Science.gov

Sample records for 1h nmr 31p

  1. Probing phosphorylation by non-mammalian isoprenoid biosynthetic enzymes using (1)H-(31)P-(31)P correlation NMR spectroscopy.

    PubMed

    Majumdar, Ananya; Shah, Meha H; Bitok, J Kipchirchir; Hassis-LeBeau, Maria E; Freel Meyers, Caren L

    2009-09-01

    The biogenesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) is accomplished by the methylerythritol phosphate (MEP) pathway in plants, bacteria and parasites, making it a potential target for the development of anti-infective agents and herbicides. The biosynthetic enzymes comprising this pathway catalyze intriguing chemical transformations on diphosphate scaffolds, offering an opportunity to generate novel analogs in this synthetically challenging compound class. Such a biosynthetic approach to generating new diphosphate analogs may involve transformation through discrete diphosphate species, presenting unique challenges in structure determination and characterization of unnatural enzyme-generated diphosphate products produced in tandem. We have developed (1)H-(31)P-(31)P correlation NMR spectroscopy techniques for the direct characterization of crude MEP pathway enzyme products at low concentrations (200 microM to 5 mM) on a room temperature (non-cryogenic) NMR probe. Coupling the 100% natural abundance of the (31)P nucleus with the high intrinsic sensitivity of proton NMR, (1)H-(31)P-(31)P correlation spectroscopy is particularly useful for characterization of unnatural diphosphate enzyme products in the MEP pathway. As proof of principle, we demonstrate the rapid characterization of natural enzyme products of the enzymes IspD, E and F in tandem enzyme incubations. In addition, we have characterized several unnatural enzyme products using this technique, including new products of cytidyltransferase IspD bearing erythritol, glycerol and ribose components. The results of this study indicate that IspD may be a useful biocatalyst and highlight (1)H-(31)P-(31)P correlation spectroscopy as a valuable tool for the characterization of other unnatural products in non-mammalian isoprenoid biosynthesis.

  2. Versatile 1H-31P-31P COSY 2D NMR Techniques for the Characterization of Polyphosphorylated Small Molecules

    PubMed Central

    Majumdar, Ananya; Sun, Yan; Shah, Meha; Freel Meyers, Caren L.

    2010-01-01

    Di- and triphosphorylated small molecules represent key intermediates in a wide range of biological and chemical processes. The importance of polyphosphorylated species in biology and medicine underscores the need to develop methods for the detection and characterization of this compound class. We have reported two-dimensional HPP-COSY spectroscopy techniques to identify diphosphate-containing metabolic intermediates at sub-millimolar concentrations in the methylerythritol phosphate (MEP) isoprenoid biosynthetic pathway.1 In this work, we explore the scope of HPP-COSY based techniques to characterize a diverse group of small organic molecules bearing di- and tri-phosphorylated moieties. These include molecules containing P–O–P and P–C–P connectivities, multivalent P(III)–O–P(V) phosphorus nuclei with widely separated chemical shifts, as well as virtually overlapping 31P resonances exhibiting strong coupling effects. We also demonstrate the utility of these experiments to rapidly distinguish between mono- and diphosphates. A detailed protocol for optimizing these experiments to achieve best performance is presented. PMID:20408590

  3. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  4. 31P{1H}NMR and carbonyl force constants of unsymmetrical bidentate phosphine complexes of group (VI) metal carbonyls

    NASA Astrophysics Data System (ADS)

    Jesu Raj, Joe Gerald; Pathak, Devendra Deo; Kapoor, Pramesh N.

    2015-05-01

    In our present work we report synthesis of an unsymmetrical diphos ligand, 1-diphenylphosphino-2-di-m-tolylphosphinoethane and its coordinate complexes with group (VI) metal carbonyls such as Cr(CO)6 Mo(CO)6 and W(CO)6. The synthesized ligand and its complexes have been completely characterized by elemental analyses, FTIR, 1HNMR, 31P{1H}NMR and FAB mass spectrometry methods. Special emphasis has been given to calculations of carbonyl force constants. Based on the spectroscopic evidences it has been confirmed that these metal carbonyl complexes with the ditertiary phosphine ligand showed cis geometry in their molecular structure.

  5. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  6. Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 tesla

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Kopp, S. J.; Dadok, J.; Minshew, N. J.; Feliksik, J. M.; Glonek, T.; Cohen, M. M.

    A prominent 31P NMR resonance at 3.84 ppm in mammalian brain has been identified as ethanolamine phosphate. The identification was based on 1H and 31P NMR findings (including pH titrations) at 4.7 and 14.1 T, as well as thin-layer chromatography studies. We previously incorrectly assigned the 3.84 ppm resonance to ribose-5-phosphate. The incorrect assignment occurred because the two compounds have very similar 31P chemical shifts, and because we did not carefully consider the effects of counter ions and ionic strengths when interpreting the 31P chemical shifts. In separate preliminary studies we have demonstrated ethanolamine phosphate to be high in immature developing brain and in the degenerating brain of Alzheimer's and Huntington's disease patients. Ethanolamine phosphate may therefore serve as a sensitive marker of membrane phospholipid turnover for both in vitro and in vivo31P NMR studies.

  7. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    PubMed Central

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-01-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained. PMID:7948693

  8. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  9. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    PubMed

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  10. Geographical characterization of greek virgin olive oils (cv. Koroneiki) using 1H and 31P NMR fingerprinting with canonical discriminant analysis and classification binary trees.

    PubMed

    Petrakis, Panos V; Agiomyrgianaki, Alexia; Christophoridou, Stella; Spyros, Apostolos; Dais, Photis

    2008-05-14

    This work deals with the prediction of the geographical origin of monovarietal virgin olive oil (cv. Koroneiki) samples from three regions of southern Greece, namely, Peloponnesus, Crete, and Zakynthos, and collected in five harvesting years (2001-2006). All samples were chemically analyzed by means of 1H and 31P NMR spectroscopy and characterized according to their content in fatty acids, phenolics, diacylglycerols, total free sterols, free acidity, and iodine number. Biostatistical analysis showed that the fruiting pattern of the olive tree complicates the geographical separation of oil samples and the selection of significant chemical compounds. In this way the inclusion of the harvesting year improved the classification of samples, but increased the dimensionality of the data. Discriminant analysis showed that the geographical prediction at the level of three regions is very high (87%) and becomes (74%) when we pass to the thinner level of six sites (Chania, Sitia, and Heraklion in Crete; Lakonia and Messinia in Peloponnesus; Zakynthos). The use of classification and binary trees made possible the construction of a geographical prediction algorithm for unknown samples in a self-improvement fashion, which can be readily extended to other varieties and areas.

  11. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  12. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils.

    PubMed

    Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis

    2003-09-10

    A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).

  13. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by (1)H-, (2)H-, (31)P-NMR and Electron Spin Resonance.

    PubMed

    Debouzy, Jean-Claude; Crouzier, David; Bourbon, Fréderic; Lahiani-Skiba, Malika; Skiba, Mohamed

    2014-01-01

    The properties of an amorphous solid dispersion of cyclosporine A (ASD) prepared with the copolymer alpha cyclodextrin (POLYA) and cyclosporine A (CYSP) were investigated by (1)H-NMR in solution and its membrane interactions were studied by (1)H-NMR in small unilamellar vesicles and by (31)P (2)H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine) in comparison with those of POLYA and CYSP alone. (1)H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level ((31)P). Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.

  14. Direct and simultaneous quantification of ATP, ADP and AMP by (1)H and (31)P Nuclear Magnetic Resonance spectroscopy.

    PubMed

    Lian, Yakun; Jiang, Hua; Feng, Jinzhou; Wang, Xiaoyan; Hou, Xiandeng; Deng, Pengchi

    2016-04-01

    ATP, ADP and AMP are energy substances with vital biological significance. Based on the structural differences, a simple, rapid and comprehensive method has been established by (1)H and (31)P Nuclear Magnetic Resonance ((1)H-NMR and (31)P-NMR) spectroscopies. Sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 (TMSP) and anhydrous disodium hydrogen phosphate (Na2HPO4) were selected as internal standards for (1)H-NMR and (31)P-NMR, respectively. Those three compounds and corresponding internal standards can be easily distinguished both by (1)H-NMR and (31)P-NMR. In addition, they all have perfect linearity in a certain range: 0.1-100mM for (1)H-NMR and 1-75 mM for (31)P-NMR. To validate the precision of this method, mixed samples of different concentrations were measured. Recovery experiments were conducted in serum (91-113% by (1)H-NMR and 89-113% by (31)P-NMR).

  15. In situ preparation and fate of cis-4-hydroxycyclophosphamide and aldophosphamide: 1H and 31P NMR evidence for equilibration of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and its hydrate in aqueous solution.

    PubMed

    Borch, R F; Hoye, T R; Swanson, T A

    1984-04-01

    cis-4-Hydroxycyclophosphamide (2) and aldophosphamide (4) were generated in aqueous phosphate or cacodylate buffer by dimethyl sulfide reduction of cis-4-hydroperoxycyclophosphamide (8) and by sodium periodate cleavage of 3,4-dihydroxybutyl N,N-bis(2-chloroethyl)phosphorodiamidate (9), respectively; the reactions of 2 and 4 were examined by 1H and 31P NMR. Within 30-60 min (pH or pD 7.0, 25 degrees C) the same pseudoequilibrium mixture was established in both reactions, with cis- and trans-4-hydroxycyclophosphamide (2 and 3), aldophosphamide (4), and its hydrate (5) present in the approximate ratio of 4:2:0.3:1. Structures of the intermediates were assigned unambiguously based upon analysis of the chemical shifts and coupling constants in the proton spectra determined in D2O buffers, and the 31P assignments followed by correlation of component ratios at equilibrium. Free energy differences of 0.4, 0.4, and 0.7 kcal/mol at 25 degrees C were estimated between 2, 3, 5, and 4, respectively, with 2 being the most stable. The aldehyde 4 reacted most rapidly with water to give hydrate 5; cyclization of 4 to 3 occurred faster than to 2, and the rate of cyclization to 2 was comparable to that for elimination to 6. Compound 5 is formed much faster than 3 from the diol cleavage, but 5 and 3 are produced at comparable rates from 2, suggesting that conversion of 2 to 3 can proceed by a mechanism other than ring opening. The rate of equilibration appears to be independent of buffer structure, indicating that bifunctional catalysis is not important in the ring-opening reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  17. 31P NMR spectroscopy of in vivo tumors

    NASA Astrophysics Data System (ADS)

    Ng, T. C.; Evanochko, W. T.; Hiramoto, R. N.; Ghanta, V. K.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    A probe, suitable for any wide-bore NMR spectrometer, was constructed for monitoring high-resolution spectra of in vivo subcutaneously implanted tumors in mice. Preliminary studies of a variety of murine tumors (MOPC 104E myeloma, Dunn osteosarcoma, colon-26, ovarian M5, and mammary adenocarcinoma as well as human colon, mammary, and lung tumors in athymic mice) indicate that the 31P NMR spectrum is a sensitive monitor of progressive metabolic changes that occur during untreated tumor growth and an early indicator of tumor response to chemotherapy, hyperthermia, and X radiation. Response to each of these therapeutic modalities is accompanied by distinctly different spectral changes.

  18. Evaluation of a New 1H/31P Dual-Tuned Birdcage Coil for 31P Spectroscopy

    PubMed Central

    Potter, WM; Wang, L; McCully, KK; Zhao, Q

    2013-01-01

    We introduce a new dual-tuned Hydrogen/Phosphorus (1H/31P) birdcage coil, referred to as split birdcage coil, and evaluate its performance using both simulations and magnetic resonance (MR) experiments on a 3 T MR scanner. The proposed coil simplifies the practical matters of tuning and matching, which makes the coil easily reproducible. Simulations were run with the Finite Difference in Time Domain (FDTD) method to evaluate the sensitivity and homogeneity of the magnetic field generated by the proposed 1H coils. Following simulations, MR experiments were conducted using both a phantom and human thigh to compare the proposed design with a currently available commercial dual-tuned flexible surface coil, referred to as flex surface coil, for signal to noise ratio (SNR) as well as homogeneity for the 31P coil. At regions deep within the human thigh, the split birdcage coil was able to acquire spectroscopic signal with a higher average SNR than the flex surface coil. For all regions except those close to the flex surface coil, the split birdcage coil matched or exceeded the performance of the flex surface coil. PMID:24039555

  19. Exploring new Routes for Identifying Phosphorus Species in Terrestrial and Aquatic Ecosystems with 31P NMR

    NASA Astrophysics Data System (ADS)

    Vestergren, Johan; Persson, Per; Sundman, Annelie; Ilstedt, Ulrik; Giesler, Reiner; Schleucher, Jürgen; Gröbner, Gerhard

    2014-05-01

    Phosphorus (P) is the primary growth-limiting nutrient in some of the world's biomes. Rock phosphate is a non-renewable resource and the major source of agricultural fertilizers. Predictions of P consumption indicate that rock phosphate mining may peak within 35 years, with severe impacts on worldwide food production1. Organic P compounds constitute a major fraction of soil P, but little is known about the dynamics and bioavailability of organic P species. Our aim is to develop new liquid and solid state 31P-NMR (nuclear magnetic resonance) techniques to identify P-species in water and soils; information required for correlating P speciation with plant and soil processes2, and eventually to improve P use. Soil organic P is frequently extracted using NaOH/EDTA, followed by characterization of the extract by solution 31P-NMR. However, the obtained NMR spectra usually have poor resolution due to line broadening caused by the presence of paramagnetic ions. Therefore, we successfully developed an approach to avoid paramagnetic line broadening by precipitation of metal sulfides. Sulfide precipitation dramatically reduces NMR line widths for soil extracts, without affecting P-composition. The resulting highly improved resolution allowed us to apply for the first time 2D 1H,31P-NMR methods to identify different P monoesters in spectral regions which are extremely crowded in 1D NMR spectra.3 By exploiting 2D 1H-31P NMR spectra of soil extracts we were able to unambiguously identify individual organic P species by combining 31P and 1H chemical shifts and coupling constants. This approach is even suitable for a structural characterization of unknown P-components and for tracing degradation pathways between diesters and monoesters3,4.Currently we apply our approach on boreal4 and tropical soils with focus on Burkina Faso. In addition we also monitor P-species in aqueos ecosystems. For this purpose stream water from the Krycklan catchment in northern Sweden5 has been used to

  20. Lateral diffusion of bilayer lipids measured via (31)P CODEX NMR.

    PubMed

    Saleem, Qasim; Lai, Angel; Morales, Hannah H; Macdonald, Peter M

    2012-10-01

    We have employed (31)P CODEX (centre-band-only-detection-of-exchange) NMR to measure lateral diffusion coefficients of phospholipids in unilamellar lipid bilayer vesicles consisting of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), alone or in mixtures with 30 mol% 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) or cholesterol (CHOL). The lateral diffusion coefficients of POPC and POPG were extracted from experimental CODEX signal decays as a function of increasing mixing time, after accounting for the vesicle's size and size distribution, as determined via dynamic light scattering, and the viscosity of the vesicular suspension, as determined via (1)H pulsed field gradient NMR. Lateral diffusion coefficients for POPC and POPG determined in this fashion fell in the range 1.0-3.2 × 10(-12) m(2) s(-1) at 10 °C, depending on the vesicular composition, in good agreement with accepted values. Thus, two advantages of (31)P CODEX NMR for phospholipid lateral diffusion measurements are demonstrated: no labelling of the molecule of interest is necessary, and multiple lateral diffusion coefficients can be measured simultaneously. It is expected that this approach will prove particularly useful in diagnosing heterogeneities in lateral diffusion behaviours, such as might be expected for specific lipid-lipid or lipid-protein interactions, and thermotropic or electrostatically induced phase inhomogeneities.

  1. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  2. Tendencies of 31P chemical shifts changes in NMR spectra of nucleotide derivatives.

    PubMed Central

    Lebedev, A V; Rezvukhin, A I

    1984-01-01

    31P NMR chemical shifts of the selected mono- and oligonucleotide derivatives, including the compounds with P-N, P-C, P-S bonds and phosphite nucleotide analogues have been presented. The influence of substituents upon 31P chemical shifts has been discussed. The concrete examples of 31P chemical shifts data application in the field of nucleotide chemistry have been considered. PMID:6087290

  3. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  4. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  5. TLC and 31P-NMR analysis of low polarity phospholipids.

    PubMed

    Vyssotski, Mikhail; MacKenzie, Andrew; Scott, Dawn

    2009-04-01

    High-performance TLC and (31)P-NMR were assessed as methods of observing the presence of numerous low polarity phospholipids: bis-phosphatidic acid (BPA), semi-lyso bis-phosphatidic acid (SLBPA), N-acyl phosphatidylethanolamine (NAPE), N-(1,1-dimethyl-3-oxo-butyl)-phosphatidylethanolamine (diacetone adduct of PE, DOBPE), N-acetyl PE, phosphatidylmethanol (PM), phosphatidylethanol (PEt), phosphatidyl-n-propanol (PP), phosphatidyl-n-butanol (PB). Both techniques are non-discriminative and do not require the prior isolation of individual lipids. It appears that 2D TLC is superior to (31)P NMR in the analysis of low polarity phospholipids. All phosphatidylalcohols were well separated by 2D TLC. However, some compounds which can present difficulty in separation by 2D-TLC (e.g., SLBPA and NAPE; or DOBPE and N-acetyl PE) were easily distinguished using (31)P NMR so the methods are complimentary. A disadvantage of 2D TLC is that Rf values can vary with different brands and batches of TLC plates. The chemical shifts of (31)P NMR were less variable, and so a library of standards may not be necessary for peak identification. Another advantage of (31)P NMR is the ease of quantification of phospholipids. The applicability of the methods was tested on natural extracts of fish brain and cabbage stem.

  6. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    PubMed

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  7. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  8. [Optimizing the method for 31P-NMR analysis of organic phosphorus from wetland sediments].

    PubMed

    Lu, Jin; Wang, Hai-Wen; Hao, Hong; Gao, Bo; Jia, Jian-Li

    2013-11-01

    Solution 31P-Nuclear Magnetic Resonance (NMR) is an analysis technology which has been an effective means for the analysis of environmental organic phosphorus. However, the method is rarely applied in the study of wetlands so that the corresponding researches about wetland sediment sample preparation method also very deficient. The present study was aimed to find the most suitable sample preparation method for 31P-NMR analysis of the artificial wetland sediments, using different extractant (NaOH or 0.25 mol x L(-1) NaOH + 0.05 mol x L(-1) EDTA as main extractant, and 1M HCl as pre-extractant or not), sample to extractant ratio (1 : 8 or 1 : 10), centrifugation conditions and scans time and so on. The results showed that the best 31P-NMR spectrum could be obtained with freeze-ried, ground and sieved sediments, 1M HCl as pre-extractant for 16 h, NaOH + 0.05 mol x L(-1) EDTA as main extractant for 16 h, extraction ratio of 1 : 8, and low temperature and high-speed centrifugation (4 degrees C, 10 000 r x min(-1) for 30 min) for avoiding hydrolysis of certain components. Besides, choosing much longer NMR scan time, as 14-16 h (scans about 25 000 times), could get more complete spectral signals spectrum. And finally, four kinds of P-compounds (orthophosphate, orthophosphate monoesters, orthophosphate diesters and pyrophosphate) were detected in the NMR spectrum. But neither polyphosphate nor phosphonates was not found in all these experiments, which need further study. Compared with the traditional chemical analysis method, 31P-NMR method of sample preparation is relatively simple. Then it is less destructive with components distinguished completely. Using 31P-NMR technology, the cognition of wetland phosphorus cycle, especially organophosphate, will be expected to get new breakthrough.

  9. Chiral trimethylsilylated C2-symmetrical diamines as phosphorous derivatizing agents for the determination of the enantiomeric excess of chiral alcohols by 1H NMR

    PubMed Central

    Chauvin, Anne-Sophie; Alexakis, Alexandre

    2006-01-01

    The use of organophosphorus derivatising agents, prepared from C2 symmetric trimethylsilylated diamines, for the 1H NMR and 31P NMR determination of the enantiomeric composition of chiral alcohols is described. PMID:16566844

  10. Intermediate valence behavior of Yb2Ni12P7 studied by using 31P NMR

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Sugiura, K.; Ueda, K.; Mito, T.; Kohara, T.; Satoh, R.; Tsuchiya, K.; Nakano, T.; Takeda, N.

    2013-08-01

    The Yb-based heavy-fermion compound Yb2Ni12P7 with a hexagonal Zr2Fe12P7-type crystal structure was investigated by using the 31P nuclear magnetic resonance (NMR) technique. The complicated NMR line changes its shape gradually with decreasing temperature, implying the presence of some Knight shift components. The temperature dependences of the Knight shift and the nuclear spin-lattice relaxation rate 1/ T 1 suggest the delocalization of 4 f electrons.

  11. /sup 31/P-NMR differentiation between intracellular phosphate pools in Cosmarium (chlorophyta)

    SciTech Connect

    Elgavish, A.; Elgavish, G.A.

    1980-09-01

    /sup 31/P nuclear magnetic resonance (NMR) spectroscopy of intact Cosmarium sp. cells is presented as a suitable tool for the differentiation of intracellular accumulation pools of polyphosphates. The cold trichloroacetic acid (TCA) insoluble fraction is shown to contain most of the total cellular phosphate in the phosphate rich Cosmarium cells. Moreover, evidence from a /sup 31/P-NMR study and electron microscopic observations of cold TCA treated Cosmarium cells indicate that this fraction consists mostly of polyphosphates which seem to retain the native morphological structure observed in the untreated cells. The determination of orthophosphate in the hot water extract of Cosmarium cells did not measure the polyphosphate pools. Determination of total phosphorus content in the hot water extract rendered a value three times higher than the frequently used orthophosphate determination procedure. However, as revealed by the /sup 31/P-NMR spectra and the chemical analyses of the extract and of the treated cells, even total phosphorus in the extract measured only 30% of the total cellular phosphorus. /sup 31/P-NMR enabled the unequivocal chemical identification of the major phosphate compounds in the hot water extract (Surplus P) as orthophosphate and polyphosphates of about 10 phosphate units chainlength. More than 70% of the accumulation pool of polyphosphates was still in the cells after extraction. However, the electron microscopy study revealed that the native granular structure of polyphosphates had been destroyed by the hot water extraction procedure.

  12. Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...

  13. Evaluation of Phosphorus Characterization in Broiler Ileal Digesta, Manure, and Litter Samples: 31P-NMR vs. HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 31-Phosphorus Nuclear Magnetic Resosonance Spectroscopy (31P-NMR) to characterize phosphorus (P) in manures and litter has become prevalent in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with 31P-NMR compared t...

  14. CD and 31P NMR studies of tachykinin and MSH neuropeptides in SDS and DPC micelles

    NASA Astrophysics Data System (ADS)

    Schneider, Sydney C.; Brown, Taylor C.; Gonzalez, Javier D.; Levonyak, Nicholas S.; Rush, Lydia A.; Cremeens, Matthew E.

    2016-02-01

    Secondary structural characteristics of substance P (SP), neurokinin A (NKA), neurokinin B (NKB), α-melanocyte stimulating hormone peptide (α-MSH), γ1-MSH, γ2-MSH, and melittin were evaluated with circular dichroism in phosphite buffer, DPC micelles, and SDS micelles. CD spectral properties of γ1-MSH and γ2-MSH as well as 31P NMR of DPC micelles with all the peptides are reported for the first time. Although, a trend in the neuropeptide/micelle CD data appears to show increased α-helix content for the tachykinin peptides (SP, NKA, NKB) and increased β-sheet content for the MSH peptides (α-MSH, γ1-MSH, γ2-MSH) with increasing peptide charge, the lack of perturbed 31P NMR signals for all neuropeptides could suggest that the reported antimicrobial activity of SP and α-MSH might not be related to a membrane disruption mode of action.

  15. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process.

  16. In-depth investigation on quantitative characterization of pyrolysis oil by 31P NMR

    DOE PAGES

    Ben, Haoxi; Ferrell, III, Jack R.

    2016-01-29

    The characterization of different heteroatom functional groups by employing 31P NMR has been developed for almost 30 years. In this study, an in-depth investigation of this commonly used method has been accomplished for the analysis of pyrolysis oil. Several commonly used internal standards for 31P NMR have been examined by in situ monitoring. The results indicated that endo-N-hydroxy-5-norbornene-2,3-dicarboximide (NHND) is not stable after a long period of storage or experiment (>12 hours), but both cyclohexanol and triphenylphosphine oxide (TPPO) can be used as internal standards if a long experiment or storage is required. The pyrolysis oil has also been investigatedmore » by both short time (16 hours) in situ monitoring and long time (14 days) ex situ monitoring. The results showed that aliphatic OH, carboxylic acids and water contents are not very stable after 2 hours, and thus a short time of preparation, storage, and experiment need to be considered to ensure a precise quantitative measurement. The decomposition products are still unclear, but some preliminary investigations for different acids, (e.g. formic acid) have been accomplished. The results indicated that the aromatic carboxylic acids (benzoic acid and vanillic acid) are more stable than formic acid and acetic acid. Interestingly, the formic acid will even decompose to some other compounds at the very beginning of the in situ monitoring test. Further characterization found that water is one of the major products for the decomposition of formic acid in the 31P NMR solution. Finally, as far as we know, this is the first report on such time-dependent changes when using 31P NMR to analyze the pyrolysis oil, and these results show that proper application of this method is essential to achieve reliable quantitative data.« less

  17. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  18. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  19. Wheat germ 5S ribosomal RNA common arm fragment conformations observed by sup 1 H and sup 31 P nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wu, Jiejun; Marshall, A.G. )

    1990-02-20

    The nonexchangeable protons of the common arm fragment of wheat germ (Triticum aestivum) ribosomal 5S RNA have been observed by means of high-resolution 500-MHz {sup 1}H NMR spectroscopy in D{sub 2}O solution. Although NMR studies on the exchangeable protons support the presence of two distinct solution structures of the common arm fragment (and of the same base-paired segment in intact 5S rRNA), only a single conformation is manifested in the {sup 1}H NMR behavior of all of the H6 and H5 pyrimidine and most of the H8/H2 purine protons under the same salt conditions. The nonexchangeable protons near the base-paired helix have been assigned by a sequential strategy. Conformational features such as the presence of a cytidine-uridine (C{center dot}U) pair at the loop-helix junction and base stacking into the hairpin loop are evaluated from nuclear Overhauser enhancement spectroscopy (NOESY) data. Double-quantum filtered correlation spectroscopy (DQF-COSY) experiments show that most of the 26 riboses are in the C3{prime}-endo conformation. Finally, backbone conformational changes induced by Mg{sup 2+} and heating have been monitored by {sup 31}P NMR spectroscopy. The results show that the common arm RNA segment can assume two conformations which produce distinguishably different NMR environments at the base-pair hydrogen-bond imino protons but not at nonexchangeable base or ribose proton or backbone phosphate sites.

  20. Estimation of the specific surface area of apatites in human mineralized tissues using 31P MAS NMR.

    PubMed

    Kolmas, Joanna; Slósarczyk, Anna; Wojtowicz, Andrzej; Kolodziejski, Waclaw

    2007-10-01

    Specific surface areas of apatites in whole human mineralized tissues were estimated from (31)P MAS NMR linewidths: 77 m(2)g(-1) for enamel and 94 m(2)g(-1) for dentin, dental cementum and cortical bone.

  1. Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by (31)P NMR spectroscopy.

    PubMed

    Elsinghorst, Paul W; Worek, Franz; Koller, Marianne

    2015-03-04

    Intoxication by organophosphorus compounds, especially by pesticides, poses a considerable risk to the affected individual. Countermeasures involve both medical intervention by means of antidotes as well as external decontamination to reduce the risk of dermal absorption. One of the few decontamination options available is Reactive Skin Decontamination Lotion (RSDL), which was originally developed for military use. Here, we present a (31)P NMR spectroscopy based methodology to evaluate the detoxification efficacy of RSDL with respect to a series of organophosphorus pesticides and nerve agents. Kinetic analysis of the obtained NMR data provided degradation half-lives proving that RSDL is also reasonably effective against organophosphorus pesticides. Unexpected observations of different RSDL degradation patterns are presented in view of its reported oximate-catalyzed mechanism of action.

  2. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  3. Evaluation of phosphorus characterization in broiler ileal digesta, manure, and litter samples: (31)P-NMR vs. HPLC.

    PubMed

    Leytem, A B; Kwanyuen, P; Plumstead, P W; Maguire, R O; Brake, J

    2008-01-01

    Using 31-phosphorus nuclear magnetic resonance spectroscopy ((31)P-NMR) to characterize phosphorus (P) in animal manures and litter has become a popular technique in the area of nutrient management. To date, there has been no published work evaluating P quantification in manure/litter samples with (31)P-NMR compared to other accepted methods such as high performance liquid chromatography (HPLC). To evaluate the use of (31)P-NMR to quantify myo-inositol hexakisphosphate (phytate) in ileal digesta, manure, and litter from broilers, we compared results obtained from both (31)P-NMR and a more traditional HPLC method. The quantification of phytate in all samples was very consistent between the two methods, with linear regressions having slopes ranging from 0.94 to 1.07 and r(2) values of 0.84 to 0.98. We compared the concentration of total monoester P determined with (31)P-NMR with the total inositol P content determined with HPLC and found a strong linear relationship between the two measurements having slopes ranging from 0.91 to 1.08 and r(2) values of 0.73 to 0.95. This suggests that (31)P-NMR is a very reliable method for quantifying P compounds in manure/litter samples.

  4. 39K, 23Na, and 31P NMR Studies of Ion Transport in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ogino, T.; den Hollander, J. A.; Shulman, R. G.

    1983-09-01

    The relationship between efflux and influx of K+, Na+, and intracellular pH (pHin) in yeast cells upon energizing by oxygenation was studied by using the noninvasive technique of 39K, 23Na, and 31P NMR spectroscopy. By introducing an anionic paramagnetic shift reagent, Dy3+(P3O105-)2, into the medium, NMR signals of intra- and extracellular K+ and Na+ could be resolved, enabling us to study ion transport processes by NMR. Measurements showed that 40% of the intracellular K+ and Na+ in yeast cells contributed to the NMR intensities. By applying this correction factor, the intracellular ion concentrations were determined to be 130-170 mM K+ and 2.5 mM Na+ for fresh yeast cells. With the aid of a home-built solenoidal coil probe for 39K and a double-tuned probe for 23Na and 31P, we could follow time courses of K+ and Na+ transport and of pHin with a time resolution of 1 min. It was shown that H+ extrusion is correlated with K+ uptake and not with Na+ uptake upon energizing yeast cells by oxygenation. When the cells were deenergized after the aerobic period, K+ efflux, H+ influx, and Na+ influx were calculated to be 1.6, 1.5, and 0.15 μ mol/min per ml of cell water, respectively. Therefore, under the present conditions, K+ efflux is balanced by exchange for H+ with an approximate stoichiometry of 1:1.

  5. 13C and 31P NMR for the diagnosis of muscular phosphorylase-kinase deficiency

    NASA Astrophysics Data System (ADS)

    Jehenson, P.; Duboc, D.; Laforet, P.; Eymard, B.; Lombès, A.; Fardeau, M.; Brunet, P.; Syrota, A.

    1998-02-01

    To further develop and specify the range of medical applications of in vivo NMR spectroscopy for the study of myopathies, it is ncessary to study the largest number of well characterized cases. We here report on the 31P and 13C NMR study of a purely muscular form of phosphorylase-kinase (PK) deficiency. Abnormalities were observed that agree with and increase our pathophysiological knowledge, in particular on the activation of phosphorylase and PK. Also, the abnormalities are different from those found in other clinically similar metabolic myopathies and could be used for the differential diagnosis. Afin de continuer à développer et préciser les applications médicales de la spectroscopie RMN in vivo, il faut étudier le plus grand nombre possible de cas bien caractérisés. Nous avons étudié ici une forme purement musculaire de déficit en phosphorylase-kinase (PK) par RMN du phosphore 31 et du carbone 13. Les altérations observées sont en accord avec et augmentent nos connaissances physiopathologiques, par exemple concernant l'activation de la phosphorylase et PK. Par ailleurs, la combinaison d'altérations observées en 31P et 13C est différente de celle retrouvée dans d'autres myopathies métaboliques cliniquement semblables et pourrait être utilisée pour le diagnostic différentiel.

  6. Phospholipid composition of plasma and erythrocyte membranes in animal species by 31P NMR.

    PubMed

    Ferlazzo, Alida Maria; Bruschetta, Giuseppe; Di Pietro, Patrizia; Medica, Pietro; Notti, Anna; Rotondo, Enrico

    2011-12-01

    The aim of this study was to provide basal values of phospholipid (PL) composition in different animal species by 31P NMR analysis using detergents. This fast and accurate method allowed a quantitative analysis of PLs without any previous separation. Plasma and erythrocyte membrane PLs were investigated in mammals (pig, cow, horse). Moreover, for the first time, the composition of plasma PLs in avian (chicken and ostrich) was performed by 31P NMR. Significant qualitative and quantitative interspecies differences in plasma PL levels were found. Phosphatidilcholine (PC) and sphingomyelin (SPH) levels were significantly higher (P < 0.001) in chicken plasma than all the other species tested. In erythrocytes, cow PC and phosphatidylcholine diarachidoyl were significantly lower (P < 0.001) than for pigs and horses, whereas pig PC presented intermediate values among cows and horses. Inorganic phosphate and 2,3-diphosphoglycerate levels were also significantly different between the species under investigation. The [SPH/total PLs] molar ratios in erythrocytes confirmed interspecies differences in phospholipid composition while the PC/SPH molar ratios could be related to a distinct erythrocyte flexibility and aggregability. Diet and nutrition may contribute primarily to the interspecies differences in plasma PL amounts detected. Significant differences between chicken plasma PC and SPH levels and those of the other animal species could be ascribed to a fat metabolism specific to egg production.

  7. Synthesis of prostanoids; enantiomeric purity of alcohols by a /sup 31/P NMR technique

    SciTech Connect

    Penning, T.D.

    1985-01-01

    The enone, 2,2-diemthyl-3a..beta.., 6a..beta..-dihydro-4H-cyclopenta-1,3-dioxol-4-one, has been synthesized in six steps from cyclopentadiene, resolved using sulfoximine chemistry, and converted into (-)-prostaglandin E/sub 2/ methyl ester in three steps. Introduction of the optically pure omega side-chain using a conjugate addition of a stabilized organocopper reagent, followed by direct alkylation of the enolate with the ..cap alpha.. side-chain allylic iodide in the presence of hexamethylphosphoramide, afforded a trans, vicinally disubstituted cyclopentanone. Deprotection of the C-15 alcohol, followed by aluminum amalgam reduction of the C-10/oxygen bond, provided (-)-PGE/sub 2/ methyl ester in 47% overall yield from the enone. In an extension of previously described work, 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide, prepared from l-ephedrine and thiophosphoryl chloride, was used to determine the enantiomeric excess of chiral alcohols in conjunction with /sup 31/P NMR. Chiral primary and secondary alcohols added quantitatively to the phospholidine to give diastereomers which could be analyzed by /sup 31/P NMR and HPLC. A number of other phosphorus heterocycles were also explored as potential chiral derivatizing reagents.

  8. Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head.

    PubMed

    Murphy-Boesch, J; Srinivasan, R; Carvajal, L; Brown, T R

    1994-02-01

    The four-ring birdcage resonator, a new class of dual-tuned birdcage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  9. Two Configurations of the Four-Ring Birdcage Coil for 1H Imaging and 1H-Decoupled 31P Spectroscopy of the Human Head

    NASA Astrophysics Data System (ADS)

    Murphyboesch, J.; Srinivasan, R.; Carvajal, L.; Brown, T. R.

    The four-ring birdcage resonator, a new class of dual-tuned birdeage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  10. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  11. 31P-NMR study of resting in vitro rat diaphragm exposed to hypercapnia.

    PubMed

    Fitzgerald, R S; Howell, S; Jacobus, W E

    1988-11-01

    We have reported previously that, when exposed to hypercapnia of various intensities, the diaphragm reduces its force of twitch and tetanic contractions in the in vitro rat preparation as well as in the in vivo dog preparation. The experiments reported here with 31P nuclear magnetic resonance (31P-NMR) spectroscopy attempt to examine cellular mechanisms that might be responsible for this deterioration in mechanical performance. Specifically they describe certain characteristics of this preparation and cautions needed to study the resting in vitro rat diaphragm with such techniques. Second, they report the response of intracellular pH (pHi), phosphocreatine (PCr), ATP, and inorganic phosphate (Pi) in the resting in vitro rat diaphragm exposed to long-term normocapnia or to long-term hypercapnia. The results show that 1) to maintain a viable preparation, it was necessary to keep the diaphragm extended to an area approximating that at functional residual capacity, 2) the diaphragm seemed quite capable of maintaining a constant pHi and constant contents of ATP and Pi during normocapnia, but there was a gradual decline in PCr, and 3) during hypercapnia there was a significant decrease in pHi, but the behavior of the phosphate metabolites was exactly as during normocapnia. The results suggest that the decrease in mechanical performance of the diaphragm is probably not due to a decrease in the availability of the high-energy phosphates, although they do not completely exclude this possibility or possibilities related to regional compartmentation.

  12. Degradation of black phosphorus: a real-time 31P NMR study

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Yang, Bingchao; Wan, Bensong; Xi, Xuekui; Zeng, Zhongming; Liu, Enke; Wu, Guangheng; Liu, Zhongyuan; Wang, Wenhong

    2016-09-01

    In this work, degradation behaviors and mechanisms of black phosphorus (BP) crystals in air under ambient conditions were investigated by nuclear magnetic resonance spectroscopy. It has been found that the 31P NMR line intensity for BP decreases exponentially during aging even at the very first several hours, suggesting the origin of the degradation of transport properties. In addition to phosphoric acid, new phosphorous acid was also well resolved in the final aging products. Moreover, BP has been found to be stable in water without the presence of oxygen molecules. These findings are relevant for better understanding of degradation behaviors of BP upon aging and should be helpful for overcoming a barrier that might hamper progress toward applications of BP as a 2D material.

  13. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (/sup 31/P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log(phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow(flow), developed pressure(DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with /sup 31/P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using /sup 31/P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  14. Physiologic significance of the phosphorylation potential in isolated perfused rat hearts (31-P NMR)

    SciTech Connect

    Watters, T.; Wikman-Coffelt, J.; Wu, S.; Wendland, M.; James, T.; Sievers, R.; Botvinick, E.; Parmley, W.

    1986-03-05

    The authors assessed the metabolic and mechanical effects of changes in coronary perfusion pressure (CPP) and afterload (A) in isolated working apex-ejecting rat hearts perfused with Krebs-Henseleit solution containing an excess of O/sub 2/ and substrate. Log (phosphorylation potential) or log (ATP)/(ADP)x (Pi), designated (L), and log (PCR)/(Pi), designated (L*), were calculated from HPLC measurements after rapid freeze-clamping. Increasing CPP from 80-140 cm H/sub 2/O caused an increase in coronary flow (flow), developed pressure (DevP), O/sub 2/ consumption (VO/sub 2/), L, L*, and CO. L and L* were directly related to VO/sub 2/ and CO. Increasing A from 80-140 cm H/sub 2/O caused an increase in DevP and VO/sub 2/, but a decrease in L, L*, and CO. L and L* were inversely linearly related to VO/sub 2/ but were directly linearly related to CO. In both experiments, L and L* are directly related to CO, suggesting that determination of L* (which can be done with 31-P NMR spectroscopy) may be a useful non-invasive method for determining cardiac pump function curves. L and L* may be related to the Frank-Starling mechanism. In a separate experiment using 31-P NMR spectroscopy of isovolumic (left ventricular balloon) perfused rat hearts, increasing CPP caused a direct linear increase in flow, DevP, and L*, confirming the L* results reported above with CPP experiments using the rapid freeze-clamp technique.

  15. Modified Prony Method to Resolve and Quantify in Vivo31P NMR Spectra of Tumors

    NASA Astrophysics Data System (ADS)

    Barone, P.; Guidoni, L.; Ragona, R.; Viti, V.; Furman, E.; Degani, H.

    Prony's method, successfully used in processing NMR signals, performs poorly at low signal-to-noise ratios. To overcome this problem, a statistical approach has been adopted by using Prony's method as a sampling device from the distribution associated with the true spectrum. Specifically, Prony's method is applied for each regression order p and number of data points n, both considered in a suitable range, and the estimates of frequencies, amplitudes, and decay factors are pooled separately. A histogram of the pooled frequencies is computed and, looking at the histogram, a lower and an upper frequency bound for each line of interest is determined. All frequency estimates in each of the determined intervals as well as associated decay factors and amplitudes are considered to be independent normal variates. A mean value and a corresponding 95% confidence interval are computed for each parameter. 31P NMR signals from MCF7 human breast cancer cells, inoculated into athymic mice and which developed into tumors, have been processed with traditional methods and with this modified Prony's method. The main components of the phosphomonoester peak, namely those deriving from phosphorylcholine and phosphorylethanolamine, are always well resolved with this new approach and their relative amplitudes can be consequently evaluated. Peak intensities of these two signals show different behavior during treatment of tumors with the antiestrogenic drug tamoxifen. The results of this new approach are compared with those obtainable with traditional techniques.

  16. Effect of glyphosate on plant cell metabolism. 31P and 13C NMR studies.

    PubMed

    Gout, E; Bligny, R; Genix, P; Tissut, M; Douce, R

    1992-01-01

    The effect of glyphosate (N-phosphonomethyl glycine; the active ingredient of Roundup herbicide) on plant cells metabolism was analysed by 31P and 13C NMR using suspension-cultured sycamore (Acer pseudoplatanus L) cells. Cells were compressed in the NMR tube and perfused with an original arrangement enabling a tight control of the circulating nutrient medium. Addition of 1 mM glyphosate to the nutrient medium triggered the accumulation of shikimate (20-30 mumol g-1 cell wet weight within 50 h) and shikimate 3-phosphate (1-1.5 mumol g-1 cell wet weight within 50 h). From in vivo spectra it was demonstrated that these two compounds were accumulated in the cytoplasm where their concentrations reached potentially lethal levels. On the other hand, glyphosate present in the cytoplasmic compartment was extensively metabolized to yield aminomethylphosphonic acid which also accumulated in the cytoplasm. Finally, the results presented in this paper indicate that although the cell growth was stopped by glyphosate the cell respiration rates and the level of energy metabolism intermediates remained unchanged.

  17. {sup 31}P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions. Final technical report

    SciTech Connect

    Verkade, J.G.

    1991-08-31

    NMR reagents for the speciation and quantitation of labile-hydrogen functional groups and sulfur groups in coal ligands have been synthesized and evaluated. These reagents, which contain the NMR-active nuclei {sup 31}p, {sup 119}Sn or {sup 195}pt, were designed to possess improved chemical shift resolution over reagents reported in the literature. Our efforts were successful in the case of the new {sup 31}p and {sup 119}Sn reagents we developed, but the {sup 195}pt work on sulfur groups was only partially successful in as much as the grant came to a close and was not renewed. Our success with {sup 31}P and {sup 119}Sn NMR reagents came to the attention of Amoco and they have recently expressed interest in further supporting that work. A further measure of the success of our efforts can be seen in the nine publications supported by this grant which are cited in the reference list.

  18. Creatine and cyclocreatine treatment of human colon adenocarcinoma xenografts: 31P and 1H magnetic resonance spectroscopic studies

    PubMed Central

    Kristensen, C A; Askenasy, N; Jain, R K; Koretsky, A P

    1999-01-01

    Creatine (Cr) and cyclocreatine (cyCr) have been shown to inhibit the growth of a variety of human and murine tumours. The purpose of this study was to evaluate the anti-tumour effect of these molecules in relation to drug accumulation, energy metabolism, tumour water accumulation and toxicity. Nude mice carrying a human colon adenocarcinoma (LS174T) with a creatine kinase (CK) activity of 2.12 units mg−1 protein were fed Cr (2.5% or 5%) or cyCr (0.025%, 0.1% or 0.5%) for 2 weeks and compared with controls fed standard diet. Cr concentrations of 2.5% and 5% significantly inhibited tumour growth, as did 0.1% and 0.5% cyCr. In vivo 31P magnetic resonance spectroscopy (MRS) after 2 weeks of treatment showed an increase in [phosphocreatine (PCr)+phosphocyclocreatine (PcyCr)]/nucleoside triphosphate (NTP) with increasing concentrations of dietary Cr and cyCr, without changes in absolute NTP contents. The antiproliferative effect of the substrates of CK was not related to energy deficiency but was associated with acidosis. Intratumoral substrate concentrations (measured by 1H-MRS) of 4.8 μmol g−1 wet weight Cr (mice fed 2.5% Cr) and 6.2 μmol g−1 cyCr (mice fed 0.1% cyCr) induced a similar decrease in growth rate, indicating that both substrates were equally potent in tumour growth inhibition. The best correlant of growth inhibition was the total Cr or (cyCr+Cr) concentrations in the tissue. In vivo, these agents did not induce excessive water accumulation and had no systemic effects on the mice (weight loss, hypoglycaemia) that may have caused growth inhibition. © 1999 Cancer Research Campaign PMID:9888469

  19. Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI

    PubMed Central

    Song, Hee Kwon; Seifert, Alan C.; Li, Cheng; Wehrli, Felix W.

    2017-01-01

    Purpose To develop and evaluate an integrated imaging protocol for bone water and phosphorus quantification in vivo by solid-state 1H and 31P MRI. Materials and methods All studies were HIPAA-compliant and were performed with institutional review board approval and written informed consent. Proton (1H) ultra-short echo-time (UTE) and phosphorus (31P) zero echo-time (ZTE) sequences were designed and implemented on a 3 T clinical MR scanner to quantify bone water and mineral in vivo. The left tibia of ten healthy subjects (including both genders, 49±15 y/o) was examined with a custom-built 1H/31P dual-frequency extremity RF coil. Total bone water (TW), water bound to the collagen matrix (BW) and bone 31P were quantified from MR images with respect to reference samples of known 1H or 31P concentration, and pore water (PW) was subsequently determined from TW and BW. Porosity index (PI) was calculated as the ratio between UTE images acquired at two echo times. MRI parameters were compared with bone density measures obtained by high-resolution peripheral quantitative CT (HR-pQCT). Results The total scan time for the bone water and 31P quantification protocol was about 50 minutes. Average TW, BW, PW and 31P concentrations were 13.99±1.26, 10.39±0.80, 3.34±1.41 mol/L and 7.06±1.53 mol/L for the studied cohort, respectively, in good agreement with previous results conducted ex vivo. Average intra-subject coefficients of variation were 3.47%, 2.60% and 7.50% for TW, BW and PW and 5.60% for 31P. Negative correlations were observed between PW and vBMD (p<0.05) as well as between PI and 31P (p<0.05), while bone mineral content (BMC) estimated from 31P MRI and HR-pQCT were strongly positively correlated (p<0.0001). Conclusion This work demonstrates the feasibility of quantifying bone water and mineral phosphorus in human subjects in a single MRI session with a clinically practical imaging protocol. PMID:28296979

  20. In vivo absolute quantification for mouse muscle metabolites using an inductively coupled synthetic signal injection method and newly developed 1H/31P dual tuned probe

    PubMed Central

    Lee, Donghoon; Marro, Kenneth; Mathis, Mark; Shankland, Eric; Hayes, Cecil

    2013-01-01

    Purpose To obtain robust estimates of 31P metabolite content in mouse skeletal muscles using our recently developed MR absolute quantification method and a custom-built 1H/31P dual tuned radiofrequency (RF) coil optimized for mouse leg. Materials and Methods We designed and fabricated a probe consisting of two dual tuned 1H/31P solenoid coils: one leg was inserted to each solenoid. The mouse leg volume coil was incorporated with injector coils for MR absolute quantification. The absolute quantification method uses a synthetic reference signal injection approach and solves several challenges in MR absolute quantification including changes of coil loading and receiver gains. Results The 1H/31P dual tuned probe was composed of two separate solenoid coils, one for each leg, to increase coil filling factors and signal-to-noise ratio. Each solenoid was equipped with a second coil to allow injection of reference signals. 31P metabolite concentrations determined for normal mice were well within the expected range reported in the literature. Conclusion We developed an RF probe and an absolute quantification approach adapted for mouse skeletal muscle. PMID:24464912

  1. Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR spectroscopy study.

    PubMed

    Bechinger, Burkhard

    2005-06-15

    (31)P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in (31)P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid (31)P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type (31)P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.

  2. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  3. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  4. Simultaneous determination of phenolic compounds and triterpenic acids in oregano growing wild in Greece by 31P NMR spectroscopy.

    PubMed

    Agiomyrgianaki, Alexia; Dais, Photis

    2012-11-01

    (31)P nuclear magnetic resonance (NMR) spectroscopy was used to detect and quantify simultaneously a large number of phenolic compounds and the two triterpenic acids, ursolic acid and oleanolic acid, extracted from two oregano species Origanum onites and Origanum vulgare ssp. Hirtum using two different organic solvents ethanol and ethyl acetate. This analytical method is based on the derivatization of the hydroxyl and carboxyl groups of these compounds with the phosphorous reagent 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxa phospholane and the identification of the phosphitylated compounds on the basis of the (31)P chemical shifts. Unambiguous assignment of the (31)P NMR chemical shifts of the dihydroxy- and polyhydroxy-phenols in oregano species as well as those of the triterpenic acids was achieved upon comparison with the chemical shifts of model compounds assigned by using two-dimensional NMR techniques. Furthermore, the integration of the appropriate signals of the hydroxyl derivatives in the corresponding (31)P NMR spectra and the use of the phosphitylated cyclohexanol as an internal standard allowed the quantification of these compounds. The validity of this technique for quantitative measurements was thoroughly examined.

  5. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  6. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  7. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  8. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  9. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    PubMed

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm.

  10. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    PubMed Central

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-01-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43− ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO32− range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. PMID:24273344

  11. Crystallinity and compositional changes in carbonated apatites: Evidence from (31)P solid-state NMR, Raman, and AFM analysis.

    PubMed

    McElderry, John-David P; Zhu, Peizhi; Mroue, Kamal H; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H; Franceschi, Renny T; Holl, Mark M Banaszak; Tecklenburg, Mary M J; Ramamoorthy, Ayyalusamy; Morris, Michael D

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and (31)P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse (31)P NMR linewidth and inverse Raman PO4(3-) ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO3(2-) range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the (31)P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  12. 31P NMR study of erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency.

    PubMed Central

    Swanson, M S; Angle, C R; Stohs, S J; Wu, S T; Salhany, J M; Eliot, R S; Markin, R S

    1983-01-01

    The composition of phosphate metabolites and the intracellular pH in erythrocytes from a patient with hereditary pyrimidine-5'-nucleotidase deficiency were examined using 31P NMR spectroscopy. Several resonances were identified in spectra from intact cells and from extracts. The 2,3-bisphosphoglycerate line intensities were normal but the NTP resonances were about twice normal due to the presence of millimolar quantities of pyrimidine phosphates. Several intense resonances were also observed in the diphosphodiester region of the spectrum. One compound contributing to these lines has been identified as cytidine diphosphocholine. The resonances of NTPs were in a position indicating that the additional triphosphates were also bound by Mg2+. Direct measurement shows that there is a nearly proportional increase in total cell Mg2+ in the patient's cells, in agreement with the interpretation of the spectra. The intracellular pH was about 0.2 unit lower in the patient's erythrocytes. This lower pH is due to the elevation in intracellular fixed negative charges and the shift in permeable anions consequent to the Donnan equilibrium. We suggest that the lower intracellular pH may explain the lower oxygen affinity of these cells in the presence of otherwise normal 2,3-bisphosphoglycerate levels and the increased Mg2+ triphosphates level, because the Mg2+ form of NTPs is known not to alter the oxygen affinity of hemoglobin under physiologic conditions. Furthermore, the lower intracellular pH can also explain the abnormalities in glycolytic intermediates observed for these cells. PMID:6296865

  13. Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine

    SciTech Connect

    Shoubridge, E.A.; Radda, G.K.

    1987-05-01

    Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initial force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.

  14. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  15. 31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization

    PubMed Central

    Seifert, Alan C.; Wright, Alexander C.; Wehrli, Suzanne L.; Ong, Henry H.; Li, Cheng; Wehrli, Felix W.

    2013-01-01

    Purpose Recent work has shown that solid-state 1H and 31P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, 31P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. Methods In this work, 31P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2* (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5 – 11.7 T) and subsequently verified by 3-D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. Results 31P T2* was found to decrease from 220.3 ± 4.3 μs to 98.0 ± 1.4 μs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the 31P longitudinal relaxation rate is due to 1H-31P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for 31P MRI based mineralization density quantification. Conclusion Despite the steep decrease in the T2*/T1 ratio, SNR should increase with field strength as Bo0.4 for sample-dominated noise and as Bo1.1 for coil-dominated noise. This was confirmed by imaging experiments. PMID:23505120

  16. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    NASA Astrophysics Data System (ADS)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg‑1 and 2318 to 8395 mg kg‑1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  17. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    PubMed Central

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-01-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg−1 and 2318 to 8395 mg kg−1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes. PMID:27849040

  18. Distinguishing Bicontinuous Lipid Cubic Phases from Isotropic Membrane Morphologies Using 31P Solid-State NMR Spectroscopy

    PubMed Central

    Yang, Yu; Yao, Hongwei

    2015-01-01

    Nonlamellar lipid membranes are frequently induced by proteins that fuse, bend, and cut membranes. Understanding the mechanism of action of these proteins requires the elucidation of the membrane morphologies that they induce. While hexagonal phases and lamellar phases are readily identified by their characteristic solid-state NMR lineshapes, bicontinuous lipid cubic phases are more difficult to discern, since the static NMR spectra of cubic-phase lipids consist of an isotropic 31P or 2H peak, indistinguishable from the spectra of isotropic membrane morphologies such as micelles and small vesicles. To date, small-angle X-ray scattering is the only method to identify bicontinuous lipid cubic phases. To explore unique NMR signatures of lipid cubic phases, we first describe the orientation distribution of lipid molecules in cubic phases and simulate the static 31P chemical shift lineshapes of oriented cubic-phase membranes in the limit of slow lateral diffusion. We then show that 31P T2 relaxation times differ significantly between isotropic micelles and cubic-phase membranes: the latter exhibit two-orders-of magnitude shorter T2 relaxation times. These differences are explained by the different timescales of lipid lateral diffusion on the cubic-phase surface versus the timescales of micelle tumbling. Using this relaxation NMR approach, we investigated a DOPE membrane containing the transmembrane domain (TMD) of a viral fusion protein. The static 31P spectrum of DOPE shows an isotropic peak, whose T2 relaxation times correspond to that of a cubic phase. Thus, the viral fusion protein TMD induces negative Gaussian curvature, which is an intrinsic characteristic of cubic phases, to the DOPE membrane. This curvature induction has important implications to the mechanism of virus-cell fusion. This study establishes a simple NMR diagnostic probe of lipid cubic phases, which is expected to be useful for studying many protein-induced membrane remodeling phenomena in biology

  19. {sup 1}H and {sup 31}P nuclear magnetic resonance study of proton-irradiated KH{sub 2}PO{sub 4}

    SciTech Connect

    Kim, Se-Hun; Lee, Kyu Won; Oh, B. H.; Lee, Cheol Eui; Hong, K. S.

    2007-11-01

    We have studied the microscopic structure and dynamics in a proton-irradiated KH{sub 2}PO{sub 4} single crystal. Our {sup 1}H and {sup 31}P nuclear magnetic resonance measurements indicate that proton irradiation gives rise to a decrease in the local dipolar order of the rigid lattice protons and an increase in interstitial protons as well as structural distortion of the PO{sub 4} tetrahedra.

  20. Improvement of (31)P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples.

    PubMed

    Ding, Shiming; Xu, Di; Li, Bin; Fan, Chengxin; Zhang, Chaosheng

    2010-04-01

    Solution (31)P nuclear magnetic resonance (NMR) spectroscopy is currently the main method for the characterization of phosphorus (P) forms in environment samples. However, identification and quantification of P compounds may be hampered by poor resolution of spectra caused by paramagnetic Fe and Mn. In this study, a novel technique was developed to improve spectral resolution by removing paramagnetic Fe and Mn from alkaline extracts via 8-hydroxyquinoline (8-HOQ) precipitation. Batch experiments showed that both Fe and Mn were effectively removed by the precipitation at pH 9.0, with the removal efficiencies of 83-91% for Fe and 67-78% for Mn from the extracts of five different environmental samples, while little effect was found on concentration of total P. The (31)P NMR analysis of a model P solution showed that addition of 8-HOQ and its precipitation with metal ions did not alter P forms. Further analyses of the five extracts with (31)P NMR spectroscopy demonstrated that the 8-HOQ precipitation was an ideal method compared with the present postextraction techniques, such as bicarbonate dithionate (BD), EDTA and Chelex-100 treatments, by improving spectral resolution to a large extent with no detrimental effects on P forms.

  1. Analysis of monoglycerides, diglycerides, sterols, and free fatty acids in coconut (Cocos nucifera L.) oil by 31P NMR spectroscopy.

    PubMed

    Dayrit, Fabian M; Buenafe, Olivia Erin M; Chainani, Edward T; de Vera, Ian Mitchelle S

    2008-07-23

    Phosphorus-31 nuclear magnetic resonance spectroscopy ( (31)P NMR) was used to differentiate virgin coconut oil (VCO) from refined, bleached, deodorized coconut oil (RCO). Monoglycerides (MGs), diglycerides (DGs), sterols, and free fatty acids (FFAs) in VCO and RCO were converted into dioxaphospholane derivatives and analyzed by (31)P NMR. On the average, 1-MG was found to be higher in VCO (0.027%) than RCO (0.019%). 2-MG was not detected in any of the samples down to a detection limit of 0.014%. On the average, total DGs were lower in VCO (1.55%) than RCO (4.10%). When plotted in terms of the ratio [1,2-DG/total DGs] versus total DGs, VCO and RCO samples grouped separately. Total sterols were higher in VCO (0.096%) compared with RCO (0.032%), and the FFA content was 8 times higher in VCO than RCO (0.127% vs 0.015%). FFA determination by (31)P NMR and titration gave comparable results. Principal components analysis shows that the 1,2-DG, 1,3-DG, and FFAs are the most important parameters for differentiating VCO from RCO.

  2. Site-specificity of ethanol-induced dephosphorylation of rat hepatocyte keratins 8 and 18: A 31P NMR study.

    PubMed

    Eckert, B S; Yeagle, P L

    1996-01-01

    Chronic feeding of ethanol to rats results in disorganization of the keratin intermediate filament network within hepatocytes. Previous studies from this laboratory have shown that intermediate filament organization in cultured cells is related to the phosphorylation state of the proteins. Therefore, we have examined the phosphorylation state of hepatocyte keratins from control and ethanol-fed rats. Feeding ethanol to rats results in dephosphorylation of one site on keratin 8 and one site on keratin 18 at all time points beginning with 6 weeks of ethanol treatment. Dephosphorylation was detected by phosphate analysis and by two-dimensional electrophoresis in which a change in isoelectric point of keratins from ethanol-fed rats was observed. These observations indicate that dephosphorylation of keratins in ethanol-fed animals may be an early step in alcoholic hepatitis which has occurred by 6 weeks of ethanol treatment. To further characterize keratin dephosphorylation in ethanol-fed rats, we used 31P NMR spectroscopy to classify the dephosphorylation site(s). Hepatocyte keratins were purified and solubilized in 9.5 M urea, 10 mM Tris-Cl, pH 8.1. 31P NMR spectra were obtained at 109 MHz, in 10 mm tubes at 30 degrees C. Samples of hepatocyte keratins were phosphorylated with A-kinase, protein kinase C, casein kinase II or Ca/CAM kinase and these samples were analyzed by 31P NMR spectroscopy. The resulting spectra were used as standards to compare the 31P chemical shifts of the resonances produced by these kinases with the phosphorus resonances of control and experimental samples. The 31P NMR spectrum of control hepatocyte keratins shows three resonances at 0.7, 4 and 5 ppm. In vitro phosphorylation by A-kinase produces a resonance at 4 ppm which is distinctly different from the resonance produced by each of the other kinases. In hepatocyte keratins from ethanol-fed animals, the resonance at 4 ppm was missing from the spectrum. These observations indicate that the

  3. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  4. 23Na and (1)H NMR microimaging of intact plants.

    PubMed

    Olt, S; Krötz, E; Komor, E; Rokitta, M; Haase, A

    2000-06-01

    (23)Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using (23)Na as well as (1)H NMR microimaging. Experiments were performed at 11.75 T with a double resonant (23)Na-(1)H probehead. The probehead was homebuilt and equipped with a climate chamber. T(1) and T(2) of (23)Na were measured in the cross section of the hypocotyl. Within 85 min (23)Na images with an in-plane resolution of 156 x 156 micrometer were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, (23)Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  5. Anisotropic indirect nuclear spin-spin coupling in InP: 31P CP NMR study under slow MAS condition

    NASA Astrophysics Data System (ADS)

    Iijima, Takahiro; Hashi, Kenjiro; Goto, Atsushi; Shimizu, Tadashi; Ohki, Shinobu

    2006-02-01

    The indirect nuclear spin-spin interaction tensor between neighboring 113,115In- 31P spins in Fe-doped InP semiconductor has been studied by 31P NMR spectra measured using CP of 113In → 31P and 115In → 31P under slow MAS condition. The isotropic ( Jiso) and anisotropic ( Janiso = 2/3[ J∥ - J⊥]) parts of the indirect interaction tensor are obtained from the spectral simulation. The acceptable combinations of these values are found to be as follows: ( Jiso, Janiso) = (224 ± 5, 500 ± 100 Hz) or (-224 ± 5, 2100 ± 100 Hz). Although, the coupling constants estimated in this study are slightly different from previously reported values of ∣ Jiso∣ = 350 Hz, Janiso = 1298 Hz [M. Engelsberg, R.E. Norberg, Phys. Rev. B 5 (1972) 3395] and of ∣ Jiso∣ = 225 ± 10, Janiso = (813 ± 50) or (1733 ± 50) Hz [M. Tomaselli et al., Phys. Rev. B 58 (1998) 8627], all of these has the trend that Janiso is rather larger than Jiso.

  6. A simple ergometer for 31P NMR spectroscopy during dynamic forearm exercise in a whole body magnetic resonance imaging system.

    PubMed

    Nishijima, H; Nishida, M; Anzai, T; Yonezawa, K; Fukuda, H; Sato, I; Yasuda, H

    1992-03-01

    The purpose of this study was to construct a simple ergometer for the 31P NMR spectroscopic study of dynamic forearm exercise in a whole body magnetic resonance imaging system and to evaluate the total system and the physiological response to this type of exercise using a multistage protocol. The system consisted of a completely nonmagnetic assembly including a rope, pulley and weights. The work of lifting weights was quantitated. The exercise protocol of 1-min increments in work load enabled subjects to reach maximal effort. Phosphocreatine decreased linearly with an increase in work load and was accompanied by a fall in pH and an increase in lactate level in the antecubital vein of the exercising forearm; concomitantly, there was a slight increase in whole body oxygen uptake and heart rate. Spectroscopy gave reproducible results using this exercise protocol. These results demonstrate that this system provides a reliable means for performing 31P magnetic resonance spectroscopy studies during forearm exercise.

  7. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  8. Phosphatidylcholine and cholesteryl esters identify the infiltrating behaviour of a clear cell renal carcinoma: 1H, 13C and 31P MRS evidence.

    PubMed

    Tugnoli, V; Poerio, A; Tosi, M R

    2004-08-01

    This study presents a multinuclear (1H, 13C and 31P) magnetic resonance spectroscopy characterization of the total lipid fraction extracted from different regions of a human kidney affected by a clear cell renal carcinoma. It was thus possible to demonstrate that cholesteryl esters and phosphatidylcholine are markers of the tumor infiltration, histologically confirmed, in the kidney medulla. The tumor tissue contains twice the amount of phosphatidylcholine compared to normal cortex. The results appear relevant in light of new clinical applications based on the biochemical composition of human tissues.

  9. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  10. Metabolomic insight into soy sauce through (1)H NMR spectroscopy.

    PubMed

    Ko, Bong-Kuk; Ahn, Hyuk-Jin; van den Berg, Frans; Lee, Cherl-Ho; Hong, Young-Shick

    2009-08-12

    Soy sauce, a well-known seasoning in Asia and throughout the world, consists of many metabolites that are produced during fermentation or aging and that have various health benefits. However, their comprehensive assessment has been limited due to targeted or instrumentally specific analysis. This paper presents for the first time a metabolic characterization of soy sauce, especially that aged up to 12 years, to obtain a global understanding of the metabolic variations through (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Elevated amino acids and organic acids and the consumption of carbohydrate were associated with continuous involvement of microflora in aging for 12 years. In particular, continuous increases in the levels of betaine were found during aging for up to 12 years, demonstrating that microbial- or enzyme-related metabolites were also coupled with osmotolerant or halophilic bacteria present during aging. This work provides global insights into soy sauce through a (1)H NMR-based metabolomic approach that enhances the current understanding of the holistic metabolome and allows assessment of soy sauce quality.

  11. Solid state {sup 31}P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels

    SciTech Connect

    Sasaki, D.Y.; Alam, T.D.

    2000-01-03

    Phosphonate binding sites in guanidine and ammonium surface-functionalized silica xerogels were prepared via the molecular imprinting technique and characterized using solid state {sup 31}P MAS NMR. One-point, two-point, and non-specific host-guest interactions between phenylphosphonic acid (PPA) and the functionalized gels were distinguished by characteristic chemical shifts of the observed absorption peaks. Using solid state as well as solution phase NMR analyses, absorptions observed at 15.5 ppm and 6.5 ppm were identified as resulting from the 1:1 (one-point) and 2:1 (two-point) guanidine to phosphonate interactions, respectively. Similar absorptions were observed with the ammonium functionalized gels. By examining the host-guest interactions within the gels, the efficiency of the molecular imprinting procedure with regard to the functional monomer-to-template interaction could be readily assessed. Template removal followed by substrate adsorption studies conducted on the guanidine functionalized gels provided a method to evaluate the binding characteristics of the receptor sites to a phosphonate substrate. During these experiments, {sup 29}Si and {sup 31}P MAS NMR acted as diagnostic monitors to identify structural changes occurring in the gel matrix and at the receptor site from solvent mediated processes.

  12. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  13. Assessment of membrane protection by /sup 31/P-NMR effects of lidocaine on calcium-paradox in myocardium

    SciTech Connect

    Sakai, Hirosumi; Yoshiyama, Minoru; Teragaki, Masakazu; Takeuchi, Kazuhide; Takeda, Takeda; Ikata, Mari; Ishikawa, Makoto; Miura, Iwao

    1989-01-01

    In studying calcium paradox, perfused rat hearts were used to investigate the myocardial protective effects of lidocaine. Intracellular contents of phosphates were measured using the /sup 31/P-NMR method. In hearts reexposed to calcium, following 3 minute calcium-free perfusion, a rapid contracture occurred, followed by rapid and complete disappearance of intracellular phosphates with no resumption of cardiac function. In hearts where lidocaine was administered from the onset of the calcium-free perfusion until 2 minutes following the onset of reexposure to calcium, both intracellular phosphates and cardiac contractility were maintained. Therefore, it can be said that cell membranes were protected by lidocaine.

  14. Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study.

    PubMed

    Reale, Anna; Mannina, Luisa; Tremonte, Patrizio; Sobolev, Anatoli P; Succi, Mariantonietta; Sorrentino, Elena; Coppola, Raffaele

    2004-10-06

    myo-Inositol hexaphosphate (IP6) is the main source of phosphorus in cereal grains, and therefore, in bakery products. Different microorganisms such as yeasts and lactic acid bacteria have phytase enzymes able to hydrolyze IP6 during the wholemeal breadmaking. In this paper, the phytase activity of Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus curvatus, and Saccharomyces cerevisiae strains, isolated from southern Italian sourdoughs, is assayed using the (31)P NMR technique. The sourdough technology based on the use of lactic acid bacteria in the breadmaking is finally suggested.

  15. Detection of Phosphomonoester Signals in Proton-Decoupled 31P NMR Spectra of the Myocardium of Patients with Myocardial Hypertrophy

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Sieverding, Ludger; Breuer, Johannes; Schmidt, Oliver; Widmaier, Stefan; Bunse, Michael; van Erckelens, Franz; Apitz, Jürgen; Dietze, Guenther J.; Lutz, Otto

    1998-07-01

    Proton-decoupled31P NMR spectroscopy at 1.5 T of the anterior left ventricular myocardium was used to monitor myocardial phosphate metabolism in asymptomatic patients with hypertrophic cardiomyopathy (HCM,n= 14) and aortic stenosis (AS,n= 12). In addition to the well-known phosphorus signals a phosphomonoester (PME) signal was detected at about 6.9 ppm in 7 HCM and 2 AS patients. This signal was not observed in the spectra of normal controls (n= 11). We suggest that in spectra of patients with myocardial hypertrophy the presence of a PME signal reflects alterations in myocardial glucose metabolism.

  16. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase.

    PubMed

    Cui, Min-Hui; Jayalakshmi, Kamaiah; Liu, Laibin; Guha, Chandan; Branch, Craig A

    2015-12-01

    Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.

  17. Internuclear 31P-51V Distance Measurements in Polyoxoanionic Solids Using REAPDOR NMR Spectroscopy

    PubMed Central

    Huang, Wenlin; Vega, Alexander J.; Gullion, Terry; Polenova, Tatyana

    2014-01-01

    We report the first results establishing REAPDOR experiments for distance measurements between a spin-1/2 (31P) and spin-7/2 (51V) pair in a series of vanadium-substituted polyoxoanionic solids from the Keggin and Wells-Dawson families. We have quantitatively measured 31P-51V distances in mono-vanadium substituted K4PVW11O40, 1-K7P2VW17O62, and 4-K7P2VW17O62. Numerical simulations of the experimental data yield very good agreement with the averaged P-W/P-V distances determined from the X-ray diffraction measurements in the same or related compounds. REAPDOR is therefore a very sensitive P-V distance probe anticipated to be especially useful in the absence of long-range order. Our results suggest that REAPDOR spectroscopy could be broadly applicable for interatomic distance measurements in other spin-7/2-spin-1/2 nuclear pairs. PMID:17918932

  18. NMR shielding constants in PH3, absolute shielding scale, and the nuclear magnetic moment of 31P.

    PubMed

    Lantto, Perttu; Jackowski, Karol; Makulski, Włodzimierz; Olejniczak, Małgorzata; Jaszuński, Michał

    2011-09-29

    Ab initio values of the absolute shielding constants of phosphorus and hydrogen in PH(3) were determined, and their accuracy is discussed. In particular, we analyzed the relativistic corrections to nuclear magnetic resonance (NMR) shielding constants, comparing the constants computed using the four-component Dirac-Hartree-Fock approach, the four-component density functional theory (DFT), and the Breit-Pauli perturbation theory (BPPT) with nonrelativistic Hartree-Fock or DFT reference functions. For the equilibrium geometry, we obtained σ(P) = 624.309 ppm and σ(H) = 29.761 ppm. Resonance frequencies of both nuclei were measured in gas-phase NMR experiments, and the results were extrapolated to zero density to provide the frequency ratio for an isolated PH(3) molecule. This ratio, together with the computed shielding constants, was used to determine a new value of the nuclear magnetic dipole moment of (31)P: μ(P) = 1.1309246(50) μ(N).

  19. (1)H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw (1)H NMR data were made available in Microsoft Excel workbook format (.xls).

  20. Fluorescence anisotropy, FT-IR spectroscopy and 31-P NMR studies on the interaction of paclitaxel with lipid bilayers.

    PubMed

    Dhanikula, Anand Babu; Panchagnula, Ramesh

    2008-06-01

    To understand the bilayer interaction with paclitaxel, fluorescence polarization, Fourier transform infrared spectroscopy (FT-IR) and 31-phosphorus nuclear magnetic resonance (31P-NMR) studies were performed on paclitaxel bearing liposomes. Fluorescence anisotropy of three probes namely, 1,6-diphenyl-1,3,5-hexatriene (DPH), 12-(9-anthroyloxy) stearic acid (12AS) and 8-anilino-1-naphthalene sulfonate (ANS) were monitored as a function of paclitaxel concentration in the unsaturated bilayers. The incorporation of paclitaxel decreased anisotropy of 12AS and ANS probes, while slightly increased anisotropy of DPH. Paclitaxel has a fluidizing effect in the upper region of the bilayer whereas the hydrophobic core is slightly rigidized. FT-IR spectroscopy showed an increase in the asymmetric and symmetric methylene stretching frequencies, splitting of methylene scissoring band and broadening of carbonyl stretching mode. These studies collectively ascertained that paclitaxel mainly occupies the cooperativity region and interact with the interfacial region of unsaturated bilayers and induces fluidity in the headgroup region of bilayer. At higher loadings (>3 mol%), paclitaxel might gradually tend to accumulate at the interface and eventually partition out of bilayer as a result of solute exclusion phenomenon, resulting in crystallization; seed non-bilayer phases, as revealed by 31P-NMR, thereby destabilizing liposomal formulations. In general, any membrane component which has a rigidization effect will decrease, while that with a fluidizing effect will increase, with a bearing on headgroup interactions, partitioning of paclitaxel into bilayers and stability of the liposomes.

  1. /sup 31/P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    SciTech Connect

    Lopez, A.; Rols, M.P.; Teissie, J.

    1988-02-23

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 ..mu..s). The cells remained in a permeable state without loss of viability for several hours at 4/sup 0/C. A new anisotropic peak with respect to control cells was observed on /sup 31/P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The /sup 31/P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells.

  2. Inhibition mechanisms of Zn precipitation on aluminum oxide by glyphosate: a 31P NMR and Zn EXAFS study.

    PubMed

    Li, Wei; Wang, Yu-Jun; Zhu, Mengqiang; Fan, Ting-Ting; Zhou, Dong-Mei; Phillips, Brian L; Sparks, Donald L

    2013-05-07

    In this research, the effects of glyphosate (GPS) on Zn sorption/precipitation on γ-alumina were investigated using a batch technique, Zn K-edge EXAFS, and (31)P NMR spectroscopy. The EXAFS analysis revealed that, in the absence of glyphosate, Zn adsorbed on the aluminum oxide surface mainly as bidentate mononuclear surface complexes at pH 5.5, whereas Zn-Al layered double hydroxide (LDH) precipitates formed at pH 8.0. In the presence of glyphosate, the EXAFS spectra of Zn sorption samples at pH 5.5 and 8.0 were very similar, both of which demonstrated that Zn did not directly bind to the mineral surface but bonded with the carboxyl group of glyphosate. Formation of γ-alumina-GPS-Zn ternary surface complexes was further suggested by (31)P solid state NMR data which indicated the glyphosate binds to γ-alumina via a phosphonate group, bridging the mineral surface and Zn. Additionally, we showed the sequence of additional glyphosate and Zn can influence the sorption mechanism. At pH 8, Zn-Al LDH precipitates formed if Zn was added first, and no precipitates formed if glyphosate was added first or simultaneously with Zn. In contrast, at pH 5.5, only γ-alumina-GPS-Zn ternary surface complexes formed regardless of whether glyphosate or Zn was added first or both were added simultaneously.

  3. sup 31 P and sup 2 H NMR studies of structure and motion in bilayers of phosphatidylcholine and phosphatidylethanolamine

    SciTech Connect

    Ghosh, R. )

    1988-10-04

    The structural and motional properties of mixed bilayers of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been examined by using wide-line {sup 31}P, {sup 14}N, and {sup 2H} NMR. {sup 2}H and {sup 14}N NMR data showed that in mixed bilayers containing both PC and PE the conformations of the head-group moieties are essentially identical with those observed for bilayers containing a single phospholipid species. Equimolar amounts of cholesterol induce also only a small change in head-group conformation. For all phospholipid mixtures studied, the {sup 31}P T{sub 1} relaxation was homogeneous over the whole powder spectrum and could be fitted to a single-exponential decay. The {sup 31}P vs temperature profiles were analyzed by a simple correlation model. The presence of equimolar amounts of PE containing either the same (POPE) or a different (Escherichia coli PE) fatty acid composition had essentially no effect on the rate of rotational diffusion of the phosphate groups, with the correlation time being found to be 0.68 ns at 20{degree}C. The presence of equimolar amounts of cholesterol decreased the correlation time to 0.65 ns, and also the activation energy was reduced to 22.6 kJ mol{sup {minus}1}. The authors interpret the decrease in activation energy as being due to the spacing effect of cholesterol which reduces the H-bonding interactions between head-groups, allowing them to rotate more freely. For all cases examined, the rotational diffusion of the phosphate moieties was slower than that observed for the rigid glycerol backbone of the molecule, the latter probably corresponding to overall phospholipid rotation.

  4. Calculating the response of NMR shielding tensor σ(31P) and 2J(31P,13C) coupling constants in nucleic acid phosphate to coordination of the Mg2+ cation.

    PubMed

    Benda, Ladislav; Schneider, Bohdan; Sychrovský, Vladimír

    2011-03-24

    Dependence of NMR (31)P shielding tensor and (2)J(P,C) coupling constants on solvation of nucleic acid phosphate by Mg(2+) and water was studied using methods of bioinformatic structural analyses of crystallographic data and DFT B3LYP calculations of NMR parameters. The effect of solvent dynamics on NMR parameters was calculated using molecular dynamic. The NMR calculations for representative solvation patterns determined in crystals of B-DNA and A-RNA molecules pointed out the crucial importance of local Mg(2+) coordination geometry, including hydration by explicit water molecules and necessity of dynamical averaging over the solvent reorientation. The dynamically averaged (31)P chemical shift decreased by 2-9.5 ppm upon Mg(2+) coordination, the chemical shielding anisotropy increased by 0-20 ppm, and the (2)J(P,C5') coupling magnitude decreased by 0.2-1.8 Hz upon Mg(2+) coordination. The calculated decrease of the (31)P chemical shift is in excellent agreement with the 1.5-10 ppm decrease of the phosphorothioate (31)P chemical shift upon Cd(2+) coordination probed experimentally in hammerhead ribozyme (Suzumura; et al. J. Am. Chem. Soc. 2002, 124, 8230-8236; Osborne; et al., Biochemistry 2009, 48, 10654-10664). None of the dynamically averaged NMR parameters unequivocally distinguishes the site-specific Mg(2+) coordination to one of the two nonesterified phosphate oxygen atoms of the phosphate determined by bioinformatic analyses. By comparing the limit cases of static and dynamically averaged solvation, we propose that mobility of the solvent has a dramatic impact on NMR parameters of nucleic acid phosphate and must be taken into account for their accurate modeling.

  5. β,γ-CHF- and β,γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures and absolute configurations of new stereochemical probes for DNA polymerases

    PubMed Central

    Wu, Yue; Zakharova, Valeria M.; Kashemirov, Boris A.; Goodman, Myron F.; Batra, Vinod K.; Wilson, Samuel H.; McKenna, Charles E.

    2012-01-01

    Deoxynucleoside 5′-triphosphate analogues in which the β,γ-bridging oxygen has been replaced with a CXY group are useful chemical probes to investigate DNA polymerase catalytic and base selection mechanisms. A limitation of such probes has been that conventional synthetic methods generate a mixture of diastereomers when the bridging carbon substitution is non-equivalent (X ≠ Y). We report here a general solution to this long-standing problem with four examples of individual β,γ-CXY dNTP diastereomers: (S)- and (R)-β,γ-CHCl dGTP (12a-1, 12a-2) and (S)- and (R)-β,γ-CHF dGTP (12b-1, 12b-2). Central to their preparation was conversion of the achiral parent bisphosphonic acids to P,C-dimorpholinamide derivatives (7) of their (R)-mandelic acid monoesters (6), which provided access to the individual diastereomers 7a-1, 7a-2, 7b-1, and 7b-2 by preparative HPLC. Selective acidic hydrolysis of the P-N bond then afforded the “ portal ” diastereomers 10, which were readily coupled to morpholine-activated dGMP. Removal of the chiral auxiliary by H2 (Pd/C) afforded the four individual diastereomeric nucleotides (12), which were characterized by 31P, 1H and 19F NMR, and by MS. After treatment with Chelex®-100 to remove traces of paramagnetic ions, at pH ~10 the diastereomer pairs 12a and 12b exhibit discrete Pα and Pβ 31P resonances. The more upfield Pα and more downfield Pβ resonances (and also the more upfield 19F NMR resonance in 12b) are assigned to the (R) configuration at the Pβ-CHX-Pγ carbons, based on the absolute configurations of the individual diastereomers as determined by X-ray crystallographic structures of their ternary complexes with DNA-pol β. PMID:22397499

  6. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  7. sup 31 P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    SciTech Connect

    Brindle, K.; Braddock, P.; Fulton, S. )

    1990-04-03

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. {sup 31}P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.

  8. Preservation of bilayer structure in human erythrocytes and erythrocyte ghosts after phospholipase treatment. A 31P-NMR study.

    PubMed

    van Meer, G; de Kruijff, B; op den Kamp, J A; van Deenen, L L

    1980-02-15

    1. Fresh human erythrocytes were treated with lytic and non-lytic combinations of phospholipases A2, C and sphingomyelinase. The 31P-NMR spectra of ghosts derived from such erythrocytes show that, in all cases, the residual phospholipids and lysophospholipids remain organized in a bilayer configuration. 2. A bilayer configuration of the (lyso)phospholipids was also observed after treatment of erythrocyte ghosts with various phospholipases even in the case that 98% of the phospholipid was converted into lysophospholipid (72%) and ceramides (26%). 3. A slightly decreased order of the phosphate group of phospholipid molecules, seen as reduced effective chemical shift anisotropy in the 31P-NMR spectra, was found following the formation of diacyglycerols and ceramides in the membrane of intact erythrocytes. Treatment of ghosts always resulted in an extensive decrease in the order of the phosphate groups. 4. The results allow the following conclusions to made: a. Hydrolysis of phospholipids in intact red cells and ghosts does not result in the formation of non-bilayer configuration of residual phospholipids and lysophospholipids. b. Haemolysis, which is obtained by subsequent treatment of intact cells with sphingomyelinase and phospholipase A2, or with phospholipase C, cannot be ascribed to the formation of non-bilayer configuration of phosphate-containing lipids. c. Preservation of bilayer structure, even after hydrolysis of all phospholipid, shows that other membrane constitutents, e.g. cholesterol and/or membrane proteins play an important role in stabilizing the structure of the erythrocyte membrane. d. A major prerequisite for the application of phospholipases in lipid localization studies, the preservation of a bilayer configuration during phospholipid hydrolysis, is met for the erythrocyte membrane.

  9. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  10. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  11. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  12. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  13. Hetergeneous tumour response to photodynamic therapy assessed by in vivo localised 31P NMR spectroscopy.

    PubMed Central

    Ceckler, T. L.; Gibson, S. L.; Kennedy, S. D.; Hill, R.; Bryant, R. G.

    1991-01-01

    Photodynamic therapy (PDT) is efficacious in the treatment of small malignant lesions when all cells in the tumour receive sufficient drug, oxygen and light to induce a photodynamic effect capable of complete cytotoxicity. In large tumours, only partial effectiveness is observed presumably because of insufficient light penetration into the tissue. The heterogeneity of the metabolic response in mammary tumours following PDT has been followed in vivo using localised phosphorus NMR spectroscopy. Alterations in nucleoside triphosphates (NTP), inorganic phosphate (Pi) and pH within localised regions of the tumour were monitored over 24-48 h following PDT irradiation of the tumour. Reduction of NTP and increases in Pi were observed at 4-6 h after PDT irradiation in all regions of treated tumours. The uppermost regions of the tumours (those nearest the skin surface and exposed to the greatest light fluence) displayed the greatest and most prolonged reduction of NTP and concomitant increase in Pi resulting in necrosis. The metabolite concentrations in tumour regions located towards the base of the tumour returned a near pre-treatment levels by 24-48 h after irradiation. The ability to follow heterogeneous metabolic responses in situ provides one means to assess the degree of metabolic inhibition which subsequently leads to tumour necrosis. Images Figure 4 PMID:1829953

  14. 1H and 31P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF1 ATP synthase.

    PubMed

    Devlin, C C; Grisham, C M

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their metal complexes with Mn2+ bound to both the latent and dithiothreitol-activated CF1 ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and 1H and 31P nuclear relaxation measurements. Titration of both the latent and activated Mn(2+)-CF1 complexes with ATP, ADP, Pi, Co(NH3)4ATP, Co(NH3)4ADP, and Co(NH3)4AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF1 by Co(NH3)4AMPPCP with respect to CaATP. The data are consistent with a Ki for Co(NH3)4AMPPCP of 650 microM, in good agreement with a previous Ki of 724 microM for Cr(H2O)4ATP [Frasch, W., & Selman, B. (1982) Biochemistry 21, 3636-3643], and a best fit KD of 209 microM from the water PRR measurements. 1H and 31P nuclear relaxation measurements in solutions of CF1 and Co(NH3)4AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn2+. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn2+ site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the beta-P and gamma-P of the substrate. The distances from Mn2+ to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  15. sup 1 H and sup 31 P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF sub 1 ATP synthase

    SciTech Connect

    Devlin, C.C.; Grisham, C.M. )

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their complexes with Mn{sup 2+} bound to both the latent and dithiothreitol-activated CF{sub 1} ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and {sup 1}H and {sup 31}P nuclear relaxation measurements. Titration of both the latent and activated Mn{sup 2+}-CF{sub 1} complexes with ATP, ADP, P{sub i}, Co(NH{sub 3}){sub 4}ATP, Co(NH{sub 3}){sub 4}ADP, and Co(NH{sub 3}){sub 4}AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF{sub 1} by Co(NH{sub 3}){sub 4}AMPPCP with respect to CaATP. {sup 1}H and {sup 31}P nuclear relaxation measurements in solutions of CF{sub 1} and Co(NH{sub 3}){sub 4}AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn{sup 2+} site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the {beta}-P and {gamma}-P of the substrate. The distances from Mn{sup 2+} to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  16. Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31P NMR Investigation

    SciTech Connect

    Hunger, Stefan; Cho, Herman M.; Sims, James T.; Sparks, Donald L.

    2004-02-01

    Amending poultry litter (PL) with aluminum sulfate (alum) has proven to be effective in reducing water-soluble phosphorus (P) in the litter and in runoff from fields that have received PL applications; it has therefore been suggested as a best management practice. Although its effectiveness has been demonstrated on a macroscopic scale in the field, little is known about P speciation in either alumamended or unamended litter. This knowledge is important for the evaluation of the long-term stability and bioavailability of P, which is a necessary prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid state MAS and CP-MAS {sup 31}P NMR as well as {sup 31}P({sup 27}Al) TRAPDOR were used to investigate P speciation in alumamended and unamended PL. The results indicate the presence of a complex mixture of organic and inorganic orthophosphate phases. A calcium phosphate phase, probably a surface precipitate on calcium carbonate, could be identified in both unamended and alum-amended PL, as well as physically bound HPO{sub 4}{sup 2-}. Phosphate associated with Al was found in the alum-amended PL, most probably a mixture of a poorly ordered wavellite and phosphate surface complexes on aluminum hydroxide that had been formed by the hydrolysis of alum. However, a complex mixture of organic and inorganic phosphate species could not be resolved. Phosphate associated with Al comprised on average 40{+-}14% of the total P in alum-amended PL, whereas calcium phosphate phases comprised on average 7{+-}4% in the alum-amended PL and 14{+-}5% in the unamended PL.

  17. Modeling sickle cell vasoocculsion in the rat leg: Quantification of trapped sickle cells and correlation with sup 31 P metabolic and sup 1 H magnetic resonance imaging changes

    SciTech Connect

    Fabry, M.E.; Rajanayagam, V.; Fine, E.; Holland, S.; Gore, J.C.; Nagel, R.L.; Kaul, D.K. )

    1989-05-01

    The authors have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m ({sup 99m}Tc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative {sup 99m}Tc imaging, {sup 31}P magnetic resonance spectroscopy by surface coil at 2 teslas, and {sup 1}H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 {mu}l of SS4 cells was trapped in the microcirculation of the thigh. In contrast, fewer SS discocytes (SS2) or AA cells were trapped. After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T{sub 1} reached a broad maximum at 18-28 hr. When T{sub 1} obtained at this time was plotted against the volume of cells trapped, an increase of T{sub 1} over the control value of 411 {plus minus} 48 msec was found that was proportional to the number of cells trapped. They conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by {sup 1}H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate.

  18. Complete assignment of NMR data of 22 phenyl-1H-pyrazoles' derivatives.

    PubMed

    de Oliveira, Aline Lima; Alves de Oliveira, Carlos Henrique; Mairink, Laura Maia; Pazini, Francine; Menegatti, Ricardo; Lião, Luciano Morais

    2011-08-01

    Complete assignment of (1)H and (13)C NMR chemical shifts and J((1)H/(1)H and (1)H/(19)F) coupling constants for 22 1-phenyl-1H-pyrazoles' derivates were performed using the concerted application of (1)H 1D and (1)H, (13)C 2D gs-HSQC and gs-HMBC experiments. All 1-phenyl-1H-pyrazoles' derivatives were synthesized as described by Finar and co-workers. The formylated 1-phenyl-1H-pyrazoles' derivatives were performed under Duff's conditions.

  19. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.

    PubMed

    Williams, J P; Headrick, J P

    1996-08-07

    Free cytosolic concentrations of ATP, PCr, ADP and 5'-AMP, and the cytosolic [ATP]/[ADP].[Pi] ratio, were determined in isolated and in situ rat hearts using 31P-NMR spectroscopy. Total tissue metabolite concentrations were determined by HPLC analysis of freeze-clamped, perchloric acid-extracted tissue. In in situ myocardium the PCr/ATP ratio was 2.7 +/- 0.2 determined from 31P-NMR data (using either PCr/beta-NTP or PCr/gamma-NTP), and 1.9 +/- 0.1 (P < 0.01) determined from total tissue concentrations. 31P-NMR-determined and total tissue [PCr] were in excellent agreement (49.6 +/- 8.4 and 49.5 +/- 1.0 mumol.g-1 dry wt, respectively), whereas 31P-NMR-determined [ATP] (18.6 +/- 3.2 mumol.g-1 dry wt) was only 71% of the total tissue concentration (26.1 +/- 1.7 mumol.g-1 dry wt, P < 0.01). Isolation and Langendorff perfusion of rat hearts with glucose as substrate reduced total tissue [ATP] and [PCr] and the 31P-NMR-determined PCr/ATP ratio fell to 1.5 +/- 0.1. This value agreed well with the total tissue ratio of 1.4 +/- 0.1, and there was excellent agreement between 31P-NMR-determined and total tissue [PCr] and [ATP] values in the perfused heart. Addition of pyruvate to perfusate increased the 31P-NMR-determined PCr/ATP ratio to 1.7 +/- 0.1 due to elevated [PCr], and there remained excellent agreement between NMR-determined and total tissue [PCr] and [ATP] values. Free cytosolic [ADP] (from the creatine kinase equilibrium) was 5% of total tissue ADP, and free cytosolic [5'-AMP] (from the adenylate kinase equilibrium) ranged from 0.2-0.3% of total tissue 5'-AMP. Bioenergetic state, indexed by [ATP]/[ADP].[Pi], was much lower in isolated perfused hearts (30 mM-1) vs. in situ myocardium (approximately 150 mM-1). In summary, we observe a substantial disproportionality between total tissue PCr/ATP and 31P-NMR-determined PCr/ATP in highly energised in situ myocardium but not in isolated perfused hearts. This appears due to an NMR invisible ATP compartment approximating 29

  20. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  1. Effect of Ca:Mg ratio on precipitated P species identified using 31P solid state NMR

    NASA Astrophysics Data System (ADS)

    Manimel Wadu, M.

    2009-04-01

    M.C.W. Manimel Wadu1, O.O Akinremi1, S. Kroeker2 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2N2, Canada 2Department of Chemistry, University of Manitoba, Winnipeg, R3T 2N2, Canada Agronomic efficiency of added P fertilizer is reduced by the precipitation reactions with the exchangeable Ca and Mg in calcareous soils. We hypothesized that the ratio of Ca to Mg on the soil exchange complex will affect the species of P that is precipitated and its solubility in the soil. A laboratory experiment was conducted using a model calcareous soil system which was composed of resin (Amberlite IRP69) and sand coated with CaCO3 packed into a column. The resin was pre saturated with Ca and Mg in order to achieve five different saturation ratios of Ca:Mg approximately as 100:0, 70:30, 50:50, 30:70 and 0:100. Monoammonium Phosphate was applied to the soil surface to simulate one-dimensional diffusive transport. The column was then incubated for 2 weeks. Chemical analysis for water and acid soluble P, pH, NH4, Ca and Mg was performed on 2mm sections of the soil to a depth of 10 cm. This paper will present and discuss the distribution of P along the soil column. Unlike similar studies that have speculated on the precipitation of P, this study will identify and quantify the P species that is formed using 31P solid state NMR technique. Such knowledge will be helpful in understanding the effect of Ca and Mg on P availability in calcareous system and the role of each cation on P precipitation. Key words: P fertilizers, Ca, Mg, model system, solid state NMR

  2. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  3. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: towards specific interest in human health.

    PubMed

    Garcia, Cyrielle; Lutz, Norbert W; Confort-Gouny, Sylviane; Cozzone, Patrick J; Armand, Martine; Bernard, Monique

    2012-12-01

    Our objective was to identify and quantify phospholipids in milk from different species (human HM, cow CoM, camel CaM, and mare MM) using an optimised (31)P NMR spectroscopy procedure. The phospholipid fingerprints were species-specific with a broader variety of classes found in HM and MM; HM and CaM were richer in sphingomyelin (78.3 and 117.5μg/ml) and plasmalogens (27.3 and 24μg/ml), possibly important for infant development. Total phospholipid content was higher in CaM (0.503mM) and lower in MM (0.101mM) compared to HM (0.324mM) or CoM (0.265mM). Our optimised method showed good sensitivity, high resolution, and easy sample preparation with minimal loss of target molecules. It is suitable for determining the accurate composition of a large number of bioactive phospholipids with putative health benefits, including plasmalogens, and should aid in selecting appropriate ingredient sources for infant milk substitutes or fortifiers, and for functional foods dedicated to adults.

  4. Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components.

    PubMed

    Sadeghifar, Hasan; Dickerson, James P; Argyropoulos, Dimitris S

    2014-11-26

    As a solid substrate, wood and its components are almost invariably examined via spectroscopic or indirect methods of analysis. Unlike earlier approaches, in this effort we dissolve pulverized wood in ionic liquid and then directly derive its functional group contents by quantitative (31)P NMR. As such, this novel analytical methodology is thoroughly examined and an insight into the detailed way acetylation proceeds on solid wood and its components is provided as a function of wood density and within its various anatomical features. As anticipated, the efficiency of acetylation was found to be greater within low density wood than in high density wood. The lignin, the cellulose and the hemicelluloses of the low density wood was found to be acetylated nearly twice as fast with remarkable differences in their quantitative degree of acetylation amongst them. This direct analytical data validates the applied methodology and confirms, for the first time, that the order of acetylation in solid wood is lignin>hemicellulose>cellulose and no reactivity differences exist between early wood and late wood.

  5. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    PubMed

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  6. Detailed Chemical Composition of Condensed Tannins via Quantitative (31)P NMR and HSQC Analyses: Acacia catechu, Schinopsis balansae, and Acacia mearnsii.

    PubMed

    Crestini, Claudia; Lange, Heiko; Bianchetti, Giulia

    2016-09-23

    The chemical composition of Acacia catechu, Schinopsis balansae, and Acacia mearnsii proanthocyanidins has been determined using a novel analytical approach that rests on the concerted use of quantitative (31)P NMR and two-dimensional heteronuclear NMR spectroscopy. This approach has offered significant detailed information regarding the structure and purity of these complex and often elusive proanthocyanidins. More specifically, rings A, B, and C of their flavan-3-ol units show well-defined and resolved absorbance regions in both the quantitative (31)P NMR and HSQC spectra. By integrating each of these regions in the (31)P NMR spectra, it is possible to identify the oxygenation patterns of the flavan-3-ol units. At the same time it is possible to acquire a fingerprint of the proanthocyanidin sample and evaluate its purity via the HSQC information. This analytical approach is suitable for both the purified natural product proanthocyanidins and their commercial analogues. Overall, this effort demonstrates the power of the concerted use of these two NMR techniques for the structural elucidation of natural products containing labile hydroxy protons and a carbon framework that can be traced out via HSQC.

  7. Ionization behavior of polyphosphoinositides determined via the preparation of pH titration curves using solid-state 31P NMR.

    PubMed

    Graber, Zachary T; Kooijman, Edgar E

    2013-01-01

    Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.

  8. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  9. The effect of ethanol on hydroxyl and carbonyl groups in biopolyol produced by hydrothermal liquefaction of loblolly pine: (31)P-NMR and (19)F-NMR analysis.

    PubMed

    Celikbag, Yusuf; Via, Brian K; Adhikari, Sushil; Buschle-Diller, Gisela; Auad, Maria L

    2016-08-01

    The goal of this study was to investigate the role of ethanol and temperature on the hydroxyl and carbonyl groups in biopolyol produced from hydrothermal liquefaction of loblolly pine (Pinus spp.) carried out at 250, 300, 350 and 390°C for 30min. Water and water/ethanol mixture (1/1, wt/wt) were used as liquefying solvent in the HTL experiments. HTL in water and water/ethanol is donated as W-HTL and W/E-HTL, respectively. It was found that 300°C and water/ethanol solvent was the optimum liquefaction temperature and solvent, yielding up to 68.1wt.% bio-oil and 2.4wt.% solid residue. (31)P-NMR analysis showed that biopolyol produced by W-HTL was rich in phenolic OH while W/E-HTL produced more aliphatic OH rich biopolyols. Moreover, biopolyols with higher hydroxyl concentration were produced by W/E-HTL. Carbonyl groups were analyzed by (19)F-NMR, which showed that ethanol reduced the concentration of carbonyl groups.

  10. 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.

    PubMed

    Nolan, Christine M; Gelbaum, Leslie T; Lyon, L Andrew

    2006-10-01

    We describe investigations of insulin release from thermoresponsive microgels using variable temperature (1)H NMR. Microgel particles composed of poly(N-isopropylacrylamide) were loaded with the peptide via a swelling technique, and this method was compared to simple equilibrium partitioning. Variable temperature (1)H NMR studies suggest that the swelling loading method results in enhanced entrapment of the peptide versus equilibrium partitioning. A centrifugation-loading assay supports this finding. Pseudo-temperature jump (1)H NMR measurements suggest that the insulin release rate is partially decoupled from microgel collapse. These types of direct release investigations could prove to be useful methods in the future design of controlled macromolecule drug delivery devices.

  11. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  12. 31P and 1H MRS of DB-1 Melanoma Xenografts: Lonidamine Selectively Decreases Tumor Intracellular pH and Energy Status and Sensitizes Tumors to Melphalan

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Ho, Andrew; Lee, Seung-Cheol; Darpolor, Moses M.; Pickup, Stephen; Zhou, Rong; Heitjan, Daniel F.; Leeper, Dennis B.; Glickson, Jerry D.

    2012-01-01

    In vivo 31P MRS demonstrates that human melanoma xenografts in immunosuppressed mice treated with lonidamine (LND, 100 mg/kg, i.p.) exhibit a decrease in intracellular pH (pHi) from 6.90 ± 0.05 to 6.33 ± 0.10 (p < 0.001), a slight decrease in extracellular pH (pHe) from 7.00 ± 0.04 to 6.80 ± 0.07 (p > 0.05), and a monotonic decline in bioenergetics (NTP/Pi) by 66.8 ± 5.7% (p < 0.001) relative to the baseline level. Both bioenergetics and pHi decreases were sustained for at least 3 hr following LND treatment. Liver exhibited a transient intracellular acidification by 0.2 ± 0.1 pH units (p > 0.05) at 20 min post-LND with no significant change in pHe and a small transient decrease in bioenergetics, 32.9 ± 10.6 % (p > 0.05), at 40 min post-LND. No changes in pHi or ATP/Pi were detected in the brain (pHi, bioenergetics; p > 0.1) or skeletal muscle (pHi, pHe, bioenergetics; p > 0.1) for at least 120 min post-LND. Steady-state tumor lactate monitored by 1H MRS with a selective multiquantum pulse sequence with Hadamard localization increased ~3-fold (p = 0.009). Treatment with LND increased systemic melanoma response to melphalan (LPAM; 7.5 mg/kg, i.v.) producing a growth delay of 19.9 ± 2.0 d (tumor doubling time = 6.15 ± 0.31d, log10 cell-kill = 0.975 ± 0.110, cell-kill = 89.4 ± 2.2%) compared to LND alone of 1.1 ± 0.1 d and LPAM alone of 4.0 ± 0.0 d. The study demonstrates that the effects of LND on tumor pHi and bioenergetics may sensitize melanoma to pH-dependent therapeutics such as chemotherapy with alkylating agents or hyperthermia. PMID:22745015

  13. {sup 31}P NMR study of the complexation of TBP with lanthanides and actinides in solution and in a clay matrix

    SciTech Connect

    Hartzell, C.J.

    1994-07-24

    Goal was to use NMR to study TBP/lanthanide complexes in the interlayer or on edge sites of clays. Work in this laboratory yielded details of the complexation of Eu(NO{sub 3}){sub 3} and Pr(NO{sub 3}){sub 3} with TBP in hexane solution; this information is crucial to interpretation of results of NMR studies of the complexes exchanged into clays. The solution {sup 31}P-chemical shift values were improved by repeating the studies on the lanthanide salts dissolved directly into neat TBP. NMR studies of these neat solutions of the Eu(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex and the Pr(NO{sub 3}){sub 3}{lg_bullet}3TBP-complex show that the {sup 31}P chemical shift remains relatively constant for TBP: lanthanide ratios below 3: 1. At higher ratios, the chemical shift approaches that of free TBP, indicating rapid exchange of TBP between the free and complexed state. Exchange of these complexes into the clay hectorite yielded discrete {sup 31}P-NMR signals for the Eu{lg_bullet}TBP complex at -190 ppm and free TBP at -6 ppm. Adsorption of the Pr{lg_bullet}TBP complex yielded broad signals at 76 ppm for the complex and -6 ppm for free TBP. There was no evidence of exchange between the incorporated complex and the free TBP.

  14. Protein-Observed Fluorine NMR Is a Complementary Ligand Discovery Method to (1)H CPMG Ligand-Observed NMR.

    PubMed

    Urick, Andrew K; Calle, Luis Pablo; Espinosa, Juan F; Hu, Haitao; Pomerantz, William C K

    2016-11-18

    To evaluate its potential as a ligand discovery tool, we compare a newly developed 1D protein-observed fluorine NMR (PrOF NMR) screening method with the well-characterized ligand-observed (1)H CPMG NMR screen. We selected the first bromodomain of Brd4 as a model system to benchmark PrOF NMR because of the high ligandability of Brd4 and the need for small molecule inhibitors of related epigenetic regulatory proteins. We compare the two methods' hit sensitivity, triaging ability, experiment speed, material consumption, and the potential for false positives and negatives. To this end, we screened 930 fragment molecules against Brd4 in mixtures of five and followed up these studies with mixture deconvolution and affinity characterization of the top hits. In selected examples, we also compare the environmental responsiveness of the (19)F chemical shift to (1)H in 1D-protein observed (1)H NMR experiments. To address concerns of perturbations from fluorine incorporation, ligand binding trends and affinities were verified via thermal shift assays and isothermal titration calorimetry. We conclude that for the protein understudy here, PrOF NMR and (1)H CPMG have similar sensitivity, with both being effective tools for ligand discovery. In cases where an unlabeled protein can be used, 1D protein-observed (1)H NMR may also be effective; however, the (19)F chemical shift remains significantly more responsive.

  15. Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy.

    PubMed

    Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline

    2010-04-01

    The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.

  16. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.

    PubMed

    de Graaf, Robin A; Behar, Kevin L

    2014-07-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays a central role in cellular metabolism both as a coenzyme for electron-transfer enzymes as well as a substrate for a wide range of metabolic pathways. In the current study NAD(+) was detected on rat brain in vivo at 11.7T by 3D localized (1)H MRS of the NAD(+) nicotinamide protons in the 8.7-9.5 ppm spectral region. Avoiding water perturbation was critical to the detection of NAD(+) as strong, possibly indirect cross-relaxation between NAD(+) and water would lead to a several-fold reduction of the NAD(+) intensity in the presence of water suppression. Water perturbation was minimized through the use of localization by adiabatic spin-echo refocusing (LASER) in combination with frequency-selective excitation. The NAD(+) concentration in the rat cerebral cortex was determined at 296 ± 28 μm, which is in good agreement with recently published (31) P NMR-based results as well as results from brain extracts in vitro (355 ± 34 μm). The T1 relaxation time constants of the NAD(+) nicotinamide protons as measured by inversion recovery were 280 ± 65 and 1136 ± 122 ms in the absence and presence of water inversion, respectively. This confirms the strong interaction between NAD(+) nicotinamide and water protons as observed during water suppression. The T2 relaxation time constants of the NAD(+) nicotinamide protons were determined at 60 ± 13 ms after confounding effects of scalar coupling evolution were taken into account. The simplicity of the MR sequence together with the robustness of NAD(+) signal detection and quantification makes the presented method a convenient choice for studies on NAD(+) metabolism and function. As the method does not critically rely on magnetic field homogeneity and spectral resolution it should find immediate applications in rodents and humans even at lower magnetic fields.

  17. Alternative determination of blood alcohol concentration by (1)H NMR spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K

    2016-02-05

    A rapid, accurate and specific proton nuclear magnetic resonance ((1)H NMR) spectroscopic method is developed to determine ethanol in blood, known as the blood alcohol concentration (BAC). The limits of detection and quantification are 0.02g/L and 0.07g/L, respectively. The (1)H NMR spectra show linearity for whole blood and serum samples of a concentration range of 0.00-3.00g/L (R(2)>0.9995). The (1)H NMR method is applied and validated for whole blood as the sample media. Real driving under influence case samples are analyzed with the reference enzyme-based alcohol dehydrogenase and headspace gas chromatography techniques by the Forensic Medicine in Bonn. The reference results are compared with the (1)H NMR spectroscopic results. The validation and comparison indicate that (1)H NMR is suitable for the quantification of BAC in whole blood. This technique has the advantages of automated analysis with good measurement precision and fast sample throughput. A drop of blood (V=20μL) is adequate for an analysis leading to a possible simplification of the sample collection. Due to the non-destructive method, follow-up examinations by (1)H NMR spectroscopy or DNA determinations by different techniques (PCR, in situ hybridization) are possible in resolving legal disputes.

  18. Analysis of the urinary excretion of ifosfamide and its N-dechloroethylated metabolites in children using 31P-NMR spectroscopy.

    PubMed

    Misiura, Konrad; Zubowska, Małgorzata; Zielińska, Elzbieta

    2003-01-01

    Amounts of ifosfamide (CAS 3778-73-2) and its N-dechloroethylated metabolites excreted in the urine were measured using 31P-NMR spectroscopy in 26 cancer children treated with this drug. Strong inter-patient variation in levels of these compounds were found. These differences were independent from patients age, body surface area, and sex, the dose of the drug, suggesting genetic base of observed variations in ifosfamide metabolism.

  19. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  20. 1H and 13C NMR assignments for two new angular furanocoumarin glycosides from Peucedanum praeruptorum.

    PubMed

    Chang, Haitao; Okada, Yoshihito; Okuyama, Toru; Tu, Pengfei

    2007-07-01

    Two novel angular-type furanocoumarin glycosides, peucedanoside A (1) and peucedanoside B (2), along with a known compound apterin (3), were isolated from the roots of Peucedanum praeruptorum Dunn. Their chemical structures were determined by MS, NMR spectroscopy and chemical analysis. Complete assignments of the 1H and 13C NMR spectroscopic data were achieved by 1D and 2D NMR experiments including DEPT, HSQC, HMBC and ROESY.

  1. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  2. Differently saturated fatty acids can be differentiated by 31P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane: a cautionary note.

    PubMed

    Eibisch, Mandy; Riemer, Thomas; Fuchs, Beate; Schiller, Jürgen

    2013-03-20

    The analysis of free fatty acid (FFA) mixtures is a very important but, even nowadays, challenging task. This particularly applies as the so far most commonly used technique-gas chromatography/mass spectrometry (GC/MS)-is tedious and time-consuming. It has been convincingly shown ( Spyros, A.; Dais, P. J. Agric. Food Chem. 2000, 48, 802 - 5) that FFA may be analyzed by (31)P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane (CTDP). However, it was also indicated that differently unsaturated FFAs result in the same (31)P NMR chemical shift and cannot be differentiated. Therefore, only the overall fatty acid content of a sample can be determined by the CTDP assay. In contrast, we will show here by using high-field NMR (600 MHz spectrometer, i.e., 242.884 MHz for (31)P) that the CTDP assay may be used to differentiate FFAs that have pronounced differences in their double bond contents: saturated fatty acids (16:0), moderately unsaturated (18:1, 18:2), highly unsaturated (20:4), and extremely unsaturated fatty acids (22:6) result in slightly different chemical shifts. The same applies for oxidized fatty acids. Finally, it will also be shown that the CTDP derivatization products decompose in a time-dependent manner. Therefore, all investigations must adhere to a strict time regime.

  3. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state (13)C NMR and solution (31)P NMR spectroscopy.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Meng, Wei; He, Zhongqi; Feng, Weiying; Zhang, Chen; Giesy, John P

    2016-02-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state (13)C NMR and solution (31)P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  4. High Resolution NMR ^15N and ^31P NMR Of Antiferroelectric Phase Transition in Ammonium Dihydrogen Arsenate and Ammonium Dihydrogen Phosphate

    NASA Astrophysics Data System (ADS)

    Gunaydin-Sen, Ozge

    2005-03-01

    Natural abundance ^15N CPMAS NMR has been used to investigate the paraelectric-antiferroelectric phase transition of NH4H2AsO4 (ADA) (TN˜216K) and of NH4H2PO4 (ADP) (148K), with a focus on the role of the NH4^+ ion. Isotropic chemical shift of ^15N for ADA exhibits an almost linear temperature dependence to within TN±1K, and then changes discontinuously, followed by another almost linear dependence. The spectra of the paraelectric and antiferroelectric phases coexist around the TN. The sharp anomaly around TN implies that the NH4^+ ions undergo a displacive transition, whereas the protons in the O-HO bonds undergo an order-disorder transition. The ^15N data thus support a mixed order-disorder-displacive mechanism for this transition. The ^15N data on ADP exhibit somewhat different behavior. ^31P CPMAS measurements will also be presented and discussed in terms of the above model.

  5. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; ...

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  6. 1H-NMR and 13C-NMR lipid profiles of human renal tissues.

    PubMed

    Tugnoli, V; Bottura, G; Fini, G; Reggiani, A; Tinti, A; Trinchero, A; Tosi, M R

    2003-01-01

    Lipids from human renal tissues are studied by means of (1)H- and (13)C-NMR spectroscopy. The total lipid fractions obtained from healthy kidneys, malignant renal cell carcinomas, and benign oncocytomas are characterized and analyzed to elucidate the main differences between the functional and neoplastic tissues. In all cases the lipid components are well identified. The healthy kidney is characterized by high amounts of triglycerides and the presence of cholesterol in its free form. On the contrary, renal cell carcinomas contain high amounts of cholesterol that are almost completely esterified as oleate, suggesting an intracellular localization of the cholesteryl esters synthesis. Cholesteryl esters are considered markers of renal cell carcinomas, thus supporting recent theories that these compounds play a leading role in cell proliferation. Oncocytomas are particularly rich in phosphatidylcholine and, analogous to the healthy kidney, are completely lacking in cholesteryl esters. Healthy kidneys and oncocytomas appear to have other similarities if compared with renal cell carcinomas: a very high fatty acyl/cholesterol ratio, the presence of dolichols, and a higher grade of unsaturation. The (13)C data suggest a new method for the direct evaluation of the saturated/unsaturated fatty acyl ratio.

  7. Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.

    PubMed

    Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

    2013-01-01

    Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately σ: 9.3 derived from H-16 of carthamin to those of the HMD signal at σ: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable.

  8. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  9. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  10. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  11. 31P NMR spectroscopy in the quality control and authentication of extra-virgin olive oil: a review of recent progress.

    PubMed

    Dais, Photis; Spyros, Apostolos

    2007-05-01

    This review is a brief account on the application of a novel methodology to the quality control and authentication of extra-virgin olive oil. This methodology is based on the derivatization of the labile hydrogens of functional groups, such as hydroxyl and carboxyl groups, of olive oil constituents with the phosphorus reagent 2-chloro-4,4,5,5-tetramethyldioxaphospholane, and the use of the (31)P chemical shifts to identify the phosphitylated compounds. Various experimental aspects such as pertinent instrumentation, sample preparation, acquisition parameters and properties of the phosphorus reagent are reviewed. The strategy to assign the (31)P signals of the phosphitylated model compounds and olive oil constituents by employing 1D and 2D NMR experiments is presented. Finally, the capability of this technique to assess the quality and the genuineness of extra-virgin olive oil and to detect fraud is discussed.

  12. 31P and 19F NMR studies of glycophorin-reconstituted membranes: preferential interaction of glycophorin with phosphatidylserine

    SciTech Connect

    Ong, R.L.

    1984-01-01

    Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including 31P and 19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin. 31P and 19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.

  13. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  14. 1H NMR quantitative determination of photosynthetic pigments from green beans (Phaseolus vulgaris L.).

    PubMed

    Valverde, Juan; This, Hervé

    2008-01-23

    Using 1H nuclear magnetic resonance spectroscopy (1D and 2D), the two types of photosynthetic pigments (chlorophylls, their derivatives, and carotenoids) of "green beans" (immature pods of Phaseolus vulgaris L.) were analyzed. Compared to other analytical methods (light spectroscopy or chromatography), 1H NMR spectroscopy is a fast analytical way that provides more information on chlorophyll derivatives (allomers and epimers) than ultraviolet-visible spectroscopy. Moreover, it gives a large amount of data without prior chromatographic separation.

  15. Conformational studies by 1H and 13C NMR of lisinopril

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishi, Tomoko

    1993-10-01

    Lisinopril, N-N-[( s-1-carboxy-3-phenylpropyl]- L-lysyl- L-proline) (MK-521), is an inhibitor of angiotensin-converting enzyme and a new drug for the treatment of hypertension. 1H and 13C NMR studies have shown that the s-cis equilibrium about the amide bond is strongly dependent on the configuration of the chiral centres. Vicinal coupling constants of stereochemical significance were obtained in deuterated solvent using NMR techniques. Comparison with values calculated for lisinopril using potential energy calculations and NMR show that lisinopril exists in preferred optimum conformation in solution.

  16. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  17. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  18. Determination of Three-Bond1H3‧-31P Couplings in Nucleic Acids and Protein-Nucleic Acid Complexes by QuantitativeJCorrelation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Clore, G. Marius; Murphy, Elizabeth C.; Gronenborn, Angela M.; Bax, Ad

    1998-09-01

    A new sensitive two-dimensional quantitativeJcorrelation experiment is described for measuring3JH3‧-Pcouplings in nucleic acids and protein-nucleic acid complexes. The method is based on measuring the change in intensity of the1H-1H cross peaks in a constant-time1H-1H COSY experiment which occurs in the presence and absence of3JH3‧-Pdephasing during the constant-time evolution period. For protein-nucleic acid complexes where the protein is13C-labeled but the nucleic acid is not,12C-filtering is readily achieved by the application of a series of13C purge pulses during the constant time evolution period without any loss of signal-to-noise of the nucleic acid cross peaks. The method is demonstrated for the Dickerson DNA dodecamer and a 19 kDa complex of the transcription factor SRY with a 14mer DNA duplex. The same approach should be equally applicable to numerous other problems, including the measurement ofJH-Cdcouplings in cadmium-ligated proteins, or3JCHcouplings in other selectively enriched compounds.

  19. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  20. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.

  1. Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues.

    PubMed

    Krucker, Manfred; Lienau, Annette; Putzbach, Karsten; Grynbaum, Marc David; Schuler, Paul; Albert, Klaus

    2004-05-01

    Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.

  2. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  3. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  4. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    NASA Astrophysics Data System (ADS)

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  5. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae.

    PubMed

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P; Ferrier-Pagès, Christine; Grover, Renaud

    2016-02-23

    (31)P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on (31)P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ.

  6. Probing the PI3K/Akt/mTor pathway using 31P-NMR spectroscopy: routes to glycogen synthase kinase 3

    PubMed Central

    Phyu, Su M.; Tseng, Chih-Chung; Fleming, Ian N.; Smith, Tim A. D.

    2016-01-01

    Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5′-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways. PMID:27811956

  7. On the use of 31P NMR for the quantification of hydrosoluble phosphorus-containing compounds in coral host tissues and cultured zooxanthellae

    PubMed Central

    Godinot, Claire; Gaysinski, Marc; Thomas, Olivier P.; Ferrier-Pagès, Christine; Grover, Renaud

    2016-01-01

    31P Nuclear Magnetic Resonance (NMR) was assessed to investigate the phosphorus-containing compounds present in the tissues of the scleractinian coral Stylophora pistillata as well as of cultured zooxanthellae (CZ). Results showed that phosphorus-containing compounds observed in CZ were mainly phosphate and phosphate esters. Phosphate accounted for 19 ± 2% of the total phosphorus compounds observed in CZ maintained under low P-levels (0.02 μM). Adding 5 mM of dissolved inorganic phosphorus (KH2PO4) to the CZ culture medium led to a 3.1-fold increase in intracellular phosphate, while adding 5 mM of dissolved organic phosphorus led to a reduction in the concentration of phosphorus compounds, including a 2.5-fold intracellular phosphate decrease. In sharp contrast to zooxanthellae, the host mainly contained phosphonates, and to a lesser extent, phosphate esters and phosphate. Two-months of host starvation decreased the phosphate content by 2.4 fold, while bleaching of fed corals did not modify this content. Based on 31P NMR analyses, this study highlights the importance of phosphonates in the composition of coral host tissues, and illustrates the impact of phosphorus availability on the phosphorus composition of host tissues and CZ, both through feeding of the host and inorganic phosphorus enrichment of the CZ. PMID:26902733

  8. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-09

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  9. In vivo 31P NMR Study of the Metabolism of Murine Mammary 16/C Adenocarcinoma and Its Response to Chemotherapy, X-Radiation, and Hyperthermia

    NASA Astrophysics Data System (ADS)

    Evanochko, W. T.; Ng, T. C.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    1983-01-01

    31P NMR spectroscopy with surface coils has been used to monitor, in vivo, the phosphate metabolism of subcutaneously implanted mammary 16/C adenocarcinoma in C3H/He mice. This model tumor was studied during untreated tumor growth and after treatment with adriamycin, hyperthermia, and x-radiation. The mammary 16/C tumor exhibited a Gompertzian growth pattern. Levels of high-energy phosphate metabolites--phosphocreatine and ATP--decreased with increases in tumor mass. There was a concomitant increase in the level of Pi and a decrease in the apparent pH of the tumor. These spectral changes appear to reflect changes in tumor vascularization that accompany tumor growth, the tumor becoming progressively more hypoxic. Partial response of this tumor to chemotherapy with adriamycin was reflected in a small but measurable increase in the phosphocreatine resonance, a decrease in Pi, and a return of the intratumor pH to neutral. Hyperthermia resulted in progressive conversion of the 31P NMR spectrum to that of a dead tumor (high levels of Pi, small levels of residual sugar phosphates and pyridine dinucleotides, and acidic pH). X-irradiation (14.0 Gy) led to disappearance of the phosphocreatine peak within 15 min of treatment. Subsequently, this resonance grew back beyond its pretreatment level. As the tumor receded, its spectrum reflected the characteristics of aerobically metabolizing tissue (high levels of phosphocreatine and ATP and low levels of Pi and sugar phosphates).

  10. 31P Solid State NMR Studies of ZrP, Mg3P2, and CdPS3

    DTIC Science & Technology

    1988-01-01

    valence , in contrast to that in ZrP, Mg3P2, and MgP4. The 3 1 p solid state NMR spectra are shown in Figure 9. The MAS spectrum reveals a single...orange crystals were recovered from hot concentrated HCa . In one experi- RESULTS AND DISCUSSION ment, brilliant black polyhedral crystals of ZnSnP, were

  11. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd.

  12. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  13. In vitro (31)P NMR studies on biopsy skeletal muscle samples compared with meat quality of normal and heterozygous malignant hyperthermia pigs.

    PubMed

    Lahucky, R; Baulain, U; Henning, M; Demo, P; Krska, P; Liptaj, T

    2002-07-01

    Phosphorus nuclear magnetic resonance ((31)P NMR) measurements were made to determine muscle energetic metabolism on muscle biopsy samples of heterozygote malignant hyperthermia (Nn) and normal (NN) pigs DNA tested on occurrence of mutation in RYR 1 gene. Biopsy samples (approx. 1 g) were obtained by spring-loaded biopsy instrument (Biotech, Slovakia) from Longissimus dorsi (LD) muscle at 80 kg live weight. The spectra were recorded at 121 MHz on a VXR 300 (Varian) spectrometer in 10 mm diameter tube (maintained at 39 °C) for 50 min. pH of bioptates after NMR measurements were also measured at 60 min. The changes in inorganic phosphate (Pi), phosophocreatine (PCr) and adenosine triphosphate (ATP) were faster in heterozygote malignant hyperthermia (MH; 29 crossbred White Meaty×Pietrain) than in normal (13 Duroc, Yorkshire and White Meaty). The values of PCr at 20 min and pH at 60 min after taking biopsy allowed discrimination between NN and Nn pigs and significant (P<0.05) differences were also found between two subgroups in heterozygote MH pigs with different rate of post mortem muscle metabolism. The values of PCr and pH as measured at definite time on the biopsies, were significantly (P<0.05) correlated with the rate of post mortem metabolism (pH) and with meat quality traits (r approx. 0.4-0.6). The (31)P NMR measurements pointed to impaired muscle energetic metabolism connected with the occurrence of mutation on the RYR 1 gene in heterozygote MH pigs.

  14. Structural and {sup 31}P NMR investigation of Bi(MM'){sub 2}PO{sub 6} statistic solid solutions: Deconvolution of lattice constraints and cationic influences

    SciTech Connect

    Colmont, Marie; Delevoye, Laurent; Ketatni, El Mostafa; Montagne, Lionel; Mentre, Olivier . E-mail: mentre@ensc-lille.fr

    2006-07-15

    Two solid solutions BiM{sub x} Mg{sub (2-x)}PO{sub 6} (with M {sup 2+}=Zn or Cd) have been studied through {sup 31}P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn {sub x} Mg{sub (2-x)}PO{sub 6} does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn{sup 2+} for Mg{sup 2+} substitution. On the other hand, the Cd{sup 2+} for Mg{sup 2+} substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/1Cd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd{sup 2+}/Mg{sup 2+} mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8 T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a {sup 2} effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable. - Graphical abstract: First (CdMg){sub 4} cationic sphere influence on the {sup 31}P NMR signal in Bi(Cd,Mg){sub 2}PO{sub 6}. Display Omitted.

  15. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy.

    PubMed Central

    Naito, A; Nagao, T; Norisada, K; Mizuno, T; Tuzi, S; Saitô, H

    2000-01-01

    The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer. PMID:10777736

  16. Combining solid-state and solution-state 31P NMR to study in vivo phosphorus metabolism.

    PubMed Central

    Cholli, A L; Yamane, T; Jelinski, L W

    1985-01-01

    Otherwise unavailable information concerning the distribution of phosphorylated compounds in biological systems is obtained by a combined solid-state/solution-state NMR approach, illustrated here for oocytes from Rana pipiens. General methodology is developed, and further extensions are proposed. The following conclusions pertain to the specific system under examination. (i) Nucleoside phosphates can be observed by magic-angle sample spinning of the lyophilized material. (ii) The solid-state NMR technique of dipolar decoupling provides no additional resolution of the phospholipid and phosphoprotein components of the yolk. However, cellular death produces sufficient pH changes to cause the phospholipid and protein phosphate peaks to become resolvable. The concentration of nucleoside phosphates also decreases. (iii) The phospholipid and phosphoprotein components are shown by computer simulation to be present in a ratio of 40:60, respectively. (iv) The amounts of inorganic phosphate, nucleoside phosphates, and sugar phosphates are determined by solution-state NMR observation of the perchloric acid extract of the oocytes. PMID:3871524

  17. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  18. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  19. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  20. (1) H and (13) C NMR characterization of new cycloartane triterpenes from Mangifera indica.

    PubMed

    Escobedo-Martínez, Carolina; Concepción Lozada, M; Hernández-Ortega, Simón; Villarreal, María Luisa; Gnecco, Dino; Enríquez, Raúl G; Reynolds, William

    2012-01-01

    From the stem bark of Mangifera indica, seven cycloartane-type secondary metabolites were isolated. Compound 1 has been isolated for the first time from M. indica, whereas compounds 2 (2a and 2b, as an epimeric mixture), 3, and 4 are new triterpenoid-type cycloartanes. Unambiguous (13) C and (1) H NMR assignments for these compounds and the known compounds mangiferonic acid (compound 5), isomangiferolic acid (compound 6), ambolic acid (compound 7), and friedelin (compound 8) are reported; the latter because full NMR data for these compounds are not available in the literature.

  1. Investigations of La Rioja terroir for wine production using 1H NMR metabolomics.

    PubMed

    López-Rituerto, Eva; Savorani, Francesco; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M; Engelsen, Søren Balling

    2012-04-04

    In this study, La Rioja wine terroir was investigated by the use of (1)H NMR metabolomics on must and wine samples. Rioja is a small wine region in central northern Spain which can geographically be divided into three subareas (Rioja Alta, Rioja Baja, and Rioja Alavesa). The winemaking process from must, through alcoholic and malolactic fermentation, was followed by NMR metabolomics and chemometrics of nine wineries in the Rioja subareas (terroirs). Application of interval extended canonical variate analysis (iECVA) showed discriminative power between wineries which are geographically very close. Isopentanol and isobutanol compounds were found to be key biomarkers for this differentiation.

  2. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  3. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Polissiou, Moschos G; Consonni, Roberto

    2015-04-15

    In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w).

  4. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology.

  5. Inclusion complex of benzocaine and β-cyclodextrin: 1H NMR and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan

    2013-11-01

    The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.

  6. 1H NMR profiling as an approach to differentiate conventionally and organically grown tomatoes.

    PubMed

    Hohmann, Monika; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2014-08-20

    This study describes the approach of (1)H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between (1)H NMR spectra of organically and conventionally grown tomatoes.

  7. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    PubMed

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  8. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    SciTech Connect

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.

  9. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  10. Theoretical and experimental investigation of the 1H NMR spectrum of putrescine

    NASA Astrophysics Data System (ADS)

    Allouche, A. R.; Graveron-Demilly, D.; Fauvelle, F.; Aubert-Frécon, M.

    2008-12-01

    Chemical shifts δ and spin-spin coupling constants J have been calculated for the putrescine molecule, a polyamine present in prostate tissue, through a DFT/B3LYP/6-311++G(d,p)/PCM/(GIAO) approach, which has been shown to be accurate in previous work. From δ and J values, calculated for the first time for the isolated and the solvated putrescine, the 1H NMR spectra have been simulated. Comparisons between the calculated and the experimental NMR spectra at 400 MHz show a good agreement and allow to propose reliable values for the NMR spin Hamiltonian parameters of putrescine to be used as good starting values for further quantitation methods of metabolites in prostate tissue.

  11. Detection of Apoptosis and Necrosis in Normal Human Lung Cells Using 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Chwen-Ming; Ko, Wun-Chang; Yang, Liang-Yo; Lin, Chien-Ju; Wu, Jui-Sheng; Lo, Tsui-Yun; Wang, Shwu-Huey; Chen, Chien-Tsu

    2005-05-01

    This study aimed to detect apoptosis and necrosis in MRC-5, a normal human lung cell line, by using noninvasive proton nuclear magnetic resonance (1H NMR). Live MRC-5 cells were processed first for 1H NMR spectroscopy; subsequently their types and the percentage of cell death were assessed on a flow cytometer. Cadmium (Cd) and mercury (Hg) induced apoptosis and necrosis in MRC-5 cells, respectively, as revealed by phosphatidylserine externalization on a flow cytometer. The spectral intensity ratio of methylene (CH2) resonance (at 1.3 ppm) to methyl (CH3) resonance (at 0.9 ppm) was directly proportional to the percentage of apoptosis and strongly and positively correlated with PI staining after Cd treatment (r2 = 0.9868, P < 0.01). In contrast, this ratio only increased slightly within 2-h Hg treatment, and longer Hg exposure failed to produce further increase. Following 2-h Hg exposure, the spectral intensity of choline resonance (at 3.2 ppm) was abolished, but this phenomenon was absent in Cd-induced apoptosis. These findings together demonstrate that 1H NMR is a novel tool with a quantitative potential to distinguish apoptosis from necrosis as early as the onset of cell death in normal human lung cells.

  12. (1)H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool.

    PubMed

    Zira, Athina N; Theocharis, Stamatios E; Mitropoulos, Dionisios; Migdalis, Vasilios; Mikros, Emmanuel

    2010-08-06

    (1)H NMR based metabonomic approach was applied in order to monitor the alterations of plasma metabolic profile in Renal Cell Carcinoma (RCC) patients and controls. (1)H NMR spectra of plasma samples from 32 RCC patients and 13 controls (patients exhibiting benign urologic disease) were recorded and analyzed using multivariate statistical techniques. Alterations in the levels of LDL/VLDL, NAC, lactate, and choline were observed between RCC patients and controls discriminating these groups in Principal Component Analysis (PCA) plots. Post OSC PLS-DA presented a satisfactory clustering between T1 with T3 RCC patients. Decrease in plasma lipid concentrations in RCC patients was verified using conventional clinical chemistry analysis. The results suggest that combination of (1)H NMR spectroscopy with PCA has potential in cancer diagnosis; however, a limitation of the method to monitor RCC is that major biomarkers revealed (lipoproteins and choline) in this metabolic profile are not unique to RCC but may be the result of the presence of any malignancy.

  13. Investigation of 1H NMR chemical shifts of organic dye with hydrogen bonds and ring currents.

    PubMed

    Park, Sung Soo; Won, Yong Sun; Lee, Woojin; Kim, Jae Hong

    2011-04-07

    The (1)H NMR chemical shifts were theoretically computed for the organic dyes 2-(2,6-dimethyl-4H-pyran-4-ylidene)-malononitrile (1), cyano-(2,6-dimethyl-4H-pyran-4-ylidene)-acetic acid methyl ester (2), 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-malononitrile (3), and methyl 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate (4) at the GIAO/B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory. Moreover, the intramolecular rotational barriers of the molecules were calculated to evaluate the internal flexibility with respect to the torsional degrees of freedom, and the nuclear-independent chemical shifts (NICS) were employed to analyze the ring currents. The difference was explained in terms of intramolecular hydrogen bonds and ring currents of the molecules. The (1)H NMR spectra were reproduced by experiments for the comparison with computationally constructed data. Our results suggest a good guideline in interpreting (1)H NMR chemical shifts using computational methods and furthermore a reliable perspective for designing molecular structures.

  14. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  15. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  16. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  17. Applications of high-resolution 1H solid-state NMR.

    PubMed

    Brown, Steven P

    2012-02-01

    This article reviews the large increase in applications of high-resolution (1)H magic-angle spinning (MAS) solid-state NMR, in particular two-dimensional heteronuclear and homonuclear (double-quantum and spin-diffusion NOESY-like exchange) experiments, in the last five years. These applications benefit from faster MAS frequencies (up to 80 kHz), higher magnetic fields (up to 1 GHz) and pulse sequence developments (e.g., homonuclear decoupling sequences applicable under moderate and fast MAS). (1)H solid-state NMR techniques are shown to provide unique structural insight for a diverse range of systems including pharmaceuticals, self-assembled supramolecular structures and silica-based inorganic-organic materials, such as microporous and mesoporous materials and heterogeneous organometallic catalysts, for which single-crystal diffraction structures cannot be obtained. The power of NMR crystallography approaches that combine experiment with first-principles calculations of NMR parameters (notably using the GIPAW approach) are demonstrated, e.g., to yield quantitative insight into hydrogen-bonding and aromatic CH-π interactions, as well as to generate trial three-dimensional packing arrangements. It is shown how temperature-dependent changes in the (1)H chemical shift, linewidth and DQ-filtered signal intensity can be analysed to determine the thermodynamics and kinetics of molecular level processes, such as the making and breaking of hydrogen bonds, with particular application to proton-conducting materials. Other applications to polymers and biopolymers, inorganic compounds and bioinorganic systems, paramagnetic compounds and proteins are presented. The potential of new technological advances such as DNP methods and new microcoil designs is described.

  18. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  19. (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice.

    PubMed

    Li, Matthew; Vassiliou, Christophoros C; Colucci, Lina A; Cima, Michael J

    2015-08-01

    Dehydration is a prevalent pathology, where loss of bodily water can result in variable symptoms. Symptoms can range from simple thirst to dire scenarios involving loss of consciousness. Clinical methods exist that assess dehydration from qualitative weight changes to more quantitative osmolality measurements. These methods are imprecise, invasive, and/or easily confounded, despite being practiced clinically. We investigate a non-invasive, non-imaging (1)H NMR method of assessing dehydration that attempts to address issues with existing clinical methods. Dehydration was achieved by exposing mice (n = 16) to a thermally elevated environment (37 °C) for up to 7.5 h (0.11-13% weight loss). Whole body NMR measurements were made using a Bruker LF50 BCA-Analyzer before and after dehydration. Physical lean tissue, adipose, and free water compartment approximations had NMR values extracted from relaxation data through a multi-exponential fitting method. Changes in before/after NMR values were compared with clinically practiced metrics of weight loss (percent dehydration) as well as blood and urine osmolality. A linear correlation between tissue relaxometry and both animal percent dehydration and urine osmolality was observed in lean tissue, but not adipose or free fluids. Calculated R(2) values for percent dehydration were 0.8619 (lean, P < 0.0001), 0.5609 (adipose, P = 0.0008), and 0.0644 (free fluids, P = 0.3445). R(2) values for urine osmolality were 0.7760 (lean, P < 0.0001), 0.5005 (adipose, P = 0.0022), and 0.0568 (free fluids, P = 0.3739). These results suggest that non-imaging (1)H NMR methods are capable of non-invasively assessing dehydration in live animals.

  20. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    SciTech Connect

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  1. In vivo sup 23 Na and sup 31 P NMR measurement of a tonoplast Na sup + /H sup + exchange process and its characteristics in two barley cultivars

    SciTech Connect

    Fan, T.W.M.; Norlyn, J.; Epstein, E. ); Higashi, R.M. )

    1989-12-01

    A Na{sup +} uptake-associated vacuolar alkalinization was observed in roots of two barley cultivars (Arivat and the more salt-tolerant California Mariout) by using {sup 23}Na and {sup 31}P in vivo NMR spectroscopy. A NaCl uptake-associated broadening was also noted for both vacuolar P{sub i} and intracellular Na NMR peaks, consistent with Na{sup +} uptake into the same compartment as the vacuolar P{sub i}. A close coupling of Na{sup +} with H{sup +} transport (presumably the Na{sup +}/H{sup +} antiport) in vivo was evidence by qualitative and quantitative correlations between Na{sup +} accumulation and vacuolar alkalinization for both cultivars. Prolongation of the low NaCl pretreatment (30 mM) increased the activity of the putative antiport in Arivat but reduced it in California Mariout. This putative antiport also showed a dependence on NaCl concentration for California Mariout but not for Arivat. No cytoplasmic acidification accompanied the antiporter activity for either cultivar. The response of adenosine phosphates indicated that ATP utilization exceeded the capacity for ATP synthesis in Arivat, but the two processes seemed balanced in California Mariout. These comparisons provide clues to the role of the tonoplast Na{sup +}/H{sup +} antiport and compensatory cytoplasmic adjustments including pH, osymolytes, and energy phosphates in governing the different salt tolerance of the two cultivars.

  2. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy

    PubMed Central

    Tikunov, Andrey P.; Johnson, Christopher B.; Lee, Haakil; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding 1H NMR peak assignments for future NMR-based metabolomic studies in oysters. PMID:21116407

  3. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection.

    PubMed

    Su, Yongchao; Andreas, Loren; Griffin, Robert G

    2015-01-01

    Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.

  4. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  5. [Study on three different species tibetan medicine sea buckthorn by 1H-NMR-based metabonomics].

    PubMed

    Su, Yong-Wen; Tan, Er; Zhang, Jing; You, Jia-Li; Liu, Yue; Liu, Chuan; Zhou, Xiang-Dong; Zhang, Yi

    2014-11-01

    The 1H-NMR fingerprints of three different species tibetan medicine sea buckthorn were established by 1H-HMR metabolomics to find out different motablism which could provide a new method for the quality evaluation of sea buckthorn. The obtained free induction decay (FID) signal will be imported into MestReNova software and into divide segments. The data will be normalized and processed by principal component analysis and.partial least squares discriminant analysis to perform pattern recognition. The results showed that 25 metabolites belonging to different chemical types were detected from sea buckthorn,including flavonoids, triterpenoids, amino acids, carbohydrates, fatty acids, etc. PCA and PLS-DA analysis showed three different varietiest of sea buckthorn that can be clearly separated by the content of L-quebrachitol, malic acid and some unidentified sugars, which can be used as the differences metabolites of three species of sea buckthorn. 1H-NMR-based metabonomies method had a holistic characteristic with sample preparation and handling. The results of this study can offer an important reference for the species identification and quality control of sea buckthorn.

  6. Nanoliter-volume 1H NMR detection using periodic stopped-flow capillary electrophoresis.

    PubMed

    Olson, D L; Lacey, M E; Webb, A G; Sweedler, J V

    1999-08-01

    Recent advances in the analysis of nanoliter volumes using 1H NMR microcoils have led to the application of microcoils as detectors for capillary electrophoresis (CE). Custom NMR probes consisting of 1-mm-long solenoidal microcoils are fabricated from 50-micron diameter wire wrapped around capillaries to create nanoliter-volume detection cells. For geometries in which the capillary and static magnetic field are not parallel, the electrophoretic current induces a magnetic field gradient which degrades the spectroscopic information obtainable from CE/NMR. To reduce this effect and allow longer analyte observation times, the electrophoretic voltage is periodically interrupted so that 1-min high-resolution NMR spectra are obtained for every 15 s of applied voltage. The limits of detection (LODs; based on S/N = 3) for CE/NMR for arginine are 57 ng (330 pmol; 31 mM) and for triethylamine (TEA) are 9 ng (88 pmol; 11 mM). Field-amplified stacking is used for sample preconcentration. As one example, a 290-nL injection of a mixture of arginine and TEA both at 50 mM (15 nmol of each injected) is stacked severalfold for improved concentration LODs while achieving a separation efficiency greater than 50,000. Dissolving a sample in a mixture of 10% H2O/90% D2O allows H2O to serve as the nearly ideal neutral tracer and allows direct observation of the parabolic and flat flow profiles associated with gravimetric and electrokinetic injection, respectively. The unique capabilities of CE and the rich spectral information provided by NMR spectroscopy combine to yield a valuable analytical tool, especially in the study of mass-limited samples.

  7. Multiple quantum correlated spectroscopy revamped by asymmetric z-gradient echo detection signal intensity as a function of the read pulse flip angle as verified by heteronuclear 1H/31P experiments.

    PubMed

    Jiang, Bin; Liu, Huili; Liu, Maili; Ye, Chaohui; Mao, Xi-an

    2007-02-07

    Heteronuclear multiple quantum (n=+/-0 and n=+/-2) correlated spectroscopy revamped by asymmetric z-gradient echo detection (CRAZED) experiments were performed on the spins 31P and 1H in a H3PO4 solution in order to determine the optimum flip angle for the read pulse. It has been shown that for the negative quantum signals, the maximum signals appear at beta=0, and for the positive quantum signals, the maximum signals appear at beta=pi. The CRAZED signals were compared to the single quantum signals in two-pulse two-gradient experiments. It is found that the CRAZED signals can also be distinguished into gradient echoes and spin echoes. The gradient-echo-type CRAZED signal requires beta=0 and the spin-echo-type CRAZED signal requires beta=pi for maximum echo intensities, in the same way as in single quantum experiments.

  8. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-05

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product.

  9. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  10. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    PubMed Central

    Tavel, Laurette; Fontana, Francesca; Garcia Manteiga, Josè Manuel; Mari, Silvia; Mariani, Elisabetta; Caneva, Enrico; Sitia, Roberto; Camnasio, Francesco; Marcatti, Magda; Cenci, Simone; Musco, Giovanna

    2016-01-01

    Multiple myeloma (MM) is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions. PMID:27809247

  11. 1H-NMR-based metabolomic study on toxicity of methomyl and methidathion in fish.

    PubMed

    Yoon, Dahye; Kim, Siwon; Lee, Minji; Yoon, Changshin; Kim, Suhkmann

    2016-12-01

    A (1)H-nuclear magnetic resonance (NMR) spectroscopy with multivariate analysis was applied to detect the toxicity of antiacetylcholinesterase insecticides, methomyl (methyl (1E)-N-(methylcarbamoyloxy)ethanimidothioate) and methidathion (3-(dimethoxyphosphinothioyl sulfanylmethyl)-5-methoxy-1,3,4-thiadiazol-2-one), using zebrafish (Danio rerio) and Chinese bleak (Aphyocypris chinensis). Generally, methomyl and methidathion have been believed not to highly accumulate in fish tissues. However, these pesticides showed their toxicity by altering patterns of whole-body metabolites in neurotransmitter balance, energy metabolism, oxidative stress, and muscle maintenance in low concentrations. We used Pearson correlation analysis to contextualize the metabolic markers in pesticide treated groups. We observed that the positive correlations of choline with acetate and betaine in untreated control were shifted to null correlations showing acetylcholinesterase specific toxicity. This research demonstrated the applicability and potential of NMR metabolomics in detecting toxic effects of insecticide with a modicum of concentrations in aquatic environment.

  12. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  13. Structural analysis of complex saponins of Balanites aegyptiaca by 800 MHz 1H NMR spectroscopy.

    PubMed

    Staerk, Dan; Chapagain, Bishnu P; Lindin, Therese; Wiesman, Zeev; Jaroszewski, Jerzy W

    2006-10-01

    The main saponin (1) present in the mesocarp of Balanites aegyptiaca fruit is a mixture of 22R and 22S epimers of 26-(O-beta-D-glucopyranosyl)-3-beta-[4-O-(beta-D-glucopyranosyl)-2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyloxy]-22,26-dihydroxyfurost-5-ene. This structure differs from a previously reported saponin isolated from this source by the site of attachment of the rhamnosyl residue, and presumably represents a structural revision of the latter. The main saponin (2) present in the kernel is a xylopyranosyl derivative of 1. The use of high-field NMR enabled the practically complete assignment of 1H and 13C chemical shifts of these complex saponins, existing as a mixture of C-22 epimers. Moreover, the work represents a new approach to structural elucidation of saponins: direct preparative-scale HPLC-RID of crude extracts followed by high-field NMR investigations supported by ESI-MSn.

  14. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  15. Correcting human heart 31P NMR spectra for partial saturation. Evidence that saturation factors for PCr/ATP are homogeneous in normal and disease states

    NASA Astrophysics Data System (ADS)

    Bottomley, Paul A.; Hardy, Christopher J.; Weiss, Robert G.

    Heart PCr/ATP ratios measured from spatially localized 31P NMR spectra can be corrected for partial saturation effects using saturation factors derived from unlocalized chest surface-coil spectra acquired at the heart rate and approximate Ernst angle for phosphor creatine (PCr) and again under fully relaxed conditions during each 31P exam. To validate this approach in studies of normal and disease states where the possibility of heterogeneity in metabolite T1 values between both chest muscle and heart and normal and disease states exists, the properties of saturation factors for metabolite ratios were investigated theoretically under conditions applicable in typical cardiac spectroscopy exams and empirically using data from 82 cardiac 31P exams in six study groups comprising normal controls ( n = 19) and patients with dilated ( n = 20) and hypertrophic ( n = 5) cardiomyopathy, coronary artery disease ( n = 16), heart transplants ( n = 19), and valvular heart disease ( n = 3). When TR ≪ T1,(PCr), with T1(PCr) ⩾ T1(ATP), the saturation factor for PCr/ATP lies in the range 1.5 ± 0.5, regardless of the T1 values. The precise value depends on the ratio of metabolite T1 values rather than their absolute values and is insensitive to modest changes in TR. Published data suggest that the metabolite T1 ratio is the same in heart and muscle. Our empirical data reveal that the saturation factors do not vary significantly with disease state, nor with the relative fractions of muscle and heart contributing to the chest surface-coil spectra. Also, the corrected myocardial PCr/ATP ratios in each normal or disease state bear no correlation with the corresponding saturation factors nor the fraction of muscle in the unlocalized chest spectra. However, application of the saturation correction (mean value, 1.36 ± 0.03 SE) significantly reduced scatter in myocardial PCr/ATP data by 14 ± 11% (SD) ( p ⩽ 0.05). The findings suggest that the relative T1 values of PCr and ATP are

  16. [1H-NMR studies of the ACTH-like immunoregulatory peptides].

    PubMed

    Khristoforov, V S; Kutyshenko, V P; Abramov, V M; Zav'ialov, V P

    1997-01-01

    A comparative study of the conformational and dynamics properties of the ACTH-like linear peptides, sequences of which correspond to amino acid residues 11-20 of the heavy chain of human immunoglobulin G1 Eu, residues 78-85 of human pro-interleukin-1 alpha and site 10-18 of human ACTH, was performed in aqueous solution and dimethylsulfoxide by 1H-NMR spectroscopy at 400 MHz. The peptides were shown to possess an unordered unfolded flexible conformation in aqueous solution. The revealed structural and dynamic features of the peptides are discussed together with biological activity of this class of compounds.

  17. 1H NMR investigation of self-association of vanillin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bogdan, Mircea; Floare, Calin G.; Pîrnau, Adrian

    2009-08-01

    A self-association of vanillin have been studied by 1H NMR spectroscopy using the analysis of proton chemical shifts changes in aqueous solution as a function of concentration. The experimental results have been analysed using indefinite non-cooperative and cooperative models of molecular self-association, enabling the determination of equilibrium constants, parameters of cooperativity and the limiting values of vanillin proton chemical shifts in the complex. It was found that the dimer formation creates energetically favourable conditions for subsequent molecular association.

  18. High-resolution /sup 1/H NMR study of the solution structure of alamethicin

    SciTech Connect

    Esposito, G.; Carver, J.A.; Boyd, J.; Campbell, I.D.

    1987-02-24

    A /sup 1/H NMR study of the peptide alamethicin, which forms voltage-gated ion channels in membranes, is described. The molecule was studied in methanol as a function of temperature and pH. A complete assignment of the spectra is given, including several stereospecific assignments. Alamethicin was found to have a structure substantially similar to the crystal although, in solution, the C-terminal dipeptide adopts a somewhat extended conformation. The overall conformation was insensitive to the ionization of the side chain of the ionizable group, Glu-18.

  19. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts

    PubMed Central

    Sripakdeevong, Parin; Cevec, Mirko; Chang, Andrew T.; Erat, Michèle C.; Ziegeler, Melanie; Zhao, Qin; Fox, George E.; Gao, Xiaolian; Kennedy, Scott D.; Kierzek, Ryszard; Nikonowicz, Edward P.; Schwalbe, Harald; Sigel, Roland K. O.; Turner, Douglas H.; Das, Rhiju

    2014-01-01

    Structured non-coding RNAs underline fundamental cellular processes, but determining their 3D structures remains challenging. We demonstrate herein that integrating NMR 1H chemical shift data with Rosetta de novo modeling can consistently return high-resolution RNA structures. On a benchmark set of 23 noncanonical RNA motifs, including 11 blind targets, Chemical-Shift-ROSETTA for RNA (CS-ROSETTA-RNA) recovered the experimental structures with high accuracy (0.6 to 2.0 Å all-heavy-atom rmsd) in 18 cases. PMID:24584194

  20. 1H and 13C NMR study on some substituted azolidine derivatives

    NASA Astrophysics Data System (ADS)

    Cerioni, Giovanni; Cristiani, Franco; Devillanova, Francesco A.; Diaz, Angelo; Verani, Gaetano

    The 1H and 13C NMR spectra carried out on R overlineN·CH 2·CH 2·X·C O (where for R = H, X = NH, NMe, NEt, CH 2, S, O; for R = Me, X = NMe, CH 2; for R = Et, X = NEt) are reported. The comparison of these results with those obtained for the thionic and selonic isologues shows that sulphur and selenium have a greater deshielding effect on the ring than oxygen. The resonance of the carbons not involved in the π system have been correlated with the σ charges calculated by the DEL RE method.

  1. 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives

    NASA Astrophysics Data System (ADS)

    Xu, Jingkun; Hou, Jian; Zhou, Weiqiang; Nie, Guangming; Pu, Shouzhi; Zhang, Shusheng

    2006-03-01

    The existence of N sbnd H bond according to the hydrogen nuclear magnetic resonance ( 1H NMR) spectra of polyindole and its derivatives, such as poly(5-bromoindole), poly(5-cyanoindole), poly(5-nitroindole), poly(5-methylindole), proved polymerization of high-quality polyindoles, which were electrosynthesized from middle strong Lewis acid boron trifluoride diethyl etherate (BFEE) and its mixed electrolytes with additional diethyl ether, occurred at 2,3-position. The elongation of the conjugation length made the chemical shift of all the protons of polyindoles to lower field in comparison with those of monomers.

  2. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE PAGES

    Alam, Todd M.; Liao, Zuolei; Nyman, May; ...

    2016-04-27

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO2(OH)2] (α-UOH) and hydrated uranyl hydroxide [(UO2)4O(OH)6·5H2O (metaschoepite). For the metaschoepite material, proton resonances of the μ2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H–1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization of local hydrogen-bond environments in uranyl U24 capsules andmore » of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  3. Water Solvent Effect on Theoretical Evaluation of (1)H NMR Chemical Shifts: o-Methyl-Inositol Isomer.

    PubMed

    Dos Santos, Hélio F; Chagas, Marcelo A; De Souza, Leonardo A; Rocha, Willian R; De Almeida, Mauro V; Anconi, Cleber P A; De Almeida, Wagner B

    2017-04-13

    In this paper, density functional theory calculations of nuclear magnetic resonance (NMR) chemical shifts for l-quebrachitol isomer, previously studied in our group, are reported with the aim of investigating in more detail the water solvent effect on the prediction of (1)H NMR spectra. In order to include explicit water molecules, 20 water-l-quebrachitol configurations obtained from Monte Carlo simulation were selected to perform geometry optimizations using the effective fragment potential method encompassing 60 water molecules around the solute. The solvated solute optimized geometries were then used in B3LYP/6-311+G(2d,p) NMR calculations with PCM-water. The inclusion of explicit solvent in the B3LYP NMR calculations resulted in large changes in the (1)H NMR profiles. We found a remarkable improvement in the agreement with experimental NMR profiles when the explicit hydrated l-quebrachitol structure is used in B3LYP (1)H NMR calculations, yielding a mean absolute error (MAE) of only 0.07 ppm, much lower than reported previously for the gas phase optimized structure (MAE = 0.11 ppm). In addition, a very improved match between theoretical and experimental (1)H NMR spectrum measured in D2O was achieved with the new hydrated optimized l-quebrachitol structure, showing that a fine-tuning of the theoretical NMR spectra can be accomplished once solvent effects are properly considered.

  4. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  5. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.

    PubMed

    Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A

    2013-08-15

    Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively.

  6. (1)H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio).

    PubMed

    Yoon, Changshin; Yoon, Dahye; Cho, Junghee; Kim, Siwon; Lee, Heonho; Choi, Hyeonsoo; Kim, Suhkmann

    2017-04-03

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to study the response of zebrafish (Danio rerio) to increasing concentrations of bisphenol A (4,4'-(propane-2,2-diyl)diphenol, BPA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to detect aberrant metabolomic profiles after 72 h of BPA exposure at all levels tested (0.01, 0.1, and 1.0 mg/L). The OPLS-DA score plots showed that BPA exposure caused significant alterations in the metabolome. The metabolomic changes in response to BPA exposure generally exhibited nonlinear patterns, with the exception of reduced levels of several metabolites, including glutamine, inosine, lactate, and succinate. As the level of BPA exposure increased, individual metabolite patterns indicated that the zebrafish metabolome was subjected to severe oxidative stress. Interestingly, ATP levels increased significantly at all levels of BPA exposure. In the present study, we demonstrated the applicability of (1)H-NMR-based metabolomics to identify the discrete nature of metabolic changes.

  7. The molecular structure and vibrational, (1)H and (13)C NMR spectra of lidocaine hydrochloride monohydrate.

    PubMed

    Badawi, Hassan M; Förner, Wolfgang; Ali, Shaikh A

    2016-01-05

    The structure, vibrational and NMR spectra of the local anesthetic drug lidocaine hydrochloride monohydrate salt were investigated by B3LYP/6-311G(∗∗) calculations. The lidocaine·HCl·H2O salt is predicted to have the gauche structure as the predominant form at ambient temperature with NCCN and CNCC torsional angles of 110° and -123° as compared to 10° and -64°, respectively in the base lidocaine. The repulsive interaction between the two N-H bonds destabilized the gauche structure of lidocaine·HCl·H2O salt. The analysis of the observed vibrational spectra is consistent with the presence of the lidocaine salt in only one gauche conformation at room temperature. The (1)H and (13)C NMR spectra of lidocaine·HCl·H2O were interpreted by experimental and DFT calculated chemical shifts of the lidocaine salt. The RMSD between experimental and theoretical (1)H and (13)C chemical shifts for lidocaine·HCl·H2O is 2.32 and 8.21ppm, respectively.

  8. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat.

  9. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach.

    PubMed

    Dong, Ge; Wang, Junsong; Guo, Pingping; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2015-02-01

    Arisaematis Rhizoma (AR), a famous traditional Chinese medicine, has been widely used in Asia over thousands of years. Documented with noticeable toxicity in ancient books, AR has been used to treat various diseases in the clinic. Therefore, it is important to assess the toxicity of AR dynamically and holistically. In this study, a (1)H NMR-based metabolomics approach complemented with serum chemistry and histopathology has been applied to investigate the toxicity of AR. Rats were intragastrically administered with AR (0, 0.5 and 1 g kg(-1) body weight) for 30 days, and serum and urine samples were collected. Their (1)H NMR profiles were analyzed by multivariate pattern recognition techniques to denote metabolic variations induced by AR, and 13 metabolites in urine and 6 metabolites in serum were significantly altered, which suggested that disturbances in energy metabolism, perturbation of the gut microflora environment, membrane damage, folate deficiency and injury of kidneys are produced by AR. Histopathology showed a slight vacuolization of the glomerular matrix and edema of renal tubular epithelial cells in kidneys of AR administered rats, which were evidenced by increased levels of blood urea nitrogen and creatinine in serum chemistry. Our results indicated that oral administration of crude AR was found to induce slight renal toxicity. Therefore, precautions should be made to monitor the potential nephrotoxicity of AR in clinical use. The metabolomics approach provided a promising tool for the study and better understanding of TCM-induced toxicity dynamically and holistically.

  10. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  11. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  12. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.

    PubMed

    Mazzei, Pierluigi; Spaccini, Riccardo; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2013-11-13

    We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir.

  13. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy

    PubMed Central

    2012-01-01

    1H Nuclear magnetic resonance (NMR) spectroscopy (400 MHz) was used in the context of food surveillance to develop a reliable analytical tool to differentiate brands of cola beverages and to quantify selected constituents of the soft drinks. The preparation of the samples required only degassing and addition of 0.1% of TSP in D2O for locking and referencing followed by adjustment of pH to 4.5. The NMR spectra obtained can be considered as “fingerprints” and were analyzed by principal component analysis (PCA). Clusters from colas of the same brand were observed, and significant differences between premium and discount brands were found. The quantification of caffeine, acesulfame-K, aspartame, cyclamate, benzoate, hydroxymethylfurfural (HMF), sulfite ammonia caramel (E 150D), and vanillin was simultaneously possible using external calibration curves and applying TSP as internal standard. Limits of detection for caffeine, aspartame, acesulfame-K, and benzoate were 1.7, 3.5, 0.8, and 1.0 mg/L, respectively. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of soft drinks and quantification of selected constituents. PMID:22356160

  14. 1H-HRMAS NMR study of smoked Atlantic salmon (Salmo salar).

    PubMed

    Castejón, David; Villa, Palmira; Calvo, Marta M; Santa-María, Guillermo; Herraiz, Marta; Herrera, Antonio

    2010-09-01

    High-resolution magic angle spinning (HRMAS) NMR spectroscopic data of smoked Atlantic salmon (Salmo salar) were fully assigned by combination of one- and two-dimensional-HRMAS experiments. Complete representative spectra, obtained after few minutes of analysis time, revealed a large number of minor and major compounds in the sample. The methodology is limited by the low sensitivity of NMR, and therefore HRMAS only enables the determination of the most relevant components. These were fatty acids (FAs), carbohydrates, nucleoside derivatives, osmolytes, amino acids, dipeptides and organic acids. For the first time, spectra were resolved sufficiently to allow semiquantitative determination in intact muscle of the highly polyunsaturated FA 22:6 omega-3. Additionally, the feasibility of (1)H-HRMAS NMR metabolite profiling was tested to identify some bioactive compounds during storage. This profiling was carried out by the non-destructive and direct analysis (i.e. without requiring sample preparation and multiple step procedures) of intact salmon muscle. The proposed procedure can be applied to a large number of samples with high throughput due to the short time of analysis and quick evaluation of the data.

  15. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    SciTech Connect

    Palke, A. C.; Stebbins, J. F.; Boatner, Lynn A

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  16. Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man

    SciTech Connect

    Park, J.H.; Park, C.R.; Brown, R.L.; Chance, B.

    1987-05-01

    Functional compartments of fast and slow twitch fibers have been observed by /sup 31/P-NMR spectroscopy during exercise of the wrist flexor muscles in a sedentary, young male subject. Values of Pi, phosphocreatine (PCr) and adenine nucleotides were determined at rest and during an exercise protocol. The subject flexed his wrist muscles at 20% of maximum strength every 5 sec for 6 min and then increased his effort in the next two 6 min intervals to 40% and 60% of maximum. With exercise, the Pi/PCr rose rapidly to the exceptionally high value of 2.2 at 60% effort. As the Pi increased, the initial single peak (pH 7.0-6.9) split into two distinct components with pH values of 6.8 and 6.3. Quantitatively, distribution of the Pi was 40% in the pH 6.8 peak and 60% in the pH 6.3 peak as determined by area estimation following curve fitting. This presumably reflects two pools of Pi corresponding to the oxidative (slow twitch, high pH) and glycolytic (fast twitch, low pH) fibers. In the second identical exercise sequence which followed immediately, only one Pi peak (pH 6.8-6.9) appeared. This suggested that the glycolytic contribution to energy production was largely exhausted and the residual energy was derived from oxidative metabolism. During exercise at high levels, total phosphate decreased due primarily to loss of NMR visible adenine nucleotides. Similar phenomena have been observed in three other sedentary individuals, but not in trained athletes.

  17. Thermal degradation in a trimodal poly(dimethylsiloxane) network studied by (1)H multiple quantum NMR.

    PubMed

    Giuliani, Jason R; Gjersing, Erica L; Chinn, Sarah C; Jones, Ticora V; Wilson, Thomas S; Alviso, Cynthia T; Herberg, Julie L; Pearson, Mark A; Maxwell, Robert S

    2007-11-15

    Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.

  18. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    SciTech Connect

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  19. Determination of polydimethylsiloxanes by 1H-NMR in wine and edible oils.

    PubMed

    Mojsiewicz-Pieńkowska, K; Jamrógiewicz, Z; Łukasiak, J

    2003-05-01

    Fourier transform (1)H-nuclear magnetic resonance (NMR) spectroscopy was suitable for the quantitative determination of polydimethylsiloxanes (PDMS) in wine and edible oil samples. This approach offers highly specific qualitative and quantitative analysis due to silicone-specific location of proton signals linked to carbon atoms located directly next to silicon atoms (0-0.5 ppm), as well as a different location of signals in the range for different organosilicon structures. The method can be used for the control of PDMS at regulatory limits in foodstuffs (10 mg kg(-1)) using hexamethyldisiloxane (HDMS) as an internal standard. Samples were prepared by extraction under suitable conditions to separate the analyte, and with analyte enrichment before (1)H-NMR analysis. Analytical procedures were developed to permit the determination of PDMS at 0.06 mg kg(-1) in wine and at 6 mg kg(-1) in edible oils samples using readily available NMR instrumentation. It was, however, possible to lower the limit of detection to 6 microg kg(-1) for wine and to 60 microg kg(-1) for edible oils using a higher field instrument (500 MHz). Relative standard deviations (S(r)) were obtained for wine (0.028) and for oil samples (0.043), which when compared with values obtained for samples spiked with PDMS (0.021) indicated that the sample preparation was the main factor determining the precision of the method. The average recovery rates for PDMS were 97 and 95% for wine and edible oils, respectively. PDMS was detected in four brands of Italian wine, with Chianti-Rafaello containing the highest concentration (0.35 mg kg(-1)), and in four types of edible oils, highest concentration (11.9 mg kg(-1)) being found in Italian corn oil. None of the levels of PDMS found in the food samples exceeded the permissible standards laid down by the Codex Alimentarius Commission (10 mg kg(-1)), with the exception of the one corn oil sample.

  20. Monitoring the on-line titration of enantiomeric omeprazole employing continuous-flow capillary microcoil 1H NMR spectroscopy.

    PubMed

    Hentschel, Petra; Holtin, Karsten; Steinhauser, Lisa; Albert, Klaus

    2012-12-01

    The titration of the (S)-enantiomer of omeprazole with the (R)-enantiomer in chloroform-d(1) is monitored by continuous-flow capillary microcoil (1)H NMR spectroscopy employing a microcoil with a detection volume of 1.5 µl. The observed changes of the (1)H NMR chemical shifts indicate the formation of a heterochiral (R,S) dimer of omeprazole via its sulfinyl group and the NH group of the benzimidazole ring.

  1. Phospholipid compositions of sera and synovial fluids from dog, human and horse: a comparison by 31P-NMR and MALDI-TOF MS.

    PubMed

    Fuchs, B; Bondzio, A; Wagner, U; Schiller, J

    2009-08-01

    Alterations of the phospholipid (PL) compositions of body fluids are assumed to be indicative of inflammatory diseases, e.g. rheumatoid arthritis (RA). Recently, we have shown that particularly the phosphatidylcholine/lysophosphatidylcholine (PC/LPC) ratio determined in human synovial fluids (SF) and sera represents a reliable measure of the inflammatory state in RA patients. However, it is not yet clear to what extent the PC/LPC ratio is also affected by nutrition habits. In the present study, the PL and the corresponding acyl chain compositions of human body fluids (SF and serum of RA patients as well as serum from healthy volunteers) are compared with those of two other mammalian species (horses and dogs suffering from degenerative joint diseases as well as healthy controls) by high-resolution 31P-nuclear magnetic resonance (NMR) spectroscopy and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). The most important result of this study is that the PL compositions of SF and serum of horse and dog are comparable with those of human body fluids. Compared with humans, however, the horse body fluid contains less PCs with highly unsaturated arachidonoyl residues, while that of dogs possesses the highest content of arachidonoyl-containing PC. These species-related differences stem primarily from different nutrition habits (meat vs. plants).

  2. Synthesis, crystal structure, vibrational and 31P-NMR spectroscopy of the thiophosphate NaMg[PO3S]·9H2O

    NASA Astrophysics Data System (ADS)

    Höppe, Henning A.; Scharinger, Stefan W.; Heck, Joachim G.; Gross, Peter; Netzsch, Philip; Kazmierczak, Karolina

    2016-12-01

    NaMg[PO3S]·9H2O was obtained as single-phase crystalline powder starting from NaOH, PSCl3 and MgCl2·6H2O. At room temperature NaMg[PO3S]·9H2O crystallises in space group Cmc21 (no. 36) (a=638.58(4) pm, b=1632.31(10) pm, c=1217.16(7) pm, Z = 4; Rint = 0.032, Rσ = 0.034, R1 = 0.036, wR2 = 0.071). The data collection at 100 K reveals an ordering of the PO3S tetrahedra by undergoing a symmetry reduction to P21 (no. 4) and an according formation of twins (C1121, unconv. setting of P21, a=631.41(3) pm, b=1630.00(7) pm, c=1219.24(5) pm, γ=90.00(2)°, Z = 4; Rint = 0.115, Rσ = 0.064, R1 = 0.045, wR2 = 0.070). NaMg[PO3S]·9H2O comprises isolated PO3S tetrahedra, distorted MgO6 octahedra and trigonal NaO6 prisms. 31P NMR spectroscopy showed a chemical shift of 33.7 ppm. The vibrational spectra of NaMg[PO3S]·9H2O were recorded and the relevant bands were assigned.

  3. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  4. Variations of different dissolved and particulate phosphorus classes during an algae bloom in a eutrophic lake by (31)P NMR spectroscopy.

    PubMed

    Bai, Xiuling; Sun, Jinhua; Zhou, Yunkai; Gu, Lei; Zhao, Hongyan; Wang, Jiehua

    2017-02-01

    Characterization of phosphorus (P) pools is vital to understanding the contribution of P to water eutrophication. In this study, dissolved and particulate P classes during an algae bloom in Lake Taihu, as well as their relationships with the main environmental factors, were analyzed based on solution (31)P NMR. The results showed that dissolved P was dominated by orthophosphate (Ortho-P) in heavily polluted regions and by orthophosphate monoester (Mono-P) and orthophosphate diester (Diester-P) in lightly polluted regions, indicating that the main dissolved P classes varied with the degree of lake pollution. The difference in the temporal variation patterns of dissolved P classes revealed that dissolved Ortho-P is the preferred class, and its concentration may be affected by major primary producers. It also revealed that dissolved Mono-P is prone to accumulation under the effects of algal blooms, especially in heavily polluted regions. The main particulate P classes were similar to those of dissolved P, but their variation trends were the same in different lake regions. There were significant positive correlations between the major particulate P classes and Chl a during the majority of the sampling period, indicating that living algal cells have a major contribution to particulate P. Obvious temporal variations of P classes may affect the bioavailability and dynamics of P in the water of Lake Taihu, but the particle reactivities of the main inorganic and organic P classes were similar. Therefore, they have little effect on P partitioning between the dissolved and particulate phases.

  5. Synthesis, structure, and /sup 31/P and /sup 183/W NMR spectra of P/sub 4/W/sub 14/O/sub 58//sup 12/minus//

    SciTech Connect

    Thouvenot, R.; Teze, A.; Contant, R.; Herve, G.

    1988-02-10

    The P/sub 4/W/sub 14/O/sub 58//sup 12/minus// anion was obtained from the reaction of sodium tungstate and sodium phosphate in acetic acid. The structure of K/sub 12/P/sub 4/W/sub 14/O/sub 58/ /times/ 21H/sub 2/O (monoclinic, C2/c; a = 22.145 (6) /angstrom/, b = 15.823 (2) /angstrom/, c = 21.860 (4) /angstrom/, /beta/ = 109.54 (2)/degree/; Z = 4) has been refined to final indices R and R/sub w/ of 0.048 and 0.055. The polyanion consists on two PW/sub 7/O/sub 29/ subunits linked by two phosphorus atoms. This dimeric structure is preserved in aqueous solution as shown by /sup 183/W and /sup 31/P NMR spectra. Unusual spin-spin coupling constants, i.e. /sup 2/J/sub W-P/ = 18, 10.2 Hz and /sup 2/J/sub W-W/ = 37 Hz, as well as a four-bond coupling (/sup 4/j/sub W-P/ of about 2 Hz) are discussed in relation to the structural parameters. Some characteristic features of the vibrational (IR and Raman) spectra are also discussed. 20 refs., 6 figs., 4 tabs.

  6. Concurrent quantification of tissue metabolism and blood flow via 2H/31P NMR in vivo. III. Alterations of muscle blood flow and metabolism during sepsis.

    PubMed

    Song, S K; Hotchkiss, R S; Karl, I E; Ackerman, J J

    1992-05-01

    In the conclusion of this series of reports, the application of 31P/2H NMR to investigate the pathophysiology of sepsis in rat hindlimb muscle is demonstrated. Sepsis decreased muscle [PCr] by 18%, 18 +/- 4 SD vs 22 +/- 4 SD mmol/kg tissue wet wt (P = 0.01) in control rats but [ATP] was unchanged, 6 mmol/kg tissue wet wt (P = 0.2). The derived free cytosolic [ADP] in the two groups was similar, [ADP]septic = 0.023 +/- 0.004 SD and [ADP]control = 0.021 +/- 0.003 SD mmol/kg tissue wet wt, and not statistically different (P = 0.14). Likewise [Pi] in the septic and control groups was not statistically different, [Pi]septic = 1.1 +/- 0.5 SD and [Pi]control = 1.2 +/- 0.4 SD mmol/kg tissue wet wt (P = 0.2). Septic rats presented the symptom of respiratory alkalosis evidenced by elevated blood pH. Sepsis decreased muscle blood flow by 33%, P = 0.003, but examination of individual subjects did not demonstrate a correlation with the reduction in [PCr]. Thus, a metabolic energy deficit caused by cellular ischemia/hypoxia is not a likely cause of cellular abnormality in rat hindlimb muscle during sepsis.

  7. Facilitated transport of Mn2+ in sycamore (Acer pseudoplatanus) cells and excised maize root tips. A comparative 31P n.m.r. study in vivo.

    PubMed Central

    Roby, C; Bligny, R; Douce, R; Tu, S I; Pfeffer, P E

    1988-01-01

    Movement of paramagnetic Mn2+ into sycamore (Acer pseudoplatanus) cells has been indirectly examined by observing the line broadening exhibited in its 31P n.m.r. spectra. Mn2+ was observed to pass into the vacuole, while exhibiting a very minor accumulation in the cytoplasm. With time, gradual leakage of phosphate from the vacuole to the cytoplasm was observed along with an increase in glucose-6-phosphate. Anoxia did not appear to affect the relative distribution of Mn2+ in the cytoplasm and vacuole. Under hypoxic conditions restriction of almost all movement of Mn2+ across the plasmalemma as well as the tonoplast was observed. In contrast, maize root tips showed entry and complete complexation of nucleotide triphosphate by Mn2+ during hypoxia. The rate of passage of Mn2+ across the tonoplast in both sycamore and maize root cells is approximately the same. However, the rates of facilitated movement across the respective plasma membranes appear to differ. More rapid movement of Mn2+ across the plasmalemma in maize root tip cells allows a gradual build-up of metal ion in the cytoplasm prior to its diffusion across the tonoplast. Sycamore cells undergo a slower uptake of Mn2+ into their cytoplasms (comparable with the rate of diffusion through the tonoplast), so little or no observable accumulation of Mn2+ is observed in this compartment. PMID:3415663

  8. Two-dimensional and variable temperature 31P solid-state NMR studies of single crystals containing symmetrical/unsymmetrical bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha-D- galactopyranosyl)thiophosphoryl] dichalcogenides.

    PubMed

    Potrzebowski, M J; Helinski, J; Ciesielski, W

    2002-08-07

    The organisation and phase transition of single crystals containing three isostructural bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha- D-galactopyranosyl)thiophosphoryl] dichalcogenide derivatives: disulfide 1, diselenide 2 and mixed seleno-sulfide 3, was deduced upon 1D, 2D and variable temperature 31P NMR experiments.

  9. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer.

  10. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  11. Solid state {sup 31}P MAS NMR spectroscopy and conductivity measurements on NbOPO{sub 4} and H{sub 3}PO{sub 4} composite materials

    SciTech Connect

    Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M.

    2014-11-15

    A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4} has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.

  12. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  13. Modeling Ti/Ge Distribution in LiTi2-xGex(PO4)3 NASICON Series by (31)P MAS NMR and First-Principles DFT Calculations.

    PubMed

    Diez-Gómez, Virginia; Arbi, Kamel; Sanz, Jesús

    2016-08-03

    Ti/Ge distribution in rhombohedral LiTi2-xGex(PO4)3 NASICON series has been analyzed by (31)P magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and first-principles density functional theory (DFT) calculations. Nuclear magnetic resonance is an excellent probe to follow Ti/Ge disorder, as it is sensitive to the atomic scale environment without long-range periodicity requirements. In the samples considered here, PO4 units are surrounded by four Ti/Ge octahedra, and then, five different components ascribed to P(OTi)4, P(OTi)3(OGe), P(OTi)2(OGe)2, P(OTi)(OGe)3, and P(OGe)4 environments are expected in (31)P MAS NMR spectra of R3̅c NASICON samples. However, (31)P MAS NMR spectra of analyzed series display a higher number of signals, suggesting that, although the overall symmetry remains R3̅c, partial substitution causes a local decrement in symmetry. With the aid of first-principles DFT calculations, 10 detected (31)P NMR signals have been assigned to different Ti4-nGen arrangements in the R3 subgroup symmetry. In this assignment, the influence of octahedra of the same or different R2(PO4)3 structural units has been considered. The influence of bond distances, angles and atom charges on (31)P NMR chemical shieldings has been discussed. Simulation of the LiTi2-xGex(PO4)3 series suggests that detection of 10 P environments is mainly due to the existence of two oxygen types, O1 and O2, whose charges are differently affected by Ge and Ti occupation of octahedra. From the quantitative analysis of detected components, a random Ti/Ge distribution has been deduced in next nearest neighbor (NNN) sites that surround tetrahedral PO4 units. This random distribution was supported by XRD data displaying Vegard's law.

  14. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  15. Using solid (13)C NMR coupled with solution (31)P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid (13)C and solution (31)P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid (13)C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution (31)P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  16. Solution behavior and complete sup 1 H and sup 13 C NMR assignments of the coenzyme B sub 12 derivative (5 prime -deoxyadenosyl)cobinamide using modern 2D NMR experiments, including 600-MHz sup 1 H NMR data

    SciTech Connect

    Pagano, T.G.; Yohannes, P.G.; Marzilli, L.G. ); Hay, B.P.; Scott, J.R.; Finke, R.G. )

    1989-02-15

    Two-dimensional (2D) NMR methods have been used to assign completely the {sup 1}H and {sup 13}C NMR spectra of the (5{prime}-deoxyadenosyl)cobinamide cation (AdoCbi{sup +}) in D{sub 2}O. Most of the {sup 1}H spectral assignments were made by using 2D homonuclear shift correlation spectroscopy (COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), absorption-mode (phase sensitive) 2D nuclear Overhauser effect (NOE) spectroscopy, and spin-locked NOE spectroscopy (also called ROESY, for rotating-frame Overhauser enhancement spectroscopy). Most of the protonated carbon resonances were assigned by using {sup 1}H-detected heteronuclear multiple-quantum coherence (HMQC) spectroscopy. The nonprotonated carbon resonances, as well as the remaining unassigned {sup 1}H and {sup 13}C NMR signals, were assigned from long-range {sup 1}H-{sup 13}C connectivities determined from {sup 1}H-detected multiple-bond heteronuclear multiple-quantum coherence spectroscopy (HMBC). Comparison of the {sup 13}C chemical shifts and {sup 1}H NOEs of AdoCbi{sup +} with those of coenzyme B{sup 12} ((5{prime}-deoxyadenosyl)cobalamin) and its benzimidazole-protonated, base-off form indicates that the electronic properties and structure of AdoCbi{sup +} are similar to that of coenzyme B{sup 12} in the protonated, base-off form. The {sup 13}C chemical shifts of most of the carbons of AdoCbi{sup +} do not vary significantly from those of base-off, benzimidazole-protonated coenzyme B{sup 12}, indicating that the electronic environment of the corrin ring is also similar in both compounds. However, significant differences in the chemical shifts of some of the corresponding carbons of the b, d, e, and f corrin side chains in AdoCbi{sup +} and in base-off, benzimidazole-protonated coenzyme B{sub 12} indicate that the positions of these side chains may be different in AdoCbi{sup +} compared to base-off coenzyme B{sup 12}.

  17. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  18. Composition of beer by 1H NMR spectroscopy: effects of brewing site and date of production.

    PubMed

    Almeida, Cláudia; Duarte, Iola F; Barros, António; Rodrigues, João; Spraul, Manfred; Gil, Ana M

    2006-02-08

    A principal component analysis (PCA) of 1H NMR spectra of beers differing in production site (A, B, C) and date is described, to obtain information about composition variability. First, lactic and pyruvic acids contents were found to vary significantly between production sites, good reproducibility between dates being found for site A but not for sites B and C beers. Second, site B beers were clearly distinguished by the predominance of linear dextrins, while A and C beers were richer in branched dextrins. Carbohydrate reproducibility between dates is poorer for site C with dextrin branching degree varying significantly. Finally, all production sites were successfully distinguished by their contents in adenosine/inosine, uridine, tyrosine/tyrosol, and 2-phenylethanol, reproducibility between dates being again poorer for site C. Interpretation of the above compositional differences is discussed in terms of the biochemistry taking place during brewing, and possible applications of the method in brewing process control are envisaged.

  19. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  20. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    PubMed

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  1. Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update

    PubMed Central

    Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996

  2. Cloud point, fluorimetric and 1H NMR studies of ibuprofen-polymer systems

    NASA Astrophysics Data System (ADS)

    Khan, Iqrar Ahmad; Anjum, Kahkashan; Koya, P. Ajmal; Qadeer, Atiytul; Kabir-ud-Din

    2014-01-01

    Influence of six polymers viz. hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium carboxy methyl cellulose (NaCMC) and dextran sulfate (DxS) on solution properties of amphiphilic drug ibuprofen (IBF) has been described in this work. As only HPMC showed the clouding behavior (among the polymers employed herein), its cloud point (CP) was studied in detail in presence of varying amounts of IBF containing different fixed concentrations of inorganic salts (NaCl, NaNO3, Na2SO4, KBr and KNO3). Presence of all these salts had CP reducing effect. By means of steady state fluorescence quenching studies, average aggregation number of IBF aggregates (Nagg) in the presence of varying amounts of the mentioned polymers were evaluated and discussed. 1H NMR studies show that the magnitude of chemical shifts (δ) varies with the nature of the polymer.

  3. (1) H-NMR with Multivariate Analysis for Automobile Lubricant Comparison.

    PubMed

    Kim, Siwon; Yoon, Dahye; Lee, Dong-Kye; Yoon, Changshin; Kim, Suhkmann

    2017-02-23

    Identification of suspected automobile-related lubricants could provide valuable information in forensic cases. We examined that automobile lubricants might exhibit the chemometric characteristics to their individual usages. To compare the degree of clustering in the plots, we co-plotted general industrial oils that were highly dissimilar with automobile lubricants in additive compositions. (1) H-NMR spectroscopy was used with multivariate statistics as a tool for grouping, clustering, and identification of automobile lubricants in laboratory conditions. We analyzed automobile lubricants including automobile engine oils, automobile transmission oils, automobile gear oils, and motorcycle oils. In contrast to the general industrial oils, automobile lubricants showed relatively high tendencies of clustering to their usages. Our pilot study demonstrated that the comparison of known and questioned samples to their usages might be possible in forensic fields.

  4. A subzero 1H NMR relaxation investigation of water dynamics in tomato pericarp.

    PubMed

    Foucat, Loïc; Lahaye, Marc

    2014-09-01

    (1)H NMR relaxation times (T1 and T2) were measured at low field (0.47 T) in pericarp tissues of three tomato genotypes (Ferum, LA0147 and Levovil) at subzero temperature (-20 °C) and two ripening stages (mature green and red). The unfrozen water dynamics was characterised by two T1 and three T2 components. The relaxation time values and their associated relative populations allowed differentiating the ripening stage of only LA0147 and Levovil lines. But the three genotypes were unequivocally discriminated at the red ripe stage. The unfrozen water distribution was discussed in terms of specific interactions, especially with sugars, in relation with their osmoprotectant effects.

  5. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  6. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets

    PubMed Central

    Barone, Francesca; Elmi, Alberto; Romagnoli, Noemi; Bacci, Maria Laura

    2016-01-01

    When it comes to neuroscience, pigs represent an important animal model due to their resemblance with humans’ brains for several patterns including anatomy and developmental stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can provide important information about neurological health and function, proving its importance as both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scientific interest and value to obtain more standard physiological information regarding its composition and dynamics for both swine pathology and the refinement of experimental protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been applied in order to analyze the metabolomic profile of this biological fluid, and results showed the technique to be highly reproducible and reliable. The aim of the present study was to investigate in both qualitative and quantitative manner the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference in metabolites concentration between age groups, related to age and Blood-Brain-Barrier maturation. On each of the analyzed samples, 30 molecules could be observed above their limit of quantification, accounting for 95–98% of the total area of the spectra. The concentrations of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were found to decrease between P05 and P50, while the concentrations of glutamine, creatinine, methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 comparison was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules showed at P30 concentrations

  7. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.

    PubMed

    Son, Hong-Seok; Hwang, Geum-Sook; Kim, Ki Myong; Kim, Eun-Young; van den Berg, Frans; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2009-02-01

    (1)H NMR spectroscopy coupled with multivariate statistical analysis was used for the first time to investigate metabolic changes in musts during alcoholic fermentation and wines during aging. Three Saccharomyces cerevisiae yeast strains (RC-212, KIV-1116, and KUBY-501) were also evaluated for their impacts on the metabolic changes in must and wine. Pattern recognition (PR) methods, including PCA, PLS-DA, and OPLS-DA scores plots, showed clear differences for metabolites among musts or wines for each fermentation stage up to 6 months. Metabolites responsible for the differentiation were identified as valine, 2,3-butanediol (2,3-BD), pyruvate, succinate, proline, citrate, glycerol, malate, tartarate, glucose, N-methylnicotinic acid (NMNA), and polyphenol compounds. PCA scores plots showed continuous movements away from days 1 to 8 in all musts for all yeast strains, indicating continuous and active fermentation. During alcoholic fermentation, the highest levels of 2,3-BD, succinate, and glycerol were found in musts with the KIV-1116 strain, which showed the fastest fermentation or highest fermentative activity of the three strains, whereas the KUBY-501 strain showed the slowest fermentative activity. This study highlights the applicability of NMR-based metabolomics for monitoring wine fermentation and evaluating the fermentative characteristics of yeast strains.

  8. 1H NMR relaxation of water: a probe for surfactant adsorption on kaolin.

    PubMed

    Totland, Christian; Lewis, Rhiannon T; Nerdal, Willy

    2011-11-01

    In this study, (1)H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T(1) and T(2) measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T(1) values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T(1) data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T(1) and T(2) measurements were taken in the temperature range 278-338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.

  9. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  10. Combined Analysis of Stable Isotope, (1)H NMR, and Fatty Acid To Verify Sesame Oil Authenticity.

    PubMed

    Kim, Jeongeun; Jin, Gyungsu; Lee, Yunhee; Chun, Hyang Sook; Ahn, Sangdoo; Kim, Byung Hee

    2015-10-14

    The aim of this study was to verify the authenticity of sesame oils using combined analysis of stable isotope ratio, (1)H NMR spectroscopy, and fatty acid profiles of the oils. Analytical data were obtained from 35 samples of authentic sesame oils and 29 samples of adulterated sesame oils currently distributed in Korea. The orthogonal projection to latent structure discriminant analysis technique was used to select variables that most effectively verify the sesame oil authenticity. The variables include δ(13)C value, integration values of NMR peaks that signify the CH3 of n-3 fatty acids, CH2 between two C═C, protons from sesamin/sesamolin, and 18:1n-9, 18:3n-3, 18:2t, and 18:3t content values. The authenticity of 65 of 70 blind samples was correctly verified by applying the range of the eight variables found in the authentic sesame oil samples, suggesting that triple analysis is a useful approach to verify sesame oil authenticity.

  11. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables.

    PubMed

    Miglietta, M L; Lamanna, R

    2006-07-01

    Carotenoids are linear C40 tetraterpenoid hydrocarbons and represent a wide category of natural pigments. They are components of the pigment system of chloroplasts and are involved in the primary light absorption and the photon canalization of photosynthesis. Moreover, they also behave as quenchers of singlet oxygen, protecting cells and organisms against lipid peroxidation. Carotenoids have a strong lipophilic character and are usually analyzed in organic solvents. However, because of their biological activity, the characterization of these compounds in an aqueous environment or in the natural matrix is very important. One of the most important dietary carotenoids is beta-carotene, which has been extensively studied both in vivo and in model systems, but because of the low concentration and strong interaction with the biological matrix, beta-carotene has never been observed by NMR in solid aqueous samples.In the present work, a model system has been developed for the detection and identification of beta-carotene in solid aqueous samples by 1H HR-MAS NMR. The efficiency of the model has led to the identification of beta-carotene in a raw vegetable matrix.

  12. Complete 1H and 13C NMR assignments of six saponins from Sapindus trifoliatus.

    PubMed

    Grover, Rajesh K; Roy, Abhijeet D; Roy, Raja; Joshi, S K; Srivastava, Vandita; Arora, Sudershan K

    2005-12-01

    Complete 1H and 13C spectral assignments are reported for six saponins from the pericarp of Sapindus trifoliatus (Hindi name: Reetha) collected from Madhya Pradesh and Maharashtra, India, using only 1D and 2D NMR methods. The structures of the compounds were elucidated as hederagenin 3-O-(3-O-acetyl-beta-D-xylopyranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-ara-binopyranoside, hederagenin 3-O-(4-O-acetyl-beta-D-xylop-yranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinop-yranoside, hederagenin 3-O-(3,4-O-diacetyl-beta-D-xylopy-ranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopy-ranoside, hederagenin 3-O-(3,4-O-diacetyl-alpha-L-arabinop-yranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinop-yranoside, hederagenin 3-O-(beta-D-xylopyranosyl)-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopyranoside and he-deragenin 3-O-(alpha-L-arabinopyranosyl)-(1-3)-alpha-L-rhamno-pyranosyl-(1-2)-alpha-L-arabinopyranoside. It is concluded that saponins of this complexity approach the limit of structural complexity, which can be solved by NMR alone, precisely and quickly.

  13. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  14. Arrangement and mobility of water in vermiculite hydrates followed by 1H NMR spectroscopy.

    PubMed

    Sanz, J; Herrero, C P; Serratosa, J M

    2006-04-20

    The arrangement of water molecules in one- and two-layer hydrates of high-charged vermiculites, saturated with alkaline (Li(+), Na(+)) and alkali-earth (Mg(2+), Ca(2+), Ba(2+)) cations, has been analyzed with (1)H NMR spectroscopy. Two different orientations for water molecules have been found, depending on the hydration state and the sites occupied by interlayer cations. As the amount of water increases, hydrogen bond interactions between water molecules increase at expenses of water-silicate interactions. This interaction favors water mobility in vermiculites. A comparison of the temperature dependence of relaxation times T(1) and T(2) for one and two-layer hydrates of Na-vermiculite shows that the rotations of water molecules around C(2)-axes and that of cation hydration shells around the c-axis is favored in the two-layer hydrate. In both hydrates, the anisotropic diffusion of water takes place at room temperature, preserving the orientation of water molecules relative to the silicate layers. Information obtained by NMR spectroscopy is compatible with that deduced by infrared spectroscopy and with structural studies carried out with X-ray and neutron diffraction techniques on single-crystals of vermiculite.

  15. 1H NMR characterization of a hen ovalbumin tyrosinamide N-linked oligosaccharide library.

    PubMed

    Corradi Da Silva, M L; Stubbs, H J; Tamura, T; Rice, K G

    1995-04-20

    A library of 15 N-linked oligosaccharide structures was prepared from ovalbumin and characterized using high-field NMR and mass spectrometry. The oligosaccharides were enzymatically released from ovalbumin glycopeptides, and the reducing ends were reacted with ammonium bicarbonate to form oligosaccharide-glycosylamines. These reacted with Boc-tyrosine-N-hydroxysuccinimide ester, resulting in a mixture of tyrosinamide-oligosaccharides. The Boc group was removed to expose an amine terminus which enhanced the resolution of tyrosinamide-oligosaccharides when chromatographed on reverse-phase HPLC. Ten major and five minor oligosaccharides were purified on a micromole scale and characterized using 1H NMR and FAB-MS. The structures include high-mannose, hybrid, and complex oligosaccharides possessing from two to five antenna, providing the most complete definition of ovalbumin N-linked oligosaccharides to date. The resulting library is well suited to biological studies due to the presence of a single terminal tyrosine residue on each oligosaccharide that allows radioiodination or the attachment of additional probes to these glycoconjugates prior to biological studies.

  16. Rapid determination of coenzyme Q10 in food supplements using 1H NMR spectroscopy.

    PubMed

    Monakhova, Yulia B; Ruge, Ingrid; Kuballa, Thomas; Lerch, Christiane; Lachenmeier, Dirk W

    2013-01-01

    A methodology utilizing 1H NMR spectroscopy has been developed to measure the concentration of coenzyme Q10 (CoQ10) in dietary supplements. For sample preparation, a very simple dilution with deuterated chloroform and addition of internal standard is sufficient. CoQ10 produces a distinct peak of the CH groups in the isoprene side chain of the molecule in the δ 5.15 - 5.05 ppm range, where it can be distinguished from other matrix compounds. The method was shown to be of adequate sensitivity with a limit of detection (LOD) of 7.8 mg/L, to control the CoQ10 content in the majority of the products. The precision expressed as relative standard deviation was around 5 %; linearity was observed from 14 to 2000 mg/L (R = 0.99). The developed methodology was applied for the analysis of 21 food supplements (capsules, tablets, and liquid products). On the basis of the labeled amounts, only two products contained substantially lower concentrations of CoQ10 (57 % and 51 %). All other concentrations varied between 83 % and 190 % with respect to labeling. The developed NMR method may be used by quality assurance laboratories for routine control of CoQ10 products.

  17. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  18. An examination of the metabolic processes underpinning critical swimming in Atlantic cod (Gadus morhua L.) using in vivo 31P-NMR spectroscopy.

    PubMed

    Lurman, Glenn J; Bock, Christian H; Pörtner, Hans-O

    2007-11-01

    Traditionally, critical swimming speed has been defined as the speed when a fish can no longer propel itself forward, and is exhausted. To gain a better understanding of the metabolic processes at work during a U(crit) swim test, and that lead to fatigue, we developed a method using in vivo (31)P-NMR spectroscopy in combination with a Brett-type swim tunnel. Our data showed that a metabolic transition point is reached when the fish change from using steady state aerobic metabolism to non-steady state anaerobic metabolism, as indicated by a significant increase in inorganic phosphate levels from 0.3+/-0.3 to 9.5+/-3.4 mol g(-1), and a drop in intracellular pH from 7.48+/-0.03 to 6.81+/-0.05 in muscle. This coincides with the point when the fish change gait from subcarangiform swimming to kick-and-glide bursts. As the number of kicks increased, so too did the Pi concentration, and the pH(i) dropped. Both changes were maximal at U(crit). A significant drop in Gibbs free energy change of ATP hydrolysis from -55.6+/-1.4 to -49.8+/-0.7 kJ mol(-1) is argued to have been involved in fatigue. This confirms earlier findings that the traditional definition of U(crit), unlike other critical points that are typically marked by a transition from aerobic to anaerobic metabolism, is the point of complete exhaustion of both aerobic and anaerobic resources.

  19. Hyposmotic shock: effects on rubidium/potassium efflux in normal and ischemic rat hearts, assessed by 87Rb and 31P NMR.

    PubMed

    Jilkina, Olga; Kuzio, Bozena; Kupriyanov, Valery V

    2003-01-20

    The study evaluated effects of hyposmotic shock on the rate of Rb(+)/K(+) efflux, intracellular pH and energetics in Langendorff-perfused rat hearts with the help of 87Rb- and 31P-NMR. Two models of hyposmotic shock were compared: (1) normosmotic hearts perfused with low [NaCl] (70 mM) buffer, (2) hyperosmotic hearts equilibrated with additional methyl alpha-D-glucopyranoside (Me-GPD, 90 or 33 mM) or urea (90 mM) perfused with normosmotic buffer. Four minutes after hyposmotic shock, Rb(+) efflux rate constant transiently increased approximately two-fold, while pH transiently decreased by 0.08 and 0.06 units, in the first and the second models, respectively, without significant changes in phosphocreatine and ATP. Hyposmotic shock (second model) did not change the rate of Rb(+)/K(+) uptake, indicating that the activity of Na(+)/K(+) ATPase was not affected. Dimethylamiloride (DMA) (10 microM) abolished activation of the Rb(+)/K(+) efflux in the second model; however, Na(+)/H(+) exchanger was not involved, because intracellular acidosis induced by the hyposmotic shock was not enhanced by DMA treatment. After 12 or 20 min of global ischemia, the rate of Rb(+)/K(+) efflux increased by 120%. Inhibitor of the ATP-sensitive potassium channels, glibenclamide (5 microM), partially (40%) decreased the rate constant; however, reperfusion with hyperosmolar buffer (90 mM Me-GPD) did not. We concluded that the shock-induced stimulation of Rb(+)/K(+) efflux occurred, at least partially, through the DMA-sensitive cation/H(+) exchanger and swelling-induced mechanisms did not considerably contribute to the ischemia-reperfusion-induced activation of Rb(+)/K(+) efflux.

  20. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena

    2014-09-01

    Molybdenum is a transition metal (refers to the “d” block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2sbnd P2O5sbnd K2Osbnd CaOsbnd MgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. Psbnd Osbnd P, Sisbnd Osbnd Si, and Sisbnd Osbnd P, and the following formation of connections such as Mo[MoO4]sbnd Osbnd Si and/or Mo[MoO4]sbnd Osbnd P. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2sbnd P2O5sbnd K2Osbnd MgOsbnd CaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation.

  1. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation.

  2. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  3. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  4. 1H Photo-CIDNP Enhancements in Heteronuclear Correlation NMR Spectroscopy

    PubMed Central

    Sekhar, Ashok; Cavagnero, Silvia

    2009-01-01

    Photochemically induced dynamic nuclear polarization (photo-CIDNP) is usually employed as a probe of solvent exposure, in biomolecular NMR. The potential of the photo-CIDNP effect for sensitivity enhancement, however, remains poorly explored. Here, we introduce 1H-photo-CIDNP in heteronuclear correlation spectroscopy at low laser irradiation power (1 W), and compare the sensitivity of various 1H-Photo-CIDNP-enhanced- (HPE) 1H◻15N heteronuclear correlation pulse sequences, including HSQC, HMQC, and SOFAST-HMQC, in terms of their ability to detect the Trp indole Hε1 resonance. Both Trp and the Trp-containing protein apoHmpH were analyzed using flavin mononucleotide as photosensitizer in aqueous solutions either containing or lacking urea. We find that 1H◻15N photo-CIDNP-SOFAST-HMQC, denoted here as HPE-SOFAST-HMQC, yields a two-fold higher signal-to-noise per unit time than the parent SOFAST-HMQC for the solvent-exposed Trp of urea-unfolded apoHmpH. Thus, HPE-SOFAST-HMQC is the most sensitive heteronuclear correlation pulse sequence for the detection of solvent-exposed Trp. PMID:19462951

  5. 1H-NMR characterization of poly(ethylene glycol) and polydimethylsiloxane copolymer

    NASA Astrophysics Data System (ADS)

    Zainuddin, Ain Athirah; Othaman, Rizafizah; Noor, Wan Syaidatul Aqma Wan Mohd; Anuar, Farah Hannan

    2016-11-01

    This paper describes the synthesis and characterization of poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) copolymers. The copolymers were synthesized by reacting hydroxyl group (-OH) of poly(ethylene glycol) (PEG) and polydimetylsiloxane (PDMS) with isocyanate group (R-N=C=O) of 1,6-hexamethylene diisocyanate (HMDI). The reaction was carried out at room temperature. The copolymers were synthesized in three different compositions which differ in molar ratios of PEG to PDMS. The ratios (PEG:PDMS) used were 2:6. 3:5 and 4:4. The formation of the copolymers was characterized by 1H Nuclear Magnetic Resonance (1H-NMR) for structural determination. The presence of proton signal at 4.80 ppm which belongs to the proton of urethane group indicates the formation of urethane links. The formation of urethane links showed that two homopolymers were linked together by HMDI to form longer copolymer chains. It is worth to note that the sequence of PEG and PDMS along the copolymer chain is random.

  6. 1H NMR to investigate metabolism and energy supply in rhesus macaque sperm.

    PubMed

    Lin, Ching-Yu; Hung, Pei-hsuan; VandeVoort, Catherine A; Miller, Marion G

    2009-07-01

    Sperm ATP is derived primarily from either glycolysis or mitochondrial oxidative phosphorylation. In the present studies, (1)H NMR spectroscopy was used to characterize the metabolite profile in primate sperm treated either with alpha-chlorohydrin (ACH), a known inhibitor of sperm glycolysis or pentachlorophenol (PCP), an uncoupler of oxidative phosphorylation. Sperm were collected from monkeys in the fall and spring, washed and incubated with either the media control, ACH (0.5mM) or PCP (50 microM). Using principal components analysis, PC1 scores plot indicated that the greatest level of variance was found between fall and spring samples and not chemical-treated samples. However, PC4 scores plot did show a consistent effect of ACH treatment. From the PC1 loadings plot, metabolites contributing to the seasonal differences were higher levels of formate in the fall and higher levels of carnitine and acetylcarnitine in the spring as well as possible differences in lipoprotein content. The PC4 loadings plot indicated that ACH treatment decreased lactate and ATP consistent with inhibition of glycolysis. Carnitine also was decreased and acetylcarnitine increased although the latter was not statistically significant. With PCP-treated sperm, no difference between control and treated samples could be discerned suggesting either that primate sperm are insensitive to uncoupling agents or that glycolysis played the more important role in maintaining sperm ATP levels. Overall, NMR studies may prove useful in the development of metabolomic markers that signal sperm metabolic impairments and have the potential to provide useful biomarkers for reproductive health.

  7. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    PubMed Central

    Cocco, Eleonora; Murgia, Federica; Lorefice, Lorena; Barberini, Luigi; Poddighe, Simone; Frau, Jessica; Fenu, Giuseppe; Coghe, Giancarlo; Murru, Maria Rita; Murru, Raffaele; Del Carratore, Francesco; Atzori, Luigi

    2015-01-01

    Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS. PMID:26740964

  8. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.

    PubMed

    Caligiani, Augusta; Palla, Luigi; Acquotti, Domenico; Marseglia, Angela; Palla, Gerardo

    2014-08-15

    This study reports for the first time the use of (1)H NMR technique combined with chemometrics to study the metabolic profile of cocoa (Theobroma cacao L.) beans of different varieties, origin and fermentation levels. Results of PCA applied to cocoa bean (1)H NMR dataset showed that the main factor influencing the cocoa bean metabolic profile is the fermentation level. In fact well fermented brown beans form a group clearly separated from unfermented, slaty, and underfermented, violet, beans, independently of the variety or geographical origin. Considering only well fermented beans, the metabolic profile obtained by (1)H NMR permitted to discriminate between some classes of samples. The National cocoa of Ecuador, known as Arriba, showed the most peculiar characteristics, while the samples coming from the African region showed some similar traits. The dataset obtained, representative of all the classes of soluble compounds of cocoa, was therefore useful to characterise fermented cocoa beans as a function of their origin and fermentation level.

  9. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    PubMed

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO.

  10. Dipolar cross-relaxation modulates signal amplitudes in the 1H NMR spectrum of hyperpolarized [ 13C]formate

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Harrison, Crystal; Mander, William; Malloy, Craig R.; Dean Sherry, A.

    2007-12-01

    The asymmetry in the doublet of a spin coupled to hyperpolarized 13C has been used previously to measure the initial polarization of 13C. We tested the hypothesis that a single observation of the 1H NMR spectrum of hyperpolarized 13C formate monitors 13C polarization. Depending on the microwave frequency during the polarization process, in-phase or out-of-phase doublets were observed in the 1H NMR spectrum. Even in this simple two-spin system, 13C polarization was not reflected in the relative area of the JCH doublet components due to strong heteronuclear cross-relaxation. The Solomon equations were used to model the proton signal as a function of time after polarization and to estimate 13C polarization from the 1H NMR spectra.

  11. 1H NMR determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental and biological samples.

    PubMed

    Moura, Sidnei; Ultramari, Mariah de Almeida; de Paula, Daniela Mendes Louzada; Yonamine, Mauricio; Pinto, Ernani

    2009-04-01

    A nuclear magnetic resonance (1H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by 1H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 microg/mL. Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples.

  12. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania.

    PubMed

    Spiteri, Marc; Rogers, Karyne M; Jamin, Eric; Thomas, Freddy; Guyader, Sophie; Lees, Michèle; Rutledge, Douglas N

    2017-02-15

    Manuka honey is a product produced essentially in New Zealand, and has been widely recognised for its antibacterial properties and specific taste. In this study, 264 honeys from New Zealand and Australia were analysed using proton NMR spectroscopy coupled with chemometrics. Known manuka markers, methylglyoxal and dihydroxyacetone, have been characterised and quantified, together with a new NMR marker, identified as being leptosperin. Manuka honey profiling using 1H NMR is shown to be a possible alternative to chromatography with the added advantage that it can measure methylglyoxal (MGO), dihydroxyacetone (DHA) and leptosperin simultaneously. By combining the information from these three markers, we established a model to estimate the proportion of manuka in a given honey. Markers of other botanical origins were also identified, which makes 1H NMR a convenient and efficient tool, complementary to pollen analysis, to control the botanical origin of Oceania honeys.

  13. Distance measurements in disodium ATP hydrates by means of 31P double quantum two-dimensional solid-state NMR spectroscopy.

    PubMed

    Potrzebowski, M J; Gajda, J; Ciesielski, W; Montesinos, I M

    2006-04-01

    POST-C7 measurements provide constraints allowing distinguishing crystal lattice organization and establishing intra and/or intermolecular distances between phosphorus atoms of triphosphate chains for different hydrates of disodium ATP salts. Double-quantum efficiency in function of excitation time obtained from series of two-dimensional spectra for POST-C7 experiments was used to set up of buildup curves and semi-quantitative measure of 31P-31P length.

  14. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  15. Complete assignments of 1H and 13C NMR data for three new arylnaphthalene lignan from Justicia procumbens.

    PubMed

    Liu, Guorui; Wu, Jun; Si, Jianyong; Wang, Junmei; Yang, Meihua

    2008-03-01

    Three new arylnaphthalene lignans, named neojusticin C (1), procumbenoside C (2) and procumbenoside D (3), have been isolated from the whole plant of Justicia procumbens, together with three known ones, justicidinoside B (4), justicidinoside C (5), and diphyllin-1-O-beta-D-apiofuranoside (6). The complete assignments of 1H and 13C NMR data for three new lignans were first obtained by means of 2D NMR techniques, including HSQC and HMBC.

  16. The influence of sulfur configuration in (1) H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    PubMed

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Dynamic exchange between the covalent and dative metal-metal bonded isomers of the heterodinuclear complex (NiPd(CNMe) sub 3 (dppm) sub 2 )(PF sub 6 ) sub 2 by sup 31 P l brace sup 1 H r brace NOESY

    SciTech Connect

    Ni, Jinfeng; Kubiak, C.P. )

    1990-10-17

    The first quantitative dynamic study by {sup 31}P({sup 1}H) Nuclear Overhauser enhancement spectroscopy (NOESY) is described herein. The exchange between a pair of isomers of the complex (NiPd(CNMe){sub 3}(dppm){sub 2})(PF{sub 6}){sub 2} that differ in their mode of metal-metal bonding has been measured. The {sup 31}P({sup 1}H) NOSEY for this complex is ascribed to the relatively slow interconversion between the covalent and dative Ni-Pd bonded isomers. 13 refs., 2 figs., 2 tabs.

  18. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum

    PubMed Central

    Teng, Rongwei; Lehane, Adele M.; Winterberg, Markus; Shafik, Sarah H.; Summers, Robert L.; Martin, Rowena E.; van Schalkwyk, Donelly A.; Junankar, Pauline R.; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  19. Quantification of acesulfame potassium in processed foods by quantitative 1H NMR.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Abe, Yutaka; Sugimoto, Naoki; Akiyama, Hiroshi

    2015-01-01

    Acesulfame potassium (AceK), a high-intensity and non-caloric artificial sweetener, is used in various processed foods as a food additive. In this study, we established and validated a method for determining the AceK content in various processed foods by solvent extraction and quantitative (1)H NMR, using a certified reference material as the internal standard. In the recovery test, the proposed method gave satisfactory recoveries (88.4-99.6%) and repeatabilities (0.6-5.6%) for various processed foods. The limit of quantification was confirmed as 0.13 g kg(-1), which was sufficiently low for the purposes of monitoring AceK levels. In the analysis of commercially processed foods containing AceK, all AceK contents determined by the proposed method were in good agreement with those obtained by a conventional method based on dialysis and HPLC. Moreover, this method can achieve rapid quantification and yields analytical data with traceability to the International System of Units (SI) without the need for an authentic analyte standard. Therefore, the proposed method is a useful and practical tool for the determination of AceK in processed foods.

  20. Biochemical effects of venlafaxine on astrocytes as revealed by (1)H NMR-based metabolic profiling.

    PubMed

    Sun, Lu; Fang, Liang; Lian, Bin; Xia, Jin-Jun; Zhou, Chan-Juan; Wang, Ling; Mao, Qiang; Wang, Xin-Fa; Gong, Xue; Liang, Zi-Hong; Bai, Shun-Jie; Liao, Li; Wu, Yu; Xie, Peng

    2017-01-31

    As a serotonin-norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects. Accumulating evidence shows that venlafaxine may target astrocytes to exert its antidepressant activity, although the underlying pharmacological mechanisms remained largely unknown. Here, we used a (1)H nuclear magnetic resonance (NMR)-based metabonomics method coupled with multivariate statistical analysis to characterize the metabolic profiling of astrocytes treated with venlafaxine to explore the potential mechanism of its antidepressant effect. In total, 31 differential metabolites involved in energy, amino acid and lipid metabolism were identified. Ingenuity pathway analysis was used to identify the predicted pathways and biological functions with venlafaxine and fluoxetine. The most significantly altered network was "amino acid metabolism, cellular growth and proliferation", with a score above 20. Certain metabolites (lysine, tyrosine, glutamate, methionine, ethanolamine, fructose-6-phosphate, and phosphorylethanolamine) are involved in and play a central role in this network. Collectively, the biological effects of venlafaxine on astrocytes provide us with the further understanding of the mechanisms by which venlafaxine treats major depressive disorder.

  1. Tissue metabolic profiling of lymph node metastasis of colorectal cancer assessed by 1H NMR.

    PubMed

    Zhang, Hailong; Qiao, Liang; Li, Xiaopeng; Wan, Yang; Yang, Li; Wang, Huijuan

    2016-12-01

    Lymph node metastasis is a decisive prognostic and therapeutic staging factor for colorectal cancer (CRC), which is one of the most prevalent types of cancer and a malignant tumor. The metabolic profiling of tissue samples from a large cohort of lymph node non‑metastatic CRC patients (n=73), lymph node metastatic CRC patients (n=52) and normal controls (n=41) was performed using 1H nuclear magnetic resonance (NMR) together with multivariate statistical analyses. Excellent separation was obtained between CRC patients and normal controls, and CRC patients were also perfectly classified according to lymph node metastasis. Forty‑two distinguishing metabolites were identified, which revealed disturbance of glycolysis, glutaminolysis, fatty acid metabolism, choline metabolism and amino acids, suggesting that cellular functions in energy production, macromolecular synthesis, oxidative stress and immune escape of cancer cells are affected in CRC. In total, 10 tissue metabolites were significantly disturbed between non‑metastatic and metastatic CRC patients. The present study firstly staged CRC patients by lymph node metastasis by metabolomic approach. The identified metabolites may be associated with the neoplasia, invasion and metastasis of the tumor. The results suggest the promising application of these metabolites in clinical therapy, and further understanding of the related mechanism warrants further investigation.

  2. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  3. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  4. The (1)H NMR structure of bovine Pb(2+)-osteocalcin and implications for lead toxicity.

    PubMed

    Dowd, T L; Li, L; Gundberg, C M

    2008-11-01

    Structural information on the effect of Pb(2+) on proteins under physiologically relevant conditions is largely unknown. We have previously shown that low levels of lead increased the amount of osteocalcin bound to hydroxyapatite (BBA 1535:153). This suggested that lead induced a more compact structure in the protein. We have determined the 3D structure of Pb(2+)-osteocalcin (49 amino acids), a bone protein from a target tissue, using (1)H 2D NMR techniques. Lead, at a stoichiometry of only 1:1, induced a similar fold in the protein as that induced by Ca(2+) at a stoichiometry of 3:1. The structure consisted of an unstructured N-terminus and an ordered C-terminal consisting of a hydrophobic core (residues 16-49). The genetic algorithm-molecular dynamics simulation predicted the lead ion was coordinated by the Gla 24 and Gla 21 residues. It is proposed that mineral binding occurs via uncoordinated Gla oxygen ions binding to calcium in hydroxyapatite. A comparison of Pb(2+)- and Ca(2+)-osteocalcin suggests Pb(2+), at a lower stoichiometry, may induce similar conformational changes in proteins and subsequent molecular processes normally controlled by calcium alone. This may contribute to a molecular mechanism of lead toxicity for calcium binding proteins. Lead exposure may alter the amount of mineral bound osteocalcin and contribute to abnormal bone remodeling.

  5. Polypharmacotherapy in rheumatology: 1H NMR analysis of binding of phenylbutazone and methotrexate to serum albumin

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.; Bojko, B.; Szkudlarek-Haśnik, A.; Knopik, M.; Sułkowski, W. W.

    2011-05-01

    The influence of phenylbutazone (Phe) and methotrexate (MTX) on binding of MTX and Phe to human (HSA) and bovine (BSA) serum albumin in the low-affinity binding sites is investigated. The strength and kind of interactions between serum albumin (SA) and drugs used in combination therapy were found using 1H NMR spectroscopy. A stoichiometric molar ratios for Phe-SA and MTX-SA complexes are 36:1 and 31:1, respectively. It appeared these molar ratios are higher for the ternary systems than it were in the binary ones. The presence of the additional drug (MTX or Phe) causes the increase of an affinity of albumin towards Phe and MTX. It was found that the aliphatic groups of MTX are more resistant to the influence of Phe on the MTX-SA complex than the aromatic rings. The results showed the important impact of another drug (MTX or Phe) on the affinity of SA towards Phe and MTX in the low-affinity binding sites. This work is a subsequent part of the spectroscopic study on Phe-MTX-SA interactions (Maciążek-Jurczyk, 2009 [1]).

  6. Enantioseparation of cetirizine by chromatographic methods and discrimination by 1H-NMR.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-03-01

    Cetirizine is an antihistaminic drug used to prevent and treat allergic conditions. It is currently marketed as a racemate. The H1-antagonist activity of cetirizine is primarily due to (R)-levocetirizine. This has led to the introduction of (R)-levocetirizine into clinical practice, and the chiral switching is expected to be more selective and safer. The present work represents three methods for the analysis and chiral discrimination of cetirizine. The first method was based on the enantioseparation of cetirizine on silica gel TLC plates using different chiral selectors as mobile phase additives. The mobile phase enabling successful resolution was acetonitrile-water 17: 3, (v/v) containing 1 mM of chiral selector, namely hydroxypropyl-beta-cyclodextrin, chondroitin sulphate or vancomycin hydrochloride. The second method was a validated high performance liquid chromatography (HPLC), based on stereoselective separation of cetirizine and quantitative determination of its eutomer (R)-levocetirizine on a monolithic C18 column using hydroxypropyl-beta-cyclodextrin as a chiral mobile phase additive. The resolved peaks of (R)-levocetirizine and (S)-dextrocetirizine were confirmed by further mass spectrometry. The third method used a (1)H-NMR technique to characterize cetirizine and (R)-levocetirizine. These methods are selective and accurate, and can be easily applied for chiral discrimination and determination of cetirizine in drug substance and drug product in quality control laboratory. Moreover, chiral purity testing of (R)-levocetirizine can also be monitored by the chromatographic methods.

  7. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  8. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  9. Using magnetic coupling to implement 1H, 19F, 13C experiments in routine high resolution NMR probes

    NASA Astrophysics Data System (ADS)

    Bowyer, Paul; Finnigan, Jim; Marsden, Brian; Taber, Bob; Zens, Albert

    2015-12-01

    We report in this paper the design of 1H, 19F, 13C circuitry using magnetic coupling which can do on demand experiments where one of the three nuclei is observed and the other two are decoupled. The implementation of this circuitry in routine NMR probes is compared with capacitive coupling methods where it was found that by using magnetic coupling the performance of the routine NMR probe was not impacted by the addition of this circuitry. It is surmised that using this type of circuitry would be highly desirable for those chemists doing routine 19F NMR.

  10. Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from Justicia procumbens.

    PubMed

    Yang, Meihua; Wu, Jun; Cheng, Fan; Zhou, Yuan

    2006-07-01

    Three new arylnaphthalide lignans named 6'-hydroxy justicidin A (1), 6'-hydroxy justicidin B (2) and 6'-hydroxy justicidin C (3) have been isolated from the whole plant of Justicia procumbens, together with four known ones, neojusticin A (4), chinensinaphthol methyl ester (5), isodiphyllin (6) and taiwanin C (7). The complete assignments of 1H and 13C NMR chemical shifts for the new lignans and the 13C NMR chemical shifts for the known lignans were obtained for the first time by means of 2D NMR techniques, including HSQC and HMBC.

  11. Measurements of intracellular volumes by 59Co and 2H/1H NMR and their physiological applications.

    PubMed

    Askenasy, Nadir; Navon, Gil

    2005-04-01

    Determination of the intracellular water volumes using NMR spectroscopy was performed using the NMR-visible nuclei: 59Co and 2H or 1H. Accurate measurement of intracellular water in cell suspensions and perfused organs is an important physiological parameter in the context of electrolyte homeostasis and energy metabolism, in particular when these parameters are monitored by non-invasive NMR spectroscopy. Furthermore, repeated or continuous monitoring of intracellular water provided significant insights into the physiology of cardiac muscle and sarcolemmal membrane permeability and integrity.

  12. Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis.

    PubMed

    Steinhof, Oliver; Kibrik, Éléonore J; Scherr, Günter; Hasse, Hans

    2014-04-01

    Urea-formaldehyde resins are bulk products of the chemical industry. Their synthesis involves a complex reaction network. The present work contributes to its elucidation by presenting results from detailed NMR spectroscopic studies with different methods. Besides (1)H NMR and (13)C NMR, (15)N NMR spectroscopy is also applied. (15)N-enriched urea was used for the investigations. A detailed NMR signal assignment and a model of the reaction network of the hydroxymethylation step of the synthesis are presented. Because of its higher spectral dispersion and the fact that all key reactions directly involve the nitrogen centers, (15)N NMR provides a much larger amount of detail than do (1)H and (13)C NMR spectroscopy. Symmetric and asymmetric dimethylol urea can be clearly distinguished and separated from monomethylol urea, trimethylol urea, and methylene-bridged urea. The existence of hemiformals of methylol urea is confirmed. 1,3,5-Oxadiazinan-4-on (uron) and its derivatives were not found in the reaction mixtures investigated here but were prepared via alternative routes. The molar ratios of formaldehyde to urea were 1, 2, and 4, the pH values 7.5 and 8.5, and the reaction temperature 60 °C.

  13. Complete assignment of the (1)H and (13)C NMR spectra of cis and trans isonucleoside derivatives of purine with a tetrahydropyran ring.

    PubMed

    Besada, Pedro; Costas, Tamara; Terán, Carmen

    2010-06-01

    (1)H and (13)C NMR chemical shifts of cis and trans isonucleoside analogues of purine in which the furanose moiety is substituted by a tetrahydropyran ring were completely assigned using one- and two-dimensional NMR experiments that include NOE, DEPT, COSY and HSQC. The significant (1)H and (13)C NMR signals differentiating between the cis and trans stereoisomers were compared.

  14. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  15. Improving the Hyperpolarization of 31P Nuclei by Synthetic Design

    PubMed Central

    2015-01-01

    Traditional 31P NMR or MRI measurements suffer from low sensitivity relative to 1H detection and consequently require longer scan times. We show here that hyperpolarization of 31P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold 31P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan 31P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. 31P-hyperpolarized images are also reported from a 7 T preclinical scanner. PMID:25811635

  16. Robust algorithms for automated chemical shift calibration of 1D 1H NMR spectra of blood serum.

    PubMed

    Pearce, Jake T M; Athersuch, Toby J; Ebbels, Timothy M D; Lindon, John C; Nicholson, Jeremy K; Keun, Hector C

    2008-09-15

    In biofluid NMR spectroscopy, the frequency of each resonance is typically calibrated by addition of a reference compound such as 3-(trimethylsilyl)-propionic acid- d 4 (TSP) to the sample. However biofluids such as serum cannot be referenced to TSP, due to shifts resonance caused by binding to macromolecules in solution. In order to overcome this limitation we have developed algorithms, based on analysis of derivative spectra, to locate and calibrate (1)H NMR spectra to the alpha-glucose anomeric doublet. We successfully used these algorithms to calibrate 77 serum (1)H NMR spectra and demonstrate the greater reproducibility of the calculated chemical-shift corrections ( r = 0.97) than those generated by manual alignment ( r = 0.8-0.88). Hence we show that these algorithms provide robust and reproducible methods of calibrating (1)H NMR of serum, plasma, or any biofluid in which glucose is abundant. Precise automated calibration of complex biofluid NMR spectra is an important tool in large-scale metabonomic or metabolomic studies, where hundreds or even thousands of spectra may be analyzed in high-resolution by pattern recognition analysis.

  17. 1H and 13C NMR signal assignments of a novel Baeyer-Villiger originated diterpene lactone.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Gunatilaka, A A Leslie; Boaventura, Maria Amélia D

    2006-02-01

    A highly rearranged novel dilactone was the single product isolated from Baeyer-Villiger oxidation of a norketone prepared from grandiflorenic acid, a natural kaurane diterpene. The complete 1H and 13C NMR assignment is presented for this novel compound that showed discrete in vitro antibacterial activity.

  18. 1H, 13C and 15N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.

  19. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

  20. Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis.

    PubMed

    Tarachiwin, Lucksanaporn; Masako, Osawa; Fukusaki, Eiichiro

    2008-07-23

    (1)H NMR spectrometry in combination with multivariate analysis was considered to provide greater information on quality assessment over an ordinary sensory testing method due to its high reliability and high accuracy. The sensory quality evaluation of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) was carried out by means of (1)H NMR-based metabolomics. Multivariate analyses by partial least-squares projections to latent structures-discrimination analysis (PLS-DA) and PLS-regression offered extensive information for quality differentiation and quality evaluation, respectively. The impact of watermelon and rootstock cultivars on the sensory qualities of watermelon was determined on the basis of (1)H NMR metabolic fingerprinting and profiling. The significant metabolites contributing to the discrimination were also identified. A multivariate calibration model was successfully constructed by PLS-regression with extremely high reliability and accuracy. Thus, (1)H NMR-based metabolomics with multivariate analysis was considered to be one of the most suitable complementary techniques that could be applied to assess and predict the sensory quality of watermelons and other horticultural plants.

  1. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.

  2. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  3. Microscale Synthesis and (super 1)H NMR Analysis of Zn(super II) and Ni(super II) Tetraphenylporphyrins

    ERIC Educational Resources Information Center

    Saucedo, Laura; Mink, Larry M.

    2005-01-01

    A multisection undergraduate laboratory involving the microscale synthesis and spectroscopic analysis of unmetalled porphyrins and their corresponding metalloporphyins is described. The microscale synthesis involving the isolation of the metalloporphyrins as solids and their corresponding (super 1)H NMR spectra are presented.

  4. A thorough study on the use of quantitative 1H NMR in Rioja red wine fermentation processes.

    PubMed

    López-Rituerto, Eva; Cabredo, Susana; López, Martina; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2009-03-25

    In this study, we focused our attention on monitoring the levels of important metabolites of wine during the alcoholic and malolactic fermentation processes by quantitative nuclear magnetic resonance (qNMR). Therefore, using (1)H NMR, the method allows the simultaneous quantification of ethanol, acetic, malic, lactic, and succinic acids, and the amino acids proline and alanine, besides the ratio proline/arginine through fermentation of must of grapes corresponding to the Tempranillo variety. Each (1)H NMR spectrum gives direct and visual information concerning these metabolites, and the effectiveness of each process was assessed and compared by carrying out analyses using infrared spectroscopy to ethanol and acetic acid. The quantitative data were explained with the aid of chemometric algorithms.

  5. Bonding in hard and elastic amorphous carbon nitride films investigated using 15N, 13C, and 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gammon, W. J.; Hoatson, G. L.; Holloway, B. C.; Vold, R. L.; Reilly, A. C.

    2003-11-01

    The nitrogen bonding in hard and elastic amorphous carbon nitride (a-CNx) films is examined with 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. Films were deposited by dc magnetron sputtering, in a pure nitrogen discharge on Si(001) substrates at 300 °C. Nanoindentation tests revealed an elastic recovery of 80%, a hardness of 5 GPa, and an elastic modulus of 47 GPa. The NMR results show that nitrogen bonding in this material is consistent with sp2 hybridized nitrogen incorporated in an aromatic carbon environment. The data also indicate that the a-CNx prepared for this study has very low hydrogen content and is hydrophilic. Specifically, analysis of 15N and 13C cross polarization magic angle spinning and 1H NMR experiments suggests that water preferentially protonates nitrogen sites.

  6. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  7. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.

  8. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  9. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  10. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  11. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole.

    PubMed

    Issa, Y M; Hassib, H B; Abdelaal, H E

    2009-11-01

    Heterocyclic Schiff bases derived from 3-amino-1,2,4-triazole and different substituted aromatic aldehydes are prepared and subjected to (1)H NMR, (13)C NMR and mass spectral analyses. (1)H NMR spectra in DMSO exhibit a sharp singlet within the 9.35-8.90ppm region which corresponds to the azomethine proton. The position of this signal is largely dependent on the nature of the substituents on the benzal moiety. It is observed that the shape, position and the integration value of the signal of the aromatic proton of the triazole ring ((5)C) are clearly affected by the rate of exchange, relaxation time, concentration of solution as well as the solvent used. (13)C NMR is taken as substantial support for the results reached from (1)H NMR studies. The mass spectral results are taken as a tool to confirm the structure of the investigated compounds. The base peak (100%), mostly the M-1 peak, indicates the facile loss of hydrogen radical. The fragmentation pattern of the unsubstituted Schiff base is taken as the general scheme. Differences in the other schemes result from the effect of the electronegativity of the substituents attached to the aromatic ring.

  12. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  13. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    SciTech Connect

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  14. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    PubMed Central

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  15. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    NASA Astrophysics Data System (ADS)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  16. MAS (1)H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes.

    PubMed

    Mandal, Abhishek; van der Wel, Patrick C A

    2016-11-01

    The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS (1)H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (Tm). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants.

  17. Diagnosis of cerebral cryptococcoma using a computerized analysis of 1H NMR spectra in an animal model.

    PubMed

    Dzendrowskyj, Theresa E; Dolenko, Brion; Sorrell, Tania C; Somorjai, Rajmund L; Malik, Richard; Mountford, Carolyn E; Himmelreich, Uwe

    2005-06-01

    Viable cryptococci load in biopsy material from an animal model of cerebral cryptococcoma were correlated with 1H NMR spectra and metabolite profiles. A statistical classification strategy was applied to distinguish among high-resolution 1H NMR spectra acquired from cryptococcomas, glioblastomas, and normal brain tissue. The overall classification accuracy was 100% when a genetic-algorithm-based optimal region selection preceded the development of linear discriminant analysis-based classifiers. The method remained robust despite differences in the microbial load of the cryptococcoma group when harvested at different time points. These results indicate the feasibility of the method for diagnosis without isolation of the pathogenic microorganism and its potential for in vivo diagnosis based on computerized analysis of magnetic resonance spectra.

  18. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.

    PubMed

    Dufour, Anthony; Castro-Diaz, Miguel; Brosse, Nicolas; Bouroukba, Mohamed; Snape, Colin

    2012-07-01

    The thermochemical conversion of lignocellulosic biomass feedstocks offers an important potential route for the production of biofuels and value-added green chemicals. Pyrolysis is the first phenomenon involved in all biomass thermochemical processes and it controls to a major extent the product composition. The composition of pyrolysis products can be affected markedly by the extent of softening that occurs. In spite of extensive work on biomass pyrolysis, the development of fluidity during the pyrolysis of biomass has not been quantified. This paper provides the first experimental investigation of proton mobility during biomass pyrolysis by in situ (1)H NMR spectroscopy. The origin of mobility is discussed for cellulose, lignin and xylan. The effect of minerals on cellulose mobility is also investigated. Interactions between polymers in the native biomass network are revealed by in situ (1)H NMR analysis.

  19. A study by (1)H NMR on the influence of some factors affecting lipid in vitro digestion.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2016-11-15

    This article focuses on the impact of several experimental factors, including gastric acidification, intestinal transit time, presence of gastric lipase, sample/digestive fluids ratio, concentration and nature of the enzymes in intestinal juice, and bile concentration, on the extent of in vitro lipolysis when using a static model that simulates human digestion processes in mouth, stomach and small intestine. The study was carried out by Proton Nuclear Magnetic Resonance ((1)H NMR). This technique provides a complete molecular picture of lipolysis, evidencing for the first time, whether preferential hydrolysis of certain glycerides over others occurs. A lipolysis degree similar to that reported in vivo was reached by varying certain variables within a physiological range; among them, bile concentration was found to be crucial. The holistic view of this (1)H NMR study provides information of paramount importance to design sound in vitro digestion models to determine the bioaccessibility and bioavailability of lipophilic compounds.

  20. FT-IR and {sup 1}H NMR characterization of the products of an ethylene inverse diffusion flame

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Molina, Alejandro; Marsh, Nathan D.; Eddings, Eric G.; Sarofim, Adel F.

    2006-07-15

    Knowledge of the chemical structure of young soot and its precursors is very useful in the understanding of the paths leading to soot particle inception. This paper presents analyses of the chemical functional groups, based on FT-IR and {sup 1}H NMR spectroscopy of the products obtained in an ethylene inverse diffusion flame. The trends in the data indicate that the soluble fraction of the soot becomes progressively more aromatic and less aliphatic as the height above the burner increases. Results from {sup 1}H NMR spectra of the chloroform-soluble soot samples taken at different heights above the burner corroborate the infrared results based on proton chemical shifts (Ha, H{alpha}, H{beta}, and H{gamma}). The results indicate that the aliphatic {beta} and {gamma} hydrogens suffered the most drastic reduction, while the aromatic character increased considerably with height, particularly in the first half of the flame. (author)

  1. In vitro interaction of selected phospholipid species with mercuric chloride using Fourier transform sup 1 H-NMR

    SciTech Connect

    Shinada, Masayuki; Muto, Hajime; Takizawa, Yukio )

    1991-09-01

    Many studies on the mercury toxicities have been accumulated since the outbreak of Minamata Disease.' There have been few reports on the reaction mechanisms of mercurials with phospholipids which substantially locate in biological membranes, although the interactions of nucleotides or nucleosides with mercurials have been reported. Recently, the study on the interaction of mercuric chloride (HgCl{sub 2}) with amino polar heads of model membranes containing phosphatidylserine (PS) and phosphatidylethanolamine (PE) has been reported, as the results from the fluorescence polarization analysis using 1,6-diphenyl-1,3,5-hexatriene. The authors demonstrate here the interactions of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) with HgCl{sub 2}, using Fourier transform {sup 1}H-NMR ({sup 1}H-FT-NMR).

  2. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  3. Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy

    PubMed Central

    Nelson, Donna J.; Kumar, Ravi

    2013-01-01

    Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

  4. Improving the efficiency of quantitative (1)H NMR: an innovative external standard-internal reference approach.

    PubMed

    Huang, Yande; Su, Bao-Ning; Ye, Qingmei; Palaniswamy, Venkatapuram A; Bolgar, Mark S; Raglione, Thomas V

    2014-01-01

    The classical internal standard quantitative NMR (qNMR) method determines the purity of an analyte by the determination of a solution containing the analyte and a standard. Therefore, the standard must meet the requirements of chemical compatibility and lack of resonance interference with the analyte as well as a known purity. The identification of such a standard can be time consuming and must be repeated for each analyte. In contrast, the external standard qNMR method utilizes a standard with a known purity to calibrate the NMR instrument. The external standard and the analyte are measured separately, thereby eliminating the matter of chemical compatibility and resonance interference between the standard and the analyte. However, the instrumental factors, including the quality of NMR tubes, must be kept the same. Any deviations will compromise the accuracy of the results. An innovative qNMR method reported herein utilizes an internal reference substance along with an external standard to assume the role of the standard used in the traditional internal standard qNMR method. In this new method, the internal reference substance must only be chemically compatible and be free of resonance-interference with the analyte or external standard whereas the external standard must only be of a known purity. The exact purity or concentration of the internal reference substance is not required as long as the same quantity is added to the external standard and the analyte. The new method reduces the burden of searching for an appropriate standard for each analyte significantly. Therefore the efficiency of the qNMR purity assay increases while the precision of the internal standard method is retained.

  5. Hydrocarbon type analysis of jet fuels by /sup 1/H and /sup 13/C NMR

    SciTech Connect

    Netzel, D.A.; Hunter, P.M.

    1981-05-01

    This report describes the application of NMR spectroscopy to the chemical characterization without prior chromatographic separation of jet fuels and various fuel blends containing varying amounts of paraffinic and aromatic constituents. Equations are derived by which the total percent paraffins and aromatics as well as percent monoaromatics and diaromatics can be calculated. Computer programs for the various calculations are included. The results obtained by NMR are compared to those obtained by MS.

  6. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and /sup 31/P NMR spectroscopic studies

    SciTech Connect

    Lewis, R.N.A.H.; Sykes, B.D.; McElhaney, R.N.

    1988-02-09

    The thermotropic phase behavior of dioleoylphosphatidylcholine and six of its longer chain homologues was studied by differential scanning calorimetry and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy. Aqueous dispersions of these compounds all exhibit a single endotherm upon heating but upon cooling exhibit at least two exotherms, both of which occur at temperatures lower than those of their heating endotherm. The single transition observed upon heating was shown by /sup 31/P NMR spectroscopy to be a net conversion from a condensed, subgel-like phase (L/sub c/ phase) to the liquid-crystalline state. Aqueous ethylene glycol dispersions of these compounds also exhibit single endotherms upon heating and cooling exotherms centered at temperatures lower than those of their corresponding heating endotherm. However, the behavior of the aqueous ethylene glycol dispersions differs with respect to their transition temperatures and enthalpies as well as the extent of undercooling observed, and there is some evidence of discontinuities in the cooling behavior of the odd- and even-numbered members of the homologous series. Like the aqueous dispersions, /sup 31/P NMR spectroscopy also shows that the calorimetric events observed in aqueous ethylene glycol involve net interconversions between an L/sub c/-like phase and the liquid-crystalline state. These results demonstrate that although the presence of a cis double bond can perturb the solid-state packing of the acyl chains, its presence does not preclude the formation of highly ordered subgel-like phases in lipid bilayers. In the particular case of these unsaturated phosphatidylcholines, the formation of the subgel phases is more kinetically favorable than is the case with their saturated n-acyl counterparts.

  7. Characteristics and assessment of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR)

    NASA Astrophysics Data System (ADS)

    Zhang, W. Q.; Zhang, H.; Tang, W. Z.; Shan, B. Q.

    2013-10-01

    We studied the phosphorus (P) pollution, as described by concentrations, distribution and transformation potential, of sediments of the water scarce and heavily polluted Fuyang River, a tributary of the Haihe River, using P fractionation and phosphorus-31 nuclear magnetic resonance (31P-NMR).The sediments of the Fuyang River accumulate significant amounts of inorganic phosphorus (Pi) and organic phosphorus (Po) from industrial and domestic wastewater and agricultural non-point pollution. In terms of their contribution to total phosphorus, the rank order of the P fractions was as follows: H2SO4-P > NaOH-Pi > Res-P > NaOH-Po > KCl-P and their average relative proportions were 69.7:47.5:15.9:2.9:1.0 (the proportion was based on the average proportion of the KCl-P). Seven P compounds were detected by the 31P-NMR analysis. Orthophosphate (Ortho-P: 45.2-92.4%) and orthophosphate monoesters (mono-P: 6.6-45.7%) were the dominant forms. Smaller amounts of pyrophosphates (pyro-P: 0.1-6.6%), deoxyribonucleic acid (DNA-P: 0.3-3.9%), phosphonates (phon-P: 0-3.3%), phospholipids (lipids-P: 0-2.7%) and polyphosphate (poly-P: 0-0.04%) were observed in the sediments. Results of P fractionation and 31P-NMR analysis showed that 35% of Pi was labile P, including KCl-P and NaOH-Pi (Fe-P and Al-P). Biogenic-P accounted for 24% of P in the sediments. Analysis of the relationships between P species and water quality indicated that the Po compounds would mineralize to form ortho-P and would be potentially bioavailable for recycling to surface water, supporting further growth of phytoplankton and leading to algal blooms.

  8. Light induced E-Z isomerization in a multi-responsive organogel: elucidation from (1)H NMR spectroscopy.

    PubMed

    Mondal, Sanjoy; Chakraborty, Priyadarshi; Bairi, Partha; Chatterjee, Dhruba P; Nandi, Arun K

    2015-07-07

    A multiresponsive organogel of (E)-N'-(anthracene-10-ylmethylene)-3,4,5-tris(dodecyloxy)benzohydrazide (I) showed a decrease of fluorescence intensity, decrease in mechanical strength and a change in gel morphology on irradiation with a wavelength of 365 nm. This is attributed to the E-Z isomerization across the C=N bond of I as evidenced from (1)H NMR spectroscopy.

  9. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  10. On the role of experimental imperfections in constructing (1)H spin diffusion NMR plots for domain size measurements.

    PubMed

    Nieuwendaal, Ryan C

    2016-01-01

    We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra.

  11. Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and 1H-NMR methods.

    PubMed

    Tolonen, Ari; Joutsamo, Topi; Mattlla, Sampo; Kämäräinen, Terttu; Jalonen, Jorma

    2002-01-01

    Liquid chromatography-electrospray time-of-flight mass spectrometry (HPLC-ESI/TOF/MS) and a novel NMR technique, developed to maximise the sensitivity obtained from the standard NMR spectrometer, have been applied to the identification of the phenolic constituents of Eleutherococcus senticosus. In addition, molecular modelling and dihedral bond angle calculations based on the vicinal 3JHH-coupling constants have been used in the unambiguous assignment of signals in the 1H-NMR spectra. 5'-O-Caffeoylquinic acid and three isomeric compounds, 1',5'-O-dicaffeoylquinic acid, 3',5'-O-dicaffeoylquinic acid and 4',5'-O-dicaffeoylquinic acid, have been isolated and identified from a sample. The isolation and structure determination of the latter two compounds are reported for the first time from this plant.

  12. Qualitative and quantitative analyses of Compound Danshen extract based on (1)H NMR method and its application for quality control.

    PubMed

    Yan, Kai-Jing; Chu, Yang; Huang, Jian-Hua; Jiang, Miao-Miao; Li, Wei; Wang, Yue-Fei; Huang, Hui-Yong; Qin, Yu-Hui; Ma, Xiao-Hui; Zhou, Shui-Ping; Sun, Henry; Wang, Wei

    2016-11-30

    In this study, a new approach using (1)H NMR spectroscopy combined with chemometrics method was developed for qualitative and quantitative analyses of extracts of Compound Danshen Dripping Pills (CDDP). For the qualitative analysis, some metabolites presented in Compound Danshen extract (CDE, extraction intermediate of CDDP) were detected, including phenolic acids, saponins, saccharides, organic acids and amino acids, by the proposed (1)H NMR method, and metabolites profiles were further analyzed by selected chemometrics algorithms to define the threshold values for product quality evaluation. Moreover, three main phenolic acids (danshensu, salvianolic acid B, and procatechuic aldehyde) in CDE were determined simultaneously, and method validation in terms of linearity, precision, repeatability, accuracy, and stability of the dissolved target compounds in solution was performed. The average recoveries varied between 84.20% and 110.75% while the RSDs were below 6.34% for the three phenolic acids. This (1)H NMR method offers an integral view of the extract composition, allows the qualitative and quantitative analysis of CDDP, and has the potential to be a supplementary tool to UPLC/HPLC for quality assessment of Chinese herbal medicines.

  13. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-03

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  14. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Grinhut, Tzafrir; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Hadar, Yitzhak; Chen, Yona

    2011-04-01

    Enzymatic activities involved in decay processes of natural aromatic macromolecules, such as humic acids (HA) and lignin by white rot fungi, have been widely investigated. However, the physical and chemical analysis of degradation products of these materials has not been intensively explored. Fourier transform cyclotron resonance mass spectrometry (FTICR MS) and 1H NMR as well as CHNOS and size exclusion chromatography were employed to study the mechanisms of HA degradation by Trametes sp. M23 and Phanerochaete sp. Y6. Size exclusion chromatography analyses demonstrate and provide evidence for HA breakdown into low MW compounds. The 1H NMR analysis revealed oxidation, a decrease in the aromatic content, and an indication of demethylation of the HA during biodegradation. Evidence for oxidation was also obtained using CHNOS. Analysis of FTICR MS results using a new software program developed by our group (David Mass Sort) revealed consecutive series of masses suggesting biochemical degradation trends such as oxidation, aromatic cleavage, and demethylation. These results are in agreement with the 1H NMR analysis and with the suggested role of the ligninolytic system leading to HA degradation.

  15. Determination of the enantiomeric excess of chiral carboxylic acids by 31P NMR with phosphorylated derivatizing agents from C2-symmetrical diamines containing the (S)-alpha-phenylethyl group.

    PubMed

    Mastranzo, Virginia M; Quintero, Leticia; de Parrodi, Cecilia Anaya

    2007-06-01

    The use of P(III) and P(V) organophosphorus derivatizing agents prepared from C(2) symmetrical (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-cyclohexane-1,2-diamines 1 and 2, as well as (1R,2R)- and (1S,2S)-trans-N,N'-bis-[(S)-alpha-phenylethyl]-4-cyclohexene-1,2-diamines 3 and 4 for the determination of enantiomeric composition of chiral carboxylic acids by (31)P NMR, is described.

  16. Complete 1H and 13C NMR assignments and Z/E-stereoconfiguration determination of isomers of 1,4-diketone derivatives.

    PubMed

    Xu, Guohua; Yin, Guodong; Guo, Wenbo; Wu, Anxin; Cui, Yanfang

    2008-01-01

    Complete 1H and 13C NMR assignments and Z/E-stereoconfiguration determination for a series of new isomers of 1,4-diketone derivatives obtained via self-sorting tandem reaction were accomplished by means of one- and two-dimentional NMR experiments including 1H, 13C, gCOSY, gHSQC, gHMBC, and NOESY.

  17. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy.

    PubMed

    Embade, Nieves; Mariño, Zoe; Diercks, Tammo; Cano, Ainara; Lens, Sabela; Cabrera, Diana; Navasa, Miquel; Falcón-Pérez, Juan M; Caballería, Joan; Castro, Azucena; Bosch, Jaume; Mato, José M; Millet, Oscar

    2016-01-01

    Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection (HCV). Despite its high incidence and the severe economic and medical consequences, liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic methods. While several techniques have been tested for the detection of fibrosis, the available biomarkers still present severe limitations that preclude their use in clinical diagnostics. Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis were analyzed by NMR spectroscopy and the results were submitted to multivariate and univariate statistical analysis. PLS-DA test was able to discriminate between advanced fibrotic and non-fibrotic patients and several metabolites were found to be up or downregulated in patients with cirrhosis. The suitability of the most significantly regulated metabolites was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-density lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients. Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnostic application for NMR spectroscopy.

  18. Application of quantitative 1H NMR for the calibration of protoberberine alkaloid reference standards.

    PubMed

    Wu, Yan; He, Yi; He, Wenyi; Zhang, Yumei; Lu, Jing; Dai, Zhong; Ma, Shuangcheng; Lin, Ruichao

    2014-03-01

    Quantitative nuclear magnetic resonance spectroscopy (qNMR) has been developed into an important tool in the drug analysis, biomacromolecule detection, and metabolism study. Compared with mass balance method, qNMR method bears some advantages in the calibration of reference standard (RS): it determines the absolute amount of a sample; other chemical compound and its certified reference material (CRM) can be used as internal standard (IS) to obtain the purity of the sample. Protoberberine alkaloids have many biological activities and have been used as reference standards for the control of many herbal drugs. In present study, the qNMR methods were developed for the calibration of berberine hydrochloride, palmatine hydrochloride, tetrahydropalmatine, and phellodendrine hydrochloride with potassium hydrogen phthalate as IS. Method validation was carried out according to the guidelines for the method validation of Chinese Pharmacopoeia. The results of qNMR were compared with those of mass balance method and the differences between the results of two methods were acceptable based on the analysis of estimated measurement uncertainties. Therefore, qNMR is an effective and reliable analysis method for the calibration of RS and can be used as a good complementarity to the mass balance method.

  19. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  20. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    PubMed

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  1. Nondestructive Quantification of Local Plasticizer Concentration in PVC by (1)H NMR Relaxometry.

    PubMed

    Adams, Alina; Kwamen, Rance; Woldt, Benjamin; Graß, Michael

    2015-12-01

    The properties of plasticized poly(vinyl chloride) (PVC) , one of the most important polymers today, are strongly dictated by the concentration of plasticizer. Yet, it has been impossible to quantify this concentration at different positions inside a PVC product without its destruction because of a lack of suitable analytical methods. Thus, this paper introduces a simple, fast, and efficient way to determine truly nondestructively the concentration of plasticizer in PVC by single-sided nuclear magnetic resonance (NMR). With the help of correlation curves between the concentration of plasticizer inside nonaged PVC samples and the corresponding volume-averaged NMR parameters, single-sided NMR allows the quantification of the local concentration of plasticizer in aged PVC plates at different depths by spatially resolved relaxation measurements. The presented approach represents a fundamental step toward in situ characterization of plasticized PVC.

  2. Quantitative 31P NMR for Simultaneous Trace Analysis of Organophosphorus Pesticides in Aqueous Media Using the Stir Bar Sorptive Extraction Method

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Talebpour, Z.; Molaabasi, F.; Bijanzadeh, H. R.; Khazaeli, S.

    2016-09-01

    The analysis of pesticides in water samples is of primary concern for quality control laboratories due to the toxicity of these compounds and their associated public health risk. A novel analytical method based on stir bar sorptive extraction (SBSE), followed by 31P quantitative nuclear magnetic resonance (31P QNMR), has been developed for simultaneously monitoring and determining four organophosphorus pesticides (OPPs) in aqueous media. The effects of factors on the extraction efficiency of OPPs were investigated using a Draper-Lin small composite design. An optimal sample volume of 4.2 mL, extraction time of 96 min, extraction temperature of 42°C, and desorption time of 11 min were obtained. The results showed reasonable linearity ranges for all pesticides with correlation coefficients greater than 0.9920. The limit of quantification (LOQ) ranged from 0.1 to 2.60 mg/L, and the recoveries of spiked river water samples were from 82 to 94% with relative standard deviation (RSD) values less than 4%. The results show that this method is simple, selective, rapid, and can be applied to other sample matrices.

  3. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by 13C CP/MAS NMR and 1H DQMAS NMR

    PubMed Central

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  4. Gelified Biofluids for High-Resolution Magic Angle Spinning (1)H NMR Analysis: The Case of Urine.

    PubMed

    Takis, Panteleimon G; Tenori, Leonardo; Ravera, Enrico; Luchinat, Claudio

    2017-01-17

    In this letter, we propose an alternative, effective protocol for metabolomic characterization of biofluids based on their gelification and subsequent application of high-resolution magic angle spinning (HRMAS) (1)H nuclear magnetic resonance (NMR). The sample handling is very rapid and reproducible, and much less than 40 μL of neat urine are needed to obtain a sample. Our results indicate that the HRMAS spectra of gelified urine encompass all metabolites in the NMR fingerprint, as observed by solution NMR. The proposed approach can be efficiently integrated into the NMR based metabolomics analyses routines: multivariate statistical analysis of both solution and HRMAS data produced very similar statistical models, with high classification accuracy. One of the key advantages offered by the gelification approach is the improved short-term (up to 24 h) preservation of nonfrozen HRMAS NMR gel urine samples compared to the solution samples, which could lead to an alternative way for transportation or domestic collection of biofluids, without the need of cold-storage and reducing the risks of leakage.

  5. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  6. High-Frequency (1)H NMR Chemical Shifts of Sn(II) and Pb(II) Hydrides Induced by Relativistic Effects: Quest for Pb(II) Hydrides.

    PubMed

    Vícha, Jan; Marek, Radek; Straka, Michal

    2016-10-17

    The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.

  7. (1)H and (13)C NMR chemical shifts of methacrylate molecules associated with DMPC and/or DPPC liposomes.

    PubMed

    Fujisawa, Seiichiro; Ishihara, Mariko; Kadoma, Yoshinori

    2005-01-01

    In the light of recent developments, changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC (L-alpha dimyristoylphosphatidylcholine) or DPPC (L-alpha-dipalmitoylphosphatidylcholine) liposomes as a model for mimic native lipid bilayers were studied at 30, 37, and 52 degrees C. The chemical shifts of 3Ha, 3C, and 4C resonances in methacrylates (see Fig. 2) were greatly shifted higher field, suggesting the methacrylate molecule-lipid bilayer interaction. Comparison of the findings with methyl methacrylate (MMA), ethylene dimethacrylate (EDMA), and triethyleneglycol dimethacrylate (TEGDMA) revealed that the interaction of dimethacrylates (EDMA, TEGDMA) was greater than monomethacrylate, MMA. Their interaction with DMPC liposomes was also judged by a differential scanning calorimetry (DSC), indicating that the interaction was characterized by decreasing the enthalpy, entropy, and transition co-operativity. The evidence of the upfield NMR-shifts for methacrylate molecules was also judged by the descriptors such as the reactivity (HOMO-LUMO energy) and the electrostatic function (partial charges) between methacrylate molecules and DPPC, calculated by a PM 3 semiempirical MO method. The upfield NMR shifts were considerably well interpreted from the descriptors. NMR screening technique in methacrylates to phospholipid targets would be highly valuable in biomaterial developments. Figure 2 Changes in (1)H and (13)C NMR chemical shifts of methacrylate molecule associated with DMPC or DPPC liposomes. DMPC liposomes/MMA (1:1, molar ratio) and DMPC/TEGDMA (1:1) liposomes were measured at 30 degrees C. In DPPC liposome system, the rippled gel phase was measured at 30 degrees C, whereas the liquid crystalline phase for MMA and for both EDMA and TEGDMA were measured at 52 degrees C and 37 degrees C, respectively.

  8. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  9. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  10. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  11. Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS.

    PubMed

    Godejohann, Markus; Heintz, Lea; Daolio, Cristina; Berset, Jean-Daniel; Muff, Daniel

    2009-09-15

    The aim of the present study was to explore the capabilities of the combination of 1H NMR (proton nuclear magnetic resonance) mixture analysis and HPLC-SPE-NMR/TOF-MS (high-performance liquid chromatography coupled to solid-phase extraction and nuclear magnetic resonance and time-of-flight mass spectrometry) for the characterization of xenobiotic contaminants in groundwater samples. As an example, solid-phase extracts of two groundwater samples taken from a former ammunition destruction site in Switzerland were investigated. 1H NMR spectra of postcolumn SPE enriched compounds, together with accurate mass measurements, allowed the structural elucidation of unknowns. This untargeted approach allowed us to identify expected residues of explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT), Hexogen (RDX) and Octogen (HMX), degradation products of TNT (1,3,5-trinitrobenzene (1,3,5-TNB), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 3,5-dinitrophenol (3,5-DNP), 3,5-dinitroaniline (3,5-DNA), 2,6-dinitroanthranite, and 2-Hydroxy-4,6-dinitrobenzonitrile), benzoic acid, Bisphenol A (a known endocrine disruptor compound), and some toxicologically relevant additives for propelling charges: Centralite I (1,3-diethyl-1,3-diphenylurea), DPU (N,N-diphenylurethane), N,N-diphenylcarbamate (Acardite II), and N-methyl-N-phenylurethane. To our knowledge, this is the first report of the presence of these additives in environmental samples. Extraction recoveries for Centralite I and DPU have been determined. Contaminants identified by our techniques were quantified based on HPLC-UV (HPLC-ultraviolet detection) and 1H NMR mixture analysis. The concentrations of the contaminants ranged between 0.1 and 48 microg/L assuming 100% recovery for the SPE step.

  12. (1)H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice.

    PubMed

    Alves Filho, Elenilson G; Almeida, Francisca D L; Cavalcante, Rosane S; de Brito, Edy S; Cullen, Patrick J; Frias, Jesus M; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2016-08-01

    This study evaluated the effect of atmospheric cold plasma and ozone treatments on the key compounds (sugars, amino acids and short chain organic acids) in orange juice by NMR and chemometric analysis. The juice was directly and indirectly exposed to atmospheric cold plasma field at 70kV for different treatment time (15, 30, 45 and 60sec). For ozone processing different loads were evaluated. The Principal Component Analysis shown that the groups of compounds are affected differently depending on the processing. The ozone was the processing that more affected the aromatic compounds and atmospheric cold plasma processing affected more the aliphatic compounds. However, these variations did not result in significant changes in orange juice composition as a whole. Thus, NMR data and chemometrics were suitable to follow quality changes in orange juice processing by atmospheric cold plasma and ozone.

  13. {sup 1}H NMR relaxometry as an indicator of setting and water depletion during cement hydration

    SciTech Connect

    Wang, Biyun; Faure, Paméla; Thiéry, Mickaël; Baroghel-Bouny, Véronique

    2013-03-15

    Proton nuclear magnetic resonance relaxometry has been used to detect setting and microstructure evolution during cement hydration. NMR measurements were performed since casting, during setting and until hardening (from 0 to 3 days). The mobility of water molecules was assessed by an analysis focused on the diagram of longitudinal relaxation time T{sub 1} generated by an Inversion Recovery sequence. The initial stiffening of the solid network was identified by an analysis of the relaxation rate 1/T{sub 1}. The kinetics of water depletion was investigated by using a simple one-pulse acquisition sequence. In parallel, conventional techniques (Vicat needle and temperature monitoring), as well as numerical simulations of hydration, were used to complement and validate these NMR results. Cement pastes and mortars with different water-to-cement ratios made of grey or white OPCs were tested. Furthermore, the effects of the addition of sand, super-plasticizer and silica fume on the hydration kinetics were investigated.

  14. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  15. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  16. 1H NMR study of the phase transitions of trissarcosine calcium chloride single crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Lee, Kyuhong; Lee, Moohee; Lee, Kwang Sei; Lim, Ae Ran

    2005-10-01

    The 1H NMR line-width and spin lattice relaxation time T1 of TSCC single crystals were studied. Variations in the temperature dependence of the spin lattice relaxation time were observed near 65 and 130 K, indicating drastic alterations of the spin dynamics at the phase transition temperatures. The changes in the temperature dependence of T1 near 65 and 130 K correspond to phase transitions of the crystal. The anomalous decrease in T1 around 130 K is due to the critical slowing down of the soft mode. The abrupt change in relaxation time at 65 K is associated with a structural phase transition. The proton spin lattice relaxation time of this crystal also has a minimum value in the vicinity of 185 K, which is governed by the reorientation of the CH3 groups of the sarcosine molecules. From this result, we conclude that the two phase transitions at 65 and 130 K can be discerned from abrupt variations in the 1H NMR relaxation behavior, and that 1H nuclei play important roles in the phase transitions of the TSCC single crystal.

  17. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin pKa values.

    PubMed

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the pK(a) values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The pK(a) values determined with this procedure were as follows: H(4)(MGF)=H(3)(MGF)(-)+H(+), pKa1 (6-H)=6.52+/-0.06; H(3)(MGF)(-)=H(2)(MGF)(2-)+H(+), pKa2 (3-H)=7.97+/-0.06; H(2)(MGF)(2-)=H(MGF)(3-)+H(+), pKa3 (7-H)=9.44+/-0.04; H(MGF)(3-)=(MGF)(4-)+H(+), pKa4 (1-H)=12.10+/-0.01; where it has been considered mangiferin C(19)H(18)O(11) as H(4)(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional (1)H,(13)C, 2D correlated (1)H/(13)C performed by (g)-HSQC and (g)-HMBC methods; are also presented. pK(a) values determination of H(4)(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  18. Communication: molecular dynamics and (1)H NMR of n-hexane in liquid crystals.

    PubMed

    Weber, Adrian C J; Burnell, E Elliott; Meerts, W Leo; de Lange, Cornelis A; Dong, Ronald Y; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  19. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    SciTech Connect

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; Lange, Cornelis A. de; Dong, Ronald Y.; Muccioli, Luca Pizzirusso, Antonio Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  20. Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS

    PubMed Central

    Pan, Jianyang; Gong, Xingchu; Qu, Haibin

    2016-01-01

    A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM. PMID:27776128

  1. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and 1H-NMR

    PubMed Central

    Arana, Victoria Andrea; Esseiva, Pierre; Pazos, Diego

    2016-01-01

    In a previous work using 1H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions. PMID:27516919

  2. Identification and quantification of major steviol glycosides in Stevia rebaudiana purified extracts by 1H NMR spectroscopy.

    PubMed

    Pieri, Valerio; Belancic, Andrea; Morales, Susana; Stuppner, Hermann

    2011-05-11

    The use of (1)H NMR spectroscopy for the characterization of Stevia rebaudiana extracts is presented. The developed method allows qualitative and quantitative determination of the major steviol glycosides in purified extracts and fractions obtained from various stages of the purification process. Moreover, it proved to be a powerful tool to differentiate between glycosides which are naturally occurring in the stevia plant and artifacts formed in the course of the manufacturing process. Identification of steviol glycosides was achieved by the use of 2D NMR techniques, whereas quantification is based on qHNMR using anthracene as internal standard. The solvent mixture pyridine-d(5)-DMSO-d(6) (6:1) enabled satisfactory separation of the signals to be integrated. Validation of the method was performed in terms of specificity, precision, accuracy, linearity, robustness, and stability. Quantitative results were compared to those obtained with the JECFA HPLC-UV method and were found to be in reasonable agreement. NMR analysis does not rely on the use of reference compounds and enables significantly faster analysis compared to HPLC-UV. Thus, NMR represents a feasible alternative to HPLC-based methods for the quality control of Stevia rebaudiana extracts.

  3. Combining 1H NMR spectroscopy and multivariate regression techniques to quantitatively determine falsification of porcine heparin with bovine species.

    PubMed

    Monakhova, Yulia B; Diehl, Bernd W K

    2015-11-10

    (1)H NMR spectroscopy was used to distinguish pure porcine heparin and porcine heparin blended with bovine species and to quantify the degree of such adulteration. For multivariate modelling several statistical methods such as partial least squares regression (PLS), ridge regression (RR), stepwise regression with variable selection (SR), stepwise principal component regression (SPCR) were utilized for modeling NMR data of in-house prepared blends (n=80). The models were exhaustively validated using independent test and prediction sets. PLS and RR showed the best performance for estimating heparin falsification regarding its animal origin with the limit of detection (LOD) and root mean square error of validation (RMSEV) below 2% w/w and 1% w/w, respectively. Reproducibility expressed in coefficients of variation was estimated to be below 10% starting from approximately 5% w/w of bovine adulteration. Acceptable calibration model was obtained by SPCR, by its application range was limited, whereas SR is least recommended for heparin matrix. The developed method was found to be applicable also to heparinoid matrix (not purified heparin). In this case root mean square of prediction (RMSEP) and LOD were approximately 7% w/w and 8% w/w, respectively. The simple and cheap NMR method is recommended for screening of heparin animal origin in parallel with official NMR test of heparin authenticity and purity.

  4. Optimized 31P MRS in the human brain at 7 T with a dedicated RF coil setup

    PubMed Central

    van de Bank, Bart L.; Orzada, Stephan; Smits, Frits; Lagemaat, Miriam W.; Rodgers, Christopher T.; Bitz, Andreas K.

    2015-01-01

    The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B 1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26492089

  5. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  6. Study of the Cardiotoxicity of Venenum Bufonis in Rats using an 1H NMR-Based Metabolomics Approach

    PubMed Central

    Wang, Junsong; Guo, Pingping; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2015-01-01

    Venenum Bufonis, a well-known traditional Chinese medicine, has been widely used in Asia and has gained popularity in Western countries over the last decade. Venenum Bufonis has obvious side effects that have been observed in clinical settings, but few studies have reported on its cardiotoxicity. In this work, the cardiotoxicity of Venenum Bufonis was investigated using a 11H NMR-based metabolomics approach. The 1H NMR profiles of the serum, myocardial extracts and liver extracts of specific-pathogen-free rats showed that Venenum Bufonis produced significant metabolic perturbations dose-dependently with a distinct time effect, peaking at 2 hr after dosing and attenuating gradually. Clinical chemistry, electrocardiographic recordings, and histopathological evaluation provided additional evidence of Venenum Bufonis-induced cardiac damage that complemented and supported the metabolomics findings. The combined results demonstrated that oxidative stress, mitochondrial dysfunction, and energy metabolism perturbations were associated with the cardiac damage that results from Venenum Bufonis. PMID:25781638

  7. (1)H NMR spectroscopy-guided isolation of new sucrose esters from Physalis alkekengi var. franchetii and their antibacterial activity.

    PubMed

    Zhang, Chuan-Yang; Luo, Jian-Guang; Liu, Rui-Huan; Lin, Ru; Yang, Ming-Hua; Kong, Ling-Yi

    2016-10-01

    Ten new sucrose esters, physakengoses A-J (1-10), were isolated from the aerial parts of Physalis alkekengi var. franchetii under the guidance of (1)H NMR spectroscopy. Their structures were determined by spectroscopic analyses (HRESIMS, 1D and 2D NMR, and ESIMS) and chemical methods. These new compounds were tested for antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. Among them, compounds 2 and 5-8 showed potent inhibitory effects against test strains with MIC values ranging from 3.5 to 14.9μg/mL. These findings may indicate that the P. alkekengi var. franchetii has potential application as an ingredient in pharmaceuticals.

  8. 1H NMR analysis of complexation of hydrotropic agents nicotinamide and caffeine with aromatic biologically active molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.

    2004-07-01

    NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.

  9. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal syringates

    NASA Astrophysics Data System (ADS)

    Świsłocka, Renata

    2013-07-01

    In this work the influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) was studied. This paper presents spectroscopic vibrations (FT-IR, FT-Raman) and NMR (1H and 13C) study of the series of alkali metal syringates from lithium to cesium syringates. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G∗∗ basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and NMR spectra were obtained. The calculated parameters were compared to experimental characteristics of studied compounds.

  10. Two-dimensional sup 1 H NMR studies on HPr protein from Staphylococcus aureus: Complete sequential assignments and secondary structure

    SciTech Connect

    Kalbitzer, H.R.; Neidig, K.P. ); Hengstenberg, W. )

    1991-11-19

    Complete sequence-specific assignments of the {sup 1}H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel {beta}-pleated sheet consisting of four strands, A, B, C, D, a segment S{sub AB} consisting of an extended region around the active-center histidine (His-15) and an {alpha}-helix, a half-turn between strands B and C, a segment S{sub CD} which shows no typical secondary structure, and the {alpha}-helical, C-terminal segment S{sub term}. These general structural features are similar to those found earlier in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.

  11. 1H NMR assignments of apo calcyclin and comparative structural analysis with calbindin D9k and S100 beta.

    PubMed Central

    Potts, B. C.; Carlström, G.; Okazaki, K.; Hidaka, H.; Chazin, W. J.

    1996-01-01

    The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods. Sequential and medium-range NOEs and slowly exchanging backbone amide protons identified directly the four helices and the short antiparallel beta-type interaction between the two binding loops that comprise each subunit of the dimer. Further analysis of NOEs enabled the unambiguous assignment of 556 intrasubunit distance constraints, 24 intrasubunit hydrogen bonding constraints, and 2 x 26 intersubunit distance constraints. The conformation of the monomer subunit was refined by distance geometry and restrained molecular dynamics calculations using the intrasubunit constraints only. Calculation of the dimer structure starting from this conformational ensemble has been reported elsewhere. The extent of structural homology among the apo calcyclin subunit, the monomer subunit of apo S100 beta, and monomeric apo calbindin D9k has been examined in detail by comparing 1H NMR chemical shifts and secondary structures. This analysis was extended to a comprehensive comparison of the three-dimensional structures of the calcyclin monomer subunit and calbindin D9k, which revealed greater similarity in the packing of their hydrophobic cores than was anticipated previously. Together, these results support the hypothesis that all members of the S100 family have similar core structures and similar modes of dimerization. Analysis of the amphiphilicity of Helix IV is used to explain why calbindin D9k is monomeric, but full-length S100 proteins form homodimers. PMID:8931135

  12. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    PubMed

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  13. Characterization of various magnesium oxides by XRD and {sup 1}H MAS NMR spectroscopy

    SciTech Connect

    Aramendia, M.A.; Benitez, J.A.; Borau, V.; Jimenez, C.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.

    1999-04-01

    A magnesium oxide obtained by thermal decomposition of commercially available magnesium hydroxide was refluxed in water and acetone in order to improve its chemical and textural properties with the purpose of using it as a support for metals in heterogeneous catalysts. X-ray diffraction, CO{sub 2} chemisorption, and {sup 1}H magic-angle spinning nuclear magnetic resonance were used to identify crystal phases, the number of basic sites, and the nature of OH groups in the oxide, respectively.

  14. Conformation of some N,N'-arylalkyl thioureas by 1H-NMR and infrared spectral analysis

    NASA Astrophysics Data System (ADS)

    Sudha, L. V.; Sathyanarayana, D. N.

    Several N,N'-arylalkyl thioureas were examined with 1H-NMR and i.r. spectra in order to study the conformation of the -NHCSNH- group. The influence of temperature and substituents on the chemical shift of the NH protons has been investigated. Formation of a strong intramolecular hydrogen bond stabilizes the trans—cis conformation for most systems, while for the others the prevalence of different rotational isomers can be postulated. The influence of the steric effect on hydrogen bonding and molecular conformation is discussed.

  15. Hydrogen cluster/network in tobermorite as studied by multiple-quantum spin counting {sup 1}H NMR

    SciTech Connect

    Mogami, Yuuki; Yamazaki, Satoru; Matsuno, Shinya; Matsui, Kunio; Noda, Yasuto; Takegoshi, K.

    2014-12-15

    Proton multiple-quantum (MQ) spin-counting experiment has been employed to study arrangement of hydrogen atoms in 9 Å/11 Å natural/synthetic tobermorites. Even though all tobermorite samples give similar characterless, broad static-powder {sup 1}H NMR spectra, their MQ spin-counting spectra are markedly different; higher quanta in 11 Å tobermorite do not grow with the MQ excitation time, while those in 9 Å one do. A statistical analysis of the MQ results recently proposed [26] is applied to show that hydrogens align in 9 Å tobermorite one dimensionally, while in 11 Å tobermorite they exist as a cluster of 5–8 hydrogen atoms.

  16. (1)H, (13)C NMR and X-ray crystallographic studies of highly polyhalogenated derivatives of costunolide lactone.

    PubMed

    Corona, D; Díaz, E; Nava, J L; Guzmán, A; Barrios, H; Fuentes, A; Hernandez-Plata, S A; Allard, J; Jankowski, C K

    2005-11-01

    The costunolide lactone, a sesquiterpene compound isolated from Zaluzania triiloba species, reacted with several dihalocarbene sources produced by trihaloform-NaOH under successive phase transfer reactions yielding mono-, bis- and tris-dihalocyclopropane adducts. The structures, as well as the configurational assignments of the different derivatives, were established by (1)H and (13)C NMR spectroscopy and assisted by X-ray crystallographic and molecular modelling studies. The specific shielding of protons in the neighbourhood of different halogens on the cyclopropane moieties was correlated to the pseudocontact interactions.

  17. The structure of polycaprolactone-clay nanocomposites investigated by 1H NMR relaxometry.

    PubMed

    Monteiro, Mariana S S B; Rodrigues, Claudia Lopes; Neto, Roberto P C; Tavares, Maria Inês Bruno

    2012-09-01

    Nanocomposites based on polycaprolactone (PCL), containing concentrations of 1, 3 and 5 wt% of sodium montmorillonite (NT-25) and organo-modified montmorillonite clay, with three different salts (Viscogel B7, Viscogel S4 and Viscogel B8), were prepared employing the solution intercalation method using chloroform. The PCL nanocomposites were characterized by relaxometry, through determination of the hydrogen spin-lattice relaxation times using low-field nuclear magnetic resonance (NMR). Conventional X-ray diffraction (XDR) was also used to measure the basal space of the nanoclay. The proton spin-lattice relaxation parameters showed that hybrid nanocomposites were formed, containing different parts of intercalated and exfoliated organoclay. The proton T1rhoH also indicated changes in the microstructure, organization and the molecular mobility of the hybrid materials. NMR relaxometry is a good way to evaluate nanomaterials because it provides complementary information, since it is measured in a different time scale. Furthermore, differential scanning calorimetry and thermogravimetric analysis were also used to investigate the crystallization and thermal behavior of the nanocomposites, respectively. All materials had low crystallization temperature (Tc) and the melting temperature (Tm) were very close to that of the PCL matrix, but the degree of crystallinity of the nanocomposites decreased. TGA analysis demonstrated that montmorillonite accelerates PCL's decomposition while unmodified montmorillonite has the opposite effect.

  18. Whole Blood Metabolomics by (1)H NMR Spectroscopy Provides a New Opportunity To Evaluate Coenzymes and Antioxidants.

    PubMed

    Nagana Gowda, G A; Raftery, Daniel

    2017-03-30

    Conventional human blood metabolomics employs serum or plasma and provides a wealth of metabolic information therein. However, this approach lacks the ability to measure and evaluate important metabolites such as coenzymes and antioxidants that are present at high concentrations in red blood cells. As an important alternative to serum/plasma metabolomics, we show here that a simple (1)H NMR experiment can simultaneously measure coenzymes and antioxidants in extracts of whole human blood, in addition to the nearly 70 metabolites that were shown to be quantitated in serum/plasma recently [ Anal. Chem. 2015 , 87 , 706 - 715 ]. Coenzymes of redox reactions: oxidized/reduced nicotinamide adenine dinucleotide (NAD(+) and NADH) and nicotinamide adenine dinucleotide phosphate (NADP(+) and NADPH); coenzymes of energy including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP); and antioxidants, the sum of oxidized and reduced glutathione (GSSG and GSH) can be measured with essentially no additional effort. A new method was developed for detecting many of these unstable species without affecting other blood/blood plasma metabolites. The identities of coenzymes and antioxidants in blood NMR spectra were established combining 1D/2D NMR techniques, chemical shift databases, pH measurements and, finally, spiking with authentic compounds. This is the first study to report identification of major coenzymes and antioxidants and quantify them, simultaneously, with the large pool of other metabolites in human blood using NMR spectroscopy. Considering that the levels of coenzymes and antioxidants represent a sensitive measure of cellular functions in health and numerous diseases, the NMR method presented here potentially opens a new chapter in the metabolomics of blood.

  19. Method development and validation: quantitation of telmisartan bulk drug and its tablet formulation by (1) H NMR spectroscopy.

    PubMed

    Jadeja, Yashwantsinh; Chomal, Bhagyawanti; Patel, Madhavi; Jebaliya, Hetal; Khunt, Ranjan; Shah, Anamik

    2016-12-14

    The quantitative NMR (qNMR) spectroscopy is nowadays a new tool for the determination of pharmaceutical potent biologically active molecules in bulk drug and its tablet formulation than the other analytical techniques. Herein, qNMR method was developed for an anti-hypertensive drug, telmisartan in bulk drug and its tablet formulation. The precise method was developed by using malononitrile as an internal standard. The methylene signal of telmisartan appeared at δ = 5.46 ppm (singlet) relative to the signal of malononitrile at δ = 3.59 ppm (singlet) in CDCl3 , as an NMR solvent. The development and validation of the method were carried out as per International Conference on Harmonization guidelines. The method was found to be linear (r(2)  = 0.9999) for 0.5 to 3.5 mg/ml in the drug concentration range. The relative standard deviation for accuracy and precession was not more than 2.0%. The sensitivity of the method was carried out by limit of detection and a limit of quantification, at 0.05 and 0.2 mg/ml, respectively, concentration. The robustness of the method was studied by changing parameters as well as different solvent manufacturer company. The result shows that method was accurately developed for quantification of telmisartan in pharmaceutical dosage form. The developed method by (1) H NMR spectroscopy is comparatively easy and more precise with respect to the other analytical tools. Copyright © 2016 John Wiley & Sons, Ltd.

  20. 1H-2H cross-polarization NMR in fast spinning solids by adiabatic sweeps

    NASA Astrophysics Data System (ADS)

    Wi, Sungsool; Schurko, Robert; Frydman, Lucio

    2017-03-01

    Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1 ⟩ ,|0 ⟩ ,|-1 ⟩ } mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

  1. Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors

    SciTech Connect

    Demaerel, P.; Johannik, K.; Van Hecke, P.; Van Ongeval, C.; Verellen, S.; Marchal, G.; Wilms, G.; Plets, C.; Goffin, J.; Van Calenbergh, F. )

    1991-01-01

    Fifty patients with newly diagnosed, untreated intracranial tumors were examined with 1H nuclear magnetic resonance single-volume spectroscopy (MRS) using a 1.5 T whole-body MR system. Prior to the MRS, contrast enhanced MR and/or CT imaging studies were carried out. Histological verification was obtained in all patients except one. All tumor spectra revealed distinct abnormalities as compared with the normal brain spectra. Although most meningiomas showed a rather characteristic spectral pattern, generally features specific for the various tumor types were not observed. For instance, though a strong lactic acid signal was seen in most malignant tumors, this signal was also evident in five benign neoplasms.

  2. 1H and 19 F NMR Study of Cation and Anion Motions in Guanidinium Hexafluorozirconate

    NASA Astrophysics Data System (ADS)

    Grottel, M.; Kozak, A.; Pająk, Z.

    1996-09-01

    Proton and fluorine NMR second moments and spin-lattice relaxation times of polycrystalline guanidinium hexafluorozirconate and its deuterated analogue were studied in laboratory (60 MHz) and rotating (H1 = 20 G) frames over a wide range of temperature. An analysis of the experimental results enabled us to reveal a dynamical inequivalence of two crystallographically independent cations and an unexpected high mobility of nonspherical anion dimers. A comparison of the ions dynamics in 2:1 complex studied with the guanidinium 1:1 and 3:1 complexes has shown a significant contribution of the hydrogen bonds to the potential barriers hindering the anion reorientations. At low temperatures a proton motion in the hydrogen bond and at 400 K a solid-solid phase transition have been discerned.

  3. (1)H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures.

    PubMed

    Li, Pei; Wei, Dan-Dan; Wang, Jun-Song; Yang, Ming-Hua; Kong, Ling-Yi

    2016-01-05

    The anticonvulsive properties of diazepam have been extensively studied, mainly focusing on the γ-amino butyrate (GABA) system. The aim of this investigation was to integrally analyze the metabolic events related to neuroprotection of diazepam on anisatin-induced convulsive seizures by a NMR-based metabolomic approach combined with histopathological examination and behavior examination. Multivariate analysis on metabolic profiles of the piriform cortex and cerebellum of mice revealed that diazepam could relieve mice suffering from the convulsive seizures by recovering destructed neurotransmitter and neuromodulator metabolism, ameliorating oxidative stress, alleviating the disturbance in energy, amino acid and nucleic acid metabolism in anisatin intoxicated mice. This integrated metabolomics study provided a powerful and highly effective approach to elucidate therapeutic effects and assessed the safety of diazepam. This study should be helpful for our understanding of convulsive seizures, and provide a holistic view of the treatment effects of benzodiazepine on convulsive seizures.

  4. High-Resolution Microcoil ^1H-NMR for Mass-Limited, Nanoliter-Volume Samples

    NASA Astrophysics Data System (ADS)

    Olson, Dean L.; Peck, Timothy L.; Webb, Andrew G.; Magin, Richard L.; Sweedler, Jonathan V.

    1995-12-01

    High-resolution, proton nuclear magnetic resonance (NMR) spectra of 5-nanoliter samples have been obtained with much higher mass sensitivity [signal-to-noise ratio (S/N) per micromole] than with traditional methods. Arginine and sucrose show a mean sensitivity enhancement of 130 compared to 278-microliter samples run in a 5-millimeter tube in a conventional, commercial probe. This can reduce data acquisition time by a factor of >16,000 or reduce the needed sample mass by a factor of about 130. A linewidth of 0.6 hertz was achieved on a 300-megahertz spectrometer by matching the magnetic susceptibility of the medium that surrounds the detection cell to that of the copper coil. For sucrose, the limit of detection (defined at S/N = 3) was 19 nanograms (56 picomoles) for a 1-minute data acquisition. This technique should prove useful with mass-limited samples and for use as a detector in capillary separations.

  5. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-01-01

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance. PMID:24104201

  6. Urea's effect on the ribonuclease A catalytic efficiency: a kinetic, 1H NMR and molecular orbital study.

    PubMed

    Almarza, Jorge; Rincón, Luis; Bahsas, Alí; Pinto, María Angela; Brito, Francisco

    2013-02-01

    Understanding of protein-urea interactions is one of the greatest challenges to modern structural protein chemistry. Based in enzyme kinetics experiments and (1)H NMR spectroscopic analysis we proposed that urea, at low concentrations, directly interacts with the protonated histidines of the active center of RNase A, following a simple model of competitive inhibition. These results were supported by theoretical analysis based on the frontier molecular orbital theory and suggest that urea might establish a favorable interaction with the cationic amino acids. Our experimental evidence and theoretical analysis indicate that the initials steps of the molecular mechanism of Urea-RNase A interaction passes through the establishment of a three center four electron adduct. Also, our results would explain the observed disruption of the (1)H NMR signals corresponding to H12 and H119 (involved in catalysis) of the RNase A studied in the presence of urea. Our interaction model of urea-amino acids (cationic) can be extended to explain the inactivation of other enzymes with cationic amino acids at the active site.

  7. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    SciTech Connect

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R. ); Wyssbrod, H.R.; Porter, R.A. ); Michaels, C.A. )

    1992-02-18

    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.

  8. Analysis of the electronic, IR, and 1H NMR spectra of conjugated oligomers based on 4,4'-triphenylamine vinylene

    NASA Astrophysics Data System (ADS)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Sun, V.-H.; Grigoras, M.

    2016-09-01

    Two types of conjugated oligomers based on 4,4'-triphenylamine vinylene have been synthesized and characterized by the methods of IR, UV-visible, and 1H NMR spectroscopy. The corresponding spectra have also been simulated theoretically at the density functional theory level with application of the B3LYP and BMK hybrid exchange-correlation functionals. A comparative analysis of the experimental and theoretical spectra of polymers and oligomers has revealed regularities of the manifestation of spectral signals depending on the conjugation chain length and the presence of a substituent in the triphenylamine core. It has been established, in particular, that the absolute intensity of IR bands satisfies a linear dependence with increase in the degree of polymerization; however, no frequency shift is observed at the same time. The position of the main peak in electron absorption spectra demonstrates the bathochromic shift with an increase in the oligomeric chain length due to the narrowing of the energy gap between the boundary molecular orbitals. Based on the theoretical estimation of the hydrogen atoms chemical shifts, the signals of various protons types in the strongly broadened experimental 1H NMR spectra of the bis-(4-iodine phenyl)-phenylamine and N,N-bis-(4-iodine phenyl)-4'-(phenylethynyl)-phenylamine polymerization products have also been identified.

  9. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    PubMed

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna.

  10. (1)H NMR at Larmor frequencies down to 3Hz by means of Field-Cycling techniques.

    PubMed

    Kresse, B; Becher, M; Privalov, A F; Hofmann, M; Rössler, E A; Vogel, M; Fujara, F

    2017-04-01

    Field-Cycling (FC) NMR experiments were carried out at (1)H Larmor frequencies down to about 3Hz. This could be achieved by fast switching a high polarizing magnetic field down to a low evolution field which is tilted with respect to the polarization field. Then, the low frequency Larmor precession of the nuclear spin magnetization about this evolution field is registered by means of FIDs in a high detection field. The crucial technical point of the experiment is the stabilization of the evolution field, which is achieved by compensating for temporal magnetic field fluctuations of all three spatial components. The paper reports on some other basic low field experiments such as the simultaneous measurement of the Larmor frequency and the spin-lattice relaxation time in such small fields as well as the irradiation of oscillating transversal magnetic field pulses at very low frequencies as a novel method for field calibration in low field FC NMR. The potential of low field FC is exemplified by the (1)H relaxation dispersion of water at frequencies below about 2kHz stemming from the slow proton exchange process.

  11. Adsorption mechanism at the molecular level between polymers and uremic octapeptide by the 2D 1H NMR Technique.

    PubMed

    Li, Guohua; Li, Jihong; Wang, Wei; Yang, Mei; Zhang, Yuanwei; Sun, Pingchuan; Yuan, Zhi; He, Binglin; Yu, Yaoting

    2006-06-01

    To remove uremic octapeptide from the blood stream of uremic patients, various modified polyacylamide cross-linked absorbents were prepared. Adsorption experiments showed these absorbents have significant differences in adsorption capacity to the target peptide. In this paper, two-dimension proton nuclear magnetic resonance (2D 1H NMR) spectroscopy was used to investigate the interaction mechanism between the peptide and the adsorbents. Because of the insolubility of the absorbent, some soluble linear polymers with the same functional groups as the absorbents were employed as the model adsorbents in 2D 1H NMR. The preferred binding site for the peptide and polymers was identified to be at the C-terminal carboxyl group of the octapeptide via chemical shift perturbation effects. In this study, we found that hydrogen bonding, electrostatic, and hydrophobic interactions all play a role in the interaction force but had different contributions. Especially, the great chemical shift changes of the aromatic amino acid residues (Trp) during the interaction between butyl-modified polyacrylamide and octapeptide suggested the hydrophobic interaction, incorporated with the electrostatic force, played an important role in the binding reaction in aqueous solutions. This information not only rationally explained the results of the adsorption experiments, but also identified the effective binding site and mechanism, and shall provide a structural basis for designing better affinity-type adsorbents for the target peptide.

  12. Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8.

    PubMed

    Konstantinov, Ivan A; Broadbelt, Linda J

    2011-11-10

    This study aimed at investigating the performance of a series of basis sets, density functional theory (DFT) functionals, and the IEF-PCM solvation model in the accurate calculation of (1)H and (13)C NMR chemical shifts in toluene-d(8). We demonstrated that, on a test set of 37 organic species with various functional moieties, linear scaling significantly improved the calculated shifts and was necessary to obtain more accurate results. Inclusion of a solvation model produced larger deviations from the experimental data as compared to the gas-phase calculations. Moreover, we did not find any evidence that very large basis sets were necessary to reproduce the experimental NMR data. Ultimately, we recommend the use of the BMK functional. For the (1)H shifts the use of the 6-311G(d) basis set gave linearly scaled mean unsigned (MU) and root-mean-square (rms) errors of 0.15 ppm and 0.21 ppm, respectively. For the calculation of the (13)C chemical shifts the 6-31G(d) basis set produced MUE of 1.82 ppm and RMSE of 3.29 ppm.

  13. LC-MS- and (1)H NMR Spectroscopy-Guided Identification of Antifungal Diterpenoids from Sagittaria latifolia.

    PubMed

    Ravu, Ranga Rao; Jacob, Melissa R; Jeffries, Cynthia; Tu, Ying; Khan, Shabana I; Agarwal, Ameeta K; Guy, R Kiplin; Walker, Larry A; Clark, Alice M; Li, Xing-Cong

    2015-09-25

    Antifungal screening of small-molecule natural product libraries showed that a column fraction (CF) derived from the plant extract of Sagittaria latifolia was active against the fungal pathogen Cryptococcus neoformans. Dereplication analysis by liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy ((1)H NMR) indicated the presence of new compounds in this CF. Subsequent fractionation of the plant extract resulted in the identification of two new isopimaradiene-type diterpenoids, 1 and 2. The structures of 1 and 2 were determined by chemical methods and spectroscopic analysis as isopimara-7,15-dien-19-ol 19-O-α-l-arabinofuranoside and isopimara-7,15-dien-19-ol 19-O-α-l-(5'-acetoxy)arabinofuranoside, respectively. Compound 1 exhibited IC50 values of 3.7 and 1.8 μg/mL, respectively, against C. neoformans and C. gattii. Its aglycone, isopimara-7,15-dien-19-ol (3), resulting from acid hydrolysis of 1, was also active against the two fungal pathogens, with IC50 values of 9.2 and 6.8 μg/mL, respectively. This study demonstrates that utilization of the combined LC-MS and (1)H NMR analytical tools is an improved chemical screening approach for hit prioritization in natural product drug discovery.

  14. Development and Validation of Quantitative (1)H NMR Spectroscopy for the Determination of Total Phytosterols in the Marine Seaweed Sargassum.

    PubMed

    Zhang, Xiu-Li; Wang, Cong; Chen, Zhen; Zhang, Pei-Yu; Liu, Hong-Bing

    2016-08-10

    Knowledge of phytosterol (PS) contents in marine algae is currently lacking compared to those in terrestrial plants. The present studies developed a quantitative (1)H NMR method for the determination of the total PSs in Sargassum. The characteristic proton signal H-3α in PSs was used for quantification, and 2,3,4,5-tetrachloro-nitrobenzene was used as an internal standard. Seaweed samples could be recorded directly after total lipid extraction and saponification. The results showed that the PS contents in Sargassum fusiforme (788.89-2878.67 mg/kg) were significantly higher than those in Sargassum pallidum (585.33-1596.00 mg/kg). The variable contents in both species suggested that fixed raw materials are very important for future research and development. Orthogonal projection to latent structures discriminant analysis was carried out in the spectral region of δ 3.00-6.50 in the (1)H NMR spectrum. S. fusiforme and S. pallidum could be separated well, and the key sterol marker was fucosterol.

  15. Effect of 1,10-phenanthroline aromaticity in carboxylic acids:1H NMR spectroscopy, GIAO calculations and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Machado, Camila M. B.; Santos, Vanessa F. C.; Belarmino, Marcia K. D. L.; França, José A. A.; Moura, Gustavo L. C.; Lima, Nathalia B. D.

    2016-08-01

    Hydrogen bonding represents a class of chemical interactions, which are directly responsible for several physical properties, such as: energetic stabilities, boiling points, vibrational modes, bond lengths, etc. In this article, we examine from the point of view of 1H NMR spectroscopy and GIAO calculations, the effects associated with the process of formation of the hydrogen bonds as they appear in the chemical shifts of the acidic hydrogens in the complexes between nitrogenated compounds, PHEN, BIPY and DIBIPY, and carboxylic acids, HOOCH, HOOCCH3 and HOOCC6H5. All computational simulations were performed using the quantum chemical methods B3LYP/6-31++G(d,p) and ωB97X-D/def2-TZVP. The 1H NMR spectroscopy results showed that, in both cases, the hydrogen nucleus of the OH group is the most affected in the process of hydrogen bond formation. For the complexes involving PHEN we observed that the hydrogen nucleus is more strongly shielded when compared with this signal in the corresponding complexes involving BIPY and DIBIPY.

  16. The effect of standardized food intake on the association between BMI and 1H-NMR metabolites

    PubMed Central

    Schutte, Bianca A. M.; van den Akker, Erik B.; Deelen, Joris; van de Rest, Ondine; van Heemst, Diana; Feskens, Edith J. M.; Beekman, Marian; Slagboom, P. Eline

    2016-01-01

    Multiple studies have shown that levels of 1H-NMR metabolites are associated with disease and risk factors of disease such as BMI. While most previous investigations have been performed in fasting samples, meta-analysis often includes both cohorts with fasting and non-fasting blood samples. In the present study comprising 153 participants (mean age 63 years; mean BMI 27 kg/m2) we analyzed the effect of a standardized liquid meal (SLM) on metabolite levels and how the SLM influenced the association between metabolites and BMI. We observed that many metabolites, including glycolysis related metabolites, multiple amino acids, LDL diameter, VLDL and HDL lipid concentration changed within 35 minutes after a standardized liquid meal (SLM), similarly for all individuals. Remarkable, however, is that the correlations of metabolite levels with BMI remained highly similar before and after the SLM. Hence, as exemplified with the disease risk factor BMI, our results suggest that the applicability of 1H-NMR metabolites as disease biomarkers depends on the standardization of the fasting status rather than on the fasting status itself. Future studies are required to investigate the dependency of metabolite biomarkers for other disease risk factors on the fasting status. PMID:27966583

  17. 1H, 13C NMR and DFT Study of Hydrogen Bonding in Imidazolium-based Ionic Liquids.

    PubMed

    Balevičius, Vytautas; Gdaniec, Zofia; Džiaugys, Lukas; Kuliešius, Feliksas; Maršalka, Arūnas

    2011-09-01

    The ionic liquid 1-decyl-3-methyl-imidazolium bromide [C10mim][Br], the neat material, and also dissolved (~0.01 mole fraction) in various dielectric media (acetonitrile, benzene, chloroform, dichloromethane, methanol, 2-butanol and H2O) was studied using 1H and 13C NMR spectroscopy. The most important interaction in this compound is considered to be the Br-...H-C2+ hydrogen bond, which is formed between the anions and cations. The obtained results show that dielectric medium influence mostly the behavior of the Br-...H-C2+ bridge proton. The changes observed in 1H and 13C NMR spectra of [C10mim][Br] with increasing solvents polarity and temperature can be explained applying the model of the lengthening of the H2...Br- bond with the accompanying thickening of the solvation shell of bromine anion and C2-H bond contraction. The short-range order effects related to the configuration of neighboring dipoles of solvent molecules are more important for the solvation ability of small anions than the bulk solvent field effect. However, the solvents, molecules of which tend to associate via hydrogen bonding, can significantly affect the dynamics of anions.

  18. (1)H NMR and GC-MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply.

    PubMed

    Zhao, Lijuan; Hu, Jerry; Huang, Yuxiong; Wang, Hongtao; Adeleye, Adeyemi; Ortiz, Cruz; Keller, Arturo A

    2017-01-01

    It is imperative to study the interaction of nanoparticles residuals with crop plants in agricultural soils, due to the increased application of nanotechnology in agriculture. So far, a few studies have focused on the impact of nanoparticles on fruit quality and nutritional supply. In this work, a thorough and comprehensive analysis of metabolite changes of cucumber fruits from plants under nano-Cu stress was possible through the use of both (1)H NMR and GC-MS. The results of supervised partial least-squares discriminant analysis from both platforms showed that cucumber fruit extracts samples were clearly grouped based on the nano-Cu level in soil. This indicates that the fruit metabolite profile was influenced by exposure to nano-Cu. GC-MS data showed concentrations of some sugars, organic acids, amino acids, and fatty acids were increased or decreased by nano-Cu. Several metabolites, such as methylnicotinamide (MNA), trigonelline, imidazole, quinolinate were only detected and quantified by (1)H NMR. Our results showed that combining the two platforms provided a comprehensive understanding about the metabolites (nutrient supply) changes in cucumber fruits impacted by exposure to nano-Cu.

  19. Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC–ESI-MS

    PubMed Central

    Safer, Stefan; Cicek, Serhat S.; Pieri, Valerio; Schwaiger, Stefan; Schneider, Peter; Wissemann, Volker; Stuppner, Hermann

    2011-01-01

    The genus Leontopodium, mainly distributed in Central and Eastern Asia, consists of ca. 34–58 different species. The European Leontopodium alpinum, commonly known as Edelweiss, has a long tradition in folk medicine. Recent research has resulted in the identification of prior unknown secondary metabolites, some of them with interesting biological activities. Despite this, nearly nothing is known about the Asian species of the genus. In this study, we applied proton nuclear magnetic resonance (1H NMR) spectroscopy and liquid chromatography–mass spectrometry (LC–MS) metabolic fingerprinting to reveal insights into the metabolic patterns of 11 different Leontopodium species, and to conclude on their taxonomic relationship. Principal component analysis (PCA) of 1H NMR fingerprints revealed two species groups. Discriminators for these groups were identified as fatty acids and sucrose for group A, and ent-kaurenoic acid and derivatives thereof for group B. Five diterpenes together with one sesquiterpene were isolated from Leontopodium franchetii roots; the compounds were described for the first time for L. franchetii: ent-kaur-16-en-19-oic acid, methyl-15α-angeloyloxy-ent-kaur-16-en-19-oate, methyl-ent-kaur-16-en-19-oate, 8-acetoxymodhephene, 19-acetoxy-ent-kaur-16-ene, methyl-15β–angeloyloxy-16,17-epoxy-ent-kauran-19-oate. In addition, differences in the metabolic profile between collected and cultivated species could be observed using a partial least squares-discriminant analysis (PLS-DA). PCA of the LC–MS fingerprints revealed three groups. Discriminating signals were compared to literature data and identified as two bisabolane derivatives responsible for discrimination of group A and C, and one ent-kaurenoic acid derivative, discriminating group B. A taxonomic relationship between a previously unidentified species and L. franchetii and Leontopodium sinense could be determined by comparing NMR fingerprints. This finding supports recent molecular data

  20. Solubilization of flurbiprofen within non-ionic Tween 20 surfactant micelles: a 19F and 1H NMR study.

    PubMed

    Saveyn, Pieter; Cocquyt, Ellen; Zhu, Wuxin; Sinnaeve, Davy; Haustraete, Katrien; Martins, José C; Van der Meeren, Paul

    2009-07-14

    The solubilization of the poorly water soluble anti-inflammatory drug flurbiprofen in non-ionic Tween 20 surfactant micellar solutions was studied by both (19)F and (1)H NMR spectroscopy in an acidic environment. These non-destructive techniques allowed us to investigate the effect of temperature cycling in situ. Using (19)F NMR, an increased solubilisation capacity was observed as the temperature increased. This effect became more pronounced above the cloud point, which was reduced by more than 30 degrees C in the presence of an excess of flurbiprofen. Upon clouding, peak splitting was observed in the (19)F spectrum, which indicates that two pools of solubilised flurbiprofen exist that are in slow exchange on the NMR frequency timescale. The clouding and solubilization processes were found to be reversible, albeit with slow kinetics. Based on chemical shift differences of both Tween 20 and flurbiprofen, as well as NOESY experiments, the flurbiprofen was found to be accumulated within the palisade layer of the Tween 20 micelles.

  1. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    PubMed

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation.

  2. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis1

    PubMed Central

    Choi, Young Hae; Tapias, Elisabet Casas; Kim, Hye Kyong; Lefeber, Alfons W.M.; Erkelens, Cornelis; Verhoeven, Jacobus Th.J.; Brzin, Jernej; Zel, Jana; Verpoorte, Robert

    2004-01-01

    A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the 1H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. PMID:15286294

  3. 31P-NMR analysis of the B to Z transition in double-stranded (dC-dG)3 and (dC-dG)4 in high salt solution.

    PubMed Central

    Holak, T A; Borer, P N; Levy, G C; van Boom, J H; Wang, A H

    1984-01-01

    In 4M NaCl solutions (dC-dG)n (n = 3,4; approximately 9 mM) exist as a mixture o +/- B and Z forms. The low and high field components of two 31P NMR resonances originating from internal phosphodiester groups are assigned to the GpC and CpG linkages, respectively. Low temperatures stabilize the Z-forms, which completely disappear above 50 degrees C (n = 3) and 65 degrees C (n = 4). delta H = -44 and -17 kJ/mol for B to Z transition in the hexamer and octamer duplexes, respectively. Temperature dependent changes (0-50 degrees C range) in the spin-lattice relaxation times at 145.7 MHz are distinctly different for the 31P nuclei o +/- GpC and CpG groups. The relaxation data can be explained by assuming that the GpC phosphodiester groups undergo more local internal motion than do the CpG groups. PMID:6547530

  4. Metabolic Study of Breast MCF-7 Tumor Spheroids after Gamma Irradiation by 1H NMR Spectroscopy and Microimaging

    PubMed Central

    Palma, Alessandra; Grande, Sveva; Luciani, Anna Maria; Mlynárik, Vladimír; Guidoni, Laura; Viti, Vincenza; Rosi, Antonella

    2016-01-01

    Multicellular tumor spheroids are an important model system to investigate the response of tumor cells to radio- and chemotherapy. They share more properties with the original tumor than cells cultured as 2D monolayers do, which helps distinguish the intrinsic properties of monolayer cells from those induced during cell aggregation in 3D spheroids. The paper investigates some metabolic aspects of small tumor spheroids of breast cancer and their originating MCF-7 cells, grown as monolayer, by means of high–resolution (HR) 1H NMR spectroscopy and MR microimaging before and after gamma irradiation. The spectra of spheroids were characterized by higher intensity of mobile lipids, mostly neutral lipids, and glutamine (Gln) signals with respect to their monolayer cells counterpart, mainly owing to the lower oxygen supply in spheroids. Morphological changes of small spheroids after gamma-ray irradiation, such as loss of their regular shape, were observed by MR microimaging. Lipid signal intensity increased after irradiation, as evidenced in both MR localized spectra of the single spheroid and in HR NMR spectra of spheroid suspensions. Furthermore, the intense Gln signal from spectra of irradiated spheroids remained unchanged, while the low Gln signal observed in monolayer cells increased after irradiation. Similar results were observed in cells grown in hypoxic conditions. The different behavior of Gln in 2D monolayers and in 3D spheroids supports the hypothesis that a lower oxygen supply induces both an upregulation of Gln synthetase and a downregulation of glutaminases with the consequent increase in Gln content, as already observed under hypoxic conditions. The data herein indicate that 1H NMR spectroscopy can be a useful tool for monitoring cell response to different constraints. The use of spheroid suspensions seems to be a feasible alternative to localized spectroscopy since similar effects were found after radiation treatment. PMID:27200293

  5. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  6. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit.

    PubMed

    Garcia-Simon, Monica; Morales, Jose M; Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.

  7. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit

    PubMed Central

    Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by 1H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a 1H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA. PMID:26565633

  8. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  9. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    PubMed Central

    Rawat, Atul; Dubey, Durgesh; Guleria, Anupam; Kumar, Umesh; Keshari, Amit K.; Chaturvedi, Swati; Prakash, Anand; Saha, Sudipta; Kumar, Dinesh

    2016-01-01

    Introduction: Erythromycin (ERY) is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group): control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR) spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a) increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b) decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a) decreased TCA cycle activity and enhanced fatty acid oxidation, (b) dysfunction of lipid and amino acid metabolism and (c) oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new drug

  10. Metabolomics study of Saw palmetto extracts based on 1H NMR spectroscopy.

    PubMed

    de Combarieu, Eric; Martinelli, Ernesto Marco; Pace, Roberto; Sardone, Nicola

    2015-04-01

    Preparations containing Saw palmetto extracts are used in traditional medicine to treat benign prostatic hyperplasia. According to the European and the American Pharmacopoeias, the extract is obtained from comminuted Saw palmetto berries by a suitable extracting procedure using ethanol or supercritical carbon dioxide or a mixture of n-hexane and methylpentanes. In the present study an approach to metabolomics profiling using nuclear magnetic resonance (NMR) has been used as a finger-printing tool to assess the overall composition of the extracts. The phytochemical analysis coupled with principal component analysis (PCA) showed the same composition of the Saw palmetto extracts obtained with carbon dioxide and hexane with minor not significant differences for extracts obtained with ethanol. In fact these differences are anyhow lower than the batch-to-batch variability ascribable to the natural-occurring variability in the Saw palmetto fruits' phytochemical composition. The fingerprinting analysis combined with chemometric method, is a technique, which would provide a tool to comprehensively assess the quality control of Saw palmetto extracts.

  11. Harvest year effects on Apulian EVOOs evaluated by 1H NMR based metabolomics

    PubMed Central

    De Pascali, Sandra A.

    2016-01-01

    Nine hundred extra virgin olive oils (EVOO) were extracted from individual olive trees of four olive cultivars (Coratina, Cima di Mola, Ogliarola, Peranzana), originating from the provinces of Bari and Foggia (Apulia region, Southern Italy) and collected during two consecutive harvesting seasons (2013/14 and 2014/15). Following genetic identification of individual olive trees, a detailed Apulian EVOO NMR database was built using 900 oils samples obtained from 900 cultivar certified single trees. A study on the olive oil lipid profile was carried out by statistical multivariate analysis (Principal Component Analysis, PCA, Partial Least-Squares Discriminant Analysis, PLS-DA, Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA). Influence of cultivar and weather conditions, such as the summer rainfall, on the oil metabolic profile have been evaluated. Mahalanobis distances and J2 criterion have been measured to assess the quality of resulting scores clusters for each cultivar in the two harvesting campaigns. The four studied cultivars showed non homogeneous behavior. Notwithstanding the geographical spread and the wide number of samples, Coratina showed a consistent behavior of its metabolic profile in the two considered harvests. Among the other three Peranzana showed the second more consistent behavior, while Cima di Mola and Ogliarola having the biggest change over the two years. PMID:27994965

  12. 1H NMR Metabolomics Study of Metastatic Melanoma in C57BL/6J Mouse Spleen

    PubMed Central

    Wang, Xuan; Hu, Mary; Feng, Ju; Liu, Maili; Hu, Jian Zhi

    2014-01-01

    Melanoma is a malignant tumor of melanocytes. Although extensive investigations have been done to study metabolic changes in primary melanoma in vivo and in vitro, little effort has been devoted to metabolic profiling of metastatic tumors in organs other than lymph nodes. In this work, NMR-based metabolomics combined with multivariate data analysis is used to study metastatic B16-F10 melanoma in C57BL/6J mouse spleen. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to find important metabolites responsible for discriminating the control and the melanoma groups. Two different strategies, i.e. spectral binning and spectral deconvolution, are used to reduce the original spectral data before statistical analysis. Spectral deconvolution is found to be superior for identifying a set of discriminatory metabolites between the control and the melanoma groups, especially when the sample size is small. OPLS results show that the melanoma group can be well separated from its control group. It is found that taurine, glutamate, aspartate, O-Phosphoethanolamine, niacinamide,ATP, lipids and glycerol derivatives are decreased statistically and significantly while alanine, malate, xanthine, histamine, dCTP, GTP, thymidine, 2′-Deoxyguanosine are statistically and significantly elevated. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in spleen. PMID:25383071

  13. Metabolomic Characterization of Nipple Aspirate Fluid by 1H NMR Spectroscopy and GC-MS

    PubMed Central

    Tredwell, Gregory D.; Miller, Jessica A.; Chow, H.-H. Sherry; Thompson, Patricia A.; Keun, Hector C.

    2015-01-01

    Nipple aspirate fluid (NAF) is a noninvasively obtained biofluid from the duct openings of the breast. NAF components are constantly secreted, metabolized, and reabsorbed by the epithelial lining of the lactiferous ducts of the breast. NAF has been studied as a potential breast tissue surrogate for the discovery of novel breast cancer risk, early detection, and treatment response biomarkers. We report the first unsupervised metabolite characterization of nipple aspirate fluid using NMR and GC-MS using convenience samples previously collected from four premenopausal and four postmenopausal women. A total of 38 metabolites were identified using the two analytical techniques, including amino acids, organic acids, fatty acids, and carbohydrates. Analytical reproducibility of metabolites in NAF by GC-MS was high across different extraction and analysis days. Overall, 31 metabolites had a coefficient of variation below 20%. By GC-MS, there were eight metabolites unique to NAF, 19 unique to plasma, and 24 shared metabolites. Correlative analysis of shared metabolites between matched NAF and plasma samples from pre- and postmenopausal women shows almost no correlations, with the exception being lactic acid, which was significantly negatively correlated (R2 = 0.57; P = 0.03). These results suggest that NAF is metabolically distinct from plasma and that the application of metabolomic strategies may be useful for future studies investigating breast cancer risk and intervention response biomarkers. PMID:24364541

  14. Al coordination and water speciation in hydrous aluminosilicate glasses: direct evidence from high-resolution heteronuclear 1H-27Al correlation NMR.

    PubMed

    Xue, Xianyu; Kanzaki, Masami

    2007-02-01

    In order to shed light on the dissolution mechanisms of water in depolymerized aluminosilicate melts/glasses, a comprehensive one- (1D) and two-dimensional (2D) NMR study has been carried out on hydrous Ca- and Mg-aluminosilicate glasses of a haplobasaltic composition. The applied techniques include 1D 1H MAS NMR and 27Al-->1H cross-polarization (CP) MAS NMR, and 2D 1H NOESY and double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR and 27Al-->1H heteronuclear correlation (HETCOR) and 3QMAS/HETCOR NMR. Ab initio calculations were also performed to place additional constraints on the 1H NMR characteristics of AlOH and Si(OH)Al groups. This study has revealed, for the first time, the presence of free OH (i.e. (Ca, Mg)OH), SiOH and AlOH species, in addition to molecular H2O, in hydrous glasses of a depolymerized aluminosilicate composition. The AlOH groups are mostly associated with four-coordinate Al, but some are associated with five- and six-coordinate Al.

  15. Synthesis and structure of tridentate bis(phosphinic amide)-phosphine oxide complexes of yttrium nitrate. Applications of 31P,89Y NMR methods in structural elucidation in solution.

    PubMed

    Popovici, Cristinel; Fernández, Ignacio; Oña-Burgos, Pascual; Roces, Laura; García-Granda, Santiago; Ortiz, Fernando López

    2011-07-07

    The synthesis and characterisation of a tridentate ligand containing two diphenylphosphinic amide side-arms connected through the ortho position to a phenylphosphine oxide moiety and the 1:1 and 2:1 complexes formed with yttrium nitrate are reported for the first time. The free ligand (R(P1)*,S(P3)*)-11 is obtained diastereoselectively by reaction of ortho-lithiated N,N-diisopropyl-P,P-diphenylphosphinic amide with phenylphosphonic dichloride. Complexes [Y((R(P1)*,S(P3)*)-11)(NO(3))(3)] and [Y((R(P1)*,S(P3)*)-11)(2)(NO(3))](NO(3))(2) were isolated by mixing ligand 11 with Y(NO(3))(3)·6H(2)O in acetonitrile at room temperature in a ligand to metal molar ratio of 1:1 and 2:1, respectively. The 1:1 derivative is the product of thermodynamic control when a molar ratio of ligand to yttrium salt of 1:1 is used. The new compounds have been characterised both as the solid (X-ray diffraction) and in solution (multinuclear magnetic resonance). In both yttrium complexes the ligand acts as a tridentate chelate. The arrangement of the two ligands in the 2:1 complex affords a pseudo-meso structure. Tridentate chelation of yttrium(III) in both complexes is retained in solution as evidenced by (89)Y NMR data obtained via(31)P,(89)Y-HMQC, and (89)Y,(31)P-DEPT experiments. The investigation of the solution behaviour of the Y(III) complexes through PGSE NMR diffusion measurements showed that average structures in agreement with the 1:1 and 1:2 stoichiometries are retained in acetonitrile.

  16. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).

    PubMed

    Seger, Christoph; Sturm, Sonja; Mair, Maria-Elisabeth; Ellmerer, Ernst P; Stuppner, Hermann

    2005-06-01

    2D NMR-derived 1H and 13C NMR signal assignments of six structurally closely related cucurbitacin derivatives are presented. The investigated 2-O-beta-D-glucopyranosylcucurbitacins I, J, K, and L were obtained from Citrullus colocynthis (L.) Schrader whereas the aglyca cucurbitacin E and I were isolated from Ecballium elaterium L.

  17. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    PubMed Central

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  18. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Gjersing, E; Chinn, S; Maxwell, R S; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2006-09-06

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The materials were synthesized with two different types of crosslinks, with functionalities of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional ({phi}=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the mechanical properties of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform non-affinely, in agreement with theory. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical engineering silicone materials and to gain significant insight into structure-property relationships.

  19. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Maxwell, R; Gjersing, E; Chinn, S; Giuliani, J; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2007-03-20

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone foam network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The foam materials were synthesized with two different types of crosslinks, with functionalities, {phi}, of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional (f=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties via compression and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the network structure of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform heterogeneously and non-affinely. The heterogeneity of the deformation process was observed to depend on the amount of the high functionality crosslinking site PMHS. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical

  20. sup 1 H NMR study of renal trimethylamine responses to dehydration and acute volume loading in man

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nixon, T.W.; Long, W.S.; Siegel, N.J. )

    1991-07-15

    The authors have used volume-localized {sup 1}H NMR spectroscopy to detect and measure changes in medullary trimethylamines (TMAs) in the human kidney in vivo. Localized water-suppressed {sup 1}H spectra were collected from a volume of interest located within the renal medulla by using a stimulated echo-based localization scheme. The principal resonances in the medullary {sup 1}H spectrum were residual water, lipid, and TMAs. The TMA line width was 7-15 Hz before filtering, and the signal-to-noise ratio was 40:1. In four normal volunteers, 15 hr of dehydration led to a significant increase in urine ismolality and decrease in body weight and an increase in medullary TMAs. A subsequent water load caused a transient water diuresis, a return to euvolemic body weight, and a significant reduction in medullary TMAs within 4 hr. These results suggest that TMAs may play an osmoregulatory role in the medulla of the normal human kidney.

  1. 1H NMR study of robustoxin, the lethal neurotoxin from the funnel web spider Atrax robustus.

    PubMed

    Temple, M D; Hinds, M G; Sheumack, D D; Howden, M E; Norton, R S

    1999-03-01

    Robustoxin, the lethal neurotoxin from the Sydney funnel web spider Atrax robustus, is a polypeptide of 42 residues cross-linked by four disulfide bonds. This paper describes the sequence-specific assignment of resonances in the 1H nuclear magnetic resonance spectrum of robustoxin in aqueous solution. Several broad backbone amide resonances were encountered in spectra recorded at 27 degrees C, making the assignments at that temperature incomplete. In spectra recorded at lower temperatures these amide resonances became sharper, but others that were sharp at 27 degrees C became broad, indicative of conformational averaging on the millisecond timescale for certain regions of the structure. Nevertheless, it was possible to establish that robustoxin contains a small, triple-stranded, antiparallel beta-sheet and several reverse turns, but no alpha-helix. These observations indicate that this toxin may adopt the inhibitor cystine knot structure found in polypeptides from a diverse range of species, including a number of spiders. Analysis of the pH dependence of the spectrum yielded pKa values for Tyr22 and Tyr25, one of the three carboxyl groups, and the Lys residues.

  2. Change of translational-rotational coupling in liquids revealed by field-cycling 1H NMR

    NASA Astrophysics Data System (ADS)

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-01

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the 1H spin-lattice relaxation rate, R 1 ω = T1 - 1 ω , is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz-20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R 1 ω , x (x denotes mole fraction PG) allow to extract the rotational time constant τrot(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τrot(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τrot(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  3. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  4. Miscibility of nifedipine and hydrophilic polymers as measured by (1)H-NMR spin-lattice relaxation.

    PubMed

    Aso, Yukio; Yoshioka, Sumie; Miyazaki, Tamaki; Kawanishi, Tohru; Tanaka, Kazuyuki; Kitamura, Satoshi; Takakura, Asako; Hayashi, Takashi; Muranushi, Noriyuki

    2007-08-01

    The miscibility of a drug with excipients in solid dispersions is considered to be one of the most important factors for preparation of stable amorphous solid dispersions. The purpose of the present study was to elucidate the feasibility of (1)H-NMR spin-lattice relaxation measurements to assess the miscibility of a drug with excipients. Solid dispersions of nifedipine with the hydrophilic polymers poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose (HPMC) and alpha,beta-poly(N-5-hydroxypentyl)-L-aspartamide (PHPA) with various weight ratios were prepared by spray drying, and the spin-lattice relaxation decay of the solid dispersions in a laboratory frame (T(1) decay) and in a rotating frame (T(1rho) decay) were measured. T(1rho) decay of nifedipine-PVP solid dispersions (3 : 7, 5 : 5 and 7 : 3) was describable with a mono-exponential equation, whereas T(1rho) decay of nifedipine-PHPA solid dispersions (3 : 7, 4 : 6 and 5 : 5) was describable with a bi-exponential equation. Because a mono-exponential T(1rho) decay indicates that the domain sizes of nifedipine and polymer in solid dispersion are less than several nm, it is speculated that nifedipine is miscible with PVP but not miscible with PHPA. All the nifedipine-PVP solid dispersions studied showed a single glass transition temperature (T(g)), whereas two glass transitions were observed for the nifedipine-PHPA solid dispersion (3 : 7), thus supporting the above speculation. For nifedipine-HPMC solid dispersions (3 : 7 and 5 : 5), the miscibility of nifedipine and HPMC could not be determined by DSC measurements due to the lack of obviously evident T(g). In contrast, (1)H-NMR spin-lattice relaxation measurements showed that nifedipine and HPMC are miscible, since T(1rho) decay of the solid dispersions (3 : 7, 5 : 5 and 7 : 3) was describable with a mono-exponential equation. These results indicate that (1)H-NMR spin-lattice relaxation measurements are useful for assessing the miscibility of a drug and an

  5. Local Water Dynamics in Coacervated Polyelectrolytes Monitored Through Dynamic Nuclear Polarization-Enhanced 1H NMR

    PubMed Central

    Kausik, Ravinath; Srivastava, Aasheesh; Korevaar, Peter A.; Stucky, Galen; Waite, J. Herbert

    2009-01-01

    We present the first study of quantifying the diffusion coefficient of interfacial water on polyelectrolyte surfaces of systems fully dispersed in bulk water under ambient conditions. Such measurements were made possible through the implementation of a recently introduced Dynamic Nuclear Polarization (DNP) technique to selectively amplify the nuclear magnetic resonance (NMR) signal of hydration water that is interacting with specifically located spin labels on polyelectrolyte surfaces. The merit of this novel capability is demonstrated in this report through the measurement of solvent microvisosity on the surface of two types of oppositely charged polyelectrolytes, when freely dissolved versus when complexed to form a liquid-liquid colloidal phase called complex coacervates. These complex coacervates were formed through electrostatic complexation between the imidazole-based cationic homopolymer poly(N-vinylimidazole) (PVIm), and anionic polypeptide polyaspartate (PAsp) in the pH range of 4.5 – 6.0, under which conditions the coacervate droplets are highly fluidic yet densely packed with polyelectrolytes. We also investigated the rotational diffusion coefficients of the spin labels covalently bound to the polyelectrolyte chains for both PVIm and PAsp, showing a 5 fold change in the rotational correlation time as well as anisotropy parameter upon coacervation, which represents a surprisingly small decrease given the high polymer concentration inside the dense microdroplets. For both DNP and ESR experiments, the polymers were covalently tagged with stable nitroxide radical spin labels (∼1 wt %) to probe the local solvent and polymer segment dynamics. We found that the surface water diffusion coefficients near uncomplexed PVIm and PAsp at pH 8 differ, and are around D∼1.3×10−9 m2 / s. In contrast, inside the complex coacervate phase, the water diffusion coefficient in the immediate vicinity of either polyelectrolyte was D∼ 0.25×10−9 m2 / s, which is about

  6. Stereospecific assignment of 1H resonances through chemical shift calculation and their use in structure determination by NMR

    NASA Astrophysics Data System (ADS)

    Harvey, Timothy S.; van Gunsteren, Wilfred F.; Ikura, Mitsuhiko

    1995-04-01

    Understanding of the factors which influence proton chemical shifts in nuclear magnetic resonance (NMR) spectra of proteins has advanced steadily as the number of proteins, for which assignments in conjunction with high resolution structures have been obtained, has increased. Progress has been made in both the calculation of chemical shifts from given coordinates, both empirically for 1H (Williamson & Asakura J. Magn. Reson. (1991) 94, 557) and using ab initio approaches for calculation of 13C (De Dios et al. Science (1993) 260, 1491). Concomitantly Wishart et al. (J. Mol. Biol. (1992) 222, 311), using statistical methods have clarified the relationship between Hα chemical shift and regular secondary structure in proteins to a high degree of accuracy. We recently demonstrated the significant amount of structural information present in the Hα chemical shift through the use of chemical shift restrained molecular dynamics simulations (Harvey & van Gunsteren Techniques in Protein Chemistry IV (1993) 615, Academic Press). Here we apply a similar methodology to the stereospecific assignment of methylene and methyl proton resonances in proteins. Stereospecific assignment of such 1H resonances dramatically increases the degree of precision of ensembles of structures derived from NMR data. However, this is often a cumbersome process, requiring detailed analysis of large amounts of data. Furthermore, experimental considerations such as poor signal-to-noise ratios, spectral overlap and spin diffusion combine to make this process somewhat unreliable. We present calculations of the chemical shifts for the known structures of bovine pancreatic trypsin inhibitor (Mw 6.5 kDa) and the α-amylase inhibitor tendamistat (Mw 8 kDa), for which stereospecific assignments and high resolution structures from both NMR and crystallographic studies are available. The methods described are also applied to the ensemble of structures obtained for protein S (Mw 19 kDa) for both structure

  7. Electronic states and molecular dynamics of single-component molecular conductors [M (tmdt) 2] (M =Ni , Pt) studied by 13C and 1H NMR

    NASA Astrophysics Data System (ADS)

    Takagi, Rina; Miyagawa, Kazuya; Yoshimura, Masahide; Gangi, Hiro; Kanoda, Kazushi; Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko

    2016-01-01

    The molecular conductors [M(tmdt) 2] (M =Ni , Pt) consisting of single molecular species are investigated with 13C NMR and 1H NMR. The temperature dependences of the 13C NMR shift and relaxation rate provide microscopic evidence for the metallic nature with appreciable electron correlations. Both compounds exhibit an anomalous frequency-dependent enhancement in the 1H nuclear spin-lattice relaxation rate in a wide temperature range. These observations signify the presence of extraordinary molecular motions with low energy excitations.

  8. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    PubMed

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions.

  9. Investigation of organic condensed phoshates: Synthesis and structural characterization by 31P MAS NMR and X-ray diffraction of the 3-phenylpropylamonium cyclohexaphosphate dihydrate

    NASA Astrophysics Data System (ADS)

    Hlel, F.; Thouvenot, R.; Smiri, L.

    2005-05-01

    Preparation, crystal structure and infra-red absorption spectra are reported for a new organic salt of the cyclohexaphosphate, [C6H5(CH2)3NH3]6P6O18 . 2 H2O. The new compound crystallizes in the triclinic system (P space group) with Z = 2 and the following unit cell dimensions: a = 10.528(3), b = 19.183(2), c = 9.839(3) Å, = 74.92(5), = 117.48(6) and = 99.90(5)°. The structure was solved by using 6709 independent reflections down to R value of 0.039. The ring anion exhibits internal symmetry. Its main geometrical features are those commonly observed in the atomic arrangements of cyclohexaphosphates. The three dimensional cohesion of this atomic arrangement is maintained through H-bonds between organic cations, water molecules and the external oxygen atoms of the P6O18-6 ring. The H-bond interactions induce local distortions of the ring leading to the existence of three different types of phosphate tetrahedra.Solid-state 31P magic-angle-spinning nuclear magnetic resonance (MAS NMR), performed at 162 MHz shows three isotropic resonances at -19.8, -22.6 and -24.5 ppm, confirming the non-equivalence of the three PO4 groups. They are characterized by different chemical shift tensor parameters, which are in agreement with the local geometrical features of the tetrahedra.

  10. Solution structure of Ln(III) complexes with macrocyclic ligands through theoretical evaluation of 1H NMR contact shifts.

    PubMed

    Rodríguez-Rodríguez, Aurora; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Botta, Mauro; Tripier, Raphaël; Platas-Iglesias, Carlos

    2012-12-17

    Herein, we present a new approach that combines DFT calculations and the analysis of Tb(III)-induced (1)H NMR shifts to quantitatively and accurately account for the contact contribution to the paramagnetic shift in Ln(III) complexes. Geometry optimizations of different Gd(III) complexes with macrocyclic ligands were carried out using the hybrid meta-GGA TPSSh functional and a 46 + 4f(7) effective core potential (ECP) for Gd. The complexes investigated include [Ln(Me-DODPA)](+) (H(2)Me-DODPA = 6,6'-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid, [Ln(DOTA)(H(2)O)](-) (H(4)DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), [Ln(DOTAM)(H(2)O)](3+) (DOTAM = 1,4,7,10- tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane), and related systems containing pyridyl units (Ln = Gd, Tb). Subsequent all-electron relativistic calculations based on the DKH2 approximation, or small-core ECP calculations, were used to compute the (1)H hyperfine coupling constants (HFCCs) at the ligand nuclei (A(iso) values). The calculated A(iso) values provided direct access to contact contributions to the (1)H NMR shifts of the corresponding Tb(III) complexes under the assumption that Gd and Tb complexes with a given ligand present similar HFCCs. These contact shifts were used to obtain the pseudocontact shifts, which encode structural information as they depend on the position of the nucleus with respect to the lanthanide ion. An excellent agreement was observed between the experimental and calculated pseudocontact shifts using the DFT-optimized geometries as structural models of the complexes in solution, which demonstrates that the computational approach used provides (i) good structural models for the complexes, (ii) accurate HFCCs at the ligand nuclei. The methodology presented in this work can be classified in the context of model-dependent methods, as it relies on the use of a specific molecular structure obtained from DFT

  11. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance sup 13 C chemical shift editing of sup 1 H- sup 1 H COSY spectra

    SciTech Connect

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P. )

    1989-01-18

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with {sup 13}C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs.

  12. Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using 1H-NMR spectroscopy.

    PubMed

    Picone, Gianfranco; Laghi, Luca; Gardini, Fausto; Lanciotti, Rosalba; Siroli, Lorenzo; Capozzi, Francesco

    2013-12-15

    Cultures of Escherichia coli 555 were grown at four levels of carvacrol (0-2 mM) and the E. coli endo-metabolome was extracted and measured by (1)H NMR spectroscopy. The results show that glucose concentration is going up with concentration of carvacrol and so do formate until the highest concentration is reached, from which point it suddenly decreases. This is interpreted as if the bacteria are increasingly unable to further metabolize glucose and as if the bacteria increasingly shifts with higher levels of carvacrol toward sugar fermentation as carbon source, until the level of carvacrol reaches a level (2.00 mM), where the E. coli must give up. Additionally, the multivariate Principal Component Analysis suggests that the adaptation occurring at sub-lethal doses of carvacrol is different from that occurring at higher doses.

  13. Study of the formation of carbonyl compounds in edible oils and fats by 1H-NMR and FTIR

    NASA Astrophysics Data System (ADS)

    Moya Moreno, M. C. M.; Mendoza Olivares, D.; Amézquita López, F. J.; Peris Martínez, V.; Bosch Reig, F.

    1999-05-01

    Oils and fats start decomposing from the moment they are isolated from their natural environment. Heating accelerates oxidative rancidity and frying at high temperatures produces thermal degradation with the formation of decomposition products, such as aldehydes, ketones, free acids and hydroxilic compounds that in high levels can be harmful to human health. The decomposition products formed up to 300°C were determined by means of 1H-NMR spectroscopy and an FTIR spectroscopic method was developed for the quantification of carbonyl compounds generated during heating. The results show that there is a formation of carbonyl compounds starting at 150°C and when the sample was heated at 300°C for 40 min, the following contents (expressed as butyraldehyde mass fraction) were found: olive oil 10.5%, sunflower oil 11.3%, corn oil 3.0%, seeds oil (sunflower, safflower and canola seed) 6.6% and lard 3.5%.

  14. IR, 1H NMR, mass, XRD and TGA/DTA investigations on the ciprofloxacin/iodine charge-transfer complex

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Hawary, W. F.; Moussa, Mohamed A. A.

    2011-05-01

    The charge-transfer complex (CTC) of ciprofloxacin drug (CIP) as a donor with iodine (I 2) as a sigma acceptor has been studied spectrophotometrically in CHCl 3. At maximum absorption bands, the stoichiometry of CIP:iodine system was found to be 1:1 ratio according to molar ratio method. The essential spectroscopic data like formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID) were estimated. The spectroscopic techniques such as IR, 1H NMR, mass and UV-vis spectra and elemental analyses (CHN) as well as TG-DTG and DTA investigations were used to characterize the chelating behavior of CIP/iodine charge-transfer complex. The iodine CT interaction was associated with a presence of intermolecular hydrogen bond. The X-ray investigation was carried out to investigate the iodine doping in the synthetic CT complex.

  15. [Studies by means of 1H NMR spectroscopy of complex formation of aromatic biologically active compounds with antibiotic topotecan].

    PubMed

    Mosunov, A A; Kostiukov, V V; Evstigneev, M P

    2012-01-01

    The analysis of heteroassociation of antibiotic topotecan (TPT) with aromatic biologically active compounds (BAC): caffeine, mutagens ethidium bromide and proflavine, antibiotic daunomycin, vitamins flavin-mononucleotide and nicotinamide, has been carried out in the work using 1H NMR spectroscopy data. The equilibrium constants of heteroassociation and induced chemical shifts of the protons have been obtained in the complexes with BAC. It is found that the complex formation TPT-BAC has the nature of stacking of the chromophores, additionally stabilized in the case of proflavine by intermolecular hydrogen bond. Calculation of the basic components of the Gibbs free energy of the complexation reactions is carried out, and the factors which stabilize and destabilize the heterocomplexes of molecules are revealed.

  16. 13C-CPMAS and 1H-NMR study of the inclusion complexes of beta-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide.

    PubMed

    Locci, Emanuela; Lai, Simona; Piras, Alessandra; Marongiu, Bruno; Lai, Adolfo

    2004-09-01

    Beta-cyclodextrin (beta-CD) inclusion complexes with carvacrol (1), thymol (2), and eugenol (3) (components of essential oils of vegetable origin) were prepared by the supercritical CO2 technique, and their structural characterization was achieved by means of 1H-NMR in aqueous solution and 13C-CPMAS NMR in the solid state. Evidence of the formation of the inclusion complexes for all the examined systems was obtained by 1H-NMR in solution, while 2D-ROESY-NMR experiments were used to investigate the geometry of inclusion. In addition, the dynamics of these inclusion complexes in the kHz timescale was investigated by analysis of the 1H and 13C spin-lattice relaxation times in the rotating frame.

  17. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.

  18. Combining biochemical with (1)H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism.

    PubMed

    Shen, Xiao-Li; Liu, Huan; Xiang, Huan; Qin, Xue-Mei; Du, Guan-Hua; Tian, Jun-Sheng

    2016-09-10

    Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal metabolism of carbohydrates, lipids and proteins. Genipin possesses a wide spectrum of biological activities including ameliorating effects on diabetes, but the definite mechanism of this effect remains unknown. To investigate the antidiabetic activities of genipin and explore the biochemical changes of serum endogenous metabolites on diabetic rats induced by alloxan, (1)H NMR spectroscopy coupled with multivariate data analysis was used to. All rats were randomly divided into six groups including negative control (NC) group, diabetic mellitus (DM) group, metformin hydrochloride group, high dose group of genipin, middle dose group of genipin and low dose group of genipin. Diabetes was induced by a single intraperitoneal injection of 120mg/kg body weight of alloxan. Serum samples were collected for the (1)H NMR-based metabolomics and clinical biochemical analysis. Daily oral administration of genipin (25, 50 and 100mg/kg body weight) and metformin hydrochloride (125mg/kg) for two weeks showed beneficial effects on blood glucose level (P<0.01). Significant differences in the metabolic profile as well as the result of biochemical parameters between the diabetic group and the control group were observed. The PLS-DA scores and corresponding loading plots demonstrated that genipin significantly restored the abnormal metabolic state. Detailed analysis of the altered metabolite levels indicated that genipin significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism and amino acid metabolism. Genipin showed the best anti-diabetic effects at a dose of 100mg/kg in rats. This finding indicates that chemical and metabolomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment.

  19. A 1H NMR study of a ternary peptide complex that mimics the interaction between troponin C and troponin I.

    PubMed Central

    Slupsky, C. M.; Shaw, G. S.; Campbell, A. P.; Sykes, B. D.

    1992-01-01

    The troponin I peptide N alpha-acetyl TnI (104-115) amide (TnIp) represents the minimum sequence necessary for inhibition of actomyosin ATPase activity of skeletal muscle (Talbot, J.A. & Hodges, R.S. 1981, J. Biol. Chem. 256, 2798-3802; Van Eyk, J.E. & Hodges, R.S., 1988, J. Biol. Chem. 263, 1726-1732; Van Eyk, J.E., Kay, C.M., & Hodges, R.S., 1991, Biochemistry 30, 9974-9981). In this study, we have used 1H NMR spectroscopy to compare the binding of this inhibitory TnI peptide to a synthetic peptide heterodimer representing site III and site IV of the C-terminal domain of troponin C (TnC) and to calcium-saturated skeletal TnC. The residues whose 1H NMR chemical shifts are perturbed upon TnIp binding are the same in both the site III/site IV heterodimer and TnC. These residues include F102, I104, F112, I113, I121, I149, D150, F151, and F154, which are all found in the C-terminal domain hydrophobic pocket and antiparallel beta-sheet region of the synthetic site III/site IV heterodimer and of TnC. Further, the affinity of TnIp binding to the heterodimer (Kd = 192 +/- 37 microM) was found to be similar to TnIp binding to TnC (48 +/- 18 microM [Campbell, A.P., Cachia, P.J., & Sykes, B.D., 1991, Biochem. Cell Biol. 69, 674-681]). The results indicate that binding of the inhibitory region of TnI is primarily to the C-terminal domain of TnC. The results also indicate how well the synthetic peptide heterodimer mimics the C-terminal domain of TnC in structure and functional interactions. PMID:1304891

  20. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids.

    PubMed

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of (1)H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.

  1. Detection, identification and quantification by 1H NMR of adulterants in 150 herbal dietary supplements marketed for improving sexual performance.

    PubMed

    Gilard, Véronique; Balayssac, Stéphane; Tinaugus, Aurélie; Martins, Nathalie; Martino, Robert; Malet-Martino, Myriam

    2015-01-01

    One hundred and fifty dietary supplements (DS) marketed to increase sexual performance were analyzed. All these formulations were claimed to contain only natural compounds, plant extracts and/or vitamins. (1)H NMR spectroscopy was used for detecting the presence of adulterants and for their identification and quantification. Mass spectrometry was used as a complementary method for confirming the chemical structures. 61% of DS were adulterated with phosphodiesterase-5 inhibitors (PDE-5i) (27% with the PDE-5i medicines sildenafil, tadalafil and vardenafil, and 34% with their structurally modified analogues). Among them, 64% contained only one PDE-5i and 36% mixtures of two, three and even four. The amounts of PDE-5i medicines were higher than the maximum recommended dose in 25% of DS tainted with these drugs. Additional 5.5% DS included other drugs for the treatment of sexual dysfunction (yohimbine, flibanserin, phentolamine, dehydroepiandrosterone or testosterone). Some DS (2.5%) contained products (osthole, icariin) extracted from plants known to improve sexual performance. Only 31% of the samples could be considered as true herbal/natural products. A follow-up over time of several DS revealed that manufacturers make changes in the chemical composition of the formulations. Lack of quality or consistent manufacture (contamination possibly due to inadequate cleaning of the manufacturing chain, presence of impurities or degradation products, various compositions of a given DS with the same batch number, inadequate labelling) indicated poor manufacturing practices. In conclusion, this paper demonstrates the power of (1)H NMR spectroscopy as a first-line method for the detection of adulterated herbal/natural DS and the need for more effective quality control of purported herbal DS.

  2. I. The synthesis and characterization of annulated uranocenes. II. The variable temperature /sup 1/H NMR of uranocenes

    SciTech Connect

    Luke, W.D.

    1980-01-01

    A general synthetic route to alkyl annulated cyclooctatetraene dianions and the corresponding annulated uranocenes has been developed. Dideprotonation of bicyclooctatrienes, resulting from reaction of cyclooctatetraene dianion with l,n-dialkylbromides or methanesulfonates, affords alkyl annulated cyclooctatetraene dianions in moderate yields. Dicyclopenteno-, bisdimethylcyclopenteno- and dicyclohexenouranocene were prepared from the corresponding cyclooctatetraene dianions and UCl/sub 4/. The structures of dicyclobuteno- and dicyclopentenouranocene were elucidated by single crystal X-ray diffraction, and the effects of annulation on the uranocene skeleton are discussed. Attempted synthesis of benzocyclooctatetraene and a benzannulated uranocene is reported. The variable temperature /sup 1/H NMR spectrum of uranocene has been reinvestigated from -100 to 100/sup 0/C. The isotropic shift was found to be linear in T/sup -1/ with an extrapolated intercept of 0 at T/sup -1/ = 0. Variable temperature /sup 1/H NMR spectra, from -80 to 70/sup 0/C, of 17 substituted uranocenes are reported. The energy barrier to ring rotation in 1,1', 4,4'-tetra-t-butyl-uranocene was determined to be 8.24 +- 0.5 kcal/mole while the barrier in the corresponding 1,1', 3,3'-tetra-t-butylferrocene was determined to be 13.1 kcal/mole. Alkyl substitution is shown to have little effect on the electronic and magnetic properties of the uranocene skeleton, and thus alkyl substituted uranocenes are treated as having effective axial symmetry in analysis of the observed isotropic shifts. Using diannulated uranocenes as model systems an analysis of the contact and pseudocontact components of the observed isotropic shifts in uranocene and alkyl substituted uranocenes is presented.

  3. Interplay between Fe 3d and Ce 4f magnetism and Kondo interaction in CeFeAs(1-x)P(x)O probed by 75As and 31P NMR.

    PubMed

    Sarkar, R; Baenitz, M; Jesche, A; Geibel, C; Steglich, F

    2012-04-04

    A detailed (31)P (I = 1/2) and (75)As (I = 3/2) NMR study on polycrystalline CeFeAs(1-x)P(x)O alloys is presented. The magnetism of CeFeAsO changes drastically upon P substitution on the As site. CeFePO is a heavy fermion system without long-range order whereas CeFeAsO exhibits an Fe 3d SDW type of ordering accompanied by a structural transition from tetragonal (TT) to orthorhombic (OT) structure. Furthermore, Ce 4f(1) orders antiferromagnetically (AFM) at low temperature. At the critical concentration where the Fe magnetism is diminished the Ce-Ce interaction changes to a ferromagnetic (FM) type of ordering. Three representative samples of the CeFeAs(1-x)P(x)O (x = 0.05, 0.3 and 0.9) series are systematically investigated. (1) For the x = 0.05 alloy a drastic change of the linewidth at 130 K indicates the AFM-SDW type of ordering of Fe and the structural change from the TT to the OT phase. The linewidth roughly measures the internal field in the ordered state and the transition is most likely first order. The small and nearly constant shift from (31)P and (75)As NMR suggests the presence of competing hyperfine interactions between the nuclear spins and the 4f and 3d ions of Ce and Fe. (2) For the x = 0.3 alloy, the evolution of the Fe-SDW type of order takes place at around 70 K corroborating the results of bulk measurement and μSR. Here we found evidence for phase separation of paramagnetic and magnetic SDW phases. (3) In contrast to the heavy fermion CeFePO for the x = 0.9 alloy a phase transition is found at 2 K. The field-dependent NMR shift gives evidence of FM ordering. Above the ordering the spin-lattice relaxation rate (31)(1/T(1)) shows unconventional, non-Korringa-like behaviour which indicates a complex interplay of Kondo and FM fluctuations.

  4. Comparative study of the complex forming ability and enantioselectivity of cyclodextrin polymers by CE and 1H NMR.

    PubMed

    Danel, Cécile; Azaroual, Nathalie; Chavaria, Cédric; Odou, Pascal; Martel, Bernard; Vaccher, Claude

    2013-02-15

    The interactions between nine drugs (baclofen, bupivacaine, chlorpheniramine, ketoconazole, paliperidone, promethazine, propranolol, risperidone and verapamil) and six cyclodextrins (α-CD, β-CD, γ-CD, HP-β-CD, HP-γ-CD and Me-β-CD) or six polymers of cyclodextrins (polyα-CD, polyβ-CD, polyγ-CD, polyHP-β-CD, polyHP-γ-CD and polyMe-β-CD) were studied by affinity capillary electrophoresis and/or (1)H NMR at pH 2.5. An exhaustive qualitative study was performed through the determination of the retardation factor. Then, four compounds and both β-CD and polyβ-CD were selected for the quantitative study of the interactions at pH 2.5 and 7.0. By comparing the results obtained with the β-CD and polyβ-CD, it appears that the apparent binding constants are up to five times higher with the polymer. The 2D-NMR results seem to indicate that the structure of the polymeric network favours the inclusion of the guest in the hydrophobic cavity of the CD units. Moreover, the poly-CDs have shown very high enantioselective abilities at both pH.

  5. Tautomeric ratio and prototropic equilibrium constants of tenoxicam, a 1H and 13C NMR theoretical and experimental study.

    PubMed

    Franco-Pérez, Marco; Moya-Hernández, Rosario; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Gómez-Balderas, Rodolfo

    2011-11-24

    The determination of the micro-equilibrium prototropic constants is often a tough task when the tautomeric ratio favors one of the species or when the chemical exchange is not slow enough to allow the quantitative detection of the tautomeric species. There are just few experimental methods available to reveal the constants of the tautomeric micro-equilibriums; its applicability depends on the nature of the tautomeric system. A combination of experimental and quantum chemistry calculated (1)H and (13)C NMR chemical shifts is presented here to estimate the population of the species participating in the tautomeric equilibriums of the tenoxicam, an important anti-inflammatory drug. A multivariate fitting of a fraction-mol-weighted contribution model, for the NMR chemical shifts of the species in solution, was used to find the populations of the tautomers of tenoxicam. To consider and evaluate the effect of the solvent polarity on the tautomers' populations, experimental determinations were carried out in DMSO-d(6), in an equimolar DMSO-H(2)O mixture of deuterated solvents and in D(2)O. Additionally, by employing HYPNMR, it has been possible to refine the acid-base macroscopic constants of tenoxicam.

  6. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative (1)H NMR Metabonomic Study.

    PubMed

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied (1)H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  7. Benzocaine complexation with p-sulfonic acid calix[n]arene: experimental ((1) H-NMR) and theoretical approaches.

    PubMed

    Arantes, Lucas M; Varejão, Eduardo V V; Pelizzaro-Rocha, Karin J; Cereda, Cíntia M S; de Paula, Eneida; Lourenço, Maicon P; Duarte, Hélio A; Fernandes, Sergio A

    2014-05-01

    The aim of this work was to study the interaction between the local anesthetic benzocaine and p-sulfonic acid calix[n]arenes using NMR and theoretical calculations and to assess the effects of complexation on cytotoxicity of benzocaine. The architectures of the complexes were proposed according to (1) H NMR data (Job plot, binding constants, and ROESY) indicating details on the insertion of benzocaine in the cavity of the calix[n]arenes. The proposed inclusion compounds were optimized using the PM3 semiempirical method, and the electronic plus nuclear repulsion energy contributions were performed at the DFT level using the PBE exchange/correlation functional and the 6-311G(d) basis set. The remarkable agreement between experimental and theoretical approaches adds support to their use in the structural characterization of the inclusion complexes. In vitro cytotoxic tests showed that complexation intensifies the intrinsic toxicity of benzocaine, possibly by increasing the water solubility of the anesthetic and favoring its partitioning inside of biomembranes.

  8. Characterization of Chinese liquor starter, "Daqu", by flavor type with 1H NMR-based nontargeted analysis.

    PubMed

    Wu, Xiao-He; Zheng, Xiao-Wei; Han, Bei-Zhong; Vervoort, Jacques; Nout, M J Robert

    2009-12-09

    "Daqu" is a fermentation starter and substrate complex that is used to initiate fermentations for the production of Chinese liquor (alcoholic spirit). Several different types of Daqu are customary used, having different flavours, i.e. light, strong, or sauce flavor. With the aim to develop objective methods to characterize and distinguish such different types of Daqu, nontargeted analyses of extracts from three typical flavor types of Daqu were carried out using (1)H nuclear magnetic resonance (NMR) spectroscopy. A significant separation of spectra of Daqu of light-flavor, strong-flavor and sauce-flavor types was achieved using principal components analysis. The separation could be attributed to higher levels of glycerol, malate, acetate and N-acetylglutamine in light-flavor Daqu; higher levels of mannitol, betaine, trimethylamine and pyroglutamate in strong-flavor Daqu; and higher levels of lactate, isoleucine, leucine, isovalerate and valine in sauce-flavor Daqu. These metabolites were regarded as the representative metabolites or biomarkers characteristic for each type of Daqu and could be associated with some of the microorganisms that have been reported in Daqu. This study highlights the application of nontargeted analysis techniques based on NMR in process research and quality control in Daqu production and liquor fermentation.

  9. 1H NMR Spectroscopy and Multivariate Analysis of Monovarietal EVOOs as a Tool for Modulating Coratina-Based Blends

    PubMed Central

    Del Coco, Laura; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo

    2014-01-01

    Coratina cultivar-based olives are very common among 100% Italian extra virgin olive oils (EVOOs). Often, the very spicy character of this cultivar, mostly due to the high polyphenols concentration, requires blending with other “sweetener” oils. In this work, monovarietal EVOO samples from the Coratina cultivar (Apulia, Italy) were investigated and compared with monovarietal EVOO from native or recently introduced Apulian (Italy) cultivars (Ogliarola Garganica, Ogliarola Barese, Cima di Mola, Peranzana, Picholine), from Calabria (Italy) (Carolea and Rossanese) and from other Mediterranean countries, such as Spain (Picual) and Greece (Kalamata and Koroneiki) by 1H NMR spectroscopy and multivariate analysis (principal component analysis (PCA)). In this regard, NMR signals could allow a first qualitative evaluation of the chemical composition of EVOO and, in particular, of its minor component content (phenols and aldehydes), an intrinsic behavior of EVOO taste, related to the cultivar and geographical origins. Moreover, this study offers an opportunity to address blended EVOOs tastes by using oils from a specific region or country of origin. PMID:28234316

  10. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus).

    PubMed

    Xu, Hua-Dong; Wang, Jun-Song; Li, Ming-Hui; Liu, Yan; Chen, Ting; Jia, Ai-Qun

    2015-02-01

    Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment.

  11. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples.

    PubMed

    van Leeuwen, Sander S; Schoemaker, Ruud J W; Gerwig, Gerrit J; van Leusen-van Kan, Ellen J M; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2014-08-01

    Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups.

  12. Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): a low-field 1H NMR study.

    PubMed

    Aursand, Ida G; Gallart-Jornet, Lorena; Erikson, Ulf; Axelson, David E; Rustad, Turid

    2008-08-13

    Low-field (LF) (1)H NMR T 2 relaxation measurements were used to study changes in water distribution in lean (Atlantic cod) and fatty (Atlantic salmon) fish during salting in 15% NaCl and 25% NaCl brines. The NMR data were treated by PCA, continuous distribution analysis, and biexponential fitting and compared with physicochemical data. Two main water pools were observed in unsalted fish, T 21, with relaxation times in the range 20-100 ms, and T 22, with relaxation times in the range 100-300 ms. Pronounced changes in T 2 relaxation data were observed during salting, revealing changes in the water properties. Salting in 15% brine lead to a shift toward longer relaxation times, reflecting increased water mobility, whereas, salting in saturated brines had the opposite effect. Water mobility changes were observed earlier in the salting process for cod compared to salmon. Good linear correlations ( F

  13. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez, Miguel Ángel; Vinaixa, Maria; Chiva-Blanch, Gemma; Estruch, Ramon; Correig, Xavier; Andrés-Lacueva, Cristina

    2012-08-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100mL/day, alcohol control). After each period, 24-h urine samples were collected and analyzed by (1) H-NMR. According to the results of a one-way ANOVA, significant markers were grouped in four categories: alcohol-related markers (ethanol); gin-related markers; wine-related markers; and gut microbiota markers (hippurate and 4-hydroxphenylacetic acid). Wine metabolites were classified into two groups; first, metabolites of food metabolome: tartrate (RWA and RWD), ethanol, and mannitol (RWA); and second, biomarkers that relates to endogenous modifications after wine consumption, comprising branched-chain amino acid (BCAA) metabolite (3-methyl-oxovalerate). Additionally, a possible interaction between alcohol and gut-related biomarkers has been identified. To our knowledge, this is the first time that this approach has been applied in a nutritional intervention with red wine. The results show the capacity of this approach to obtain a comprehensive metabolome picture including food metabolome and endogenous biomarkers of moderate wine intake.

  14. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  15. 1H and 13C NMR chemical shift assignments of spiro-cycloalkylidenehomo- and methanofullerenes by the DFT-GIAO method.

    PubMed

    Khalilov, L M; Tulyabaev, A R; Yanybin, V M; Tuktarov, A R

    2011-06-01

    The (1)H and (13)C NMR chemical shifts of spiro-cycloalkylidene[60]fullerenes were assigned using experimental NMR data and the Density Functional Theory (DFT)-Gauge Independence Of Atomic Orbitals method (GAIO) calculation method in the Perdew Burke Ernzerhof (PBE)/3z approach. The calculated values of the (13)C NMR chemical shifts adequately reproduce the experimental values at this quantum chemistry approach. Similar assignments will be helpful for (13)C NMR spectral analysis of homo- and methano[60]fullerene derivatives for structure elucidation and to determine the influence of fullerene frames on substituents and the influence of substituents on fullerene cores.

  16. Inverse nonionic microemulsion studied by means of 1H, 13C, and PGSTE NMR during silica nanoparticle synthesis.

    PubMed

    Asaro, Fioretta; Benedetti, Alvise; Savko, Nina; Pellizer, Giorgio

    2009-03-03

    The soluble species present in the reaction mixture that leads to silica nanoparticle production through the base catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) and the successive condensation were investigated in situ, under the actual synthesis conditions, by means of 1H, 13C, and 29Si NMR spectroscopy. The two former nuclei, owing to higher sensitivity and their presence both in the reacting species and in the constituents of the W/O microemulsion (cyclohexane-igepal-CA-520-concentrated ammonia solution) afforded insight into the inverse microemulsion and allowed us to assess the kinetic rate of the hydrolysis step. It was verified that the microemulsion microstructure is maintained during the reaction. The characterization of the final nanoparticles was carried out by means of transmission electron microscopy (TEM). Special attention was paid to the reaction medium, and an extended assignment of the 1H and 13C resonances of the surfactant headgroup is reported together with the discussion of the changes they undergo due to the environmental modifications induced by transition from cyclohexane solution to W/O microemulsion and further to NH3 containing W/O microemulsion. The self-diffusion coefficient measurements revealed that NH3 exchanges among the inverse micelles diffusing through cyclohexane and confirmed that the preferred localization for ethanol, a byproduct of the reaction, is the bulk oil.

  17. The identification of vicinally substituted cyclohexane isomers in their mixtures by 1H and 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Laihia, Katri; Kolehmainen, Erkki; Nevalainen, Tapio; Kauppinen, Reijo; Vasilieva, Tamara T.; Terentiev, Alexander B.

    2000-02-01

    The radical addition reactions of organobromine compounds, XBr (X=CH 2COOMe, PhCH 2, CHBr 2 and CCl 3) with cyclohexene afforded mixtures of cis/ trans isomer pairs of 1-X-2-Br-cyclohexanes. In addition to benzyl benzoyloxy derivatives are formed also, when benzoyl peroxide is used as an initiator. Owing to the great difficulties in separating these cis/ trans isomer pairs, they are identified directly in their mixtures by NMR spectroscopy. In addition to one-dimensional (1D) 1H, proton decoupled 13C and DEPT-135, also two-dimensional (2D) 13C- 13C INADEQUATE as well as 1H- 13C HMQC experiments have been used in assigning the signals of each compound in their mixtures. The identification of each isomer was based on comparison of experimental 3JH,H coupling constants with theoretical ones based on the well-known Karplus type relationship. The more stable conformation for each isomer was estimated using the semiempirical AM1 molecular orbital method. The calculations support the isomer pair elucidations.

  18. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dyn