inter­actions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R 2 2(8) rings via N—H⋯S inter­actions, along with parallel π–π inter­actions between imidazole and benzene rings. PMID:26322611

  14. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis.

    PubMed

    Choi, Young Hae; Kim, Hye Kyong; Hazekamp, Arno; Erkelens, Cornelis; Lefeber, Alfons W M; Verpoorte, Robert

    2004-06-01

    The metabolomic analysis of 12 Cannabis sativa cultivars was carried out by 1H NMR spectroscopy and multivariate analysis techniques. Principal component analysis (PCA) of the 1H NMR spectra showed a clear discrimination between those samples by principal component 1 (PC1) and principal component 3 (PC3) in cannabinoid fraction. The loading plot of PC value obtained from all 1)H NMR signals shows that Delta9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA) are important metabolites to differentiate the cultivars from each other. The discrimination of the cultivars could also be obtained from a water extract containing carbohydrates and amino acids. The level of sucrose, glucose, asparagine, and glutamic acid are found to be major discriminating metabolites of these cultivars. This method allows an efficient differentiation between cannabis cultivars without any prepurification steps. PMID:15217272

  15. Protein conformational exchange measured by 1H R1ρ relaxation dispersion of methyl groups.

    PubMed

    Weininger, Ulrich; Blissing, Annica T; Hennig, Janosch; Ahlner, Alexandra; Liu, Zhihong; Vogel, Hans J; Akke, Mikael; Lundström, Patrik

    2013-09-01

    Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for (1)H spins in methyl (13)CHD2 groups, which improves the characterization of fast exchange processes. The influence of (1)H-(1)H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different (1)H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any (1)H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by (1)H and (13)C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results. PMID:23904100

  16. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  17. Proton Fingerprints Portray Molecular Structures: Enhanced Description of the 1H NMR Spectra of Small Molecules

    PubMed Central

    Napolitano, José G.; Lankin, David C.; McAlpine, James B.; Niemitz, Matthias; Korhonen, Samuli-Petrus; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The characteristic signals observed in NMR spectra encode essential information on the structure of small molecules. However, extracting all of this information from complex signal patterns is not trivial. This report demonstrates how computer-aided spectral analysis enables the complete interpretation of 1D 1H NMR data. The effectiveness of this approach is illustrated with a set of organic molecules, for which replicas of their 1H NMR spectra were generated. The potential impact of this methodology on organic chemistry research is discussed. PMID:24007197

  18. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools.

    PubMed

    Cuny, M; Vigneau, E; Le Gall, G; Colquhoun, I; Lees, M; Rutledge, D N

    2008-01-01

    To discriminate orange juice from grapefruit juice in a context of fraud prevention, (1)H NMR data were submitted to different treatments to extract informative variables which were then analysed using multivariate techniques. Averaging contiguous data points of the spectrum followed by logarithmic transformation improved the results of the data analysis. Moreover, supervised variable selection methods gave better rates of classification of the juices into the correct groups. Last, independent-component analysis gave better classification results than principal-component analysis. Hence, ICA may be an efficient chemometric tool to detect differences in the (1)H NMR spectra of similar samples, and so may be useful for authentication of foods. PMID:18026939

  19. Binding of Sulfonamide Antibiotics to CTABr Micelles Characterized Using (1)H NMR Spectroscopy.

    PubMed

    Sarker, Ashish K; Cashin, Patrick J; Balakrishnan, Vimal K; Exall, Kirsten; Buncel, Erwin; Brown, R Stephen

    2016-08-01

    Interactions of nine sulfonamide antibiotics (sulfadoxine, sulfathiazole, sulfamethoxazole, sulfamerazine, sulfadiazine, sulfamethazine, sulfacetamide, sulfaguanidine, and sulfanilamide) with cetyltrimethylamonium bromide (CTABr) micelles were examined using (1)H NMR spectroscopy. Seven of the nine provided a significant change in the (1)H NMR chemical shift such that the magnitude and direction (upfield vs downfield) of the chemical shift could be used to propose a locus and orientation of the sulfonamide within the micelle structure. The magnitude of the chemical shift was used to estimate the binding constant for seven sulfonamides with CTABr micelles, providing values and an overall pattern consistent with previous studies of these sulfonamides. PMID:27391918

  20. The (1) H NMR spectrum of pyrazole in a nematic phase.

    PubMed

    Provasi, Patricio; Jimeno, María Luisa; Alkorta, Ibon; Reviriego, Felipe; Elguero, José; Jokisaari, Jukka

    2016-08-01

    The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26947581

  1. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  2. Dichloridobis{2-[(1H-1,2,4-triazol-1-yl)meth­yl]-1H-benzimidazole-κN 3}­zinc(II)

    PubMed Central

    Zhang, Wei-Peng; Zhang, Jiao-Lin; Hao, Bao-Lian; Yang, Huai-Xia

    2013-01-01

    In the title complex, [ZnCl2(C10H9N5)2], the ZnII ion is coordinated by two N atoms from two 2-[(1H-1,2,4-triazol-1-yl)meth­yl]-1H-benzimidazole (tmb) ligands and by two chloride ligands in a slightly distorted tetra­hedral geometry. In the tmb ligands, the benzimidazole rings systems are essentially planar, with maximum deviations from the mean plane of 0.021 (3) and 0.030 (3) Å, and form dihedral angles of 73.2 (2) and 83.5 (2)° with the triazole rings. In the crystal, N—H⋯N hydrogen bonds link complex mol­ecules into chains along [010]. In addition, weak C—H⋯Cl and C—H⋯N hydrogen bonds complete a three-dimensional network. Two weak intra­molecular C—H⋯Cl hydrogen bonds are also observed. PMID:23723759

  3. Hydrogen incorporation into high temperature protonic conductors: Nuclear microprobe microanalysis by means of 1H(p, p) 1H scattering

    NASA Astrophysics Data System (ADS)

    Berger, P.; Gallien, J.-P.; Khodja, H.; Daudin, L.; Berger, M.-H.; Sayir, A.

    2006-08-01

    Protonic conductivity of some solid state materials at an intermediate temperature range (400-600 °C), referred as high temperature protonic conductor (HTPC), suggests their application as electrolytes in electrochemical cells, batteries, sensors, etc. Among them, some perovskites can be protonic and electronic conductors. Several obstacles remain to achieve the full potential of these ceramic membranes, among them the lack of measurement techniques and of an unambiguous model for conductivity. A precise understanding of the transport mechanisms requires local profiling of hydrogen concentrations within the microstructure of the ceramic. We have used the nuclear microprobe of the Laboratoire Pierre SÜE to investigate quantitatively the spatial distribution of hydrogen after water heat treatment of textured perovskites, SrCe0.9Y0.1O3-δ and Sr3Ca1+xNb2-xO9-δ, x = 0.18, synthesized according to a melt-process developed at NASA GRC. A not very common method has been developed for hydrogen measurements in thin samples, 1H(p, p)1H elastic recoil coincidence spectrometry (ERCS). Early experiments have evidenced hydrogen concentration enhancement within grain boundaries.

  4. Elevated Glutamatergic Compounds in Pregenual Anterior Cingulate in Pediatric Autism Spectrum Disorder Demonstrated by 1H MRS and 1H MRSI

    PubMed Central

    Bejjani, Anthony; O'Neill, Joseph; Kim, John A.; Frew, Andrew J.; Yee, Victor W.; Ly, Ronald; Kitchen, Christina; Salamon, Noriko; McCracken, James T.; Toga, Arthur W.; Alger, Jeffry R.; Levitt, Jennifer G.

    2012-01-01

    Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy (1H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging (1H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD. PMID:22848344

  5. 40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 6-Methoxy-1H-benz isoquinoline-2... New Uses for Specific Chemical Substances § 721.9078 6-Methoxy-1H-benz isoquinoline-2 -dione... substance identified generically as 6-methoxy-1H-benz isoquinoline-2 -dione derivative (PMN P-00-1205)...

  6. 32 CFR 1630.15 - Class 1-H: Registrant not subject to processing for induction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for induction. 1630.15 Section 1630.15 National Defense Other Regulations Relating to National Defense... induction. In Class 1-H shall be placed any registrant who is not eligible for Class 1-A and is not currently subject to processing for induction....

  7. Synthesis of 1H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis.

    PubMed

    Wang, Qiang; Li, Xingwei

    2016-05-01

    Nitrosobenzenes have been used as a convenient aminating reagent for the efficient synthesis of 1H-indazoles via rhodium and copper catalyzed C-H activation and C-N/N-N coupling. The reaction occurred under redox-neutral conditions with high efficiency and functional group tolerance. Moreover, a rhodacyclic imidate complex has been identified as a key intermediate. PMID:27082502

  8. 1H NMR determination of urinary betaine in patients with premature vascular disease and mild homocysteinemia.

    PubMed

    Lundberg, P; Dudman, N P; Kuchel, P W; Wilcken, D E

    1995-02-01

    Urinary N,N,N-trimethylglycine (betaine) and N,N-dimethylglycine (DMG) have been identified and quantified for clinical purposes by proton nuclear magnetic resonance (1H NMR) measurement in previous studies. We have assessed these procedures by using both one-dimensional (1-D) and 2-D NMR spectroscopy, together with pH titration of urinary extracts to help assign 1H NMR spectral peaks. The betaine calibration curve linearity was excellent (r = 0.997, P = 0.0001) over the concentration range 0.2-1.2 mmol/L, and CVs for replicate betaine analyses ranged from 7% (n = 10) at the lowest concentration to 1% (n = 9) at the highest. The detection limit for betaine was < 15 mumol/L. Urinary DMG concentrations were substantially lower than those of betaine. Urinary betaine and DMG concentrations measured by 1H NMR spectroscopy from 13 patients with premature vascular disease and 17 normal controls provided clinically pertinent data. We conclude that 1H NMR provides unique advantages as a research tool for determination of urinary betaine and DMG concentrations. PMID:7533065

  9. Aminosilanes derived from 1H-benzimidazole-2(3H)-thione

    SciTech Connect

    Palomo-Molina, Juliana; García-Báez, Efrén V.; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-08-12

    In two trimethylsilyl-substituted 1H-benzimidazole-2(3H)-thiones, noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe{sub 3} groups form helicoidal arrangements in one, and dimerization results in the formation of R{sub s} {sup 2}(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings, in the second compound. Two new molecular structures, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, C{sub 13}H{sub 22}N{sub 2}SSi{sub 2}, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, C{sub 10}H{sub 14}N{sub 2}SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe{sub 3} groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R{sub 2}{sup 2}(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings.

  10. Scalable synthesis of quaterrylene: solution-phase 1H NMR spectroscopy of its oxidative dication.

    PubMed

    Thamatam, Rajesh; Skraba, Sarah L; Johnson, Richard P

    2013-10-14

    Quaterrylene is prepared in a single reaction and high yield by Scholl-type coupling of perylene, utilizing trifluoromethanesulfonic acid as catalyst and DDQ or molecular oxygen as oxidant. Dissolution in 1 M triflic acid/dichloroethane with sonication yields the aromatic quaterrylene oxidative dication, which is characterized by its (1)H NMR spectrum. PMID:23999880

  11. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images. PMID:25810146

  12. 1H NMR detection of small molecules in human urine with a deep cavitand synthetic receptor.

    PubMed

    Ryan, Daniel A; Rebek, Julius

    2013-02-21

    A water-soluble deep cavitand recognized alkylammonium salts, including the drug amantadine hydrochloride, in spiked samples of human urine. The signals of the guests are detected by (1)H NMR upfield of 0 ppm and so occur in a spectroscopic window that is outside of the normal region and distinct from the signals of the biofluid components. PMID:23304698

  13. Documentation of ice shapes on the main rotor of a UH-1H helicopter in hover

    NASA Technical Reports Server (NTRS)

    Lee, J. D.; Harding, R.; Palko, R. L.

    1984-01-01

    A helicopter icing flight test program in the hover mode was conducted with a UH-1H aircraft. The ice formations were documented after landing by means of silicone rubber molds, stereo photography and outline tracings for later use in aerodynamic analyses. The documentation techniques are described and the results presented for a typical flight.

  14. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1.

    PubMed

    Strickland, Alleene V; Schabhüttl, Maria; Offenbacher, Hans; Synofzik, Matthis; Hauser, Natalie S; Brunner-Krainz, Michaela; Gruber-Sedlmayr, Ursula; Moore, Steven A; Windhager, Reinhard; Bender, Benjamin; Harms, Matthew; Klebe, Stephan; Young, Peter; Kennerson, Marina; Garcia, Avencia Sanchez Mejias; Gonzalez, Michael A; Züchner, Stephan; Schule, Rebecca; Shy, Michael E; Auer-Grumbach, Michaela

    2015-09-01

    Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways. PMID:26100331

  15. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  16. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  17. High resolution 1H nuclear magnetic resonance of a transmembrane peptide.

    PubMed Central

    Davis, J. H.; Auger, M.; Hodges, R. S.

    1995-01-01

    Although the strong 1H-1H dipolar interaction is known to result in severe homogeneous broadening of the 1H nuclear magnetic resonance (NMR) spectra of ordered systems, in the fluid phase of biological and model membranes the rapid, axially symmetric reorientation of the molecules about the local bilayer normal projects the dipolar interaction onto the motional symmetry axis. Because the linewidth then scales as (3 cos2 theta-1)/2, where theta is the angle between the local bilayer normal and the magnetic field, the dipolar broadening has been reduced to an "inhomogeneous" broadening by the rapid axial reorientation. It is then possible to obtain high resolution 1H-NMR spectra of membrane components by using magic angle spinning (MAS). Although the rapid axial reorientation effectively eliminates the homogeneous dipolar broadening, including that due to n = 0 rotational resonances, the linewidths observed in both lipids and peptides are dominated by low frequency motions. For small peptides the most likely slow motions are either a "wobble" or reorientation of the molecular diffusion axis relative to the local bilayer normal, or the reorientation of the local bilayer normal itself through surface undulations or lateral diffusion over the curved surface. These motions render the peptide 1H-NMR lines too broad to be observed at low spinning speeds. However, the linewidths due to these slow motions are very sensitive to spinning rate, so that at higher speeds the lines become readily visible. The synthetic amphiphilic peptide K2GL20K2A-amide (peptide-20) has been incorporated into bilayers of 1,2-di-d 27-myristoyl-sn-glycero-3-phosphocholine (DMPC-d54) and studied by high speed 1H-MAS-NMR. The linewidths observed for this transbilayer peptide, although too broad to be observable at spinning rates below -5 kHz, are reduced to 68 Hz at a spinning speed of 14 kHz (at 500C). Further improvements in spinning speed and modifications in sample composition designed to reduce

  18. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  19. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  20. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy

    PubMed Central

    Harms, M.B.; Ori-McKenney, K.M.; Scoto, M.; Tuck, E.P.; Bell, S.; Ma, D.; Masi, S.; Allred, P.; Al-Lozi, M.; Reilly, M.M.; Miller, L.J.; Jani-Acsadi, A.; Pestronk, A.; Shy, M.E.; Muntoni, F.; Vallee, R.B.

    2012-01-01

    Objective: To identify the gene responsible for 14q32-linked dominant spinal muscular atrophy with lower extremity predominance (SMA-LED, OMIM 158600). Methods: Target exon capture and next generation sequencing was used to analyze the 73 genes in the 14q32 linkage interval in 3 SMA-LED family members. Candidate gene sequencing in additional dominant SMA families used PCR and pooled target capture methods. Patient fibroblasts were biochemically analyzed. Results: Regional exome sequencing of all candidate genes in the 14q32 interval in the original SMA-LED family identified only one missense mutation that segregated with disease state—a mutation in the tail domain of DYNC1H1 (I584L). Sequencing of DYNC1H1 in 32 additional probands with lower extremity predominant SMA found 2 additional heterozygous tail domain mutations (K671E and Y970C), confirming that multiple different mutations in the same domain can cause a similar phenotype. Biochemical analysis of dynein purified from patient-derived fibroblasts demonstrated that the I584L mutation dominantly disrupted dynein complex stability and function. Conclusions: We demonstrate that mutations in the tail domain of the heavy chain of cytoplasmic dynein (DYNC1H1) cause spinal muscular atrophy and provide experimental evidence that a human DYNC1H1 mutation disrupts dynein complex assembly and function. DYNC1H1 mutations were recently found in a family with Charcot-Marie-Tooth disease (type 2O) and in a child with mental retardation. Both of these phenotypes show partial overlap with the spinal muscular atrophy patients described here, indicating that dynein dysfunction is associated with a range of phenotypes in humans involving neuronal development and maintenance. PMID:22459677

  1. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments. PMID:25808615

  2. Crystal structures of the two salts 2-methyl-1H-imidazol-3-ium nitrate–2-methyl-1H-imidazole (1/1) and 2-methyl-1H-imidazol-3-ium nitrate

    PubMed Central

    Diop, Mouhamadou Birame; Diop, Libasse; Maris, Thierry

    2016-01-01

    The title salts, C4H7N2 +·NO3 −·C4H6N2, (I), and C4H7N2 +·NO3 −, (II), were obtained from solutions containing 2-methyl­imidazole and nitric acid in different concentrations. In the crystal structure of salt (I), one of the –NH H atoms of the imidazole ring shows half-occupancy, hence only every second mol­ecule is in its cationic form. The nitrate anion in this structure lies on a twofold rotation axis. The neutral 2-methyl­imidazole mol­ecule and the 2-methyl-1H-imidazol-3-ium cation inter­act through N—H⋯N hydrogen bonds to form [(C4H6N2)⋯(C4H7N2)+] pairs. These pairs are linked with two nitrate anions on both sides through bifurcated N—H⋯(O,O) hydrogen bonds into chains running parallel to [001]. In the crystal structure of salt (II), the C4H7N2 + cation and the NO3 − anion are both located on a mirror plane, leading to a statistical disorder of the methyl H atoms. The cations and anions again inter­act through bifurcated N—H⋯(O,O) hydrogen bonds, giving rise to the formation of chains consisting of alternating anions and cations parallel to [100]. PMID:27375869

  3. Crystal structures of the two salts 2-methyl-1H-imidazol-3-ium nitrate-2-methyl-1H-imidazole (1/1) and 2-methyl-1H-imidazol-3-ium nitrate.

    PubMed

    Diop, Mouhamadou Birame; Diop, Libasse; Maris, Thierry

    2016-04-01

    The title salts, C4H7N2 (+)·NO3 (-)·C4H6N2, (I), and C4H7N2 (+)·NO3 (-), (II), were obtained from solutions containing 2-methyl-imidazole and nitric acid in different concentrations. In the crystal structure of salt (I), one of the -NH H atoms of the imidazole ring shows half-occupancy, hence only every second mol-ecule is in its cationic form. The nitrate anion in this structure lies on a twofold rotation axis. The neutral 2-methyl-imidazole mol-ecule and the 2-methyl-1H-imidazol-3-ium cation inter-act through N-H⋯N hydrogen bonds to form [(C4H6N2)⋯(C4H7N2)(+)] pairs. These pairs are linked with two nitrate anions on both sides through bifurcated N-H⋯(O,O) hydrogen bonds into chains running parallel to [001]. In the crystal structure of salt (II), the C4H7N2 (+) cation and the NO3 (-) anion are both located on a mirror plane, leading to a statistical disorder of the methyl H atoms. The cations and anions again inter-act through bifurcated N-H⋯(O,O) hydrogen bonds, giving rise to the formation of chains consisting of alternating anions and cations parallel to [100]. PMID:27375869

  4. Solution NMR Experiment for Measurement of (15)N-(1)H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes.

    PubMed

    Eletsky, Alexander; Pulavarti, Surya V S R K; Beaumont, Victor; Gollnick, Paul; Szyperski, Thomas

    2015-09-01

    NMR residual dipolar couplings (RDCs) are exquisite probes of protein structure and dynamics. A new solution NMR experiment named 2D SE2 J-TROSY is presented to measure N-H RDCs for proteins and supramolecular complexes in excess of 200 kDa. This enables validation and refinement of their X-ray crystal and solution NMR structures and the characterization of structural and dynamic changes occurring upon complex formation. Accurate N-H RDCs were measured at 750 MHz (1)H resonance frequency for 11-mer 93 kDa (2)H,(15)N-labeled Trp RNA-binding attenuator protein tumbling with a correlation time τc of 120 ns. This is about twice as long as that for the most slowly tumbling system, for which N-H RDCs could be measured, so far, and corresponds to molecular weights of ∼200 kDa at 25 °C. Furthermore, due to the robustness of SE2 J-TROSY with respect to residual (1)H density from exchangeable protons, increased sensitivity at (1)H resonance frequencies around 1 GHz promises to enable N-H RDC measurement for even larger systems. PMID:26293598

  5. Prospective Motion Correction for Single-Voxel 1H MR Spectroscopy

    PubMed Central

    Keating, Brian; Deng, Weiran; Roddey, J. Cooper; White, Nathan; Dale, Anders; Stenger, V. Andrew; Ernst, Thomas

    2010-01-01

    Head motion during 1H MR spectroscopy (MRS) acquisitions may compromise the quality and reliability of in vivo metabolite measurements. Therefore, a 3-plane image-based motion tracking module was integrated into a single-voxel 1H MRS (PRESS) sequence. A series of 3 orthogonal spiral navigator images were acquired immediately prior to the MRS water suppression module in order to estimate head motion. By applying the appropriate rotations and translations, the MRS voxel position can be updated such that it remains stationary with respect to the brain. Frequency and phase corrections were applied during post-processing to reduce line-width and restore coherent averaging. Spectra acquired during intentional head motion in 11 volunteers demonstrate reduced lipid contamination and increased spectral reproducibility when motion correction is applied. PMID:20806374

  6. Improved Carbohydrate Structure Generalization Scheme for (1)H and (13)C NMR Simulations.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2015-07-21

    The improved Carbohydrate Structure Generalization Scheme has been developed for the simulation of (13)C and (1)H NMR spectra of oligo- and polysaccharides and their derivatives, including those containing noncarbohydrate constituents found in natural glycans. Besides adding the (1)H NMR calculations, we improved the accuracy and performance of prediction and optimized the mathematical model of the precision estimation. This new approach outperformed other methods of chemical shift simulation, including database-driven, neural net-based, and purely empirical methods and quantum-mechanical calculations at high theory levels. It can process structures with rarely occurring and noncarbohydrate constituents unsupported by the other methods. The algorithm is transparent to users and allows tracking used reference NMR data to original publications. It was implemented in the Glycan-Optimized Dual Empirical Spectrum Simulation (GODESS) web service, which is freely available at the platform of the Carbohydrate Structure Database (CSDB) project ( http://csdb.glycoscience.ru). PMID:26087011

  7. 1H NMR profiling as an approach to differentiate conventionally and organically grown tomatoes.

    PubMed

    Hohmann, Monika; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2014-08-20

    This study describes the approach of (1)H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between (1)H NMR spectra of organically and conventionally grown tomatoes. PMID:25066078

  8. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    PubMed

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs. PMID:26295174

  9. Generation of heteronuclear 13C 1H chemical-shift correlations using soft pulses

    NASA Astrophysics Data System (ADS)

    Doddrell, David M.; Brooks, William; Field, James; Lynden-Bell, R. M.

    Two multipulse sequences are analyzed which can be used to generate heteronuclear 13C, 1H chemical-shift correlations without 2D NMR techniques. Both sequences utilize polarization-transfer techniques and generate the required chemical-shift correlation using a single soft proton pulse. The most useful technique is an extension of the DEPT method of polarization transfer since not only are the chemical-shift correlations generated in an easy to interpret form, but depending on the specific form of the pulse train used, the method can be employed to obtain information on the CH n group multiplicity. The methods are illustrated by applying them to generate 13C, 1H chemical-shift correlation spectra for menthol and cholesterol.

  10. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Polissiou, Moschos G; Consonni, Roberto

    2015-04-15

    In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w). PMID:25466103

  11. Efficient dipolar double quantum filtering under magic angle spinning without a 1H decoupling field

    NASA Astrophysics Data System (ADS)

    Courtney, Joseph M.; Rienstra, Chad M.

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in 13C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n ⩾ 7, provided that the 13C nutation frequency is on the order of 100 kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between 13C and 1H fields. For 13C nutation frequencies greater than 75 kHz, optimal performance is observed without an applied 1H field. At spinning rates exceeding 20 kHz, symmetry conditions as low as n = 3 were found to perform adequately.

  12. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology. PMID:26476187

  13. Study on 1H-NMR fingerprinting of Rhodiolae Crenulatae Radix et Rhizoma.

    PubMed

    Wen, Shi-yuan; Zhou, Jiang-tao; Chen, Yan-yan; Ding, Li-qin; Jiang, Miao-miao

    2015-07-01

    Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances. PMID:26697690

  14. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  15. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  16. Nonvortical Rashba Spin Structure on a Surface with C1 h Symmetry

    NASA Astrophysics Data System (ADS)

    Annese, Emilia; Kuzumaki, Takuya; Müller, Beate; Yamamoto, Yuta; Nakano, Hiroto; Kato, Haruki; Araki, Atsushi; Ohtaka, Minoru; Aoki, Takashi; Ishikawa, Hirotaka; Hayashida, Takashi; Osiecki, Jacek R.; Miyamoto, Koji; Takeichi, Yasuo; Harasawa, Ayumi; Yaji, Koichiro; Shirasawa, Tetsuroh; Nittoh, Koh-ichi; Yang, Wooil; Miki, Kazushi; Oda, Tatsuki; Yeom, Han Woong; Sakamoto, Kazuyuki

    2016-07-01

    A totally anisotropic peculiar Rashba-Bychkov (RB) splitting of electronic bands was found on the Tl /Si (110 )-(1 ×1 ) surface with C1 h symmetry by angle- and spin-resolved photoelectron spectroscopy and first-principles theoretical calculation. The constant energy contour of the upper branch of the RB split band has a warped elliptical shape centered at a k point located between Γ ¯ and the edge of the surface Brillouin zone, i.e., at a point without time-reversal symmetry. The spin-polarization vector of this state is in-plane and points almost the same direction along the whole elliptic contour. This novel nonvortical RB spin structure is confirmed as a general phenomenon originating from the C1 h symmetry of the surface.

  17. Nonvortical Rashba Spin Structure on a Surface with C_{1h} Symmetry.

    PubMed

    Annese, Emilia; Kuzumaki, Takuya; Müller, Beate; Yamamoto, Yuta; Nakano, Hiroto; Kato, Haruki; Araki, Atsushi; Ohtaka, Minoru; Aoki, Takashi; Ishikawa, Hirotaka; Hayashida, Takashi; Osiecki, Jacek R; Miyamoto, Koji; Takeichi, Yasuo; Harasawa, Ayumi; Yaji, Koichiro; Shirasawa, Tetsuroh; Nittoh, Koh-Ichi; Yang, Wooil; Miki, Kazushi; Oda, Tatsuki; Yeom, Han Woong; Sakamoto, Kazuyuki

    2016-07-01

    A totally anisotropic peculiar Rashba-Bychkov (RB) splitting of electronic bands was found on the Tl/Si(110)-(1×1) surface with C_{1h} symmetry by angle- and spin-resolved photoelectron spectroscopy and first-principles theoretical calculation. The constant energy contour of the upper branch of the RB split band has a warped elliptical shape centered at a k point located between Γ[over ¯] and the edge of the surface Brillouin zone, i.e., at a point without time-reversal symmetry. The spin-polarization vector of this state is in-plane and points almost the same direction along the whole elliptic contour. This novel nonvortical RB spin structure is confirmed as a general phenomenon originating from the C_{1h} symmetry of the surface. PMID:27419582

  18. A mathematical force and moment model of a UH-1H helicopter for flight dynamics simulations

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Corliss, L. D.

    1977-01-01

    A model of a UH-1H helicopter was developed to support flight simulations and for developmental work on an avionics system known as V/STOLAND system. Equations and numerical values of constants used to represent the helicopter are presented. Responses to stop inputs of the cyclic and collective controls are shown and compared with flight test data for a UH-1H. The model coefficients were adjusted in an attempt to get a consistant match with the flight time histories at hover and 60 knots. Response matching was obtained at 60 knots, but the matching at hover was not as successful. Pilot evaluations of the model, both fixed and moving base, were made.

  19. Shaft Sinking at the Nevada Test Site, U1h Shaft Project

    SciTech Connect

    B. Briggs; R. Musick

    2001-03-01

    The U1h Shaft Project is a design/build subcontract to construct one 6.1 meter (m) (20 feet (ft)) finished diameter shaft to a depth of 321.6 m (1,055 ft.) at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the U.S. Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 321.6 m (1,055 ft.) of concrete lined shaft, development of a shaft station at a depth of 297.5 m (976 ft.), and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper will describe the design phase, the excavation and lining operation, shaft station construction and the contractual challenges encountered on this project.

  20. (1)H-NMR-based discrimination of thermal and vinegar treated ginseng roots.

    PubMed

    Kim, So-Hyun; Hyun, Sun-Hee; Yang, Seung-Ok; Choi, Hyung-Kyoon; Lee, Boo-Yong

    2010-08-01

    To investigate the changes in nonvolatile metabolites of thermal and/or vinegar treated ginseng (TVG), samples prepared using various treatment conditions were analyzed using an (1)H-NMR-based metabolomics technique. The processing conditions of the ginseng in this study were 100, 140, and 180 degrees C with and without vinegar and the duration of exposure to each temperature was 10, 30, and 50 min, respectively. There was a clear separation in the score plots among various treatment conditions. Major compounds contributing to the separation of 50% methanol extracts of TVG with various process conditions were valine, lactate, alanine, arginine, glucose, fructose, and sucrose. As temperature increased, valine, arginine, glucose, fructose, and sucrose concentrations decreased, whereas lactate, glucose, and fructose increased in the vinegar-treated samples compared to non-vinegar-treated samples. The present study suggests the usefulness of an (1)H-NMR-based metabolomics approach to discriminate TVG samples, subjected to different processing conditions. PMID:20722913

  1. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. PMID:27314744

  2. Seven 3-methylidene-1H-indol-2(3H)-ones related to the multiple-receptor tyrosine kinase inhibitor sunitinib.

    PubMed

    Spencer, John; Chowdhry, Babur Z; Hamid, Samiyah; Mendham, Andrew P; Male, Louise; Coles, Simon J; Hursthouse, Michael B

    2010-02-01

    The solid-state structures of a series of seven substituted 3-methylidene-1H-indol-2(3H)-one derivatives have been determined by single-crystal X-ray diffraction and are compared in detail. Six of the structures {(3Z)-3-(1H-pyrrol-2-ylmethylidene)-1H-indol-2(3H)-one, C(13)H(10)N(2)O, (2a); (3Z)-3-(2-thienylmethylidene)-1H-indol-2(3H)-one, C(13)H(9)NOS, (2b); (3E)-3-(2-furylmethylidene)-1H-indol-2(3H)-one monohydrate, C(13)H(9)NO(2).H(2)O, (3a); 3-(1-methylethylidene)-1H-indol-2(3H)-one, C(11)H(11)NO, (4a); 3-cyclohexylidene-1H-indol-2(3H)-one, C(14)H(15)NO, (4c); and spiro[1,3-dioxane-2,3'-indolin]-2'-one, C(11)H(11)NO(3), (5)} display, as expected, intermolecular hydrogen bonding (N-H...O=C) between the 1H-indol-2(3H)-one units. However, methyl 3-(1-methylethylidene)-2-oxo-2,3-dihydro-1H-indole-1-carboxylate, C(13)H(13)NO(3), (4b), a carbamate analogue of (4a) lacking an N-H bond, displays no intermolecular hydrogen bonding. The structure of (4a) contains three molecules in the asymmetric unit, while (4b) and (4c) both contain two independent molecules. PMID:20124685

  3. Aromatic derivatives of 2,3-dihydro-1H-1,5-benzodiazepine

    SciTech Connect

    Orlov, V.D.; Desenko, S.M.; Kiroga, Kh.

    1987-09-01

    The formation of 2,2,4-trisubstituted 2,3-dihydro-1H-1,5-benzodiazepines in the reactions of acetylarenes with 4-ethoxy- and 3,5-dimethyl-1,2-phenylenediamine was studied. The effect of the substituents on the individual stages of the reactions is discussed. A quantum-chemical calculation of the relative nucleophilicity of 1,2-phenylenediamine, 2,3-diaminopyridine, and 3,4-diaminofurazan was undertaken.

  4. Quantitative 1H MRI and MRS Microscopy of Individual V79 Lung Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Guo, Xiuling; Wind, Robert A.

    1998-08-01

    In this Communication1H MRI and MRS microscopy experiments of individual V79 lung tumor spheroids with diameters between 550 and 650 μm are reported. The results have been used to determine theT1,T2, andDvalues as well as the concentrations of water, total choline, creatine/phosphocreatine, and mobile lipids in the viable rims and in the necrotic centers.

  5. Direct phosphonation of quinoxalin-2(1H)-ones under transition-metal-free conditions.

    PubMed

    Gao, Ming; Li, Yi; Xie, Lijuan; Chauvin, Remi; Cui, Xiuling

    2016-02-01

    A direct C-H bond phosphonation of quinoxalin-2(1H)-ones with H-phosphonates, H-phosphinates or H-phosphine oxides has been developed. A wide variety of heteroaryl phosphonates were obtained in up to 92% yield for 20 examples under transition-metal-free conditions. This protocol tolerates a broad scope of substrates and features practicality, high efficiency, environmental friendliness and atom economy. PMID:26779573

  6. 1H and 13C spectral assignment of symmetrical bis[(4-aminosubstituted)quinolinium] derivatives.

    PubMed

    Campos, Joaquín M; Sánchez-Martín, Rosario M; Cruz-López, Olga; Conejo-García, Ana; Gallo, Miguel A; Espinosa, Antonio

    2005-12-01

    1H and 13C NMR spectroscopic data of both the quinolinium ring and the spacers for 32 symmetrical bisquinolinium compounds were assigned by a combination of one- and two-dimensional experiments (DEPT, HMBC, HMQC). The compounds have electron-releasing groups at position 4 of the quinolinium ring, with several arylalkyl linkers such as the 3,3'-, 4,4'-bis(methylene)biphenyl and 4,4'-bis(methylene)bibenzyl moieties. PMID:16114103

  7. Application of 1H-NMR metabolomic profiling for reef-building corals.

    PubMed

    Sogin, Emilia M; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  8. Application of 1H-NMR Metabolomic Profiling for Reef-Building Corals

    PubMed Central

    Sogin, Emilia M.; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D.

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  9. Parallel NMR spectroscopy with simultaneous detection of (1) H and (19) F nuclei.

    PubMed

    Kovacs, Helena; Kupče, Ēriks

    2016-07-01

    Recording NMR signals of several nuclear species simultaneously by using parallel receivers provides more information from a single measurement and at the same time increases the measurement sensitivity per unit time. Here we present a comprehensive series of the most frequently used NMR experiments modified for simultaneous direct detection of two of the most sensitive NMR nuclei - (1) H and (19) F. We hope that the presented material will stimulate interest in and further development of this technique. PMID:27021630

  10. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H.

    PubMed

    Dearden, C E; Matutes, E; Cazin, B; Tjønnfjord, G E; Parreira, A; Nomdedeu, B; Leoni, P; Clark, F J; Radia, D; Rassam, S M; Roques, T; Ketterer, N; Brito-Babapulle, V; Dyer, M J; Catovsky, D

    2001-09-15

    T-cell prolymphocytic leukemia (T-PLL) is a chemotherapy-resistant malignancy with a median survival of 7.5 months. Preliminary results indicated a high remission induction rate with the human CD52 antibody, CAMPATH-1H. This study reports results in 39 patients with T-PLL treated with CAMPATH-1H between March 1993 and May 2000. All but 2 patients had received prior therapy with a variety of agents, including 30 with pentostatin; none achieved complete remission (CR). CAMPATH-1H (30 mg) was administered intravenously 3 times weekly until maximal response. The overall response rate was 76% with 60% CR and 16% partial remission (PR). These responses were durable with a median disease-free interval of 7 months (range, 4-45 months). Survival was significantly prolonged in patients achieving CR compared to PR or no response (NR), including one patient who survived 54 months. Nine patients remain alive up to 29 months after completing therapy. Seven patients received high-dose therapy with autologous stem cell support, 3 of whom remain alive in CR 5, 7, and 15 months after autograft. Stem cell harvests in these patients were uncontaminated with T-PLL cells as demonstrated by dual-color flow cytometry and polymerase chain reaction. Four patients had allogeneic stem cell transplants, 3 from siblings and 1 from a matched unrelated donor. Two had nonmyeloablative conditioning. Three are alive in CR up to 24 months after allograft. The conclusion is that CAMPATH-1H is an effective therapy in T-PLL, producing remissions in more than two thirds of patients. The use of stem cell transplantation to consolidate responses merits further study. PMID:11535503

  11. Resolution enhancement in spectra of natural products dissolved in weakly orienting media with the help of 1H homonuclear dipolar decoupling during acquisition: Application to 1H- 13C dipolar couplings measurements

    NASA Astrophysics Data System (ADS)

    Farjon, Jonathan; Bermel, Wolfgang; Griesinger, Christian

    2006-05-01

    In weakly orienting media such as poly-γ-benzyl- L-glutamate (PBLG) a polymer that forms a chiral liquid crystal in organic solvents, the spectral resolution for embedded molecules is usually poor because of numerous 1H, 1H dipolar couplings that generally broaden proton spectra. Therefore 1H, 13C dipolar couplings are difficult or impossible to measure. Here, we incorporate Flip-Flop decoupling during detection into an HSQC experiment. Flip-Flop removes the 1H, 1H dipolar couplings and scales the chemical shifts of the protons as well as the 1H, 13C dipolar couplings during detection. A resolution gain by a factor 1.5-4.2 and improved signal intensity by an average factor of 1.6-1.7 have been obtained. This technique is demonstrated on (+)-menthol dissolved in a PBLG/CDCl 3 phase.

  12. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  13. Non-invasive detection of cocaine dissolved in wine bottles by (1) H magnetic resonance spectroscopy.

    PubMed

    Gambarota, Giulio; Perazzolo, Chiara; Leimgruber, Antoine; Meuli, Reto; Mangin, Patrice; Augsburger, Marc; Grabherr, Silke

    2011-09-01

    Recently, a number of cases of smuggling dissolved cocaine in wine bottles have been reported. The aim of the present study was to determine whether cocaine dissolved in wine can be detected by proton magnetic resonance spectroscopy ((1) H MRS) on a standard clinical MR scanner, in intact (i.e. unopened) wine bottles. (1) H MRS experiments were performed with a 3 Tesla clinical scanner on wine phantoms with or without cocaine contamination. The aromatic protons of cocaine displayed resonance peaks in the 7-8 ppm region of the spectrum, where no overlapping resonances of wine were present. Additional cocaine resonances were detected in the 2-3 ppm region of the spectrum, between the resonances of ethanol and other wine constituents. Detection of cocaine in wine (at 5 mM, i.e. ∼1.5 g/L) was feasible in a scan time of 1 min. We conclude that dissolved cocaine can be detected in intact wine bottles, on a standard clinical MR scanner. Thus, (1) H MRS is the technique of choice to examine this type of suspicious cargo, since it allows for a non-destructive and rapid content characterization. PMID:20886462

  14. A Comprehensive Review of the 1H-MRS Metabolite Spectrum in Autism Spectrum Disorder

    PubMed Central

    Ford, Talitha C.; Crewther, David P.

    2016-01-01

    Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy (1H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current 1H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in 1H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders. PMID:27013964

  15. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  16. Improved analysis of 1H-MR spectra in the presence of mobile lipids.

    PubMed

    Auer, D P; Gössl, C; Schirmer, T; Czisch, M

    2001-09-01

    Focal brain lesions can be associated with proton magnetic resonance spectra (1H-MRS)-detectable mobile lipids, reflecting severe tissue degradation and necrosis. However, advanced fitting procedures, such as the LCModel, fail to adequately fit spectra in the presence of lipid resonances. To overcome this, different approaches to generate lipid model spectra were compared using a phantom, real in vivo data, and simulated data. Twenty-six in vivo short-echo time (TE) 1H-MRS from 21 malignant gliomas, four infections, and one ischemia were analyzed to evaluate the performance of the modified LCModel fit. Adding simulated aliphatic resonances at 1.3 and 0.9 ppm improved the overall fitting quality remarkably and allowed good separation of lactate and alanine. Also, a better differentiation of glioblastomas and anaplastic gliomas was achieved. In conclusion, we propose a simple way to efficiently include lipid resonances in the LCModel, allowing a better fit of in vivo short-TE 1H-MRS, and demonstrate the diagnostic potential of quantitative assessment of mobile lipids in brain tumors. PMID:11550257

  17. 1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion.

    PubMed

    Kruk, D; Korpała, A; Taheri, S Mehdizadeh; Kozłowski, A; Förster, S; Rössler, E A

    2014-05-01

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained. PMID:24811643

  18. Serum metabolic signature of minimal hepatic encephalopathy by (1)H-nuclear magnetic resonance.

    PubMed

    Jiménez, Beatriz; Montoliu, Carmina; MacIntyre, David A; Serra, Miguel A; Wassel, Abdallah; Jover, María; Romero-Gomez, Manuel; Rodrigo, Jose M; Pineda-Lucena, Antonio; Felipo, Vicente

    2010-10-01

    Minimal hepatic encephalopathy (MHE) reduces quality of life of cirrhotic patients, predicts overt hepatic encephalopathy, and is associated with poor prognosis. We hypothesized that MHE arises once metabolic alterations derived from the liver reach a particular threshold. Our aim was to assess whether metabolic profiling of serum samples by high-field (1)H-nuclear magnetic resonance spectroscopy ((1)H NMR) and subsequent multivariate analyses would be useful to characterize metabolic perturbations associated with MHE and to identify potential metabolic biomarkers. Metabolic serum profiles from controls (n = 69) and cirrhotic patients without MHE (n = 62) and with MHE (n = 39) were acquired using high field NMR. Supervised modeling of the data provided perfect discrimination between healthy controls and cirrhotic patients and allowed the generation of a predictive model displaying strong discrimination between patients with and without MHE (R(2)Y = 0.68, Q(2)Y = 0.63). MHE patients displayed increased serum concentrations of glucose, lactate, methionine, TMAO, and glycerol, as well as decreased levels of choline, branch amino acids, alanine, glycine, acetoacetate, NAC, and lipid moieties. Serum metabonomics by (1)H NMR offers a useful approach for characterizing underlying metabolic differences between patients with and without MHE. This procedure shows great potential as a diagnostic tool of MHE as it objectively reflects measurable biochemical differences between the patient groups and may facilitate monitoring of both disease progression and effects of therapeutic treatments. PMID:20690770

  19. A Comprehensive Review of the (1)H-MRS Metabolite Spectrum in Autism Spectrum Disorder.

    PubMed

    Ford, Talitha C; Crewther, David P

    2016-01-01

    Neuroimaging studies of neuropsychiatric behavior biomarkers across spectrum disorders are typically based on diagnosis, thus failing to account for the heterogeneity of multi-dimensional spectrum disorders such as autism (ASD). Control group trait phenotypes are also seldom reported. Proton magnetic resonance spectroscopy ((1)H-MRS) measures the abundance of neurochemicals such as neurotransmitters and metabolites and hence can probe disorder phenotypes at clinical and sub-clinical levels. This detailed review summarizes and critiques the current (1)H-MRS research in ASD. The literature reports reduced N-acetylaspartate (NAA), glutamate and glutamine (Glx), γ-aminobutyric acid (GABA), creatine and choline, and increased glutamate for children with ASD. Adult studies are few and results are inconclusive. Overall, the literature has several limitations arising from differences in (1)H-MRS methodology and sample demographics. We argue that more consistent methods and greater emphasis on phenotype studies will advance understanding of underlying cortical metabolite disturbance in ASD, and the detection, diagnosis, and treatment of ASD and other multi-dimensional psychiatric disorders. PMID:27013964

  20. Effect of biological factors on successful measurements with skeletal-muscle 1H-MRS

    PubMed Central

    Isobe, Tomonori; Okamoto, Yoshikazu; Hirano, Yuji; Ando, Hiroki; Takada, Kenta; Sato, Eisuke; Shinoda, Kazuya; Tadano, Kiichi; Takei, Hideyuki; Kamizawa, Satoshi; Mori, Yutaro; Suzuki, Hiroaki

    2016-01-01

    Background Our purpose in this study was to clarify whether differences in subject group attributes could affect data acquisition in proton magnetic resonance spectroscopy (1H-MRS). Methods Subjects without diabetes mellitus (DM) were divided into two groups (group A, in their 20s; group B, 30–60 years old). Subjects with DM formed group C (30–60 years old). The numbers of subjects were 19, 27, and 22 for group A, B, and C respectively. For all subjects, 1H-MRS measurements were taken of the soleus muscle (SOL) and the anterior tibial muscle (AT). We defined the success of the measurements by the detection of intramyocellular lipids. Moreover, we also measured the full width at half maximum of the water peaks for all subjects. Results The success rate was significantly higher for the AT (100%) than for the SOL (81.6%) (P<0.01). For the SOL, the success rate was 100% in group A, 85.2% in group B, and 77.3% in group C. There was a significant difference (P<0.05) between groups A and B, as well as between groups A and C. In all subjects, there was a significant difference (P<0.01) in the full width at half maximum (Hz) of the water peak between the AT and SOL measurements. Conclusion We conclude that differences in the age and DM history of subjects could affect the probability of successful 1H-MRS data acquisition. PMID:27499626

  1. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol)-1H Indole

    PubMed Central

    ASGARI, Qasem; KESHAVARZ, Hossein; REZAEIAN, Mostafa; SADEGHPOUR, Hossein; MIRI, Ramin; MOTAZEDIAN, Mohammad Hossein

    2015-01-01

    Background: This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio)-1H-indole. Methods: Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio)-1H-indole (25–800 μM) for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS). To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v) were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice. Results: The LD50 of 2-(naphthalene-2-ylthio)-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite. Conclusion: Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines. PMID:26246814

  2. Clinical Relevance of Single-Voxel 1H MRS Metabolites in Discriminating Suprasellar Tumors

    PubMed Central

    Virani, Rahul A

    2016-01-01

    Introdution Spatially resolved metabolic data obtained from Proton Magnetic Resonance Spectroscopy (1H MRS) provides information which increases the diagnostic accuracy of imaging sequences in predicting the histology of suprasellar tumors. Aim To evaluate the role of 1H MRS in the diagnosis of various suprasellar tumors. Materials and Methods Sixty cases of various suprasellar, hypothalamic and third ventricular neoplasms were investigated with long-echo single voxel 1H -MRS using 1.5 Tesla clinical imager. Single-voxel spectroscopic examinations were guided by T1-weighted or T2-weighted images. Statistical analysis was carried out using IBM SPSS software version 19. Results We observed that whenever brain tissue was damaged or replaced by any process, NAA was markedly reduced. Extra-axial lesions which do not infiltrate brain or contain neuroglial tissue, didn’t demonstrate any NAA resonances. Cr was used as an internal standard for semi-quantitative evaluation of metabolic changes of other brain metabolites. Increased Cho was seen in processes with elevated cell-membrane turnover. Conclusion Spectra obtained from different tumors exhibit reproducible differences while histologically similar tumors yield characteristic spectra with only minor differences. Pituitary tumors were typically characterized by significant reduction of NAA, Cr peak and moderate elevation of Cho peak. Gliomas were typically characterized by decrease of NAA and Cr peaks and increase of Cho peak. Craniopharyngiomas were typically characterized by significant decrease of all metabolites.

  3. A 1H NMR assay for measuring the photostationary States of photoswitchable ligands.

    PubMed

    Banghart, Matthew R; Trauner, Dirk

    2013-01-01

    Incorporation of photoisomerizable chromophores into small molecule ligands represents a general approach for reversibly controlling protein function with light. Illumination at different wavelengths produces photostationary states (PSSs) consisting of different ratios of photoisomers. Thus optimal implementation of photoswitchable ligands requires knowledge of their wavelength sensitivity. Using an azobenzene-based ion channel blocker as an example, this protocol describes a (1)H NMR assay that can be used to precisely determine the isomeric content of photostationary states (PSSs) as a function of illumination wavelength. Samples of the photoswitchable ligand are dissolved in deuterated water and analyzed by UV/VIS spectroscopy to identify the range of illumination wavelengths that produce PSSs. The PSSs produced by these wavelengths are quantified using (1)H NMR spectroscopy under continuous irradiation through a monochromator-coupled fiber-optic cable. Because aromatic protons of azobenzene trans and cis isomers exhibit sufficiently different chemical shifts, their relative abundances at each PSS can be readily determined by peak integration. Constant illumination during spectrum acquisition is essential to accurately determine PSSs from molecules that thermally relax on the timescale of minutes or faster. This general protocol can be readily applied to any photoswitch that exhibits distinct (1)H NMR signals in each photoisomeric state. PMID:23494375

  4. The BPS spectrum of the 4d {N}=2 SCFT's H 1, H 2, D 4, E 6, E 7, E 8

    NASA Astrophysics Data System (ADS)

    Cecotti, Sergio; Del Zotto, Michele

    2013-06-01

    Extending results of 1112.3984, we show that all rank 1 {N}=2 SCFT's in the sequence H 1, H 2, D 4 E 6, E 7, E 8 have canonical finite BPS chambers containing precisely 2 h(F) = 12(∆ - 1) hypermultiplets. The BPS spectrum of the canonical BPS chambers saturates the conformal central charge c, and satisfies some intriguing numerology.

  5. Mechanistic Assessment of PD-1H Coinhibitory Receptor-Induced T-Cell Tolerance to Allogeneic Antigens1

    PubMed Central

    Flies, Dallas B.; Higuchi, Tomoe; Chen, Lieping

    2015-01-01

    PD-1H is a recently identified cell surface co-inhibitory molecule of the B7/CD28 immune modulatory gene family. We showed previously that single injection of a PD-1H agonistic monoclonal antibody (mAb) protected mice from graft versus host disease (GVHD). We report here two distinct mechanisms operate in PD-1H-induced T cell tolerance. First, signaling via PD-1H co-inhibitory receptor potently arrests allo-reactive donor T cells from activation and expansion in the initiation phase. Second, donor regulatory T cells are subsequently expanded to maintain long-term tolerance and GVHD suppression. Our study reveals the crucial function of PD-1H as a co-inhibitory receptor on allo-reactive T cells and its function in the regulation of T cell tolerance. Therefore, PD-1H may be a target for the modulation of allo-reactive T cells in GVHD and transplantation. PMID:25917101

  6. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  7. Enhanced sensitivity and resolution in (1)H solid-state NMR spectroscopy of paramagnetic complexes under very fast magic angle spinning.

    PubMed

    Wickramasinghe, Nalinda P; Shaibat, Medhat; Ishii, Yoshitaka

    2005-04-27

    High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR) for paramagnetic systems. Spinning-speed dependence of 1H MAS spectra showed that very fast MAS (VFMAS) at 24-28 kHz enhanced sensitivity by a factor of 12-18, compared with the sensitivity of 1H SSNMR spectra under moderate MAS at 10 kHz, for Cu(dl-alanine)2.H2O and Mn(acac)3, for which the spectral ranges due to 1H paramagnetic shifts reach 200 and 1000 ppm, respectively. It was theoretically and experimentally confirmed that the absolute sensitivity of 1H VFMAS for small paramagnetic complexes such as Cu(dl-alanine)2 can be an order of magnitude higher than that of equimolar diamagnetic ligands because of short 1H T1 ( approximately 1 ms) of the paramagnetic systems and improved sensitivity under VFMAS. On the basis of this demonstrated high sensitivity, 1H SSNMR micro analysis of paramagnetic systems in a nanomole scale is proposed. Applications were performed on two polymorphs of Cu(II)(8-quinolinol)2, which is a suppressor of human cancer cells. It was demonstrated that 1H VFMAS SSNMR spectra accumulated for 20 nmol of the polycrystalline samples in 10 min enabled one to distinguish alpha- and beta-forms of Cu(II)(8-quinolinol)2 on the basis of shift positions and line widths. PMID:15839671

  8. Identification of Metastasis-Associated Metabolic Profiles of Tumors by (1)H-HR-MAS-MRS.

    PubMed

    Gorad, Saurabh S; Ellingsen, Christine; Bathen, Tone F; Mathiesen, Berit S; Moestue, Siver A; Rofstad, Einar K

    2015-10-01

    Tumors develop an abnormal microenvironment during growth, and similar to the metastatic phenotype, the metabolic phenotype of cancer cells is tightly linked to characteristics of the tumor microenvironment (TME). In this study, we explored relationships between metabolic profile, metastatic propensity, and hypoxia in experimental tumors in an attempt to identify metastasis-associated metabolic profiles. Two human melanoma xenograft lines (A-07, R-18) showing different TMEs were used as cancer models. Metabolic profile was assessed by proton high resolution magic angle spinning magnetic resonance spectroscopy ((1)H-HR-MAS-MRS). Tumor hypoxia was detected in immunostained histological preparations by using pimonidazole as a hypoxia marker. Twenty-four samples from 10 A-07 tumors and 28 samples from 10 R-18 tumors were analyzed. Metastasis was associated with hypoxia in both A-07 and R-18 tumors, and (1)H-HR-MAS-MRS discriminated between tissue samples with and tissue samples without hypoxic regions in both models, primarily because hypoxia was associated with high lactate resonance peaks in A-07 tumors and with low lactate resonance peaks in R-18 tumors. Similarly, metastatic and non-metastatic R-18 tumors showed significantly different metabolic profiles, but not metastatic and non-metastatic A-07 tumors, probably because some samples from the metastatic A-07 tumors were derived from tumor regions without hypoxic tissue. This study suggests that (1)H-HR-MAS-MRS may be a valuable tool for evaluating the role of hypoxia and lactate in tumor metastasis as well as for identification of metastasis-associated metabolic profiles. PMID:26585232

  9. {sup 1}H relaxation enhancement induced by nanoparticles in solutions: Influence of magnetic properties and diffusion

    SciTech Connect

    Kruk, D.; Korpała, A.; Taheri, S. Mehdizadeh; Förster, S.; Kozłowski, A.; Rössler, E. A.

    2014-05-07

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance {sup 1}H spin-lattice relaxation for decalin and toluene solutions of various Fe{sub 2}O{sub 3} nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz–20 MHz by applying Field Cycling method, and in the temperature range of 257–298 K, using nanoparticles differing in size and shape: spherical – 5 nm diameter, cubic – 6.5 nm diameter, and cubic – 9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall {sup 1}H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the {sup 1}H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.

  10. MfERG waveform characteristics in the RS1h mouse model featuring a 'negative' ERG.

    PubMed

    Seeliger, Mathias W; Weber, Bernhard H F; Besch, Dorothea; Zrenner, Eberhard; Schrewe, Heinrich; Mayser, Helmut

    2003-07-01

    Several retinal disorders lead to a relatively greater attenuation of the b-wave compared to the a-wave of the electroretinogram (ERG), a constellation called 'negative' ERG. To determine the waveform characteristics of multifocal ERGs (mfERGs) and their dependence on recording parameters in such a case, we studied the Rs1h(-/Y) mouse, the model for x-linked juvenile retinoschisis. mfERGs were recorded with a VERIS 4 system connected to a piggyback stimulator prototype that added the stimulus to the optical pathway of a HRA scanning-laser ophthalmoscope (SLO) by means of a wavelength-sensitive mirror. Real-time fundus visualization was achieved with the infrared laser of the SLO (835 nm). High-pass filter settings and the time interval used by the 'artefact removal' feature were varied to study their influence on the waveform. The mfERG in the Rs1h(-/Y) mouse had a 'negative' shape. However, the high-pass filter setting had to be lowered from the usual 10 Hz down to about 2 Hz in order to obtain that result, otherwise the negative shape was lost and mainly a positive peak remained. Similarly, a short time interval used by the 'artefact removal' feature also removed the negative shape. The Rs1h(-/Y) mouse was found to be a valuable model of diseases with a 'negative' waveform shape also in mfERG. Our results underline the importance of a lower high-pass filter cutoff frequency when recording mfERGs in such disorders. In addition, if the 'artefact removal' feature is used, it should be verified that it doesn't distort the waveform shape. PMID:12906120

  11. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  12. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H Irradiation Report

    SciTech Connect

    Debra J. Utterbeck; Gray Chang

    2005-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. These experiments are high burnup analogs to previously irradiated experiments and are to be irradiated to = 20 atom % burnup. Results of the evaluations show that AFC-1D will remain in the ATR for approximately 100 additional effective full power days (EFPDs), and AFC-1G and AFC-1H for approximately 300 additional EFPDs in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  13. Preparation of the UNDERC 200 MHz /sup 1/H NMR spectral catalog, Volume II

    SciTech Connect

    Gaides, G.E.; Farnum, S.A.; Wolfson, A.C.; Farnum, B.W.

    1984-01-01

    High resolution 200 MHz /sup 1/H NMR is used extensively to identify the components of complex low-rank coal-derived materials. We have compiled a catalog of 302 spectra of standards: (1) and are compiling a second, similar volume of 125 additional spectra. Many of these new compounds have only recently become available from commercial suppliers, or by synthesis. Like the previous catalog, Volume II is divided into two sections: a tabular section of all the compounds with their correct names, structure, and a line list of the chemical shifts, and a section which contains the actual spectra. Each section is arranged by functional group, for example, alkanes, phenols, etc. in order of their chromatographic elution. There is also an appendix which lists the suppliers of all the compounds in the catalog. Volume II contains several features not incorporated in the original catalog. We have added an alphabetical listing of all the compounds in both NMR catalogs, as well as formula and molecular weight indices. An added feature of this volume is the expanded coverage of nitrogen-containing compounds. Though there are many /sup 1/H NMR spectral catalogs in print, there are none that contain spectra run on 200 MHz spectrometers. Many spectra that appear complex at 60 MHz become first order at 200 MHz, facilitating their interpretation. At the UNDERC the majority of our samples are extremely complex mixtures. The simplification of the spectra of the individual components is necessary to characterize these coal-derived liquids. Another advantage of /sup 1/H NMR spectra run at 200 MHz is the greater than eleven-fold increase in sensitivity over those run at 60 MHz (2). Smaller, or more dilute samples may therefore be utilized. 2 references, 1 figure.

  14. 1H NMR structure of the heme pocket of HNO-myoglobin.

    PubMed

    Sulc, Filip; Fleischer, Everly; Farmer, Patrick J; Ma, Dejian; La Mar, Gerd N

    2003-02-01

    The unique (1)H NMR signal of nitrosyl hydride at 14.8 ppm is used to obtain a solution structure of the distal pocket of Mb-HNO, a rare nitroxyl adduct with a half-life of several months at room temperature. (1)H NMR, NOESY and TOCSY data were obtained under identical experimental conditions on solutions of the diamagnetic HNO and CO complexes of equine Mb, allowing direct comparison of NMR data to a crystallographically characterized structure. Twenty NOEs between the nitrosyl hydride and protein and heme-based signals were observed. The HNO orientation obtained by modeling the experimental (1)H NMR NOESY data yielded an orientation of ca. -104 degrees referenced to the N-Fe-N vector between alpha and beta mesoprotons. An essentially identical orientation was obtained by simple energy minimization of the HNO adduct using ESFF potentials, suggesting steric control of the orientation. Differences in chemical shifts are seen for protons on residues Phe43(CD1) and Val68(E11), but both exhibit virtually identical NOESY contacts to other residues, and thus are attributed to small movements of ca. 0.1 A within the strong ring current. The most significant differences are seen in the NOESY peak intensities and chemical shifts for the ring non-labile protons of the distal His64(E7). The orientation of the His64(E7) in Mb-HNO was analyzed on the basis of the NOESY cross-peak changes and chemical shift changes, predicting a ca. 20 degrees rotation about the beta-gamma bond. The deduced HNO and His64(E7) orientations result in geometry where the His64(E7) ring can serve as the donor for a significant H-bond to the oxygen atom of the bound HNO. PMID:12589571

  15. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight.

    PubMed

    Mastroleo, Felice; Van Houdt, Rob; Leroy, Baptiste; Benotmane, M Abderrafi; Janssen, Ann; Mergeay, Max; Vanhavere, Filip; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    2009-12-01

    In view of long-haul space exploration missions, the European Space Agency initiated the Micro-Ecological Life Support System Alternative (MELiSSA) project targeting the total recycling of organic waste produced by the astronauts into oxygen, water and food using a loop of bacterial and higher plant bioreactors. In that purpose, the alpha-proteobacterium, Rhodospirillum rubrum S1H, was sent twice to the International Space Station and was analyzed post-flight using a newly developed R. rubrum whole genome oligonucleotide microarray and high throughput gel-free proteomics with Isotope-Coded Protein Label technology. Moreover, in an effort to identify a specific response of R. rubrum S1H to space flight, simulation of microgravity and space-ionizing radiation were performed on Earth under identical culture set-up and growth conditions as encountered during the actual space journeys. Transcriptomic and proteomic data were integrated and permitted to put forward the importance of medium composition and culture set-up on the response of the bacterium to space flight-related environmental conditions. In addition, we showed for the first time that a low dose of ionizing radiation (2 mGy) can induce a significant response at the transcriptomic level, although no change in cell viability and only a few significant differentially expressed proteins were observed. From the MELiSSA perspective, we could argue the effect of microgravity to be minimized, whereas R. rubrum S1H could be more sensitive to ionizing radiation during long-term space exploration mission. PMID:19571896

  16. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  17. (1)H MRS: a potential biomarker of in utero placental function.

    PubMed

    Macnaught, Gillian; Gray, Calum; Walker, Jane; Simpson, Mary; Norman, Jane; Semple, Scott; Denison, Fiona

    2015-10-01

    The placenta is a temporary organ that is essential for a healthy pregnancy. It performs several important functions, including the transport of nutrients, the removal of waste products and the metabolism of certain substances. Placental disorders have been found to account for over 50% of stillbirths. Despite this, there are currently no methods available to directly and non-invasively assess placental function in utero. The primary aim of this pilot study was to investigate the use of (1)H MRS for this purpose. (1)H MRS offers the possibility to detect several placental metabolites, including choline, lipids and the amino acids glutamine and glutamate (Glx), which are vital to fetal development and placental function. Here, in utero placental spectra were acquired from nine small for gestational age (SGA) pregnancies, a cohort who are at increased risk of perinatal morbidity and mortality, and from nine healthy gestation-matched pregnancies. All subjects were between 26 and 39 weeks of gestation. Placenta Glx, choline and lipids at 1.3 and 0.9 ppm were quantified as amplitude ratios to that of intrinsic H2O. Wilcoxon signed rank tests indicated a significant difference in Glx/H2O (p = 0.024) between the two groups, but not in choline/H2O (p = 0.722) or in either lipid/H2O ratio (1.3 ppm, p = 0.813; 0.9 ppm, p = 0.058). This study has demonstrated that (1)H MRS has potential for the detection of placental metabolites in utero. This warrants further investigation as a tool for the monitoring of placental function. PMID:26313636

  18. In vivo localized 1H NMR spectroscopy at 11.7 Tesla

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Field, James; Brereton, Ian M.; Moxon, Leith N.; Shannon, Gerald F.; Doddrell, David M.

    The SPACE volume-selection technique has been used to acquire high-resolution 1H spectra from the brain of neonate mice at 11.7 T (500 MHz). Spectra were acquired from voxels smaller than 20 μl. The spectra display elevated intensities of resonances arising from taurine and reduced intensities of those arising from N-acetylaspartate, when compared to those of mature animals, correlating well with in vitro studies. An integrated probe design consisting of separate transmission and reception RF coils and linear gradient coils is described. Comments are made concerning the advantages and disadvantages of performing gradient-encoded localized spectroscopy at this field strength.

  19. Determination of metabolite profiles in tropical wines by 1H NMR spectroscopy and chemometrics.

    PubMed

    da Silva Neto, Humberto G; da Silva, João B P; Pereira, Giuliano E; Hallwass, Fernando

    2009-12-01

    Traditionally, wines are produced in temperate climate zones, with one harvest per year. Tropical wines are a new concept of vitiviniculture that is being developed, principally in Brazil. The new Brazilian frontier is located in the northeast region (São Francisco River Valley) in Pernambuco State, close to the equator, between 8 and 9 degrees S. Compared with other Brazilian and worldwide vineyards, the grapes of this region possess peculiar characteristics. The aim of this work is a preliminary study of commercial São Francisco River Valley wines, analyzing their metabolite profiles by (1)H NMR and chemometric methods. PMID:19810052

  20. 1H NMR investigation of self-association of vanillin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bogdan, Mircea; Floare, Calin G.; Pîrnau, Adrian

    2009-08-01

    A self-association of vanillin have been studied by 1H NMR spectroscopy using the analysis of proton chemical shifts changes in aqueous solution as a function of concentration. The experimental results have been analysed using indefinite non-cooperative and cooperative models of molecular self-association, enabling the determination of equilibrium constants, parameters of cooperativity and the limiting values of vanillin proton chemical shifts in the complex. It was found that the dimer formation creates energetically favourable conditions for subsequent molecular association.

  1. Cucurbitacins from Cayaponia racemosa: isolation and total assignment of 1H and 13C NMR spectra.

    PubMed

    Chaves, Davina C; Assunção, João Carlos C; Braz-Filho, Raimundo; Lemos, Telma L G; Monte, Francisco J Q

    2007-05-01

    Two new cucurbitane-type triterpenoids, 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,22-dione and 2beta,3beta,16alpha,20(R),25-pentahydroxy-9-methyl-19-norlanost-5-en-7,11,22-trione, were isolated from fruits of Cayaponia racemosa. The total (1)H and (13)C chemical shift assignment of these two closely related compounds is described, making use of one- and two-dimensional NMR techniques. PMID:17372957

  2. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry.

    PubMed

    Ramachandran, Gokula Krishnan; Yong, Wei Peng; Yeow, Chen Hua

    2016-01-01

    Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS. PMID:27611679

  3. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  4. 1H nuclear magnetic resonance study of distinct interstitial hydrogen dynamics in ZnO

    NASA Astrophysics Data System (ADS)

    Kue Park, Jun; Won Lee, Kyu; Eui Lee, Cheol

    2013-07-01

    A comprehensive 1H nuclear magnetic resonance (NMR) study has been carried out for hydrogen dynamics in a sol-gel-prepared ZnO system. The temperature-dependent linewidth and chemical shift measurements sensitively reflected the proton motions and changes in the local environment. Besides, two types of interstitial proton (Hi+) motions were distinguished from the spin-spin relaxation time measurements, one of them with an activation energy of 0.16 eV and the other with that of 0.33 eV depending on the temperature ranges.

  5. 3-Acetyl-5-phenyl-1-p-tolyl-1H-pyrazole-4-carbonitrile

    PubMed Central

    Abdel-Aziz, Hatem A.; Ghabbour, Hazem A.; Chantrapromma, Suchada; Fun, Hoong-Kun

    2012-01-01

    In the title pyrazole derivative, C19H15N3O, the central pyrazole ring makes dihedral angles of 42.71 (9) and 61.34 (9)°, respectively, with the phenyl and p-tolyl rings. The dihedral angle between the phenyl and p-tolyl rings is 58.22 (9)°. The 3-acetyl-1H-pyrazole-4-carbonitrile unit is essentially planar, with an r.m.s. deviation of 0.0295 (1) Å for the ten non-H atoms. PMID:22606111

  6. 1H-NMR study of the spin dynamics of fine superparamagnetic nanoparticles

    SciTech Connect

    Bordonali, L.; Furukawa, Y.; Kraken, M.; Litterst, F.J.; Sangregorio, C.; Casula, M.F.; Lascialfari, A.

    2012-05-25

    We report a broadband 1H-NMR study of the temperature spin dynamics of nearly monodisperse dextran-coated γ-Fe2O3 magnetic nanoparticles. We observed a maximum in T1−1(T) that decreases in amplitude and shifts toward higher temperatures with increasing field. We suggest that this is related to the progressive superparamagnetic spin blocking of the ferrite core. The data can be explained by assuming a single electronic spin-spin correlation time and introducing a field-dependent distribution of anisotropy energy barriers.

  7. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  8. Polymorphism of HF (beta 1H-globulin) in three Asian populations (Bangladeshis, Tibetans and Indonesians).

    PubMed

    Kido, Akira; Susukida, Rie; Oya, Masakazu; Fujitani, Noboru; Kimura, Hiroshi; Hara, Masaaki

    2003-03-01

    The polymorphism of HF (beta 1H-globulin) was investigated in three Asian populations (Bangladeshis, Tibetans and Indonesians) by means of isoelectric focusing and immunoblotting. Phenotypes associated with three common alleles (HF*A, HF*B and HF*Q0) and a rare allele HF*A1 were identified. The observed numbers of phenotypes were in accordance with the numbers expected under the Hardy-Weinberg equilibrium. HF*A1 seems to be a unique allele of the East-Asian Mongoloids including Tibetans and Indonesians. PMID:12712773

  9. V/STOL AND digital avionics system for UH-1H

    NASA Technical Reports Server (NTRS)

    Liden, S.

    1978-01-01

    A hardware and software system for the Bell UH-1H helicopter was developed that provides sophisticated navigation, guidance, control, display, and data acquisition capabilities for performing terminal area navigation, guidance and control research. Two Sperry 1819B general purpose digital computers were used. One contains the development software that performs all the specified system flight computations. The second computer is available to NASA for experimental programs that run simultaneously with the other computer programs and which may, at the push of a button, replace selected computer computations. Other features that provide research flexibility include keyboard selectable gains and parameters and software generated alphanumeric and CRT displays.

  10. A possible detection of Jupiter's northern auroral S1(1) H2 quadrupole line emission

    NASA Technical Reports Server (NTRS)

    Trafton, L.; Carr, J.; Lester, D.; Harvey, P.

    1988-01-01

    An upper limit is presently determined for the mean intensity of the Jupiter northern Auroral UV/thermal hot spot's S1(1) H2 quadrupole emission, over an 8 sq arcsec illuminated beam; the value obtained is 4.2 X 10 to the -6th W/sq m per sr. It is suggested that the nonradiative deexitation of the H2 molecules via collisions with H may have been underestimated by Kim and Maguire (1986), due to uncertainties concerning auroral H density.

  11. Functional integrals and 1/h expansion in the boson-fermion model

    NASA Astrophysics Data System (ADS)

    Yan, Jun

    2016-06-01

    The effective action of boson-fermion model is derived by means of the functional integrals method and Popov-Faddeev canonical transformations. The energy gap equation and excitation spectrum equation are obtained from first order and second order perturbation expansions of functional determinant. In the long wave approximation, some analytical expressions of excitation spectrum are calculated by using the 1/h expansion technique, the results showed that analytical calculation is in good agreement with the numerical calculation. Moreover, the Nambu sum rules of Higgs bosons are analyzed and discussed.

  12. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  13. Investigation of the exclusive 3He(e,e' pn)1H reaction.

    PubMed

    Middleton, D G; Annand, J R M; Antelo, M Ases; Ayerbe, C; Barneo, P; Baumann, D; Bermuth, J; Bernauer, J; Blok, H P; Böhm, R; Bosnar, D; Ding, M; Distler, M O; Friedrich, J; Llongo, J García; Glazier, D I; Golak, J; Glöckle, W; Grabmayr, P; Hehl, T; Heim, J; Hesselink, W H A; Jans, E; Kamada, H; Mañas, G Jover; Kohl, M; Lapikás, L; MacGregor, I J D; Martin, I; McGeorge, J C; Merkel, H; Merle, P; Monstad, K; Moschini, F; Müller, U; Nogga, A; Pérez-Benito, R; Pospischil, Th; Potokar, M; Rosner, G; Seimetz, M; Skibiński, R; de Vries, H; Walcher, Th; Watts, D P; Weinriefer, M; Weiss, M; Witała, H; Zihlmann, B

    2009-10-01

    Cross sections for the 3He(e,e' pn)1H reaction were measured for the first time at energy transfers of 220 and 270 MeV for several momentum transfers ranging from 300 to 450 MeV/c. Cross sections are presented as a function of the momentum of the recoil proton and the momentum transfer. Continuum Faddeev calculations using the Argonne V18 and Bonn-B nucleon-nucleon potentials overestimate the measured cross sections by a factor 5 at low recoil proton momentum with the discrepancy becoming smaller at higher recoil proton momentum. PMID:19905628

  14. Determination of the illicit drug gamma-hydroxybutyrate (GHB) in human saliva and beverages by 1H NMR analysis.

    PubMed

    Grootveld, Martin; Algeo, Deborah; Silwood, Christopher J L; Blackburn, John C; Clark, Anthony D

    2006-01-01

    High resolution 1H NMR spectroscopy has been employed to investigate the detection and quantification of the illicit "date-rape" drug gamma-hydroxybutyrate (GHB) in both human saliva and a commonly-consumed low-alcohol beer product. Data acquired revealed that this multicomponent analytical technique provided unequivocal evidence for the detection of this agent by this technique in both of these matrices, i.e., all three of its resonances [those ascribable to the alpha-CH2 (t, delta=2.25 ppm), beta-CH2 (tt, delta=1.81 ppm) and gamma-CH2 (t, delta=3.61 ppm) group protons] were present in spectra acquired on human saliva, and two of these (the alpha- and beta-CH2 group signals) in the beverage product examined, the latter observation attributable to overlap of the gamma-CH2 1H resonance with those of carbohydrates. Since good linear calibration relationships between the intensities of each of the NMR-visible signals and added GHB concentration (the former normalised to that of an external 3-trimethylsilyl [2,2,3,3-2H4]- propionate standard present in a coaxial NMR tube insert) were observed, this illicit drug is also readily quantifiable in such multicomponent samples. Our data demonstrate the advantages offered by this technique when applied to the analysis of illicit drugs in multicomponent sample matrices such as human biofluids and beverage products. PMID:17012769

  15. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Nelson, Sarah J.; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-04-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D 1H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for 1H MRSI at 7 T and to using ultrafast volumetric and dynamic 13C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized 13C agents.

  16. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging.

    PubMed

    Nelson, Sarah J; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-04-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D (1)H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for (1)H MRSI at 7 T and to using ultrafast volumetric and dynamic (13)C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized (13)C agents. PMID:23453759

  17. Investigating brain metabolism at high fields using localized 13C NMR spectroscopy without 1H decoupling.

    PubMed

    Deelchand, Dinesh Kumar; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2006-02-01

    Most in vivo 13C NMR spectroscopy studies in the brain have been performed using 1H decoupling during acquisition. Decoupling imposes significant constraints on the experimental setup (particularly for human studies at high magnetic field) in order to stay within safety limits for power deposition. We show here that incorporation of the 13C label from 13C-labeled glucose into brain amino acids can be monitored accurately using localized 13C NMR spectroscopy without the application of 1H decoupling. Using LCModel quantification with prior knowledge of one-bond and multiple-bond J(CH) coupling constants, the uncertainty on metabolites concentrations was only 35% to 91% higher (depending on the carbon resonance of interest) in undecoupled spectra compared to decoupled spectra in the rat brain at 9.4 Tesla. Although less sensitive, 13C NMR without decoupling dramatically reduces experimental constraints on coil setup and pulse sequence design required to keep power deposition within safety guidelines. This opens the prospect of safely measuring 13C NMR spectra in humans at varied brain locations (not only the occipital lobe) and at very high magnetic fields above 4 Tesla. PMID:16345037

  18. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  19. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Jung, B.; Slotboom, J.; Felblinger, J.; Boesch, C.

    1999-04-01

    1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2protons of Cr/PCr to1H MR spectra of human musclein vivoreflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.

  20. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  1. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.

    PubMed

    Zhang, Jianshuang; Zhong, Xin; Li, Shaosong; Zhang, Guren; Liu, Xin

    2015-11-10

    Ophicordyceps sinensis is a well-known traditional Chinese medicine and cultured mycelium is a substitute for wild O. sinensis. Metabolic profiles of wild O. sinensis from three geographical locations and cultivated mycelia derived from three origins were investigated using (1)H nuclear magnetic resonance (NMR) analysis combined with multivariate statistical analysis. A total of 56 primary metabolites were identified and quantified from O. sinensis samples. The principle component analysis (PCA) showed significant differences between natural O. sinensis and fermentation mycelia. Seven metabolites responsible for differentiation were screened out by orthogonal partial least squares discriminant analysis (OPLS-DA). The concentrations of mannitol, trehalose, arginine, trans-4-hydroxyproline, alanine and glucitol were significantly different between wild and cultured groups. The variation in metabolic profiling among artificial mycelia was greater than that among wild O. sinensis. Furthermore, wild samples from different origins were clearly distinguished by the levels of mannitol, trehalose and some amino acids. This study indicates that (1)H NMR-based metabolomics is useful for fingerprinting and discriminating O. sinensis of different geographical regions and cultivated mycelia of different strains. The present study provided an efficient approach for investigating chemical compositions and evaluating the quality of medicine and health food derived from O. sinensis. PMID:26279370

  2. High-resolution magic angle spinning 1H MRS in prostate cancer.

    PubMed

    Decelle, Emily A; Cheng, Leo L

    2014-01-01

    Prostate cancer (PCa) is the most frequently diagnosed malignancy in men worldwide, largely as a result of the increased use of the annual serum prostate-specific antigen (PSA) screening test for detection. PSA screening has saved lives, but it has also resulted in the overtreatment of many patients with PCa because of a limited ability to accurately localize and characterize PCa lesions through imaging. High-resolution magic angle spinning (HRMAS) (1)H MRS has proven to be a strong potential clinical tool for PCa diagnosis and prognosis. The HRMAS technique allows valuable metabolic information to be obtained from ex vivo intact tissue samples and also enables the performance of histopathology on the same tissue specimens. Studies have found that the quantification of individual metabolite levels and metabolite ratios, as well as metabolomic profiles, shows strong potential to improve accuracy in PCa detection, diagnosis and monitoring. Ex vivo HRMAS is also a valuable tool for the interpretation of in vivo results, including the localization of tumors, and thus has the potential to improve in vivo diagnostic tests used in the clinic. Here, we primarily review publications of HRMAS (1)H MRS and its use for the study of intact human prostate tissue. PMID:23529951

  3. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  4. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  5. Four-dimensional 1H and 23Na imaging using continuously oscillating gradients.

    PubMed

    Star-Lack, J M; Roos, M S; Wong, S T; Schepkin, V D; Budinger, T F

    1997-02-01

    A class of fast magnetic spectroscopic imaging methods using continuously oscillating gradients for four-dimensional (three spatial and one spectral) localization is introduced. Sampling may start immediately following the application of an RF excitation pulse, thus enabling measurement of spin density, chemical shift, and relaxation rates of short-T2 species. For spatial localization, steady-state sinusoidal gradient waveforms are used to sample a ball in k space. The two types of trajectories presented include: (1) continuously oscillating gradients with continuously rotating direction used for steady-state free-precession imaging and (2) continuously oscillating gradients followed by a spoiler directed along discrete projections. Design criteria are given and spatial-spectral and spatial-temporal reconstruction methods are developed. Theoretical point-spread functions and signal-to-noise ratios are derived while considering T2*, off-resonance effects, and RF excitation options. Experimental phantom, in vivo, and in vitro 1H and 23Na images collected at 2.35 T are presented. The 1H images were acquired with isotropic spatial resolution ranging from 0.03 to 0.27 cm3 and gradient-oscillation frequencies ranging from 600 to 700 Hz, thus allowing for the separation of water and lipid signals within a voxel. The 23Na images, acquired with 500 and 800 Hz gradient waveforms and 0.70 cm3 isotropic resolution, were resolved in the time domain, yielding spatially localized FIDs. PMID:9169223

  6. Methodology of 1H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields

    PubMed Central

    Tkáč, I.; Gruetter, R.

    2009-01-01

    An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine 1H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo 1H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality. PMID:20179773

  7. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach.

    PubMed

    Dong, Ge; Wang, Junsong; Guo, Pingping; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2015-02-01

    Arisaematis Rhizoma (AR), a famous traditional Chinese medicine, has been widely used in Asia over thousands of years. Documented with noticeable toxicity in ancient books, AR has been used to treat various diseases in the clinic. Therefore, it is important to assess the toxicity of AR dynamically and holistically. In this study, a (1)H NMR-based metabolomics approach complemented with serum chemistry and histopathology has been applied to investigate the toxicity of AR. Rats were intragastrically administered with AR (0, 0.5 and 1 g kg(-1) body weight) for 30 days, and serum and urine samples were collected. Their (1)H NMR profiles were analyzed by multivariate pattern recognition techniques to denote metabolic variations induced by AR, and 13 metabolites in urine and 6 metabolites in serum were significantly altered, which suggested that disturbances in energy metabolism, perturbation of the gut microflora environment, membrane damage, folate deficiency and injury of kidneys are produced by AR. Histopathology showed a slight vacuolization of the glomerular matrix and edema of renal tubular epithelial cells in kidneys of AR administered rats, which were evidenced by increased levels of blood urea nitrogen and creatinine in serum chemistry. Our results indicated that oral administration of crude AR was found to induce slight renal toxicity. Therefore, precautions should be made to monitor the potential nephrotoxicity of AR in clinical use. The metabolomics approach provided a promising tool for the study and better understanding of TCM-induced toxicity dynamically and holistically. PMID:25407163

  8. Broad identification of bacterial type in urinary tract infection using (1)h NMR spectroscopy.

    PubMed

    Gupta, Ashish; Dwivedi, Mayank; Mahdi, Abbas Ali; Khetrapal, Chunni Lal; Bhandari, Mahendra

    2012-03-01

    To address the shortcomings of urine culture for the rapid identification of urinary tract infection (UTI), we applied (1)H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate method for fast screening of microorganisms. Study includes 682 urine samples from suspected UTI patients, 50 healthy volunteers, and commercially available standard strains of gram negative bacilli (GNB) (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii) and gram positive cocci (GPC) (Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus). Acetate, lactate, ethanol, succinate, creatinine, trimethylamine (TMA), citrate, trimethylamin-N-oxide, glycine, urea, and hippurate were measured by (1)H NMR spectroscopy. All urine specimens were evaluated with culture method. Multivariate discriminant function analysis (DFA) reveals that acetate, lactate, succinate, and formate were able to differentiate, with high accuracy (99.5%), healthy controls from UTI patients. This statistical analysis was also able to classify GNB to GPC infected urine samples with high accuracy (96%). This technique appears to be a promising, rapid, and noninvasive approach to probing GNB and GPC infected urine specimens with its distinguishing metabolic profile. The determination of infection will be very important for rapidly and efficiently measuring the efficacy of a tailored treatment, leading to prompt and appropriate care of UTI patients. PMID:22292465

  9. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported. PMID:25451865

  10. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    SciTech Connect

    Modi, S.; Behere, D.V.; Mitra, S. )

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  11. High resolution 1H NMR of a lipid cubic phase using a solution NMR probe

    NASA Astrophysics Data System (ADS)

    Boyle-Roden, E.; Hoefer, N.; Dey, K. K.; Grandinetti, P. J.; Caffrey, M.

    2007-11-01

    The cubic mesophase formed by monoacylglycerols and water is an important medium for the in meso crystallogenesis of membrane proteins. To investigate molecular level lipid and additive interactions within the cubic phase, a method was developed for improving the resolution of 1H NMR spectra when using a conventional solution state NMR probe. Using this approach we obtained well-resolved J-coupling multiplets in the one-dimensional NMR spectrum of the cubic-Ia3d phase prepared with hydrated monoolein. A high resolution t-ROESY two-dimensional 1H NMR spectrum of the cubic-Ia3d phase is also reported. Using this new methodology, we have investigated the interaction of two additive molecules, L-tryptophan and ruthenium-tris(2,2-bipyridyl) dichloride (rubipy), with the cubic mesophase. Based on the measured chemical shift differences when changing from an aqueous solution to the cubic phase, we conclude that L-tryptophan experiences specific interactions with the bilayer interface, whereas rubipy remains in the aqueous channels and does not associate with the lipid bilayer.

  12. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  13. Wastewater Colloidal Organic Carbon: Characterization of Filtration Fractions Using 1H NMR.

    PubMed

    McPhedran, Kerry N; Seth, Rajesh

    2016-04-01

    The current study separates colloidal organic carbon (COC) of municipal wastewater using membrane and ultrafiltration filters followed by characterization using 1H nuclear magnetic resonance (NMR) and UV absorbance with the goal of determination of size-specific characteristics, which may be used to correlate contaminant partitioning to natural COC. Passing fractions included 49.7, 44.8, 39.3, and 33.1 mg/L COC for filter sizes 1.5 μm, 0.45 μm, 100 kDa, and 1 kDa, respectively. The methodology used for processing COC prior to 1H NMR characterization was novel and successful in concentrating COC without modification of structures, which is the general drawback of other separation techniques such as resin extractions. This concentration technique is quite simple (i.e., not dependent on specialized instrumentation) and allows much shorter NMR experimental durations saving time and cost of analysis. Further work using NMR techniques will allow for greater understanding of COC molecular characteristics and be valuable for use in predictive modeling improvements. PMID:27131054

  14. Molecular structures of 2-arylaminomethyl-1H-benzimidazole: Spectral, electrochemical, DFT and biological studies

    NASA Astrophysics Data System (ADS)

    Abdel Ghani, Nour T.; Mansour, Ahmed M.

    2012-06-01

    In the present work, structural studies on (1H-benzimidazol-2-ylmethyl)-N-(4-chloro-phenyl)-amine (L1) and (1H-benzimidazol-2-ylmethyl)-N-(4-iodo-phenyl)-amine (L2) have been done extensively by a variety of physico-chemical techniques. Optimized geometrical structures, harmonic vibrational frequencies, natural bonding orbital (NBO) analysis, and Frontier molecular orbitals (FMO) were obtained by DFT/B3LYP method. TD-DFT calculations help to assign the electronic transitions. The polarizable continuum model (PCM) fails to describe the experimental chemical shift associated with the NH protons as calculated by applying Gauge-invariant atomic orbital (GIAO) method, but a very good correlation between the theoretical and experimental values was achieved by taking into account the specific solute-solvent interactions. DFT calculations showed a good agreement between the theoretical and observed results. These compounds exhibited a high biological activity through the inhibition of the metabolic growth of the investigated bacteria.

  15. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1

    PubMed Central

    Capper, Michael J.; O’Neill, Paul M.; Fisher, Nicholas; Strange, Richard W.; Moss, Darren; Ward, Stephen A.; Berry, Neil G.; Lawrenson, Alexandre S.; Hasnain, S. Samar; Biagini, Giancarlo A.; Antonyuk, Svetlana V.

    2015-01-01

    Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles. PMID:25564664

  16. (1)H NMR Spectroscopy of Fecal Extracts Enables Detection of Advanced Colorectal Neoplasia.

    PubMed

    Amiot, Aurelien; Dona, Anthony C; Wijeyesekera, Anisha; Tournigand, Christophe; Baumgaertner, Isabelle; Lebaleur, Yann; Sobhani, Iradj; Holmes, Elaine

    2015-09-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its etiopathogenesis and earlier diagnosis. Here, we investigated the fecal metabolic phenotype of patients with advanced colorectal neoplasia and controls using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate modeling. The fecal microbiota composition was assessed by quantitative real-time PCR as well as Wif-1 methylation levels in stools, serum, and urine and correlated to the metabolic profile of each patient. The predictivity of the model was 0.507 (Q(2)Y), and the explained variance was 0.755 (R(2)Y). Patients with advanced colorectal neoplasia demonstrated increased fecal concentrations of four short-chain fatty acids (valerate, acetate, propionate, and butyrate) and decreased signals relating to β-glucose, glutamine, and glutamate. The predictive accuracy of the multivariate (1)H NMR model was higher than that of the guaiac-fecal occult blood test and the Wif-1 methylation test for predicting advanced colorectal neoplasia. Correlation analysis between fecal metabolites and bacterial profiles revealed strong associations between Faecalibacterium prausnitzii and Clostridium leptum species with short-chain fatty acids concentration and inverse correlation between Faecalibacterium prausnitzii and glucose. These preliminary results suggest that fecal metabonomics may potentially have a future role in a noninvasive colorectal screening program and may contribute to our understanding of the role of these dysregulated molecules in the cross-talk between the host and its bacterial microbiota. PMID:26211820

  17. Low Temperature 1H MAS NMR Spectroscopy Studies of Proton Motion in Zeolite

    SciTech Connect

    Huo, H.; Peng, L; Grey, C

    2009-01-01

    Low temperature {sup 1}H MAS NMR spectroscopy is used to study protonic motion in zeolite HZSM-5 in both samples that have been dried using procedures that are standard in the literature and samples that have been more carefully dehydrated. A significant enhancement of proton mobility is seen for the ''standard'' dehydrated HZSM-5 sample in comparison to that seen for the much drier sample. This is ascribed to a vehicle-hopping mechanism involving the residual water that is present in these zeolites. A gradual change of the framework structure is observed on cooling to approximately 213 K, as monitored via the change in {sup 1}H chemical shift values of the Broensted acid resonances and by X-ray diffraction. A more sudden change in structure is seen by differential scanning calorimetry and NMR at approximately 220?230 K, which is associated with changes in both the mobility and the modes of binding of the residual water to the Broensted acid sites and the zeolite framework.

  18. Two-dimensional /sup 1/H NMR studies on cyclophilin, a cytosolic cyclosporin A binding protein

    SciTech Connect

    Dalgarno, D.C.; Harding, M.W.; Lazarides, A.; Handschumacher, R.E.; Armitage, I.M.

    1986-05-01

    Cyclophilin (CyP) is a specific cytosolic cyclosporin A (CsA) binding protein (163 residues) that has been implicated in the pharmacological action of this potent immunosuppressant. One and two-dimensional /sup 1/H NMR methods are being employed to elucidate the solution structural properties of CyP particularly as they relate to the binding site of CsA. The focal point for these studies is the single Trp (residue number120) in CyP which, in the 1:1 CyP:CsA complex (K/sub d/approx.2 x 10/sup -7/M), shows a 2 fold enhancement in its intrinsic fluorescence. Using 2D /sup 1/H NMR methods, a low resolution structure has been derived for a very hydrophobic domain containing the Trp residue using interresidue n.O.e. data between assigned spin systems and a distance geometry algorithm. The structure of this hydrophobic domain will be discussed in relation to the predicted ..cap alpha../..beta.. secondary structure of this protein and comparisons made between its structure in the drug free and complexed form of the protein.

  19. Depressive symptoms linked to 1-h plasma glucose concentrations during the oral glucose tolerance test in men and women with the metabolic syndrome

    PubMed Central

    Birnbaum-Weitzman, O.; Goldberg, R.; Hurwitz, B. E.; Llabre, M. M.; Gellman, M. D.; Gutt, M.; McCalla, J. R.; Mendez, A. J.; Schneiderman, N.

    2014-01-01

    Aims The addition of the 1-h plasma glucose concentration measure from an oral glucose tolerance test to prediction models of future Type 2 diabetes has shown to significantly strengthen their predictive power. The present study examined the relationship between severity of depressive symptoms and hyperglycaemia, focusing on the 1-h glucose concentration vs. fasting and 2-h oral glucose tolerance test glucose measures. Methods Participants included 140 adults with the metabolic syndrome and without diabetes who completed a baseline psychobiological assessment and a 2-h oral glucose tolerance test, with measurements taken every 30 min. Depressive symptoms were assessed using the Beck Depression Inventory. Results Multivariate linear regression revealed that higher levels of depressive symptoms were associated with higher levels of 1-h plasma glucose concentrations after adjusting for age, gender, ethnicity, BMI, antidepressant use and high-sensitivity C-reactive protein. Results were maintained after controlling for fasting glucose as well as for indices of insulin resistance and secretion. Neither fasting nor 2-h plasma glucose concentrations were significantly associated with depressive symptoms. Conclusions Elevated depressive symptoms in persons with the metabolic syndrome were associated with greater glycaemic excursion 1-h following a glucose load that was not accounted for by differences in insulin secretory function or insulin sensitivity. Consistent with previous findings, this study highlights the value of the 1-h oral glucose tolerance test plasma glucose measurement in the relation between depressive symptoms and glucose metabolism as an indicator of metabolic abnormalities not visible when focusing on fasting and 2-h post-oral glucose tolerance test measurements alone. PMID:24344735

  20. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  1. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  2. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  3. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  4. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  5. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  6. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  7. In vivo and ex vivo measurements: noninvasive assessment of alcoholic fatty liver using 1H-MR spectroscopy

    PubMed Central

    Keese, Daniel; Korkusuz, Hüdayi; Huebner, Frank; Namgaladze, Dmitry; Raschidi, Bahram; Vogl, Thomas J.

    2016-01-01

    PURPOSE We aimed to evaluate the ability of 1H-magnetic resonance spectroscopy (1H-MRS) to detect and quantify hepatic fat content in vivo and ex vivo in an experimental rat model of alcoholic fatty liver using histopathology, biochemistry, and laboratory analyses as reference. METHODS Alcoholic fatty liver was induced within 48 hours in 20 Lewis rats; 10 rats served as control. Intrahepatic fat content determined by 1H-MRS was expressed as the percent ratio of the lipid and water peaks and was correlated with intrahepatic fat content determined histologically and biochemically. Liver enzymes were measured in serum. RESULTS Fatty liver could be detected in vivo as well as ex vivo using 1H-MRS, in all 20 animals. Histologic analysis showed a fatty liver in 16 of 20 animals. Histology and 1H-MRS results were highly correlated (in vivo, r=0.93, P = 0.0005; ex vivo, r=0.92, P = 0.0006). Also a strong correlation was noted between in vivo 1H-MRS measurements and the fat content determined biochemically (r=0.96, P = 0.0003). Ex vivo results showed a similarly strong correlation between 1H-MRS and biochemistry (r=0.89, P = 0.0011). CONCLUSION 1H-MRS can be carried out in ex vivo models, as well as in vivo, to detect and quantify intrahepatic fat content in the acute fatty liver. PMID:26627137

  8. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation.

    PubMed

    Keun, Hector C; Athersuch, Toby J; Beckonert, Olaf; Wang, Yulan; Saric, Jasmina; Shockcor, John P; Lindon, John C; Wilson, Ian D; Holmes, Elaine; Nicholson, Jeremy K

    2008-02-15

    We present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.8 Hz/pt for both nuclei. The efficient statistical editing provided by these methods readily allowed the collection of drug metabolic data and assisted structure elucidation. This approach is of general applicability for studying the metabolism of other fluorine-containing drugs, including important anticancer agents such as 5-fluorouracil and flutamide, and is extendable to any drug metabolism study where there is a spin-active X-nucleus (e.g., 13C, 15N, 31P) label present. PMID:18211034

  9. Automated data processing of { 1H-decoupled} 13C MR spectra acquired from human brain in vivo

    NASA Astrophysics Data System (ADS)

    Shic, Frederick; Ross, Brian

    2003-06-01

    In clinical 13C infusion studies, broadband excitation of 200 ppm of the human brain yields 13C MR spectra with a time resolution of 2-5 min and generates up to 2000 metabolite peaks over 2 h. We describe a fast, automated, observer-independent technique for processing { 1H-decoupled} 13C spectra. Quantified 13C spectroscopic signals, before and after the administration of [1- 13C]glucose and/or [1- 13C]acetate in human subjects are determined. Stepwise improvements of data processing are illustrated by examples of normal and pathological results. Variation in analysis of individual 13C resonances ranged between 2 and 14%. Using this method it is possible to reliably identify subtle metabolic effects of brain disease including Alzheimer's disease and epilepsy.

  10. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm

    NASA Astrophysics Data System (ADS)

    Harańczyk, H.; Kobierski, J.; Nizioł, J.; Hebda, E.; Pielichowski, J.; Zalitacz, D.; Marzec, M.; El-Ghayoury, A.

    2013-01-01

    The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t1h = (0.59 ± 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t2h = (20.9 ± 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T2S∗≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1∗≈ 100 μs) and from loosely bound water fraction (T2L2∗≈ 1000 μs).

  11. Diaqua-bis-(1H-imidazole-4-carboxyl-ato-κ(2) N (3),O (4))manganese(II).

    PubMed

    Xiong, Zhi-Yong; Li, Lin; Zhao, Xiang-Jie; Chen, Hai-Ming

    2013-03-01

    In the title compound, [Mn(C4H3N2O2)2(H2O)2], the Mn(II) ion is located on a twofold rotation axis and displays a distorted octa-hedral coordination environment, defined by two N,O-bidentate 1H-imidazole-4-carboxyl-ate ligands in the equatorial plane and two water mol-ecules in axial positions. In the crystal, O-H⋯O and N-H⋯O hydrogen bonds link the mol-ecules into a three-dimensional supra-molecular network. π-π stacking inter-actions between the imidazole rings [centroid-centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the structure. PMID:23476512

  12. Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts.

    PubMed

    Rodríguez-Rodríguez, Aurora; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Botta, Mauro; Tripier, Raphaël; Platas-Iglesias, Carlos

    2012-12-17

    calculations. Our results show that spin polarization effects dominate the (1)H A(iso) values. The X-ray crystal structures of [Ln(Me-DODPA)](PF(6))·2H(2)O (Ln = Eu or Lu) are also reported. PMID:23215456

  13. Water 1H relaxation dispersion analysis on a nitroxide radical provides information on the maximal signal enhancement in Overhauser dynamic nuclear polarization experiments.

    PubMed

    Bennati, Marina; Luchinat, Claudio; Parigi, Giacomo; Türke, Maria-Teresa

    2010-06-14

    Water (1)H relaxation rate measurements of (15)N-(2)H-TEMPONE solutions at temperatures ranging from 298 to 328 K have been performed as a function of magnetic field from 0.00023 to 9.4 T, corresponding to (1)H Larmor frequencies of 0.01 to 400 MHz. The relaxation profiles were analyzed according to the full theory for dipolar and contact relaxation, and used to estimate the coupling factor responsible for observed solution DNP effects. The experimental DNP enhancement at (1)H Larmor frequency of 15 MHz obtained by saturating one of the lines of the (15)N doublet is only ca. 20% lower than the limiting value predicted from the relaxation data, indicating that the experimental DNP setup is nearly optimal, the residual discrepancy arising from incomplete saturation of the other line. PMID:20458388

  14. Monoclonal antibody against recombinant Fasciola gigantica cathepsin L1H could detect juvenile and adult cathepsin Ls of Fasciola gigantica.

    PubMed

    Wongwairot, Sirima; Kueakhai, Pornanan; Changklungmoa, Narin; Jaikua, Wipaphorn; Sansri, Veerawat; Meemon, Krai; Songkoomkrong, Sineenart; Riengrojpitak, Suda; Sobhon, Prasert

    2015-01-01

    Cathepsin Ls (CatLs), the major cysteine protease secreted by Fasciola spp., are important for parasite digestion and tissue invasion. Fasciola gigantica cathepsin L1H (FgCatL1H) is the isotype expressed in the early stages for migration and invasion. In the present study, a monoclonal antibody (MoAb) against recombinant F. gigantica cathepsin L1H (rFgCatL1H) was produced by hybridoma technique using spleen cells from BALB/c mice immunized with recombinant proFgCatL1H (rproFgCatL1H). This MoAb is an immunoglobulin (Ig)G1 with κ light chain isotype. The MoAb reacted specifically with rproFgCatL1H, the native FgCatL1H at a molecular weight (MW) 38 to 48 kDa in the extract of whole body (WB) of metacercariae and newly excysted juvenile (NEJ) and cross-reacted with rFgCatL1 and native FgCatLs at MW 25 to 28 kDa in WB of 2- and 4-week-old juveniles, adult, and adult excretory-secretory (ES) fractions by immunoblotting and indirect ELISA. It did not cross-react with antigens in WB fractions from other parasites, including Gigantocotyle explanatum, Paramphistomum cervi, Gastrothylax crumenifer, Eurytrema pancreaticum, Setaria labiato-papillosa, and Fischoederius cobboldi. By immunolocalization, MoAb against rFgCatL1H reacted with the native protein in the gut of metacercariae and NEJ and also cross-reacted with CatL1 in 2- and 4-week-old juveniles and adult F. gigantica. Therefore, FgCatL1H and its MoAb may be used for immunodiagnosis of both early and late fasciolosis in ruminants and humans. PMID:25324133

  15. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in

  16. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts.

    PubMed

    Neal, Stephen; Nip, Alex M; Zhang, Haiyan; Wishart, David S

    2003-07-01

    A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts--RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 A) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of approximately 20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (<1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Halpha), 0.980 (13Calpha), 0.996 (13Cbeta), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http

  17. Simultaneous DNP enhancements of (1)H and (13)C nuclei: theory and experiments.

    PubMed

    Shimon, Daphna; Hovav, Yonatan; Kaminker, Ilia; Feintuch, Akiva; Goldfarb, Daniella; Vega, Shimon

    2015-05-01

    DNP on heteronuclear spin systems often results in interesting phenomena such as the polarization enhancement of one nucleus during MW irradiation at the "forbidden" transition frequencies of another nucleus or the polarization transfer between the nuclei without MW irradiation. In this work we discuss the spin dynamics in a four-spin model system of the form {ea-eb-((1)H,(13)C)}, with the Larmor frequencies ωa, ωb, ωH and ωC, by performing Liouville space simulations. This spin system exhibits the common (1)H solid effect (SE), (13)C cross effect (CE) and in addition high order CE-DNP enhancements. Here we show, in particular, the "proton shifted (13)C-CE" mechanism that results in (13)C polarization when the model system, at one of its (13)C-CE conditions, is excited by a MW field at the zero quantum or double quantum electron-proton transitions ωMW = ωa ± ωH and ωMW = ωb ± ωH. Furthermore, we introduce the "heteronuclear" CE mechanism that becomes efficient when the system is at one of its combined CE conditions |ωa - ωb| = |ωH ± ωC|. At these conditions, simulations of the four-spin system show polarization transfer processes between the nuclei, during and without MW irradiation, resembling the polarization exchange effects often discussed in the literature. To link the "microscopic" four-spin simulations to the experimental results we use DNP lineshape simulations based on "macroscopic" rate equations describing the electron and nuclear polarization dynamics in large spin systems. This approach is applied based on electron-electron double resonance (ELDOR) measurements that show strong (1)H-SE features outside the EPR frequency range. Simulated ELDOR spectra combined with the indirect (13)C-CE (iCE) mechanism, result in additional "proton shifted (13)C-CE" features that are similar to the experimental ones. These features are also observed experimentally in (13)C-DNP spectra of a sample containing 15 mM of trityl in a glass forming solution of

  18. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  19. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  20. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  1. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  2. Low-field (1)H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees.

    PubMed

    Defernez, Marianne; Wren, Ella; Watson, Andrew D; Gunning, Yvonne; Colquhoun, Ian J; Le Gall, Gwénaëlle; Williamson, David; Kemsley, E Kate

    2017-02-01

    This work reports a new screening protocol for addressing issues of coffee authenticity using low-field (60MHz) bench-top (1)H NMR spectroscopy. Using a simple chloroform-based extraction, useful spectra were obtained from the lipophilic fraction of ground roast coffees. It was found that 16-O-methylcafestol (16-OMC, a recognized marker compound for robusta beans) gives rise to an isolated peak in the 60MHz spectrum, which can be used as an indicator of the presence of robusta beans in the sample. A total of 81 extracts from authenticated coffees and mixtures were analysed, from which the detection limit of robusta in arabica was estimated to be between 10% and 20% w/w. Using the established protocol, a surveillance exercise was conducted of 27 retail samples of ground roast coffees which were labelled as "100% arabica". None were found to contain undeclared robusta content above the estimated detection limit. PMID:27596398

  3. (1)H NMR spectroscopy in the diagnosis of Pseudomonas aeruginosa-induced urinary tract infection.

    PubMed

    Gupta, Ashish; Dwivedi, Mayank; Nagana Gowda, G A; Ayyagari, Archana; Mahdi, A A; Bhandari, M; Khetrapal, C L

    2005-08-01

    The utility of (1)H NMR spectroscopy is suggested and demonstrated for the diagnosis of Pseudomonas aeruginosa in urinary tract infection (UTI). The specific property of P. aeruginosa of metabolizing nicotinic acid to 6-hydroxynicotinic acid (6-OHNA) is exploited. The quantity of 6-OHNA produced correlates well with the viable bacterial count. Other common bacteria causing UTI such as Escherichia coli, Klebsiella pneumonia, Enterobacter aerogenes, Acinetobacter baumanii, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus gp B and Staphylococcus aureus do not metabolize nicotinic acid under similar conditions. The method provides a single-step documentation of P. aeruginosa qualitatively as well as quantitatively. The NMR method is demonstrated on urine samples from 30 patients with UTI caused by P. aeruginosa. PMID:15759292

  4. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26626418

  5. {sup 1}H NMR electron-nuclear cross relaxation in thin films of hydrogenated amorphous silicon

    SciTech Connect

    Su Tining; Taylor, P. C.; Ganguly, G.; Carlson, D. E.; Bobela, D. C.; Hari, P.

    2007-12-15

    We investigate the spin-lattice relaxation of the dipolar order in {sup 1}H NMR in hydrogenated amorphous silicon (a-Si:H). We find that the relaxation is dominated by the cross relaxation between the hydrogen nuclei and the paramagnetic states. The relaxation is inhomogeneous, and can be described as a stretched exponential function. We proposed a possible mechanism for this relaxation. This mechanism applies to a rather broad range of paramagnetic states, including the deep neutral defects (dangling bonds), the light-induced metastable defects, the defects created by doping, and the singly occupied, localized band-tail states populated by light at low temperatures. The cross relaxation is only sensitive to the bulk spin density, and the surface spins have a negligible effect on the relaxation.

  6. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  7. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  8. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  9. 1H NMR Cryoporometry Study of the Melting Behavior of Water in White Cement

    NASA Astrophysics Data System (ADS)

    Boguszyńska, Joanna; Tritt-Goc, Jadwiga

    2004-09-01

    The pore size of white cement samples is studied by the melting behaviour of water confined in it, using 1H NMR cryopormetry. The influence of the preparing method and antifreeze admixture on the pore size and distribution in cement samples is investigated at 283 K. The addition of an antifreeze admixture [containing 1% Sika Rapid 2 by weight of the dry cement] influences the porosity. In wet prepared samples we observed a significant increase in the quantity of mesopores between 0.8 and 5 nm and a smaller increase of mesopores between 5 and 10 nm, when compared to cement without admixture. The compressive strength is related to the porosity of the cement. Therefore the cement with Sika Rapid 2, wet prepared at 278 K shows a higher strength than all other measured samples.

  10. Complete 1H NMR assignments of pyrrolizidine alkaloids and a new eudesmanoid from Senecio polypodioides.

    PubMed

    Villanueva-Cañongo, Claudia; Pérez-Hernández, Nury; Hernández-Carlos, Beatriz; Cedillo-Portugal, Ernestina; Joseph-Nathan, Pedro; Burgueño-Tapia, Eleuterio

    2014-05-01

    Chemical investigation of the aerial parts of Senecio polypodioides lead to the isolation of the new eudesmanoid 1β-angeloyloxyeudesm-7-ene-4β,9α-diol (1) and the known dirhamnosyl flavonoid lespidin (3), while from roots, the known 7β-angeloyloxy-1-methylene-8α-pyrrolizidine (5) and sarracine N-oxide (6), as well as the new neosarracine N-oxide (8), were obtained. The structure of 1 and 8 was elucidated by spectral means. Complete assignments of the (1)H NMR data for 5, 6, sarracine (7), and 8 were made using one-dimensional and two-dimensional NMR experiments and by application of the iterative full spin analysis of the PERCH NMR software. PMID:24574143

  11. Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update

    PubMed Central

    Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996

  12. Discovery of 1-methyl-1H-imidazole derivatives as potent Jak2 inhibitors.

    PubMed

    Su, Qibin; Ioannidis, Stephanos; Chuaqui, Claudio; Almeida, Lynsie; Alimzhanov, Marat; Bebernitz, Geraldine; Bell, Kirsten; Block, Michael; Howard, Tina; Huang, Shan; Huszar, Dennis; Read, Jon A; Rivard Costa, Caroline; Shi, Jie; Su, Mei; Ye, Minwei; Zinda, Michael

    2014-01-01

    Structure based design, synthesis, and biological evaluation of a novel series of 1-methyl-1H-imidazole, as potent Jak2 inhibitors to modulate the Jak/STAT pathway, are described. Using the C-ring fragment from our first clinical candidate AZD1480 (24), optimization of the series led to the discovery of compound 19a, a potent, orally bioavailable Jak2 inhibitor. Compound 19a displayed a high level of cellular activity in hematopoietic cell lines harboring the V617F mutation and in murine BaF3 TEL-Jak2 cells. Compound 19a demonstrated significant tumor growth inhibition in a UKE-1 xenograft model within a well-tolerated dose range. PMID:24359159

  13. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  14. 1H, 13C and 15N resonance assignments of URNdesign, a computationally redesigned RRM protein

    SciTech Connect

    Dobson, Neil; Dantas, Gautam; Varani, Gabriele

    2005-10-01

    Protein design represents one of the great challenges of computational structural biology. The ability to successfully design new proteins would allow us to generate new reagents and enzymes, while at the same time providing us with an understanding of the principles of protein stability. Here we report 1H, 15N and 13C resonance assignments of a redesigned U1A protein, URNdesign. U1A has been studied extensively by our group and hence was chosen as a design target. For the assignments we sued 2D and 3D heteronuclearNMR experiments with uniformly 13C, 15N-labeled URNdesign. The assignments for the backbone NH, CO,Ca and Cb nuclei are 94%complete. Sidechain 1Hand13C, aromatic andQ/NNH2 resonances are essentially complete with guanidinium and K NH3 residues unassigned. BMRB deposit with accession number 6493

  15. A 1H-n.m.r. study of casein micelles.

    PubMed Central

    Griffin, M C; Roberts, G C

    1985-01-01

    The 1H-n.m.r. spectrum of casein micelles consists of a small number of moderately sharp (linewidth approx. 60 Hz) resonances superimposed on the envelope of very broad lines expected for particles of this size. These sharp lines resemble, in chemical shift and relative intensity, the spectrum of the isolated 'macropeptide' released from the micelles by treatment with chymosin. The sharp lines in the casein micelle spectrum are further sharpened by addition of chymosin and broadened markedly by addition of ethanol. These observations are consistent with the proposal that the 'macropeptide' (the C-terminal 64 residues of K-casein) forms flexible 'hairs' on the surface of the micelles. PMID:3924034

  16. 1H-NMR study of the three low temperature phases of DPPC-water systems.

    PubMed

    Trahms, L; Klabe, W D; Boroske, E

    1983-06-01

    The three phases of dipalmitoylphosphatidylcholine-water dispersions, occurring below the main transition are studied by a moment analysis of 1H-nuclear magnetic resonance (NMR) spectra. The subtransition, recently detected by Chen, S. C., J. M. Sturtevant, and B. J. Gaffney, 1980, Pro. Natl. Acad. Sci. USA, 77:5060-5063, is characterized by a sharp drop in the second moment at 12 degrees C as a result of increasing the temperature. Interesting features of this phase transition are a hysteresis of 11 K and extremely slow kinetics. It is interpreted as the onset of a flip-flop of the hydrocarbon chains about their long axis. At the pretransition, this type of motion is assumed to change into a fast rotation. The proposed models for the three phases are confirmed by computer calculations of theoretical values for the second and fourth moments of the corresponding NMR signals. PMID:6688190

  17. Interaction of Daunomycin with Dipalmitoylphosphatidylcholine Model Membranes. A 1H NMR Study

    NASA Astrophysics Data System (ADS)

    Calzolai, Luigi; Gaggelli, Elena; Maccotta, Antonella; Valensin, Gianni

    1996-09-01

    1H NMR parameters were obtained for daunomycin in water solution in the free state as well as in the presence of dipalmitoylphosphatidylcholine model membranes. Spin-lattice relaxation rates were measured under nonselective, single-selective, and double-selective irradiation modes, and 2D NOESY spectra were obtained at several values of the mixing time. Proton-proton distances were calculated and the motional correlation time was evaluated in both the free and bound states. NMR parameters were used to show that ring A and the glucosamine moiety of daunomycin strongly interact with the external surface of the bilayer, while the rest of the molecule penetrates the membrane without crossing it. The structures of both free and bound daunomycin were obtained and compared by using molecular modeling.

  18. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry. PMID:15625718

  19. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    SciTech Connect

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  20. 1H NMR metabolomics of earthworm responses to polychlorinated biphenyl (PCB) exposure in soil.

    PubMed

    Whitfield Åslund, Melissa L; Simpson, André J; Simpson, Myrna J

    2011-06-01

    (1)H NMR-based metabolomics was used to examine the metabolic profile of D(2)O-buffer extracted tissues of Eisenia fetida earthworms exposed for 2 days to an artificial soil spiked with sub-lethal concentrations of polychlorinated biphenyls (PCBs) (0, 0.5, 1, 5, 10, or 25 mg/kg Aroclor 1254). Univariate statistical analysis of the identified metabolites revealed a significant increase in ATP concentration in earthworms exposed to the highest soil PCB concentration, but detected no significant changes in other metabolites. However, a multivariate approach which considers alterations in multiple metabolites simultaneously, identified a significant linear relationship between earthworm metabolic profiles and PCB concentration (cross-validated PLS-regression with 7 components, R(2)X = 0.99, R(2)Y = 0.77, Q(2)Y = 0.45, P < 0.001). Significant changes in pair-wise metabolic correlations were also detected as PCB concentration increased. For example, lysine and ATP concentrations showed no apparent correlation in control earthworms (r = 0.22, P = 0.54), but were positively correlated in earthworms from the 25 mg/kg treatment (r = 0.87, P = 0.001). Overall, the observed metabolic responses suggest that PCBs disrupted both carbohydrate (energy) metabolism and membrane (osmolytic) function in E. fetida. The ability of (1)H NMR-based metabolomics to detect these responses suggests that this method offers significant potential for direct assessment of sub-lethal PCB toxicity in soil. PMID:21424327

  1. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  2. Application of ICA to realistically simulated 1H-MRS data

    PubMed Central

    Kalyanam, Ravi; Boutte, David; Hutchison, Kent E; Calhoun, Vince D

    2015-01-01

    Introduction 1H-MRS signals from brain tissues capture information on in vivo brain metabolism and neuronal biomarkers. This study aims to advance the use of independent component analysis (ICA) for spectroscopy data by objectively comparing the performance of ICA and LCModel in analyzing realistic data that mimics many of the known properties of in vivo data. Methods This work identifies key features of in vivo 1H-MRS signals and presents methods to simulate realistic data, using a basis set of 12 metabolites typically found in the human brain. The realistic simulations provide a much needed ground truth to evaluate performances of various MRS analysis methods. ICA is applied to collectively analyze multiple realistic spectra and independent components identified with our generative model to obtain ICA estimates. These same data are also analyzed using LCModel and the comparisons between the ground-truth and the analysis estimates are presented. The study also investigates the potential impact of modeling inaccuracies by incorporating two sets of model resonances in simulations. Results The simulated fid signals incorporating line broadening, noise, and residual water signal closely resemble the in vivo signals. Simulation analyses show that the resolution performances of both LCModel and ICA are not consistent across metabolites and that while ICA resolution can be improved for certain resonances, ICA is as effective as, or better than, LCModel in resolving most model resonances. Conclusion The results show that ICA can be an effective tool in comparing multiple spectra and complements existing approaches for providing quantified estimates. PMID:26221570

  3. Primary somatosensory cortex in chronic low back pain – a 1H-MRS study

    PubMed Central

    Sharma, Neena K; McCarson, Kenneth; Van Dillen, Linda; Lentz, Angela; Khan, Talal; Cirstea, Carmen M

    2011-01-01

    The goal of this study was to investigate whether certain metabolites, specific to neurons, glial cells, and the neuronal-glial neurotransmission system, in the primary somatosensory cortex (SSC), are altered and correlated with clinical characteristics of pain in patients with chronic low back pain (LBP). Eleven LBP patients and eleven age-matched healthy controls were included. N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), and glutamine/glutamate (Glx) were measured with proton magnetic resonance spectroscopy (1H-MRS) in left and right SSC. Differences in metabolite concentrations relative to those of controls were evaluated as well as analyses of metabolite correlations within and between SSCs. Relationships between metabolite concentrations and pain characteristics were also evaluated. We found decreased NAA in the left SSC (P = 0.001) and decreased Cho (P = 0.04) along with lower correlations between all metabolites in right SSC (P = 0.007) in LBP compared to controls. In addition, we found higher and significant correlations between left and right mI (P < 0.001 in LBP vs P = 0.1 in controls) and between left mI and right Cho (P = 0.048 vs P = 0.6). Left and right NAA levels were negatively correlated with pain duration (P = 0.04 and P = 0.02 respectively) while right Glx was positively correlated with pain severity (P = 0.04). Our preliminary results demonstrated significant altered neuronal-glial interactions in SSC, with left neural alterations related to pain duration and right neuronal-glial alterations to pain severity. Thus, the 1H-MRS approach proposed here can be used to quantify relevant cerebral metabolite changes in chronic pain, and consequently increase our knowledge of the factors leading from these changes to clinical outcomes. PMID:21647218

  4. Membrane-induced structure of novel human tachykinin hemokinin-1 (hHK1).

    PubMed

    Ganjiwale, Anjali; Cowsik, Sudha M

    2015-12-01

    PPT-C encoded hemokinin-1(hHK-1) of Homo sapiens (TGKASQFFGLM) is a structurally distinct neuropeptide among the tachykinin family that participate in the NK-1 receptor downstream signaling processes. Subsequently, signal transduction leads to execution of various effector functions which includes aging, immunological, and central nervous system (CNS) regulatory actions. However the conformational pattern of ligand receptor binding is unclear. The three-dimensional structure of the hemokinin-1 in aqueous and micellar environment has been studied by one and two-dimensional proton nuclear magnetic resonance (2D 1H-NMR spectroscopy) and distance geometry calculations. Data shows that hemokinin-1 was unstructured in aqueous environment; anionic detergent SDS induces α-helix formation. Proton NMR assignments have been carried out with the aid of correlation spectroscopy (gradient-COSY and TOCSY) and nuclear Overhauser effect spectroscopy (NOESY and ROESY) experiments. The inter proton distances and dihedral angle constraints obtained from the NMR data have been used in torsion angle dynamics algorithm for NMR applications (CYANA) to generate a family of structures, which have been refined using restrained energy minimization and dynamics. Helical conformation is observed from residue K3-M11. The conformational range of the peptide revealed by NMR studies has been analyzed in terms of characteristic secondary features. Observed conformational features have been compared to that of Substance P potent NK1 agonist. Thus the report provides a structural insight to study hHK-1-NK1 interaction that is essential for hHK1 based signaling events. PMID:26297926

  5. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  6. Essential parameters for structural analysis and dereplication by (1)H NMR spectroscopy.

    PubMed

    Pauli, Guido F; Chen, Shao-Nong; Lankin, David C; Bisson, Jonathan; Case, Ryan J; Chadwick, Lucas R; Gödecke, Tanja; Inui, Taichi; Krunic, Aleksej; Jaki, Birgit U; McAlpine, James B; Mo, Shunyan; Napolitano, José G; Orjala, Jimmy; Lehtivarjo, Juuso; Korhonen, Samuli-Petrus; Niemitz, Matthias

    2014-06-27

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain (1)H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1-1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen ((1)H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  7. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets

    PubMed Central

    Barone, Francesca; Elmi, Alberto; Romagnoli, Noemi; Bacci, Maria Laura

    2016-01-01

    When it comes to neuroscience, pigs represent an important animal model due to their resemblance with humans’ brains for several patterns including anatomy and developmental stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can provide important information about neurological health and function, proving its importance as both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scientific interest and value to obtain more standard physiological information regarding its composition and dynamics for both swine pathology and the refinement of experimental protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been applied in order to analyze the metabolomic profile of this biological fluid, and results showed the technique to be highly reproducible and reliable. The aim of the present study was to investigate in both qualitative and quantitative manner the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference in metabolites concentration between age groups, related to age and Blood-Brain-Barrier maturation. On each of the analyzed samples, 30 molecules could be observed above their limit of quantification, accounting for 95–98% of the total area of the spectra. The concentrations of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were found to decrease between P05 and P50, while the concentrations of glutamine, creatinine, methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 comparison was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules showed at P30 concentrations

  8. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  9. BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments

    NASA Astrophysics Data System (ADS)

    Ehni, Sebastian; Luy, Burkhard

    2013-07-01

    Shaped pulses designed for broadband excitation, inversion and refocusing are important tools in modern NMR spectroscopy to achieve robust pulse sequences especially in heteronuclear correlation experiments. A large variety of mostly computer-optimized pulse shapes exist for different desired bandwidths, available rf-field strengths, and tolerance to B1-inhomogeneity. They are usually derived for a single spin 1/2, neglecting evolution due to J-couplings. While pulses with constant resulting phase are selfcompensated for heteronuclear coupling evolution as long as they are applied exclusively on a single nucleus, the situation changes for concurrently applied pulse shapes. Using the example of a 1H,13C two spin system, two J-compensated pulse pairs for the application in INEPT-type transfer elements were optimized: a point-to-point pulse sandwich called BEBEtr, consisting of a broadband excitation and time-reversed excitation pulse, and a combined universal rotation and point-to-point pulse pair called BUBI, which acts as a refocusing pulse on 1H and a corresponding inversion pulse on 13C. After a derivation of quality factors and optimization protocols, a theoretical and experimental comparison with conventionally derived BEBOP, BIBOP, and BURBOP-180° pulses is given. While the overall transfer efficiency of a single pulse pair is only reduced by approximately 0.1%, resulting transfer to undesired coherences is reduced by several percent. In experiments this can lead to undesired phase distortions for pairs of uncompensated pulse shapes and even differences in signal intensities of 5-10% in HSQC and up to 68% in more complex COB-HSQC experiments.

  10. The peculiar radio-loud narrow line Seyfert 1 galaxy 1H 0323+342

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Anjum, Ayesha; Pandey, S. B.

    2014-07-10

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ∼3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  11. Distortion-free {sup 13}C NMR spectroscopy in coal: {sup 1}H rotating-frame dynamic nuclear polarization and {sup 1}H-{sup 13}C cross-polarization

    SciTech Connect

    Wind, R.A.

    1993-12-31

    A {sup 1}H-{sup 13}C cross-polarization (CP) experiment is described in which the {sup 1}H magnetization, used in CP, is obtained via dynamic nuclear polarization (DNP) in the proton rotating frame (RF DNP). This experiment can be carried out in coal and other solids containing unpaired electrons. In this so-called RF DNP-CP experiment, interplay effects between the {sup 1}H-{sup 13}C polarization-transfer times and the {sup 1}H rotating-frame relaxation time are avoided; thus {sup 13}C spectral distortions due to these effects are prevented. Moreover, multiple-contact RF DNP-CP experiments are possible, and these experiments reduce the measuring time of a {sup 13}C spectrum. An application of the RF DNP-CP technique in a low-volatile bituminous coal is given. 25 refs., 3 figs.

  12. Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Moka, D; Vorreuther, R; Schicha, H; Spraul, M; Humpfer, E; Lipinski, M; Foxall, P J; Nicholson, J K; Lindon, J C

    1998-05-01

    High resolution 1H nuclear magnetic resonance (NMR) spectra using spinning at the magic angle (1H MAS NMR) have been obtained on intact normal and pathological kidney tissue samples from patients undergoing surgery for renal cell carcinoma (RCC). The spectra were measured on ca. 80 mg samples and provided high resolution 1H NMR spectra in which effects of dipolar couplings, chemical shift anisotropy and magnetic susceptibility differences are minimised thus yielding high spectral resolution. Conventional one-dimensional and spin-echo spectra and two-dimensional J-resolved, TOCSY and 1H-13C HMQC spectra were also measured on selected samples and these allowed the assignment of resonances of endogenous substances comprising both cytosolic and membrane components. The tumour tissues were characterised principally by an increased lipid content. These are the first reported results on human tumour tissues using this technique and the approach offers potential for the rapid classification of different types of tumour tissue. PMID:9608434

  13. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  14. 1H-MR imaging of the lungs at 3.0 T

    PubMed Central

    Obruchkov, Sergei I.

    2016-01-01

    Background One disadvantage of magnetic resonance imaging (MRI) is the inability to adequately image the lungs. Recent advances in hyperpolarized gas technology [e.g., helium-3 (3He) and xenon-129 (129Xe)] have changed this. However, the required technology is expensive and often needing extra physics or engineering staff. Hence there is considerable interest in developing 1H (proton)-based MRI approaches that can be readily implemented on standard clinical systems. Thus, the purpose of this work was to compare a newly developed free breathing proton-based MR lung imaging method to that of a standard gadolinium (Gd) based perfusion approach. Methods Healthy volunteers [10] were scanned using a 3-T MRI with 8 parallel receivers, and a cardiac gated fast spin echo (FSE) sequence. Acquisition was cardiac triggered, with different time delays incremented to cover the entire cardiac cycle. Image k-space was filled rectilinearly. But to reduce motion artefacts k-space was retrospectively sorted using the minimal variance algorithm (MVA), based on physiologic data recorded from both the respiratory bellows and electrocardiogram (ECG). Resorted and reconstructed FSE images were compared to contrast enhanced lung images, obtained following intravenous injection of Gd-DTPA-BMA. Results Biphasic variation in FSE lung signal intensity was observed across the cardiac cycle with a maximal signal change following rapid cardiac ejection (between S and T waves), and following rapid isovolumetric relaxation. A difference image between systolic and diastolic states in the cardiac cycle resulted in images with improved lung contrast to noise ratio (CNR). FSE image intensity was uniform over lung parenchyma while Gd-based enhancement of spoiled gradient recalled echo (SPGR) images showed gravitational dependence. Conclusions Here we show how 1H-MR images of lung can be obtained during free breathing. The image contrast obtained during this approach is likely the result of flow and

  15. Continuous-flow 13C-filtered 1H NMR spectroscopy of ethanol metabolism in rat liver perfusate.

    PubMed

    Albert, K; Sudmeier, J L; Anwer, M S; Bachovchin, W W

    1989-09-01

    Using a 188.5-microliters continuous-flow dual probe 1H[13C] spin-echo difference spectra of rat liver perfusate were acquired. The conversion of [1-13C]ethanol to [1-13C]-acetaldehyde was readily monitored as a function of time. In combination with 1-1 water nonexcitation and WALTZ 13C decoupling, this method proved to be superior in sensitivity and selectivity to direct 1H or 13C detection. PMID:2779419

  16. Bioactive 2(1H)-Pyrazinones and Diketopiperazine Alkaloids from a Tunicate-Derived Actinomycete Streptomyces sp.

    PubMed

    Shaala, Lamiaa A; Youssef, Diaa T A; Badr, Jihan M; Harakeh, Steve M

    2016-01-01

    As a part of our ongoing effort to allocate marine microbial bioactive leads, a tunicate-derived actinomycete, Streptomyces sp. Did-27, was investigated. Three new 2(1H)-pyrazinones derivatives, (S)-6-(sec-butyl)-3-isopropylpyrazin-2(1H)-one (1), (S)-3-(sec-butyl)-6-isopropylpyrazin-2(1H)-one (2) and (S)-6-(sec-butyl)-3-isobutylpyrazin-2(1H)-one (3), together with the known (1H)-pyrazinones analogues deoxymutaaspergillic acid (4), 3,6-diisobutyl-2(1H)-pyrazinone (5) and 3,6-di-sec-butyl-2(1H)-pyrazinone (6), and the diketopiperazine alkaloids cyclo(6-OH-d-Pro-l-Phe) (7), bacillusamide B (8), cyclo(l-Pro-l-Leu) and cyclo(l-Pro-l-Ile) (10) were isolated from this strain. The structures of the compounds were determined by study of their one- and two-dimensional NMR spectra as well as high-resolution mass spectral determinations. Compound 4 was reported previously as a synthetic product, while compound 6 was reported as 2-hydroxy-3,6-di-sec-butylpyrazine. Herein, we report the complete NMR data for compounds 4 and 6. The compounds were evaluated for their cytotoxic activities against three cell lines. Compound 5 showed potent and selective activity against HCT-116 cell line with IC50 of 1.5 μg/mL, while 1-10 showed variable cytotoxic activities against these cancer cell lines. These results provide further understanding about the chemistry and bioactivities of the alkylated 2(1H)-pyrazinone derivatives. PMID:27563872

  17. Synthesis and biological activities of some new 4,5-dihydro-1H-1,2,4-triazol-5-ones.

    PubMed

    Demirbas, A; Johansson, C B; Duman, N; Ikizler, A A

    1996-01-01

    The reactions of 3-alkyl(aryl)-4-phenylamino-4,5-dihydro-1H-1,2,4-triazol-5-ones with appropriate alkyl halides via sodio derivatives were studied and the corresponding 1-alkyl-3-alkyl(aryl)-4-phenylamino-4,5-dihydro-1H-1,2,4-traizol-5 -ones were synthesized. Next, the new compounds were tested for their in vitro antimicrobial activities. PMID:8960286

  18. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR). PMID:26838434

  19. Crystal structure of 1-(1-methyl-1H-imidazol-2-yl)-4-phenyl-1H-1,2,3-triazole dihydrate

    PubMed Central

    Haslinger, Simone; Laus, Gerhard; Wurst, Klaus; Schottenberger, Herwig

    2015-01-01

    The title compound, C12H11N5·2H2O, which crystallizes as a dihydrate, was obtained by CuI-catalysed azide–alkyne cyclo­addition from 2-azido-1-methyl­imidazole and phenyl­ethyne. The dihedral angles between the central triazole ring (r.m.s. deviation = 0.004 Å) and the pendant imidazole (r.m.s. deviation = 0.006 Å) and phenyl rings are 12.3 (2) and 2.54 (19)°, respectively. In the crystal, the water mol­ecules are connected into [010] chains by O—H⋯O hydrogen bonds, while O—H⋯N hydrogen bonds connect the water mol­ecules to the organic mol­ecules, generating corrugated (100) sheets. PMID:26870543

  20. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    NASA Astrophysics Data System (ADS)

    Hassan, Jamal

    2012-09-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  1. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Spiess, Hans Wolfgang; Stapf, Siegfried; Münnemann, Kerstin

    2013-12-21

    Hyperpolarization techniques, such as Overhauser dynamic nuclear polarization (DNP), can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments and may therefore enable new applications where sensitivity is a limiting factor. In this contribution, studies of the (1)H and (19)F Overhauser dynamic nuclear polarization enhancements at 345 mT are presented for three different aromatic solvents with the TEMPO radical for a range of radical concentrations. Furthermore, nuclear magnetic relaxation dispersion measurements of the same solutions are analyzed, showing contributions from dipolar and scalar coupling modulated by translational diffusion and different coupling efficiency for different solvents and nuclei. Measurements of the electron paramagnetic resonance linewidth are included to support the analysis of the DNP saturation factor for varying radical concentration. The results of our study give an insight into the characteristics of nitroxide radicals as polarizing agents for (19)F Overhauser DNP of aromatic fluorinated solvents. Furthermore, we compare our results with the findings of the extensive research on Overhauser DNP that was conducted in the past for a large variety of other radicals. PMID:24192645

  2. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems. PMID:27469092

  3. Combined Analysis of Stable Isotope, (1)H NMR, and Fatty Acid To Verify Sesame Oil Authenticity.

    PubMed

    Kim, Jeongeun; Jin, Gyungsu; Lee, Yunhee; Chun, Hyang Sook; Ahn, Sangdoo; Kim, Byung Hee

    2015-10-14

    The aim of this study was to verify the authenticity of sesame oils using combined analysis of stable isotope ratio, (1)H NMR spectroscopy, and fatty acid profiles of the oils. Analytical data were obtained from 35 samples of authentic sesame oils and 29 samples of adulterated sesame oils currently distributed in Korea. The orthogonal projection to latent structure discriminant analysis technique was used to select variables that most effectively verify the sesame oil authenticity. The variables include δ(13)C value, integration values of NMR peaks that signify the CH3 of n-3 fatty acids, CH2 between two C═C, protons from sesamin/sesamolin, and 18:1n-9, 18:3n-3, 18:2t, and 18:3t content values. The authenticity of 65 of 70 blind samples was correctly verified by applying the range of the eight variables found in the authentic sesame oil samples, suggesting that triple analysis is a useful approach to verify sesame oil authenticity. PMID:26395416

  4. Quantitative (1)H NMR method for hydrolytic kinetic investigation of salvianolic acid B.

    PubMed

    Pan, Jianyang; Gong, Xingchu; Qu, Haibin

    2013-11-01

    This work presents an exploratory study for monitoring the hydrolytic process of salvianolic acid B (Sal B) in low oxygen condition using a simple quantitative (1)H NMR (Q-NMR) method. The quantity of the compounds was calculated by the relative ratio of the integral values of the target peak for each compound to the known amount of the internal standard trimethylsilyl propionic acid (TSP). Kinetic runs have been carried out on different initial concentrations of Sal B (5.00, 10.0, 20.0mg/mL) and temperatures of 70, 80, 90°C. The effect of these two factors during the transformation process of Sal B was investigated. The hydrolysis followed pseudo-first-order kinetics and the apparent degradation kinetic constant at 80°C decreased when concentration of Sal B increased. Under the given conditions, the rate constant of overall hydrolysis as a function of temperature obeyed the Arrhenius equation. Six degradation products were identified by NMR and mass spectrometric analysis. Four of these degradation products, i.e. danshensu (DSS), protocatechuic aldehyde (PRO), salvianolic acid D (Sal D) and lithospermic acid (LA) were further identified by comparing the retention times with standard compounds. The advantage of this Q-NMR method was that no reference compounds were required for calibration curves, the quantification could be directly realized on hydrolyzed samples. It was proved to be simple, convenient and accurate for hydrolytic kinetic study of Sal B. PMID:23867115

  5. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-01

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product. PMID:20207092

  6. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  7. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  8. Characterization of water-soluble organic matter in urban aerosol by 1H-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chalbot, Marie-Cecile G.; Chitranshi, Priyanka; Gamboa da Costa, Gonçalo; Pollock, Erik; Kavouras, Ilias G.

    2016-03-01

    The functional and 13C isotopic compositions of water-soluble organic carbon (WSOC) in atmospheric aerosol were determined by nuclear magnetic resonance (1H-NMR) and isotope ratio mass spectrometry (IRMS) in an urban location in the Southern Mississippi Valley. The origin of WSOC was resolved using the functional distribution of organic hydrogen, δ13C ratio, and positive matrix factorization (PMF). Three factors were retained based on NMR spectral bins loadings. Two factors (factors 1 and 3) demonstrated strong associations with the aliphatic region in the NMR spectra and levoglucosan resonances. Differences between the two factors included the abundance of the aromatic functional group for factor 1, indicating fresh emissions and, for factor 3, the presence of resonances attributed to secondary ammonium nitrate and low δ13C ratio values that are indicative of secondary organic aerosol. Factors 1 and 3 added 0.89 and 1.08 μgC m-3, respectively, with the highest contribution in the summer and fall. Factor 2 retained resonances consistent with saccharides and was attributed to pollen particles. Its contribution to WSOC varied from 0.22 μgC m-3 in winter to 1.04 μgC m-3 in spring.

  9. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  10. Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.

    PubMed

    Szuminska, K; Gutsze, A; Kowalczyk, A

    2001-01-01

    Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse interval (tauCPMG) as well as 1H NMR spectral measurements in a wide range of concentrations of bovine serum albumin (BSA) solutions. The anomalous relaxation behaviour of the water protons, similar to that observed in mammalian lenses, was found in the two most concentrated solutions (44% and 46%). The functional dependence of the spin-spin relaxation time vs. tauCPMG pulse interval and the values of the motional activation parameters obtained from the temperature dependencies of spin-lattice relaxation times suggest that the water molecule mobility is reduced in these systems. The slow exchange process on the T2 time scale is proposed to explain the obtained data. The proton spectral measurements support the hypothesis of a slow exchange mechanism in the highest concentrated solutions. From the analysis of the shape of the proton spectra the mean exchange times between bound and bulk water proton groups (tauex) have been estimated for the range of the highest concentrations (30%-46%). The obtained values are of the order of milliseconds assuring that the slow exchange condition is fulfilled in the most concentrated samples. PMID:11837660

  11. Identification of a de novo DYNC1H1 mutation via WES according to published guidelines

    PubMed Central

    Ding, Dongxue; Chen, Zhao; Li, Kai; Long, Zhe; Ye, Wei; Tang, Zhaoli; Xia, Kun; Qiu, Rong; Tang, Beisha; Jiang, Hong

    2016-01-01

    De novo mutations that contribute to rare Mendelian diseases, including neurological disorders, have been recently identified. Whole-exome sequencing (WES) has become a powerful tool for the identification of inherited and de novo mutations in Mendelian diseases. Two important guidelines were recently published regarding the investigation of causality of sequence variant in human disease and the interpretation of novel variants identified in human genome sequences. In this study, a family with supposed movement disorders was sequenced via WES (including the proband and her unaffected parents), and a standard investigation and interpretation of the identified variants was performed according to the published guidelines. We identified a novel de novo mutation (c.2327C > T, p.P776L) in DYNC1H1 gene and confirmed that it was the causal variant. The phenotype of the affected twins included delayed motor milestones, pes cavus, lower limb weakness and atrophy, and a waddling gait. Electromyographic (EMG) recordings revealed typical signs of chronic denervation. Our study demonstrates the power of WES to discover the de novo mutations associated with a neurological disease on the whole exome scale, and guidelines to conduct WES studies and interpret of identified variants are a preferable option for the exploration of the pathogenesis of rare neurological disorders. PMID:26846447

  12. Discrimination of the geographical origin of beef by (1)H NMR-based metabolomics.

    PubMed

    Jung, Youngae; Lee, Jueun; Kwon, Joseph; Lee, Kwang-Sik; Ryu, Do Hyun; Hwang, Geum-Sook

    2010-10-13

    The geographical origin of beef is of increasing interest to consumers and producers due to "mad cow" disease and the implementation of the Free Trade Agreement (FTA). In this study, (1)H NMR spectroscopy coupled with multivariate statistical analyses was used to differentiate the geographical origin of beef samples. Principal component analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) showed significant separation between extracts of beef originating from four countries: Australia, Korea, New Zealand, and the United States. The major metabolites responsible for differentiation in OPLS-DA loading plots were succinate and various amino acids including isoleucine, leucine, methionine, tyrosine, and valine. A one-way ANOVA was performed to statistically certify the difference in metabolite levels. The data suggest that NMR-based metabolomics is an efficient method to distinguish fingerprinting difference between raw beef samples, and several metabolites including various amino acids and succinate can be possible biomarkers for discriminating the geographical origin of beef. PMID:20831251

  13. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance.

    PubMed

    Sun, Yan-Jun; Zhang, Yan-Li; Wang, Yu; Wang, Jun-Min; Zhao, Xuan; Gong, Jian-Hong; Gao, Wei; Guan, Yan-Bin

    2015-01-01

    In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR) was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1), scan numbers (NS), and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS), and deuterated dimethyl sulfoxide (DMSO-d6) as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7'-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7'-O-β-d-glucopyranoside, and 6''-acetyl-podophyllotoxin-7'-O-β -d-glucopyranoside) were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC). Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans. PMID:26016553

  14. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  15. 1H NMR global metabolic phenotyping of acute pancreatitis in the emergency unit.

    PubMed

    Villaseñor, Alma; Kinross, James M; Li, Jia V; Penney, Nicholas; Barton, Richard H; Nicholson, Jeremy K; Darzi, Ara; Barbas, Coral; Holmes, Elaine

    2014-12-01

    We have investigated the urinary and plasma metabolic phenotype of acute pancreatitis (AP) patients presenting to the emergency room at a single center London teaching hospital with acute abdominal pain using (1)H NMR spectroscopy and multivariate modeling. Patients were allocated to either the AP (n = 15) or non-AP patients group (all other causes of abdominal pain, n = 21) on the basis of the national guidelines. Patients were assessed for three clinical outcomes: (1) diagnosis of AP, (2) etiology of AP caused by alcohol consumption and cholelithiasis, and (3) AP severity based on the Glasgow score. Samples from AP patients were characterized by high levels of urinary ketone bodies, glucose, plasma choline and lipid, and relatively low levels of urinary hippurate, creatine and plasma-branched chain amino acids. AP could be reliably identified with a high degree of sensitivity and specificity (OPLS-DA model R(2) = 0.76 and Q(2)Y = 0.59) using panel of discriminatory biomarkers consisting of guanine, hippurate and creatine (urine), and valine, alanine and lipoproteins (plasma). Metabolic phenotyping was also able to distinguish between cholelithiasis and colonic inflammation among the heterogeneous non-AP group. This work has demonstrated that combinatorial biomarkers have a strong diagnostic and prognostic potential in AP with relevance to clinical decision making in the emergency unit. PMID:25160714

  16. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  17. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  18. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  19. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  20. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  1. 1H Nuclear Magnetic Resonance (NMR) Metabolomic Study of Chronic Organophosphate Exposure in Rats

    PubMed Central

    Alam, Todd M.; Neerathilingam, Muniasamy; Alam, M. Kathleen; Volk, David E.; Ansari, G. A. Shakeel; Sarkar, Swapna; Luxon, Bruce A.

    2012-01-01

    1H NMR spectroscopy and chemometric analysis were used to characterize rat urine obtained after chronic exposure to either tributyl phosphate (TBP) or triphenyl phosphate (TPP). In this study, the daily dose exposure was 1.5 mg/kg body weight for TBP, or 2.0 mg/kg body weight for TPP, administered over a 15-week period. Orthogonal signal correction (OSC) -filtered partial least square discriminant analysis (OSC-PLSDA) was used to predict and classify exposure to these organophosphates. During the development of the model, the classification error was evaluated as a function of the number of latent variables. NMR spectral regions and corresponding metabolites important for determination of exposure type were identified using variable importance in projection (VIP) coefficients obtained from the OSC-PLSDA analysis. As expected, the model for classification of chronic (1.5–2.0 mg/kg body weight daily) TBP or TPP exposure was not as strong as the previously reported model developed for identifying acute (15–20 mg/kg body weight) exposure. The set of majorly impacted metabolites identified for chronic TBP or TPP exposure was slightly different than those metabolites previously identified for acute exposure. These metabolites were then mapped to different metabolite pathways and ranked, allowing the metabolic response to chronic organophosphate exposure to be addressed. PMID:24957643

  2. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  3. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy

    PubMed Central

    2012-01-01

    1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

  4. 1H NMR Metabolic Profiling of Biofluids from Rats with Gastric Mucosal Lesion and Electroacupuncture Treatment

    PubMed Central

    Xu, Jingjing; Cheng, Kian-Kai; Yang, Zongbao; Wang, Chao; Shen, Guiping; Wang, Yadong; Liu, Qiong; Dong, Jiyang

    2015-01-01

    Gastric mucosal lesion (GML) is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM), electroacupuncture (EA) treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- (1H NMR-) based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM) acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM) acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture. PMID:26170882

  5. Polypharmacotherapy in rheumatology: 1H NMR analysis of binding of phenylbutazone and methotrexate to serum albumin

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.; Bojko, B.; Szkudlarek-Haśnik, A.; Knopik, M.; Sułkowski, W. W.

    2011-05-01

    The influence of phenylbutazone (Phe) and methotrexate (MTX) on binding of MTX and Phe to human (HSA) and bovine (BSA) serum albumin in the low-affinity binding sites is investigated. The strength and kind of interactions between serum albumin (SA) and drugs used in combination therapy were found using 1H NMR spectroscopy. A stoichiometric molar ratios for Phe-SA and MTX-SA complexes are 36:1 and 31:1, respectively. It appeared these molar ratios are higher for the ternary systems than it were in the binary ones. The presence of the additional drug (MTX or Phe) causes the increase of an affinity of albumin towards Phe and MTX. It was found that the aliphatic groups of MTX are more resistant to the influence of Phe on the MTX-SA complex than the aromatic rings. The results showed the important impact of another drug (MTX or Phe) on the affinity of SA towards Phe and MTX in the low-affinity binding sites. This work is a subsequent part of the spectroscopic study on Phe-MTX-SA interactions (Maciążek-Jurczyk, 2009 [1]).

  6. Difunctionalization of Alkenes Using 1-Chloro-1,2-benziodoxol-3-(1H)-one.

    PubMed

    Egami, Hiromichi; Yoneda, Takahiro; Uku, Minako; Ide, Takafumi; Kawato, Yuji; Hamashima, Yoshitaka

    2016-05-20

    Difunctionalization of alkenes with 1-chloro-1,2-benziodoxol-3-(1H)-one (1) was investigated. Various additional nucleophiles were tested, and oxychlorination, dichlorination, azidochlorination, chlorothiocyanation, and iodoesterfication were demonstrated. The oxychlorination product was obtained efficiently when the reaction was operated in water. Dichlorination occurred in the presence of a Lewis basic promoter, such as 4-phenylpyridine N-oxide, as an additive. The reaction with in situ-generated azido anion afforded azidochlorinated compounds with a chlorine atom at the terminal position, while the reaction with trimethylsilyl isothiocyanate produced chlorothiocyanation adducts with a chlorine atom at the benzylic position. On the other hand, when 1 was treated with tetra-n-butylammonium iodide prior to the addition of alkenes, only iodoesterification occurred selectively. These mild reactions enable convenient site-selective difunctionalizations of substrates having two alkene moieties. NMR experiments suggested that the electrophilic reactive species in each reaction varied depending on the nature of the added nucleophile. PMID:27100051

  7. In vivo detection of citrate in brain tumors by 1H MRS at 3T

    PubMed Central

    Choi, Changho; Ganji, Sandeep K.; Madan, Akshay; Hulsey, Keith M.; An, Zhongxu; Zhang, Song; Pinho, Marco C.; DeBerardinis, Ralph J.; Bachoo, Robert M.; Maher, Elizabeth A.

    2014-01-01

    Purpose To test whether the citrate is elevated in adult patients with gliomas using 1H MRS at 3T in vivo. Methods Thirty-four adult patients were enrolled in the study, including 6 subjects with glioblastomas, 8 subjects with astrocytomas (5 WHO grade-3 and 3 grade-2), and 20 subjects with oligodendrogliomas (5 grade-3 and 15 grade-2). Five healthy volunteers were studied for baseline citrate data. Single-voxel localized spectra were collected with PRESS TE = 35 and 97 ms and analyzed with LCModel using numerically calculated basis spectra that include the effects of the PRESS radio-frequency and gradient pulses. Results Citrate was not measurable by MRS in healthy brain, but was detected in tumor patients at both echo times. The citrate concentration was estimated to be as high as 1.8 mM with reference to water at 42 M, with CRLB as low as 5%. The mean citrate level was 0.7±0.4 mM (mean±SD, n=32) with median CRLB of ~12%. No correlation was identified between citrate concentration and tumor grade or histological type. Conclusion Citrate was increased in the majority of gliomas in adult patients. The elevated citrate in our data indicates an altered metabolic state of tumor relative to healthy brain. PMID:24123337

  8. Effects of high fructose and salt feeding on systematic metabonome probed via (1) H NMR spectroscopy.

    PubMed

    Yang, Yongxia; Zheng, Lingyun; Wang, Linlin; Wang, Shumei; Wang, Yaling; Han, Zhihui

    2015-04-01

    Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt-fed rats was investigated by use of (1) H nuclear magnetic resonance (NMR)-based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time-dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2-oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N-oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern. PMID:25641270

  9. Gene therapy for hemophilia B mice with scAAV8-LP1-hFIX.

    PubMed

    Lu, Wei; Zhou, Qingzhang; Yang, Hao; Wang, Hao; Gu, Yexing; Shen, Qi; Xue, Jinglun; Dong, Xiaoyan; Chen, Jinzhong

    2016-06-01

    Hemophilia B is a hemorrhagic disease caused by the deficiency of clotting factor IX (FIX). Gene therapy might be the ultimate strategy for the disease. However, two main problems that should be solved in gene therapy for hemophilia B are immunity and safety. Self-complementary adeno-associated virus serotype 8 (scAAV8), a non-human primate AAV featuring low immunogenicity and high transfection efficiency in liver cells, might be a potential vector for hemophilia B gene therapy. A strong liver-specific promoter-1 (LP1) was inserted and mutant human FIX Arg338Ala was introduced into plasmid scAAV8-LP1 to develop an optimized AAV8 vector that expresses human clotting factor FIX (hFIX). The efficiency of scAAV8-LP1-hFIX administered through normal systemic injection or hydrodynamic injection was compared. A high expression was achieved using hydrodynamic injection, and the peak hFIX expression levels in the 5 × 10(11) and 1 × 10(11) virus genome (vg) cohorts were 31.94% and 25.02% of normal level, respectively, at 60 days post-injection. From the perspective of long-term (200 days) expression, both injection methods presented promising results with the concentration value maintained above 4% of normal plasma. The results were further verified by enzyme-linked immunosorbent assay and activated partial thromboplastin time. Our study provides a potential gene therapy method for hemophilia B. PMID:27052253

  10. 1H Solid-State NMR Imaging by TREV-CRAMPS

    NASA Astrophysics Data System (ADS)

    Buszko, M. L.; Maciel, G. E.

    A proton NMR imaging experiment based on line narrowing by TREV-CRAMPS with a time-dependent magnetic field gradient has been demonstrated on a solid adamantane phantom. With the magnetic field gradient applied as 16 μs pulses in the windows of the RF pulse sequence, a spatial resolution of about 100 μm is experimentally achieved (based on linewidth and gradient strength), with a digital resolution of 40 μm, qualitatively similar to what is achieved in liquid-sample NMR imaging. The technique benefits from a favorable time average of the magnetic field gradient, relatively wide windows between the magic-echo sandwiches, and the good off-resonance line-narrowing characteristics of the TREV technique. High-resolution chemical-shift information is retained and hence potentially attainable. The low MAS rate, compared to what is used in imaging experiments in which MAS is the only line-narrowing procedure used, may be of importance if one wishes to apply 1H NMR imaging to certain types of samples, e.g., biological tissue.

  11. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes. PMID:26540222

  12. Intra- and extracellular carbohydrates in plant cell cultures investigated by (1)H-NMR.

    PubMed

    Schripsema, J; Erkelens, C; Verpoorte, R

    1991-01-01

    With the aim of quantifying intra- and extracellular carbohydrates media and cell-extracts from a Tabernaemontana divaricata plant cell-suspension culture were investigated with (1)H-NMR.For suppression of the solvent peak the Meiboom-Gill modification of the Carr-Purcell (CPMG) spin-echo sequence was used after addition of a paramagnetic relaxation agent (Mn(2+)) to the sample. Several aspects of this method were optimized (the manganese concentration, the interpulse delay and the number of spin-echo cycles) so as to obtain a rapid and easy method in which no pretreatment of media or cell-extracts was needed. Besides the speed and ease of the method, also the direct identification of carbohydrates and other main components is an advantage.The exhaustion of extracellular carbohydrates was found to coincide with the maximum amount of intracellular carbohydrates. The intracellular carbohydrates, i.e. glucose and fructose, were consumed at a low rate, during several weeks. PMID:24213796

  13. Use of Voigt lineshape for quantification of in vivo 1H spectra.

    PubMed

    Marshall, I; Higinbotham, J; Bruce, S; Freise, A

    1997-05-01

    Quantification of NMR visible metabolites by spectral modeling usually assumes a Lorentzian or Gaussian lineshape, despite the fact that experimental lineshapes are neither. To minimize systematic fitting errors, a mixed Lorentzian-Gaussian (Voigt) lineshape model was developed. When tested with synthetic FIDs, the Voigt lineshape model gave more accurate results (maximum error 2%) than either Lorentzian (maximum error 20%) or Gaussian models (maximum error 12%). The three lineshape models gave substantially different peak areas in an in vitro experiment, with the Voigt model having a much lower chi2 (2.1 compared with 5.2 for the Lorentzian model and 6.2 for the Gaussian model). In a group of 10 healthy volunteers, fitting of 1H spectra from cerebral white matter gave significantly different peak areas between the methods. Even when area ratios were taken, the Lorentzian model gave higher values (+5% for NAA/choline and +2% for NAA/creatine) than the Voigt lineshape model, whereas the Gaussian model gave lower values (-2% and -1%, respectively). PMID:9126938

  14. 1H, 13C and 29Si NMR of tetramethylsilane in liquid crystals

    NASA Astrophysics Data System (ADS)

    Hiltunen, Y.; Jokisaari, J.

    1990-12-01

    The 1H, 13C and 29Si NMR spectra of tetramethylsilane (TMS) dissolved in two nematic liquid crystals (LC) and in their three mixtures were recorded. The proton—proton, proton—carbon and proton—silicon dipolar couplings, which arise from molecular deformation in the LC environment, were determined. The results for the 2DHH, 4DHH, 3DCH and 2DSiH couplings show only a small variation as a function of the composition of the LC mixture. On the contrary, the one-bond CH dipolar coupling is markedly solvent dependent: it varies from -6.22 Hz (in ZLI 1167) to +3.63 Hz (in phase IV). The 1DCH coupling of TMS vanishes in a certain mixture of the two liquid crystals; this mixture, however, is not the same as that in which the corresponding coupling of methane was earlier observed to vanish. This different behaviour of TMS and methane may be due to the additional torques which act on the SiC bonds of TMS.

  15. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  16. Assignment of 1H and 13C hyperfine-shifted resonances for tuna ferricytochrome c.

    PubMed Central

    Sukits, S F; Satterlee, J D

    1996-01-01

    Tuna ferricytochrome c has been used to demonstrate the potential for completely assigning 1H and 13C strongly hyperfine-shifted resonances in metalloprotein paramagnetic centers. This was done by implementation of standard two-dimensional NMR experiments adapted to take advantage of the enhanced relaxation rates of strongly hyperfine-shifted nuclei. The results show that complete proton assignments of the heme and axial ligands can be achieved, and that assignments of several strongly shifted protons from amino acids located close to the heme can also be made. Virtually all proton-bearing heme 13C resonances have been located, and additional 13C resonances from heme vicinity amino acids are also identified. These results represent an improvement over previous proton resonance assignment efforts that were predicated on the knowledge of specific assignments in the diamagnetic protein and relied on magnetization transfer experiments in heterogeneous solutions composed of mixtures of diamagnetic ferrocytochrome c and paramagnetic ferricytochrome c. Even with that more complicated procedure, complete heme proton assignments for ferricytochrome c have never been demonstrated by a single laboratory. The results presented here were achieved using a more generally applicable strategy with a solution of the uniformly oxidized protein, thereby eliminating the requirement of fast electron self-exchange, which is a condition that is frequently not met. PMID:8913622

  17. Quantification of acesulfame potassium in processed foods by quantitative 1H NMR.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Abe, Yutaka; Sugimoto, Naoki; Akiyama, Hiroshi

    2015-01-01

    Acesulfame potassium (AceK), a high-intensity and non-caloric artificial sweetener, is used in various processed foods as a food additive. In this study, we established and validated a method for determining the AceK content in various processed foods by solvent extraction and quantitative (1)H NMR, using a certified reference material as the internal standard. In the recovery test, the proposed method gave satisfactory recoveries (88.4-99.6%) and repeatabilities (0.6-5.6%) for various processed foods. The limit of quantification was confirmed as 0.13 g kg(-1), which was sufficiently low for the purposes of monitoring AceK levels. In the analysis of commercially processed foods containing AceK, all AceK contents determined by the proposed method were in good agreement with those obtained by a conventional method based on dialysis and HPLC. Moreover, this method can achieve rapid quantification and yields analytical data with traceability to the International System of Units (SI) without the need for an authentic analyte standard. Therefore, the proposed method is a useful and practical tool for the determination of AceK in processed foods. PMID:25281163

  18. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea.

    PubMed

    De Pascali, Sandra A; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P

    2015-06-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  19. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum.

    PubMed

    Teng, Rongwei; Lehane, Adele M; Winterberg, Markus; Shafik, Sarah H; Summers, Robert L; Martin, Rowena E; van Schalkwyk, Donelly A; Junankar, Pauline R; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  20. 1H MRS detection of glycine residue of reduced glutathione in vivo

    NASA Astrophysics Data System (ADS)

    Kaiser, Lana G.; Marjańska, Małgorzata; Matson, Gerald B.; Iltis, Isabelle; Bush, Seth D.; Soher, Brian J.; Mueller, Susanne; Young, Karl

    2010-02-01

    Glutathione (GSH) is a powerful antioxidant found inside different kinds of cells, including those of the central nervous system. Detection of GSH in the human brain using 1H MR spectroscopy is hindered by low concentration and spectral overlap with other metabolites. Previous MRS methods focused mainly on the detection of the cysteine residue (GSH-Cys) via editing schemes. This study focuses on the detection of the glycine residue (GSH-Gly), which is overlapped by glutamate and glutamine (Glx) under physiological pH and temperature. The first goal of the study was to obtain the spectral parameters for characterization of the GSH-Gly signal under physiological conditions. The second goal was to investigate a new method of separating GSH-Gly from Glx in vivo. The characterization of the signal was carried out by utilization of numerical simulations as well as experiments over a wide range of magnetic fields (4.0-14 T). The proposed separation scheme utilizes J-difference editing to quantify the Glx contribution to separate it from the GSH-Gly signal. The presented method retains 100% of the GSH-Gly signal. The overall increase in signal to noise ratio of the targeted resonance is calculated to yield a significant SNR improvement compared to previously used methods that target GSH-Cys residue. This allows shorter acquisition times for in vivo human clinical studies.

  1. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    PubMed

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s < T(2) < 0.06 s, and the rapid one of T(2) < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  2. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  3. Topotecan dynamics, tautomerism and reactivity--1H/13C NMR and ESI MS study.

    PubMed

    Hyz, Karolina; Kawecki, Robert; Bednarek, Elzbieta; Bocian, Wojciech; Sitkowski, Jerzy; Kozerski, Lech

    2010-08-01

    Topotecan (TPT) is in clinical use as an antitumor agent, hycamtin. Because of this, it requires both biologically and chemically useful information to be available. TPT acts by binding to the covalent complex formed by nicked DNA and topoisomerase I. This has a poisonous effect since inserted into the single-strand nick and TPT inhibits its religation. We used NMR to trace TPT dynamics, tautomerism and solvolysis products in various solvents and conditions. Chemical stability was assessed in methanol and DMSO as compared to water, and the regioselectivity of the N- and O-methylation was studied using various alkylating agents. The reaction products of quaternization of the nitrogen atom and methylation of the oxygen atom were characterized by means of ESI MS, (1)H/(13)C-HMBC and -HSQCAD NMR. We have focused on the NMR characterization of TPT with an anticipation that its aggregation, tumbling properties and the intramolecular dipolar interactions will be a common feature for other compounds described in this article. These features can also be useful in tracing the interactions of this class of topoisomerase I (TopoI) poisons with DNA. Moreover, the results explained shed light on the recently disclosed problem of lack of stability of TPT in the heart tissue homogenate samples using the analytical assays developed for this class of compounds carried out in the presence of methanol. PMID:20623719

  4. High field (1)H MRS of the hippocampus after donepezil treatment in Alzheimer disease.

    PubMed

    Bartha, Robert; Smith, Matthew; Rupsingh, Raul; Rylett, Jane; Wells, Jennie L; Borrie, Michael J

    2008-04-01

    The purpose of this study was to measure metabolite level changes in patients with newly diagnosed Alzheimer Disease (AD) following four months of donepezil treatment. A small number of cognitively normal elderly subjects were also scanned longitudinally (twice within one year) to assess the reproducibility. Short echo-time (1)H magnetic resonance spectra were acquired at 4.0 T in the right hippocampus. Subjects were scanned at the time of first diagnosis (prior to receiving donepezil) and then following four months of donepezil treatment (5 mg/day for the first month, 10 mg/day thereafter). Changes in absolute metabolite levels and metabolite ratios were quantified and compared. There was no change in measured cognitive function following four months of donepezil treatment in the AD patients. Decreased levels of N-acetylaspartate, choline, N-acetylaspartate/creatine, choline/creatine, and myo-inositol/creatine were observed in AD patients after four months of treatment. Cognitively normal elderly subjects showed an increase in myo-inositol/choline ratio following one year. The reduced levels of N-acetylaspartate in AD patients indicates continued decline in neuronal function and/or integrity. However decreased levels of choline and myo-inositol/creatine ratio may indicate a positive treatment effect. PMID:18252268

  5. Synthesis, structure, photoluminescence and antitumour activity of zinc complex based on 2-(2-(1H-benzo-[d]imidazol-2-yl)benzyl)-1H-benzo-[d]imidazole

    NASA Astrophysics Data System (ADS)

    Che, Zhijian; Wang, Shaoxiang; Liu, Shenggui; Li, Guobi; Wu, Qiting; Lin, Chunyu; Kong, Linglang; Wang, Sheng

    2015-01-01

    A new complex [Zn(bbb)Cl2]·DMF, where bbb is 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole, was synthesized and characterized by element analysis, 1H NMR and X-ray single crystal structure analyses. For complex: crystal system, triclinic, space group, P-1, a = 9.4661(13), b = 10.3534(14), c = 13.0025(18) Å, α = 73.477(2), β = 80.743(2), γ = 88.658(2)°, V = 1205.5(3) Å3, Z = 2. In this complex, the Zn2+ distorted tetrahedron geometry is coordinated by two nitrogen atoms from 2-(2-(1H-benzo[d]imidazol-2-yl)benzyl)-1H-benzo[d]imidazole and two Cl-. The complex emits yellow green luminescence with the maximal emission peak at 550 nm in DMF solution. The complex exhibits inhibition on the growth of Eca109 cancer cell with IC50 value of 8.9 ± 1.1 μM, which was lower than that of cisplatin (14.3 ± 1.4 μM). This complex has potential application in treatment of esophageal cancer.

  6. Identification of histidine tautomers in proteins by 2D 1H/13C(delta2) one-bond correlated NMR.

    PubMed

    Sudmeier, James L; Bradshaw, Elizabeth M; Haddad, Kristin E Coffman; Day, Regina M; Thalhauser, Craig J; Bullock, Peter A; Bachovchin, William W

    2003-07-16

    If the 13Cdelta2 chemical shift of neutral ("high pH") histidine is >122 ppm, primarily Ndelta1-H tautomer (2) is indicated; if it is <122 ppm, primarily Nepsilon2-H tautomer (1) is indicated. His resonances from the catalytic triad of active serine proteases, for example, are readily distinguished from those of denatured enzyme. The 13Cdelta2 chemical shifts increased by 6.2 ppm for the catalytic histidines in both alpha-lytic protease and subtilisin BPN' in raising the pH from that of imidazolium cation to that of tautomer 2. This tautomer identification method is easy to implement, requiring only bioincorporation of [U-13C] (or the more readily available [U-13C,15N])-histidine. Standard 1H/13C correlation HMQC or HSQC NMR pulse programs then yield the 13Cdelta2 chemical shifts with the benefit of high 1H sensitivity. Because of large one-bond spin-couplings (1JCH approximately 200 Hz), the method should extend to proteins having large 1H and 13C line widths, including very high molecular weights. PMID:12848537

  7. Gene Therapy Using Therapeutic and Diagnostic Recombinant Oncolytic Vaccinia Virus GLV-1h153 for Management of Colorectal Peritoneal Carcinomatosis

    PubMed Central

    Eveno, Clarisse; Mojica, Kelly; Ady, Justin W.; Thorek, Daniel L.J.; Longo, Valerie; Belin, Laurence J.; Gholami, Sepideh; Johnsen, Clark; Zanzonico, Pat; Chen, Nanhai; Yu, Tony; Szalay, Aladar A.; Fong, Yuman

    2015-01-01

    Background Peritoneal carcinomatosis (PC) is a terminal progression of colorectal cancer (CRC). Poor response to cytoreductive surgery and chemotherapy, coupled with the inability to reliably track disease progression using established diagnostic methods make this a deadly disease. This paper examines the effectiveness of the oncolytic vaccinia virus GLV-1h153 as a therapeutic and diagnostic vehicle. We believe that viral expression of the human sodium iodide transporter (hNIS) can provide both real-time monitoring of viral therapy and effective treatment of colorectal peritoneal carcinomatosis (CRPC). Methods Infectivity and cytotoxic effect of GLV-1h153 on CRC cell lines was assayed in-vitro. Viral replication was examined by standard viral plaque assays. Orthotopic CRPC xenografts were generated in athymic nude mice, and subsequently administered GLV-1h153 intraperitoneally. Reduction of tumor burden was assessed by mass. Orthotopic tumors were visualized by SPECT/CT after Iodine (131I) administration and by fluorescence optical imaging. Results GLV-1h153 infected and killed CRC cells in a time and concentration dependent manner. Viral replication demonstrated greater than a 2.35 log increase in titer over 4 days. Intraperitoneal treatment of orthotopic CRPC xenografts resulted in a significant reduction of tumor burden. Infection of orthotopic xenografts was both therapeutic and facilitated monitoring by 131I-SPECT/CT via expression of hNIS in infected tissue. Conclusions GLV-1h153 effectively kills CRC in-vitro and dramatically reduces tumor burden in-vivo. We demonstrate that GLV-1h153 can be used as an agent to provide accurate delineation of tumor burden in-vivo. These findings indicate that GLV-1h153 has significant potential for use as theragnostic agent in the treatment of CRPC. PMID:25616946

  8. An FTIR Calibration for Structural Hydrogen in Feldspars Using 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Rossman, G. R.

    2002-05-01

    It is important to know how to determine the speciation and concentration of H in feldspars because this information could be used to determine primary magmatic water activity or to estimate the degree of hydrothermal alteration in igneous rocks. FTIR spectroscopy is sensitive to changes in speciation of hydrogen, and can be calibrated for quantitative determination of H concentration using 1H MAS (magic-angle spinning) NMR spectroscopy. Three pegmatitic albites, one metamorphic albite, three volcanic plagioclases (albite, andesine, and anorthite) and one pegmatite oligoclase were used in this study to provide a range of plagioclase compositions. Two pegmatitic microclines and one sanidine were also studied. Polarized infrared spectra were obtained in the three principal optical directions for each specimen. Samples were prepared for 1H MAS NMR experiments at 12 kHz spinning speed in a dry box, without the use of a liquid grinding aid. A spectrum from anhydrous synthetic corundum was used as a baseline for feldspar NMR spectra. The pegmatitic and metamorphic albites are transparent, but contain submicroscopic fluid inclusions as evidenced by a broad band at 3400 cm-1 and an asymmetric band at 5200 cm-1 in the IR spectra that shift to bands characteristic of ice upon cooling to 77 K. These albites have a very sharp band at 4.7 ppm (relative to TMS) in their NMR spectra consistent with fluid inclusion water. In addition to the broad fluid inclusion band, the pegmatitic albites have sharp bands in the mid-IR similar the OH bands found in quartz. All other plagioclases have broad, anisotropic bands around 3200 cm-1 in the mid-IR and MOH combination stretch-bend bands near 4500 cm-1 in the near-IR, indicative of structural OH. The NMR spectra of these plagioclases have a broad band at 4.7 to 4.9 ppm TMS. The OH vector in plagioclases is preferentially aligned parallel to the a crystallographic axis. The concentration of structural OH in the plagioclases ranges from 50

  9. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility.

    PubMed

    Eckle, Veit-Simon; Shcheglovitov, Aleksandr; Vitko, Iuliia; Dey, Deblina; Yap, Chan Choo; Winckler, Bettina; Perez-Reyes, Edward

    2014-02-15

    T-type calcium channels play essential roles in regulating neuronal excitability and network oscillations in the brain. Mutations in the gene encoding Cav3.2 T-type Ca(2+) channels, CACNA1H, have been found in association with various forms of idiopathic generalized epilepsy. We and others have found that these mutations may influence neuronal excitability either by altering the biophysical properties of the channels or by increasing their surface expression. The goals of the present study were to investigate the excitability of neurons expressing Cav3.2 with the epilepsy mutation, C456S, and to elucidate the mechanisms by which it influences neuronal properties. We found that expression of the recombinant C456S channels substantially increased the excitability of cultured neurons by increasing the spontaneous firing rate and reducing the threshold for rebound burst firing. Additionally, we found that molecular determinants in the I-II loop (the region in which most childhood absence epilepsy-associated mutations are found) substantially increase the surface expression of T-channels but do not alter the relative distribution of channels into dendrites of cultured hippocampal neurons. Finally, we discovered that expression of C456S channels promoted dendritic growth and arborization. These effects were reversed to normal by either the absence epilepsy drug ethosuximide or a novel T-channel blocker, TTA-P2. As Ca(2+)-regulated transcription factors also increase dendritic development, we tested a transactivator trap assay and found that the C456S variant can induce changes in gene transcription. Taken together, our findings suggest that gain-of-function mutations in Cav3.2 T-type Ca(2+) channels increase seizure susceptibility by directly altering neuronal electrical properties and indirectly by changing gene expression. PMID:24277868

  10. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by (1)H NMR spectroscopy.

    PubMed

    Hasim, Ayshamgul; Ali, Mayinuer; Mamtimin, Batur; Ma, Jun-Qi; Li, Qiao-Zhi; Abudula, Abulizi

    2012-06-01

    (1)H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  11. Solid-State Quantitative (1)H and (31)P MRI of Cortical Bone in Humans.

    PubMed

    Seifert, Alan C; Wehrli, Felix W

    2016-06-01

    Magnetic resonance imaging (MRI) plays a pivotal role for assessment of the musculoskeletal system. It is currently the clinical modality of choice for evaluation of soft tissues including cartilage, ligaments, tendons, muscle, and bone marrow. By comparison, the study of calcified tissue by MRI is still in its infancy. In this article, we review the potential of the modality for assessment of cortical bone properties known to be affected in degenerative bone disease, with focus on parameters related to matrix and mineral densities, and porosity, by means of emerging solid-state (1)H and (31)P MRI techniques. In contrast to soft tissues, the MRI signal in calcified tissues has very short lifetime, on the order of 100 μs to a few milliseconds, demanding customized imaging approaches that allow capture of the signal almost immediately after excitation. The technologies described are suited for quantitatively imaging human cortical bone in specimens as well as in vivo in patients on standard clinical imagers, yielding either concentrations in absolute units when measured against a reference standard, or more simply, in the form of surrogate biomarkers. The two major water fractions in cortical bone are those of collagen-bound and pore water occurring at an approximately 3:1 ratio. Collagen-bound water density provides a direct quantitative measure of osteoid density. While at an earlier stage of development, quantification of mineral phosphorus by (31)P MRI yields mineral density and, together with knowledge of matrix density, should allow quantification of the degree of bone mineralization. PMID:27048472

  12. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  13. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  14. (1)H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model.

    PubMed

    Niu, Qian-Yun; Li, Zhen-Yu; Du, Guan-Hua; Qin, Xue-Mei

    2016-01-25

    Doxorubicin (DOX) is used as a chemotherapy drug with severe carditoxicity. In this study, an integrated echocardiography along with pathological examination and (1)H NMR analysis of multiple biological matrices (urine, serum, heart, and kidney) was employed to systemically assess the toxicity of DOX. Echocardiographic results showed that impaired left ventricular contractility and degenerative pathology lesions in DOX group, which were in consistent with pathology. The endogenous metabolites in the urine, serum, heart and kidney was identified by comparison with the data from the literature and databases. Multivariate analysis, including PCA and OPLS, revealed 8 metabolites in urine, including succinate, 2-ketoglutarate, citrate, hippurate, methylamine, benzoate, allantion, and acetate were the potential changed biomarkers. In serum, perturbed metabolites include elevation of leucine, β-glucose, O-acetyl-glycoprotein, creatine, lysine, glycerin, dimethylglycine, trimethylamine-N-oxide, myo-inositol, and N-acetyl-glycoprotein, together with level decreases of acetone, lipid, lactate, glutamate, phosphocholine, acetoacetate and pyruvate. For heart, DOX exposure caused decline of lipid, lactate, leucine, alanine, glutamate, choline, xanthine, glycerin, carnitine, and fumarate, together with elevation of glutamine, creatine, inosine, taurine and malate. Metabolic changes of kidney were mainly involved in the accumulation of α-glucose, lactate, phosphocholine, betaine, threonine, choline, taurine, glycine, urea, hypoxanthine, glutamate, and nicotinamide, coupled with reduction of asparagine, valine, methionine, tyrosine, lysine, alanine, leucine, ornithine, creatine, lipid, and acetate. In addition, alterations of urinary metabolites exhibited a time-dependent manner. Complementary evidences by multiple matrices revealed disturbed pathways concerning energy metabolism, fatty acids oxidation, amino acids and purine metabolism, choline metabolism, and gut microbiota

  15. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    PubMed Central

    Ghazi, Negar; Arjmand, Mohammad; Akbari, Ziba; Mellati, Ali Owsat; Saheb-Kashaf, Hamid; Zamani, Zahra

    2016-01-01

    Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs) and quadratic discriminant analysis (QDA) modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III) who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients. PMID:27141542

  16. Classification of iron-sulfur cores in ferredoxins by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Nagayama, K; Ozaki, Y; Kyogoku, Y; Hase, T; Matsubara, H

    1983-09-01

    A 1H nuclear magnetic resonance (NMR) study was carried out on various ferredoxins which possess one of three types of iron-sulfur clusters, (2Fe-2S), (3Fe-3S), or (4Fe-4S). In the isolated form, (2Fe-2S) ferredoxins from spinach (Spinacea oleracia), pokeweed (Phytolacca americana), a blue-green alga (Spirulina platensis), and a halobacterium (Halobacterium halobium) exhibited two broad resonances common in chemical shift at the region downfield of 10 ppm. In their reduced forms, seven contact-shifted resonances appeared spread over 30 ppm. Although the positions of the contact-shifted resonances in the reduced state differed among the four, a common trend in the temperature dependence of their resonance positions was recognized. Two (4Fe-4S) ferredoxins from Bacillus stearothermophilus and Bacillus thermoproteolyticus exhibited almost indistinguishable spectral patterns in both the oxidized and reduced forms. The ferricyanide-treated ferredoxins of B. stearothermophilus and B. thermoproteolyticus showed characteristic contact-shifted resonances distinct from the spectra of the original (4Fe-4S) ferredoxins. This corresponds to the recent finding of the interconversion of (4Fe-4S) and (3Fe-3S) clusters with ferricyanide in the ferredoxin. Based on our data together with reported NMR data on other ferredoxins, contact-shift resonances of three types of clusters were tabulated. The reliability of NMR classification increases when we compare the NMR spectra of a ferredoxin with the classification standards at the two redox states. Moreover, not only the absolute values of the chemical shifts of contact-shifted resonances but also their temperature dependence give distinctive information applicable to iron core identification. PMID:6417123

  17. The secondary structure of echistatin from 1H-NMR, circular-dichroism and Raman spectroscopy.

    PubMed

    Saudek, V; Atkinson, R A; Lepage, P; Pelton, J T

    1991-12-01

    Detailed biophysical studies have been carried out on echistatin, a member of the disintegrin family of small, cysteine-rich, RGD-containing proteins, isolated from the venom of the saw-scaled viper Echis carinatus. Analysis of circular-dichroism spectra indicates that, at 20 degrees C, echistatin contains no alpha-helix but contains mostly beta-turns and beta-sheet. Two isobestic points are observed as the temperature is raised, the conformational changes associated with that observed between 40 degrees C and 72 degrees C being irreversible. Raman spectra also indicate considerable beta-turn and beta-sheet (20%) structure and an absence of alpha-helical structure. Three of the four disulphide bridges are shown to be in an all-gauche conformation, while the fourth adopts a trans-gauche-gauche conformation. The 1H-NMR spectrum of echistatin has been almost fully assigned. A single conformation was observed at 27 degrees C with the four proline residues adopting only the trans conformation. A large number of backbone amide protons were found to exchange slowly, but no segments of the backbone were found to be in either alpha-helical or beta-sheet conformation. A number of turns could be characterised. An irregular beta-hairpin contains the RGD sequence in a mobile loop at its tip. Two of the four disulphide cross-links have been identified from the NMR spectra. The data presented in this paper will serve to define the structure of echistatin more closely in subsequent studies. PMID:1761037

  18. 1H-MRS in autism spectrum disorders: a systematic meta-analysis.

    PubMed

    Ipser, Jonathan C; Syal, Supriya; Bentley, Judy; Adnams, Colleen M; Steyn, Bennie; Stein, Dan J

    2012-09-01

    We conducted a systematic review and meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies comparing autism spectrum disorder (ASD) patients with healthy controls, with the aim of profiling ASD-associated changes in the metabolites N-acetyl-aspartate (NAA) and Creatine (Cr). Meta-regression models of NAA and Cr levels were employed, using data from 20 eligible studies (N = 852), to investigate age-dependent differences in both global brain and region-specific metabolite levels, while controlling for measurement method (Cr-ratio versus absolute concentrations). Decreased NAA concentrations that were specific to children were found for whole-brain grey and white matter. In addition, a significant decrease in NAA was evident across age categories in the parietal cortex, the cerebellum, and the anterior cingulate cortex. Higher levels of Cr were observed for ASD adults than children in global grey matter, with specific increases for adults in the temporal lobe and decreased Cr in the occipital lobe in children. No differences were found for either NAA or Cr in the frontal lobes. These data provide some evidence that ASD is characterized by age-dependent fluctuations in metabolite levels across the whole brain and at the level of specific regions thought to underlie ASD-associated behavioural and affective deficits. Differences in Cr as a function of age and brain region suggests caution in the interpretation of Cr-based ratio measures of metabolites. Despite efforts to control for sources of heterogeneity, considerable variability in metabolite levels was observed in frontal and temporal regions, warranting further investigation. PMID:22426803

  19. 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer.

    PubMed

    Klomp, Dennis W J; van de Bank, Bart L; Raaijmakers, Alexander; Korteweg, Mies A; Possanzini, Cecilia; Boer, Vincent O; van de Berg, Cornelius A T; van de Bosch, Maurice A A J; Luijten, Peter R

    2011-12-01

    This study demonstrates the feasibility of the noninvasive determination of important biomarkers of human (breast) tumor metabolism using high-field (7-T) MRI and MRS. (31) P MRSI at this field strength was used to provide a direct method for the in vivo detection and quantification of endogenous biomarkers. These encompass phospholipid metabolism, phosphate energy metabolism and intracellular pH. A double-tuned, dual-element transceiver was designed with focused radiofrequency fields for unilateral breast imaging and spectroscopy tuned for optimized sensitivity at 7 T. T(1) -weighted three-dimensional MRI and (1) H MRS were applied for the localization and quantification of total choline compounds. (31) P MRSI was obtained within 20 min per subject and mapped in three dimensions over the breast with pixel volumes of 10 mL. The feasibility of monitoring in vivo metabolism was demonstrated in two patients with breast cancer during neoadjuvant chemotherapy, validated by ex vivo high-resolution magic angle spinning NMR and compared with data from an age-matched healthy volunteer. Concentrations of total choline down to 0.4 mM could be detected in the human breast in vivo. Levels of adenosine and other nucleoside triphosphates, inorganic phosphate, phosphocholine, phosphoethanolamine and their glycerol diesters detected in glandular tissue, as well as in tumor, were mapped over the entire breast. Altered levels of these compounds were observed in patients compared with an age-matched healthy volunteer; modulation of these levels occurred in breast tumors during neoadjuvant chemotherapy. To our knowledge, this is the first comprehensive MRI and MRS study in patients with breast cancer, which reveals detailed information on the morphology and phospholipid metabolism from volumes as small as 10 mL. This endogenous metabolic information may provide a new method for the noninvasive assessment of prognostic and predictive biomarkers in breast cancer treatment. PMID

  20. Change of translational-rotational coupling in liquids revealed by field-cycling 1H NMR

    NASA Astrophysics Data System (ADS)

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-01

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the 1H spin-lattice relaxation rate, R 1 ω = T1 - 1 ω , is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz-20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R 1 ω , x (x denotes mole fraction PG) allow to extract the rotational time constant τrot(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τrot(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τrot(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  1. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain. PMID:23730812

  2. High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey.

    PubMed

    Pfeuffer, Josef; Juchem, Christoph; Merkle, Hellmut; Nauerth, Arno; Logothetis, Nikos K

    2004-12-01

    Localized cerebral in vivo 1H NMR spectroscopy (MRS) was performed in the anesthetized as well as the awake monkey using a novel vertical 7 T/60 cm MR system. The increased sensitivity and spectral dispersion gained at high field enabled the quantification of up to 16 metabolites in 0.1- to 1-ml volumes. Quantification was accomplished by using simulations of 18 metabolite spectra and a macromolecule (MM) background spectrum consisting of 12 components. Major cerebral metabolites (concentrations >3 mM) such as glutamate (Glu), N-acetylaspartate (NAA), creatine (Cr)/phosphocreatine (PCr) and myo-inositol (Ins) were identified with an error below 3%; most other metabolites were quantified with errors in the order of 10%. Metabolite ratios were 1.39:1 for total NAA, 1.38:1 for glutamate (Glu)/glutamine (Gln) and 0.09:1 for cholines (Cho) relative to total Cr. Taurine (Tau) was detectable at concentrations lower than 1 mM, while lactate (Lac) remained below the detection limit. The spectral dispersion was sufficient to separate metabolites of similar spectral patterns, such as Gln and Glu, N-acetylaspartylglutamate (NAAG) and NAA, and PCr-Cr. MRS in the awake monkey required the development and refinement of acquisition and correction strategies to minimize magnetic susceptibility artifacts induced by respiration and movement of the mouth or body. Periods with major motion artifacts were rejected, while a frequency/phase correction was performed on the remaining single spectra before averaging. In resting periods, both spectral amplitude and line width, that is, the voxel shim, were unaffected permitting reliable measurements. The corrected spectra obtained from the awake monkey afforded the reliable detection of 6-10 cerebral metabolites of 1-ml volumes. PMID:15707786

  3. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    PubMed

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. PMID:27215342

  4. Synthesis, characterization, and crystal structure of 5,5″-Difluoro-1 H,1″ H-[3,3':3',3″-terindol]-2'(1' H)-one

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Banerjee, Bubun; Brahmachari, Goutam; Kant, Rajni; Gupta, Vivek K.

    2016-03-01

    The new indole derivative, 5,5''-Difluoro-1 H,1'' H-[3,3':3',3''-terindol]-2'(1' H)-one C24H15F2N3O, is synthesized in 87% yield, and its crystal structure is determined by X-ray structure analysis. The crystals are monoclinic, sp. gr. P21/ n, a = 15.4563(7), b = 10.8340(6), c = 16.4718(6) Å, β = 102.403(4)°, Z = 4. Bicyclic indole moieties form dihedral angle of 61.92(5)° with each other; the oxindole ring is twisted with respect to them at angles of 85.70(5)° and 75.62(5)°. The crystal structure is stabilized by N-H···O and C-H···O hydrogen bonds involving both the DMSO solvent molecules. In addition, one C-H···π interaction is observed.

  5. (1)H NMR assignment corrections and (1)H, (13)C, (15)N NMR coordination shifts structural correlations in Fe(II), Ru(II) and Os(II) cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline.

    PubMed

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2010-06-01

    (1)H, (13)C and (15)N NMR studies of iron(II), ruthenium(II) and osmium(II) tris-chelated cationic complexes with 2,2'-bipyridine and 1,10-phenanthroline of the general formula [M(LL)(3)](2+) (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature (1)H signal assignments were corrected. Significant shielding of nitrogen-adjacent protons [H(6) in bpy, H(2) in phen] and metal-bonded nitrogens was observed, being enhanced in the series Ru(II) --> Os(II) --> Fe(II) for (1)H, Fe(II) --> Ru(II) --> Os(II) for (15)N and bpy --> phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) --> Os(II) --> Fe(II). PMID:20474023

  6. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  7. Constant time INEPT CT-HSQC (CTi-CT-HSQC) - A new NMR method to measure accurate one-bond J and RDCs with strong 1H-1H couplings in natural abundance

    NASA Astrophysics Data System (ADS)

    Yu, Bingwu; van Ingen, Hugo; Freedberg, Darón I.

    2013-03-01

    Strong 1H-1H coupling can significantly reduce the accuracy of 1JCH measured from frequency differences in coupled HSQC spectra. Although accurate 1JCH values can be extracted from spectral simulation, it would be more convenient if the same accurate 1JCH values can be obtained experimentally. Furthermore, simulations reach their limit for residual dipolar coupling (RDC) measurement, as many significant, but immeasurable RDCs are introduced into the spin system when a molecule is weakly aligned, thus it is impossible to have a model spin system that truly represents the real spin system. Here we report a new J modulated method, constant-time INEPT CT-HSQC (CTi-CT-HSQC), to accurately measure one-bond scalar coupling constant and RDCs without strong coupling interference. In this method, changing the spacing between the two 180° pulses during a constant time INEPT period selectively modulates heteronuclear coupling in quantitative J fashion. Since the INEPT delays for measuring one-bond carbon-proton spectra are short compared to 3JHH, evolution due to (strong) 1H-1H coupling is marginal. The resulting curve shape is practically independent of 1H-1H coupling and only correlated to the heteronuclear coupling evolution. Consequently, an accurate 1JCH can be measured even in the presence of strong coupling. We tested this method on N-acetyl-glucosamine and mannose whose apparent isotropic 1JCH values are significantly affected by strong coupling with other methods. Agreement to within 0.5 Hz or better is found between 1JCH measured by this method and previously published simulation data. We further examined the strong coupling effects on RDC measurements and observed an error up to 100% for one bond RDCs using coupled HSQC in carbohydrates. We demonstrate that RDCs can be obtained with higher accuracy by CTi-CT-HSQC, which compensates the limitation of simulation method.

  8. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    PubMed

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  9. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    PubMed Central

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  10. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-01

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach. PMID:20681586

  11. 1H and 13C NMR spectral study of some 3,5-bis[(E)-thienylmethylene]piperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Rajeswari, K.; Pandiarajan, K.

    2011-03-01

    1H and 13C NMR spectra have been recorded for 3,5-bis[(E)-thienylmethylene]piperidin-4-one ( 1a), 3',3″-dimethyl-3,5-bis[(E)-thienylmethylene]piperidin-4-one ( 1b), 5',5″-dibromo-3,5-bis[(E)-thienylmethylene]piperidin-4-one ( 1c), their 1-methyl derivatives 2a- c and 3,5-bis[(E)-thienylmethylene]-2r,6c-diphenylpiperidin-4-one ( 3a). For selected compounds 2D spectra have been recorded. The spectral data are used to study the configuration and conformation of these molecules. The chemical shifts are discussed in light of steric, electronic and magnetic anisotropic effects. The magnetic anisotropic effects of thiophene ring and phenyl group are noteworthy. 1H- 1H COSY spectrum of 2b suggests that long-range 1H- 1H coupling, up to seven bonds, is possible in it. HMBC spectrum of 2b displays the magnetic nonequivalence of C-2 and C-6 and protons at these carbons.

  12. Recombinant vaccinia virus GLV-1h68 is a promising oncolytic vector in the treatment of cholangiocarcinoma.

    PubMed

    Pugalenthi, Amudhan; Mojica, Kelly; Ady, Justin W; Johnsen, Clark; Love, Damon; Chen, Nanhai G; Aguilar, Richard J; Szalay, Aladar A; Fong, Yuman

    2015-12-01

    Although early stage cholangiocarcinoma (CC) can be cured by surgical extirpation, the options for treatment of advanced stage CC are very few and suboptimal. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) is a promising new strategy to treat human cancers. The ability of oncolytic VACV GLV-1h68 to infect, replicate in, and lyse three human CC cell lines was assayed in vitro and in subcutaneous flank xenografts in athymic nude mice. In this study, we have demonstrated that GLV-1h68 effectively infects and lyses three CC cell lines (KMC-1, KMBC, and KMCH-1) in vitro. Expression of the viral marker gene ruc-gfp facilitated real-time monitoring of infection and replication. Furthermore in athymic nude mice, a single dose of GLV-1h68 significantly suppressed tumor growth. The treatment was well tolerated in all animals. Recombinant VACV GLV-1h68 has significant oncolytic ability against CC both in vitro and in vivo. GLV-1h68 has the potential to be used clinically as a therapeutic agent against CC. PMID:26584530

  13. A 1H/19F minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles.

    PubMed

    Graether, Steffen P; DeVries, Jeffrey S; McDonald, Robert; Rakovszky, Melissa L; Sykes, Brian D

    2006-01-01

    We show that it is feasible to use a minicoil for solid-state 19F 1H NMR experiments that has short pulse widths, good RF homogeneity, and excellent signal-to-noise for small samples while using low power amplifiers typical to liquid-state NMR. The closely spaced resonant frequencies of 1H and 19F and the ubiquitous use of fluorine in modern plastics and electronic components present two major challenges in the design of a high-sensitivity, high-field 1H/19F probe. Through the selection of specific components, circuit design, and pulse sequence, we were able to build a probe that has low 19F background and excellent separation of 1H and 19F signals. We determine the principle components of the chemical shift anisotropy tensor of 5-fluoroindole-3-acetic acid (5FIAA) and 5-fluorotryptophan. We also solve the crystal structure of 5FIAA, determine the orientation dependence of the chemical shift of a single crystal of 5FIAA, and predict the 19F chemical shift based on the orientation of the fluorine in the crystal. The results show that this 1H/19F probe is suitable for solid-state NMR experiments with low amounts of biological molecules that have been labeled with 19F. PMID:16198131

  14. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  15. Comparison of the 1H NMR analysis of solids by the CRAMPS and MAS-only techniques

    NASA Astrophysics Data System (ADS)

    Dec, Steven F.; Bronnimann, Charles E.; Wind, Robert A.; Maciel, Gary E.

    1H NMR spectra are reported on eight representative solid samples, including pure powdered crystalline samples, synthetic organic polymers, a silica gel, HY zeolite, and a lignite. Spectra were obtained by the following three approaches: (1) single pulse on a static sample, (2) CRAMPS, and (3) single pulse with magic-angle spinning (MAS-only). The MAS-only results were obtained as a function of MAS speed. Although the MAS-only technique is capable of achieving a significant degree of line narrowing, even with modest MAS speeds, MAS-only spectra of the general quality of the apparently undistorted high-resolution 1H spectra obtained by the CRAMPS technique are not obtained at the highest MAS speeds examined (21 kHz for a polymethylmethacrylate sample), unless the 1H- 1H dipolar interactions in the sample are rather weak, as with silica gel or a zeolite. Thus, caution should be exercised in interpreting 1H MAS-only spectra, especially if CRAMPS results are not available as a calibration.

  16. Lead optimization of 2-(piperidin-3-yl)-1H-benzimidazoles: identification of 2-morpholin- and 2-thiomorpholin-2-yl-1H-benzimidazoles as selective and CNS penetrating H₁-antihistamines for insomnia.

    PubMed

    Ravula, Satheesh Babu; Yu, Jinghua; Tran, Joe A; Arellano, Melissa; Tucci, Fabio C; Moree, Wilna J; Li, Bin-Feng; Petroski, Robert E; Wen, Jianyun; Malany, Siobhan; Hoare, Samuel R J; Madan, Ajay; Crowe, Paul D; Beaton, Graham

    2012-01-01

    The structure-activity relationships of 2-(piperidin-3-yl)-1H-benzimidazoles, 2-morpholine and 2-thiomorpholin-2-yl-1H-benzimidazoles are described. In the lead optimization process, the pK(a) and/or logP of benzimidazole analogs were reduced either by attachment of polar substituents to the piperidine nitrogen or incorporation of heteroatoms into the piperidine heterocycle. Compounds 9a and 9b in the morpholine series and 10g in the thiomorpholine series demonstrated improved selectivity and CNS profiles compared to lead compound 2 and these are potential candidates for evaluation as sedative hypnotics. PMID:22153347

  17. Design of new antifungal agents: synthesis and evaluation of 1-[(1H-indol-5-ylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols.

    PubMed

    Guillon, Rémi; Giraud, Francis; Logé, Cédric; Le Borgne, Marc; Picot, Carine; Pagniez, Fabrice; Le Pape, Patrice

    2009-10-15

    We previously reported on the design and synthesis of 1-[((hetero)aryl- or piperidinylmethyl)amino]-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols showing various degrees of antifungal activity against Candida albicans and Aspergillus fumigatus strains. Now we have identified a series of 1-[(1H-indol-5-ylmethyl)amino] derivatives which exhibited potent MICs (<65 ng mL(-1)) against C. albicans strain. The synthesis and SAR behind the indole scaffold will be discussed. PMID:19762235

  18. Practical aspects of Lee Goldburg based CRAMPS techniques for high-resolution 1H NMR spectroscopy in solids: Implementation and applications

    NASA Astrophysics Data System (ADS)

    Coelho, Cristina; Rocha, João; Madhu, P. K.; Mafra, Luís

    2008-10-01

    Elucidating the local environment of the hydrogen atoms is an important problem in materials science. Because 1H spectra in solid-state nuclear magnetic resonance (NMR) suffer from low resolution due to homogeneous broadening, even under magic-angle spinning (MAS), information of chemical interest may only be obtained using certain high-resolution 1H MAS techniques. 1H Lee-Goldburg (LG) CRAMPS (Combined Rotation And Multiple-Pulse Spectroscopy) methods are particularly well suited for studying inorganic-organic hybrid materials, rich in 1H nuclei. However, setting up CRAMPS experiments is time-consuming and not entirely trivial, facts that have discouraged their widespread use by materials scientists. To change this status quo, here we describe and discuss some important aspects of the experimental implementation of CRAMPS techniques based on LG decoupling schemes, such as FSLG (Frequency Switched), and windowed and windowless PMLG (Phase Modulated). In particular, we discuss the influence on the quality of the 1H NMR spectra of the different parameters at play, for example LG (Lee-Goldburg) pulses, radio-frequency ( rf) phase, frequency switching, and pulse imperfections, using glycine and adamantane as model compounds. The efficiency and robustness of the different LG-decoupling schemes is then illustrated on the following materials: organo-phosphorus ligand, N-(phosphonomethyl)iminodiacetic acid [H 4pmida] [I], and inorganic-organic hybrid materials (C 4H 12N 2)[Ge 2(pmida) 2OH 2]·4H 2O [II] and (C 2H 5NH 3)[Ti(H 1.5PO 4)(PO 4)] 2·H 2O [III].

  19. Automatic quality control in clinical (1) H MRSI of brain cancer.

    PubMed

    Pedrosa de Barros, Nuno; McKinley, Richard; Knecht, Urspeter; Wiest, Roland; Slotboom, Johannes

    2016-05-01

    MRSI grids frequently show spectra with poor quality, mainly because of the high sensitivity of MRS to field inhomogeneities. These poor quality spectra are prone to quantification and/or interpretation errors that can have a significant impact on the clinical use of spectroscopic data. Therefore, quality control of the spectra should always precede their clinical use. When performed manually, quality assessment of MRSI spectra is not only a tedious and time-consuming task, but is also affected by human subjectivity. Consequently, automatic, fast and reliable methods for spectral quality assessment are of utmost interest. In this article, we present a new random forest-based method for automatic quality assessment of (1) H MRSI brain spectra, which uses a new set of MRS signal features. The random forest classifier was trained on spectra from 40 MRSI grids that were classified as acceptable or non-acceptable by two expert spectroscopists. To account for the effects of intra-rater reliability, each spectrum was rated for quality three times by each rater. The automatic method classified these spectra with an area under the curve (AUC) of 0.976. Furthermore, in the subset of spectra containing only the cases that were classified every time in the same way by the spectroscopists, an AUC of 0.998 was obtained. Feature importance for the classification was also evaluated. Frequency domain skewness and kurtosis, as well as time domain signal-to-noise ratios (SNRs) in the ranges 50-75 ms and 75-100 ms, were the most important features. Given that the method is able to assess a whole MRSI grid faster than a spectroscopist (approximately 3 s versus approximately 3 min), and without loss of accuracy (agreement between classifier trained with just one session and any of the other labelling sessions, 89.88%; agreement between any two labelling sessions, 89.03%), the authors suggest its implementation in the clinical routine. The method presented in this article was implemented

  20. 1H 1752 + 081: An eclipsing cataclysmic variable with a small accretion disk

    NASA Technical Reports Server (NTRS)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-01-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  1. Structure and properties of bis(1-phenyl-1h-tetrazole-5-thiolate)diiron tetranitrosyl

    NASA Astrophysics Data System (ADS)

    Sanina, N. A.; Kozub, G. I.; Kondrat'eva, T. A.; Shilov, G. V.; Korchagin, D. V.; Emel'yanova, N. S.; Poleshchuk, O. Kh.; Chernyak, A. V.; Kulikov, A. V.; Mushenok, F. B.; Ovanesyan, N. S.; Aldoshin, S. M.

    2013-06-01

    New tetranitrosyl binuclear iron complex [Fe2(SС7H5N4)2(NO)4] (I) has been synthesized by interaction of aqueous solutions of anionic salts [Fе(S2O3)2(NO)2]3- and [SС7H5N4]-. The latter one was synthesized by reduction of bis-(1-phenyl-1H-tetrazole-5-yl) disulfide with hydrazine hydrate in ethanol at T = 25 °C. Molecular and crystalline structure of I was determined by X-ray analysis; the complex has binuclear structure of "μ-SCN" type with ˜4.02 Å between the iron atoms. Shortened О⋯О contacts (2.81 Å) between the NO groups of similar type are observed. Parameters of Mössbauer spectrum for I are: isomer shift δFe = 0.311(1) mm/s, quadrupole splitting ΔEQ = 1.044(1) mm/s, line width Γ = 0.267(1) mm/s at 85 K. From SQUID magnetometry data, the temperature and field dependences of the magnetic moment of I are well described in the frame of a simple model of binuclear iron complex with magnetic centers S1 = S2 = ½. In solution, binuclear structure of the complex remains, though the NO groups are non-equivalent. For solutions of I five-line hyperfine structure of spectrum (HFS) is observed, g-factor = 2.03. For polycrystals of I, no HFS was observed due to averaged exchange interaction between the electron spins of adjacent complexes. In polycrystals of I, the number of spins per one binuclear complex is <2, this being the evidence of antiferromagnetic exchange interaction of unpaired electrons of two iron atoms. The average number of spins in crystals (0.65) and solutions (0.55) are close. The maximum amount of NO generated by I in 1% dimethylsulfoxide (DMSO) aqueous solution is ˜13.8 nM, it halves in 8 min after decomposition starts, and reaches ˜3.8 nM in anaerobic conditions at Т = 25 °С, pH 7.0. This is due, according to quantum-chemical calculations, to the presence of a more stable Fesbnd NO bond in I than in its isostructural analog - nitrosyl iron complex with 1-methyltetrazole-5-yl (II).

  2. 1H 1752 + 081: an eclipsing cataclysmic variable with a small accretion disk

    NASA Astrophysics Data System (ADS)

    Silber, Andrew D.; Remillard, Ronald A.; Horne, Keith; Bradt, Hale V.

    1994-04-01

    We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average mv of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M1 = 0.80 +/- 0.06 solar masses and M2 = 0.32 +/- 0.06 solar masses. The disk is faint and small (RD = 0.25 +/- 0.05 rL1, where rL1 is the distance from the primary to the L1 point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m1 = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.

  3. Are nucleus-independent (NICS) and 1H NMR chemical shifts good indicators of aromaticity in π-stacked polyfluorenes?

    NASA Astrophysics Data System (ADS)

    Osuna, Sílvia; Poater, Jordi; Bofill, Josep M.; Alemany, Pere; Solà, Miquel

    2006-09-01

    We have analyzed the change of local aromaticity in a series of polyfluorene compounds with the increase of the number of π-stacked layers. The local aromaticity of the aromatic and non-aromatic rings of polyfluorenes remains unchanged when going from one to four layers of π-stacked rings according to HOMA, PDI, and FLU aromaticity descriptors. On the contrary, experimental 1H NMR chemical shifts indicate a reduction of the aromaticity of π-stacked rings with the increase of the number of layers. Calculated NICS also show a change of aromaticity, but opposite to the tendency given by the 1H NMR chemical shifts. We show that this increase (decrease) of local aromaticity in superimposed aromatic rings indicated by NICS ( 1H NMR) is not real but the result of the coupling between the magnetic fields generated by the π-stacked rings.

  4. Kinetics of the in vivo31P 1H nuclear overhauser effect of the human-calf-muscle phosphocreatine resonance

    NASA Astrophysics Data System (ADS)

    Bachert, Peter; Bellemann, Matthias E.

    In 31P 1H double-resonance experiments in a 1.5 T whole-body MR system, we observed in vivo the truncated driven, transient, and steady-state 31P- 1H nuclear Overhauser effect of the phosphocreatine resonance in 31P MR spectra of human gastrocnemius muscle. Maximum signal enhancements of 0.52 ± 0.01, 0.20 ± 0.01, and 0.79 ± 0.02 were measured, respectively. Fitting the data with theoretical functions which solve the multispin Solomon equations for N protons (S spins) dipolar coupled to a 31P nucleus (I spin) yields cross-relaxation times {2}/{[Σ i=1-N σIS(i) ] } in the order of 20 s. In vivo experiments are feasible for studying relaxation mechanisms in coupled 31P 1H spin systems in intact tissue.

  5. Phase transition in triglycine sulfate crystals by 1H and 13C nuclear magnetic resonance in the rotating frame

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Jeong, Se-Young

    2013-09-01

    The ferroelectric phase transition in triglycine sulfate ((NH2CH2COOH)3·H2SO4, TGS)) crystals, occurring at TC of 322 K, was studied using 1H and 13C CP/MAS NMR. From the spin-lattice relaxation time in the rotating frame, T1ρ, of 1H and 13C, we found that the slopes of the T1ρ versus temperature curve changed near TC. In addition, the change of intensities for the protons and carbons NMR signals in the ferroelectric and the paraelectric phases led to the noticeable changes in the environments of proton and carbon in the carboxyl groups. The carboxyl ordering was the dominant factor driving the phase transition. Our study of the 1H and 13C spectra showed that the ferroelectric phase transition of TGS is of the order-disorder type due to ordering of the carboxyl groups.

  6. Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Park, Sang Ho; Opella, Stanley J.

    2012-07-01

    We demonstrate 1H amide resonance line widths <300 Hz in 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in aligned phospholipid bilayers. This represents a substantial improvement over typically observed line widths of ˜1 kHz. Furthermore, in a proton detected local field (PDLF) version of the experiment that measures heteronuclear dipolar couplings, line widths <130 Hz are observed. This dramatic line narrowing of 1H amide resonances enables many more individual signals to be resolved and assigned from uniformly 15N labeled membrane proteins in phospholipid bilayers under physiological conditions of temperature and pH. Finding that the decrease in line widths occurs only for membrane proteins that undergo fast rotational diffusion around the bilayer normal, but not immobile molecules, such as peptide single crystals, identifies a potential new direction for pulse sequence development that includes overall molecular dynamics in their design.

  7. Rotary resonance recoupling of 13C- 1H dipolar interactions in magic angle spinning 13C NMR of dynamic solids

    NASA Astrophysics Data System (ADS)

    Kitchin, Simon J.; Harris, Kenneth D. M.; Aliev, Abil E.; Apperley, David C.

    2000-06-01

    Rotary resonance recoupling of heteronuclear 13C- 1H dipolar interactions in magic angle spinning solid state 13C NMR spectra (recorded under conditions of 1H decoupling at frequency ν1 and magic angle spinning at frequency νr) has been studied for three examples of molecular solids (adamantane, ferrocene and hexamethylbenzene) in which substantial molecular motion is known to occur. It is shown that when rotary resonance conditions are satisfied (i.e. ν1/νr= n, for n=1 or 2), the recoupling can lead to motionally averaged Pake-like powder patterns from which information on 13C- 1H internuclear distances and/or molecular motion can be derived.

  8. Temperature dependence of 13C 1H one-bond coupling constants of methyl groups in plastic crystals

    NASA Astrophysics Data System (ADS)

    Aksnes, Dagfinn W.; Balevicius, Vytautas J.; Kimtys, Liudvikas L.

    The temperature dependence of the one-bond 13C 1H coupling constant of the methyl groups in pivalic acid, tert-butyl chloride and hexamethylethane has been studied in the liquid and plastic crystalline phases. A steady decrease in the coupling constant with falling temperature in the plastic crystalline phase has been observed for these organic solids. A maximum change in the 13C 1H coupling constant of 25 Hz has been found after deduction of the effect of overlap of the broadened lines in the methyl quartet. The CNDO/2 calculations indicate that the temperature dependence of the coupling constant is not caused by intramolecular transitions. The significant reduction of the 13C 1H coupling constant is largely attributed to intramolecular dipole-dipole interactions due to a slight anisotropic tumbling of the molecules in the plastic phase.

  9. A novel de novo mutation in DYNC1H1 gene underlying malformation of cortical development and cataract.

    PubMed

    Hertecant, Jozef; Komara, Makanko; Nagi, Aslam; Suleiman, Jehan; Al-Gazali, Lihadh; Ali, Bassam R

    2016-09-01

    Mutations in DYNC1H1, the gene encoding the largest cytoplasmic dynein, have been associated with a wide spectrum of neurodegenerative disorders. In this study, we describe a child in whom a novel de novo likely pathogenic variant in the motor domain of DYCN1H1 was identified through whole exome sequencing. The affected child presented with severe neurological symptoms and more extensive cortical malformations compared to previously reported cases with mutations in this gene, including diffuse pachygyria-lissencephaly and bilateral symmetric subcortical gray matter heterotopia. A more distinct aspect of the phenotype in this child is the presence of cataract in infancy. So far, only acquired bilateral cataract in adulthood has been described in this disorder in a patient with a much milder neurological phenotype. These findings could extend the phenotype associated with defective DYNC1H1 and suggest a possible important role in human ocular development. PMID:27331017

  10. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    PubMed

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO. PMID:25794742

  11. Chemical Constituents of Lecythispisonis (Lecythidaceae)--A New Saponin and Complete 1H and 13C Chemical Shift Assignments.

    PubMed

    Duarte, Rennê C; Matos, Carlos R R; Braz-Filho, Raimundo; Mathias, Leda

    2015-06-01

    A novel triterpenoid saponin 3-O-β-D-glucuronopyranosyl-(1' --> 3)-2α,19α-dihydroxyolean-12-en-28-oic acid [3-O-β-D-glucuronopyranosyl-(1' --> 3)-arjunic acid, 1], ten known compounds [six triterpenoids: α-amyrin (2), β-amyrin (3), germanicol (4), lupeol (5), friedelin (6), friedelanol (7); four steroids--campesterol (8), stigmasterol (9), sitosterol (10), cholesterol (11)], and a long chain alcohol n-eicosan-1-ol (12) were identified in the bark of Lecythis pisonis. The structures were established by 1D and 2D NMR spectroscopy (1H and 13C-NMR, DEPTQ, 1H-1H-COSY, NOESY, HSQC and HMBC), low (CG-MS) and high resolution mass spectrometry (HR-ESI-MS), and infrared (IR) spectral data involving comparison with the literature. PMID:26197504

  12. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    SciTech Connect

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain.

  13. Correlations between 29Si, 17O and 1H NMR properties and local structures in silicates: an ab initio calculation

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.

    In order to gain insight into the correlations between 29Si, 17O and 1H NMR properties (chemical shift and quadrupolar coupling parameters) and local structures in silicates, ab initio self-consistent field Hartree-Fock molecular orbital calculations have been carried out on silicate clusters of various polymerizations and intertetrahedral (Si-O-Si) angles. These include Si(OH)4 monomers (isolated as well as interacting), Si2O(OH)6 dimers (C2 symmetry) with the Si-O-Si angle fixed at 5° intervals from 120° to 180°, Si3O2(OH)8 linear trimers (C2 symmetry) with varying Si-O-Si angles, Si3O3(OH)6 three-membered rings (D3 and C1 symmetries), Si4O4(OH)8 four-membered ring (C4 symmetry) and Si8O12(OH)8 octamer (D4 symmetry). The calculated 29Si, 17O and 1H isotropic chemical shifts (δiSi, δiO and δiH) for these clusters are all close to experimental NMR data for similar local structures in crystalline silicates. The calculated 17O quadrupolar coupling constants (QCC) of the bridging oxygens (Si-O-Si) are also in good agreement with experimental data. The calculated 17O QCC of silanols (Si-O-H) are much larger than those of the bridging oxygens, but unfortunately there are no experimental data for similar groups in well-characterized crystalline phases for comparison. There is a good correlation between δiSi and the mean Si-O-Si angle for both Q1 and Q2, where Qn denotes Si with n other tetrahedral Si next-nearest neighbors. Both the δiO and the 17O electric field gradient asymmetry parameter, η of the bridging oxygens have been found to depend strongly on the O site symmetry, in addition to the Si-O-Si angle. On the other hand, the 17O QCC seems to be influenced little by structural parameters other than the Si-O-Si angle, and is thus expected to be the most reliable 17O NMR parameter that can be used to decipher Si-O-Si angle distribution information. Both the 17O QCC and the 2H QCC of silanols decrease with decreasing length of hydrogen bond to a second O atom

  14. Observation by flow sup 1 H NMR and dimerization kinetics and products of reactive ortho-quinodimethanes and benzocyclobutadiene

    SciTech Connect

    Fischer, D.

    1990-09-21

    The reactive o-quinodimethanes, 1,2-dimethylene-1,2-dihydronaphthalene (9) and o-xylylene (1) were observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum of 9 was obtained in the absence of precursor and dimers. However, the {sup 1}H NMR spectrum of the more reactive 1, generated in a similar manner from (o-((trimethylsilyl)methyl)benzyl)trimethylammonium iodide (5.) could be obtained only in the presence of its stable (4 + 2) and (4 + 4) dimers. The dimerization kinetics of 3-methyl- (5{prime}), 3,6-dimethyl- (11), 3-isopropyl- (12), and 3,6-diisoproply-1,2-xylylene (13) in acetonitrile (CH{sub 3}CN) were studied by stopped-flow UV-visible spectroscopy. Fluoride ion induced 1,2-elimination from 2-elimination from 2-trimethylsilylbenzocyclobutenyl-1 mesylate (26) was used to generate the reactive molecule benzocyclobutadiene (1{prime}) in CD{sub 3}CN, which was observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum (in CD{sub 3}CN) of 1,2-dimethylene-1,2-dihydrothiophene (1{double prime}), obtained by fluoride ion induced 1,4-elimination from 3-(trimethylammoniummethyl)-2-(trimethylsilylmethyl)thiophene iodine was observed by flow {sup 1}H NMR spectroscopy at room temperature. The dimerization rate of 1{double prime} in CH{sub 3}CN, generated in the same manner, was measured by UV-visible spectroscopy. 166 refs., 7 figs., 7 tabs.

  15. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    NASA Astrophysics Data System (ADS)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  16. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    PubMed Central

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  17. (1)H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization.

    PubMed

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional (1)H-(15)N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that (1)H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  18. Dehydrozingerone based 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles: Synthesis, characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    Ratković, Zoran; Muškinja, Jovana; Burmudžija, Adrijana; Ranković, Branislav; Kosanić, Marijana; Bogdanović, Goran A.; Marković, Bojana Simović; Nikolić, Aleksandar; Arsenijević, Nebojša; Đorđevic, Snežana; Vukićević, Rastko D.

    2016-04-01

    A small series of 1-acetyl-5-aryl-4,5-dihydro-1H-pyrazoles (aryl = 4-hydroxy-3-methoxyphenyl and 4-alkoxy-3-methoxyphenyl) was prepared, starting from 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, dehydrozingerone, and its alkyl derivatives. Their in vitro cytotoxic activity against some cancer cell lines was tested, showing significant anticancer activity. All the new compounds were well characterized by IR, 1H, 13C NMR and ESI-MS spectroscopy and physical data, whereas structures of two of them were determined by single crystal X-ray analysis.

  19. A general Pd/Cu-catalyzed C-H heteroarylation of 3-bromoquinolin-2(1H)-ones.

    PubMed

    Bruneau, Alexandre; Brion, Jean-Daniel; Messaoudi, Samir; Alami, Mouad

    2014-11-14

    3-(Heteroaryl)quinolin-2(1H)-ones were synthesized in good to excellent yields using a bimetallic catalytic system through the C-H heteroarylation strategy. Starting from 3-bromoquinolin-2(1H)-ones, various azoles have been successfully used. In all cases, the reactions take place rapidly in dioxane and efficiently proceed in the presence of a bimetallic Pd(OAc)2/CuI as the catalyst, PPh3 as the ligand and LiOtBu or KOAc as the base. PMID:25237986

  20. Synthesis of 8-Phenylphenalenones: 2-Hydroxy-8-(4-hydroxyphenyl)-1H-phenalen-1-one from Eichhornia crassipes.

    PubMed

    Ospina, Felipe; Hidalgo, William; Cano, Marisol; Schneider, Bernd; Otálvaro, Felipe

    2016-02-01

    2-Hydroxy-8-(4-hydroxyphenyl)-1H-phenalen-1-one (1), the first reported 8-phenylphenalenone from the roots of Eichhornia crassipes (water hyacinth), was synthesized starting from 2-methoxynaphthalene in 11 steps and with an overall yield of 2%. A cascade Friedel-Crafts/Michael annulation reaction between acryloyl chloride and 2-methoxynaphthalene afforded 9-methoxyperinaphthanone that, after transformation to 9-methoxy-2-(4-methoxyphenyl)-1H-phenalen-1-one by means of standard Suzuki-Miyaura methodology, was subjected to a reductive carbonyl transposition to afford 8-(4-methoxyphenyl)perinaphthanone. Dehydrogenation, epoxidation, and demethylation of the latter afforded 1. PMID:26741281

  1. Segmental dynamic heterogeneity of short-chain grafted-poly(dimethylsiloxane) by 1H spin-diffusion NMR

    NASA Astrophysics Data System (ADS)

    Bertmer, Marko; Demco, Dan E.; Wang, Mingfei; Melian, Claudiu; Marcean-Chelcea, Ramona I.; Fechete, Radu; Baias, Maria; Blümich, Bernhard

    2006-11-01

    Segmental dynamic heterogeneity of short-chain grafted poly(dimethylsiloxane) (PDMS) on pyrogenic silica was investigated using 1H NMR spin-diffusion. A double-quantum dipolar filter was employed for selection of the interface (rigid) region. One-dimensional spin-diffusion equations were solved numerically for a space distribution of spin diffusivity D( x) of the mobile PDMS chains. The degree of heterogeneity can be quantified by the parameters of Gaussian and exponential diffusivity distribution functions which yield similar diffusivities. The rigid and mobile domain sizes and spin diffusivities were correlated with the PDMS chain length, the temperature, and 1H residual dipolar couplings.

  2. Synthesis, spectroscopic characterization, calculational studies and in vitro antitumoral activity of 4-(3-(1H-imidazol-1-yl)propyl)-(thiophen-2-ylmethyl)-1H-1,2,4-triazol-5(4H)-one

    NASA Astrophysics Data System (ADS)

    Süleymanoğlu, Nevin; Ustabaş, Reşat; Alpaslan, Yelda Bingöl; Ünver, Yasemin; Turan, Mustafa; Sancak, Kemal

    2011-03-01

    4-(3-(1H-imidazol-1-yl)propyl)-(thiophen-2-ylmethyl)-1H-1,2,4-triazol-5(4H)-one (IPTT), C 13H 15N 5OS, was synthesized and characterized by 13C NMR, 1H NMR, IR and single-crystal X-ray diffraction. The structure of IPTT is stabilized by three intermolecular hydrogen bonds and by intermolecular C sbnd H⋯ π interaction. The compound IPTT was modelled by using DFT method. Calculations of vibrational frequencies, gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts of IPTT in the ground state, total electronic charge density map and frontier molecular orbitals were performed at B3LYP/6-31 G(d) level of theory were carried out by using DFT method with 6-31 G(d) basis set. The structural parameters obtained by geometry optimization, the theoretical vibrational frequencies and chemical shift values are in good agreement with experimental ones. FT-IR, NMR and X-ray analytical results of IPTT show that the compound exists as keto form, that was supported by DFT calculations. In addition, in vitro studies showed hopeful antitumoral activity of the title IPTT compound.

  3. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    PubMed

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. PMID:27112449

  4. Evaluation of short-TE 1H MRSI for quantification of metabolites in the prostate

    PubMed Central

    Basharat, Meer; Jafar, Maysam; deSouza, Nandita M; Payne, Geoffrey S

    2014-01-01

    Back-to-back 1H MRSI scans, using an endorectal and phased-array coil combination, were performed on 18 low-risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer-volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved with the quantitation using quantum estimation (QUEST) routine. Metabolite nulling experiments in an additional five patients found that there were negligible macromolecule background signals in prostate spectra at TE = 32 ms. Metabolite visibility was judged using the criterion Cramér–Rao lower bound (CRLB)/amplitude < 20%, and metabolite concentrations were corrected for relaxation effects and referenced to the data acquired in corresponding water-unsuppressed MRSI scans. For the first time, the prostate metabolites spermine and myo-inositol were quantified individually in vivo, together with citrate, choline and creatine. All five metabolite visibilities were higher in TE = 32 ms MRSI than in TE = 100 ms MRSI. At TE = 32 ms, citrate was visible in 99.0% of lipid-free spectra, whereas, at TE = 100 ms, no metabolite simulation of citrate matched the in vivo peaks. Spermine, choline and creatine were visualised separately in 30.4% more spectra at TE = 32 ms than at TE = 100 ms, and myo-inositol in 72.5% more spectra. T2 values were calculated for spermine (53 ± 16 ms), choline (62 ± 17 ms) and myo-inositol (90 ± 48 ms). Data from the TE = 32 ms spectra showed that the concentrations of citrate and spermine secretions were positively correlated in both the peripheral zone and central gland (R2 = 0.73 and R2 = 0.43, respectively), and that the citrate content was significantly higher in the former at 64 ± 22 mm than in the latter at 32 ± 16 mm (p = 0.01). However, lipid

  5. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

  6. 1H and 13C NMR investigation of 20-hydroxyecdysone dioxolane derivatives, a novel group of MDR modulator agents.

    PubMed

    Balázs, Attila; Hunyadi, Attila; Csábi, József; Jedlinszki, Nikoletta; Martins, Ana; Simon, András; Tóth, Gábor

    2013-12-01

    The synthesis, structure elucidation and the complete (1)H and (13)C signal assignment of a series of dioxolane derivatives of 20-hydroxyecdysone, synthesized as novel modulators of multidrug resistance, are presented. The structures and NMR signal assignment were established by comprehensive one-dimensional and two-dimensional NMR spectroscopy supported by mass spectrometry. PMID:24114927

  7. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  8. An optimized and validated (1)H NMR method for the quantification of α-pinene in essentials oils.

    PubMed

    Cerceau, Cristiane I; Barbosa, Luiz C A; Filomeno, Claudinei A; Alvarenga, Elson S; Demuner, Antônio J; Fidencio, Paulo H

    2016-04-01

    The authenticity and composition of commercial essential oils requires strict quality control. Due to the importance of α-pinene containing essential oils, a rapid and efficient method for quantification of this terpene in oils of eucalyptus, pink pepper and turpentine using (1)H NMR was developed and validated. All evaluated parameters (selectivity, linearity, accuracy/precision, repeatability, robustness, stability of analyte and internal standard in solutions) showed satisfactory results. The limit of detection (LOD) and limit of quantification (LOQ) were 0.1 and 2.5mg respectively. These values indicated that α-pinene was detected in 35 mg samples containing at least 0.3% of this compound. In addition, a minimum of 8% of α-pinene in the sample was required for quantification. Furthermore, the standard deviations found in the (1)H NMR methodology were less than 1% and were lower than those obtained by gas chromatographic analysis. Statistical tests have shown that the results obtained by (1)H NMR methodology are similar to those obtained by GC-FID technique using external and internal standardization and normalization within 95% confidence. R&R values lower than 10% have shown that all the methods are appropriate and the (1)H NMR method is suitable for quantification of α-pinene in samples of essential oils since this method possessed the smallest R&R (1.81) value. PMID:26838386

  9. (1)H, (13)C and (15)N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization. PMID:26377206

  10. Application of cryoprobe 1H nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey.

    PubMed

    Donarski, James A; Jones, Stephen A; Charlton, Adrian J

    2008-07-23

    Proton nuclear magnetic resonance spectroscopy ((1)H NMR) and multivariate analysis techniques have been used to classify honey into two groups by geographical origin. Honey from Corsica (Miel de Corse) was used as an example of a protected designation of origin product. Mathematical models were constructed to determine the feasibility of distinguishing between honey from Corsica and that from other geographical locations in Europe, using (1)H NMR spectroscopy. Honey from 10 different regions within five countries was analyzed. (1)H NMR spectra were used as input variables for projection to latent structures (PLS) followed by linear discriminant analysis (LDA) and genetic programming (GP). Models were generated using three methods, PLS-LDA, two-stage GP, and a combination of PLS and GP (PLS-GP). The PLS-GP model used variables selected by PLS for subsequent GP calculations. All models were generated using Venetian blind cross-validation. Overall classification rates for the discrimination of Corsican and non-Corsican honey of 75.8, 94.5, and 96.2% were determined using PLS-LDA, two-stage GP, and PLS-GP, respectively. The variables utilized by PLS-GP were related to their (1)H NMR chemical shifts, and this led to the identification of trigonelline in honey for the first time. PMID:18564849

  11. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use. PMID:25940152

  12. Microscale Synthesis and (super 1)H NMR Analysis of Zn(super II) and Ni(super II) Tetraphenylporphyrins

    ERIC Educational Resources Information Center

    Saucedo, Laura; Mink, Larry M.

    2005-01-01

    A multisection undergraduate laboratory involving the microscale synthesis and spectroscopic analysis of unmetalled porphyrins and their corresponding metalloporphyins is described. The microscale synthesis involving the isolation of the metalloporphyrins as solids and their corresponding (super 1)H NMR spectra are presented.

  13. Spinning-frequency-dependent linewidths in 1H-decoupled 13C magic-angle spinning NMR spectra

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; McDowell, Charles A.

    1994-09-01

    The broadenings observed in 13C MAS NMR spectra, which depend on the sample-spinning speed, were studied, using polycrystalline adamantane. Not only was a monotonic increase of the linewidths with the increase of the spinning frequency observed, but also a novel resonant feature was found. The phenomena were interpreted as originating from rotary-resonance 13C 1H recoupling.

  14. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  15. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  16. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  17. Application of a quantitative (1)H-NMR method for the determination of paeonol in Moutan cortex, Hachimijiogan and Keishibukuryogan.

    PubMed

    Tanaka, Rie; Shibata, Hikari; Sugimoto, Naoki; Akiyama, Hiroshi; Nagatsu, Akito

    2016-10-01

    Quantitative (1)H-NMR ((1)H-qNMR) was applied to the determination of paeonol concentration in Moutan cortex, Hachimijiogan, and Keishibukuryogan. Paeonol is a major component of Moutan cortex, and its purity was calculated from the ratio of the intensity of the paeonol H-3' signal at δ 6.41 ppm in methanol-d 4 or 6.40 ppm in methanol-d 4 + TFA-d to that of a hexamethyldisilane (HMD) signal at 0 ppm. The concentration of HMD was corrected with SI traceability by using potassium hydrogen phthalate of certified reference material grade. As a result, the paeonol content in two lots of Moutan cortex as determined by (1)H-qNMR was found to be 1.59 % and 1.62 %, respectively, while the paeonol content in Hachimijiogan and Keishibukuryogan was 0.15 % and 0.22 %, respectively. The present study demonstrated that the (1)H-NMR method is useful for the quantitative analysis of crude drugs and Kampo formulas. PMID:27164909

  18. 40 CFR 721.8965 - 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8965 1H-Pyrole-2, 5-dione, 1-(2,4,6-tribromophenyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  19. 1H NMR studies of aerosol-OT reverse micelles with alkali and magnesium counterions: preparation and analysis of MAOTs.

    PubMed

    Stahla, Michelle L; Baruah, Bharat; James, Dustin M; Johnson, Michael D; Levinger, Nancy E; Crans, Debbie C

    2008-06-17

    Simple procedures and characterization of a series of well-defined precursors are described for preparation of a unique microenvironment in nanoreactors, reverse micelles. The Na(+), K(+), Rb(+), Cs(+), and Mg(2+) surfactants were prepared using liquid-liquid ion exchange using chloride and nitrate salts. The surfactants were characterized using (1)H NMR spectroscopy and a variety of other techniques. (1)H NMR spectroscopy was found to be a sensitive probe for characterization of the size of the nanoreactor as well as its water content. (1)H NMR spectra can be used for detailed characterization of reactions in confined environments when counterion effects are likely to be important. (1)H NMR spectroscopy revealed two separate peaks corresponding to water in Mg(AOT)2 samples; one peak arises from water coordinated to the Mg(2+) ion while the other peak arises from bulk water. The two water signals arise directly from the slow exchange of the water coordinated to Mg(2+) in these microemulsions with water in the water pool, and provide an opportunity to study hydration of Mg(2+). This work thus extends the potential use of MAOT microemulsions for applications such as in green chemistry. PMID:18484757

  20. Dynamic nuclear polarization-enhanced 1H-13C double resonance NMR in static samples below 20 K

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-08-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H-13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H-13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H-13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C-13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils.

  1. Combined (1)H NMR and LSER study for the compound-specific interactions between organic contaminants and organobentonites.

    PubMed

    Ruan, Xiuxiu; Zhu, Lizhong; Chen, Baoliang; Qian, Guangren; Frost, Ray L

    2015-12-15

    The compound-specific mechanisms for the sorption of organic contaminants onto cetyltrimethylammonium-saturated bentonite (i.e., CTMA-Bentonite) in water were evaluated by (1)H NMR study and Linear Solvation Energy Relationship (LSER) approach. In (1)H NMR study, comparing with pure CTMAB, the up-field shifts of hydrogen peaks for CH2N(+) and CH3N(+) of CTMA(+) in CTMAB-aromatics (1-naphtylamine, aniline and phenol) mixtures are much greater than that in CTMAB-aliphatics (cyclohexanone and cyclohexanol) mixtures. Meanwhile, the peak position of hydrogen on amino- and hydroxyl-groups of aromatic compounds also changes greatly. (1)H NMR data demonstrated the strong molecular interaction between the positive ammonium group of CTMA(+) and the delocalized π-systems of aromatic solutes, whereas the interactions of CTMA(+) with aliphatic compounds having electron-donating groups (such as cyclohexanol and cyclohexanone) or aromatic ring substituted by electron-withdrawing groups (i.e., nitrobenzene) or nonpolar aromatic compounds with single phenyl ring (i.e., toluene) are weak. The derived LSER equation was obtained by a multiple regression of the solid-water sorption coefficients (Kd) of 16 probe solutes upon their solvation parameters, and demonstrates aromatics sorption onto CTMA-Bentonite is concurrently governed by the π-/n-electron pair donor-accepter interaction and the cavity/dispersion interaction, while the predominant mechanism for aliphatic compounds is the cavity/dispersion interaction, consisting with the (1)H NMR results. PMID:26319328

  2. Soil organic matter dynamics as characterized with 1H and 13C solid-state NMR techniques

    NASA Astrophysics Data System (ADS)

    Jäger, Alex; Schwarz, Jette; Bertmer, Marko; Schaumann, Gabriele E.

    2010-05-01

    Soil organic matter (SOM) is a complex and heterogeneous matter. Characterization by solid-state NMR methods on 1H and 13C nuclei is therefore demanding. Our goal is to obtain information on the dynamic behaviour of soil samples and to study the influence of external parameters on both structure and dynamics. We regard water molecules to be the pivotal agent of soil dynamics by generating a network between organic matter via intermolecular hydrogen bonding, which leads to cross linking of organic matter and increases its rigidity. Although 1H solid-state NMR on non-rotating samples are not so commonly used for soil characterization, they enable the differentiation of proton mobilities via their linewidths which are resulting from differences in the dipole-dipole coupling strengths. Therefore, even weak molecular interactions such as hydrogen bonding can be differentiated and changes due to heat treatments and the short and long term behaviour followed. Though in principle a simple technique, static 1H measurements are complicated by several means, one of them is the high abundance in almost all matter including probe head material that has to be excluded for analysis. Finally, we selected 1H DEPTH [1] and Hahn-echo sequences to distinguish different mobilities in soil, mainly free moving water and water fixed in the soil matrix. After decomposition using Gaussian and Lorentzian lineshapes, the relative amounts of mobile and rigid water molecules can be obtained. By heating the samples above 100°C in sealed glass tubes, the proposed water network is destroyed and able to rebuild after cooling. This long term behaviour is studied on the course of months. Furthermore, the instant changes before and after heating are shown for a series of soil samples to characterize soils based on this water network model. To combine the information obtained on the 1H mobility with focus on water dynamics, 13C 2D WISE (wideline separation) measurements were done. This method yields 1

  3. Reversible proton transfer phenomenon in the 2,4-dichlorophenol-triethylamine hydrogen-bonded complex studied by low-temperature 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ilczyszyn, Marek; Ratajczak, Henryk; Ladd, John A.

    1988-12-01

    Low-temperature 1H NMR studies of the bridging OHN signal in the hydrogen-bonded complex formed between 2,4-dichlorophenol and triethylamine in C 2H 5Cl solution have demonstrated for the first time that separate signals for the molecular and ion-pair forms of this type of system can be observed. The temperature dependence of these signals leads to thermodynamic and kinetic quantities which suggest that the potential energy profile of the hydrogen bond is roughly symmetric with a double minimum.

  4. Assignment of the sup 1 H and sup 15 N NMR spectra of Rhodobacter capsulatus ferrocytochrome c sub 2

    SciTech Connect

    Gooley, P.R.; Caffrey, M.S.; Cusanovich, M.A.; MacKenzie, N.E. )

    1990-03-06

    The peptide resonances of the {sup 1}H and {sup 15}N nuclear magnetic resonance spectra of ferrocytochrome c{sub 2} from Rhodobacter capsulatus are sequentially assigned by a combination of 2D {sup 1}H-{sup 1}H and {sup 1}H-{sup 15}N spectroscopy, the latter performed on {sup 15}N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show {alpha}-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two {alpha}-helices, there are three single 3{sub 10} turns, 70-72, 76-78, and 107-109. In addition {alpha}H-NH{sub i+1} and {alpha}H-NH{sub i+2} NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c{sub 2} of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c{sub 2}. The NOE data show that this insertion forms a loop, probably an {Omega} loop. {sup 1}H-{sup 15}N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c{sub 2} of R. capsulatus with the highly homologous horse heart cytochrome c shows that this helix is less stable in cytochrome c{sub 2}.

  5. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  6. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2016-09-01

    Three new metal coordination complexes, namely, [Co(BPO)2(H2O)4](BS)2(H2O)2 (1), [Co(BPO)2(H2O)4](ABS)2(H2O)2 (2), [Co(BPO)2(H2O)4](MBS)2(H2O)2 (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1-3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O-H···O/N) and packing interactions (C-H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time.

  7. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods.

    PubMed

    Srinivasan, Krishnan; Stalin, Thambusamy

    2014-09-15

    The formation of host-guest inclusion complex of 2,6-dinitrobenzoic acid (2,6-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase has been studied by UV-visible spectroscopy and electrochemical analysis (cyclic voltammetry, CV). The effect of acid-base concentrations of 2,6-DNB has been studied in presence and absence of β-CD to determination for the ground state acidity constant (pKa). The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,6-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process was proposed by molecular docking studies using patch dock server. PMID:24769381

  8. 2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: Design and synthesis of a potent and isoform selective PKC-[zeta] inhibitor

    SciTech Connect

    Trujillo, John I.; Kiefer, James R.; Huang, Wei; Thorarensen, Atli; Xing, Li; Caspers, Nicole L.; Day, Jacqueline E.; Mathis, Karl J.; Kretzmer, Kuniko K.; Reitz, Beverley A.; Weinberg, Robin A.; Stegeman, Roderick A.; Wrightstone, Ann; Christine, Lori; Compton, Robert; Li, Xiong

    2009-03-16

    The inhibition of PKC-{zeta} has been proposed to be a potential drug target for immune and inflammatory diseases. A series of 2-(6-phenyl-1H indazol-3-yl)-1H-benzo[d]imidazoles with initial high crossover to CDK-2 has been optimized to afford potent and selective inhibitors of protein kinase c-zeta (PKC-{zeta}). The determination of the crystal structures of key inhibitor:CDK-2 complexes informed the design and analysis of the series. The most selective and potent analog was identified by variation of the aryl substituent at the 6-position of the indazole template to give a 4-NH{sub 2} derivative. The analog displays good selectivity over other PKC isoforms ({alpha}, {beta}II, {gamma}, {delta}, {epsilon}, {mu}, {theta}, {eta} and {ell}/{lambda}) and CDK-2, however it displays marginal selectivity against a panel of other kinases (37 profiled).

  9. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, Krishnan; Stalin, Thambusamy

    2014-09-01

    The formation of host-guest inclusion complex of 2,6-dinitrobenzoic acid (2,6-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase has been studied by UV-visible spectroscopy and electrochemical analysis (cyclic voltammetry, CV). The effect of acid-base concentrations of 2,6-DNB has been studied in presence and absence of β-CD to determination for the ground state acidity constant (pKa). The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,6-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process was proposed by molecular docking studies using patch dock server.

  10. N-(5-Amino-1H-tetra­zol-1-yl)formamide

    PubMed Central

    He, Chun-Lin; Du, Zhi-Ming; Tang, Zheng-Qiang; Cong, Xiao-Min; Meng, Ling-Qiao

    2009-01-01

    In the title compound, C2H4N6O, the planar [maximum deviation = 0.006 (2) Å] amino­tetra­zole group makes a dihedral angle of 83.65 (8)° with the formamide unit. In the crystal structure, inter­molecular N—H⋯N, N—H⋯O and C—H⋯N hydrogen bonds are responsible for the formation of a three-dimensional network. PMID:21578483

  11. A new one-dimensional Cd(II) coordination polymer with a two-dimensional layered structure incorporating 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole and benzene-1,2-dicarboxylate ligands.

    PubMed

    Huang, Qiu Ying; Lin, Xiao Yi; Meng, Xiang Ru

    2016-06-01

    The N-heterocyclic ligand 2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena-poly[[cadmium(II)-bis[μ-benzene-1,2-dicarboxylato-κ(4)O(1),O(1'):O(2),O(2')]-cadmium(II)-bis{μ-2-[(1H-imidazol-1-yl)methyl]-1H-benzimidazole}-κ(2)N(2):N(3);κ(2)N(3):N(2)] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry-related benzene-1,2-dicarboxylate (1,2-bdic(2-)) ligands and two N atoms from two symmetry-related imb ligands. Two Cd(II) ions are connected by two benzene-1,2-dicarboxylate ligands to generate a binuclear [Cd2(1,2-bdic)2] unit. The binuclear units are further connected into a one-dimensional chain by pairs of bridging imb ligands. These one-dimensional chains are further connected through N-H...O hydrogen bonds and π-π interactions, leading to a two-dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature. PMID:27256695

  12. Compatibility of Superparamagnetic Iron Oxide Nanoparticle Labeling for 1H MRI Cell Tracking with 31P MRS for Bioenergetic Measurements

    PubMed Central

    Zhang, Zhuoli; Hancock, Brynne; Leen, Stephanie; Ramaswamy, Sharan; Sollott, Steven J.; Boheler, Kenneth R.; Juhaszova, Magdalena; Lakatta, Edward G.; Spencer, Richard G.; Fishbein, Kenneth W.

    2011-01-01

    Labeling of cells with superparamagnetic iron oxide nanoparticles permits cell tracking by 1H MRI while 31P MRS allows non-invasive evaluation of cellular bioenergetics. We evaluated the compatibility of these two techniques by obtaining 31P NMR spectra of iron-labeled and unlabeled immobilized C2C12 myoblast cells in vitro. Broadened but usable 31P spectra were obtained, and peak area ratios of resonances corresponding to intracellular metabolites showed no significant differences between labeled and unlabeled cell populations. We conclude that 31P NMR spectra can be obtained from cells labeled with sufficient iron to permit visualization by 1H imaging protocols and that these spectra have sufficient quality to be used in assessing metabolic status. This result introduces the possibility of using localized 31P MRS to evaluate the viability of iron-labeled therapeutic cells as well as surrounding host tissue in vivo. PMID:20853523

  13. Correlation between 1H FID and T1rho components in heterogeneous polymer systems: an application to SBS.

    PubMed

    Ferrini, V; Forte, C; Geppi, M; Pizzanelli, S; Veracini, C A

    2005-06-01

    Wideline 1H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene-butadiene-styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two spin lattice relaxation time in the rotating frame (T1rho) components found at each temperature have been correlated by means of a two-dimensional approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton T1 and T1rho data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution 1H T1rho-selective 13C Cross Polarization experiments. PMID:15799878

  14. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  15. Nitrogen-rich energetic monoanionic salts of 3,4-bis(1H-5-tetrazolyl)furoxan.

    PubMed

    Huang, Haifeng; Zhou, Zhiming; Liang, Lixuan; Song, Jinhong; Wang, Kai; Cao, Dan; Sun, Wenwen; Bian, Chengming; Xue, Min

    2012-04-01

    3,4-Bis(1H-5-tetrazolyl)furoxan (H(2)BTF, 2) and its monoanionic salts that contain nitrogen-rich cations were readily synthesized and fully characterized by multinuclear NMR ((1)H, (13)C) and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analyses. Hydrazinium (3) and 4-amino-1,2,4-triazolium (7) salts crystallized in the monoclinic space group P2(1)/n and have calculated densities of 1.820 and 1.764 g cm(-3), respectively. The densities of the energetic salts range between 1.63 and 1.79 g cm(-3), as measured by a gas pycnometer. Detonation pressures and detonation velocities were calculated to be 23.1-32.5 GPa and 7740-8790 m s(-1), respectively. PMID:22262569

  16. High Resolution 1H NMR Spectroscopy in Rat Liver Using Magic Angle Turning at a 1 Hz Spinning Rate

    SciTech Connect

    Hu, Jian Zhi ); Rommereim, Donald N. ); Wind, Robert A. )

    2001-12-01

    It is demonstrated that a high resolution 1H NMR spectrum of excised rat liver can be obtained using the technique of magic angle turning at a sample spinning rate of 1 Hz. A variant of the phase-corrected magic angle turning (PHORMAT) pulse sequence that includes a water suppression segment was developed for the investigation. The spectral resolution achieved with PHORMAT is approaching that obtained from a standard magic angle spinning experiment at a spinning rate of several kHz. With such ultra-slow spinning, tissue and cell damage associated with the standard MAS experiment is minimized or eliminated. The technique is potentially useful for obtaining high-resolution 1H spectra in live animals.

  17. Experimental and calculated structural parameters of 5-trihalomethyl-4,5-dihydro-1 H-pyrazole derivatives, novel analgesic agents

    NASA Astrophysics Data System (ADS)

    Machado, Pablo; Campos, Patrick T.; Lima, Glauber R.; Rosa, Fernanda A.; Flores, Alex F. C.; Bonacorso, Helio G.; Zanatta, Nilo; Martins, Marcos A. P.

    2009-01-01

    The crystal structures of four novel analgesic agents, methyl 5-hydroxy-3- or 4-methyl-5-trichloro[trifluoro]methyl-4,5-dihydro-1 H-pyrazole-1-carboxylate, have been determined by X-ray diffractometry. The data demonstrated that the molecular packing was stabilized mainly by O sbnd H⋯O hydrogen bonds of the 5-hydroxy and 1-carboxymethyl groups. The 4,5-dihydro-1 H-pyrazole rings were obtained as almost planar structures showing RMS deviation at a range of 0.0052-0.0805 Å. Additionally, computational investigation using semi-empirical AM1 and PM3 methods were performed to find a correlation between experimental and calculated geometrical parameters. The data obtained suggest that the structural data furnished by the AM1 method is in better agreement with those experimentally determined for the above compounds.

  18. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.

    PubMed

    Dufour, Anthony; Castro-Diaz, Miguel; Brosse, Nicolas; Bouroukba, Mohamed; Snape, Colin

    2012-07-01

    The thermochemical conversion of lignocellulosic biomass feedstocks offers an important potential route for the production of biofuels and value-added green chemicals. Pyrolysis is the first phenomenon involved in all biomass thermochemical processes and it controls to a major extent the product composition. The composition of pyrolysis products can be affected markedly by the extent of softening that occurs. In spite of extensive work on biomass pyrolysis, the development of fluidity during the pyrolysis of biomass has not been quantified. This paper provides the first experimental investigation of proton mobility during biomass pyrolysis by in situ (1)H NMR spectroscopy. The origin of mobility is discussed for cellulose, lignin and xylan. The effect of minerals on cellulose mobility is also investigated. Interactions between polymers in the native biomass network are revealed by in situ (1)H NMR analysis. PMID:22573541

  19. Synthesis, structural, theoretical studies and biological activities of 3-(arylamino)-2-phenyl-1H-inden-1-one derivative

    NASA Astrophysics Data System (ADS)

    El-Sheshtawy, Hamdy S.; Abou Baker, Ahmed M.

    2014-06-01

    Five derivatives of 2-phenyl-1H-indene-1-one have been prepared and fully characterized. Spectroscopic techniques such as FT-IR, 1H NMR, mass spectrometry, and elemental analysis were used to investigate the chemical structures and physical properties of the prepared compounds. The optimized structures and the distribution of the frontier molecular orbital were obtained using density functional theory (DFT) at B3LYP/6-311++G(d,p) level of theory. Additionally, the UV spectral properties of the indene compounds were corroborated by frontier orbital (HOMO and LUMO) calculations. Intramolecular charge transfer (ICT) peak has been observed in the UV spectra of the compounds and theoretically confirmed by the HOMO and LUMO analysis. The potential use of these compounds as antibacterial agents was investigated. The results show that indene-1-one derivatives have an antibacterial activity for both gram-negative (Pseudomonas aeruginosa) and gram-positive (Methicillin Resistant Staphylococcus aureus) bacteria.

  20. FT-IR and {sup 1}H NMR characterization of the products of an ethylene inverse diffusion flame

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Molina, Alejandro; Marsh, Nathan D.; Eddings, Eric G.; Sarofim, Adel F.

    2006-07-15

    Knowledge of the chemical structure of young soot and its precursors is very useful in the understanding of the paths leading to soot particle inception. This paper presents analyses of the chemical functional groups, based on FT-IR and {sup 1}H NMR spectroscopy of the products obtained in an ethylene inverse diffusion flame. The trends in the data indicate that the soluble fraction of the soot becomes progressively more aromatic and less aliphatic as the height above the burner increases. Results from {sup 1}H NMR spectra of the chloroform-soluble soot samples taken at different heights above the burner corroborate the infrared results based on proton chemical shifts (Ha, H{alpha}, H{beta}, and H{gamma}). The results indicate that the aliphatic {beta} and {gamma} hydrogens suffered the most drastic reduction, while the aromatic character increased considerably with height, particularly in the first half of the flame. (author)

  1. A study by (1)H NMR on the influence of some factors affecting lipid in vitro digestion.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2016-11-15

    This article focuses on the impact of several experimental factors, including gastric acidification, intestinal transit time, presence of gastric lipase, sample/digestive fluids ratio, concentration and nature of the enzymes in intestinal juice, and bile concentration, on the extent of in vitro lipolysis when using a static model that simulates human digestion processes in mouth, stomach and small intestine. The study was carried out by Proton Nuclear Magnetic Resonance ((1)H NMR). This technique provides a complete molecular picture of lipolysis, evidencing for the first time, whether preferential hydrolysis of certain glycerides over others occurs. A lipolysis degree similar to that reported in vivo was reached by varying certain variables within a physiological range; among them, bile concentration was found to be crucial. The holistic view of this (1)H NMR study provides information of paramount importance to design sound in vitro digestion models to determine the bioaccessibility and bioavailability of lipophilic compounds. PMID:27283602

  2. Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI.

    PubMed

    Waiczies, Helmar; Lepore, Stefano; Drechsler, Susanne; Qadri, Fatimunnisa; Purfürst, Bettina; Sydow, Karl; Dathe, Margitta; Kühne, André; Lindel, Tomasz; Hoffmann, Werner; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time. PMID:23412352

  3. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  4. 1H NMR studies of maltose, maltoheptaose, alpha-, beta-, and gamma-cyclodextrins, and complexes in aqueous solutions with hydroxy protons as structural probes.

    PubMed

    Bekiroglu, Somer; Kenne, Lennart; Sandström, Corine

    2003-03-01

    The (1)H NMR chemical shifts, coupling constants, temperature coefficients, and exchange rates have been measured for the hydroxy protons of aqueous solutions of alpha-, beta-, and gamma-cyclodextrins, maltose, and maltoheptaose. In cyclodextrins (CDs), the high chemical shift of the O(3)H signal and its small (3)J(OH,CH) value suggest that O(3)H is involved in a hydrogen bond. The small temperature coefficients and rate of exchange values of O(2)H and O(3)H confirm the involvement of O(3)H in hydrogen bonding and indicate that O(2)H is the hydrogen bond partner. In maltose, two distinct NMR signals with two different vicinal coupling constants are found for O(2')H. A cross-peak in the ROESY spectrum indicates chemical exchange between the O(2')H and O(3)H protons. The existence of two distinct NMR signals with different J values for O(2')H shows the influence of anomeric configuration on the O(2')H-O(3)H interaction. The effect of complexation with methyl benzoate, adamantane-1-carboxylic acid, adamantane-1-ol, and l- and d-tryptophane on the NMR spectra of the hydroxy protons of alpha-, beta-, and gamma-cyclodextrins and of maltose has been investigated. No significant spectral changes were observed upon addition of methyl benzoate and adamantane-1-carboxylic acid. The addition of adamantane-1-ol resulted in an upfield shift and a strong broadening of the O(2)H signal from alpha-CD, and a small temperature coefficient was measured upon complexation. The O(2)H and O(3)H signals in beta-CD were broadened and shifted downfield upon addition of l- and d-tryptophane. PMID:12608778

  5. One-pot microwave-assisted protocol for the synthesis of substituted 2-amino-1H-imidazoles.

    PubMed

    Ermolat'ev, D S; Savaliya, B; Shah, A; Van der Eycken, E

    2011-05-01

    An efficient microwave-assisted one-pot two-step protocol was developed for the construction of disubstituted 2-amino-1H-imidazoles. This process involves the sequential formation of 2,3-dihydro-2-hydroxyimidazo[1,2-a]pyrimidinium salts from readily available 2-aminopyrimidines and α-bromoketones, followed by cleavage of the pyrimidine ring with hydrazine. PMID:20740313

  6. Quinine specifically inhibits the proteolipid subunit of the F0F1 H+ -ATPase of Streptococcus pneumoniae.

    PubMed Central

    Muñoz, R; García, E; De la Campa, A G

    1996-01-01

    Streptococcus pneumoniae is uniquely sensitive to quinine and its derivatives, but only those alkaloids having antimalarial properties, i.e., those in the erythro configuration, also possess antipneumococcal activity. Quinine and related compounds inhibit the pneumococcal H+ -ATPase. Quinine- and optochin-resistant pneumococci showed mutations that change amino acid residues located in one of the two transmembrane alpha-helices of the c subunit of the F0F1, H+ -ATPase. PMID:8636056

  7. Determination of the time course of an enzymatic reaction by 1H NMR spectroscopy: hydroxynitrile lyase catalysed transhydrocyanation

    NASA Astrophysics Data System (ADS)

    Hickel, A.; Gradnig, G.; Griengl, H.; Schall, M.; Sterk, H.

    1996-01-01

    The time course of the enzyme catalysed transhydrocyanation of benzaldehyde to give ( S)-mandelonitrile was investigated using a hydroxynitrile lyase from Hevea brasiliensis as catalyst and acetone cyanohydrin as cyanide donor. Employing special techniques it was possible to apply 1H NMR spectroscopy in aqueous medium to monitor the concentration changes of all substrates and products. By this technique strong evidence for inhibition of the enzyme at higher substrate concentrations was obtained.

  8. Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals

    NASA Astrophysics Data System (ADS)

    Castañar, Laura; Nolis, Pau; Virgili, Albert; Parella, Teodor

    2014-07-01

    The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods.

  9. [Carpal tunnel syndrome in children with mucopolysaccharidosis type 1H: diagnosis and therapy in an interdisciplinary centre].

    PubMed

    Meyer-Marcotty, M V; Kollewe, K; Dengler, R; Grigull, L; Altintas, M A; Vogt, P M

    2012-01-01

    Carpal tunnel syndrome is common in children with mucopolysaccharidosis type 1H (MPS type 1H). Clinical signs of carpal tunnel syndrome are frequently absent in these children and it is often very difficult to perform and interpret neurophysiological investigations. In this article we wish to present our experience and results regarding the diagnosis and postoperative results after decompression of the median nerve.In an interdisciplinary set-up we are currently treating 11 MPS type 1H children following blood stem cell transplantation. 7 patients were operated 12 times (5 bilateral operations) because of a carpal tunnel syndrome (age at the time of operation 83,3 months, (43-143 months), 2 male, 5 female). 6 patients had a follow up after 23,7 months (9-59 months). 6 patients had a histological analysis of the flexor retinaculum. Three patients had a postoperative neurophysiological investigation.Each of the operated patients had at least 1 preoperative clinical sign of a carpal tunnel syndrome. We found at least 1 pathological finding in motor and sensory nerve conduction studies in each patient. 6 of the 7 children operated on were symptom-free at postoperative follow-up. 1 of the 3 patients with a postoperative neurophysiological follow up showed a deterioration of the nerve conduction studies. This patient was free of symptoms postoperatively. Biopsy of the flexor retinaculum confirmed abundant proteoglycan deposition. We had neither postoperative complications nor were revisional operations necessary.The Diagnosis of a carpal tunnel syndrome in children with MPS Typ 1H needs a thorough medical history, the correct interpretation of the clinical symptoms and sophisticated nerve conduction studies. Wether the improvement of the postoperative clinical situation lasts has to be evaluated in a long term investigation especially because in one patient in our group we saw a deterioration of the nerve conduction studies postoperatively. PMID:22382905

  10. 1H, 13C MAS NMR and GIAO-CPHF calculations of chloramphenicol, thiamphenicol and their pyrrole analogues

    NASA Astrophysics Data System (ADS)

    Żołek, Teresa; Paradowska, Katarzyna; Krajewska, Dorota; Różański, Andrzej; Wawer, Iwona

    2003-02-01

    The 13C CP MAS and 1H MAS NMR and ab initio (GIAO-CPHF) calculations were used to obtain structural information on two known antibiotics: chloramphenicol, and thiamphenicol, and two new analogues: DL- threo-1-(1-methyl-4-nitro-pyrrole-2-yl)-2-dichloroacetamidopropane-1,3-diol and DL- threo-1-(1-methylsulfonylpyrrole-3-yl)-2-dichloroacetamidopropane-1,3-diol.

  11. Secondary structure and (1)H, (13)C, (15)N resonance assignments of the endosomal sorting protein sorting nexin 3.

    PubMed

    Overduin, Michael; Rajesh, Sandya; Gruenberg, Jean; Lenoir, Marc

    2015-10-01

    Sorting nexin 3 (SNX3) belongs to a sub-family of sorting nexins that primarily contain a single Phox homology domain capable of binding phosphoinositides and membranes. We report the complete (1)H, (13)C and (15)N resonance assignments of the full-length human SNX3 protein and identification of its secondary structure elements, revealing a canonical fold and unstructured termini. PMID:25893673

  12. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy.

    PubMed

    Caligiani, A; Acquotti, D; Palla, G; Bocchi, V

    2007-02-28

    A detailed analysis of the proton high-field NMR spectra of vinegars (in particular of Italian balsamic vinegars) is reported. A large number of organic substances belonging to different classes, such as carbohydrates, alcohols, organic acids, volatile compounds and amino acids, were assigned. The possibility of quantification of the substances identified in the whole vinegar sample, without extraction or pre-concentration steps, was also tested. The data validity was demonstrated in terms of precision, accuracy, repeatability and inter-day reproducibility. The effects of the most critical experimental parameters (sample concentration, water suppression and relaxation time) on the analysis response were also discussed. (1)H NMR results were compared with those obtained by traditional techniques (GC-MS, titrations), and good correlations were obtained. The results showed that (1)H NMR with water suppression allows a rapid, simultaneous determination of carbohydrates (glucose and fructose), organic acids (acetic, formic, lactic, malic, citric, succinic and tartaric acids), alcohols and polyols (ethanol, acetoin, 2,3-butanediol, hydroxymethylfurfural), and volatile substances (ethyl acetate) in vinegar samples. On the contrary, the amino acid determination without sample pre-concentration was critical. The (1)H NMR method proposed was applied to different samples of vinegars, allowing, in particular, the discrimination of vinegars and balsamic vinegars. PMID:17386654

  13. (1)H and (13)C magic-angle spinning nuclear magnetic resonance studies of the chicken eggshell.

    PubMed

    Pisklak, Dariusz Maciej; Szeleszczuk, Lukasz; Wawer, Iwona

    2012-12-19

    The chicken eggshell, a product of biomineralization, contains inorganic and organic substances whose content changes during the incubation process. Bloch-decay (BD) (1)H, (13)C, and cross-polarization (CP) (13)C nuclear magnetic resonance (NMR) spectra of chicken eggshells were acquired under magic-angle spinning (MAS). Variable contact time (13)C CP MAS NMR experiments revealed the signals of carbonyl groups from organic and inorganic compounds. In the (13)C BD NMR spectra, a single peak at 168.1 ppm was detected, whereas in the (1)H BD spectra, the signals from water and the bicarbonate ion were assigned. A simultaneous decrease of the water signal in the (1)H MAS NMR spectra and an increase of the carbonate ion signal in the (13)C CP MAS NMR spectra of eggshells collected during the incubation period indicate the substitution of calcium ions by hydrogen ions in the calcium carbonate crystalline phase during the incubation of an egg. PMID:23157303

  14. Assessment of peeling of Astragalus roots using 1H NMR- and UPLC-MS-based metabolite profiling.

    PubMed

    Jung, Jee-Youn; Jung, Youngae; Kim, Jin-Sup; Ryu, Do Hyun; Hwang, Geum-Sook

    2013-10-30

    A metabolomic analysis was performed to examine the postharvest processing of Astragalus membranaceus roots with a focus on the peeling procedure using (1)H NMR and UPLC-MS analyses. Principal component analysis (PCA) score plots from the (1)H NMR and UPLC-MS data showed clear separation between peeled and unpeeled Astragalus roots. Peeled roots exhibited significant losses of several primary metabolites, including acetate, alanine, arginine, caprate, fumarate, glutamate, histidine, N-acetylaspartate, malate, proline, sucrose, trigonelline, and valine. In contrast, the peeled roots contained higher levels of asparagine, aspartate, and xylose, which are xylem-related compounds, and formate, which is produced in response to wound stress incurred during postharvest processing. In addition, the levels of isoflavonoids and astragalosides were significantly reduced in peeled Astragalus root. These results demonstrate that metabolite profiling based on a combination of (1)H NMR and UPLC-MS analyses can be used to evaluate peeling procedures used in the postharvest processing of herbal medicines. PMID:24073592

  15. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  16. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Buonocore, Michael H; Tanase, Costin

    2011-08-15

    Vigorous exercise increases lactate and glucose uptake by the brain in excess of the increase in brain oxygen uptake. The metabolic fate of this non-oxidized carbohydrate entering the brain is poorly understood, but accumulation of lactate in the brain and/or increased net synthesis of amino acid neurotransmitters are possible explanations. Previous proton magnetic resonance spectroscopy (1H-MRS) studies using conventional pulse sequences have not detected changes in brain lactate following exercise. This contrasts with 1H-MRS studies showing increased brain lactate when blood lactate levels are raised by an intravenous infusion of sodium lactate. Using a J-editing 1H-MRS technique for measuring lactate, we demonstrated a significant 19% increase in lactate in the visual cortex following graded exercise to approximately 85% of predicted maximum heart rate. However, the magnitude of the increase was insufficient to account for more than a small fraction of the non-oxidized carbohydrate entering the brain with exercise. We also report a significant 18% increase in Glx (combined signal from glutamate and glutamine) in visual cortex following exercise, which may represent an activity-dependent increase in glutamate. Future studies will be necessary to test the hypothesis that non-oxidized carbohydrate entering the brain during vigorous exercise is directed, in part, toward increased net synthesis of amino acid neurotransmitters. The possible relevance of these findings to panic disorder and major depression is discussed. PMID:21640838

  17. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-01

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes. PMID:22385100

  18. Lateral diffusion of PEG-Lipid in magnetically aligned bicelles measured using stimulated echo pulsed field gradient 1H NMR.

    PubMed

    Soong, Ronald; Macdonald, Peter M

    2005-01-01

    Lateral diffusion measurements of PEG-lipid incorporated into magnetically aligned bicelles are demonstrated using stimulated echo (STE) pulsed field gradient (PFG) proton (1H) nuclear magnetic resonance (NMR) spectroscopy. Bicelles were composed of dimyristoyl phosphatidylcholine (DMPC) plus dihexanoyl phosphatidylcholine (DHPC) (q = DMPC/DHPC molar ratio = 4.5) plus 1 mol % (relative to DMPC) dimyristoyl phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPE-PEG 2000) at 25 wt % lipid. 1H NMR STE spectra of perpendicular aligned bicelles contained only resonances assigned to residual HDO and to overlapping contributions from a DMPE-PEG 2000 ethoxy headgroup plus DHPC choline methyl protons. Decay of the latter's STE intensity in the STE PFG 1H NMR experiment (g(z) = 244 G cm(-1)) yielded a DMPE-PEG 2000 (1 mol %, 35 degrees C) lateral diffusion coefficient D = 1.35 x 10(-11) m2 s(-1). Hence, below the "mushroom-to-brush" transition, DMPE-PEG 2000 lateral diffusion is dictated by its DMPE hydrophobic anchor. D was independent of the diffusion time, indicating unrestricted lateral diffusion over root mean-square diffusion distances of microns, supporting the "perforated lamellae" model of bicelle structure under these conditions. Overall, the results demonstrate the feasibility of lateral diffusion measurements in magnetically aligned bicelles using the STE PFG NMR technique. PMID:15475584

  19. An XMM-Newton Observation of the Seyfert Galaxy 1H0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; O'Brien, P. T.

    2003-01-01

    Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.

  20. Complexation of oxygen ligands with dimeric rhodium(II) tetrakistrifluoroacetate in chloroform: 1H, 13C NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Głaszczka, Rafał; Jaźwiński, Jarosław

    2013-03-01

    The complexation of dimeric rhodium(II) tetrakistrifluoroacetylate with 25 ligands containing oxygen atoms: alcohols, ethers, ketones, aldehydes, carboxylic acids and esters in chloroform solution have been investigated by 1H and 13C NMR spectroscopy and Density Functional Theory (DFT) methods. Investigated ligands form 1:1 adducts in our experimental conditions, with stability constants in the order of several hundred mol-1. The exchange of ligands in solution is fast on the NMR spectroscopic timescale. The decrease of longitudinal relaxation times T1 in ligands in the presence of rhodium salt has been tested as the means of determination of the complexation site in ligands. The influence of complexation on chemical shifts in ligands was evaluated by a parameter complexation shift Δδ (Δδ = δadd - δlig). These parameters were positive (>0 ppm) and did not exceed 1 ppm for 1H NMR; and varied from ca. -5 to +15 ppm in the case of 13C NMR. The calculation by DFT methods using the B3LYP functional (structure optimization, electronic energy) and B3PW91 functional (shielding), and combinations of the (6-31G(2d), 6-311G++(2d,p), and LANL2DZ basis sets, followed by scaling procedures reproduced satisfactorily 1H and 13C chemical shifts and, with some limitations, allowed to estimate Δδ parameters.