Science.gov

Sample records for 1h nmr x-ray

  1. Study of the gel films of Acetobacter Xylinum cellulose and its modified samples by {sup 1}H NMR cryoporometry and small-angle X-ray scattering

    SciTech Connect

    Babushkina, T. A.; Klimova, T. P.; Shtykova, E. V.; Dembo, K. A.; Volkov, V. V.; Khripunov, A. K.; Klechkovskaya, V. V.

    2010-03-15

    Gel films of Acetobacter Xylinum cellulose and its modified samples have been investigated by 1H nuclear magnetic resonance (NMR) cryoporometry and small-angle X-ray scattering. The joint use of these two methods made it possible to characterize the sizes of aqueous pores in gel films and estimate the sizes of structural inhomogeneities before and after the sorption of polyvinylpyrrolidone and Se{sub 0} nanoparticles (stabilized by polyvinylpyrrolidone) into the films. According to small-angle X-ray scattering data, the sizes of inhomogeneities in a gel film change only slightly upon the sorption of polyvinylpyrrolidone and nanoparticles. The impregnated material is sorbed into water-filled cavities that are present in the gel film. {sup 1}H NMR cryoporometry allowed us to reveal the details of changes in the sizes of small aqueous pores during modifications.

  2. X-ray and 1H-NMR spectroscopic studies of the structures and conformations of the new nootropic agents RU-35929, RU-47010 and RU-35965

    NASA Astrophysics Data System (ADS)

    Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio

    1990-10-01

    The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.

  3. Crystal Structure and Cationic Motion of o-Toluidinium Chloranilate and m-Toluidinium Chloranilate Studied by X-ray Diffraction and 1H NMR

    NASA Astrophysics Data System (ADS)

    Fukunaga, Takeo; Kumagae, Naoki; Ishida, Hiroyuki

    2003-11-01

    The crystal structure of o-toluidinium chloranilate and m-toluidinium chloranilate, 2CH3C6H4-NH3+ · C6O4Cl22-, was determined by single crystal X-ray diffraction at room temperature. It was found that o-toluidinium chloranilate (I) is monoclinic, P21/n (#14), Z = 2, a = 5.2184(14), b = 7.825(2), c = 22.840(5) Å , and β = 92.015(19)°, and m-toluidinium chloranilate (II) is monoclinic, P21/c (#14), Z = 2, a = 11.214(2), b = 5.4844(10), c = 16.379(6) Å, and β = 105.21(2)°. In these salts, the cations are connected with the anions by N-H... O hydrogen bonds to form 2:1 units of 2CH3C6H4NH3+ · C6O4Cl22- that are located on inversion centers. The 2CH3C6H4NH3+ · C6O4Cl22- units in both salts are connected by other N-H... O hydrogen bonds to build a three-dimensional hydrogen-bond network. Motions of the toluidinium ions in solid (I) and (II) were studied by 1H NMR spin-lattice relaxation time measurements. Reorientations of the NH3+ group about the C-N bond axis and the CH3 group about the C-C bond axis were observed, and their motional parameters were evaluated. The internal rotational barriers of the NH3+ and CH3 groups of an isolated o-toluidinium ion were estimated from ab initio molecular orbital calculations at HF/6-31G(d,p), MP2/6-31G(d,p), and B3LYP/6-31G(d,p) levels of theory.

  4. Structure of 1H-2-oxo-2,3-dihydroimidazo[1,2- a]pyridinium perchlorate studied by X-ray diffraction, DFT calculations and by FTIR and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalczyk, I.; Bartoszak-Adamska, E.; Jaskólski, M.; Dega-Szafran, Z.; Szafran, M.

    2010-07-01

    2-Aminopyridine betaine (1-carboxymethyl-2-aminopyridinium inner salt) forms crystalline complexes with HCl, HBr and HClO 4. These complexes on heating in ethanol cyclize to 1H-2-oxo-2,3-dihydroimidazo[1,2- a]pyridinium chloride ( 1Ax), bromide ( 2Ax) and perchlorate ( 3Ax), respectively. Infrared spectra of the 1H-2-oxo-2,3-dihydroimidazo[1,2- a]pyridinium complexes indicate that the length of the N(1)-H···X - hydrogen bond depends on the counter-ions and increases in the order: Cl - < Br - < ClO 4-. In the crystal structure of 3Ax determined by X-ray diffraction, the ClO 4- anion is disordered and the N(1)-H···OClO 3- distance cannot be determined accurately. Three types of cyclic molecules were optimized by the B3LYP/6-31G(d,p) level of theory: type A with N(1)-H⋯X -, type B with N(1)⋯H-X hydrogen bonds and type C with electrostatic interactions between the positively charged nitrogen atom N +(4) and the counter anion (X - = Cl -, Br - or ClO 4-). Correlations between the experimental 1H and 13C NMR chemical shifts ( δexp) and the GIAO/B3LYP/6-31G(d,p) calculated magnetic isotropic shielding tensors ( σcalc) for 3Ao and 3Co,δexp = a + bσcalc, are reported. Tentative assignments of the experimental anharmonic solid state vibrational frequencies of the perchlorate complex, 3Ax, based on the B3LYP/6-31G(d,p) calculated harmonic frequencies, are presented.

  5. Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione

    NASA Astrophysics Data System (ADS)

    Barakat, Assem; Al-Najjar, Hany J.; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2015-08-01

    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R2 = 0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the 1H- and 13C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.

  6. Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione.

    PubMed

    Barakat, Assem; Al-Najjar, Hany J; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-01

    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.

  7. Synthesis and x-ray structural characterization of binuclear iridium(I) and rhodium(I) hydroxypyridinate complexes. 1. Complete assignment of the /sup 1/H NMR spectra by two-dimensional and NOE techniques. The nature of inside and outside /sup 1/H chemical shift differences

    SciTech Connect

    Rodman, G.S.; Mann, K.R.

    1988-09-21

    Six new d/sup 8/-d/sup 8/ complexes, (Ir(COD)(..mu..-hp))/sub 2/, (Ir(COD)(..mu..-mhp))/sub 2/, (Ir(COD)(..mu..-chp))/sub 2/, (Ir(COD)(..mu..-2hq))/sub 2/, (Rh(COD)(..mu..-hp))/sub 2/, and (Rh(COD)(..mu..-mhp))/sub 2/ (hp = 2-hydroxyphridinate, mhp = 6-methyl-2-hydroxypyridinate, chp = 6-chloro-2-hydroxypyridinate, 2hq = 2-hydroxyquinolate, COD = 1,5-cyclooctadiene), were synthesized and characterized by /sup 1/H NMR, /sup 13/C NMR, and IR spectroscopy and FAB mass spectrometry. X-ray crystallographic analyses of the isostructural (M(COD)(..mu..-mhp))/sub 2/ (M = Ir and Rh) complexes confirmed the binuclear nature of the complexes. The complete assignment of the /sup 1/H NMR spectrum of (Ir(COD)(..mu..-hp))/sub 2/ (and by analogy, the spectra of the other five complexes) was carried out with selective decoupling, nuclear Overhauser effect (NOE), and two-dimensional NMR techniques. The NOE observed between hp proton H5 and COD proton H15 allowed the precise assignment of all 12 COD resonances. Olefinic proton H12 (trans to N and outside) resonates downfield of olefinic proton H11 (trans to N and inside). Olefininc proton H15 (trans to O and outside) resonates upfield of olefinic proton H16 (trans to O and inside). The endo methylene protons resonate upfield of the exo methylene protons. The inside/outside chemical shift differences observed for these compounds are ascribed to steric and magnetic anisotropy effects. The crystallographic data are presented. The molecular structure of the complexes is discussed in detail. 39 references, 5 figures, 9 tables.

  8. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  9. Synthesis, X-ray crystallography, spectroscopic (FT-IR, 1H &13C NMR and UV), computational (DFT/B3LYP) and enzymes inhibitory studies of 7-hydroximinocholest-5-en-3-ol acetate

    NASA Astrophysics Data System (ADS)

    Ahmad, Faheem; Parveen, Mehtab; Alam, Mahboob; Azaz, Shaista; Malla, Ali Mohammed; Alam, Mohammad Jane; Lee, Dong-Ung; Ahmad, Shabbir

    2016-07-01

    The present study reports the synthesis of 7-Hydroximinocholest-5-en-3-ol acetate (syn. 3β-acetoxycholest-5-en-7-one oxime; in general, steroidal oxime). The identity of steroidal molecule was confirmed by NMR, FT-IR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra interpreted by Gaussian hybrid computational analysis theory (B3LYP) are found to be in good correlation with the experimental data obtained from the various spectrophotometric techniques. The vibrational bands appearing in the FTIR are assigned with great accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and natural atomic charges have been presented at the same level of theory. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The percentages of various interactions are pictorialized by fingerprint plots of Hirshfeld surface. Steroidal oxime exhibited promising inhibitory activity against acetylcholinesterase (AChE) as compared to the reference drug, tacrine. Molecular docking was performed to introduce steroidal molecules into the X-ray crystal structures of acetylcholinesterase at the active site to find out the probable binding mode. The results of molecular docking admitted that steroidal oxime may exhibit enzyme inhibitor activity.

  10. Vibrational spectroscopic studies, NMR, HOMO-LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole with use X-ray diffractions and DFT calculations

    NASA Astrophysics Data System (ADS)

    Demir, Sibel; Tinmaz, Feyza; Dege, Necmi; Ilhan, Ilhan Ozer

    2016-03-01

    The crystal and molecular structure of the title compound, 1-(2-nitrobenzoyl)-3,5-diphenyl-4,5-dihydro-1H-pyrazole, was reported and confirmed by single crystal X-ray diffraction and spectroscopic data. The structure, geometry optimization, vibrational frequencies and nuclear magnetic resonance were also investigated. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. Satisfactory theoretical aspects were made for the stable conformer of the molecule using density functional theory DFT-B3LYP methods with the 6-311G++(d,p) basis set.

  11. Picoliter 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Wind, Robert A.

    2002-02-01

    In this study, a 267-μm-diameter solenoid transceiver is used to acquire localized 1H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20-30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-μm-diameter globule of triacylglycerols (∼900 mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (∼33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing 1H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.

  12. A community resource of experimental data for NMR / X-ray crystal structure pairs.

    PubMed

    Everett, John K; Tejero, Roberto; Murthy, Sarath B K; Acton, Thomas B; Aramini, James M; Baran, Michael C; Benach, Jordi; Cort, John R; Eletsky, Alexander; Forouhar, Farhad; Guan, Rongjin; Kuzin, Alexandre P; Lee, Hsiau-Wei; Liu, Gaohua; Mani, Rajeswari; Mao, Binchen; Mills, Jeffrey L; Montelione, Alexander F; Pederson, Kari; Powers, Robert; Ramelot, Theresa; Rossi, Paolo; Seetharaman, Jayaraman; Snyder, David; Swapna, G V T; Vorobiev, Sergey M; Wu, Yibing; Xiao, Rong; Yang, Yunhuang; Arrowsmith, Cheryl H; Hunt, John F; Kennedy, Michael A; Prestegard, James H; Szyperski, Thomas; Tong, Liang; Montelione, Gaetano T

    2016-01-01

    We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development.

  13. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity

    NASA Astrophysics Data System (ADS)

    Giziroglu, Emrah; Sarikurkcu, Cengiz; Aygün, Muhittin; Basbulbul, Gamze; Soyleyici, H. Can; Firinci, Erkan; Kirkan, Bulent; Alkis, Ayse; Saylica, Tayfur; Biyik, Halil

    2016-03-01

    A series of barbituric acid aroylhydrazine derivatives have been prepared from their corresponding 1,3-dimethyl-5-acetyl barbituric acid and aroylhydrazines. All compounds have been fully characterized by using FT-IR, multinuclear NMR (1H, 13C) and Mass (MS) spectrometry. We also describe the X-ray crystal structure of 3a, which crystallizes in the monoclinic P21/n space group. The crystal structure is stabilized with infinite linear chains of dimeric units. Furthermore, all compounds were investigated for their tyrosinase inhibition, antioxidative and antimicrobial activies. The results from biological activity assays have shown that all of compounds have excellent antioxidant, significant tyrosinase inhibition and moderate antimicrobial activity.

  14. Cationic motions and phase transitions in [(CH 3) 4N] 2SO 4·4H 2O, [(CH 3) 4N] 2SO 4, and [(CH 3) 4N] 2SeO 4 as studied by 1H NMR, differential thermal analysis, and X-ray powder diffraction techniques

    NASA Astrophysics Data System (ADS)

    Sato, Setsuko; Endo, Midori; Hara, Naoki; Nakamura, Daiyu; Ikeda, Ryuichi

    1995-02-01

    Cationic reorientations have been studied in solid [(CH 3) 4N] 2SO 4·4H 2O, [(CH 3) 4N] 2SO 4, and [(CH 3) 4N] 2SeO 4 by measuring 1H NMR spin-lattice relaxation times, T1. These motions have been discussed in association with the crystal structures and the phase transitions examined by X-ray powder diffraction and differential thermal analysis, respectively. In crystals of [(CH 3) 4N] 2SO 4·4H 2O, there are two kinds of cations distorted from regular tetrahedra. T1 is calculated according to the interpretation that two T1 minima are due to the two inequivalent (NH 3) 4N + ions reorienting at different frequencies. The result shows that at the phase transition temperatures, the correlation times to those cationic reorientations are very different from each other in this compound in contrast with (NH 4) 2SO 4 and [(CH 3) 4N] 2CdX 4 (X = Cl and Br). For the sulfate and selenate, there is a single kind of cation which can be considered tetrahedral, and the phase transitions occur in the temperature region where the narrowing of the resonance line owing to the overall cationic reorientations starts.

  15. Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula

    2014-07-01

    The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.

  16. Determination of the X-ray reflection emissivity profile of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Fabian, A. C.

    2011-06-01

    When considering the X-ray spectrum resulting from the reflection off the surface of accretion discs of AGN, it is necessary to account for the variation in reflected flux over the disc, i.e. the emissivity profile. This will depend on factors including the location and geometry of the X-ray source and the disc characteristics. We directly obtain the emissivity profile of the disc from the observed spectrum by considering the reflection component as the sum of contributions from successive radii in the disc and fitting to find the relative weightings of these components in a relativistically broadened emission line. This method has successfully recovered known emissivity profiles from synthetic spectra and is applied to XMM-Newton spectra of the Narrow Line Seyfert 1 galaxy 1H 0707-495. The data imply a twice-broken power-law form of the emissivity law with a steep profile in the inner regions of the disc (index 7.8) and then a flat region between 5.6 and 34.8rg before tending to a constant index of 3.3 over the outer regions of the disc. The form of the observed emissivity profile is consistent with theoretical predictions, thus reinforcing the reflection interpretation.

  17. Synthesis, NMR characterization, X-ray structural analysis and theoretical calculations of amide and ester derivatives of the coumarin scaffold

    NASA Astrophysics Data System (ADS)

    Matos, Maria J.; Uriarte, Eugenio; Santana, Lourdes; Vilar, Santiago

    2013-06-01

    Compounds 1 (4-methyl-N-(coumarin-3-yl)benzamide) and 2 ((coumarin-3-yl)-4-methylbenzoate) were synthesized by linking the coumarin system (3-aminocoumarin or 3-hydroxycoumarin, respectively) to a p-toluoylchloride. 1H and 13C NMR and X-ray diffractometry determined the molecular structures of both derivatives. The X-ray results were compared to those obtained by conformational analysis followed by semiempirical methodologies (AM1 and PM3). The theoretical calculations yielded results reproducing the whole three-dimensional (3D) structure of both molecules in a good agreement with X-ray structural analysis. The global structures of the two compounds are very similar in the two studied environments, meaning that the structural determination in the gas phase can be extrapolated. A comparative study between compounds 1 and 2, based on the structural results, was carried out.

  18. Conformational analysis of 2,6-diarylpiperidin-4-one hydrazones by X-ray diffraction and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sankar, C.; Umamatheswari, S.; Pandiarajan, K.

    2015-03-01

    A new series of 3t-alkyl-2r,6c-diarylpiperidin-4-one N-isonicotinoylhydrazones (12-22) derived from the condensation of 3t-alkyl-2r,6c-diarylpiperidin-4-ones with isoniazid (INH) is reported. Newly synthesized compounds have been characterized by using elemental analysis, IR, 1H, 13C and 2D NMR spectral analysis. Moreover, representative crystal structure of 3,3-dimethyl-2r,6c-diarylpiperidin-4-one N-isonicotinoylhydrazone has been determined by X-ray diffraction analysis. NMR data revealed that two geometrical isomers (E and Z) are formed in all cases, and the piperidine ring adopts chair conformation. Whereas in solid state the compounds have E configuration about the Cdbnd N bond. These conclusions have also been confirmed by X-ray data of compound 16.

  19. Exceptional behaviour of X-ray emitting corona in a Seyfert 1 galaxy 1H 0419 - 577

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab Chand

    2016-07-01

    We report on six XMM-Newton observations of a Seyfert 1 galaxy 1H 0419-577 during spectacular behaviour of the corona about on 2-3 months time scale. The source reflects similar trend in each energy band from Optical/UV to X-rays during 2002-2003. The Optical/UV emission varies from trough to peak by 4.2-22.1% and peak to trough by 6.6-10.3%. At the same time, the 2 - 10keV powerlaw emission is strongly correlated with soft X-ray excess with similar fractional variability amplitude ˜ 40% suggesting variation in coronal geometry. We also found that the height of X-ray source remains almost similar about 2rg (gravitaional radius) for each observation. This indicates clearly that source size is changing dramatically. Further, the powerlaw emission and Optical/UV emission seem correlated to each other. The observed variation in Optical/UV emission further support the variable size of corona. During incraesing trend of Optical/UV to X-rays, the X-ray source expands horizontally and while decreasing the X-ray source seems to shrink. This is supported by the observed more variation in Optical emission compared to UV emission while decreasing in flux from peak to trough.

  20. X-ray, NMR and DFT studies on benzo[h]thiazolo[2,3-b]quinazoline derivatives

    NASA Astrophysics Data System (ADS)

    Gupta, Richa; Chaudhary, R. P.

    2013-10-01

    4-Phenyl-3,4,5,6-tetrahydrobenzo[h]quinazoline-2(1H)-thione 3, obtained by the condensation of 2-Benzylidene-3,4-dihydronapthalen-1(2H)-one 2 with thiourea, on reaction with chloroacetic acid and 1,2-dibromoethane furnish compounds 4 and 5 and not their possible isomers 7 and 8 respectively. The regiochemistry of the cyclized products and their structure is established by elemental analysis, 1H NMR, 13C NMR, IR and mass spectral data. Density functional theory (DFT) calculations have been carried out for compounds 4, 5 and their isomers 7 and 8 with Jaguar version 6.5112 using B3LYP density functional method and 6-31G∗∗ basis set. X-ray diffraction technique indicates that compound 4 crystallizes in the triclinic space group P-1, with Z = 2 and cell parameters a = 6.3404 (11) Å, b = 9.997 (3) Å, c = 13.560 (2) Å, α = 107.532(19)°, β = 94.108(14)°, γ = 97.469(17)°. 1H and 13C NMR of compounds 4, 5, 7 and 8 have been calculated and correlated with experimental results. 2-Arylidene derivatives of 4 were obtained by two routes and their structure was established by spectral data. The lowest energy optimized geometry of the compound 4 in gas phase is consistent with that obtained by X-ray crystallographic studies.

  1. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  2. 1,3-Alternate calix[4]arene nitronyl nitroxide tetraradical and diradical: synthesis, X-ray crystallography, paramagnetic NMR spectroscopy, EPR spectroscopy, and magnetic studies

    SciTech Connect

    Rajca, Andrzej; Pink, Maren; Mukherjee, Sumit; Rajca, Suchada; Das, Kausik

    2008-04-02

    Calix[4]arenes constrained to 1,3-alternate conformation and functionalized at the upper rim with four and two nitronyl nitroxides have been synthesized, and characterized by X-ray crystallography, magnetic resonance (EPR and {sup 1}H NMR) spectroscopy, and magnetic studies. Such calix[4]arene tetraradicals and diradicals provide scaffolds for through-bond and through-space intramolecular exchange couplings.

  3. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis

    SciTech Connect

    Hauser, H.; Pascher, I.; Sundell, S. )

    1988-12-27

    The conformation of the glycerol group of a number of diacyl and monoacyl (lyso) phospholipids differing in the chemical nature of the head group was studied by {sup 1}H high-resolution NMR and X-ray crystallography. The NMR measurements were carried out with solutions or micellar dispersions of the lipids in deuteriated organic solvents or {sup 2}H{sub 2}O. Both solutions, in which the lipid is present as monomers, and lipid micelles give rise to good high-resolution NMR spectra exhibiting spin coupling hyperfine interactions. From {sup 1}H spin coupling it is concluded that there are two stable conformations about the glycerol C(2)-C(3) bond of phospholipids. By comparison of NMR and single-crystal X-ray data it is obvious that both conformations are minimum free energy conformations. Rotamer A is the conformation prevailing in phospholipid single-crystal structures. The conformation of rotamer B is also found in phospholipid single-crystal structures though to a lesser extent. NMR measurements indicate that in liquid crystals the diacylglycerol part of phospholipids fluctuates between the two stable staggered conformations of rotamers A and B. The transition between rotamers A and B is fast on the NMR time scale and must be accompanied by appropriate changes in the torsion angles {beta}{sub 1} to {beta}{sub 4} and {gamma}{sub 1} to {gamma}{sub 4} of the two fatty acyl chains. It is clear from the data presented that the parallel alignment of the hydrocarbon chains or chain stacking in phospholipid aggregates such as bilayers or micelles is the fundamental principle governing the conformation of the C(2)-C(3) glycerol bond.

  4. Solid-state /sup 13/C NMR and X-ray diffraction of dermatan sulfate

    SciTech Connect

    Winter, W.T.; Taylor, M.G.; Stevens, E.S.; Morris, E.R.; Rees, D.A.

    1986-05-29

    Dermatan sulfate in the solid state has been studied by /sup 13/C CP/MAS nmr and X-ray diffraction in order to establish the ring conformation of the L-iduronate moiety. The solid state nmr spectrum is similar to the solution spectrum obtained previously, indicating that a ring conformation at least approximating to /sup 1/C/sub 4/ predominates in the solid state. X-ray powder diffraction data from the same sample indicate the presence of the 8-fold helix form previously observed by fiber diffraction, and interpreted in terms of a /sup 4/C/sub 1/ ring form. A likely explanation of the results is that a distorted /sup 1/C/sub 4/ L-iduronate ring conformation, not considered in the initial X-ray analysis, may emerge to provide a satisfactory interpretation of all available physical-chemical data.

  5. Structure of dimethylphenyl betaine hydrochloride studied by X-ray diffraction, DFT calculation, NMR and FTIR spectra

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Katrusiak, A.; Dega-Szafran, Z.; Kowalczyk, I.

    2013-01-01

    The structure of dimethylphenyl betaine hydrochloride (1) has been studied by X-ray diffraction, DFT calculations, NMR and FTIR spectra. The crystals are monoclinic, space group P21/c. In the crystal, the Cl- anion is connected with protonated betaine through the O-H⋯Cl- hydrogen bond of 2.943(2) Å. The structures in the gas phase (2) and water solution (3) have been optimized by the B3LYP/6-311++G(d,p) approach and the geometrical results have been compared with the X-ray data of 1. The FTIR spectrum of the solid compound is consistent with the X-ray results. The probable assignments of the anharmonic experimental vibrational frequencies of the investigated chloride (1) based on the calculated harmonic frequencies in water solution (3) are proposed. The correlations between the experimental 1H and 13C NMR chemical shifts (δexp) of 1 in D2O and the magnetic isotropic shielding constants (σcalc) calculated by the GIAO/B3LYP/6-311G++(d,p) approach, using the screening solvation model (COSMO), δexp = a + b σcalc, for optimized molecule 3 in water solution are linear and correctly reproduce the experimental chemical shifts.

  6. A combined NMR, DFT, and X-ray investigation of some cinchona alkaloid O-ethers.

    PubMed

    Busygin, Igor; Nieminen, Ville; Taskinen, Antti; Sinkkonen, Jari; Toukoniitty, Esa; Sillanpää, Reijo; Murzin, Dmitry Yu; Leino, Reko

    2008-09-01

    Structures and conformational behavior of several cinchona alkaloid O-ethers in the solid state (X-ray), in solution (NMR and DFT), and in the gas phase (DFT) were investigated. In the crystal, O-phenylcinchonidine adopts the Open(3) conformation similar to cinchonidine, whereas the O-methyl ether derivatives of both cinchonidine and cinchonine are packed in the Closed(1) conformation. Dynamic equilibria in solutions of the alkaloids were revealed by combined experimental-theoretical spin simulation/iteration techniques for the first time. In the (1)H NMR spectra in CDCl3 and toluene-d8 at room temperature, Closed(1) conformation was observed for the O-silyl ethers as a separate set of signals. For O-methyl ether derivatives Closed(1) could be separated only at -30 degrees C in CDCl3 or toluene-d8 and for O-phenylcinchonidine at -70 degrees C in CDCl3/CD2Cl2. The ratio between the Closed(2) and Open(3) conformers was estimated by analyzing the vicinal coupling constant (3)J(H9,H8) at ambient and low temperatures. The observed conformational equilibria of O-(tert-butyldimethylsilyl)cinchonidine in CDCl 3 and toluene-d8 are in good agreement with the theoretically estimated equilibrium populations of the conformations according to Boltzmann statistics. The conformational equilibria of four cinchona alkaloid O-ether solutes in CDCl3 and toluene-d8 are discussed in the light of their relevance to the mechanism of 1-phenyl-1,2-propanedione (PPD) hydrogenation over cinchona alkaloid modified heterogeneous platinum catalysts. It was demonstrated that the conformation found to be abundant in the liquid phase has no direct correlation with the enantioselectivity of the PPD hydrogenation reaction.

  7. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  8. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  9. X-ray and DFT studies of the structure, vibrational and NMR spectra of 2-amino-pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Kowalczyk, I.; Koput, J.; Katrusiak, A.

    2005-06-01

    The effect of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of 2-amino-pyridine betaine hydrochloride (1-carboxymethyl-2-amino-pyridinium chloride), 2-NH 2PBH⋯Cl(c), in the crystal and its isolated molecules has been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by DFT calculations. In the crystal, the Cl - anion is connected with protonated betaine via hydrogen bond, O-H⋯Cl -= 2.975(2) Å, two N(12)-H⋯Cl - hydrogen bonds and two N(1) H⋯Cl - intermolecular electrostatic interactions. Two minima are located in the potential energy surface at the B3LYP/6-31G(d,p) level, 2-NH 2PBH⋯Cl(t) and 2-NH 2PB⋯HCl(c), with the latter being 20,7 kcal/mol higher in energy. The optimized bond lengths and angles of 2-NH 2PBH⋯Cl(t) at B3LYP level of theory are in good agreement with X-ray data, except for the conformation of the COOH group, which is cis ( syn) in the crystal and trans ( anti) in the single molecule. The probable assignments for the anharmonic experimental solid state vibrational spectra of 2-NH 2PBH⋯Cl(c) and 2-ND 2PBD⋯Cl(c) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. 1H and 13C NMR screening constants for both single molecules have been calculated in the GIAO/B3LYP/6-31G(d,p) approach. Linear correlation between the calculated and experimental 1H chemical shifts holds only for cis conformer. The lack of such a correlation for trans conformer indicates that it is absent in D 2O solution.

  10. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; Nelson, Andrew T.; Kiplinger, Jaqueline L.

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  11. Reduction of andrographolide and its stereostructure by NMR and X-ray study.

    PubMed

    Singh, Deepika; Chaudhuri, Prabir K

    2013-04-01

    Andrographolide (1) on asymmetric reduction with nickel boride in situ led to the identification of a product as 12,13 R-dihydroandrographolide (3) in de (>96%). The structure and stereochemistry of compound 3 were established by NMR study and confirmed by X-ray crystallographic analysis. β-Substituent of γ-butyrolactone in andrographolide exerted diastereomeric selectivity in reduction. Neoandrographolide (2) under similar condition yielded 5. PMID:22559743

  12. The Soft X-Ray Variability and Spectrum of 1H0419-577 from a Long EUVE Observation

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Halpern, J. P.; Leighly, K.

    1999-01-01

    The active galaxy associated with the hard X-ray source 1H0419-577 was observed with EUVE (Extreme Ultraviolet Explorer Satellite) for about 25 days to obtain a long, contiguous light curve and an EUV spectrum. An EUV source was detected which was about as bright as the AGN (Active Galactic Nuclei) and was later identified as an AM Her type system. The AGN showed variations as large as a factor of two over 5-10 day time scales and occasionally varied by 20-30% in less than 0.5day. The spectrum is dominated by a continuum that is poorly fit by a simple power law. There are possible emission lines without positive identifications but the lines are likely to be spurious.

  13. The Soft X-Ray Variability and Spectrum of 1H0419-577 from a Long EUVE Observation

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Halpern, J. P.; Leighly, K.

    1999-01-01

    The active galaxy associated with the hard X-ray source 1H0419-577 was observed with Extreme Ultraviolet Explorer Satellite (EUVE) for about 25 days to obtain a long, contiguous light curve and an Extreme Ultraviolet Radiation (EUV) spectrum. An EUV source was detected which was about as bright as the AGN and was later identified as an AM Her type system. The AGN showed variations as large as a factor of two over 5-10 day time scales and occasionally varied by 20-30% in less than 0.5day. The spectrum is dominated by a continuum that is poorly fit by a simple power law. There are possible emission lines without positive identifications but the lines are likely to be spurious.

  14. Crystallization of a layered silicate clay as monitored by small- angle x-ray scattering and NMR.

    SciTech Connect

    Carrado, K. A.; Xu, L.; Gregory, D.; Song, K.; Seifert, S.; Botto, R. E.; Chemistry

    2000-10-01

    The 48-h hydrothermal crystallization of a magnesium silicate clay called hectorite has been investigated in detail. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. Data from small-angle X-ray scattering (SAXS) using aliquots ex situ are consistent with results obtained previously by X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), atomic force microscopy (AFM), and IR. All these techniques see clay crystallites beginning to form within the first few hours of reaction. {sup 29}Si NMR displays a visible clay silicate peak after just 1 h. Solid-state {sup 13}C NMR shows evidence of TEA-clay formation in as little as 30 min and also that 80% of the final TEA loading is accomplished in the first 10-12 h. Up to 36 h more is needed to incorporate the remaining 20% of TEA, indicating that a slower event is dominating at the later stages of crystallization. Data from {sup 13}C NMR and SAXS are compared to and are consistent with data from earlier AFM experiments. All present a scenario where initial nucleation and crystallization end after about 14 h, after which this occurs to a lesser extent and primarily agglomeration of particles is taking place. The SAXS data show this in progressively increasing power law values, indicating more 'open' structures that condense into more dense structures with time. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. A possible clay crystallization mechanism is proposed.

  15. Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR.

    PubMed

    Dzien, Piotr; Fages, Anne; Jona, Ghil; Brindle, Kevin M; Schwaiger, Markus; Frydman, Lucio

    2016-09-21

    Dissolution dynamic nuclear polarization (dDNP) is used to enhance the sensitivity of nuclear magnetic resonance (NMR), enabling monitoring of metabolism and specific enzymatic reactions in vivo. dDNP involves rapid sample dissolution and transfer to a spectrometer/scanner for subsequent signal detection. So far, most biologically oriented dDNP studies have relied on hyperpolarizing long-lived nuclear spin species such as (13)C in small molecules. While advantages could also arise from observing hyperpolarized (1)H, short relaxation times limit the utility of prepolarizing this sensitive but fast relaxing nucleus. Recently, it has been reported that (1)H NMR peaks in solution-phase experiments could be hyperpolarized by spontaneous magnetization transfers from bound (13)C nuclei following dDNP. This work demonstrates the potential of this sensitivity-enhancing approach to probe the enzymatic process that could not be suitably resolved by (13)C dDNP MR. Here we measured, in microorganisms, the action of pyruvate decarboxylase (PDC) and pyruvate formate lyase (PFL)-enzymes that catalyze the decarboxylation of pyruvate to form acetaldehyde and formate, respectively. While (13)C NMR did not possess the resolution to distinguish the starting pyruvate precursor from the carbonyl resonances in the resulting products, these processes could be monitored by (1)H NMR at 500 MHz. These observations were possible in both yeast and bacteria in minute-long kinetic measurements where the hyperpolarized (13)C enhanced, via (13)C → (1)H cross-relaxation, the signals of protons binding to the (13)C over the course of enzymatic reactions. In addition to these spontaneous heteronuclear enhancement experiments, single-shot acquisitions based on J-driven (13)C → (1)H polarization transfers were also carried out. These resulted in higher signal enhancements of the (1)H resonances but were not suitable for multishot kinetic studies. The potential of these (1)H-based approaches for

  16. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  17. The structure of tellurite glass: A combined NMR, neutron diffraction, and x-ray diffraction study

    SciTech Connect

    McLaughlin, J. C.; Tagg, S. L.; Zwanzier, J. W.; Shastri, S. D.; Haeffner, D. R.

    2000-04-04

    Models are presented of sodium tellurite glasses in the composition range (Na{sub 2}0){sub x}-(TeO{sub 2}){sub 1{minus}x}. 0.1 < x < 0.3. The models combine self-consistently data from three different and complementary sources: sodium-23 nuclear magnetic resonance (NMR), neutron diffraction, and x-ray diffraction. The models were generated using the Reverse Monte Carlo algorithm, modified to include NMR data in addition to diffraction data. The presence in the models of all five tellurite polyhedra consistent with the Te{sup +4} oxidation state were found to be necessary to achieve agreement with the data. The distribution of polyhedra among these types varied from a predominance of highly bridged species at low sodium content, to polyhedra with one or zero bridging oxygen at high sodium content. The models indicate that the sodium cations themselves form sodium oxide clusters particularly at the x = 0.2 composition.

  18. Structure of 6-hydroxy-1-methylquinolinium chloride hydrate studied by X-ray, DFT calculations, FTIR and NMR spectroscopes

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Komasa, A.; Ratajczak-Sitarz, M.; Katrusiak, A.; Koput, J.; Dega-Szafran, Z.; Szafran, M.

    2010-12-01

    The crystal structure of 6-hydroxy-1-methylquinolinium chloride hydrate ( 1), 6QBWHCl, is monoclinic, space group P2 1/ n and Z = 4. 1-Methyl-6-oxyquinolinium betaine, 6QB, is protonated and its OH group participates in a moderate hydrogen bond with water molecule (O(1)-H⋯O(W1) = 2.636(2) Å). The water molecule is further connected by a hydrogen bond to chloride ion (O(W1)-H(W2)⋯Cl(1) = 3.090(3) Å). Structures of five complexes ( 2- 6) have been optimized by the B3LYP/6-311G(d, p) level of theory and the results have been compared with the X-ray data of 1. Linear correlations between the experimental 1H and 13C NMR chemical shifts ( δexp) of complexes 2- 5 and the magnetic isotropic shielding constants ( σcal) calculated by the GIAO/B3LYP/6-311G(d, p) approach, using the screening solvation model (COSMO), δexp = a + bσcal, are reported. The probable assignments of the anharmonic experimental solid state vibrational frequencies of anhydrous complex, 6QBHCl, based on the calculated B3LYP/6-311G(d, p) harmonic frequencies have been proposed.

  19. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  20. Characterization of zeolite structure and fluorocarbon reactivity using solid state NMR and x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Ciraolo, Michael Frank

    reactions. The preference between these two reactions should be related to the relative importance of the interactions with the basic oxygen atoms and the cations. RbX is considered a basic zeolite while ZnX should have more acidic character, which should be reflected in differences in product distribution. The positions of the exchanged cations and the residual sodium cations of both exchanged zeolites have been located and the products formed during reaction have been identified. To investigate possible methods to achieve high levels of cation substitution, NH4Y has been ion exchanged with solid Rb2CO3 to form RbY. This process has been followed with x-ray powder diffraction, mass spectrometry and NMR. It has been shown that exchange begins on grinding and no rubidium oxide or new carbonate phases were observed to form during the exchange. The positions of the cations of the final exchanged RbY product have been located with Rietveld analysis. It has also been shown that 1H and 87Rb MAS NMR is very sensitive to the level of hydration of the zeolite and has been used to follow the solid state exchange process.

  1. Investigation of the role of stereoelectronic effects in the conformation of piperidones by NMR spectroscopy and X-ray diffraction.

    PubMed

    Garcias-Morales, Cesar; Ortegón-Reyna, David; Ariza-Castolo, Armando

    2015-01-01

    This paper reports the synthesis of a series of piperidones 1-8 by the Mannich reaction and analysis of their structures and conformations in solution by NMR and mass spectrometry. The six-membered rings in 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones, compounds 1 and 2, adopt a chair-boat conformation, while those in 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ones, compounds 3-8, adopt a chair-chair conformation because of stereoelectronic effects. These stereoelectronic effects were analyzed by the (1) J C-H coupling constants, which were measured in the (13)C satellites of the (1)H NMR spectra obtained with the hetero-dqf pulse sequence. In the solid state, these stereoelectronic effects were investigated by measurement of X-ray diffraction data, the molecular geometry (torsional bond angles and bond distances), and inter- and intramolecular interactions, and by natural bond orbital analysis, which was performed using density functional theory at the ωB97XD/6311++G(d,p) level. We found that one of the main factors influencing the conformational stability of 3-8 is the interaction between the lone-pair electrons of nitrogen and the antibonding sigma orbital of C(7)-Heq (nN→σ*C-H(7)eq), a type of hyperconjugative interaction. PMID:26664617

  2. Investigation of the role of stereoelectronic effects in the conformation of piperidones by NMR spectroscopy and X-ray diffraction

    PubMed Central

    Garcias-Morales, Cesar; Ortegón-Reyna, David

    2015-01-01

    Summary This paper reports the synthesis of a series of piperidones 1–8 by the Mannich reaction and analysis of their structures and conformations in solution by NMR and mass spectrometry. The six-membered rings in 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones, compounds 1 and 2, adopt a chair–boat conformation, while those in 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ones, compounds 3–8, adopt a chair–chair conformation because of stereoelectronic effects. These stereoelectronic effects were analyzed by the 1 J C–H coupling constants, which were measured in the 13C satellites of the 1H NMR spectra obtained with the hetero-dqf pulse sequence. In the solid state, these stereoelectronic effects were investigated by measurement of X-ray diffraction data, the molecular geometry (torsional bond angles and bond distances), and inter- and intramolecular interactions, and by natural bond orbital analysis, which was performed using density functional theory at the ωB97XD/6311++G(d,p) level. We found that one of the main factors influencing the conformational stability of 3–8 is the interaction between the lone-pair electrons of nitrogen and the antibonding sigma orbital of C(7)–Heq (nN→σ*C–H(7)eq), a type of hyperconjugative interaction. PMID:26664617

  3. Structure of 3-aminopyridine betaine hydrochloride studied by X-ray diffraction, DFT calculations, FTIR and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalczyk, I.; Katrusiak, A.; Szafran, M.

    2010-08-01

    The structure of 3-aminopyridine betaine hydrochloride (1-carboxymethyl-3-aminopyridinium chloride), 3-NH 2PBH·Cl, has been studied by X-ray diffraction, B3LYP/6-311G(d,p) calculations, FTIR and NMR spectra. The compound crystallized in monoclinic, space group P2 1/c in the crystal, the Cl - anion is connected with protonated betaine via the hydrogen bond O-H⋯Cl of 2.946(3) Å. Both protons of the NH 2 group are engaged in hydrogen bonds with the neighboring molecules: N(2)-H(2B)⋯O(2) of 2.905(6) Å and N(2)-H(2B)⋯Cl(1) of 3.324(3) Å. The Cl - ion interacts electrostatically with three neighboring molecules. The probable assignments of the anharmonic experimental solid state vibrational frequencies of the investigated compound, based on the calculated frequencies in vacuum at the same level of theory for optimized structure, have been made. Correlations between the experimental 13C and 1H NMR chemical shifts ( δexp) and the GIAO/B3LYP/6-311G(d,p) calculated magnetic isotropic shielding ( σcal) in DMSO and D 2O, δexp = a + b · σcalc, are reported.

  4. Packing interactions in hydrated and anhydrous forms of the antibiotic Ciprofloxacin: a solid-state NMR, X-ray diffraction, and computer simulation study.

    PubMed

    Mafra, Luís; Santos, Sérgio M; Siegel, Renée; Alves, Inês; Paz, Filipe A Almeida; Dudenko, Dmytro; Spiess, Hans W

    2012-01-11

    We present an experimental NMR, X-ray diffraction (XRD), and computational study of the supramolecular assemblies of two crystalline forms of Ciprofloxacin: one anhydrate and one hydrate forming water wormholes. The resonance assignment of up to 51 and 54 distinct (13)C and (1)H resonances for the hydrate is reported. The effect of crystal packing, identified by XRD, on the (1)H and (13)C chemical shifts including weak interionic H-bonds, is quantified; (1)H chemical shift changes up to ∼-3.5 ppm for CH···π contacts and ∼+2 ppm (CH···O((-))); ∼+4.7 ppm (((+))NH···O((-))) for H-bonds. Water intake induces chemical shift changes up to 2 and 5 ppm for (1)H and (13)C nuclei, respectively. Such chemical shifts are found to be sensitive detectors of hydration/dehydration in highly insoluble hydrates.

  5. Structure of 1-methyl-6-oxyquinolinium betaine dihydrate studied by X-ray diffraction, DFT calculations, vibrational and NMR spectra

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Ratajczak-Sitarz, M.; Katrusiak, A.; Szafran, M.

    2010-07-01

    The crystals of 1-methyl-6-oxyquinolinium betaine dihydrate, 6QB·2H 2O, are triclinic, space group P1¯. The oxygen atom of 6QB exhibits an extremely rare capability of accepting four hydrogen bonds. It is engaged in four hydrogen bonds to water molecules of the 2.823, 2.825, 2.833 and 2.849 Å; each water molecule interacts with two neighbouring 6QB molecules linking them into infinite sheets. Differences in geometrical parameters between the X-ray and calculated molecules reflect changes in their structures between zwitterion and quinonoid forms. The probable assignments of the experimental FTIR solid spectrum have been made on the basis of B3LYP/6-311G(d,p) calculated frequencies in vacuum. Both 1H and 13C chemical shifts are solvent dependent. Linear correlations between the experimental 1H and 13C NMR chemical shifts of 6QB·2H 2O in solutions and the GIAO/B3LYP/6-311G(d,p) calculated magnetic isotropic shielding tensors ( σcal) using the screening solvation model, δexp = a + bσcal, are reported.

  6. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.

    2013-10-01

    Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  7. NMR and X-ray studies of isomeric 22,23-dihydroxy stigmastanes

    NASA Astrophysics Data System (ADS)

    Khripach, Vladimir A.; Zhabinskii, Vladimir N.; Ivanova, Galina V.; Fando, Galina P.; Tsavlovskii, Dmitrii V.; Khripach, Natalya B.; Lyakhov, Alexander S.; Misharin, Alexander Yu.

    2010-06-01

    A comparative conformational study of steroidal side chain of (22 R,23 R)- and (22 S,23 S)-dihydroxy stigmastane derivatives was performed using single crystal X-ray diffraction and NMR spectroscopy. The preferred conformation in solution was shown to be close to that in the crystal. (22 R,23 R)-Isomers typical for natural plant steroid hormones brassinosteroids adopt a conformation in which both hydroxyl groups are pointed toward unhindered α-side of the steroidal plane and can thus participate in biochemical processes. Unnatural (22 S,23 S)-counterparts exhibit a conformation with the two hydroxyl groups oriented in the opposite direction and sterically hindered by 21-methyl group and terminal side chain fragment.

  8. Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR

    SciTech Connect

    Malki, A.; Mekhalif, Z.; Detriche, S.; Fonder, G.; Boumaza, A.; Djelloul, A.

    2014-07-01

    The changes caused by heat treatment of gibbsite powder at 300–1473 K were studied using the X-ray diffraction (XRD), X-ray photoemission (XPS) spectra and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy ({sup 27}Al MAS NMR). XRD analysis indicates that the transformation sequence involves the formation of κ-Al{sub 2}O{sub 3} as an intermediate phase between χ- and α-Al{sub 2}O{sub 3}. The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. XPS analysis indicates that the ratio of aluminium atoms to oxygen atoms in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3} increases, whereas the expected ratio is observed in α-Al{sub 2}O{sub 3}. The percentage of AlO{sub 4} units in the transition aluminas follows the same behaviour as the ratio of Al/O. - Graphical abstract: The percentage of AlO{sub 4} units in transition aluminas follows the same behaviour as the ratio of Al/O. - Highlights: • Calcination products of gibbsite studied by XRD, XPS and solid-state NMR. • The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. • The Al/O atomic ratio determined by XPS is larger than 2/3 in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3}. • The percentage of AlO{sub 4} in the aluminas follows the same behaviour as the Al/O atomic ratio.

  9. Discovery of potent cholecystokinin-2 receptor antagonists: elucidation of key pharmacophore elements by X-ray crystallographic and NMR conformational analysis.

    PubMed

    Rosen, Mark D; Hack, Michael D; Allison, Brett D; Phuong, Victor K; Woods, Craig R; Morton, Magda F; Prendergast, Clodagh E; Barrett, Terrance D; Schubert, Carsten; Li, Lina; Wu, Xiaodong; Wu, Jiejun; Freedman, Jamie M; Shankley, Nigel P; Rabinowitz, Michael H

    2008-04-01

    A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes. A combination of synthesis, computational methods, (1)H NMR conformational studies, and X-ray crystallographic analyses were applied to elucidate key pharmacophore elements, and to discover analogs with improved pharmacokinetic profiles, and high receptor binding affinity and selectivity.

  10. Organobase catalyzed 1,4-conjugate addition of 4-hydroxycoumarin on chalcones: Synthesis, NMR and single-crystal X-ray diffraction studies of novel warfarin analogues

    NASA Astrophysics Data System (ADS)

    Talhi, Oualid; Fernandes, José A.; Pinto, Diana C. G. A.; Almeida Paz, Filipe A.; Silva, Artur M. S.

    2015-08-01

    The synthesis of a new series of warfarin analogues by convenient organobase catalyzed 1,4-conjugate addition of 4-hydroxycoumarin to chalcone derivatives is described. 1H NMR spectroscopy evidenced the presence of a predominant acyclic open-form together with the cyclic hemiketal tautomers of the resulting Michael adducts. The acyclic open-form has been unequivocally proved by single-crystal X-ray diffraction analysis. The use of the B ring ortho-hydroxychalcone synthons in this reaction has led to a diastereoselective synthesis of warfarin bicyclo[3.3.1]nonane ketal derivatives.

  11. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  12. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT.

    SciTech Connect

    BUTLER,L.G.

    1999-07-22

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 {micro}m; a search with EPMA for vesicles in the range of 1-20 {micro}m proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from {sup 29}Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, {sup 2}H NMR of d{sub 8}-toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste).

  13. Dynamic 1H NMR Studies of Schiff Base Derivatives

    NASA Astrophysics Data System (ADS)

    Köylü, M. Z.; Ekinci, A.; Böyükata, M.; Temel, H.

    2016-01-01

    The spin-lattice relaxation time T 1 and the spin-spin relaxation time T 2 of two Schiff base derivatives, N,N'-ethylenebis(salicylidene)-1,2-diaminoethane (H2L1) and N,N'-ethylenebis (salicylidene)-1,3-diaminopropane (H2L2), in DMSO-d6 solvent were studied as a function of temperature in the range of 20-50°C using a Bruker Avance 400.132 MHz 1H NMR spectrometer. Based on the activation energy ( E a) and correlation time (τc), we believe that the Schiff base derivatives perform a molecular tumbling motion.

  14. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  15. The Stoichiometry of Synthetic Alunite as a Function of Hydrothermal Aging Investigated by Solid-State NMR Spectroscopy, Powder X-ray Diffraction and Infrared Spectroscopy

    SciTech Connect

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-05-01

    The stoichiometry of a series of synthetic alunite [nominally KAl3(SO4)2(OH)6] samples prepared by hydrothermal methods as a function of reaction time (1–31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The 1H MAS NMR spectra recorded at high magnetic field (21.1 T, 900 MHz) allowed for a clear separation of the different proton environments and for quantitative determination of the aluminum vacancy concentration as a function of time. The concentration of structural defects determined from, i.e., aluminum vacancies was reduced from 4 to 1 %, as the reaction time was extended from one to 31 days based on 1H MAS NMR. This was further supported by an increase of the unit cell parameter c, which is indicative of the relative concentration of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7–10 % impurities in the samples.

  16. Tacrine derivatives-acetylcholinesterase interaction: 1H NMR relaxation study.

    PubMed

    Delfini, Maurizio; Di Cocco, Maria Enrica; Piccioni, Fabiana; Porcelli, Fernando; Borioni, Anna; Rodomonte, Andrea; Del Giudice, Maria Rosaria

    2007-06-01

    Two acetylcholinesterase (AChE) inhibitors structurally related to Tacrine, 6-methoxytacrine (1a) and 9-heptylamino-6-methoxytacrine (1b), and their interaction with Electrophorus Electricus AChE were investigated. The complete assignment of the 1H and 13C NMR spectra of 1a and 1b was performed by mono-dimensional and homo- and hetero-correlated two-dimensional NMR experiments. This study was undertaken to elucidate the interaction modes between AChE and 1a and 1b in solution, using NMR. The interaction between the two inhibitors and AChE was studied by the analysis of the motional parameters non-selective and selective spin-lattice relaxation times, thereby allowing the motional state of 1a and 1b, both free and bound with AChE, to be defined. The relaxation data pointed out the ligands molecular moiety most involved in the binding with AChE. The relevant ligand/enzyme interaction constants were also evaluated for both compounds and resulted to be 859 and 5412M(-1) for 1a and1b, respectively.

  17. Transient states in [2 + 2] photodimerization of cinnamic acid: correlation of solid-state NMR and X-ray analysis.

    PubMed

    Khan, Mujeeb; Brunklaus, Gunther; Enkelmann, Volker; Spiess, Hans-Wolfgang

    2008-02-01

    13C-CPMAS and other solid-state NMR methods have been applied to monitor the solid-state reactions of trans-cinnamic acid derivatives, which are the pioneer and model compounds in the field of topochemistry previously studied by X-ray diffraction, AFM, and vibrational spectroscopy. Single-crystal X-ray analyses of photoirradiated alpha-trans-cinnamic acid where the monomers are arranged in a head-to-tail manner have revealed the formation of a centrosymmetric alpha-truxillic acid photodimer. For a centrosymmetric dimer, however, two cyclobutane carbon signals and one carbonyl carbon signal were expected apart from other aromatic carbon signals. Instead, four cyclobutane and two carbonyl carbon signals were observed suggesting the formation of a non-centrosymmetric photodimer. Removing hydrogen bonds from the system by esterfication of alpha-truxillic acid yield a centrosymmetric photodimer. Careful analysis of the obtained products via solid-state NMR clearly showed that the observed peak splittings in the 13C-CPMAS spectra did not originate from packing effects but rather result from asymmetric hydrogen bonds distorting the local symmetry. Further evidence of this rather dynamic hydrogen-bonding stems from high-temperature X-ray data revealing that only the joint approach of both X-ray analysis and solid-state NMR at similar temperatures allows for the successful characterization of dynamic processes occurring in topochemical reactions, thus, providing detailed insight into the reaction mechanism of organic solid-state transformations.

  18. Conformational study of shiromodiol and related epoxygermacranes: X-ray, molecular mechanics and NMR analyses

    NASA Astrophysics Data System (ADS)

    Ugliengo, Piero; Appendino, Giovanni; Chiari, Giacomo; Viterbo, Davide

    1990-05-01

    The crystal structure of 8-dehydroshiromodiol ( 4) is reported and compared with that of the related compounds shiromodiol-8- O-angelate ( 2), its corresponding 6-ketone ( 3) and echinadiol ( 5). These similar compounds display different conformations in the solid state, while in solution each derivative is a mixture of conformers, as revealed by the temperature-dependent NMR spectra. Molecular-mechanics calculations on the four molecules were carried out: the computed minimum energy conformation always corresponds to that found by X-ray analysis, with good agreement being found between calculated and experimental values for all geometrical parameters. Molecular-mechanics calculations reveal that four conformers are possible for each of the four compounds; all these geometries are accessible for compounds 3 and 4, whereas only two conformers are possible for 2 and 5. Good agreement was found between the calculated and experimental energy differences between the two conformers of 2 and 5. The intramolecular hydrogen bond in 5 was analysed further using the AM1 semiempirical method and by ab initio calculations on a model fragment.

  19. Study of aqueous humour by 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkadlecová, Marcela; Havlíček, Jaroslav; Volka, Karel; Souček, Petr; Karel, Ivan

    1999-05-01

    The aim of this work was to study the composition of the samples of human aqueous humour including the protein content. Using 1H NMR spectroscopy many compounds (proteins, glucose, lactate, citrate and other metabolites) can be identified and their concentrations evaluated using the internal standard. While the concentrations of non-proteins in aqueous humour were relatively stable, the amount of proteins differed much more. In most of the spectra, the signals of proteins were hardly distinguishable from the baseline. For some samples a significantly higher protein content (more than 1 mg/ml) was found. The total protein concentration expressed in albumin equivalents can be determined by comparing the spectra measured by S2PUL (standard measurement) and CPMG (protein suppression) pulse sequentions. For comparison, the spectra of rabbit and bovine aqueous humour are also given.

  20. 1H and 13C NMR assignments of three nitrogen containing compounds from the mangrove endophytic fungus (ZZF08).

    PubMed

    Tao, Yiwen; Zeng, Xianjian; Mou, Chengbo; Li, Jun; Cai, Xiaoling; She, Zhigang; Zhou, Shining; Lin, Yongcheng

    2008-05-01

    A new natural product, named phomopsin A, 1-(meta-hydroxyphenyl)-4-hydroxy-3-isoquinolone (1), together with two known compounds cytochalasin H (2) and glucosylceramide (3), was isolated from the mangrove endophytic fungus Phomopsis sp. (ZZF08) obtained from the South China Sea coast. The structures were elucidated by 1D and 2D NMR experiments including COSY, HMQC, and HMBC. According to NMR and single-crystal X-ray diffraction, it was found that some assignments about (1)H and (13)C NMR data for cytochalasin H (2) were probably uncorrected in the previous reports. In our cytotoxicity assays, compound 1 showed moderate cytotoxicity toward KB cells with IC(50) at 28.0 microg ml(-1) and KBv200 cells with IC(50) at 16.8 microg ml(-1), and compound 2 exhibited strong cytotoxicity toward KB cells and KBv200 cells with IC(50) less than 1.25 microg ml(-1).

  1. X-ray and MAS NMR characterization of the thermal transformation of Li(Na)-Y zeolite to lithium aluminosilicates

    SciTech Connect

    Subramanian, M.A.; Corbin, D.R.; Farlee, R.D.

    1986-12-01

    The high temperature thermal transformation of Li-exchanged Na-Y zeolite has been investigated by X-ray diffraction and /sup 29/Si MAS NMR studies. At 700/sup 0/C, the zeolite was transformed into an amorphous phase and upon further heating to 800/sup 0/C, formation of lithium aluminosilicate with high-quartz structure, in addition to an amorphous phase, was noted. When heated above 900/sup 0/C, the high-quartz structure was transformed into a ..beta..-spodumene related solid solution. X-ray and MAS NMR studies indicate the ..beta..-spodumene solid solution formed has the composition close to (Li/sub 0.23/Na/sub 0.06/)A iota /sub 0.29/Si/sub 0.71/O/sub 2/, which is in agreement with chemical analysis.

  2. Complete assignments of 1H and 13C NMR data for ten phenylpiperazine derivatives.

    PubMed

    Xiao, Zhihui; Yuan, Mu; Zhang, Si; Wu, Jun; Qi, Shuhua; Li, Qingxin

    2005-10-01

    Ten phenylpiperazine derivatives were designed and synthesized. The first complete assignments of (1)H and (13)C NMR chemical shifts for these phenylpiperazine derivatives were achieved by means of 1D and 2D NMR techniques, including (1)H-(1)H COSY, HSQC and HMBC spectra.

  3. Complete assignments of 1H and 13C NMR data for 10 phenylethanoid glycosides.

    PubMed

    Wu, Jun; Huang, Jianshe; Xiao, Qiang; Zhang, Si; Xiao, Zhihui; Li, Qingxin; Long, Lijuan; Huang, Liangmin

    2004-07-01

    Ten phenylethanoid glycosides, including two new ones, isolated from the aerial parts of the mangrove plant Acanthus ilicifolius were identified. The first complete assignments of the 1H and 13C NMR chemical shifts for these glycosides were achieved by means of 2D NMR techniques, including 1H-1H COSY, TOCSY, HSQC and HMBC spectra.

  4. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2014-02-01

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under

  5. Joint X-ray and NMR refinement of the yeast L30e-mRNA complex.

    PubMed

    Chao, Jeffrey A; Williamson, James R

    2004-07-01

    L30e, a Saccharomyces cervisiae ribosomal protein, regulates its own expression by binding to a purine-rich asymmetric internal loop located in both its pre-mRNA and mature mRNA. A crystal structure of an MBP-L30e fusion protein in complex with an RNA containing the pre-mRNA regulatory site was solved at 3.24 A. Interestingly, the structure of the RNA differed from that observed in a previously determined NMR structure of the complex. Analysis of the NMR data led to the identification of a single imino proton resonance in the internal loop that had been incorrectly assigned and was principally responsible for the erroneous RNA structure. A structure refinement was performed using both the X-ray diffraction data and the NMR-derived distance and angle restraints. The joint NMR and X-ray refinement resulted in improved stereochemistry and lower crystallographic R factors. The RNA internal loop of the MBP-L30e-mRNA complex adopts the canonical K-turn fold. PMID:15242593

  6. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    PubMed Central

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2013-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the 1H NMR signals in terms of chemical shifts (δH) and spin-spin coupling constants (JHH), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated 1H fingerprints to reproduce experimental 1H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of 1H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise 1H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. PMID:22730238

  7. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    PubMed

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations.

  8. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction

    PubMed Central

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S.; Mou, Qiushi; Yarger, Jeffery L

    2016-01-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc ≈ 0.98. The size of the nanocrystallites was determined to be on average 2.5 nm × 3.3 nm × 3.8 nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa ≈ 0.89. Two-dimensional 13C–13C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0 ± 1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18 ± 1% of alanine, 60 ± 2% glycine and 54 ± 2% serine are incorporated into helical conformations. PMID:26226457

  9. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.

    PubMed

    Xu, Dian; Shi, Xiangyan; Thompson, Forrest; Weber, Warner S; Mou, Qiushi; Yarger, Jeffery L

    2015-11-01

    In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98. The size of the nanocrystallites was determined to be on average 2.5nm×3.3nm×3.8nm. Besides a prominent nanocrystalline region, a partially oriented amorphous region was also observed with an fa≈0.89. Two-dimensional (13)C-(13)C through-space and through-bond solid-state NMR experiments were employed to elucidate structure details of P. viridans silk proteins. It reveals that β-sheet nanocrystallites constitutes 40.0±1.2% of the protein and are dominated by alanine-rich repetitive motifs. Furthermore, based upon the NMR data, 18±1% of alanine, 60±2% glycine and 54±2% serine are incorporated into helical conformations. PMID:26226457

  10. Structural investigations of PuIII phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Prieur, Damien; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J. M.; Somers, Joseph

    2015-10-01

    PuPO4 was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β- decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state 31P NMR agrees with the XANES results and the presence of a solid-solution.

  11. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.

    PubMed

    De Capua, Antonia; Goodman, Murray; Amino, Yusuke; Saviano, Michele; Benedetti, Ettore

    2006-02-01

    We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our

  12. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.

    PubMed

    De Capua, Antonia; Goodman, Murray; Amino, Yusuke; Saviano, Michele; Benedetti, Ettore

    2006-02-01

    We report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis. Extended conformations with the AH- and B-containing moieties along the +y axis and the hydrophobic group X pointing into the -y axis were observed for all six sweeteners. For compound 5, the crystal-state conformation was also determined by an X-ray diffraction study. The result indicates that compound 5 adopts an L-shaped structure even in the crystalline state. The extraordinary potency of the N-arylalkylated or N-alkylated compounds 1-6, as compared with that of the unsubstituted aspartame-based sweet taste ligands, can be explained by the effect of a second hydrophobic binding domain in addition to interactions arising from the L-shaped structure. In our

  13. Detection of a Possible X-Ray Quasi-periodic Oscillation in the Active Galactic Nucleus 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pan, Hai-Wu; Yuan, Weimin; Yao, Su; Zhou, Xin-Lin; Liu, Bifang; Zhou, Hongyan; Zhang, Shuang-Nan

    2016-03-01

    The quasi-periodic oscillation (QPO) detected in the X-ray radiation of black hole X-ray binaries (BHXBs) is thought to originate from dynamical processes in close vicinity of black holes (BHs), and thus carries important physical information therein. Such a feature is extremely rare in active galactic nuclei (AGNs) with supermassive BHs. Here we report on the detection of a possible X-ray QPO signal with a period of 3800 s at a confidence level >99.99% in the narrow-line Seyfert 1 galaxy (NLS1) 1H 0707-495 in one data set in 0.2-10 keV taken with XMM-Newton. The statistical significance is higher than that of most previously reported QPOs in AGNs. The QPO is highly coherent (quality factor Q=ν /{{Δ }}ν ≥slant 15) with a high rms fractional variability (˜15%). A comprehensive analysis of the optical spectra of this AGN is also performed, yielding a central BH mass of 5.2 × 106 M⊙ from the broad emission lines based on the scaling relation. The QPO follows the known frequency-BH mass relation closely, which spans from stellar-mass to supermassive BHs. The absence of QPOs in other observations of the object suggests that it is a transient phenomenon. We suggest that the (high-frequency) QPOs tend to occur in highly accreting BH systems, from BHXBs to supermassive BHs. Future precise estimation of the BH mass may be used to infer the BH spin from the QPO frequency.

  14. Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR.

    PubMed

    Lengyel, Jeffrey; Hnath, Eric; Storms, Marc; Wohlfarth, Thomas

    2014-09-01

    Cryo-transmission electron microscopy (Cryo-TEM) and particularly single particle analysis is rapidly becoming the premier method for determining the three-dimensional structure of protein complexes, and viruses. In the last several years there have been dramatic technological improvements in Cryo-TEM, such as advancements in automation and use of improved detectors, as well as improved image processing techniques. While Cryo-TEM was once thought of as a low resolution structural technique, the method is currently capable of generating nearly atomic resolution structures on a routine basis. Moreover, the combination of Cryo-TEM and other methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics modeling are allowing researchers to address scientific questions previously thought intractable. Future technological developments are widely believed to further enhance the method and it is not inconceivable that Cryo-TEM could become as routine as X-ray crystallography for protein structure determination.

  15. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin

    PubMed Central

    LeMaster, David M; Anderson, Janet S; Wang, Limin; Guo, Yi; Li, Hongmin; Hernández, Griselda

    2007-01-01

    Background Chimeric hybrids derived from the rubredoxins of Pyrococcus furiosus (Pf) and Clostridium pasteurianum (Cp) provide a robust system for the characterization of protein conformational stability and dynamics in a differential mode. Interchange of the seven nonconserved residues of the metal binding site between the Pf and Cp rubredoxins yields a complementary pair of hybrids, for which the sum of the thermodynamic stabilities is equal to the sum for the parental proteins. Furthermore, the increase in amide hydrogen exchange rates for the hyperthermophile-derived metal binding site hybrid is faithfully mirrored by a corresponding decrease for the complementary hybrid that is derived from the less thermostable rubredoxin, indicating a degree of additivity in the conformational fluctuations that underlie these exchange reactions. Results Initial NMR studies indicated that the structures of the two complementary hybrids closely resemble "cut-and-paste" models derived from the parental Pf and Cp rubredoxins. This protein system offers a robust opportunity to characterize differences in solution structure, permitting the quantitative NMR chemical shift and NOE peak intensity data to be analyzed without recourse to the conventional conversion of experimental NOE peak intensities into distance restraints. The intensities for 1573 of the 1652 well-resolved NOE crosspeaks from the hybrid rubredoxins were statistically indistinguishable from the intensities of the corresponding parental crosspeaks, to within the baseplane noise level of these high sensitivity data sets. The differences in intensity for the remaining 79 NOE crosspeaks were directly ascribable to localized dynamical processes. Subsequent X-ray analysis of the metal binding site-swapped hybrids, to resolution limits of 0.79 Å and 1.04 Å, demonstrated that the backbone and sidechain heavy atoms in the NMR-derived structures lie within the range of structural variability exhibited among the individual

  16. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    SciTech Connect

    Popa, Karin; Raison, Philippe E.; Martel, Laura; Martin, Philippe M.; Solari, Pier L.; Bouëxière, Daniel; Konings, Rudy J.M.; Somers, Joseph

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis of room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.

  17. Chemistry and structure of a host-guest relationship: the power of NMR and X-ray diffraction in tandem.

    PubMed

    Wang, Qi-Qiang; Day, Victor W; Bowman-James, Kristin

    2013-01-01

    An amine/amide mixed covalent organic tetrahedral cage 1 (H(12)) was synthesized and characterized. The H(12) cage contains 12 amide NH groups plus four tertiary amine N groups, the latter of which are positioned in a pseudo-tetrahedral array. Crystallographic findings indicate that the tetrahedral host can adopt either a pseudo-C(3) symmetric "compressed tetrahedron" structure, or one in which there are two sets of three stacked pyridine units related by a pseudo-S(4) axis. The latter conformation is ideal for encapsulating small pentameric clusters, either a water molecule or a fluoride ion surrounded by a tetrahedral array of water molecules, i.e., H(2)O·4H(2)O or F(-)·4H(2)O, as observed crystallographically. In solution, however, (19)F NMR spectroscopy indicates that H(12) encapsulates fluoride ion through direct amide hydrogen bonding. By collectively combining one-dimensional (1)H, (13)C, and (19)F with two-dimensional (1)H-(1)H COSY, (1)H-(13)C HSQC, and (1)H-(19)F HETCOR NMR techniques, the solution binding mode of fluoride can be ascertained as consisting of four sets of independent structural subunits with C(3) symmetry. A complex deuterium exchange process for the fluoride complex can also be unraveled by multiple NMR techniques.

  18. Simultaneous use of solution NMR and X-ray data in REFMAC5 for joint refinement/detection of structural differences

    SciTech Connect

    Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N.; Luchinat, Claudio

    2014-04-01

    Paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and diamagnetic residual dipolar couplings can now be used in the program REFMAC5 from CCP4 as structural restraints together with X-ray crystallographic data. These NMR restraints can reveal differences between solid state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably ‘ideal’ geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.

  19. Potential role of body fluid 1H NMR metabonomics as a prognostic and diagnostic tool.

    PubMed

    Ala-Korpela, Mika

    2007-11-01

    This review briefly handles the use of (1)H NMR spectroscopy in lipoprotein subclass analytics. Potential diagnostic uses of (1)H NMR metabonomics of human serum for coronary heart disease, diabetic nephropathy and cancer are also discussed. In addition, miscellaneous recent applications of NMR metabonomics (e.g., a pharmacometabonomic tactic to personalize drug treatment) as well as multi-organ, multispecies and multi-omics approaches to molecular systems biology are featured. Some related experimental and data analysis methodologies are briefly introduced with respect to the biochemical rationales. Critical considerations on the potential diagnostic value of in vitro (1)H NMR are presented together with optimism toward the usage of body fluid (1)H NMR metabonomics in disease risk assessment and as an aid for personalized medicine.

  20. Hydrogen bonding and molecular association in 2-(quinuclidinium)-butyric acid bromide hydrate studied by X-ray diffraction, DFT calculations, FTIR and NMR spectroscopy, and potentiometric titration

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.; Barczyński, P.

    2010-06-01

    The structure of 2-(quinuclidinium)-butyric acid bromide hydrate (QNBu·H 2O·HBr, 3) has been determined by X-ray diffraction, DFT calculations and characterized by FTIR and NMR spectroscopy. Crystals of 3 are monoclinic, space group P2 1. The water molecule interacts with the carboxylic group of 2-(quinuclidinium)-butyric acid and with the bromide anion by the COOH⋯OH 2 and HOH⋯Br hydrogen bonds of 2.575(3) and 3.293(2) Å, respectively. The structures of monomer ( 4) and dimeric cation ( 5) of the title complex have been optimized by the B3LYP/6-31G(d,p) approach, yielding conformations consistent with this in the crystal. The solid-state FTIR spectra of 3 and its deuterated analogue have been measured and compared with the theoretical spectrum of 4. The assignments of the observed and predicted bands have been proposed. The molecule of 3 has a chiral center at the C(9) atom, which is responsible for the non-magnetically equivalence of the α-ring and C(11)H 2 methylene protons in 1H NMR spectrum. The values of p Ka of quinuclidinium-acetate (quinuclidine betaine), 2-(quinuclidinium)-propionate and 2-(quinuclidinium)-butyrate have been determined by the potentiometric titration of their hydrohalides.

  1. Direct Comparison of (19)F qNMR and (1)H qNMR by Characterizing Atorvastatin Calcium Content.

    PubMed

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin; He, Lan

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR ((1)H qNMR) and only a few fluorine qNMR ((19)F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both (19)F and (1)H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that (19)F qNMR has similar precision and sensitivity to (1)H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from (19)F qNMR is that the analyte signal is with less or no interference from impurities. (19)F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  2. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  3. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  4. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  5. A Method for Helical RNA Global Structure Determination in Solution Using Small Angle X-ray Scattering and NMR Measurements

    PubMed Central

    Wang, Jinbu; Zuo, Xiaobing; Yu, Ping; Xu, Huan; Starich, Mary R.; Tiede, David M.; Shapiro, Bruce A.; Schwieters, Charles D.; Wang, Yun-Xing

    2009-01-01

    We report a “top-down” method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small angle X-ray scattering (SAXS) data respectively, to determine global architectures of RNA molecules consisting of mostly A-form like duplexes. The method is implemented in the G2G (from Global measurement to Global Structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nucleotide RNA using experimental data. The backbone root-mean-square-deviation (RMSD) of the ensemble of the calculated global structures relative to the X-ray crystal structure using the experimental data is 3.0 ± 0.3 Å, and the RMSD is only 2.5 ± 0.2 Å for the three duplexes that were orientation-restrained during the calculation. The global structure simplifies interpretation of multi-dimensional nuclear Overhauser spectra for high resolution structure determination. The potential general application of the method for RNA structure determination is discussed. PMID:19666030

  6. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation

    SciTech Connect

    Zhang, Y.; Cao, R; Yin, F; Hudock, M; Guo, R; Song, Y; No, J; Bergan, K; Leon, A; et al,

    2009-01-01

    Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anticancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth and how cell activity can be predicted based on enzyme inhibition data, and using X-ray diffraction, solid state NMR, and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS.

  7. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  8. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood. PMID:16485652

  9. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  10. Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

    PubMed

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz

    2015-04-17

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.

  11. Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography*

    PubMed Central

    Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N.; Nishida, Clinton R.; de Montellano, Paul R. Ortiz

    2015-01-01

    Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional 1H,15N HSQC chemical shift perturbation mapping of 15N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states. PMID:25670859

  12. 1H and 13C NMR assignments for the cyanine dyes SYBR Safe and thiazole orange.

    PubMed

    Evenson, William E; Boden, Lauren M; Muzikar, Katy A; O'Leary, Daniel J

    2012-12-01

    Analysis of (1)H and (13)C NMR and mass spectral data for the fluorescent nucleic acid stain SYBR Safe indicates that it contains a cyanine-based cationic core structure identical to thiazole orange. The difference between these two compounds is the type of N-substitution on the quinolinium ring system (SYBR Safe, n-Pr; thiazole orange, Me). The (1)H and (13)C NMR resonances for both compounds were assigned on the basis of one- and two-dimensional (COSY, ROESY, HSQC, and HMBC) experiments. The preferred conformation of these compounds was computed by ab initio methods and found to be consistent with the NMR data.

  13. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  14. Intermolecular Interactions between Eosin Y and Caffeine Using (1)H-NMR Spectroscopy.

    PubMed

    Okuom, Macduff O; Wilson, Mark V; Jackson, Abby; Holmes, Andrea E

    2013-12-31

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using (1)H-NMR, (1)H-COSY, and (1)H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  15. 1H-NMR and 13C-NMR lipid profiles of human renal tissues.

    PubMed

    Tugnoli, V; Bottura, G; Fini, G; Reggiani, A; Tinti, A; Trinchero, A; Tosi, M R

    2003-01-01

    Lipids from human renal tissues are studied by means of (1)H- and (13)C-NMR spectroscopy. The total lipid fractions obtained from healthy kidneys, malignant renal cell carcinomas, and benign oncocytomas are characterized and analyzed to elucidate the main differences between the functional and neoplastic tissues. In all cases the lipid components are well identified. The healthy kidney is characterized by high amounts of triglycerides and the presence of cholesterol in its free form. On the contrary, renal cell carcinomas contain high amounts of cholesterol that are almost completely esterified as oleate, suggesting an intracellular localization of the cholesteryl esters synthesis. Cholesteryl esters are considered markers of renal cell carcinomas, thus supporting recent theories that these compounds play a leading role in cell proliferation. Oncocytomas are particularly rich in phosphatidylcholine and, analogous to the healthy kidney, are completely lacking in cholesteryl esters. Healthy kidneys and oncocytomas appear to have other similarities if compared with renal cell carcinomas: a very high fatty acyl/cholesterol ratio, the presence of dolichols, and a higher grade of unsaturation. The (13)C data suggest a new method for the direct evaluation of the saturated/unsaturated fatty acyl ratio.

  16. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures.

  17. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  18. Urinary metabolic fingerprint of acute intermittent porphyria analyzed by (1)H NMR spectroscopy.

    PubMed

    Carichon, Mickael; Pallet, Nicolas; Schmitt, Caroline; Lefebvre, Thibaud; Gouya, Laurent; Talbi, Neila; Deybach, Jean Charles; Beaune, Philippe; Vasos, Paul; Puy, Hervé; Bertho, Gildas

    2014-02-18

    (1)H NMR is a nonbiased technique for the quantification of small molecules that could result in the identification and characterization of potential biomarkers with prognostic value and contribute to better understand pathophysiology of diseases. In this study, we used (1)H NMR spectroscopy to analyze the urinary metabolome of patients with acute intermittent porphyria (AIP), an inherited metabolic disorder of heme biosynthesis in which an accumulation of the heme precursors 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG) promotes sudden neurovisceral attacks, which can be life-threatening. Our objectives were (1) to demonstrate the usefulness of (1)H NMR to identify and quantify ALA and PBG in urines from AIP patients and (2) to identify metabolites that would predict the response to AIP crisis treatment and reflect differential metabolic reprogramming. Our results indicate that (1)H NMR can help to diagnose AIP attacks based on the identification of ALA and PBG. We also show that glycin concentration increases in urines from patients with frequent recurrences at the end of the treatment, after an initial decrease, whereas PBG concentration remains low. Although the reasons for this altered are elusive, these findings indicate that a glycin metabolic reprogramming occurs in AIPr patients and is associated with recurrence. Our results validate the proof of concept of the usefulness of (1)H NMR spectroscopy in clinical chemistry for the diagnosis of acute attack of AIP and identify urinary glycin as a potential marker of recurrence of AIP acute attacks. PMID:24437734

  19. First X-ray crystal structure and internal reference diffusion-ordered NMR spectroscopy study of the prototypical Posner reagent, MeCu(SPh)Li(THF)3.

    PubMed

    Bertz, Steven H; Hardin, Richard A; Heavey, Thomas J; Jones, Daniel S; Monroe, T Blake; Murphy, Michael D; Ogle, Craig A; Whaley, Tara N

    2013-07-29

    Grow slow: The usual direct treatment of MeLi and CuSPh did not yield X-ray quality crystals of MeCu(SPh)Li. An indirect method starting from Me2CuLi⋅LiSPh and chalcone afforded the desired crystals by the slow reaction of the intermediate π-complex (see scheme). This strategy produced the first X-ray crystal structure of a Posner cuprate. A complementary NMR study showed that the contact ion pair was also the main species in solution.

  20. Synthesis and structure elucidation of a series of pyranochromene chalcones and flavanones using 1D and 2D NMR spectroscopy and X-ray crystallography.

    PubMed

    Pawar, Sunayna S; Koorbanally, Neil A

    2014-06-01

    A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2.

  1. Difference in the structures of alanine tri- and tetra-peptides with antiparallel β-sheet assessed by X-ray diffraction, solid-state NMR and chemical shift calculations by GIPAW.

    PubMed

    Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori

    2014-01-01

    Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method.

  2. Synthesis, characterization and spectroscopy studying of some metal complexes of a new Schiff base ligand; X-ray crystal structure, NMR and IR investigation of a new dodecahedron Cd(II) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Rezaeivala, Majid; Khalili, Maryam; Notash, Behrouz; Karimi, Javad

    2016-12-01

    Some new [Cd(H2L1)(NO3)]ClO4 (1), [Mn(H2L1)](ClO4)2 (2), [Ni(H2L1)](ClO4)2 (3) and [Cu(H2L1)](ClO4)2 (4) complexes were prepared by the reaction of a Schiff base ligand and M (II) metal ions in equimolar ratios (M = Cd, Mn, Ni and Cu). The ligand H2L1 was synthesized by reaction of 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H,13C NMR spectroscopy and elemental analysis. The synthesized complexes were characterized with IR and elemental analysis in all cases and 1H, 13C NMR, and X-ray in the case of Cd(II) complex. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of Schiff base ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.

  3. Cd(II) and Zn(II) complexes of two new hexadentate Schiff base ligands derived from different aldehydes and ethanol amine; X-ray crystal structure, IR and NMR spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Rezaeivala, Majid; Albeheshti, Leila

    2014-11-01

    Four new [Cd(H2L1)(NO3)]ClO4 (1), [Zn(H2L1)](ClO4)2 (2), [Cd(H2L2)(NO3)]ClO4 (3), and [Zn(H2L2)](ClO4)2 (4), complexes were prepared by the reaction of two new Schiff base ligands and Cd(II) and Zn(II) metal ions in equimolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde and/or 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H and 13C NMR spectroscopy. All complexes were characterized by IR, 1H and 13C NMR, COSY, and elemental analysis. Also, the complex 1 was characterized by X-ray in addition to the above methods. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.

  4. Synthesis, crystal structure analysis, spectral IR, NMR UV-Vis investigations, NBO and NLO of 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropanamide with use of X-ray diffractions studies along with DFT calculations

    NASA Astrophysics Data System (ADS)

    Demir, Sibel; Sarioğlu, Ahmet Oral; Güler, Semih; Dege, Necmi; Sönmez, Mehmet

    2016-08-01

    The title compound, 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropanamide compound (C22H16NO3Cl) has been synthesized and characterized by X-ray diffraction, IR, 1H and 13C NMR and UV-Vis spectra. Optimized geometrical structure, harmonic vibrational frequencies and chemical shifts were computed using hybrid-DFT (B3LYP and B3PW91) methods and 6-311G(d,p) as the basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The calculated optimized geometries, vibrational frequencies and 1H NMR chemical shift values are in strong agreement with experimentally measured values. UV-Vis spectrum of the title compound, was also recorded and the electronic properties, such as calculated energies, excitation energies, oscillator strengths, dipole moments and frontier orbital energies and band gap energies were computed with TDDFT-B3LYP methodolgy and using 6-311G(d,p) as the basis set. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), natural bond orbital (NBO) and non linear optical (NLO) properties were performed by using B3LYP/6-311G(d,p) level for the title compound.

  5. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    PubMed

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-01

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function.

  6. Comparison of the structure of human recombinant short form stromelysin by multidimensional heteronuclear NMR and X-ray crystallography.

    PubMed

    Gooley, P R; O'Connell, J F; Marcy, A I; Cuca, G C; Axel, M G; Caldwell, C G; Hagmann, W K; Becker, J W

    1996-01-01

    Stromelysin-1 is a matrix metalloprotease that has been implicated in a number of degenerative diseases. Here we present the refined NMR solution structure of the catalytic domain of stromelysin-1 complexed with a small inhibitor and compare it to the X-ray crystal structure of the same complex. The structures are similar in global fold and show an unusual bottomless S1' subsite. There are differences, however, in the least well defined regions, Phe83-Ile89, His224-Phe232 and Pro249- Pro250, reflecting the lack of NOE data and large B-factors. The region His224-Phe232 contains residues of the S1' subsite and, consequently, small differences are observed in this subsite. Hydrogen-bond data show that, in contrast to the crystal structure, the solution structure lacks a hydrogen bond between the amide of Tyr223 and the carbonyl of the P3' residue. Analysis of bound water shows two tightly bound water molecules both in the solution and the crystal structure; neither of these waters are in the inhibitor binding site. PMID:8720828

  7. (1) H NMR analysis of O-methyl-inositol isomers: a joint experimental and theoretical study.

    PubMed

    De Almeida, Mauro V; Couri, Mara Rubia C; De Assis, João Vitor; Anconi, Cleber P A; Dos Santos, Hélio F; De Almeida, Wagner B

    2012-09-01

    Density functional theory (DFT) calculations of (1) H NMR chemical shifts for l-quebrachitol isomers were performed using the B3LYP functional employing the 6-31G(d,p) and 6-311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP-calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental (1) H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP (1) H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O-methyl-inositol isomers, the l-quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical (1) H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies. PMID:22865668

  8. (1) H NMR analysis of O-methyl-inositol isomers: a joint experimental and theoretical study.

    PubMed

    De Almeida, Mauro V; Couri, Mara Rubia C; De Assis, João Vitor; Anconi, Cleber P A; Dos Santos, Hélio F; De Almeida, Wagner B

    2012-09-01

    Density functional theory (DFT) calculations of (1) H NMR chemical shifts for l-quebrachitol isomers were performed using the B3LYP functional employing the 6-31G(d,p) and 6-311 + G(2d,p) basis sets. The effect of the solvent on the B3LYP-calculated NMR spectrum was accounted for using the polarizable continuum model. Comparison is made with experimental (1) H NMR spectroscopic data, which shed light on the average uncertainty present in DFT calculations of chemical shifts and showed that the best match between experimental and theoretical B3LYP (1) H NMR profiles is a good strategy to assign the molecular structure present in the sample handled in the experimental measurements. Among four plausible O-methyl-inositol isomers, the l-quebrachitol 2a structure was unambiguously assigned based only on the comparative analysis of experimental and theoretical (1) H NMR chemical shift data. The B3LYP infrared (IR) spectrum was also calculated for the four isomers and compared with the experimental data, with analysis of the theoretical IR profiles corroborating assignment of the 2a structure. Therefore, it is confirmed in this study that a combined experimental/DFT spectroscopic investigation is a powerful tool in structural/conformational analysis studies.

  9. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools.

    PubMed

    Cuny, M; Vigneau, E; Le Gall, G; Colquhoun, I; Lees, M; Rutledge, D N

    2008-01-01

    To discriminate orange juice from grapefruit juice in a context of fraud prevention, (1)H NMR data were submitted to different treatments to extract informative variables which were then analysed using multivariate techniques. Averaging contiguous data points of the spectrum followed by logarithmic transformation improved the results of the data analysis. Moreover, supervised variable selection methods gave better rates of classification of the juices into the correct groups. Last, independent-component analysis gave better classification results than principal-component analysis. Hence, ICA may be an efficient chemometric tool to detect differences in the (1)H NMR spectra of similar samples, and so may be useful for authentication of foods.

  10. Major Groove Width Variations in RNA Structures Determined by NMR and Impact of 13C residual chemical shift anisotropy and 1H-13C residual dipolar coupling on refinement

    PubMed Central

    Tolbert, Blanton S; Miyazaki, Yasuyuki; Barton, Shawn; Kinde, Benyam; Starck, Patrice; Singh, Rashmi; Bax, Ad

    2010-01-01

    Ribonucleic acid structure determination by NMR spectroscopy relies primarily on local structural restraints provided by 1H-1H NOEs and J-couplings. When employed loosely, these restraints are broadly compatible with A- and B-like helical geometries and give rise to calculated structures that are highly sensitive to the force fields employed during refinement. A survey of recently reported NMR structures reveals significant variations in helical parameters, particularly the major groove width. Although helical parameters observed in high-resolution X-ray crystal structures of isolated A-form RNA helices are sensitive to crystal packing effects, variations among the published X-ray structures are significantly smaller than those observed in NMR structures. Here we show that restraints derived from aromatic 1H-13C residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) can overcome NMR restraint and force field deficiencies and afford structures with helical properties similar to those observed in high-resolution X-ray structures. PMID:20549304

  11. Measurements of heavy-atom isotope effects using 1H NMR spectroscopy.

    PubMed

    Pabis, Anna; Kamiński, Rafał; Ciepielowski, Grzegorz; Jankowski, Stefan; Paneth, Piotr

    2011-10-01

    A novel method for measuring heavy-atom KIEs for magnetically active isotopes using (1)H NMR is presented. It takes advantage of the resonance split of the protons coupled with the heavy atom in the (1)H spectrum. The method is validated by the example of the (13)C-KIE on the hydroamination of styrene with aniline, catalyzed by phosphine-ligated palladium triflates.

  12. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  13. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  14. I. The synthesis and characterization of annulated uranocenes. II. The variable temperature /sup 1/H NMR of uranocenes

    SciTech Connect

    Luke, W.D.

    1980-01-01

    A general synthetic route to alkyl annulated cyclooctatetraene dianions and the corresponding annulated uranocenes has been developed. Dideprotonation of bicyclooctatrienes, resulting from reaction of cyclooctatetraene dianion with l,n-dialkylbromides or methanesulfonates, affords alkyl annulated cyclooctatetraene dianions in moderate yields. Dicyclopenteno-, bisdimethylcyclopenteno- and dicyclohexenouranocene were prepared from the corresponding cyclooctatetraene dianions and UCl/sub 4/. The structures of dicyclobuteno- and dicyclopentenouranocene were elucidated by single crystal X-ray diffraction, and the effects of annulation on the uranocene skeleton are discussed. Attempted synthesis of benzocyclooctatetraene and a benzannulated uranocene is reported. The variable temperature /sup 1/H NMR spectrum of uranocene has been reinvestigated from -100 to 100/sup 0/C. The isotropic shift was found to be linear in T/sup -1/ with an extrapolated intercept of 0 at T/sup -1/ = 0. Variable temperature /sup 1/H NMR spectra, from -80 to 70/sup 0/C, of 17 substituted uranocenes are reported. The energy barrier to ring rotation in 1,1', 4,4'-tetra-t-butyl-uranocene was determined to be 8.24 +- 0.5 kcal/mole while the barrier in the corresponding 1,1', 3,3'-tetra-t-butylferrocene was determined to be 13.1 kcal/mole. Alkyl substitution is shown to have little effect on the electronic and magnetic properties of the uranocene skeleton, and thus alkyl substituted uranocenes are treated as having effective axial symmetry in analysis of the observed isotropic shifts. Using diannulated uranocenes as model systems an analysis of the contact and pseudocontact components of the observed isotropic shifts in uranocene and alkyl substituted uranocenes is presented.

  15. Structure of an inclusive compound of bis(piperidinium-4-carboxylate)hydrogen semi-tartrate with water and methanol studied by X-ray diffraction, NMR, FTIR and DFT methods

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Fojud, Z.; Katrusiak, A.; Szafran, M.

    2009-06-01

    The complex consisting of two piperidine-4-carboxylic acid, L-tartaric acid, water and methanol molecules has been synthesized and characterized by X-ray diffraction, 1H, 13C NMR, 13C CP MAS NMR, FTIR spectra and DFT calculations. The title complex is composed of the following units: piperidinium-4-carboxylate (P4C), piperidinium-4-carboxylic acid (P4CH), semi-tartrate anion (TA), water and methanol; it crystallizes in orthorhombic space group P2 12 12 1. TA anions form infinite chains through the COOH···OOC hydrogen bond of 2.503(5) Å. The zwitterionic P4C molecules are linked by the N +H···OOC hydrogen bond of 2.780(5) Å into chains. The P4CH cation is a bridge between the TA and P4C chains. P4CH and P4C form a homoconjugated cation through the COOH···OOC hydrogen bonds of 2.559(5) Å. Water interacts with TA and P4CH, while methanol interacts only with water. In the optimized molecule of the (P4C) 2H·TA·H 2O·HOCH 3 complex, the components form a cyclic oligomer through four O-H···O and four N-H···O hydrogen bonds. The 1H and 13C NMR spectra elucidate the structure of the title complex in the aqueous solution. The 13C CP MAS NMR spectrum is consistent with the X-ray results. The FTIR spectrum confirms a very complex structure of the title compound.

  16. Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring

    NASA Astrophysics Data System (ADS)

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-12-01

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in

  17. Simultaneous (19)F-(1)H medium resolution NMR spectroscopy for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Kraume, Matthias; Guthausen, Gisela; Maiwald, Michael

    2014-10-18

    Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16″ fluorinated ethylene propylene (FEP) tube with an ID of 0.04″ (1.02mm) was used as a flow cell in combination with a 5mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a (1)H Larmor frequency of 43.32MHz and 40.68MHz for (19)F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating (19)F and (1)H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16″ FEP tube set-up with an ID of 1.02mm was characterised regarding the limit of detection (LOQ ((1)H)=0.335molL(-1) and LOQ ((19)F)=0.130molL(-1) for trifluoroethanol

  18. New Insights into Chain Order Dynamics and Structural Development in Sulfur-Vulcanized Natural Rubber Latex using Multiple Quantum NMR and Synchrotron X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Che, Justin; Toki, Shigeyuki; Valentin, Juan; Brasero, Justo; Rong, Lixia; Hsiao, Benjamin S.

    2012-02-01

    Network structure, chain dynamics, and structural development in sulfur-vulcanized natural rubber latex were studied by Multiple-Quantum (MQ) NMR and synchrotron x-ray scattering. Three important processes that can influence rubber network structure and its overall mechanical properties were the main focus and analyzed by both of these techniques: pre-vulcanization, drying, and post-vulcanization. MQ NMR experiments can provide quantitative information regarding networks at very small length scales, including network defects, number of cross-links, and spatial distribution of cross-links. Structural development in natural rubber was studied under uniaxial deformation by in-situ synchrotron x-ray diffraction, which can provide information on network structures at much larger length scales. Molecular orientation and strain-induced crystallization was analyzed by both stress-strain relations and wide-angle x-ray diffraction (WAXD). The morphology of the latex rubber particle during deformation was analyzed by small-angle x-ray scattering (SAXS). The combination of these techniques can provide a considerable amount of information regarding rubber network structure.

  19. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  20. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  1. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.

  2. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes. PMID:27664653

  3. Improved Carbohydrate Structure Generalization Scheme for (1)H and (13)C NMR Simulations.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2015-07-21

    The improved Carbohydrate Structure Generalization Scheme has been developed for the simulation of (13)C and (1)H NMR spectra of oligo- and polysaccharides and their derivatives, including those containing noncarbohydrate constituents found in natural glycans. Besides adding the (1)H NMR calculations, we improved the accuracy and performance of prediction and optimized the mathematical model of the precision estimation. This new approach outperformed other methods of chemical shift simulation, including database-driven, neural net-based, and purely empirical methods and quantum-mechanical calculations at high theory levels. It can process structures with rarely occurring and noncarbohydrate constituents unsupported by the other methods. The algorithm is transparent to users and allows tracking used reference NMR data to original publications. It was implemented in the Glycan-Optimized Dual Empirical Spectrum Simulation (GODESS) web service, which is freely available at the platform of the Carbohydrate Structure Database (CSDB) project ( http://csdb.glycoscience.ru). PMID:26087011

  4. (1)H and DOSY NMR spectroscopy analysis of Ligusticum porteri rhizome extracts.

    PubMed

    León, Alejandra; Chávez, María Isabel; Delgado, Guillermo

    2011-08-01

    The presence of dimeric phthalides and other constituents in extracts of the vegetal species Ligusticum porteri was established by NMR spectroscopy. In comparative qualitative (1)H NMR analyses of acetone extracts of rhizomes from fresh and dried L. porteri samples, we found that the dimeric phthalides tokinolide B (3), diligustilide (4) and riligustilide (5) were naturally produced by the plant and not post-harvest products. We also obtained DOSY (1)H NMR data that provided both virtual separation and structural information for the phthalides present in a dry acetone extract of L. porteri. In addition, we developed a protocol for the quantification of dimeric phthalides, which is performed by calculating the relative ratio of the peak area of selected proton signals for some compounds with respect to the known signal of the internal standard, 4-dimethylaminopyridine. The protocol allows the rapid and direct quantification of dimeric phthalides and others constituents in fresh L. porteri rhizomes. PMID:21761449

  5. Study on 1H-NMR fingerprinting of Rhodiolae Crenulatae Radix et Rhizoma.

    PubMed

    Wen, Shi-yuan; Zhou, Jiang-tao; Chen, Yan-yan; Ding, Li-qin; Jiang, Miao-miao

    2015-07-01

    Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances. PMID:26697690

  6. Natural attenuation of oil spills in Patagonian soils. Characterization by 1H NMR spectroscopy.

    PubMed

    Ríos, S M; Nudelman, N S

    2008-01-01

    The natural attenuation of oil spill contaminated soils, with different exposure times, in Patagonian environment was evaluated by the use of several parameters to quantify the degree of changes in the composition. Column (CC) and gas chromatography (GC); UV-visible and 1H NMR techniques were used to determine compositional and structural indexes. The results show that the nC18/Phytane GC index, that was 1.5 for crude oil, decreased with exposure time to values between 0.97-0.17 in the residues. The percentages for the four aliphatic (H1-H4) and the aromatic (H(A)), proton types, determined by 1H NMR, were: 12.9-34.4 (H1), 43.3-60.2 (H2), 4.24-24.2 (H), 1.33-17.9 (H4), and 0.44-4.81 (HA), in crude oil and residues, respectively. Furthermore, the characterization of significant 1H NMR signals indicated the presence of carboxylic acid hydrogens in the polar fraction of the crude oil and of residues of two years age. The Principal Components Analysis (PCA) of the parameters determined by CC, GC and NMR showed that the first three principal components (1st, 2nd, and 3 rd PC), accounted for more than 84% of variance. The 1st PC is largely influenced by H, H,, H, H, and the nC,,/Phytane GC parameter, in the order given. The evaluation of the different parameters by PCA suggests that 1H NMR is more useful than GC to evaluate the degree of the chemical transformations of oil spills in soils

  7. Solution NMR and X-ray Crystal Structures of Membrane-associated Lipoprotein-17 Domain Reveal a Novel Fold

    SciTech Connect

    R Mani; S Vorobiev; G Swapna; H Neely; H Janjua; C Ciccosanti; D Xiao; J Hunt; G Montelione; et al.

    2011-12-31

    The conserved Lipoprotein-17 domain of membrane-associated protein Q9PRA0{_}UREPA from Ureaplasma parvum was selected for structure determination by the Northeast Structural Genomics Consortium, as part of the Protein Structure Initiative's program on structure-function analysis of protein domains from large domain sequence families lacking structural representatives. The 100-residue Lipoprotein-17 domain is a 'domain of unknown function' (DUF) that is a member of Pfam protein family PF04200, a large domain family for which no members have characterized biochemical functions. The three-dimensional structure of the Lipoprotein-17 domain of protein Q9PRA0{_}UREPA was determined by both solution NMR and by X-ray crystallography at 2.5 {angstrom}. The two structures are in good agreement with each other. The domain structure features three {alpha}-helices, {alpha}1 through {alpha}3, and five {beta}-strands. Strands {beta}1/{beta}2, {beta}3/{beta}4, {beta}4/{beta}5 are anti-parallel to each other. Strands {beta}1 and {beta}2 are orthogonal to strands {beta}3, {beta}4, {beta}5, while helix {alpha}3 is formed between the strands {beta}3 and {beta}4. One-turn helix {alpha}2 is formed between the strands {beta}1 and {beta}2, while helix {alpha}1 occurs in the N-terminal polypeptide segment. Searches of the Protein Data Bank do not identify any other protein with significant structural similarity to Lipoprotein-17 domain of Q9PRA0{_}UREPA, indicating that it is a novel protein fold.

  8. Synthesis, spectroscopic investigations (X-ray, NMR and TD-DFT), antimicrobial activity and molecular docking of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone.

    PubMed

    Barakat, Assem; Ghabbour, Hazem A; Al-Majid, Abdullah Mohammed; Soliman, Saied M; Ali, M; Mabkhot, Yahia Nasser; Shaik, Mohammed Rafi; Fun, Hoong-Kun

    2015-07-21

    The synthesis of 2,6-bis(hydroxy(phenyl)methyl)cyclohexanone 1 is described. The molecular structure of the title compound 1 was confirmed by NMR, FT-IR, MS, CHN microanalysis, and X-ray crystallography. The molecular structure was also investigated by a set of computational studies and found to be in good agreement with the experimental data obtained from the various spectrophotometric techniques. The antimicrobial activity and molecular docking of the synthesized compound was investigated.

  9. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26626418

  10. (1) H and (13) C NMR data on natural and synthetic capsaicinoids.

    PubMed

    Gómez-Calvario, Víctor; Garduño-Ramírez, María Luisa; León-Rivera, Ismael; Rios, María Yolanda

    2016-04-01

    Capsaicinoids are the compounds responsible for the pungency of chili peppers. These substances have attracted the attention of many research groups in recent decades because of their antinociceptive, analgesic, anti-inflammatory, and anti-obesity properties, among others. There are nearly 160 capsaicinoids reported in the literature. Approximately 25 of them are natural products, while the rest are synthetic or semi-synthetic products. A large amount of NMR data for the capsaicinoids is dispersed throughout literature. Therefore, there is a need to organize all this NMR data in a systematic and orderly way. This review summarizes the (1) H and (13) C NMR data on 159 natural and synthetic capsaicinoids, with a brief discussion of some typical and relevant aspects of these NMR data. Copyright © 2015 John Wiley & Sons, Ltd.

  11. New route to enantiopure MalphaNP acid, a powerful resolution and chiral 1H NMR anisotropy reagent.

    PubMed

    Naito, Junpei; Taji, Hiromi; Sekiguchi, Satoshi; Watanabe, Miwa; Kuwahara, Shunsuke; Watanabe, Masataka; Harada, Nobuyuki

    2007-05-15

    MalphaNP acid (+/-)-1, 2-methoxy-2-(1-naphthyl)propionic acid, was enantioresolved by the use of phenylalaninol (S)-(-)-4; a diastereomeric mixture of amides formed from acid (+/-)-1 and amine (S)-(-)-4 was easily separated by fractional recrystallization and/or HPLC on silica gel, yielding amides (R;S)-(-)-5a and (S;S)-(+)-5b. Their absolute configurations were determined by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-5a was converted to oxazoline (R;S)-(+)-8a, from which enantiopure MalphaNP acid (R)-(-)-1 was recovered. In a similar way, enantiopure MalphaNP acid (S)-(+)-1 was obtained from amide (S;S)-(+)-5b. These reactions provide a new route for the large-scale preparation of enantiopure MalphaNP acid, a powerful chiral reagent for the enantioresolution of alcohols and simultaneous determination of their absolute configurations by (1)H NMR anisotropy. PMID:17354261

  12. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy

    SciTech Connect

    Petersen, Line Boisen; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

    2014-11-15

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg{sub 1−x}Ga{sub x}(OH){sub 2}(NO{sub 3}){sub x}·yH{sub 2}O] was investigated using solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg{sub 3}-OH, Mg{sub 2}Ga-OH and intergallery water molecules were assigned and quantified using ({sup 1}H,{sup 71}Ga) HETCOR and {sup 1}H MAS NMR. A single {sup 71}Ga site originating from the unique Ga site in the MgGa LDH's was observed in {sup 71}Ga MAS and 3QMAS NMR spectra. Both {sup 1}H MAS NMR spectra recorded at 21.1 T (900 MHz) and elemental analysis show that the synthesized MgGa LDH's had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH){sub 4}]{sup −} complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Ga-O-Ga connectivities or defects were detected for the MgGa LDH's. - Graphical abstract: Two types of hydroxides groups are observed in magnesium gallium layered double hydroxides revealing an ordering of Ga in the cation layer. - Highlights: • Ga is ordered in our magnesium gallium layered double hydroxides. • Ga depletion due to formation of soluble Ga complexes during synthesis. • No sign of Ga rich regions in magnesium gallium LDHs. • Solid state {sup 1}H and {sup 71}Ga give detailed insight into the structure.

  13. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  14. {sup 1}H NMR spectroscopic studies establish that heparanase is a retaining glycosidase

    SciTech Connect

    Wilson, Jennifer C.; Laloo, Andrew Elohim; Singh, Sanjesh; Ferro, Vito

    2014-01-03

    Highlights: •{sup 1}H and {sup 13}C NMR chemical shifts of fondaparinux were fully assigned by 1D and 2D NMR techniques. •Hydrolysis of fondaparinux by heparanase was monitored by {sup 1}H NMR spectroscopy. •Heparanase is established to be a retaining glycosidase. -- Abstract: Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase. However, there has been no direct experimental evidence to support this conclusion. Herein we describe {sup 1}H NMR spectroscopic studies of the hydrolysis of the pentasaccharide substrate fondaparinux by heparanase, and provide conclusive evidence that heparanase hydrolyses its substrate with retention of configuration and is thus established as a retaining glycosidase. Knowledge of the mechanism of hydrolysis may have implications for future design of inhibitors for this important drug target.

  15. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  16. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  17. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  18. Complete (1)H and (13)C signal assignment of prenol-10 with 3D NMR spectroscopy.

    PubMed

    Misiak, Maria; Koźmiński, Wiktor; Kwasiborska, Maria; Wójcik, Jacek; Ciepichal, Ewa; Swiezewska, Ewa

    2009-10-01

    The complete assignment of (1)H and (13)C chemical shifts of natural abundance prenol-10 is reported for the first time. It was achieved using 3D NMR experiments, which were based on random sampling of the evolution time space followed by multidimensional Fourier transform. This approach makes it possible to acquire 3D NMR spectra in a reasonable time and preserves high resolution in indirectly detected dimensions. It is shown that the interpretation of 3D COSY-HMBC and 3D TOCSY-HSQC spectra is crucial in the structural analysis of prenol-10.

  19. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  20. X-ray diffraction, DFT, spectroscopic study and insecticidal activity of (3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1 H-pyrazol-5- yl)(2-(triethylammonio)acetyl)amide inner salt

    NASA Astrophysics Data System (ADS)

    Jiang, D. X.; Zheng, X. H.; Xu, H. H.; Wong, N. B.

    2014-12-01

    In the title compound, C20H19Cl2F6N5O2S, an inner salt derivative of fipronil was synthesized and characterized by X-ray diffraction, 1H NMR, 13C NMR, IR, ESI-MS, EI-HRMS. The crystal is monoclinic, space group P21/ n, with a = 15.1655(7) Å, b = 15.0465(7) Å, c = 21.0713(9) Å, V = 4754.7(4) Å3 and Z = 8 (at 173(2) K), and its phenyl pyrazole ring together with bond C-N-O form a big π bond while bonds C-N-C and N-C-H form an inner salt molecular. Crystal stacking scheme indicates the crystal consists of two different molecules. The two molecules are nonplanar with the torsion angles between the pyrazole rings and benzene rings of -99.7(7)° and 88.1(7)°, respectively, and linked by intermolecular C-H⋯O, C-H⋯F hydrogen bonds. By DFT calculations, molecular electrostatic potential clearly shows that the formation of hydrogen bonding interaction, which F5⋯H'42 and F6⋯H'41 are intermolecular hydrogen bonds, and F7⋯H44 is an intramolecular hydrogen bond in the crystal structure, is between the positive and negative regions. In addition, molecular geometry optimized by DFT methods is in good agreement with the experimental values. In the optimized structure, the O-S, S-C, C-F and C-Cl bonds are slightly longer in comparison with those in the crystal. The intermolecular interaction energy for the dimmer was calculated to be 4.96 kcal mol-1. The results reveal that the two monomers are slightly combined with each other through two weak F⋯H hydrogen bonds. The compound and fipronil exhibited high insecticidal activity against the third instar larvae of Asian Corn Borer ( Ostrinia furnacalis (Guenée)) at 48 h after treatment with LC50 values of 4.17 μg/mL ( r 2 = 0.9974) and 5.36 μg/mL ( r 2 = 0.9970), respectively.

  1. 1H and 19F NMR studies on molecular motions and phase transitions in solid triethylammonium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Seki, Riki; Ikeda, Ryuichi; Ishida, Hiroyuki

    1995-02-01

    Measurements by differential thermal analysis and differential scanning calorimetry and of the spin-lattice relaxation time ( T1), the spin-spin relaxation time ( T2), and the second moment ( M2) of 1H and 19F NMR were carried out in the three solid phases of (CH 3CH 2) 3NHBF 4. X-ray powder patterns were taken in the highest-temperature phase (Phase I) existing above 367 K and the room-temperature phase (Phase II) stable between 220 and 367 K. Phase I formed a NaCl-type cubic structure with a = 11.65(3) Å, Z = 4, V = 1581(13) Å3, and Dx = 0.794 g cm -3, and was expected to be an ionic plastic phase. In this phase, the self-diffusion of anions and the isotropic reorientation of cations were observed. Phase II formed a tetragonal structure with a = 12.47(1) and c = 9.47(3) Å, Z = 4, V = 1473(6) Å3, and Dx = 0.852 g cm -3. From the present DSC and NMR results in this phase, the cations and/or anions were considered to be dynamically disordered states. The C3 reorientation of the cation about the NH bond axis was detected and, in addition, the onset of nutation of the cations and local diffusion of the anions was suggested. In the low-temperature phase (Phase III) stable below 219 K, the C3 reorientations of the three methyl groups of cations and the isotropic reorientation of anions were observed. The motional parameters for these modes were evaluated.

  2. The (1) H NMR spectrum of pyrazole in a nematic phase.

    PubMed

    Provasi, Patricio; Jimeno, María Luisa; Alkorta, Ibon; Reviriego, Felipe; Elguero, José; Jokisaari, Jukka

    2016-08-01

    The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd.

  3. The effect of chemical stability on the NIPAM gel dosimeter using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Huang, You-Ruei; Hsieh, Ling-Ling; Chang, Yuan-Jen; Hsieh, Bor-Tsung

    2013-06-01

    Radiation-induced chemical changes in the N-isopropylacrylamide (NIPAM) gels used in three-dimensional dosimeters were investigated using 1H-NMR in this study. The experimental results show that the signal from C=C bonds of NIPAM and N,N'-Methylenediacrylamide (BIS) are 5.5 and 6.3 ppm, respectively. The double bonds from the NIPAM and BIS disappeared with half-dose (D50) were about 10.90 Gy ± 0.76 Gy and 10.09 Gy ± 0.29 Gy, respectively. This observation demonstrates that the polymerization rate of BIS is faster than that of the NIPAM monomer. The 1H-NMR can indicate the chemical structure changes of the polymer gel dosimeter after irradiation and successfully determine the D50 in the NIPAM gel dosimeter.

  4. Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy.

    PubMed

    Jayalakshmi, Kamaiah; Sonkar, Kanchan; Behari, Anu; Kapoor, Vinay K; Sinha, Neeraj

    2011-05-01

    Qualitative and quantitative (1) H NMR analysis of lipid extracts of gallbladder tissue in chronic cholecystitis (CC, benign) (n = 14), xanthogranulomatous cholecystitis (XGC, intermediate) (n = 9) and gallbladder cancer (GBC, malignant) (n = 8) was carried out to understand the mechanisms involved in the transformation of benign gallbladder tissue to intermediate and malignant tissue. The results revealed alterations in various tissue lipid components in gallbladder in CC, XGC and GBC. The difference in the nature of lipid components in benign and malignant disease may aid in the identification of the biological pathways involved in the etiopathogenesis of GBC. This is the first study on lipid profiling of gallbladder tissue by (1) H NMR spectroscopy, and has possible implications for the development of future diagnostic approaches. PMID:22945290

  5. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Polissiou, Moschos G; Consonni, Roberto

    2015-04-15

    In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w).

  6. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology. PMID:26476187

  7. Application of 1H-NMR metabolomic profiling for reef-building corals.

    PubMed

    Sogin, Emilia M; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  8. Application of 1H-NMR Metabolomic Profiling for Reef-Building Corals

    PubMed Central

    Sogin, Emilia M.; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D.

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  9. Complete 1H and 13C NMR assignments of two phytosterols from roots of Piper nigrum.

    PubMed

    Wei, Kun; Li, Wei; Koike, Kazuo; Pei, Yuping; Chen, Yingjie; Nikaido, Tamotsu

    2004-03-01

    Using modern NMR techniques, including DQF-COSY, NOESY, HETCOR and HMBC, the full assignments of all 1H and 13C chemical shifts were made for stigmastane-3,6-dione and stigmast-4-ene-3,6-dione, isolated from the roots of Piper nigrum (Piperaceae). Their stereochemistry was resolved by a combination of 2D NOESY data and analysis of coupling constants. The two compounds were isolated from the genus Piper for the first time.

  10. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  11. Investigation of 1H NMR chemical shifts of organic dye with hydrogen bonds and ring currents.

    PubMed

    Park, Sung Soo; Won, Yong Sun; Lee, Woojin; Kim, Jae Hong

    2011-04-01

    The (1)H NMR chemical shifts were theoretically computed for the organic dyes 2-(2,6-dimethyl-4H-pyran-4-ylidene)-malononitrile (1), cyano-(2,6-dimethyl-4H-pyran-4-ylidene)-acetic acid methyl ester (2), 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-malononitrile (3), and methyl 2-(2,6-bis(4-(dimethylamino)styryl)-4H-pyran-4-ylidene)-2-cyanoacetate (4) at the GIAO/B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory. Moreover, the intramolecular rotational barriers of the molecules were calculated to evaluate the internal flexibility with respect to the torsional degrees of freedom, and the nuclear-independent chemical shifts (NICS) were employed to analyze the ring currents. The difference was explained in terms of intramolecular hydrogen bonds and ring currents of the molecules. The (1)H NMR spectra were reproduced by experiments for the comparison with computationally constructed data. Our results suggest a good guideline in interpreting (1)H NMR chemical shifts using computational methods and furthermore a reliable perspective for designing molecular structures.

  12. Unique Backbone-Water Interaction Detected in Sphingomyelin Bilayers with 1H/31P and 1H/13C HETCOR MAS NMR Spectroscopy

    PubMed Central

    Holland, Gregory P.; Alam, Todd M.

    2008-01-01

    Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone. PMID:18390621

  13. Wastewater Colloidal Organic Carbon: Characterization of Filtration Fractions Using 1H NMR.

    PubMed

    McPhedran, Kerry N; Seth, Rajesh

    2016-04-01

    The current study separates colloidal organic carbon (COC) of municipal wastewater using membrane and ultrafiltration filters followed by characterization using 1H nuclear magnetic resonance (NMR) and UV absorbance with the goal of determination of size-specific characteristics, which may be used to correlate contaminant partitioning to natural COC. Passing fractions included 49.7, 44.8, 39.3, and 33.1 mg/L COC for filter sizes 1.5 μm, 0.45 μm, 100 kDa, and 1 kDa, respectively. The methodology used for processing COC prior to 1H NMR characterization was novel and successful in concentrating COC without modification of structures, which is the general drawback of other separation techniques such as resin extractions. This concentration technique is quite simple (i.e., not dependent on specialized instrumentation) and allows much shorter NMR experimental durations saving time and cost of analysis. Further work using NMR techniques will allow for greater understanding of COC molecular characteristics and be valuable for use in predictive modeling improvements. PMID:27131054

  14. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  15. X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin-benzotriazole intermediate ester

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Antoszczak, Michał; Stefańska, Joanna; Brzezinski, Bogumil

    2012-08-01

    The unexpectedly stable benzotriazole ester of salinomycin (SAL-HOBt) - an intermediate product of the amidation reaction of salinomycin has been isolated and structurally characterised (using a single crystal) by X-ray, FT-IR, NMR and semiempirical methods. The results of the X-ray and spectroscopic studies demonstrated that this intermediate ester exist in the solid state and in solution exclusively as the stable O-acyl form. The molecular structure of SAL-HOBt is stabilised by relatively weak intramolecular hydrogen bonds. The PM5 calculation of possible structures of SAL-HOBt has shown that the O-acyl form is more energetically favourable than its N-oxide-N-acyl isomers. The antimicrobial tests show that SAL-HOBt is active against Gram-positive bacteria and clinical isolates methicillin-resistant Staphylococcus aureus (MIC = 1-2 μg/ml).

  16. Contiguously substituted cyclooctane polyols. configurational assignments via (1)H NMR correlations and symmetry considerations.

    PubMed

    Moura-Letts, Gustavo; Paquette, Leo A

    2008-10-01

    More advanced oxidation of the cyclooctadienol shown, readily available in enantiomerically pure form from D-glucose, has given rise to a series of intermediates whose relative (and ultimately absolute) configuration was assigned on the basis of (1)H/(1)H coupling constant analysis. The selectivities that were deduced in this manner were drawn from the sequential application of CrO3 oxidation in tandem with Luche reduction, two-step NMO-promoted osmylations bracketed by acetonide formation, and wholesale deprotection. The stereoselectivities of these reactions were traced by (1)H NMR spectroscopy, and the stereochemical assignments were confirmed by the presence or absence of symmetry in the final cyclooctane polyols (four shown) generated in this investigation.

  17. (sup 6)Li and (sup 7)MAS NMR and In Situ X-Ray Diffraction Studies of Lithium Manganate Cathode Materials

    SciTech Connect

    Lee, Young Joo; Wang, Francis; Grey, Clare P.; Mukerjee, Sanjeev; McBreen, James

    1998-11-30

    {sup 6}Li MAS NMR spectra of lithium manganese oxides with differing manganese oxidation states (LiMn{sub 2}O{sub 4}, Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}Mn{sub 4}O{sub 9}, and Li{sub 2}Mn{sub 2}O{sub 4}) are presented. Improved understanding of the lithium NMR spectra of these model compounds is used to interpret the local structure of the Li{sub x}Mn{sub 2}O{sub 4} cathode materials following electrochemical Li{sup +} deintercalation to various charging levels. In situ x-ray diffraction patterns of the same material during charging are also reported for comparison. Evidence for two-phase behavior for x <0.4 (Li{sub x}Mn{sub 2}O{sub 4}) is seen by both NMR and diffraction.

  18. The conformational stability, solvation and the assignments of the experimental infrared, Raman, 1H and 13C NMR spectra of the local anesthetic drug lidocaine

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.; Förner, Wolfgang; Ali, Shaikh A.

    2015-05-01

    The structure, vibrational and 1H and 13C NMR spectra of the local anesthetic drug lidocaine were investigated by the B3LYP/6-311G∗∗ calculations. The molecule was predicted to have the non-planar cis (NCCN ∼ 0°) structures being about 2-6 kcal/mol lower in energy than the corresponding trans (NCCN ∼ 180°) forms. The calculated NCCN (9.6°) and CNCC (-132.2°) torsional angles were in a good qualitative agreement with the reported X-ray angles (3.1 and 13.0°, -102.67 and -77.9°, respectively, for H-bonded dimers). The Gibbs energy of solution of lidocaine in formamide, water, dimethylsulfoxide, acetonitrile, methanol, ethanol and chloroform solutions was estimated at the B3LYP level. The predicted affinity of lidocaine toward the alcohols, acetonitrile and chloroform solutions was in excellent agreement with the reported experimental solubility of the drug in organic solvents. The analysis of the observed vibrational spectra is consistent with the presence of lidocaine in only one conformation at room temperature. The 1H and 13C NMR spectra of lidocaine were interpreted by experimental and DFT calculated chemical shifts of the drug. The RMSD between experimental and theoretical 1H and 13C chemical shifts for lidocaine is 0.47 and 8.26 ppm, respectively.

  19. Characterizing monoclonal antibody formulations in arginine glutamate solutions using 1H NMR spectroscopy

    PubMed Central

    Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.

    2016-01-01

    ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351

  20. Complete 1H and 13C NMR assignments of four new steroidal glycosides from a gorgonian coral Junceella juncea.

    PubMed

    Qi, Shuhua; Zhang, Si; Huang, Jianshe; Xiao, Zhihui; Wu, Jun; Li, Qingxin

    2005-03-01

    Four new cholest-type steroidal glycosides, junceellosides A-D, isolated from the EtOH/CH(2)Cl(2) extracts of the South China Sea gorgonian coral Junceella juncea, were identified. Complete assignments of the (1)H and (13)C NMR chemical shifts for these compounds were achieved by means of one- and two-dimensional NMR techniques, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectra.

  1. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  2. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase.

    PubMed

    Perry, Ashlee; Tambyrajah, Winston; Grossmann, J Günter; Lian, Lu-Yun; Scrutton, Nigel S

    2004-03-23

    Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein. PMID:15023067

  3. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics.

    PubMed

    Odunsi, Kunle; Wollman, Robert M; Ambrosone, Christine B; Hutson, Alan; McCann, Susan E; Tammela, Jonathan; Geisler, John P; Miller, Gregory; Sellers, Thomas; Cliby, William; Qian, Feng; Keitz, Bernadette; Intengan, Marilyn; Lele, Shashikant; Alderfer, James L

    2005-02-20

    Currently available serum biomarkers are insufficiently reliable to distinguish patients with epithelial ovarian cancer (EOC) from healthy individuals. Metabonomics, the study of metabolic processes in biologic systems, is based on the use of (1)H-NMR spectroscopy and multivariate statistics for biochemical data generation and interpretation and may provide a characteristic fingerprint in disease. In an effort to examine the utility of the metabonomic approach for discriminating sera from women with EOC from healthy controls, we performed (1)H-NMR spectroscopic analysis on preoperative serum specimens obtained from 38 patients with EOC, 12 patients with benign ovarian cysts and 53 healthy women. After data reduction, we applied both unsupervised Principal Component Analysis (PCA) and supervised Soft Independent Modeling of Class Analogy (SIMCA) for pattern recognition. The sensitivity and specificity tradeoffs were summarized for each variable using the area under the receiver-operating characteristic (ROC) curve. In addition, we analyzed the regions of NMR spectra that most strongly influence separation of sera of EOC patients from healthy controls. PCA analysis allowed correct separation of all serum specimens from 38 patients with EOC (100%) from all of the 21 premenopausal normal samples (100%) and from all the sera from patients with benign ovarian disease (100%). In addition, it was possible to correctly separate 37 of 38 (97.4%) cancer specimens from 31 of 32 (97%) postmenopausal control sera. SIMCA analysis using the Cooman's plot demonstrated that sera classes from patients with EOC, benign ovarian cysts and the postmenopausal healthy controls did not share multivariate space, providing validation for the class separation. ROC analysis indicated that the sera from patients with and without disease could be identified with 100% sensitivity and specificity at the (1)H-NMR regions 2.77 parts per million (ppm) and 2.04 ppm from the origin (AUC of ROC curve = 1

  4. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    PubMed Central

    2015-01-01

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25−32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789

  5. 1H NMR metabolite fingerprinting as a new tool for body fluid identification in forensic science.

    PubMed

    Scano, Paola; Locci, Emanuela; Noto, Antonio; Navarra, Gabriele; Murgia, Federica; Lussu, Milena; Barberini, Luigi; Atzori, Luigi; De Giorgio, Fabio; Rosa, Maria Francesca; d'Aloja, Ernesto

    2013-08-01

    In this feasibility study, we propose, for the first time, (1)H NMR spectroscopy coupled with mathematical strategies as a valid tool for body fluid (BF) trace identification in forensic science. In order to assess the ability of this approach to identify traces composed either by a single or by two different BFs, samples of blood, urine, saliva, and semen were collected from different donors, and binary mixtures were prepared. (1)H NMR analyses were carried out for all samples. Spectral data of the whole set were firstly submitted to unsupervised principal component analysis (PCA); it showed that samples of the same BF cluster well on the basis of their characterizing molecular components and that mixtures exhibit intermediate characteristics among BF typologies. Furthermore, samples were divided into a training set and a test set. An average NMR spectral profile for each typology of BF was obtained from the training set and validated as representative of each BF class. Finally, a fitting procedure, based on a system of linear equations with the four obtained average spectral profiles, was applied to the test set and the mixture samples; it showed that BFs can be unambiguously identified, even as components of a mixture. The successful use of this mathematical procedure has the advantage, in forensics, of overcoming bias due to the analyst's personal judgment. We therefore propose this combined approach as a valid, fast, and non-destructive tool for addressing the challenges in the identification of composite traces in forensics.

  6. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  7. X-ray Single Crystal Structure, DFT Calculations and Biological Activity of 2-(3-Methyl-5-(pyridin-2'-yl)-1H-pyrazol-1-yl) Ethanol.

    PubMed

    Radi, Smaail; Attayibat, Ahmed; El-Massaoudi, Mohamed; Salhi, Amin; Eddike, Driss; Tillard, Monique; Mabkhot, Yahia N

    2016-01-01

    A pyridylpyrazole bearing a hydroxyethyl substituent group has been synthesized by condensation of (Z)-4-hydroxy-4-(pyridin-2-yl)but-3-en-2-one with 2-hydroxyethylhydrazine. The compound was well characterized and its structure confirmed by single crystal X-ray diffraction. Density functional calculations have been performed using DFT method with 6-31G* basis set. The HOMO-LUMO energy gap, binding energies and electron deformation densities are calculated at the DFT (BLYP, PW91, PWC) level. The electrophilic f(-) and nucleophilic f(+) Fukui functions and also the electrophilic and nucleophilic Parr functions are well adapted to find the electrophile and nucleophile centers in the molecule. The title compound has been tested for its DPPH radical scavenging activity which is involved in aging processes, anti-inflammatory, anticancer and wound healing activity. Compound is also found with a significant antioxidant activity, probably due to the ability to donate a hydrogen atom to the DPPH radical. PMID:27527141

  8. X-ray Single Crystal Structure, DFT Calculations and Biological Activity of 2-(3-Methyl-5-(pyridin-2'-yl)-1H-pyrazol-1-yl) Ethanol.

    PubMed

    Radi, Smaail; Attayibat, Ahmed; El-Massaoudi, Mohamed; Salhi, Amin; Eddike, Driss; Tillard, Monique; Mabkhot, Yahia N

    2016-08-05

    A pyridylpyrazole bearing a hydroxyethyl substituent group has been synthesized by condensation of (Z)-4-hydroxy-4-(pyridin-2-yl)but-3-en-2-one with 2-hydroxyethylhydrazine. The compound was well characterized and its structure confirmed by single crystal X-ray diffraction. Density functional calculations have been performed using DFT method with 6-31G* basis set. The HOMO-LUMO energy gap, binding energies and electron deformation densities are calculated at the DFT (BLYP, PW91, PWC) level. The electrophilic f(-) and nucleophilic f(+) Fukui functions and also the electrophilic and nucleophilic Parr functions are well adapted to find the electrophile and nucleophile centers in the molecule. The title compound has been tested for its DPPH radical scavenging activity which is involved in aging processes, anti-inflammatory, anticancer and wound healing activity. Compound is also found with a significant antioxidant activity, probably due to the ability to donate a hydrogen atom to the DPPH radical.

  9. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    NASA Astrophysics Data System (ADS)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  10. Spatially resolved solid-state 1H NMR for evaluation of gradient-composition polymeric libraries.

    PubMed

    Leisen, Johannes; Gomez, Ismael J; Roper, John A; Meredith, J Carson; Beckham, Haskell W

    2012-07-01

    Polyurethane libraries consisting of films with composition gradients of aliphatic polyisocyanate and hydroxy-terminated polyacrylate resin were characterized using methods of (1)H NMR microimaging (i.e., magnetic resonance imaging, (MRI)) and solid-state NMR. Molecular mobilities and underlying structural information were extracted as a function of the relative content of each of the two components. Routine NMR microimaging using the spin-echo sequence only allows investigations of transverse relaxation of magnetization at echo times >2 ms. A single-exponential decay was found, which is likely due to free, noncross-linked polymer chains. The mobility of these chains decreases with increasing content of the aliphatic polyisocyanate. The concept of a 1D NMR profiler is introduced as a novel modality for library screening, which allows the convenient measurement of static solid-state NMR spectra as a function of spatial location along a library sample that is repositioned in the rf coil between experiments. With this setup the complete transverse relaxation function was measured using Bloch decays and spin echoes. For all positions within the gradient-composition film, relaxation data consisted of at least three components that were attributed to a rigid highly cross-linked resin, an intermediate cross-linked but mobile constituent, and the highly mobile free polymer chains (the latter is also detectable by MRI). Analysis of this overall relaxation function measured via Bloch decays and spin echoes revealed only minor changes in the mobilities of the individual fractions. Findings with respect to the most mobile components are consistent with the results obtained by NMR microimaging. The major effect is the significant increase in the rigid-component fraction with the addition of the hydroxy-terminated polyacrylate resin. PMID:22676634

  11. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  12. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy.

    PubMed

    Rundlöf, Torgny; Mathiasson, Marie; Bekiroglu, Somer; Hakkarainen, Birgit; Bowden, Tim; Arvidsson, Torbjörn

    2010-09-01

    In quantitative NMR (qNMR) selection of an appropriate internal standard proves to be crucial. In this study, 25 candidate compounds considered to be potent internal standards were investigated with respect to the ability of providing unique signal chemical shifts, purity, solubility, and ease of use. The (1)H chemical shift (delta) values, assignments, multiplicities and number of protons (for each signal), appropriateness (as to be used as internal standards) in four different deuterated solvents (D(2)O, DMSO-d(6), CD(3)OD, CDCl(3)) were studied. Taking into account the properties of these 25 internal standards, the most versatile eight compounds (2,4,6-triiodophenol, 1,3,5-trichloro-2-nitrobenzene, 3,4,5-trichloropyridine, dimethyl terephthalate, 1,4-dinitrobenzene, 2,3,5-triiodobenzoic acid, maleic acid and fumaric acid) were qualified using both differential scanning calorimetry (DSC) and NMR spectroscopy employing highly pure acetanilide as the reference standard. The data from these two methods were compared as well as utilized in the quality assessment of the compounds as internal standards. Finally, the selected internal standards were tested and evaluated in a real case of quantitative NMR analysis of a paracetamol pharmaceutical product. PMID:20207092

  13. High-pressure low-field 1H NMR relaxometry in nanoporous materials.

    PubMed

    Horch, Carsten; Schlayer, Stefan; Stallmach, Frank

    2014-03-01

    A low-field NMR sensor with NdFeB permanent magnets (B0=118 mT) and a pressure cell made of PEEK (4 cm outer diameter) were designed for (1)H relaxation time studies of adsorbed molecules at pressures of up to 300 bar. The system was used to investigate methane uptake of microporous metal-organic frameworks and nanoporous activated carbon. T2 relaxation time distribution of pure methane and of methane under co-adsorption of carbon dioxide show that the host-guest interaction lead to a relaxation time contrasts, which may be used to distinguish between the gas phase and the different adsorbed phases of methane. Adsorption isotherms, exchange of methane between adsorbent particles and the surrounding gas phase, successive displacement of methane from adsorption sites by co-adsorption of carbon dioxide and CO2/CH4 adsorption separation factors were determined from the observed NMR relaxation time distributions.

  14. Total assignment of 1H and 13C NMR data for the sesquiterpene lactone 15-deoxygoyazensolide.

    PubMed

    Heleno, Vladimir Constantino Gomes; Crotti, Antônio Eduardo Miller; Constantino, Mauricio Gomes; Lopes, Norberto Peporine; Lopes, João Luis Callegari

    2004-03-01

    We describe a complete analysis of the 1H and 13C spectra of the anti-inflamatory, schistossomicidal and trypanosomicidal sesquiterpene lactone 15-deoxygoyazensolide. This lactone, with a structure similar to other important ones, was studied by NMR techniques such as COSY, HMQC, HMBC, Jres and NOE experiments. The comparison of the data with some computational results led to an unequivocal assignment of all hydrogen and carbon chemical shifts, even eliminating some previous ambiguities. We were able to determine all hydrogen coupling constants (J) and signal multiplicities and to confirm the stereochemistry. A new method for the determination of the relative position of the lactonization and the position of the ester group on a medium-sized ring by NMR was developed.

  15. 1H, 13C and 15N NMR assignments of phenazopyridine derivatives.

    PubMed

    Burgueño-Tapia, Eleuterio; Mora-Pérez, Yolanda; Morales-Ríos, Martha S; Joseph-Nathan, Pedro

    2005-03-01

    Phenazopyridine hydrochloride (1), a drug in clinical use for many decades, and some derivatives were studied by one- and two-dimensional (1)H, (13)C and (15)N NMR methodology. The assignments, combined with DFT calculations, reveal that the preferred protonation site of the drug is the pyridine ring nitrogen atom. The chemoselective acetylation of phenazopyridine (2) and its influence on the polarization of the azo nitrogen atoms were evidenced by the (15)N NMR spectra. Molecular calculations of the phenazopyridines 2-4 show that the pyridine and phenyl groups are oriented in an antiperiplanar conformation with intramolecular hydrogen bonding between the N-b atom and the C-2 amino group preserving the E-azo stereochemistry.

  16. Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Czarniecki, K.; Proniewicz, L. M.

    2001-05-01

    Famotidine, 3-[[[2-[(aminoiminomethyl)amino]-4-thiazolyl]methyl]thio]- N-(aminosulfonyl), is a histamine H 2-receptor blocker that has been used mainly for the treatment of peptic ulcers and the Zollinger-Ellison syndrome. Its NMR spectra in different solvents were reported earlier; however, detailed interpretation has not been done thus far. In this work, experimental 1H, 13C and 15N NMR spectra of famotidine dissolved in DMSO-d 6 are shown. The assignment of observed chemical shifts is based on quantum chemical calculation at the Hartree-Fock/6-31G ∗ level. The geometry optimization of the famotidine molecule with two internal hydrogen bonds, i.e. [N(3)-H(23)⋯N(9) and N(3)⋯H(34)-N(20)], is done by using the B3LYP method with the 6-31G ∗ basis set.

  17. (1)H NMR spectroscopy for the in vitro understanding of the glycaemic index.

    PubMed

    Dona, Anthony C; Landrey, Karola; Atkinson, Fiona S; Brand Miller, Jennie C; Kuchel, Philip W

    2013-06-01

    The glycaemic index (GI) characterises foods by using the incremental area under the glycaemic response curve relative to the same amount of oral glucose. Its ability to differentiate between curves of different shapes, the peak response and other aspects of the glycaemic response is contentious. The present pilot study aimed to explore the possibility of using 1H NMR spectroscopy to better understand in vivo digestion characteristics as reflected in the glycaemic response of carbohydrate-rich foods; such an approach might be an adjunct to the in vivo GI test. The glycaemic response of two types of raw wheat flour (2005 from Griffith NSW, Chara, Row 10, Plot 6:181 and store-bought Colese Plain Flour) and a cooked store-bought flour was tested and compared with results recorded during the in vitro enzymatic digestion of the wheat flour samples by glucoamylase from Aspergillus niger (EC 3.2.1.3) as monitored by 1H NMR spectroscopy. Comparing the digestion time courses of raw and cooked wheat starch recorded in vitro strongly suggests that the initial rate of glucose release in vitro correlates with the glycaemic spike in vivo. During the in vitro time courses, approximately four times as much glucose was released from cooked starch samples than from raw starch samples in 90 min. Monitoring enzymatic digestion of heterogeneous mixtures (food) by 1H NMR spectroscopy showcases the effectiveness of the technique in measuring glucose release and its potential use as the basis of an in vitro method for a better understanding of the GI.

  18. Determination of metabolite profiles in tropical wines by 1H NMR spectroscopy and chemometrics.

    PubMed

    da Silva Neto, Humberto G; da Silva, João B P; Pereira, Giuliano E; Hallwass, Fernando

    2009-12-01

    Traditionally, wines are produced in temperate climate zones, with one harvest per year. Tropical wines are a new concept of vitiviniculture that is being developed, principally in Brazil. The new Brazilian frontier is located in the northeast region (São Francisco River Valley) in Pernambuco State, close to the equator, between 8 and 9 degrees S. Compared with other Brazilian and worldwide vineyards, the grapes of this region possess peculiar characteristics. The aim of this work is a preliminary study of commercial São Francisco River Valley wines, analyzing their metabolite profiles by (1)H NMR and chemometric methods. PMID:19810052

  19. 1H and 13C NMR study on some substituted azolidine derivatives

    NASA Astrophysics Data System (ADS)

    Cerioni, Giovanni; Cristiani, Franco; Devillanova, Francesco A.; Diaz, Angelo; Verani, Gaetano

    The 1H and 13C NMR spectra carried out on R overlineN·CH 2·CH 2·X·C O (where for R = H, X = NH, NMe, NEt, CH 2, S, O; for R = Me, X = NMe, CH 2; for R = Et, X = NEt) are reported. The comparison of these results with those obtained for the thionic and selonic isologues shows that sulphur and selenium have a greater deshielding effect on the ring than oxygen. The resonance of the carbons not involved in the π system have been correlated with the σ charges calculated by the DEL RE method.

  20. 1H NMR investigation of self-association of vanillin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Bogdan, Mircea; Floare, Calin G.; Pîrnau, Adrian

    2009-08-01

    A self-association of vanillin have been studied by 1H NMR spectroscopy using the analysis of proton chemical shifts changes in aqueous solution as a function of concentration. The experimental results have been analysed using indefinite non-cooperative and cooperative models of molecular self-association, enabling the determination of equilibrium constants, parameters of cooperativity and the limiting values of vanillin proton chemical shifts in the complex. It was found that the dimer formation creates energetically favourable conditions for subsequent molecular association.

  1. Determination of metabolite profiles in tropical wines by 1H NMR spectroscopy and chemometrics.

    PubMed

    da Silva Neto, Humberto G; da Silva, João B P; Pereira, Giuliano E; Hallwass, Fernando

    2009-12-01

    Traditionally, wines are produced in temperate climate zones, with one harvest per year. Tropical wines are a new concept of vitiviniculture that is being developed, principally in Brazil. The new Brazilian frontier is located in the northeast region (São Francisco River Valley) in Pernambuco State, close to the equator, between 8 and 9 degrees S. Compared with other Brazilian and worldwide vineyards, the grapes of this region possess peculiar characteristics. The aim of this work is a preliminary study of commercial São Francisco River Valley wines, analyzing their metabolite profiles by (1)H NMR and chemometric methods.

  2. Lactate rise detected by sup 1 H NMR in human visual cortex during physiologic stimulation

    SciTech Connect

    Prichard, J.; Rothman, D.; Novotny, E.; Petroff, O.; Kuwabara, Takeo; Avison, M.; Howseman, A.; Shulman, R. ); Hanstock, C. )

    1991-07-01

    Brain lactate concentration is usually assumed to be stable except when pathologic conditions cause a mismatch between glycolysis and respiration. Using newly developed {sup 1}H NMR spectroscopic techniques that allow measurement of lactate in vivo, the authors detected lactate elevations of 0.3-0.9 mM in human visual cortex during physiologic photic stimulation. The maximum rise appeared in the first few minutes; thereafter lactate concentration declined while stimulation continued. The results are consistent with a transient excess of glycolysis over respiration in the visual cortex, occurring as a normal response to stimulation in the physiologic range.

  3. Structural characterization of a flexible two-domain protein in solution using Small Angle X-ray Scattering and NMR spectroscopy

    PubMed Central

    Lemak, Alexander; Wu, Bin; Yee, Adelinda; Houliston, Scott; Lee, Hsiau-Wei; Gutmanas, Aleksandras; Fang, Xianyang; Garcia, Maite; Semesi, Anthony; Wang, Yun-Xing; Prestegard, James H.; Arrowsmith, Cheryl H.

    2016-01-01

    SUMMARY Multidomain proteins in which individual domains are connected by linkers often possess inherent inter-domain flexibility that significantly complicates their structural characterization in solution using either NMR spectroscopy or small-angle X-ray scatting (SAXS) alone. Here we report a novel protocol for joint refinement of flexible multidomain protein structures against NMR distance and angular restraints, residual dipolar couplings and SAXS data. The protocol is based on the EOM principle (Bernardo et al., 2007) and is compared with different refinement strategies for the structural characterization of the flexible two-domain protein sf3636 from Shigella flexneri 2a. The results of our refinement suggest the existence of a dominant population of configurational states in solution possessing an overall elongated shape and restricted relative twisting of the two domains. PMID:25456817

  4. Hydration behaviour of POPC/C(12)-Bet mixtures investigated by sorption gravimetry, (31)P NMR spectroscopy and X-ray diffraction.

    PubMed

    Pfeiffer, H; Weichert, H; Klose, G; Heremans, K

    2012-02-01

    The hydration behaviour of mixtures of the zwitterionic phospholipid 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) and the zwitterionic surfactant N,N-dimethyl-N-dodecyl-betain (C(12)-Bet) was investigated by sorption gravimetry, solid-state (31)P NMR-spectroscopy and small angle X-ray diffraction (SAXD). Negative excess hydration (dehydration) was found for almost all hydration degrees investigated. This behaviour is explained by the formation of an inner salt between the dipoles of phospholipid and surfactant headgroups that show a reverse sequence of partial charges with respect to the hydrocarbon backbone. The formation of an inner-salt most probably reduces potential water binding sites. Moreover, NMR data suggest that the incorporation of the zwitterionic surfactant into the phospholipid membrane is correlated with reorientation of the phosphate axis towards the membrane director as well as with reduced lateral and wobbling diffusion. PMID:22285958

  5. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  6. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  7. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile using X-ray analysis, NMR and vibrational spectra, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2009-12-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-acetyl propenenitrile (DMHAP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] were measured. X-ray analysis revealed that DMHAP exists in solid state as ZZa conformer. Vibrational and NMR spectra confirmed the existence of only one ZZa conformer with an intramolecular hydrogen bond in less polar solvents and next two EZa and EZs conformers of E-isomer with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazino group in more polar environments. The observed IR and Raman bands were compared with harmonic vibrational frequencies, calculated using ab initio MP2 and DFT/B3LYP methods in 6-31G∗∗ basis set, and assigned on the basis of potential energy distribution. In addition, the geometries and relative energies of the possible isomers and conformers of DMHAP were also evaluated on the same levels and compared with the X-ray data. The influence of environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model.

  8. Combining NMR and X-ray crystallography in fragment-based drug discovery: discovery of highly potent and selective BACE-1 inhibitors.

    PubMed

    Wyss, Daniel F; Wang, Yu-Sen; Eaton, Hugh L; Strickland, Corey; Voigt, Johannes H; Zhu, Zhaoning; Stamford, Andrew W

    2012-01-01

    Fragment-based drug discovery (FBDD) has become increasingly popular over the last decade. We review here how we have used highly structure-driven fragment-based approaches to complement more traditional lead discovery to tackle high priority targets and those struggling for leads. Combining biomolecular nuclear magnetic resonance (NMR), X-ray crystallography, and molecular modeling with structure-assisted chemistry and innovative biology as an integrated approach for FBDD can solve very difficult problems, as illustrated in this chapter. Here, a successful FBDD campaign is described that has allowed the development of a clinical candidate for BACE-1, a challenging CNS drug target. Crucial to this achievement were the initial identification of a ligand-efficient isothiourea fragment through target-based NMR screening and the determination of its X-ray crystal structure in complex with BACE-1, which revealed an extensive H-bond network with the two active site aspartate residues. This detailed 3D structural information then enabled the design and validation of novel, chemically stable and accessible heterocyclic acylguanidines as aspartic acid protease inhibitor cores. Structure-assisted fragment hit-to-lead optimization yielded iminoheterocyclic BACE-1 inhibitors that possess desirable molecular properties as potential therapeutic agents to test the amyloid hypothesis of Alzheimer's disease in a clinical setting. PMID:21647837

  9. Study the chemical composition and biological outcomes resulting from the interaction of the hormone adrenaline with heavy elements: Infrared, Raman, electronic, 1H NMR, XRD and SEM studies

    NASA Astrophysics Data System (ADS)

    Ibrahim, Omar B.; Mohamed, Mahmoud A.; Refat, Moamen S.

    2014-01-01

    Heavy metal adrenaline complexes formed from the reaction of adrenaline with Al3+, Zn2+, Sn2+, Sb3+, Pb2+and Bi3+ ions in methanolic solvent at 60 °C. The final reaction products have been isolated and characterization using elemental analyses (% of carbon, hydrogen and nitrogen), conductivity measurements, mid infrared, Raman laser, UV-Vis, 1H NMR spectra, X-ray powder diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). Upon the spectroscopic, conductivity and elemental analyses, the stoichiometric reactions indicated that the data obtained refer to 1:2 (M:L) for Zn2+, Sn2+, Pb2+and Bi3+ complexes [Zn(Adr)2(Cl)2], [Sn(Adr)2]Cl2, [Pb(Adr)2](NO3)2 and [Bi(Adr)2(Cl)2]Cl, while the molar ratio 1:3 (M:L) for Al3+ and Sb3+ with formulas [Al(Adr)3](NO3)3 and [Sb(Adr)3]Cl3. The infrared and Raman laser spectra interpreted the mode of interactions which associated through the two phenolic groups of catechol moiety. The adrenaline chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial and antifungal activities than the free adrenaline chelate.

  10. Measurement of longitudinal relaxation times in crowded 1H NMR spectra using one- and two-dimensional maximum quantum (MAXY) NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Ye, Chaohui; Farrant, R. Duncan; Nicholson, Jeremy K.; Lindon, John C.

    Methods for measuring longitudinal relaxation times of protons in heavily overlapped 1H NMR spectra are introduced and exemplified using a solution of cholesteryl acetate. The methods are based on 1-dimensional and 2-dimensional maximum quantum NMR spectroscopy (MAXY), which makes possible the selective detection of CH, CH2 and CH31H NMR resonances. A modification of the BIRD pulse sequence to achieve selective inversion of protons bonded to either 12C or 13C is given. The approach should find application in studies of molecular dynamics where isotopic enrichment is not possible and the level of available sample dictates the use of 1H NMR spectroscopy.

  11. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.

    PubMed

    Zhang, Jianshuang; Zhong, Xin; Li, Shaosong; Zhang, Guren; Liu, Xin

    2015-11-10

    Ophicordyceps sinensis is a well-known traditional Chinese medicine and cultured mycelium is a substitute for wild O. sinensis. Metabolic profiles of wild O. sinensis from three geographical locations and cultivated mycelia derived from three origins were investigated using (1)H nuclear magnetic resonance (NMR) analysis combined with multivariate statistical analysis. A total of 56 primary metabolites were identified and quantified from O. sinensis samples. The principle component analysis (PCA) showed significant differences between natural O. sinensis and fermentation mycelia. Seven metabolites responsible for differentiation were screened out by orthogonal partial least squares discriminant analysis (OPLS-DA). The concentrations of mannitol, trehalose, arginine, trans-4-hydroxyproline, alanine and glucitol were significantly different between wild and cultured groups. The variation in metabolic profiling among artificial mycelia was greater than that among wild O. sinensis. Furthermore, wild samples from different origins were clearly distinguished by the levels of mannitol, trehalose and some amino acids. This study indicates that (1)H NMR-based metabolomics is useful for fingerprinting and discriminating O. sinensis of different geographical regions and cultivated mycelia of different strains. The present study provided an efficient approach for investigating chemical compositions and evaluating the quality of medicine and health food derived from O. sinensis. PMID:26279370

  12. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat.

  13. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.

    PubMed

    Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A

    2013-08-15

    Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively. PMID:23561087

  14. Low resolution 1H NMR assignment of proton populations in pound cake and its polymeric ingredients.

    PubMed

    Luyts, A; Wilderjans, E; Waterschoot, J; Van Haesendonck, I; Brijs, K; Courtin, C M; Hills, B; Delcour, J A

    2013-08-15

    Based on a model system approach, five different proton populations were distinguished in pound cake crumb using one dimensional low resolution (1)H NMR spectroscopy. In free induction decay (FID) measurements, proton populations were assigned to (i) non-exchanging CH protons of crystalline starch, proteins and crystalline fat and (ii) non-exchanging CH protons of amorphous starch and gluten, which are in little contact with water. In Carr-Purcell-Meiboom-Gill (CPMG) measurements, three proton populations were distinguished. The CPMG population with the lowest mobility and the FID population with the highest mobility represent the same proton population. The two CPMG proton populations with the highest mobility were assigned to exchanging protons (i.e., protons of water, starch, gluten, egg proteins and sugar) and protons of lipids (i.e., protons of egg yolk lipids and amorphous lipid fraction of margarine) respectively. Based on their spin-lattice relaxation times (T1), two dimensional (1)H NMR spectroscopy further resolved the two proton populations with the highest mobility into three and two proton populations, respectively.

  15. 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death.

    PubMed

    Mäkinen, Ville-Petteri; Soininen, Pasi; Forsblom, Carol; Parkkonen, Maija; Ingman, Petri; Kaski, Kimmo; Groop, Per-Henrik; Ala-Korpela, Mika

    2008-01-01

    Subtle metabolic changes precede and accompany chronic vascular complications, which are the primary causes of premature death in diabetes. To obtain a multimetabolite characterization of these high-risk individuals, we measured proton nuclear magnetic resonance (1H NMR) data from the serum of 613 patients with type I diabetes and a diverse spread of complications. We developed a new metabonomics framework to visualize and interpret the data and to link the metabolic profiles to the underlying diagnostic and biochemical variables. Our results indicate complex interactions between diabetic kidney disease, insulin resistance and the metabolic syndrome. We illustrate how a single 1H NMR protocol is able to identify the polydiagnostic metabolite manifold of type I diabetes and how its alterations translate to clinical phenotypes, clustering of micro- and macrovascular complications, and mortality during several years of follow-up. This work demonstrates the diffuse nature of complex vascular diseases and the limitations of single diagnostic biomarkers. However, it also promises cost-effective solutions through high-throughput analytics and advanced computational methods, as applied here in a case that is representative of the real clinical situation.

  16. Characterization of dandelion species using 1H NMR- and GC-MS-based metabolite profiling.

    PubMed

    Jung, Youngae; Ahn, Yun Gyong; Kim, Ho Kyoung; Moon, Byeong Cheol; Lee, A Yeong; Ryu, Do Hyun; Hwang, Geum-Sook

    2011-10-21

    Taraxacum, known as dandelion, is a large genus of plants in the family Asteraceae. Pharmacological studies have shown that these plants display a wide variety of medicinal properties because Taraxacum extracts contain many pharmacologically active metabolites that display anti-inflammatory, antinociceptive, antioxidant, and anticancer activity. Each plant species displays several different natural constituents, the majority of which have not been studied as no global metabolite screen of the diverse Taraxacum species has been performed. In this study, we investigated the metabolite difference in three species of Taraxacum (T. coreanum, T. officinale, and T. platycarpum) by (1)H NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical analyses. The aim of this study was to identify the different chemical compositions of the polar and nonpolar extracts in these species. A partial least-squares discriminant analysis showed a significantly higher separation among nonpolar extracts (mainly fatty acids and sterols) compared to polar extracts (mainly amino acids, organic acids, and sugars) between these species. A one-way ANOVA was performed to statistically certify the metabolite differences of these nonpolar extracts. Taken together, these data suggest that a metabolomic approach using combined (1)H NMR and GC-MS analysis is an effective analytical method to differentiate biochemical compositions among different species in plants.

  17. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported. PMID:25451865

  18. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  19. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.

    PubMed

    Zhang, Jianshuang; Zhong, Xin; Li, Shaosong; Zhang, Guren; Liu, Xin

    2015-11-10

    Ophicordyceps sinensis is a well-known traditional Chinese medicine and cultured mycelium is a substitute for wild O. sinensis. Metabolic profiles of wild O. sinensis from three geographical locations and cultivated mycelia derived from three origins were investigated using (1)H nuclear magnetic resonance (NMR) analysis combined with multivariate statistical analysis. A total of 56 primary metabolites were identified and quantified from O. sinensis samples. The principle component analysis (PCA) showed significant differences between natural O. sinensis and fermentation mycelia. Seven metabolites responsible for differentiation were screened out by orthogonal partial least squares discriminant analysis (OPLS-DA). The concentrations of mannitol, trehalose, arginine, trans-4-hydroxyproline, alanine and glucitol were significantly different between wild and cultured groups. The variation in metabolic profiling among artificial mycelia was greater than that among wild O. sinensis. Furthermore, wild samples from different origins were clearly distinguished by the levels of mannitol, trehalose and some amino acids. This study indicates that (1)H NMR-based metabolomics is useful for fingerprinting and discriminating O. sinensis of different geographical regions and cultivated mycelia of different strains. The present study provided an efficient approach for investigating chemical compositions and evaluating the quality of medicine and health food derived from O. sinensis.

  20. (1)H NMR Spectroscopy of Fecal Extracts Enables Detection of Advanced Colorectal Neoplasia.

    PubMed

    Amiot, Aurelien; Dona, Anthony C; Wijeyesekera, Anisha; Tournigand, Christophe; Baumgaertner, Isabelle; Lebaleur, Yann; Sobhani, Iradj; Holmes, Elaine

    2015-09-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its etiopathogenesis and earlier diagnosis. Here, we investigated the fecal metabolic phenotype of patients with advanced colorectal neoplasia and controls using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate modeling. The fecal microbiota composition was assessed by quantitative real-time PCR as well as Wif-1 methylation levels in stools, serum, and urine and correlated to the metabolic profile of each patient. The predictivity of the model was 0.507 (Q(2)Y), and the explained variance was 0.755 (R(2)Y). Patients with advanced colorectal neoplasia demonstrated increased fecal concentrations of four short-chain fatty acids (valerate, acetate, propionate, and butyrate) and decreased signals relating to β-glucose, glutamine, and glutamate. The predictive accuracy of the multivariate (1)H NMR model was higher than that of the guaiac-fecal occult blood test and the Wif-1 methylation test for predicting advanced colorectal neoplasia. Correlation analysis between fecal metabolites and bacterial profiles revealed strong associations between Faecalibacterium prausnitzii and Clostridium leptum species with short-chain fatty acids concentration and inverse correlation between Faecalibacterium prausnitzii and glucose. These preliminary results suggest that fecal metabonomics may potentially have a future role in a noninvasive colorectal screening program and may contribute to our understanding of the role of these dysregulated molecules in the cross-talk between the host and its bacterial microbiota.

  1. Monitoring the on-line titration of enantiomeric omeprazole employing continuous-flow capillary microcoil 1H NMR spectroscopy.

    PubMed

    Hentschel, Petra; Holtin, Karsten; Steinhauser, Lisa; Albert, Klaus

    2012-12-01

    The titration of the (S)-enantiomer of omeprazole with the (R)-enantiomer in chloroform-d(1) is monitored by continuous-flow capillary microcoil (1)H NMR spectroscopy employing a microcoil with a detection volume of 1.5 µl. The observed changes of the (1)H NMR chemical shifts indicate the formation of a heterochiral (R,S) dimer of omeprazole via its sulfinyl group and the NH group of the benzimidazole ring.

  2. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  3. Characterization of water-soluble organic matter in urban aerosol by 1H-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chalbot, Marie-Cecile G.; Chitranshi, Priyanka; Gamboa da Costa, Gonçalo; Pollock, Erik; Kavouras, Ilias G.

    2016-03-01

    The functional and 13C isotopic compositions of water-soluble organic carbon (WSOC) in atmospheric aerosol were determined by nuclear magnetic resonance (1H-NMR) and isotope ratio mass spectrometry (IRMS) in an urban location in the Southern Mississippi Valley. The origin of WSOC was resolved using the functional distribution of organic hydrogen, δ13C ratio, and positive matrix factorization (PMF). Three factors were retained based on NMR spectral bins loadings. Two factors (factors 1 and 3) demonstrated strong associations with the aliphatic region in the NMR spectra and levoglucosan resonances. Differences between the two factors included the abundance of the aromatic functional group for factor 1, indicating fresh emissions and, for factor 3, the presence of resonances attributed to secondary ammonium nitrate and low δ13C ratio values that are indicative of secondary organic aerosol. Factors 1 and 3 added 0.89 and 1.08 μgC m-3, respectively, with the highest contribution in the summer and fall. Factor 2 retained resonances consistent with saccharides and was attributed to pollen particles. Its contribution to WSOC varied from 0.22 μgC m-3 in winter to 1.04 μgC m-3 in spring.

  4. Topotecan dynamics, tautomerism and reactivity--1H/13C NMR and ESI MS study.

    PubMed

    Hyz, Karolina; Kawecki, Robert; Bednarek, Elzbieta; Bocian, Wojciech; Sitkowski, Jerzy; Kozerski, Lech

    2010-08-01

    Topotecan (TPT) is in clinical use as an antitumor agent, hycamtin. Because of this, it requires both biologically and chemically useful information to be available. TPT acts by binding to the covalent complex formed by nicked DNA and topoisomerase I. This has a poisonous effect since inserted into the single-strand nick and TPT inhibits its religation. We used NMR to trace TPT dynamics, tautomerism and solvolysis products in various solvents and conditions. Chemical stability was assessed in methanol and DMSO as compared to water, and the regioselectivity of the N- and O-methylation was studied using various alkylating agents. The reaction products of quaternization of the nitrogen atom and methylation of the oxygen atom were characterized by means of ESI MS, (1)H/(13)C-HMBC and -HSQCAD NMR. We have focused on the NMR characterization of TPT with an anticipation that its aggregation, tumbling properties and the intramolecular dipolar interactions will be a common feature for other compounds described in this article. These features can also be useful in tracing the interactions of this class of topoisomerase I (TopoI) poisons with DNA. Moreover, the results explained shed light on the recently disclosed problem of lack of stability of TPT in the heart tissue homogenate samples using the analytical assays developed for this class of compounds carried out in the presence of methanol. PMID:20623719

  5. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    SciTech Connect

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  6. Characterization of D-glucaric acid using NMR, x-ray crystal structure, and MM3 molecular modeling analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    D-glucaric acid was characterized in solution by comparing NMR spectra from the isotopically unlabeled molecule with those from D-glucaric acid labeled with deuterium or carbon-13 atoms. The NMR studies provided unequivocal assignments for all carbon atoms and non-hydroxyl protons of the molecule. ...

  7. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  8. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained.

  9. A study on the AMACR catalysed elimination reaction and its application to inhibitor testing† †Electronic supplementary information (ESI) available: 1H NMR spectra of synthesised compounds; details of X-ray crystal structure determination of compound 35; original data for Table 1; plots of fluorescence resulting from reaction of sensors 33 and 34 with fluoride solutions. CCDC 1408401. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob01541c Click here for additional data file. Click here for additional data file.

    PubMed Central

    Yevglevskis, Maksims; Lee, Guat L.; Sun, Jenny; Zhou, Shiyi; Sun, Xiaolong; Kociok-Köhn, Gabriele; James, Tony D.; Woodman, Timothy J.

    2016-01-01

    α-Methylacyl-CoA racemase (AMACR; P504S) catalyses a key step in the degradation of branched-chain fatty acids and is important for the pharmacological activation of Ibuprofen and related drugs. Levels of AMACR are increased in prostate and other cancers, and it is a drug target. Development of AMACR as a drug target is hampered by lack of a convenient assay. AMACR irreversibly catalyses the elimination of HF from 3-fluoro-2-methylacyl-CoA substrates, and this reaction was investigated for use as an assay. Several known inhibitors and alternative substrates reduced conversion of 3-fluoro-2-methyldecanoyl-CoA by AMACR, as determined by 1H NMR. The greatest reduction of activity was observed with known potent inhibitors. A series of novel acyl-CoA esters with aromatic side chains were synthesised for testing as chromophoric substrates. These acyl-CoA esters were converted to unsaturated products by AMACR, but their use was limited by non-enzymatic elimination. Fluoride sensors were also investigated as a method of quantifying released fluoride and thus AMACR activity. These sensors generally suffered from high background signal and lacked reproducibility under the assay conditions. In summary, the elimination reaction can be used to characterise inhibitors, but it was not possible to develop a convenient colorimetric or fluorescent assay using 3-fluoro-2-methylacyl-CoA substrates. PMID:26537174

  10. Investigation of the Conversion Reaction Mechanisms for Binary Copper(II) Compounds by Solid-State NMR Spectroscopy and X-ray Diffraction

    SciTech Connect

    Yamakawa, N.; Jiang, M; Grey, C

    2009-01-01

    The conversion reaction mechanisms of CuS, CuF2, and CuO during the electrochemical reaction with Li are studied by solid-state 63Cu, 19F, and 7Li nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). For CuS, a two-step reaction is observed that is associated with an insertion reaction involving first limited incorporation of Li into CuS and then a two-phase reaction to form a material with the approximate composition LiCuS. This is followed by a conversion reaction to form Li2S and Cu, Cu1.96S being formed as a side product of the decomposition of LiCuS. Evidence for the insertion phases is found from both NMR and XRD. A direct conversion reaction to form LiF and Cu is seen for CuF2, whereas the 7Li NMR results indicate that CuO can tolerate a small amount of Li substitution before reacting to form Li2O and Cu. Both the diffraction and NMR results indicate that the size of the Cu particles formed on discharge are much larger in the CuS system, which is thought to result from the higher Cu1+ mobilities in the intermediate intercalation compounds LixCuS. The factors that control the possible mechanisms for these conversion reactions are discussed.

  11. Conformational and isomerizational studies of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile using NMR and vibrational spectra, X-ray analysis and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Gatial, A.; Milata, V.; Prónayová, N.; Kožíšek, J.; Breza, M.; Matějka, P.

    2008-11-01

    The IR, Raman and NMR spectra of 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile (DMHSP) [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN) (SO 2CH 3)] as a solid and in different solvents were measured. The spectra and X-ray analysis revealed that DMHSP was prepared as a pure E-isomer and E- syn conformer with the syn orientation of N, N-dimethylhydrazino group towards the C dbnd C double bond in the solid state. Due to the low barrier practically free isomerization process occurred in solutions at room temperature. DMHSP exists in more polar solvents as pure E-isomer in conformational equilibrium between E- syn and E- anti but in a less polar solvent the presence of Z-isomer was observed as well. From the IR and NMR temperature dependence spectra in polar solvents the energy difference between E- anti and E- syn of Δ H = 2.3 ± 0.9 kJ/mol and Δ H = 3.2 ± 0.4 kJ/mol, respectively, was estimated with the syn one being more stable. The geometries and relative energies of possible conformers of DMHSP were evaluated using ab initio MP2 and B3LYP density functional methods in 6-31G ∗∗ basis set and compared with the X-ray data. The interpretation of NMR spectra was supported by ab initio MP2 calculations. The influence of solvent polarity on the conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using PCM model. In addition, the observed IR and Raman bands were compared also with harmonic vibrational frequencies, calculated on the same levels of theory, and assigned on the base of potential energy distribution.

  12. Automated data evaluation and modelling of simultaneous (19) F-(1) H medium-resolution NMR spectra for online reaction monitoring.

    PubMed

    Zientek, Nicolai; Laurain, Clément; Meyer, Klas; Paul, Andrea; Engel, Dirk; Guthausen, Gisela; Kraume, Matthias; Maiwald, Michael

    2016-06-01

    Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. In contrast to high-resolution online NMR (HR-NMR), MR-NMR can be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture from the reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by (1) H HR-NMR (500 MHz) and (1) H and (19) F MR-NMR (43 MHz) as a model system. The parallel online measurement is realised by splitting the flow, which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for (1) H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Ye, Yue Qi; Malon, Michal; Martineau, Charlotte; Taulelle, Francis; Nishiyama, Yusuke

    2014-02-01

    A novel method to realize rapid repetition of 1H NMR experiments at ultra-fast MAS frequencies is demonstrated. The ultra-fast MAS at 110 kHz slows the 1H-1H spin diffusion, leading to variations of 1H T1 relaxation times from atom to atom within a molecule. The different relaxation behavior is averaged by applying 1H-1H recoupling during relaxation delay even at ultra-fast MAS, reducing the optimal relaxation delay to maximize the signal to noise ratio. The way to determine optimal relaxation delay for arbitrary relaxation curve is shown. The reduction of optimal relaxation delay by radio-frequency driven recoupling (RFDR) was demonstrated on powder samples of glycine and ethenzamide with one and multi-dimensional NMR measurements.

  14. Interaction of antiaggregant molecule ajoene with membranes. An ESR and 1H, 2H, 31P-NMR study.

    PubMed

    Debouzy, J C; Neumann, J M; Hervé, M; Daveloose, D; Viret, J; Apitz-Castro, R

    1989-01-01

    The structure of ajoene, a molecule extracted from garlic, has been studied by 1H-NMR and its interaction with model membranes by 1H-, 2H-, 31-P-NMR and ESR experiments. This study clearly shows that the ajoene molecule is located deep in the layer and is close to the interlayer medium. Moreover while NMR experiments show that the membrane structure is only slightly affected by the presence of ajoene, ESR experiments reveal significant modifications in phospholipid dynamics. This interaction, observed before with the phenothiazine derivative, promazine, results in an increase of the membrane fluidity in its hydrophobic part and could be related to clinical properties of ajoene.

  15. Characterization of nitrogen compound types in shale oils using /sup 1/H NMR and high resolution mass spectral analyses

    SciTech Connect

    Thompson, L.F.; Netzel, D.A.

    1984-12-01

    The /sup 1/H nuclear magnetic resonance (NMR) spectra were obtained for nitrogen compound-type fractions from a Geokinetics shale oil distillate and a Caribou intermediately refined oil obtained during catalytic hydroprocessing of the Geokinetics distillate. These fractions were generated using alumina and silica chromatography. The NMR spectra of the fractions were analyzed for hydrogen types and for individual compounds and the results compared with mass spectral data. The observed differences in resonance intensities in the /sup 1/H NMR spectra of the nitrogen fractions from the distillate and intermediately refined oil are also discussed in relationship to hydroprocessing. 17 refs., 17 figs., 5 tabs.

  16. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  17. In vitro determination by 1H-NMR studies that bile with shorter nucleation times contain cholesterol-enriched vesicles.

    PubMed

    Sequeira, S S; Parkes, H G; Ellul, J P; Murphy, G M

    1995-06-01

    Although biliary vesicles are considered to be the primary source of cholesterol found in cholesterol gallstones, difficulties in quantitatively separating the different cholesterol transport modes in bile still remain. Proton nuclear magnetic resonance spectroscopy (1H-NMR) offers an alternative approach. Investigations were carried out on both model biles and human gallbladder bile samples: (i) to follow the effect of increasing sodium glycocholate concentrations on the 1H-NMR spectra of arachidonic acid rich-phospholipid, and cholesterol-lecithin vesicles, (ii) to compare the concentrations of total phospholipids in bile determined enzymatically with those obtained by integration of the phospholipid choline head group resonance peak, and (iii) to examine the relationship between biliary cholesterol nucleation time (NT) and the areas of the biliary lipid 1H-NMR peaks. It was found that the molecular motions of vesicle phospholipid, as determined by 1H-NMR, were restricted by saturation with cholesterol. In bile from patients with cholesterol gallstones, the reduced NMR fluidity of the phospholipid choline-head group indicated that the proportion of cholesterol-phospholipid vesicles containing more than 50% cholesterol, on a molar basis, was increased. The ratios of the N+(CH3)3 and = CH proton resonance peaks showed no overlap between samples with cholesterol gallstones and shorter NT and those with either no gallstones or pigment stones and longer NT. 1H-NMR spectroscopy indicates in a non-invasive manner those biles which are prone to cholesterol crystal formation.

  18. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  19. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  20. Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update

    PubMed Central

    Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996

  1. Quantitative determination of glyphosate in human serum by 1H NMR spectroscopy.

    PubMed

    Cartigny, Bernard; Azaroual, Nathalie; Imbenotte, Michel; Mathieu, Daniel; Parmentier, Erika; Vermeersch, Gaston; Lhermitte, Michel

    2008-01-15

    The determination and quantification of glyphosate in serum using (1)H NMR spectroscopy is reported. This method permitted serum samples to be analysed without derivatization or any other sample pre-treatment, using 3-trimethylsilyl 2,2',3,3'-tetradeuteropropionic acid (TSP-d(4)) as a qualitative and quantitative standard. Characterization of the herbicide N-(phosphonomethyl)glycine was performed by analysing chemical shifts and coupling constant patterns. Quantification was performed by relative integration of CH(2)-P protons to the TSP-d(4) resonance peak. The method was tested for repeatability (n=5) and yielded coefficients of variation of 1% and 3%, respectively: detection and quantification limits were also determined and were 0.03 and 0.1mmol/L, respectively. The method was applied to the quantification of glyphosate in a case of acute poisoning. PMID:18371753

  2. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  3. Cloud point, fluorimetric and 1H NMR studies of ibuprofen-polymer systems

    NASA Astrophysics Data System (ADS)

    Khan, Iqrar Ahmad; Anjum, Kahkashan; Koya, P. Ajmal; Qadeer, Atiytul; Kabir-ud-Din

    2014-01-01

    Influence of six polymers viz. hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium carboxy methyl cellulose (NaCMC) and dextran sulfate (DxS) on solution properties of amphiphilic drug ibuprofen (IBF) has been described in this work. As only HPMC showed the clouding behavior (among the polymers employed herein), its cloud point (CP) was studied in detail in presence of varying amounts of IBF containing different fixed concentrations of inorganic salts (NaCl, NaNO3, Na2SO4, KBr and KNO3). Presence of all these salts had CP reducing effect. By means of steady state fluorescence quenching studies, average aggregation number of IBF aggregates (Nagg) in the presence of varying amounts of the mentioned polymers were evaluated and discussed. 1H NMR studies show that the magnitude of chemical shifts (δ) varies with the nature of the polymer.

  4. Low-field (1)H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees.

    PubMed

    Defernez, Marianne; Wren, Ella; Watson, Andrew D; Gunning, Yvonne; Colquhoun, Ian J; Le Gall, Gwénaëlle; Williamson, David; Kemsley, E Kate

    2017-02-01

    This work reports a new screening protocol for addressing issues of coffee authenticity using low-field (60MHz) bench-top (1)H NMR spectroscopy. Using a simple chloroform-based extraction, useful spectra were obtained from the lipophilic fraction of ground roast coffees. It was found that 16-O-methylcafestol (16-OMC, a recognized marker compound for robusta beans) gives rise to an isolated peak in the 60MHz spectrum, which can be used as an indicator of the presence of robusta beans in the sample. A total of 81 extracts from authenticated coffees and mixtures were analysed, from which the detection limit of robusta in arabica was estimated to be between 10% and 20% w/w. Using the established protocol, a surveillance exercise was conducted of 27 retail samples of ground roast coffees which were labelled as "100% arabica". None were found to contain undeclared robusta content above the estimated detection limit. PMID:27596398

  5. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by 1H NMR spectroscopy.

    PubMed

    Staneva, Jordanka; Denkova, Pavletta; Todorova, Milka; Evstatieva, Ljuba

    2011-01-01

    (1)H NMR spectroscopy was used as a method for quantitative analysis of sesquiterpene lactones present in a crude lactone fraction isolated from Arnica montana. Eight main components - tigloyl-, methacryloyl-, isobutyryl- and 2-methylbutyryl-esters of helenalin (H) and 11α,13-dihydrohelenalin (DH) were identified in the studied sample. The method allows the determination of the total amount of sesquiterpene lactones and the quantity of both type helenalin and 11α,13-dihydrohelenalin esters separately. Furthermore, 6-O-tigloylhelenalin (HT, 1), 6-O-methacryloylhelenalin (HM, 2), 6-O-tigloyl-11α,13-dihydrohelenalin (DHT, 5), and 6-O-methacryloyl-11α,13-dihydrohelenalin (DHM, 6) were quantified as individual components.

  6. 1H NMR Cryoporometry Study of the Melting Behavior of Water in White Cement

    NASA Astrophysics Data System (ADS)

    Boguszyńska, Joanna; Tritt-Goc, Jadwiga

    2004-09-01

    The pore size of white cement samples is studied by the melting behaviour of water confined in it, using 1H NMR cryopormetry. The influence of the preparing method and antifreeze admixture on the pore size and distribution in cement samples is investigated at 283 K. The addition of an antifreeze admixture [containing 1% Sika Rapid 2 by weight of the dry cement] influences the porosity. In wet prepared samples we observed a significant increase in the quantity of mesopores between 0.8 and 5 nm and a smaller increase of mesopores between 5 and 10 nm, when compared to cement without admixture. The compressive strength is related to the porosity of the cement. Therefore the cement with Sika Rapid 2, wet prepared at 278 K shows a higher strength than all other measured samples.

  7. 1H NMR and UV-visible data fusion for determining Sudan dyes in culinary spices.

    PubMed

    Di Anibal, Carolina V; Callao, M Pilar; Ruisánchez, Itziar

    2011-05-15

    Two data fusion strategies (variable and decision level) combined with a multivariate classification approach (Partial Least Squares-Discriminant Analysis, PLS-DA) have been applied to get benefits from the synergistic effect of the information obtained from two spectroscopic techniques: UV-visible and (1)H NMR. Variable level data fusion consists of merging the spectra obtained from each spectroscopic technique in what is called "meta-spectrum" and then applying the classification technique. Decision level data fusion combines the results of individually applying the classification technique in each spectroscopic technique. Among the possible ways of combinations, we have used the fuzzy aggregation connective operators. This procedure has been applied to determine banned dyes (Sudan III and IV) in culinary spices. The results show that data fusion is an effective strategy since the classification results are better than the individual ones: between 80 and 100% for the individual techniques and between 97 and 100% with the two fusion strategies.

  8. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  9. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    PubMed

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  10. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets

    PubMed Central

    Barone, Francesca; Elmi, Alberto; Romagnoli, Noemi; Bacci, Maria Laura

    2016-01-01

    When it comes to neuroscience, pigs represent an important animal model due to their resemblance with humans’ brains for several patterns including anatomy and developmental stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can provide important information about neurological health and function, proving its importance as both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scientific interest and value to obtain more standard physiological information regarding its composition and dynamics for both swine pathology and the refinement of experimental protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been applied in order to analyze the metabolomic profile of this biological fluid, and results showed the technique to be highly reproducible and reliable. The aim of the present study was to investigate in both qualitative and quantitative manner the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference in metabolites concentration between age groups, related to age and Blood-Brain-Barrier maturation. On each of the analyzed samples, 30 molecules could be observed above their limit of quantification, accounting for 95–98% of the total area of the spectra. The concentrations of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were found to decrease between P05 and P50, while the concentrations of glutamine, creatinine, methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 comparison was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules showed at P30 concentrations

  11. Multivariate modelling with 1H NMR of pleural effusion in murine cerebral malaria

    PubMed Central

    2011-01-01

    Background Cerebral malaria is a clinical manifestation of Plasmodium falciparum infection. Although brain damage is the predominant pathophysiological complication of cerebral malaria (CM), respiratory distress, acute lung injury, hydrothorax/pleural effusion are also observed in several cases. Immunological parameters have been assessed in pleural fluid in murine models; however there are no reports of characterization of metabolites present in pleural effusion. Methods 1H NMR of the sera and the pleural effusion of cerebral malaria infected mice were analyzed using principal component analysis, orthogonal partial least square analysis, multiway principal component analysis, and multivariate curve resolution. Results It has been observed that there was 100% occurrence of pleural effusion (PE) in the mice affected with CM, as opposed to those are non-cerebral and succumbing to hyperparasitaemia (NCM/HP). An analysis of 1H NMR and SDS-PAGE profile of PE and serum samples of each of the CM mice exhibited a similar profile in terms of constituents. Multivariate analysis on these two classes of biofluids was performed and significant differences were detected in concentrations of metabolites. Glucose, creatine and glutamine contents were high in the PE and lipids being high in the sera. Multivariate curve resolution between sera and pleural effusion showed that changes in PE co-varied with that of serum in CM mice. The increase of glucose in PE is negatively correlated to the glucose in serum in CM as obtained from the result of multiway principal component analysis. Conclusions This study reports for the first time, the characterization of metabolites in pleural effusion formed during murine cerebral malaria. The study indicates that the origin of PE metabolites in murine CM may be the serum. The loss of the components like glucose, glutamine and creatine into the PE may worsen the situation of patients, in conjunction with the enhanced glycolysis, glutaminolysis and

  12. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets.

    PubMed

    Ventrella, Domenico; Laghi, Luca; Barone, Francesca; Elmi, Alberto; Romagnoli, Noemi; Bacci, Maria Laura

    2016-01-01

    When it comes to neuroscience, pigs represent an important animal model due to their resemblance with humans' brains for several patterns including anatomy and developmental stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can provide important information about neurological health and function, proving its importance as both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scientific interest and value to obtain more standard physiological information regarding its composition and dynamics for both swine pathology and the refinement of experimental protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been applied in order to analyze the metabolomic profile of this biological fluid, and results showed the technique to be highly reproducible and reliable. The aim of the present study was to investigate in both qualitative and quantitative manner the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference in metabolites concentration between age groups, related to age and Blood-Brain-Barrier maturation. On each of the analyzed samples, 30 molecules could be observed above their limit of quantification, accounting for 95-98% of the total area of the spectra. The concentrations of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were found to decrease between P05 and P50, while the concentrations of glutamine, creatinine, methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 comparison was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules showed at P30 concentrations outside

  13. 1H NMR metabolomics of earthworm responses to polychlorinated biphenyl (PCB) exposure in soil.

    PubMed

    Whitfield Åslund, Melissa L; Simpson, André J; Simpson, Myrna J

    2011-06-01

    (1)H NMR-based metabolomics was used to examine the metabolic profile of D(2)O-buffer extracted tissues of Eisenia fetida earthworms exposed for 2 days to an artificial soil spiked with sub-lethal concentrations of polychlorinated biphenyls (PCBs) (0, 0.5, 1, 5, 10, or 25 mg/kg Aroclor 1254). Univariate statistical analysis of the identified metabolites revealed a significant increase in ATP concentration in earthworms exposed to the highest soil PCB concentration, but detected no significant changes in other metabolites. However, a multivariate approach which considers alterations in multiple metabolites simultaneously, identified a significant linear relationship between earthworm metabolic profiles and PCB concentration (cross-validated PLS-regression with 7 components, R(2)X = 0.99, R(2)Y = 0.77, Q(2)Y = 0.45, P < 0.001). Significant changes in pair-wise metabolic correlations were also detected as PCB concentration increased. For example, lysine and ATP concentrations showed no apparent correlation in control earthworms (r = 0.22, P = 0.54), but were positively correlated in earthworms from the 25 mg/kg treatment (r = 0.87, P = 0.001). Overall, the observed metabolic responses suggest that PCBs disrupted both carbohydrate (energy) metabolism and membrane (osmolytic) function in E. fetida. The ability of (1)H NMR-based metabolomics to detect these responses suggests that this method offers significant potential for direct assessment of sub-lethal PCB toxicity in soil. PMID:21424327

  14. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  15. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.

    PubMed

    Son, Hong-Seok; Hwang, Geum-Sook; Kim, Ki Myong; Kim, Eun-Young; van den Berg, Frans; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2009-02-01

    (1)H NMR spectroscopy coupled with multivariate statistical analysis was used for the first time to investigate metabolic changes in musts during alcoholic fermentation and wines during aging. Three Saccharomyces cerevisiae yeast strains (RC-212, KIV-1116, and KUBY-501) were also evaluated for their impacts on the metabolic changes in must and wine. Pattern recognition (PR) methods, including PCA, PLS-DA, and OPLS-DA scores plots, showed clear differences for metabolites among musts or wines for each fermentation stage up to 6 months. Metabolites responsible for the differentiation were identified as valine, 2,3-butanediol (2,3-BD), pyruvate, succinate, proline, citrate, glycerol, malate, tartarate, glucose, N-methylnicotinic acid (NMNA), and polyphenol compounds. PCA scores plots showed continuous movements away from days 1 to 8 in all musts for all yeast strains, indicating continuous and active fermentation. During alcoholic fermentation, the highest levels of 2,3-BD, succinate, and glycerol were found in musts with the KIV-1116 strain, which showed the fastest fermentation or highest fermentative activity of the three strains, whereas the KUBY-501 strain showed the slowest fermentative activity. This study highlights the applicability of NMR-based metabolomics for monitoring wine fermentation and evaluating the fermentative characteristics of yeast strains.

  16. Effects of high fructose and salt feeding on systematic metabonome probed via (1) H NMR spectroscopy.

    PubMed

    Yang, Yongxia; Zheng, Lingyun; Wang, Linlin; Wang, Shumei; Wang, Yaling; Han, Zhihui

    2015-04-01

    Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt-fed rats was investigated by use of (1) H nuclear magnetic resonance (NMR)-based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time-dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2-oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N-oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern.

  17. Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study.

    PubMed

    Lee, Jang-Eun; Hwang, Geum-Sook; Van Den Berg, Frans; Lee, Cherl-Ho; Hong, Young-Shick

    2009-08-19

    The chemical composition of grape wines varies with grape variety, environmental factors of climate and soil, and bacterial strains, which can each affect the wine quality. Using (1)H NMR analysis coupled with multivariate statistical data sets, we investigated the effects of grape vintage on metabolic profiles of wine and the relationship between wine metabolites and meteorological data. Principal component analysis (PCA) showed a clear differentiation between Meoru wines that were vinified with the same yeast strain and Meoru grapes harvested from the same vineyard but with a different vintage. The metabolites contributing to the differentiation were identified as 2,3-butandiol, lactic acid, alanine, proline, gamma-aminobutyric acid (GABA), choline, and polyphenols, by complementary PCA loading plot. Markedly higher levels of proline, lactic acid and polyphenols were observed in the 2006 vintage wines compared to those of 2007 vintage, showing excellent agreement with the meteorological data that the sun-exposed time and rainfall in 2006 were approximately two times more and four times less, respectively, than those in 2007. These results revealed the important role of climate during ripening period in the chemical compositions of the grape. This study highlights the reliability of NMR-based metabolomic data by integration with meteorological data in characterizing wine or grape.

  18. Localized in Vivo Isotropic-Anisotropic Correlation 1H NMR Spectroscopy Using Ultraslow Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Majors, Paul D.

    2006-01-01

    Previous work has shown that it is possible to separate the susceptibility broadening in the 1H NMR metabolite spectrum obtained in a live mouse from the isotropic information, thus significantly increasing the spectral resolution. This was achieved using ultra-slow magic angle spinning of the animal combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. However, PHORMAT cannot be used for spatially selective spectroscopy. In this article a modified sequence called LOCMAT (localized magic angle turning) is introduced that makes this possible. Proton LOCMAT spectra are shown for the liver and heart of a live mouse, while spinning the animal at a speed of 4 Hz in a 2 Tesla field. It was found that even in this relatively low field LOCMAT provided isotropic line widths that are a factor 4-10 times smaller than the ones obtained in a stationary animal, and that the susceptibility broadening of the heart metabolites shows unusual features not observed for a dead animal. Finally, the limitations of LOCMAT and possible ways to improve the technique are discussed. It is concluded that in vivo LOCMAT can significantly enhance the utility of NMR spectroscopy for biomedical research.

  19. Discrimination of the geographical origin of beef by (1)H NMR-based metabolomics.

    PubMed

    Jung, Youngae; Lee, Jueun; Kwon, Joseph; Lee, Kwang-Sik; Ryu, Do Hyun; Hwang, Geum-Sook

    2010-10-13

    The geographical origin of beef is of increasing interest to consumers and producers due to "mad cow" disease and the implementation of the Free Trade Agreement (FTA). In this study, (1)H NMR spectroscopy coupled with multivariate statistical analyses was used to differentiate the geographical origin of beef samples. Principal component analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) showed significant separation between extracts of beef originating from four countries: Australia, Korea, New Zealand, and the United States. The major metabolites responsible for differentiation in OPLS-DA loading plots were succinate and various amino acids including isoleucine, leucine, methionine, tyrosine, and valine. A one-way ANOVA was performed to statistically certify the difference in metabolite levels. The data suggest that NMR-based metabolomics is an efficient method to distinguish fingerprinting difference between raw beef samples, and several metabolites including various amino acids and succinate can be possible biomarkers for discriminating the geographical origin of beef. PMID:20831251

  20. Combined Analysis of Stable Isotope, (1)H NMR, and Fatty Acid To Verify Sesame Oil Authenticity.

    PubMed

    Kim, Jeongeun; Jin, Gyungsu; Lee, Yunhee; Chun, Hyang Sook; Ahn, Sangdoo; Kim, Byung Hee

    2015-10-14

    The aim of this study was to verify the authenticity of sesame oils using combined analysis of stable isotope ratio, (1)H NMR spectroscopy, and fatty acid profiles of the oils. Analytical data were obtained from 35 samples of authentic sesame oils and 29 samples of adulterated sesame oils currently distributed in Korea. The orthogonal projection to latent structure discriminant analysis technique was used to select variables that most effectively verify the sesame oil authenticity. The variables include δ(13)C value, integration values of NMR peaks that signify the CH3 of n-3 fatty acids, CH2 between two C═C, protons from sesamin/sesamolin, and 18:1n-9, 18:3n-3, 18:2t, and 18:3t content values. The authenticity of 65 of 70 blind samples was correctly verified by applying the range of the eight variables found in the authentic sesame oil samples, suggesting that triple analysis is a useful approach to verify sesame oil authenticity.

  1. 1H-NMR measurements of proton mobility in nano-crystalline YSZ.

    PubMed

    Hinterberg, Judith; Adams, Alina; Blümich, Bernhard; Heitjans, Paul; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2013-12-01

    We report nuclear magnetic resonance (NMR) results on water saturated, dense, nano-crystalline YSZ samples (9.5 mol% yttria doped zirconia) which exhibit proton conductivity at temperatures as low as room temperature. (1)H-NMR spectra recorded under static and magic angle spinning conditions show two distinct signals. Their temperature-dependent behavior and their linewidths suggest that one can be attributed to (free) water adsorbed on the surface of the sample and the other one to mobile protons within the sample. This interpretation is supported by comparison with measurements on a single-crystalline sample. For the nano-crystalline samples motional narrowing is observed for the signal originating from protons in the sample interior. For these protons, the analysis of temperature and field dependent spin-lattice relaxation time T1 points towards diffusion in a confined two-dimensional geometry. We attribute this quasi two-dimensional motion to protons that are mobile along internal interfaces or nanopores of nano-crystalline YSZ.

  2. Secondary structure determination of human. beta. -endorphin by /sup 1/H NMR spectroscopy

    SciTech Connect

    Lichtarge, O.; Jardetzky, O.; Li, C.H.

    1987-09-08

    The /sup 1/H NMR spectra of human ..beta..-endorphin indicate that the peptide exists in random-coil form in aqueous solution but becomes helical in mixed solvent. Thermal denaturation NMR experiments show that in water there is no transition between 24 and 75/sup 0/C, while a slow noncooperative thermal unfolding is observed in a 60% methanol-40% water mixed solvent in the same temperature range. These findings are consistent with circular dichroism studies by other workers concluding that ..beta..-endorphin is a random coil in water but that it forms 50% ..cap alpha..-helix or more in mixed solvents. The peptide in the mixed water-methanol solvent was further studied by correlated spectroscopy (COSY) and nuclear Overhauser effect spectroscopy (NOESY) experiments. These allow a complete set of assignments to be made and establish two distinct stretches over which the solvent induces formation of ..cap alpha..-helices: the first occurs between Tyr-1 and Thr-12 and the second between Leu-14 and extending to Lys-28. There is evidence that the latter is capped by a turn occurring between Lys-28 and Glu-31. These helices form at the enkephalin receptor binding site, which is at the amino terminus, and at the morphine receptor binding site, located at the carboxyl terminus. The findings suggest that these two receptors may specifically recognize ..cap alpha..-helices.

  3. Combined Analysis of Stable Isotope, (1)H NMR, and Fatty Acid To Verify Sesame Oil Authenticity.

    PubMed

    Kim, Jeongeun; Jin, Gyungsu; Lee, Yunhee; Chun, Hyang Sook; Ahn, Sangdoo; Kim, Byung Hee

    2015-10-14

    The aim of this study was to verify the authenticity of sesame oils using combined analysis of stable isotope ratio, (1)H NMR spectroscopy, and fatty acid profiles of the oils. Analytical data were obtained from 35 samples of authentic sesame oils and 29 samples of adulterated sesame oils currently distributed in Korea. The orthogonal projection to latent structure discriminant analysis technique was used to select variables that most effectively verify the sesame oil authenticity. The variables include δ(13)C value, integration values of NMR peaks that signify the CH3 of n-3 fatty acids, CH2 between two C═C, protons from sesamin/sesamolin, and 18:1n-9, 18:3n-3, 18:2t, and 18:3t content values. The authenticity of 65 of 70 blind samples was correctly verified by applying the range of the eight variables found in the authentic sesame oil samples, suggesting that triple analysis is a useful approach to verify sesame oil authenticity. PMID:26395416

  4. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes. PMID:26540222

  5. A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements.

    PubMed

    Wang, Jinbu; Zuo, Xiaobing; Yu, Ping; Xu, Huan; Starich, Mary R; Tiede, David M; Shapiro, Bruce A; Schwieters, Charles D; Wang, Yun-Xing

    2009-10-30

    We report a "top-down" method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small-angle X-ray scattering data, respectively, to determine global architectures of RNA molecules consisting of mostly A-form-like duplexes. The method is implemented in the G2G (from global measurement to global structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nt RNA using experimental data. The backbone root-mean-square deviation of the ensemble of the calculated global structures relative to the X-ray crystal structure is 3.0+/-0.3 A using the experimental data and is only 2.5+/-0.2 A for the three duplexes that were orientation restrained during the calculation. The global structure simplifies interpretation of multidimensional nuclear Overhauser spectra for high-resolution structure determination. The potential general application of the method for RNA structure determination is discussed. PMID:19666030

  6. Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy

    USGS Publications Warehouse

    Malcolm, R.L.; Hayes, T.

    1994-01-01

    1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).

  7. Conformations of a model cyclic hexapeptide, CYIQNC: (1)H-NMR and molecular dynamics studies.

    PubMed

    Kulkarni, Ashok Kumar; Ojha, Rajendra Prasad

    2015-09-01

    Solution conformation of the cyclic hexapeptide sequence, [cyclo-S-Cys-Tyr-Ile-Gln-Asn-Cys-S] (CYIQNC) - a disulfide-linked fragment of a neurohypophyseal peptide hormone oxytocin (OT) - has been investigated by high-field one-dimensional (1D) and two-dimensional (2D) NMR spectroscopic methods and compared with the results obtained from computer simulation studies. (1)H-NMR results based on temperature dependence of amide proton chemical shifts and nuclear Overhauser effect indicate that peptide in solution populates different conformations, characterized by two fused β-turns. The segment Ile(3)-Gln(4)-Asn(5)-Cys(6) yields a preferred type-III β-turn at residues 4, 5 (HB, 3HN → 6CO), while the segment Cys(6), Cys(1)-Tyr(2)-Ile(3) exhibits inherently weaker, flexible β-turn either of type I/II'/III/half-turn at residues 1, 2 (HB, 6HN → 3CO). The computer simulation studies using a mixed protocol of distance geometry-simulated annealing followed by constrained minimization, restrained molecular dynamics, and energy minimization showed the possibility of existence of additional conformations with the hydrogen bonds, (a) 5HN → 3CO and (b) 2HN → 6CO. These results, therefore, indicate that the additional conformations obtained from both NMR and simulation studies can also be possible to the peptide. These additional conformations might have very small population in the solution and did not show their signatures in these conditions. These findings will be helpful in designing more analogs with modifications in the cyclic moiety of OT.

  8. Conformations of a model cyclic hexapeptide, CYIQNC: (1)H-NMR and molecular dynamics studies.

    PubMed

    Kulkarni, Ashok Kumar; Ojha, Rajendra Prasad

    2015-09-01

    Solution conformation of the cyclic hexapeptide sequence, [cyclo-S-Cys-Tyr-Ile-Gln-Asn-Cys-S] (CYIQNC) - a disulfide-linked fragment of a neurohypophyseal peptide hormone oxytocin (OT) - has been investigated by high-field one-dimensional (1D) and two-dimensional (2D) NMR spectroscopic methods and compared with the results obtained from computer simulation studies. (1)H-NMR results based on temperature dependence of amide proton chemical shifts and nuclear Overhauser effect indicate that peptide in solution populates different conformations, characterized by two fused β-turns. The segment Ile(3)-Gln(4)-Asn(5)-Cys(6) yields a preferred type-III β-turn at residues 4, 5 (HB, 3HN → 6CO), while the segment Cys(6), Cys(1)-Tyr(2)-Ile(3) exhibits inherently weaker, flexible β-turn either of type I/II'/III/half-turn at residues 1, 2 (HB, 6HN → 3CO). The computer simulation studies using a mixed protocol of distance geometry-simulated annealing followed by constrained minimization, restrained molecular dynamics, and energy minimization showed the possibility of existence of additional conformations with the hydrogen bonds, (a) 5HN → 3CO and (b) 2HN → 6CO. These results, therefore, indicate that the additional conformations obtained from both NMR and simulation studies can also be possible to the peptide. These additional conformations might have very small population in the solution and did not show their signatures in these conditions. These findings will be helpful in designing more analogs with modifications in the cyclic moiety of OT. PMID:25375824

  9. Disentangling Complex Mixtures of Compounds with Near-Identical (1) H and (13) C NMR Spectra using Pure Shift NMR Spectroscopy.

    PubMed

    Castañar, Laura; Roldán, Raquel; Clapés, Pere; Virgili, Albert; Parella, Teodor

    2015-05-18

    The thorough analysis of highly complex NMR spectra using pure shift NMR experiments is described. The enhanced spectral resolution obtained from modern 2D HOBS experiments incorporating spectral aliasing in the (13) C indirect dimension enables the distinction of similar compounds exhibiting near-identical (1) H and (13) C NMR spectra. It is shown that a complete set of extremely small Δδ((1) H) and Δδ((13) C) values, even below the natural line width (1 and 5 ppb, respectively), can be simultaneously determined and assigned.

  10. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  11. Distinguishing sources of groundwater nitrate by 1H NMR of dissolved organic matter.

    PubMed

    Lu, Jianhang; Chang, Andrew C; Wu, Laosheng

    2004-11-01

    Dissolved organic matter (DOM) originating from a certain source usually carries characteristic marks in its molecular structures that can be recognized by spectroscopic analysis. Sources of water-borne contaminants, such as nitrate, can be identified by recognition of the characteristics of DOM entrained in the water. In this study, DOM in groundwaters sampled from a dairy/crop production area (Chino Basin, CA) was analyzed by 1H nuclear magnetic resonance (1H NMR). Results showed that DOM derived from natural soil organic matter has a characteristic resonance at a chemical shift region of 4.0-4.3 ppm, while DOM derived from dairy wastes has a characteristic resonance at a lower chemical shift region of 3.2-3.6 ppm. These signature resonances were then used to distinguish the origins of nitrate in the groundwater. It was found that disposal of dairy wastes on croplands is the primary source of nitrate contamination in groundwater underlying the Chino Basin dairy area.

  12. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  13. An investigation of catalytic active phase-support interactions by IR, NMR and x-ray absorption spectroscopies. Progress report, January 15, 1991--July 31, 1993

    SciTech Connect

    Haller, G.L.

    1993-07-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support can affect percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Solid state {sup 29}Si NMR was used to obtain a new correlation between partial charge on the Si which comprises a part of the SiOHAl Br{o}nsted acid structure in amorphous silica-aluminas. We also describe two potential improvements in solid state NMR applied to catalysts and catalysts supports. One is experimental, dynamic angle spinning NMR, a new technique for obtaining high resolution spectra of quadrupolar nuclei, e.g., {sup 27}Al. The second approach is an alternative to the standard fast Fourier transform of the free induction decay to convert from the time to spectral domain, the maximum entropy method. Effect of different methods of preparation of Pd/L-zeolites is described. By comparison to analogous Pt systems, it is the inherent chemistry of the L-zeolite which results in better dispersion when impregnation preparation is used relative to ion exchange preparation. X-ray absorption spectroscopy is used to compare the effect of support (SiO{sub 2} and L-zeolite) on the degree and kind of Pt-Ni interaction. When supported in L-zeolite and promoted with Ni, Pt has improved stability both with regard to self-poisoning and sulfur catalyzed agglomeration.

  14. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    NASA Astrophysics Data System (ADS)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  15. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  16. Synthesis of a Tight Intramolecular OH···Olefin Interaction, Probed by IR, (1)H NMR, and Quantum Chemistry.

    PubMed

    Struble, Mark D; Holl, Maxwell Gargiulo; Coombs, Gavin; Siegler, Maxime A; Lectka, Thomas

    2015-05-01

    We have synthesized a molecule containing a tight hydrogen-bonding interaction between an alcohol and a nonconjugated π-system. The strength of this hydrogen bond results in a large red shift, nearly 189 cm(-1), on the alcohol stretching frequency in the IR spectrum in comparison to a free alcohol control. The interaction is notable in that it possesses a better defined intramolecular hydrogen bond compared to the usual molecules for which it is noted, such as syn-7-norbornenol. This interaction was studied through the use of IR and NMR spectroscopy, X-ray crystallography, and molecular modeling calculations.

  17. Swelling of peat soil samples as determined by 1H NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Jaeger, F.; Schaumann, G. E.

    2009-04-01

    The swelling of soil organic matter (SOM) rich samples like peat soils may affect sorption and desorption of nutrients and contaminants. In the course of swelling the state of water may change and SOM may form a gel phase. Two peat soil samples in different degradation states from one location in Germany were saturated with water. Their swelling kinetics were studied at 5°C, 19°C and 30°C using 1H NMR relaxometry at 7.5 MHz. CPMG pulse sequence and the inversion recovery method were used to determine transverse (T2) and longitudinal (T1) relaxation time distributions, respectively. The gel phase and the state of water were both characterized with 1H NMR relaxometry, Cryo-NMR and differential scanning calorimetry (DSC). Three types of water were found in both peats: Non-freezing bound water and two types of freezable water which showed a splitting of the melting peak in the DSC thermogram. The stepwise water drainage of the peat samples by centrifugation revealed increasing T1/T2 ratios, which were not caused by proton relaxation, due to spin diffusion in internal field gradients. It can be assumed that both the splitting of the melting peak and the increasing T1/T2 ratios were caused by a phase separation of the "free" freezable water as found for conventional biopolymers like starch. Due to the organic surfaces one phase of the freezable water is structured which affects the rotational motion of water molecules, and thus caused different T1 and T2 values. From the swelling kinetics three processes (fast, medium, slow) of water dislocation from larger to smaller T2 values were distinguished. The time constants of the processes were found to be in the range of minutes (fast), hours (medium) and days/weeks (slow). The activation energies ranged between 15 - 50 KJ mol-1 suggesting that physical and physical/chemical processes are governing the swelling of SOM like a sterical re-orientation of SOM macromolecules, the water-structuring and hydration of SOM.

  18. Structural studies of pyrido[1,2- c]pyrimidine derivatives by 13C CPMAS NMR, X-ray diffraction and GIAO/DFT calculations

    NASA Astrophysics Data System (ADS)

    Pisklak, Maciej; Król, Marek; Herold, Franciszek; Wolska, Irena; Wawer, Iwona

    2008-12-01

    New 1-aryl- or 1-heteroaryl-piperazinylbutyl derivatives with pyrido[1,2- c]pyrimidine imide moiety, with the expected higher selectivity to 5-HT 1A receptors, have been synthesized. Five hydrochlorides and one base were studied by solid-state 13C CPMAS NMR spectroscopy. 13C chemical shifts indicated that the piperazine ring nitrogen N-1 was protonated. The crystal structure of the base (with 4'F, 3″-CF 3 substituents) was determined by X-ray crystallography. The pyridopyrimidine fragment is essentially planar, and aromatic substituent at C4 is twisted by 59.0°. The crystals are stabilized mainly by the C dbnd O…H sbnd C interactions. The analysis was completed by theoretical calculations of the shielding constants at the GIAO/DFT (B3LYP/6-311+G ∗∗) level.

  19. NMR studies of chiral P,S-chelate platinum, rhodium, and iridium complexes and the X-ray structure of a palladium(II) allyl derivative

    SciTech Connect

    Albinati, A.; Eckert, J.; Pregosin, P.; Ruegger, H.; Salzmann, R.; Stoessel, C.

    1997-02-18

    Several Rh(I), Ir(III), and Pt(II) complexes of the chiral P,S-bidentate ligand 2 have been prepared and characterized. Detailed two-dimensional NMR studies show that (i) the boat-type chelate ring and the stereogenic sulfur center can invert rapidly at ambient temperature and (ii) the sulfur donor may dissociate, essentially destroying the chiral pocket. The solid-state structure of [Pt({eta}{sup 3}-C{sub 3}H{sub 5})(2)]PF{sub 6} (3) has been determined and the sulfur substituent shown to have an axial orientation. The six-membered chelate ring takes up a boat-like conformation. As shown by an X-ray diffraction study for 3, and via incoherent inelastic neutron scattering (IINS) measurements for the Pd analog, 4, the OH group is remote from the metal atom. 42 refs., 11 figs., 6 tabs.

  20. Isolation and characterization of a novel acid degradation impurity of Amlodipine Besylate using Q-TOF, NMR, IR and single crystal X-ray.

    PubMed

    Rapolu, Ravi; Raju, Ch Krishnam; Srinivas, Kolupula; Awasthi, Atul; Navalgund, Sameer G; Surendranath, Koduru V

    2014-10-01

    Forced degradation of Amlodipine Besylate (AMD) in acidic condition gave rise to a potential unknown impurity. This unknown acid degradation product (ADP) was evaluated using a new-reverse-phase high performance liquid chromatography (HPLC), where it was eluted at 1.24 relative retention time to AMD peak. ADP was isolated using preparative HPLC from degradation mixture. Later, structure of ADP was elucidated using high resolution MS, multidimensional NMR and FTIR spectroscopic techniques, and characterized as ethyl-6-(2-chlorophenyl)-8-methyl-3,4,6,7-tetrahydro-2H-benzo[b][1,4]oxazine-5-carboxylate. The presence of ADP recemic mixture was confirmed by polarimeter and chiral HPLC. Given the complexity associated with ADP generation, single crystal X-ray crystallography technique was used to confirm proposed structure. In addition, reaction mechanism was postulated and confirmed using computational chemistry. To our knowledge, it is a novel impurity and not reported elsewhere. PMID:25072842

  1. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in

  2. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  3. Structure and Coordination Determination of Peptide-metal Complexes Using 1D and 2D 1H NMR

    PubMed Central

    Shoshan, Michal S.; Tshuva, Edit Y.; Shalev, Deborah E.

    2013-01-01

    Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy. NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner. PMID:24378924

  4. Critical Effect of Segmental Dynamics in Polybutadiene / Clay Nanocomposites Characterized by Solid State 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Zhang, Rongchun; Sun, Pingchuan; Winter, H. Henning; Xue, Gi

    2014-03-01

    The segmental dynamics of rigid, intermediate, and mobile molecular components in end-functionalized polybutadiene (PB) / organo-clay systems was characterized by fully refocused 1H NMR FID. In addition, 1H DQ NMR experiments allowed to semi- quantitatively monitor changes in segmental dynamics near the interface. Both methods suggested a critical concentration of end-functionalized polybutadiene, indicating a saturation effect for the surface-adsorbed polymer. The critical concentration depended on molecular weight of PB and PB-clay interaction. Based on the 1H NMR results, a tentative model was proposed to illustrate the evolution of the structure and segmental dynamics in PB/organo-clay nanocomposites. This work was supported by National Natural Science Foundation of China (Grants: 21174062).

  5. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    PubMed

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO. PMID:25794742

  6. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.

    PubMed

    Caligiani, Augusta; Palla, Luigi; Acquotti, Domenico; Marseglia, Angela; Palla, Gerardo

    2014-08-15

    This study reports for the first time the use of (1)H NMR technique combined with chemometrics to study the metabolic profile of cocoa (Theobroma cacao L.) beans of different varieties, origin and fermentation levels. Results of PCA applied to cocoa bean (1)H NMR dataset showed that the main factor influencing the cocoa bean metabolic profile is the fermentation level. In fact well fermented brown beans form a group clearly separated from unfermented, slaty, and underfermented, violet, beans, independently of the variety or geographical origin. Considering only well fermented beans, the metabolic profile obtained by (1)H NMR permitted to discriminate between some classes of samples. The National cocoa of Ecuador, known as Arriba, showed the most peculiar characteristics, while the samples coming from the African region showed some similar traits. The dataset obtained, representative of all the classes of soluble compounds of cocoa, was therefore useful to characterise fermented cocoa beans as a function of their origin and fermentation level.

  7. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania.

    PubMed

    Spiteri, Marc; Rogers, Karyne M; Jamin, Eric; Thomas, Freddy; Guyader, Sophie; Lees, Michèle; Rutledge, Douglas N

    2017-02-15

    Manuka honey is a product produced essentially in New Zealand, and has been widely recognised for its antibacterial properties and specific taste. In this study, 264 honeys from New Zealand and Australia were analysed using proton NMR spectroscopy coupled with chemometrics. Known manuka markers, methylglyoxal and dihydroxyacetone, have been characterised and quantified, together with a new NMR marker, identified as being leptosperin. Manuka honey profiling using 1H NMR is shown to be a possible alternative to chromatography with the added advantage that it can measure methylglyoxal (MGO), dihydroxyacetone (DHA) and leptosperin simultaneously. By combining the information from these three markers, we established a model to estimate the proportion of manuka in a given honey. Markers of other botanical origins were also identified, which makes 1H NMR a convenient and efficient tool, complementary to pollen analysis, to control the botanical origin of Oceania honeys.

  8. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania.

    PubMed

    Spiteri, Marc; Rogers, Karyne M; Jamin, Eric; Thomas, Freddy; Guyader, Sophie; Lees, Michèle; Rutledge, Douglas N

    2017-02-15

    Manuka honey is a product produced essentially in New Zealand, and has been widely recognised for its antibacterial properties and specific taste. In this study, 264 honeys from New Zealand and Australia were analysed using proton NMR spectroscopy coupled with chemometrics. Known manuka markers, methylglyoxal and dihydroxyacetone, have been characterised and quantified, together with a new NMR marker, identified as being leptosperin. Manuka honey profiling using 1H NMR is shown to be a possible alternative to chromatography with the added advantage that it can measure methylglyoxal (MGO), dihydroxyacetone (DHA) and leptosperin simultaneously. By combining the information from these three markers, we established a model to estimate the proportion of manuka in a given honey. Markers of other botanical origins were also identified, which makes 1H NMR a convenient and efficient tool, complementary to pollen analysis, to control the botanical origin of Oceania honeys. PMID:27664696

  9. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    PubMed Central

    Cocco, Eleonora; Murgia, Federica; Lorefice, Lorena; Barberini, Luigi; Poddighe, Simone; Frau, Jessica; Fenu, Giuseppe; Coghe, Giancarlo; Murru, Maria Rita; Murru, Raffaele; Del Carratore, Francesco; Atzori, Luigi

    2015-01-01

    Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS. PMID:26740964

  10. The secondary structure of echistatin from 1H-NMR, circular-dichroism and Raman spectroscopy.

    PubMed

    Saudek, V; Atkinson, R A; Lepage, P; Pelton, J T

    1991-12-01

    Detailed biophysical studies have been carried out on echistatin, a member of the disintegrin family of small, cysteine-rich, RGD-containing proteins, isolated from the venom of the saw-scaled viper Echis carinatus. Analysis of circular-dichroism spectra indicates that, at 20 degrees C, echistatin contains no alpha-helix but contains mostly beta-turns and beta-sheet. Two isobestic points are observed as the temperature is raised, the conformational changes associated with that observed between 40 degrees C and 72 degrees C being irreversible. Raman spectra also indicate considerable beta-turn and beta-sheet (20%) structure and an absence of alpha-helical structure. Three of the four disulphide bridges are shown to be in an all-gauche conformation, while the fourth adopts a trans-gauche-gauche conformation. The 1H-NMR spectrum of echistatin has been almost fully assigned. A single conformation was observed at 27 degrees C with the four proline residues adopting only the trans conformation. A large number of backbone amide protons were found to exchange slowly, but no segments of the backbone were found to be in either alpha-helical or beta-sheet conformation. A number of turns could be characterised. An irregular beta-hairpin contains the RGD sequence in a mobile loop at its tip. Two of the four disulphide cross-links have been identified from the NMR spectra. The data presented in this paper will serve to define the structure of echistatin more closely in subsequent studies. PMID:1761037

  11. Observation by flow sup 1 H NMR and dimerization kinetics and products of reactive ortho-quinodimethanes and benzocyclobutadiene

    SciTech Connect

    Fischer, D.

    1990-09-21

    The reactive o-quinodimethanes, 1,2-dimethylene-1,2-dihydronaphthalene (9) and o-xylylene (1) were observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum of 9 was obtained in the absence of precursor and dimers. However, the {sup 1}H NMR spectrum of the more reactive 1, generated in a similar manner from (o-((trimethylsilyl)methyl)benzyl)trimethylammonium iodide (5.) could be obtained only in the presence of its stable (4 + 2) and (4 + 4) dimers. The dimerization kinetics of 3-methyl- (5{prime}), 3,6-dimethyl- (11), 3-isopropyl- (12), and 3,6-diisoproply-1,2-xylylene (13) in acetonitrile (CH{sub 3}CN) were studied by stopped-flow UV-visible spectroscopy. Fluoride ion induced 1,2-elimination from 2-elimination from 2-trimethylsilylbenzocyclobutenyl-1 mesylate (26) was used to generate the reactive molecule benzocyclobutadiene (1{prime}) in CD{sub 3}CN, which was observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum (in CD{sub 3}CN) of 1,2-dimethylene-1,2-dihydrothiophene (1{double prime}), obtained by fluoride ion induced 1,4-elimination from 3-(trimethylammoniummethyl)-2-(trimethylsilylmethyl)thiophene iodine was observed by flow {sup 1}H NMR spectroscopy at room temperature. The dimerization rate of 1{double prime} in CH{sub 3}CN, generated in the same manner, was measured by UV-visible spectroscopy. 166 refs., 7 figs., 7 tabs.

  12. 1H NMR metabonomics of plasma lipoprotein subclasses: elucidation of metabolic clustering by self-organising maps.

    PubMed

    Suna, Teemu; Salminen, Aino; Soininen, Pasi; Laatikainen, Reino; Ingman, Petri; Mäkelä, Sanna; Savolainen, Markku J; Hannuksela, Minna L; Jauhiainen, Matti; Taskinen, Marja-Riitta; Kaski, Kimmo; Ala-Korpela, Mika

    2007-11-01

    (1)H NMR spectra of plasma are known to provide specific information on lipoprotein subclasses in the form of complex overlapping resonances. A combination of (1)H NMR and self-organising map (SOM) analysis was applied to investigate if automated characterisation of subclass-related metabolic interactions can be achieved. To reliably assess the intrinsic capability of (1)H NMR for resolving lipoprotein subclass profiles, sum spectra representing the pure lipoprotein subclass part of actual plasma were simulated with the aid of experimentally derived model signals for 11 distinct lipoprotein subclasses. Two biochemically characteristic categories of spectra, representing normolipidaemic and metabolic syndrome status, were generated with corresponding lipoprotein subclass profiles. A set of spectra representing a metabolic pathway between the two categories was also generated. The SOM analysis, based solely on the aliphatic resonances of these simulated spectra, clearly revealed the lipoprotein subclass profiles and their changes. Comparable SOM analysis in a group of 69 experimental (1)H NMR spectra of serum samples, which according to biochemical analyses represented a wide range of lipoprotein lipid concentrations, corroborated the findings based on the simulated data. Interestingly, the choline-N(CH(3))(3) region seems to provide more resolved clustering of lipoprotein subclasses in the SOM analyses than the methyl-CH(3) region commonly used for subclass quantification. The results illustrate the inherent suitability of (1)H NMR metabonomics for automated studies of lipoprotein subclass-related metabolism and demonstrate the power of SOM analysis in an extensive and representative case of (1)H NMR metabonomics.

  13. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    SciTech Connect

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-05-29

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di{sub 64}An{sub 36}), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high-resolution {sup 27}Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di{sub 64}An{sub 36} glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the {sup 27}Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  14. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  15. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-01

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  16. Magnesium Silicate Dissolution Investigated by 29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg CP QCPMG NMR

    SciTech Connect

    Davis, Michael C.; Brouwer, William J.; Wesolowski, David J.; Anovitz, Lawrence M.; Lipton, Andrew S.; Mueller, Karl T.

    2009-08-01

    Olivine has been the subject of frequent investigation in the earth sciences because of its simple structure and rapid dissolution kinetics. Several studies have observed a preferential release of magnesium with respect to silica during weathering under acidic conditions, which has been correlated to the formation of a silicon rich leached layer. While leached layer formation has been inferred through the changing solution chemistry, a thorough spectroscopic investigation of olivine reacted under acidic conditions has not been conducted. In particular, the fate of magnesium in the system is not understood and spectroscopic interrogations through nuclear magnetic resonance can elucidate the changing magnesium coordination and bonding environment. In this study, we combine analysis of the changing solution chemistry with advanced spectroscopic techniques (29Si MAS, 1H-29Si CP MAS, 25Mg QCPMG, and 1H-25Mg 2 CP QCPMG NMR) to probe leached layer formation and possible secondary phase precipitation during the dissolution of forsterite at 150 oC.

  17. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  18. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  19. Lipid profiling of developing Jatropha curcas L. seeds using (1)H NMR spectroscopy.

    PubMed

    Annarao, Sanjay; Sidhu, O P; Roy, Raja; Tuli, Rakesh; Khetrapal, C L

    2008-12-01

    Seed development in Jatropha curcas L. was studied with respect to phenology, oil content, lipid profile and concentration of sterols. Seeds were collected at various stages of development starting from one week after fertilization and in an interval of five days thereafter till maturity. These were classified as stage I to stage VII. Moisture content of the seeds ranged from 8.8 to 90.3%; the lowest in mature seeds in stage VII and highest in stage I. The seed area increased as the seed grew from stage I to stage VI (0.2-10.2mm(2) per seed), however, the seed area shrunk at stage VII. Increase in seed area corresponded to increase in fresh weight of the seeds. (1)H NMR spectroscopy of hexane extracts made at different stages of seed development revealed the presence of free fatty acids (FFA), methyl esters of fatty acids (FAME) and triglycerol esters (TAG), along with small quantity of sterols. The young seeds synthesized predominantly polar lipids. Lipid synthesis was noticed nearly three weeks after fertilization. From the fourth week the seeds actively synthesized TAG. Stage III is a turning point in seed development since at this stage, the concentration of sterols decreased to negligible, there was very little FAME formation, accumulation of TAG increased substantially, and there was a sudden decrease in FFA concentration. The findings can be helpful in understanding the biosynthesis and in efforts to improve biosynthesis of TAG and reduce FFA content in the mature seeds. PMID:18534845

  20. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  1. 1H and 13C NMR assignments of new methoxylated furanoflavonoids from Lonchocarpus araripensis.

    PubMed

    Lima, Almi F; Mileo, Paulo Graziane M; Andrade-Neto, Manoel; Braz-Filho, Raimundo; Silveira, Edilberto R; Pessoa, Otília Deusdênia L

    2009-02-01

    Two new polymethoxylated flavonoids, 2',5',6'-trimethoxy-[2'',3'' : 3',4']furano dihydrochalcone and 2,4',4,5-tetramethoxy-[2'',3'' : 6,7]-furanodihydroaurone, were isolated from the root barks of Lonchocarpus araripensis, along with the known compounds 3,4,5,6-tetramethoxy-[2'',3'' : 7,8]-furanoflavan, 3,6-dimethoxy-1'',1''-dimethylcromene-[2'',3'' : 7,8]-flavone, 3',4'-methylenodioxy-5,6-dimethoxy-[2'',3'' : 7,8]-furanoflavone, 3,5,6-trimethoxy-[2'',3'' : 7,8]-furanoflavanone, 3,5,6-trimethoxy-[2'',3'' : 7,8]-furanoflavone, and 6alpha-hydroxy-medicarpin. The complete (1)H and (13)C NMR assignments of the new furan flavonoids were performed using 1D and 2D pulse sequences, including COSY, HSQC, and HMBC experiments, and comparison with spectral data for analog compounds from the literature, particularly for the new furanodihydroaurone because of several inconsistencies on the carbonyl chemical shifts from the literature. PMID:18932264

  2. 1H NMR based metabolic profiling in Crohn's disease by random forest methodology.

    PubMed

    Fathi, Fariba; Majari-Kasmaee, Laleh; Mani-Varnosfaderani, Ahmad; Kyani, Anahita; Rostami-Nejad, Mohammad; Sohrabzadeh, Kaveh; Naderi, Nosratollah; Zali, Mohammad Reza; Rezaei-Tavirani, Mostafa; Tafazzoli, Mohsen; Arefi-Oskouie, Afsaneh

    2014-07-01

    The present study was designed to search for metabolic biomarkers and their correlation with serum zinc in Crohn's disease patients. Crohn's disease (CD) is a form of inflammatory bowel disease that may affect any part of the gastrointestinal tract and can be difficult to diagnose using the clinical tests. Thus, introduction of a novel diagnostic method would be a major step towards CD treatment. Proton nuclear magnetic resonance spectroscopy ((1)H NMR) was employed for metabolic profiling to find out which metabolites in the serum have meaningful significance in the diagnosis of CD. CD and healthy subjects were correctly classified using random forest methodology. The classification model for the external test set showed a 94% correct classification of CD and healthy subjects. The present study suggests Valine and Isoleucine as differentiating metabolites for CD diagnosis. These metabolites can be used for screening of risky samples at the early stages of CD diagnoses. Moreover, a robust random forest regression model with good prediction outcomes was developed for correlating serum zinc level and metabolite concentrations. The regression model showed the correlation (R(2)) and root mean square error values of 0.83 and 6.44, respectively. This model suggests valuable clues for understanding the mechanism of zinc deficiency in CD patients.

  3. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum

    PubMed Central

    Teng, Rongwei; Lehane, Adele M.; Winterberg, Markus; Shafik, Sarah H.; Summers, Robert L.; Martin, Rowena E.; van Schalkwyk, Donelly A.; Junankar, Pauline R.; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  4. Quantification of acesulfame potassium in processed foods by quantitative 1H NMR.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Abe, Yutaka; Sugimoto, Naoki; Akiyama, Hiroshi

    2015-01-01

    Acesulfame potassium (AceK), a high-intensity and non-caloric artificial sweetener, is used in various processed foods as a food additive. In this study, we established and validated a method for determining the AceK content in various processed foods by solvent extraction and quantitative (1)H NMR, using a certified reference material as the internal standard. In the recovery test, the proposed method gave satisfactory recoveries (88.4-99.6%) and repeatabilities (0.6-5.6%) for various processed foods. The limit of quantification was confirmed as 0.13 g kg(-1), which was sufficiently low for the purposes of monitoring AceK levels. In the analysis of commercially processed foods containing AceK, all AceK contents determined by the proposed method were in good agreement with those obtained by a conventional method based on dialysis and HPLC. Moreover, this method can achieve rapid quantification and yields analytical data with traceability to the International System of Units (SI) without the need for an authentic analyte standard. Therefore, the proposed method is a useful and practical tool for the determination of AceK in processed foods.

  5. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  6. 1H NMR global metabolic phenotyping of acute pancreatitis in the emergency unit.

    PubMed

    Villaseñor, Alma; Kinross, James M; Li, Jia V; Penney, Nicholas; Barton, Richard H; Nicholson, Jeremy K; Darzi, Ara; Barbas, Coral; Holmes, Elaine

    2014-12-01

    We have investigated the urinary and plasma metabolic phenotype of acute pancreatitis (AP) patients presenting to the emergency room at a single center London teaching hospital with acute abdominal pain using (1)H NMR spectroscopy and multivariate modeling. Patients were allocated to either the AP (n = 15) or non-AP patients group (all other causes of abdominal pain, n = 21) on the basis of the national guidelines. Patients were assessed for three clinical outcomes: (1) diagnosis of AP, (2) etiology of AP caused by alcohol consumption and cholelithiasis, and (3) AP severity based on the Glasgow score. Samples from AP patients were characterized by high levels of urinary ketone bodies, glucose, plasma choline and lipid, and relatively low levels of urinary hippurate, creatine and plasma-branched chain amino acids. AP could be reliably identified with a high degree of sensitivity and specificity (OPLS-DA model R(2) = 0.76 and Q(2)Y = 0.59) using panel of discriminatory biomarkers consisting of guanine, hippurate and creatine (urine), and valine, alanine and lipoproteins (plasma). Metabolic phenotyping was also able to distinguish between cholelithiasis and colonic inflammation among the heterogeneous non-AP group. This work has demonstrated that combinatorial biomarkers have a strong diagnostic and prognostic potential in AP with relevance to clinical decision making in the emergency unit. PMID:25160714

  7. 1H NMR Metabolic Profiling of Biofluids from Rats with Gastric Mucosal Lesion and Electroacupuncture Treatment

    PubMed Central

    Xu, Jingjing; Cheng, Kian-Kai; Yang, Zongbao; Wang, Chao; Shen, Guiping; Wang, Yadong; Liu, Qiong; Dong, Jiyang

    2015-01-01

    Gastric mucosal lesion (GML) is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM), electroacupuncture (EA) treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- (1H NMR-) based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM) acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM) acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture. PMID:26170882

  8. Composition and Quantitation of Microalgal Lipids by ERETIC 1H NMR Method

    PubMed Central

    Nuzzo, Genoveffa; Gallo, Carmela; d’Ippolito, Giuliana; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

    2013-01-01

    Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids) in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc.) or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (1H NMR). The protocol uses a reference electronic signal as external standard (ERETIC method) and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina) which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids. PMID:24084790

  9. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum.

    PubMed

    Teng, Rongwei; Lehane, Adele M; Winterberg, Markus; Shafik, Sarah H; Summers, Robert L; Martin, Rowena E; van Schalkwyk, Donelly A; Junankar, Pauline R; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  10. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  11. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  12. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  13. 1H NMR based metabolic profiling in Crohn's disease by random forest methodology.

    PubMed

    Fathi, Fariba; Majari-Kasmaee, Laleh; Mani-Varnosfaderani, Ahmad; Kyani, Anahita; Rostami-Nejad, Mohammad; Sohrabzadeh, Kaveh; Naderi, Nosratollah; Zali, Mohammad Reza; Rezaei-Tavirani, Mostafa; Tafazzoli, Mohsen; Arefi-Oskouie, Afsaneh

    2014-07-01

    The present study was designed to search for metabolic biomarkers and their correlation with serum zinc in Crohn's disease patients. Crohn's disease (CD) is a form of inflammatory bowel disease that may affect any part of the gastrointestinal tract and can be difficult to diagnose using the clinical tests. Thus, introduction of a novel diagnostic method would be a major step towards CD treatment. Proton nuclear magnetic resonance spectroscopy ((1)H NMR) was employed for metabolic profiling to find out which metabolites in the serum have meaningful significance in the diagnosis of CD. CD and healthy subjects were correctly classified using random forest methodology. The classification model for the external test set showed a 94% correct classification of CD and healthy subjects. The present study suggests Valine and Isoleucine as differentiating metabolites for CD diagnosis. These metabolites can be used for screening of risky samples at the early stages of CD diagnoses. Moreover, a robust random forest regression model with good prediction outcomes was developed for correlating serum zinc level and metabolite concentrations. The regression model showed the correlation (R(2)) and root mean square error values of 0.83 and 6.44, respectively. This model suggests valuable clues for understanding the mechanism of zinc deficiency in CD patients. PMID:24757065

  14. X-ray Structure Analysis of Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) Bound to Human Serum Albumin Reveals Two Ruthenium Binding Sites and Provides Insights into the Drug Binding Mechanism

    PubMed Central

    2016-01-01

    Ruthenium(III) complexes are promising candidates for anticancer drugs, especially the clinically studied indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (NKP-1339). Several studies have emphasized the likely role of human serum proteins in the transportation and accumulation of ruthenium(III) complexes in tumors. Therefore, the interaction between KP1019 and human serum albumin was investigated by means of X-ray crystallography and inductively coupled plasma mass spectrometry (ICP-MS). The structural data unambiguously reveal the binding of two ruthenium atoms to histidine residues 146 and 242, which are both located within well-known hydrophobic binding pockets of albumin. The ruthenium centers are octahedrally coordinated by solvent molecules revealing the dissociation of both indazole ligands from the ruthenium-based drug. However, a binding mechanism is proposed indicating the importance of the indazole ligands for binding site recognition and thus their indispensable role for the binding of KP1019. PMID:27196130

  15. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters incorporating cosolvents to improve dose sensitivity

    NASA Astrophysics Data System (ADS)

    Koeva, V. I.; Olding, T.; Jirasek, A.; Schreiner, L. J.; McAuley, K. B.

    2009-05-01

    This study reports on efforts to increase the dose sensitivity of polymer gel dosimeters used in 3D radiation dosimetry. The potential of several different cosolvents is investigated, with the aim of increasing the solubility of N,N'-methylene-bisacrylamide crosslinker in polymer gel dosimeters. Glycerol and isopropanol increase the limit for the crosslinker solubility from approximately 3% to 5% and 10% by weight, respectively. This enables the manufacture of polymer gel dosimeters with much higher levels of crosslinking than was previously possible. New dosimeter recipes containing up to 5 wt% N,N'-methylene-bisacrylamide were subjected to spatially uniform radiation and were studied using nuclear magnetic resonance (NMR), as well as x-ray and optical CT techniques. The resulting dosimeters exhibit dose sensitivities that are up to 2.7 times higher than measured for a typical dosimeters with 3% N,N'-methylene-bisacrylamide without the addition of cosolvent. Two additional cosolvents (n-propanol and sec-butanol) were deemed unsuitable for practical dosimeters due to incompatibility with gelatin, cloudiness prior to irradiation, and immiscibility with water when large quantities of cosolvent were used. The dosimeters with high N,N'-methylene-bisacrylamide content that used isopropanol or glycerol as cosolvents had high optical clarity prior to irradiation, but did not produce suitable optical CT results for non-uniformly irradiated gels due to polymer development outside of the high dose regions of the pencil beams and significant light scatter. Further experiments are required to determine whether cosolvents can be used to manufacture gels with sufficiently high dose sensitivity for readout using x-ray computed tomography.

  16. Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their (1)H NMR relaxation and heating efficiency.

    PubMed

    Vamvakidis, K; Katsikini, M; Sakellari, D; Paloura, E C; Kalogirou, O; Dendrinou-Samara, C

    2014-09-01

    Manganese ferrite (MnFe2O4) nanoparticles of identical size (9 nm) and with different inversion degrees were synthesized under solvothermal conditions as a candidate theranostic system. In this facile approach, a long-chain amine, oleylamine, was utilized as a reducing and surface-functionalizing agent. The synthesized nanoparticles were shown to have a cubic-spinel structure as characterized by TEM and XRD patterns. Control over their inversion degree was achieved by a simple change of manganese precursor from Mn(acac)2 to Mn(acac)3. The variation in the inversion degree is ascribed to the partial oxidation of Mn(2+) to Mn(3+), as was evidenced by X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy at both the Fe and Mn K-edges. The reduction of the inversion degree from 0.42 to 0.22 is close to the corresponding bulk value of 0.20 and led to elevated magnetization (65.7 emu g(-1)), in contrast to the Néel temperature, which was decreased owing to the weaker superexchange interactions between the tetrahedral and octahedral sites within the spinel structure. In order to evaluate the performance of these nanoprobes as a possible bifunctional targeting system, the (1)H NMR relaxation of the samples was tested together with their specific loss power under an alternating magnetic field as a function of concentration. The hydrophobic as prepared MnFe2O4 nanoparticles converted to hydrophilic nanoparticles with cetyltrimethylammonium bromide (CTAB). The MnFe2O4 nanoparticles, well-dispersed in aqueous media, were shown to have r2 relaxivity of up to 345.5 mM(-1) s(-1) and heat release of up to 286 W g(-1), demonstrating their potential use for bioapplications. PMID:25014470

  17. X-ray structure, NMR and stability-in-solution study of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine - A new active compound for cosmetology

    NASA Astrophysics Data System (ADS)

    Walla, Jan; Szüčová, Lucie; Císařová, Ivana; Gucký, Tomáš; Zatloukal, Marek; Doležal, Karel; Greplová, Jarmila; Massino, Frank J.; Strnad, Miroslav

    2010-06-01

    The crystal and molecular structure of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine ( 1) was determined at 150(2) K. The compound crystallizes in monoclinic P2 1/ c space group with a = 10.5642(2), b = 13.6174(3), c = 10.3742(2) Å, V = 1460.78(5) Å 3, Z = 4, R( F) = for 3344 unique reflections. The purine moiety and furfuryl ring are planar and the tetrahydropyran-2-yl is disordered in the ratio 1:3, probably due to the chiral carbon atom C(17). The individual 1H and 13C NMR signals were assigned by 2D correlation experiments such as 1H- 1H COSY and ge-2D HSQC. Stability-in-solution was determined in methanol/water in acidic pH (3-7).

  18. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  19. Secondary structure and side-chain sup 1 H and sup 13 C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy

    SciTech Connect

    Ikura, Mitsuhiko; Spera, S.; Barbato, G.; Kay, L.E.; Bax, A. ); Krinks, M. )

    1991-09-24

    Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with {sup 15}N and {sup 13}C to a level of > 95%. Nearly complete {sup 1}H and {sup 13}C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and {sup 3}J{sub HNH{alpha}} coupling constants. A clear correlation between the {sup 13}C{alpha} chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM which consists of two pairs of a helix-loop-helix motif in each globular domain. The existence of a short antiparallel {beta}-sheet between the two loops in each domain has been confirmed. The eight {alpha}-helix segments identified from the NMR data are located at Glu-6 to Phe-19, thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long central helix from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.

  20. Equilibrium and structure of the Al(III)-ethylenediamine-N,N'-bis(3-hydroxy-2-propionate) (EDBHP) complex. A multi-method study by potentiometry, NMR, ESI MS and X-ray diffraction.

    PubMed

    Jószai, Róbert; Kerekes, Imola; Satoshi, Igarashi; Sawada, Kiyoshi; Zékány, László; Tóth, Imre

    2006-07-14

    The equilibrium and structure of the complex formed by Al(III) and ethylenediamine-N,N'-bis(3-hydroxy-2-propionate) (EDBHP2-) have been studied using pH-potentiometry, 1H and 27Al NMR, ESI MS and single crystal X-ray diffraction methods. The EDBHP ligand is a strong Al-binder in aqueous solution for pH between 4 and 8 and for c(Al) = c(EDBHP)> or = 0.1 mmol dm(-3). The dominating complex identified by ESI MS and potentiometry is a neutral dimer, Al2L2(OH)2, with logbeta(22-2) = 14.16 +/- 0.03. In the solid Al2(EDBHP)2(OH)2.2H2O the Al(III) ions are connected through a double hydroxo bridge. Both four-dentate organic ligands are coordinated terminally through two carboxylate groups and two N-donors forming three five-membered chelate rings. The hydroxyl groups of the ligand EDBHP remain protonated and are not coordinated to the aluminium ions. The structure and composition of the dimer are very likely the same in solution and the solid state.

  1. Determination of the Structural Parameters of Heteronuclear (Phthalocyaninato)bis(crownphthalocyaninato)lanthanide(III) Triple-Deckers in Solution by Simultaneous Analysis of NMR and Single-Crystal X-ray Data.

    PubMed

    Polovkova, Marina A; Martynov, Alexander G; Birin, Kirill P; Nefedov, Sergey E; Gorbunova, Yulia G; Tsivadze, Aslan Yu

    2016-09-19

    Application of a general and convenient approach to the synthesis of heteronuclear crown-substituted triple-decker phthalocyaninates afforded two series of complexes containing one dia- and one paramagnetic Ln(III) ion (for Y and almost the whole lanthanide family), [(15C5)4Pc]M*[(15C5)4Pc]M(Pc) (or [M*,M] for brevity sake), where (15C5) is 15-crown-5; (Pc(2-)) is phthalocyaninato dianion; and M ≠ M* = Y, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb. This approach consists of using LaPc2 as an efficient Pc(2-) source. The solid-state structures of two complexes ([Tm*,Y] and [Yb*,Y]) were studied by single-crystal X-ray diffraction analysis, providing therefore a structural model for the assignment and analysis of (1)H NMR spectra of the complexes, which is strongly affected by the presence of paramagnetic lanthanide ions. Model validation was performed on complexes containing two different paramagnetic ions-[Dy*,Gd] and [Gd*,Dy] as well as [Tb*,Tm] and [Tm*,Tb]-synthesized by the above-mentioned method.

  2. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  3. 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145.

    PubMed

    Corsaro, Maria Michela; De Castro, Cristina; Naldi, Teresa; Parrilli, Michelangelo; Tomás, Juan M; Regué, Miguel

    2005-09-26

    The complete (1)H and (13)C NMR characterization of the tetrasaccharide repeating unit from the K2 polysaccharide of Klebsiella pneumoniae strain 52145 is reported. [chemical structure] In addition a model for its secondary structure was suggested on the basis of dynamic and molecular calculations.

  4. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

  5. Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis.

    PubMed

    Tarachiwin, Lucksanaporn; Masako, Osawa; Fukusaki, Eiichiro

    2008-07-23

    (1)H NMR spectrometry in combination with multivariate analysis was considered to provide greater information on quality assessment over an ordinary sensory testing method due to its high reliability and high accuracy. The sensory quality evaluation of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) was carried out by means of (1)H NMR-based metabolomics. Multivariate analyses by partial least-squares projections to latent structures-discrimination analysis (PLS-DA) and PLS-regression offered extensive information for quality differentiation and quality evaluation, respectively. The impact of watermelon and rootstock cultivars on the sensory qualities of watermelon was determined on the basis of (1)H NMR metabolic fingerprinting and profiling. The significant metabolites contributing to the discrimination were also identified. A multivariate calibration model was successfully constructed by PLS-regression with extremely high reliability and accuracy. Thus, (1)H NMR-based metabolomics with multivariate analysis was considered to be one of the most suitable complementary techniques that could be applied to assess and predict the sensory quality of watermelons and other horticultural plants.

  6. An optimized and validated (1)H NMR method for the quantification of α-pinene in essentials oils.

    PubMed

    Cerceau, Cristiane I; Barbosa, Luiz C A; Filomeno, Claudinei A; Alvarenga, Elson S; Demuner, Antônio J; Fidencio, Paulo H

    2016-04-01

    The authenticity and composition of commercial essential oils requires strict quality control. Due to the importance of α-pinene containing essential oils, a rapid and efficient method for quantification of this terpene in oils of eucalyptus, pink pepper and turpentine using (1)H NMR was developed and validated. All evaluated parameters (selectivity, linearity, accuracy/precision, repeatability, robustness, stability of analyte and internal standard in solutions) showed satisfactory results. The limit of detection (LOD) and limit of quantification (LOQ) were 0.1 and 2.5mg respectively. These values indicated that α-pinene was detected in 35 mg samples containing at least 0.3% of this compound. In addition, a minimum of 8% of α-pinene in the sample was required for quantification. Furthermore, the standard deviations found in the (1)H NMR methodology were less than 1% and were lower than those obtained by gas chromatographic analysis. Statistical tests have shown that the results obtained by (1)H NMR methodology are similar to those obtained by GC-FID technique using external and internal standardization and normalization within 95% confidence. R&R values lower than 10% have shown that all the methods are appropriate and the (1)H NMR method is suitable for quantification of α-pinene in samples of essential oils since this method possessed the smallest R&R (1.81) value. PMID:26838386

  7. Application of a quantitative (1)H-NMR method for the determination of paeonol in Moutan cortex, Hachimijiogan and Keishibukuryogan.

    PubMed

    Tanaka, Rie; Shibata, Hikari; Sugimoto, Naoki; Akiyama, Hiroshi; Nagatsu, Akito

    2016-10-01

    Quantitative (1)H-NMR ((1)H-qNMR) was applied to the determination of paeonol concentration in Moutan cortex, Hachimijiogan, and Keishibukuryogan. Paeonol is a major component of Moutan cortex, and its purity was calculated from the ratio of the intensity of the paeonol H-3' signal at δ 6.41 ppm in methanol-d 4 or 6.40 ppm in methanol-d 4 + TFA-d to that of a hexamethyldisilane (HMD) signal at 0 ppm. The concentration of HMD was corrected with SI traceability by using potassium hydrogen phthalate of certified reference material grade. As a result, the paeonol content in two lots of Moutan cortex as determined by (1)H-qNMR was found to be 1.59 % and 1.62 %, respectively, while the paeonol content in Hachimijiogan and Keishibukuryogan was 0.15 % and 0.22 %, respectively. The present study demonstrated that the (1)H-NMR method is useful for the quantitative analysis of crude drugs and Kampo formulas. PMID:27164909

  8. Ethanol contamination of cerebrospinal fluid during standardized sampling and its effect on (1)H-NMR metabolomics.

    PubMed

    van der Sar, Sonia A; Zielman, Ronald; Terwindt, Gisela M; van den Maagdenberg, Arn M J M; Deelder, André M; Mayboroda, Oleg A; Meissner, Axel; Ferrari, Michel D

    2015-06-01

    Standardization of body fluid sampling, processing and storage procedures is pivotal to ensure data quality in metabolomics studies. Yet, despite strict adherence to standard sampling guidelines, we detected variable levels of ethanol in the (1)H-NMR spectra of human cerebrospinal fluid (CSF) samples (range 9.2 × 10(-3)-10.0 mM). The presence of ethanol in all samples and the wide range of concentrations clearly indicated contamination of the samples of some sort, which affected the (1)H-NMR spectra quality and the interpretation. To determine where in the sampling protocol the ethanol contamination occurs, we performed a CSF sampling protocol simulation with 0.9 % NaCl (saline) instead of CSF and detected ethanol in all simulation samples. Ethanol diffusion through air during sampling and preparation stages appeared the only logical explanation. With a bench study, we showed that ethanol easily diffuses into ex vivo CSF samples via air transmission. Ethanol originated from routinely used skin disinfectants containing ethanol and from laboratory procedures. Ethanol affected the CSF sample matrix at concentrations above ~9.4 mM and obscured a significant part of the (1)H-NMR spectrum. CSF sample preparation for (1)H-NMR-based metabolomics analyses should therefore be carried out in a well-ventilated atmosphere with laminar flow, and use of ethanol should be avoided.

  9. Complete assignment of (1)H and (13)C NMR spectra of standard neo-iota-carrabiose oligosaccharides.

    PubMed

    Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William

    2010-02-26

    Standard Eucheuma denticulatum iota-carrageenan was degraded with the Alteromonas fortis iota-carrageenase. The most abundant products, the neo-iota-carratetraose and neo-iota-carrahexaose were purified by permeation gel chromatography, and their corresponding (1)H and (13)C NMR spectra were fully assigned. PMID:20038459

  10. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  11. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  12. 1H-detected 13C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR

    PubMed Central

    Lee, Jung Ho; Sekhar, Ashok; Cavagnero, Silvia

    2011-01-01

    NMR is a powerful yet intrinsically insensitive technique. The applicability of NMR to chemical and biological systems would be substantially extended by new approaches going beyond current signal-to-noise capabilities. Here, we exploit the large enhancements arising from 13C photo-chemically induced dynamic nuclear polarization (13C photo-CIDNP) in solution to improve biomolecular NMR sensitivity in the context of heteronuclear correlation spectroscopy. The 13C-PRINT pulse sequence presented here involves an initial 13C nuclear spin polarization via photo-CIDNP followed by conversion to antiphase coherence and transfer to 1H for detection. We observe substantial enhancements, up to ≫200-fold, relative to the dark (laser off) experiment. Resonances of both side-chain and backbone CH pairs are enhanced for the three aromatic residues Trp, His and Tyr and the Trp-containing σ32 peptide. The sensitivity of this experiment, defined as signal-to-noise per unit time (S/N)t, is unprecedented in the NMR polarization enhancement literature dealing with polypeptides in solution. Up to a 16-fold larger (S/N)t than the 1H-13C SE-HSQC reference sequence is achieved, for the σ32 peptide. This gain leads to a reduction in data collection time up to 256-fold, highlighting the advantages of 1H-detected 13C photo-CIDNP in solution NMR. PMID:21548581

  13. 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil.

    PubMed

    Mannina, Luisa; D'Imperio, Marco; Capitani, Donatella; Rezzi, Serge; Guillou, Claude; Mavromoustakos, Thomas; Vilchez, María Dolores Molero; Fernández, Antonio Herrera; Thomas, Freddy; Aparicio, Ramon

    2009-12-23

    A (1)H NMR analytical protocol for the detection of refined hazelnut oils in admixtures with refined olive oils is reported according to ISO format. The main purpose of this research activity is to suggest a novel analytical methodology easily usable by operators with a basic knowledge of NMR spectroscopy. The protocol, developed on 92 oil samples of different origins within the European MEDEO project, is based on (1)H NMR measurements combined with a suitable statistical analysis. It was developed using a 600 MHz instrument and was tested by two independent laboratories on 600 MHz spectrometers, allowing detection down to 10% adulteration of olive oils with refined hazelnut oils. Finally, the potential and limitations of the protocol applied on spectrometers operating at different magnetic fields, that is, at the proton frequencies of 500 and 400 MHz, were investigated.

  14. 1H and 13C NMR assignments for two anthraquinones and two xanthones from the mangrove fungus (ZSUH-36).

    PubMed

    Shao, Changlun; She, Zhigang; Guo, Zhiyong; Peng, Hong; Cai, Xiaoling; Zhou, Shining; Gu, Yucheng; Lin, Yongcheng

    2007-05-01

    We report the unambiguous assignments of the (1)H and (13)C NMR spectra of one new natural product, namely, 6,8-di-O-methyl versiconol (1) together with one known anthraquinone aversin (2) and two xanthones 5-methoxysterigmatocystin (3) and sterigmatocystin (4). These compounds were all isolated from the mangrove endophytic fungus ZSUH-36 from the South China Sea. 1D and 2D NMR experiments including COSY, HMQC and HMBC were used to elucidate the structures. Variations in the (1)H NMR spectrum of 6,8-di-O-methyl versiconol (1) were also observed in the temperature range 25-75 degrees C. In addition, the plausible biogenetic path from 1 to 2 is discussed.

  15. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  16. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  17. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  18. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  19. (1)H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model.

    PubMed

    Niu, Qian-Yun; Li, Zhen-Yu; Du, Guan-Hua; Qin, Xue-Mei

    2016-01-25

    Doxorubicin (DOX) is used as a chemotherapy drug with severe carditoxicity. In this study, an integrated echocardiography along with pathological examination and (1)H NMR analysis of multiple biological matrices (urine, serum, heart, and kidney) was employed to systemically assess the toxicity of DOX. Echocardiographic results showed that impaired left ventricular contractility and degenerative pathology lesions in DOX group, which were in consistent with pathology. The endogenous metabolites in the urine, serum, heart and kidney was identified by comparison with the data from the literature and databases. Multivariate analysis, including PCA and OPLS, revealed 8 metabolites in urine, including succinate, 2-ketoglutarate, citrate, hippurate, methylamine, benzoate, allantion, and acetate were the potential changed biomarkers. In serum, perturbed metabolites include elevation of leucine, β-glucose, O-acetyl-glycoprotein, creatine, lysine, glycerin, dimethylglycine, trimethylamine-N-oxide, myo-inositol, and N-acetyl-glycoprotein, together with level decreases of acetone, lipid, lactate, glutamate, phosphocholine, acetoacetate and pyruvate. For heart, DOX exposure caused decline of lipid, lactate, leucine, alanine, glutamate, choline, xanthine, glycerin, carnitine, and fumarate, together with elevation of glutamine, creatine, inosine, taurine and malate. Metabolic changes of kidney were mainly involved in the accumulation of α-glucose, lactate, phosphocholine, betaine, threonine, choline, taurine, glycine, urea, hypoxanthine, glutamate, and nicotinamide, coupled with reduction of asparagine, valine, methionine, tyrosine, lysine, alanine, leucine, ornithine, creatine, lipid, and acetate. In addition, alterations of urinary metabolites exhibited a time-dependent manner. Complementary evidences by multiple matrices revealed disturbed pathways concerning energy metabolism, fatty acids oxidation, amino acids and purine metabolism, choline metabolism, and gut microbiota

  20. 1H NMR studies of reactions of copper complexes with human blood plasma and urine.

    PubMed

    Bligh, S W; Boyle, H A; McEwen, A B; Sadler, P J; Woodham, R H

    1992-01-22

    Reactions of the copper complexes Cu(II)Cl2, [Cu(II)(EDTA)]2-, [Cu(II)2(DIPS)4] and [Cu(I)(DMP)2]+ (where DIPS is 3,5-diisopropylsalicylate and DMP is 2,9-dimethylphenanthroline) with human blood plasma and urine have been studied by 500 MHz 1H NMR spectroscopy, and CD spectroscopy has been used to monitor the transfer of Cu(II) onto albumin in plasma. The rate of transfer of Cu(II) from [Cu(II)(EDTA)]2- onto albumin as measured by CD (T1/2 26 min, 0.5 mM Cu, 21 degrees), was similar to the rate of Cu(II) binding to amino acids and citrate, and to the rate of formation of [Ca(II)(EDTA)]2- in plasma. Reactions of Cu(II)Cl2 and [Cu(II)2(DIPS)4] in plasma followed a similar course, but were more rapid. The latter complex also appeared to give rise to the displacement of lactate from protein binding. Reactions of copper complexes in plasma therefore involve a range of low Mr ligands as well as albumin, and the ligands play a major role in determining the kinetics of the reactions. These factors, as well as the partitioning of both complexes and displaced ligands into lipoproteins, are likely to play important roles in the molecular pharmacology of copper-containing drugs. In urine, His and formate were involved in EDTA and DIPS displacement from their respective copper complexes, and peaks for free DIPS and [Ca(II)(EDTA)]2- were observed. The complex (Cu(I)(DMP)2]+ appeared to be relatively stable in both plasma and urine. PMID:1739401

  1. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    PubMed

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. PMID:27215342

  2. The use of IRMS, (1)H NMR and chemical analysis to characterise Italian and imported Tunisian olive oils.

    PubMed

    Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa

    2016-04-01

    Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%.

  3. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning.

    PubMed

    Scheidt, Holger A; Huster, Daniel

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological importance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  4. 1H and 13C NMR assignments of two new diaryl ethers phomopsides A and B from the mangrove endophytic fungus (ZZF08).

    PubMed

    Tao, Yiwen; Mou, Chengbo; Zeng, Xianjian; Xu, Fang; Cai, Jiwen; She, Zhigang; Zhou, Shining; Lin, Yongcheng

    2008-08-01

    Two new diaryl ethers, named phomopside A (1) and B (2), together with known excelsione (3) were isolated from the mangrove endophytic fungus Phomopsis sp. (ZZF08) obtained from the South China Sea coast. The structure of 1 was elucidated by NMR spectroscopy and confirmed by X-ray crystallography. Compounds 2 and 3 were identified by NMR spectroscopy and comparing the spectroscopic data with literature values. In addition, the plausible biogenetic path of 1, 2 and 3 is discussed.

  5. (15)N NMR Spectroscopy, X-ray and Neutron Diffraction, Quantum-Chemical Calculations, and UV/vis-Spectrophotometric Titrations as Complementary Techniques for the Analysis of Pyridine-Supported Bicyclic Guanidine Superbases.

    PubMed

    Schwamm, Ryan J; Vianello, Robert; Maršavelski, Aleksandra; García, M Ángeles; Claramunt, Rosa M; Alkorta, Ibon; Saame, Jaan; Leito, Ivo; Fitchett, Christopher M; Edwards, Alison J; Coles, Martyn P

    2016-09-01

    Pyridine substituted with one and two bicyclic guanidine groups has been studied as a potential source of superbases. 2-{hpp}C5H4N (I) and 2,6-{hpp}2C5H3N (II) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) were protonated using [HNEt3][BPh4] to afford [I-H][BPh4] (1a), [II-H][BPh4] (2), and [II-H2][BPh4]2 (3). Solution-state (1)H and (15)N NMR spectroscopy shows a symmetrical cation in 2, indicating a facile proton-exchange process in solution. Solid-state (15)N NMR data differentiates between the two groups, indicating a mixed guanidine/guanidinium. X-ray diffraction data are consistent with protonation at the imine nitrogen, confirmed for 1a by single-crystal neutron diffraction. The crystal structure of 1a shows association of two [I-H](+) cations within a cage of [BPh4](-) anions. Computational analysis performed in the gas phase and in MeCN solution shows that the free energy barrier to transfer a proton between imino centers in [II-H](+) is 1 order of magnitude lower in MeCN than in the gas phase. The results provide evidence that linking hpp groups with the pyridyl group stabilizes the protonation center, thereby increasing the intrinsic basicity in the gas phase, while the bulk prevents efficient cation solvation, resulting in diminished pKa(MeCN) values. Spectrophotometrically measured pKa values are in excellent agreement with calculated values and confirm that I and II are superbases in solution.

  6. (15)N NMR Spectroscopy, X-ray and Neutron Diffraction, Quantum-Chemical Calculations, and UV/vis-Spectrophotometric Titrations as Complementary Techniques for the Analysis of Pyridine-Supported Bicyclic Guanidine Superbases.

    PubMed

    Schwamm, Ryan J; Vianello, Robert; Maršavelski, Aleksandra; García, M Ángeles; Claramunt, Rosa M; Alkorta, Ibon; Saame, Jaan; Leito, Ivo; Fitchett, Christopher M; Edwards, Alison J; Coles, Martyn P

    2016-09-01

    Pyridine substituted with one and two bicyclic guanidine groups has been studied as a potential source of superbases. 2-{hpp}C5H4N (I) and 2,6-{hpp}2C5H3N (II) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) were protonated using [HNEt3][BPh4] to afford [I-H][BPh4] (1a), [II-H][BPh4] (2), and [II-H2][BPh4]2 (3). Solution-state (1)H and (15)N NMR spectroscopy shows a symmetrical cation in 2, indicating a facile proton-exchange process in solution. Solid-state (15)N NMR data differentiates between the two groups, indicating a mixed guanidine/guanidinium. X-ray diffraction data are consistent with protonation at the imine nitrogen, confirmed for 1a by single-crystal neutron diffraction. The crystal structure of 1a shows association of two [I-H](+) cations within a cage of [BPh4](-) anions. Computational analysis performed in the gas phase and in MeCN solution shows that the free energy barrier to transfer a proton between imino centers in [II-H](+) is 1 order of magnitude lower in MeCN than in the gas phase. The results provide evidence that linking hpp groups with the pyridyl group stabilizes the protonation center, thereby increasing the intrinsic basicity in the gas phase, while the bulk prevents efficient cation solvation, resulting in diminished pKa(MeCN) values. Spectrophotometrically measured pKa values are in excellent agreement with calculated values and confirm that I and II are superbases in solution. PMID:27494395

  7. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  8. Chest X-Ray

    MedlinePlus

    ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  10. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  11. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  12. Combined X-ray, NMR, and Kinetic Analyses Reveal Uncommon Binding Characteristics of the Hepatitis C Virus NS3-NS4A Protease Inhibitor BI 201335*

    PubMed Central

    Lemke, Christopher T.; Goudreau, Nathalie; Zhao, Songping; Hucke, Oliver; Thibeault, Diane; Llinàs-Brunet, Montse; White, Peter W.

    2011-01-01

    Hepatitis C virus infection, a major cause of liver disease worldwide, is curable, but currently approved therapies have suboptimal efficacy. Supplementing these therapies with direct-acting antiviral agents has the potential to considerably improve treatment prospects for hepatitis C virus-infected patients. The critical role played by the viral NS3 protease makes it an attractive target, and despite its shallow, solvent-exposed active site, several potent NS3 protease inhibitors are currently in the clinic. BI 201335, which is progressing through Phase IIb trials, contains a unique C-terminal carboxylic acid that binds noncovalently to the active site and a bromo-quinoline substitution on its proline residue that provides significant potency. In this work we have used stopped flow kinetics, x-ray crystallography, and NMR to characterize these distinctive features. Key findings include: slow association and dissociation rates within a single-step binding mechanism; the critical involvement of water molecules in acid binding; and protein side chain rearrangements, a bromine–oxygen halogen bond, and profound pKa changes within the catalytic triad associated with binding of the bromo-quinoline moiety. PMID:21270126

  13. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  14. Chiral diaminopyrrolic receptors for selective recognition of mannosides, part 2: a 3D view of the recognition modes by X-ray, NMR spectroscopy, and molecular modeling.

    PubMed

    Ardá, Ana; Cañada, F Javier; Nativi, Cristina; Francesconi, Oscar; Gabrielli, Gabriele; Ienco, Andrea; Jiménez-Barbero, Jesús; Roelens, Stefano

    2011-04-18

    The structural features of a representative set of five complexes of octyl α- and β-mannosides with some members of a new generation of chiral tripodal diaminopyrrolic receptors, namely, (R)-5 and (S)- and (R)-7, have been investigated in solution and in the solid state by a combined X-ray, NMR spectroscopy, and molecular modeling approach. In the solid state, the binding arms of the free receptors 7 delimit a cleft in which two solvent molecules are hydrogen bonded to the pyrrolic groups and to the benzenic scaffold. In a polar solvent (CD(3)CN), chemical shift and intermolecular NOE data, assisted by molecular modeling calculations, ascertained the binding modes of the interaction between the receptor and the glycoside for these complexes. Although a single binding mode was found to adequately describe the complex of the acyclic receptor 5 with the α-mannoside, for the complexes of the cyclic receptors 7 two different binding modes were required to simultaneously fit all the experimental data. In all cases, extensive binding through hydrogen bonding and CH-π interactions is responsible for the affinities measured in the same solvent. Furthermore, the binding modes closely account for the recognition preferences observed toward the anomeric glycosides and for the peculiar enantiodiscrimination properties exhibited by the chiral receptors.

  15. Microphase structure of poly(N-isopropylacrylamide) hydrogels as seen by small- and wide-angle X-ray scattering and pulsed field gradient NMR.

    PubMed

    László, Krisztina; Guillermo, Armel; Fluerasu, Andrei; Moussaïd, Abdellatif; Geissler, Erik

    2010-03-16

    Above the lower critical solution temperature T(c) (ca. 34 degrees C), poly(N-isopropylacrylamide) hydrogels become weakly hydrophobic and undergo microphase separation. Macroscopic deswelling, however, is extraordinarily slow, the out-of equilibrium state of the gel being conserved for many days. In this article the structure of the microphase-separated state above T(c) is probed by small-angle X-ray scattering and by pulsed field gradient NMR of the protons of water, both in the water phase and in the polymer-rich phase. Above T(c) the gel comprises two microphases, separated by smooth interfaces. The cavities occupied by the water phase form a connected network. The diffusion rate of the water molecules in this phase varies from one cavity to another and can be described by a Gaussian distribution. Water molecules belonging to the polymer-rich phase are also mobile, but their self-diffusion coefficient D is greatly diminished. Absence of compartmentalization of the water phase implies that the slow deswelling rate of the gel is not due to trapping of the water phase.

  16. SOMO (SOlution MOdeler) differences between X-Ray- and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics.

    PubMed

    Rai, Nithin; Nöllmann, Marcelo; Spotorno, Bruno; Tassara, Giovanni; Byron, Olwyn; Rocco, Mattia

    2005-05-01

    Reduced numbers of frictional/scattering centers are essential for tractable hydrodynamic and small-angle scattering data modeling. We present a method for generating medium-resolution models from the atomic coordinates of proteins, basically by using two nonoverlapping spheres of differing radii per residue. The computed rigid-body hydrodynamic parameters of BPTI, RNase A, and lysozyme models were compared with a large database of critically assessed experimental values. Overall, very good results were obtained, but significant discrepancies between X-ray- and NMR-derived models were found. Interestingly, they could be accounted for by properly considering the extent to which highly mobile surface side chains differently affect translational/rotational properties. Models of larger structures, such as fibrinogen fragment D and citrate synthase, also produced consistent results. Foremost among this method's potential applications is the overall conformation and dynamics of modular/multidomain proteins and of supramolecular complexes. The possibility of merging data from high- and low-resolution structures greatly expands its scope.

  17. Complexation of oxygen ligands with dimeric rhodium(II) tetrakistrifluoroacetate in chloroform: 1H, 13C NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Głaszczka, Rafał; Jaźwiński, Jarosław

    2013-03-01

    The complexation of dimeric rhodium(II) tetrakistrifluoroacetylate with 25 ligands containing oxygen atoms: alcohols, ethers, ketones, aldehydes, carboxylic acids and esters in chloroform solution have been investigated by 1H and 13C NMR spectroscopy and Density Functional Theory (DFT) methods. Investigated ligands form 1:1 adducts in our experimental conditions, with stability constants in the order of several hundred mol-1. The exchange of ligands in solution is fast on the NMR spectroscopic timescale. The decrease of longitudinal relaxation times T1 in ligands in the presence of rhodium salt has been tested as the means of determination of the complexation site in ligands. The influence of complexation on chemical shifts in ligands was evaluated by a parameter complexation shift Δδ (Δδ = δadd - δlig). These parameters were positive (>0 ppm) and did not exceed 1 ppm for 1H NMR; and varied from ca. -5 to +15 ppm in the case of 13C NMR. The calculation by DFT methods using the B3LYP functional (structure optimization, electronic energy) and B3PW91 functional (shielding), and combinations of the (6-31G(2d), 6-311G++(2d,p), and LANL2DZ basis sets, followed by scaling procedures reproduced satisfactorily 1H and 13C chemical shifts and, with some limitations, allowed to estimate Δδ parameters.

  18. 1H NMR and chemometrics to characterize mature grape berries in four wine-growing areas in Bordeaux, France.

    PubMed

    Pereira, Giuliano E; Gaudillere, Jean-Pierre; Van Leeuwen, Cornelis; Hilbert, Ghislaine; Lavialle, Olivier; Maucourt, Mickael; Deborde, Catherine; Moing, Annick; Rolin, Dominique

    2005-08-10

    The biochemical composition of grape berries depends on the cultivar genome and is influenced by environmental conditions and growing practices, which vary according to origin and "terroir" (French word accounting for the factors of climate, soil, and cultural practices on grape and wine quality). The components currently measured to determine the potential quality of grapes for wine-making at harvest are sugars, acidity, pH, and total phenolics, referred to as "classic analysis". The aim of this work was to establish metabolic profiles using both conventional physicochemical analyses and 1H NMR spectrometry of the skin and pulp of mature berry extracts in order in four appellations situated in different locations in southern-western France (Bordeaux). Principal component analysis was applied to the physiochemical and 1H NMR data to investigate the variability of the grape composition and to characterize groups of samples. A significant clustering of the metabolic profile of pulps or skins in relation to their terroir was observed. Physicochemical analyses were more discriminant than 1H NMR data, but NMR spectroscopy allowed metabolic finger-printings using identified metabolites and some still nonattributed resonances.

  19. Spin-echo sup 1 H NMR studies of differential mobility in gizzard myosin and its subfragments

    SciTech Connect

    Sommervile, L.E. ); Henry, G.D.; Sykes, B.D. ); Harshorne, D.J. )

    1990-12-01

    The unexpectedly narrow resonances in the {sup 1}H NMR spectra of gizzard myosin, heavy meromyosin, and subfragment 1 were examined by spin-echo NMR spectroscopy. These resonances originated predominantly in the myosin heads, or subfragment 1 units. Smooth muscle myosin undergoes a dramatic change in hydrodynamic properties and can exist either as a folded (10S) or as an extended (6S) species. Factors that influence this transition, namely, ionic strength and phosphorylation (or thiophosphorylation), were varied in the NMR experiments. T{sub 2} relaxation experiments on dephosphorylated myosin indicated several components of different relaxation times that were not influenced by changes in ionic strength. The experiments focused on the components with longer relaxation times, i.e., corresponding to nuclei with more mobility, and these were observed selectively in a spin-echo experiment. With dephosphorylated myosin and HMM, increases in ionic strength caused an increased intensity in several of the narrower resonances. The ionic strength dependence of these changes paralleled that for the 10S and 6S transition. With thiophosphorylated myosin and HMM, changes in ionic strength also influenced the intensities of the narrower resonances, and in addition changes in the {sup 1}H NMR spectrum due to thiophosphorylation were observed. These results suggest that a fraction of the {sup 1}H resonances in smooth muscle myosin and its fragments originates from both aliphatic and aromatic residues of increased mobility compared to the mobility expected from hydrodynamic properties of these proteins.

  20. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  1. Synthesis, characterization of (3E)-1-(6-chloro-2-methyl-4-phenyl quinolin-3-Yl)-3-aryl prop-2-en-1-ones through IR, NMR, single crystal X-ray diffraction and insights into their electronic structure using DFT calculations

    NASA Astrophysics Data System (ADS)

    Sarveswari, S.; Srikanth, A.; Arul Murugan, N.; Vijayakumar, V.; Jasinski, Jerry P.; Beauchesne, Hanna C.; Jarvis, Ethan E.

    2015-02-01

    3E-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-arylprop-2-en-1-ones were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HSQC, DEPT-135. In addition the compound 3E-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one was subjected to the single crystal X-ray diffraction studies. Density functional theory calculations were carried out for this chalcone and its derivatives to investigate into their electronic structure, chemical reactivity, linear and non-linear optical properties. The structure predicted from DFT for chalcone is in good agreement with the structure from XRD measurement.

  2. Data fusion between high resolution (1)H-NMR and mass spectrometry: a synergetic approach to honey botanical origin characterization.

    PubMed

    Spiteri, Marc; Dubin, Elodie; Cotton, Jérôme; Poirel, Marion; Corman, Bruno; Jamin, Eric; Lees, Michèle; Rutledge, Douglas

    2016-06-01

    A data fusion approach was applied to a commercial honey data set analysed by (1)H-nuclear magnetic resonance (NMR) 400 MHz and liquid chromatography-high resolution mass spectrometry (LC-HRMS). The latter was performed using two types of mass spectrometers: an Orbitrap-MS and a time of flight (TOF)-MS. Fifty-six honey samples from four monofloral origins (acacia, orange blossom, lavender and eucalyptus) and multifloral sources from various geographical origins were analysed using the three instruments. The discriminating power of the results was examined by PCA first considering each technique separately, and then combining NMR and LC-HRMS together with or without variable selection. It was shown that the discriminating potential is increased through the data fusion, allowing for a better separation of eucalyptus, orange blossom and lavender. The NMR-Orbitrap-MS and NMR-TOF-MS mid-level fusion models with variable selection were preferred as a good discrimination was obtained with no misclassification observed for the latter. This study opens the path to new comprehensive food profiling approaches combining more than one technique in order to benefit from the advantages of several technologies. Graphical Abstract Data fusion between high resolution 1H-NMR and mass spectrometry.

  3. Data fusion between high resolution (1)H-NMR and mass spectrometry: a synergetic approach to honey botanical origin characterization.

    PubMed

    Spiteri, Marc; Dubin, Elodie; Cotton, Jérôme; Poirel, Marion; Corman, Bruno; Jamin, Eric; Lees, Michèle; Rutledge, Douglas

    2016-06-01

    A data fusion approach was applied to a commercial honey data set analysed by (1)H-nuclear magnetic resonance (NMR) 400 MHz and liquid chromatography-high resolution mass spectrometry (LC-HRMS). The latter was performed using two types of mass spectrometers: an Orbitrap-MS and a time of flight (TOF)-MS. Fifty-six honey samples from four monofloral origins (acacia, orange blossom, lavender and eucalyptus) and multifloral sources from various geographical origins were analysed using the three instruments. The discriminating power of the results was examined by PCA first considering each technique separately, and then combining NMR and LC-HRMS together with or without variable selection. It was shown that the discriminating potential is increased through the data fusion, allowing for a better separation of eucalyptus, orange blossom and lavender. The NMR-Orbitrap-MS and NMR-TOF-MS mid-level fusion models with variable selection were preferred as a good discrimination was obtained with no misclassification observed for the latter. This study opens the path to new comprehensive food profiling approaches combining more than one technique in order to benefit from the advantages of several technologies. Graphical Abstract Data fusion between high resolution 1H-NMR and mass spectrometry. PMID:27086012

  4. 1H- and 15N-NMR assignment and solution structure of the chemotactic Escherichia coli Che Y protein.

    PubMed

    Bruix, M; Pascual, J; Santoro, J; Prieto, J; Serrano, L; Rico, M

    1993-08-01

    Che Y is a 129-residue parallel alpha/beta protein involved in bacterial chemotaxis. We have used this protein as a model to study the folding reaction of parallel alpha/beta proteins. As a first step we carried out the complete assignment of the 1H and 15N spectra from Escherichia coli Che Y protein on the basis of two-dimensional 1H homonuclear and 1H-15N heteronuclear experiments by using sequence-specific methods. Our assignments differ from the preliminary assignments made by Kar et al. [Kar, L., Matsumura, P. & Johnson, M.E. (1992) Biochem. J. 287, 521-531] of aromatic residues obtained by comparison of NOEs with short proton-proton distances in the crystal structure of Che Y. The analysis of the extension of the secondary elements, as well as a preliminary calculation of the three-dimensional structure, indicate that the solution structure is closely coincident with the single crystal structure determined by X-ray diffraction.

  5. (1)H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization.

    PubMed

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional (1)H-(15)N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that (1)H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  6. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    NASA Astrophysics Data System (ADS)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  7. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    PubMed Central

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-01-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica. PMID:27279168

  8. mQTL.NMR: an integrated suite for genetic mapping of quantitative variations of (1)H NMR-based metabolic profiles.

    PubMed

    Hedjazi, Lyamine; Gauguier, Dominique; Zalloua, Pierre A; Nicholson, Jeremy K; Dumas, Marc-Emmanuel; Cazier, Jean-Baptiste

    2015-04-21

    High-throughput (1)H nuclear magnetic resonance (NMR) is an increasingly popular robust approach for qualitative and quantitative metabolic profiling, which can be used in conjunction with genomic techniques to discover novel genetic associations through metabotype quantitative trait locus (mQTL) mapping. There is therefore a crucial necessity to develop specialized tools for an accurate detection and unbiased interpretability of the genetically determined metabolic signals. Here we introduce and implement a combined chemoinformatic approach for objective and systematic analysis of untargeted (1)H NMR-based metabolic profiles in quantitative genetic contexts. The R/Bioconductor mQTL.NMR package was designed to (i) perform a series of preprocessing steps restoring spectral dependency in collinear NMR data sets to reduce the multiple testing burden, (ii) carry out robust and accurate mQTL mapping in human cohorts as well as in rodent models, (iii) statistically enhance structural assignment of genetically determined metabolites, and (iv) illustrate results with a series of visualization tools. Built-in flexibility and implementation in the powerful R/Bioconductor framework allow key preprocessing steps such as peak alignment, normalization, or dimensionality reduction to be tailored to specific problems. The mQTL.NMR package is freely available with its source code through the Comprehensive R/Bioconductor repository and its own website ( http://www.ican-institute.org/tools/ ). It represents a significant advance to facilitate untargeted metabolomic data processing and quantitative analysis and their genetic mapping. PMID:25803548

  9. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  10. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.

    PubMed

    Dufour, Anthony; Castro-Diaz, Miguel; Brosse, Nicolas; Bouroukba, Mohamed; Snape, Colin

    2012-07-01

    The thermochemical conversion of lignocellulosic biomass feedstocks offers an important potential route for the production of biofuels and value-added green chemicals. Pyrolysis is the first phenomenon involved in all biomass thermochemical processes and it controls to a major extent the product composition. The composition of pyrolysis products can be affected markedly by the extent of softening that occurs. In spite of extensive work on biomass pyrolysis, the development of fluidity during the pyrolysis of biomass has not been quantified. This paper provides the first experimental investigation of proton mobility during biomass pyrolysis by in situ (1)H NMR spectroscopy. The origin of mobility is discussed for cellulose, lignin and xylan. The effect of minerals on cellulose mobility is also investigated. Interactions between polymers in the native biomass network are revealed by in situ (1)H NMR analysis. PMID:22573541

  11. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  12. A study by (1)H NMR on the influence of some factors affecting lipid in vitro digestion.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2016-11-15

    This article focuses on the impact of several experimental factors, including gastric acidification, intestinal transit time, presence of gastric lipase, sample/digestive fluids ratio, concentration and nature of the enzymes in intestinal juice, and bile concentration, on the extent of in vitro lipolysis when using a static model that simulates human digestion processes in mouth, stomach and small intestine. The study was carried out by Proton Nuclear Magnetic Resonance ((1)H NMR). This technique provides a complete molecular picture of lipolysis, evidencing for the first time, whether preferential hydrolysis of certain glycerides over others occurs. A lipolysis degree similar to that reported in vivo was reached by varying certain variables within a physiological range; among them, bile concentration was found to be crucial. The holistic view of this (1)H NMR study provides information of paramount importance to design sound in vitro digestion models to determine the bioaccessibility and bioavailability of lipophilic compounds. PMID:27283602

  13. Method of Continuous Variation: Characterization of Alkali Metal Enolates Using 1H and 19F NMR Spectroscopies

    PubMed Central

    2015-01-01

    The method of continuous variation in conjunction with 1H and 19F NMR spectroscopies was used to characterize lithium and sodium enolates solvated by N,N,N′,N′-tetramethylethyldiamine (TMEDA) and tetrahydrofuran (THF). A strategy developed using lithium enolates was then applied to the more challenging sodium enolates. A number of sodium enolates solvated by TMEDA or THF afford exclusively tetramers. Evidence suggests that TMEDA chelates sodium on cubic tetramers. PMID:24915602

  14. NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment.

    PubMed

    Tsika, Aikaterini C; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Spyroulias, Georgios A

    2016-10-01

    Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.

  15. On the role of experimental imperfections in constructing (1)H spin diffusion NMR plots for domain size measurements.

    PubMed

    Nieuwendaal, Ryan C

    2016-01-01

    We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra. PMID:27039203

  16. Quantification of chondroitin sulfate and dermatan sulfate in danaparoid sodium by (1)H NMR spectroscopy and PLS regression.

    PubMed

    Ustün, B; Sanders, K B; Dani, P; Kellenbach, E R

    2011-01-01

    Danaparoid sodium (the active pharmaceutical ingredient in Orgaran; Merck Sharp and Dohme) is a biopolymeric non-heparin drug used as anticoagulant and antithrombotic agent approved for the prophylaxis of post-operative deep-vein thrombosis, which may lead to pulmonary embolism in patients undergoing, e.g., elective hip replacement surgery. It consists of a mixture of three glycosaminoglycans (GAGs): heparan sulfate (HS), dermatan sulfate (DS), and chondroitin sulfate (CS). Currently, the CS and DS content are quantified by means of a time-consuming enzymatic method. In this paper the use of (1)H NMR in combination with multivariate regression (partial least-squares, PLS) is proposed as a new method. In order to evaluate the proposed method, a series of danaparoid sodium samples were analyzed and the results were compared with those obtained by the enzymatic method (reference method). The results showed that the proposed (1)H NMR method is a good alternative for analysis of CS and DS in danaparoid sodium. Accuracy of ±0.7% (w/w) and ±1.1% (w/w) for CS and DS was obtained by the (1)H NMR method and accuracy of ±1.0% (w/w) and ±1.3% (w/w) by the enzymatic method. Furthermore, the use of (1)H NMR in combination with PLS results in a fast quantification. The analysis time is reduced to 35 min per sample instead of 60 h for a maximum of 16 samples. PMID:20862579

  17. Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy

    PubMed Central

    Nelson, Donna J.; Kumar, Ravi

    2013-01-01

    Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779

  18. Improving the efficiency of quantitative (1)H NMR: an innovative external standard-internal reference approach.

    PubMed

    Huang, Yande; Su, Bao-Ning; Ye, Qingmei; Palaniswamy, Venkatapuram A; Bolgar, Mark S; Raglione, Thomas V

    2014-01-01

    The classical internal standard quantitative NMR (qNMR) method determines the purity of an analyte by the determination of a solution containing the analyte and a standard. Therefore, the standard must meet the requirements of chemical compatibility and lack of resonance interference with the analyte as well as a known purity. The identification of such a standard can be time consuming and must be repeated for each analyte. In contrast, the external standard qNMR method utilizes a standard with a known purity to calibrate the NMR instrument. The external standard and the analyte are measured separately, thereby eliminating the matter of chemical compatibility and resonance interference between the standard and the analyte. However, the instrumental factors, including the quality of NMR tubes, must be kept the same. Any deviations will compromise the accuracy of the results. An innovative qNMR method reported herein utilizes an internal reference substance along with an external standard to assume the role of the standard used in the traditional internal standard qNMR method. In this new method, the internal reference substance must only be chemically compatible and be free of resonance-interference with the analyte or external standard whereas the external standard must only be of a known purity. The exact purity or concentration of the internal reference substance is not required as long as the same quantity is added to the external standard and the analyte. The new method reduces the burden of searching for an appropriate standard for each analyte significantly. Therefore the efficiency of the qNMR purity assay increases while the precision of the internal standard method is retained. PMID:24013124

  19. Quality assurance in the pre-analytical phase of human urine samples by (1)H NMR spectroscopy.

    PubMed

    Budde, Kathrin; Gök, Ömer-Necmi; Pietzner, Maik; Meisinger, Christine; Leitzmann, Michael; Nauck, Matthias; Köttgen, Anna; Friedrich, Nele

    2016-01-01

    Metabolomic approaches investigate changes in metabolite profiles, which may reflect changes in metabolic pathways and provide information correlated with a specific biological process or pathophysiology. High-resolution (1)H NMR spectroscopy is used to identify metabolites in biofluids and tissue samples qualitatively and quantitatively. This pre-analytical study evaluated the effects of storage time and temperature on (1)H NMR spectra from human urine in two settings. Firstly, to evaluate short time effects probably due to acute delay in sample handling and secondly, the effect of prolonged storage up to one month to find markers of sample miss-handling. A number of statistical procedures were used to assess the differences between samples stored under different conditions, including Projection to Latent Structure Discriminant Analysis (PLS-DA), non-parametric testing as well as mixed effect linear regression analysis. The results indicate that human urine samples can be stored at 10 °C for 24 h or at -80 °C for 1 month, as no relevant changes in (1)H NMR fingerprints were observed during these time periods and temperature conditions. However, some metabolites most likely of microbial origin showed alterations during prolonged storage but without facilitating classification. In conclusion, the presented protocol for urine sample handling and semi-automatic metabolite quantification is suitable for large-scale epidemiological studies. PMID:26264917

  20. 1H NMR and Rheological Studies of the Calcium Induced Gelation Process in Aqueous Low Methoxyl Pectin Solutions

    NASA Astrophysics Data System (ADS)

    Dobies, M.; Kuśmia, S.; Jurga, S.

    2006-07-01

    The 1H NMR relaxometry in combination with water proton spin-spin relaxation time measurements and rheometry have been applied to study the ionic gelation of 1% w/w aqueous low methoxyl pectin solution induced by divalent Ca2+ cations from a calcium chloride solution. The model-free approach to the analysis of 1H NMR relaxometry data has been used to separate the information on the static (β) and dynamic (<τ_c>) behaviour of the systems tested. The 1H NMR results confirm that the average mobility of both water and the pectin molecules is largely dependent on the concentration of the cross-linking agent. The character of this dependency (β,<τc> and T2 vs. CaCl2 concentration) is consistent with the two-stage gelation process of low methoxyl pectin, in which the formation of strongly linked dimer associations (in the range of 0-2.5 mM CaCl2) is followed by the appearance of weak inter-dimer aggregations (for CaCl2≥ 3.5 mM). The presence of the weak gel structure for the sample with 3.5 mM CaCl2 has been confirmed by rheological measurements. Apart from that, the T1 and T2 relaxation times have been found to be highly sensitive to the syneresis phenomenon, which can be useful to monitor the low methoxyl pectin gel network stability.

  1. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-01

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  2. A new chiral N,N',O-donor heteroscorpionate ligand. Structures of Ni2+, Cu2+, Zn2+ complexes and study of solution equilibria by means of 1H NMR/UV-vis titrations and EXSY NMR spectroscopy.

    PubMed

    Gennari, Marcello; Tegoni, Matteo; Lanfranchi, Maurizio; Pellinghelli, Maria Angela; Marchio, Luciano

    2007-04-16

    The N,N',O-heteroscorpionate ligand 1-(4-methoxy-3,5-dimethyl-pyridin-2-yl)-2-methyl-1-pyrazol-1-yl-propan-2-ol (LOH) was prepared in two high-yield steps. Complexes [M(LOH)2][MCl4] (M2+ = Cu2+ and Zn2+) and [M(LOH)2]Cl2 (M2+ = Ni2+ and Cu2+) were prepared and characterized by X-ray crystallography. The speciation in solution (methanol:water 95:5) of the M2+/LOH systems was investigated by means of spectrophotometric (Ni2+ and Cu2+) and 1H NMR (Zn2+) titrations. The beta1 and beta2 global formation constants for the [M(LOH)]2+ and [M(LOH)2]2+ species were obtained and are in agreement with the Irving-Williams series: Ni2+< Cu2+> Zn2+. The Zn2+/LOH system was studied by means of quantitative 1H-1H EXSY spectroscopy (300 K, mixing time = 0.2-0.8 s), which allows the description of the equilibria occurring between five octahedral [Zn(LOH)2]2+ structural isomers and tetrahedral [Zn(LOH)Cl]Cl species. Exchange constants kijex and associated rate constants kij suggest that two types of interconversion occur: octahedral-octahedral (faster) and octahedral-tetrahedral (slower). DFT calculations (B3LYP/6-311+G(d)) were employed to evaluate the relative stability of the [Zn(LOH)2]2+ isomers, which are comparable for the five complexes with a maximum energy difference of 6.3 kJ/mol.

  3. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy

    PubMed Central

    Embade, Nieves; Mariño, Zoe; Diercks, Tammo; Cano, Ainara; Lens, Sabela; Cabrera, Diana; Navasa, Miquel; Falcón-Pérez, Juan M.; Caballería, Joan; Castro, Azucena; Bosch, Jaume; Mato, José M.; Millet, Oscar

    2016-01-01

    Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection (HCV). Despite its high incidence and the severe economic and medical consequences, liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic methods. While several techniques have been tested for the detection of fibrosis, the available biomarkers still present severe limitations that preclude their use in clinical diagnostics. Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis were analyzed by NMR spectroscopy and the results were submitted to multivariate and univariate statistical analysis. PLS-DA test was able to discriminate between advanced fibrotic and non-fibrotic patients and several metabolites were found to be up or downregulated in patients with cirrhosis. The suitability of the most significantly regulated metabolites was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-density lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients. Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnostic application for NMR spectroscopy. PMID:27158896

  4. Separation and complete analyses of the overlapped and unresolved 1H NMR spectra of enantiomers by spin selected correlation experiments.

    PubMed

    Prabhu, Uday Ramesh; Baishya, Bikash; Suryaprakash, N

    2008-06-26

    NMR spectroscopic discrimination of optical enantiomers is most often carried out using (2)H and (13)C spectra of chiral molecules aligned in a chiral liquid crystalline solvent. The use of proton NMR for such a purpose is severely hindered due to the spectral complexity and the significant loss of resolution arising from numerous short- and long-distance couplings and the indistinguishable overlap of spectra from both R and S enantiomers. The determination of all the spectral parameters by the analyses of such intricate NMR spectra poses challenges, such as, unraveling of the resonances for each enantiomer, spectral resolution, and simplification of the multiplet pattern. The present study exploits the spin state selection achieved by the two-dimensional (1)H NMR correlation of selectively excited isolated coupled spins (Soft-COSY) of the molecules to overcome these problems. The experiment provides the relative signs and magnitudes of all of the proton-proton couplings, which are otherwise not possible to determine from the broad and featureless one-dimensional (1)H spectra. The utilization of the method for quantification of enantiomeric excess has been demonstrated. The studies on different chiral molecules, each having a chiral center, whose spectral complexity increases with the increasing number of interacting spins, and the advantages and limitations of the method over SERF and DQ-SERF experiments have been reported in this work.

  5. Complete assignments of (1)H and (13)C NMR data for two 3beta,8beta-epoxymexicanolides from the fruit of a Chinese mangrove Xylocarpus granatum.

    PubMed

    Wu, Jun; Xiao, Zhihui; Song, Yang; Zhang, Si; Xiao, Qiang; Ma, Cha; Ding, Haixin; Li, Qingxin

    2006-01-01

    Three 3beta,8beta-epoxymexicanolides, including xyloccensin K, 6-acetoxycedrodorin and a new one named xyloccensin W, were isolated from the fruit of a Chinese mangrove Xylocarpus granatum. Their structures were determined by spectroscopic analyses. The first complete assignment of (1)H and (13)C NMR data for xyloccensin W was achieved by means of 2D NMR techniques, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectra. In addition, the confusion of (1)H and (13)C NMR data previously reported for xyloccensin K was clarified.

  6. Dynamic nuclear polarization-enhanced 1H-13C double resonance NMR in static samples below 20 K

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-08-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H-13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H-13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H-13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C-13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils.

  7. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    SciTech Connect

    Levin, E M; Bud' ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  8. Application of quantitative 1H NMR for the calibration of protoberberine alkaloid reference standards.

    PubMed

    Wu, Yan; He, Yi; He, Wenyi; Zhang, Yumei; Lu, Jing; Dai, Zhong; Ma, Shuangcheng; Lin, Ruichao

    2014-03-01

    Quantitative nuclear magnetic resonance spectroscopy (qNMR) has been developed into an important tool in the drug analysis, biomacromolecule detection, and metabolism study. Compared with mass balance method, qNMR method bears some advantages in the calibration of reference standard (RS): it determines the absolute amount of a sample; other chemical compound and its certified reference material (CRM) can be used as internal standard (IS) to obtain the purity of the sample. Protoberberine alkaloids have many biological activities and have been used as reference standards for the control of many herbal drugs. In present study, the qNMR methods were developed for the calibration of berberine hydrochloride, palmatine hydrochloride, tetrahydropalmatine, and phellodendrine hydrochloride with potassium hydrogen phthalate as IS. Method validation was carried out according to the guidelines for the method validation of Chinese Pharmacopoeia. The results of qNMR were compared with those of mass balance method and the differences between the results of two methods were acceptable based on the analysis of estimated measurement uncertainties. Therefore, qNMR is an effective and reliable analysis method for the calibration of RS and can be used as a good complementarity to the mass balance method.

  9. Nondestructive Quantification of Local Plasticizer Concentration in PVC by (1)H NMR Relaxometry.

    PubMed

    Adams, Alina; Kwamen, Rance; Woldt, Benjamin; Graß, Michael

    2015-12-01

    The properties of plasticized poly(vinyl chloride) (PVC) , one of the most important polymers today, are strongly dictated by the concentration of plasticizer. Yet, it has been impossible to quantify this concentration at different positions inside a PVC product without its destruction because of a lack of suitable analytical methods. Thus, this paper introduces a simple, fast, and efficient way to determine truly nondestructively the concentration of plasticizer in PVC by single-sided nuclear magnetic resonance (NMR). With the help of correlation curves between the concentration of plasticizer inside nonaged PVC samples and the corresponding volume-averaged NMR parameters, single-sided NMR allows the quantification of the local concentration of plasticizer in aged PVC plates at different depths by spatially resolved relaxation measurements. The presented approach represents a fundamental step toward in situ characterization of plasticized PVC.

  10. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  11. (1)H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells.

    PubMed

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada; Walls, Jamie D

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use (1)H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  12. Determination of the enantiomeric purity of the antiasthmatic drug montelukast by means of 1H NMR spectroscopy.

    PubMed

    Redondo, Jordi; Capdevila, Anna; Ciudad, Sonia

    2013-11-01

    In order to define an enantioselective nuclear magnetic resonance (NMR) method for the antiasthmatic drug montelukast, a series of nine easily available products were evaluated as NMR chiral solvating agents (CSAs): D-dibenzoyltartaric acid, D-ditoluoyltartaric acid, (+)-camphorsulfonic acid, (S)-BINOL, (S)-3,3'-diphenyl-2,2'-binaphthyl-1,1'-diol, (R)-3,3''-di-9-anthracenyl-1,1''-bi-2-naphthol, (R)-3,3''-di-9-phenanthrenyl-1,1''-bi-2-naphthol, Pirkle's alcohol, and (-)-cinchonidine. It was proved that most of the studied agents constitute diastereomeric complexes with both drug enantiomers in CD2 Cl2 or CDCl3 solutions, thus permitting the direct (1)H NMR detection of the unwanted S-enantiomer, even at levels of 0.75%. (-)-Cinchonidine was found to be the more convenient CSA in terms of NMR enantiodiscrimination power and ease of experimental requirements. The final method was validated and applied to the fast monitoring of the optical purity of montelukast "in-process" samples, circumventing the need for tedious and slower analytical procedures like enantioselective chromatography or capillary electrophoresis. In addition, a method for the enantiopurity control of the commercial drug (montelukast sodium salt) was also established using (S)-BINOL as NMR CSA.

  13. Glycerin-Induced Conformational Changes in Bombyx mori Silk Fibroin Film Monitored by 13C CP/MAS NMR and 1H DQMAS NMR

    PubMed Central

    Asakura, Tetsuo; Endo, Masanori; Hirayama, Misaki; Arai, Hiroki; Aoki, Akihiro; Tasei, Yugo

    2016-01-01

    In order to improve the stiff and brittle characteristics of pure Bombyx mori (B. mori) silk fibroin (SF) film in the dry state, glycerin (Glyc) has been used as a plasticizer. However, there have been very limited studies on the structural characterization of the Glyc-blended SF film. In this study, 13C Cross Polarization/Magic Angle Spinning nuclear magnetic resonance (CP/MAS NMR) was used to monitor the conformational changes in the films by changing the Glyc concentration. The presence of only 5 wt % Glyc in the film induced a significant conformational change in SF where Silk I* (repeated type II β-turn and no α-helix) newly appeared. Upon further increase in Glyc concentration, the percentage of Silk I* increased linearly up to 9 wt % Glyc and then tended to be almost constant (30%). This value (30%) was the same as the fraction of Ala residue within the Silk I* form out of all Ala residues of SF present in B. mori mature silkworm. The 1H DQMAS NMR spectra of Glyc-blended SF films confirmed the appearance of Silk I* in the Glyc-blended SF film. A structural model of Glyc-SF complex including the Silk I* form was proposed with the guidance of the Molecular Dynamics (MD) simulation using 1H–1H distance constraints obtained from the 1H Double-Quantum Magic Angle Spinning (DQMAS) NMR spectra. PMID:27618034

  14. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  15. Synthesis, spectral characterization, single crystal X-ray diffraction and DFT studies of 4-((2,4,5-triphenyl-1H-imidazol-1-yl)methyl)pyridine derivatives

    NASA Astrophysics Data System (ADS)

    Rajkumar, R.; Kamaraj, A.; Bharanidharan, S.; Saleem, H.; Krishnasamy, K.

    2015-03-01

    We have synthesized a series of novel 4-((2,4,5-triphenyl-1H-imidazol-1-yl)methyl)pyridine derivatives. The structures of these compounds were confirmed by IR, HR-MS, 1H and 13C NMR spectra. The compound 5g was also confirmed by single crystal XRD. The geometry of the synthesized compounds 5a-5g were examined by density functional theory (DFT) method at B3LYP/6-31G(d,p) level. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single crystal XRD data. The HOMO-LUMO energies describes charge transfer takes place within the molecule. Furthermore, Mulliken and NBO charges were also calculated. The stability and charge delocalization of the molecule were also studied by natural bond orbital (NBO) analysis. Compound 5g exhibited good non linear optical activity and was 20 times greater than that of urea. In addition, molecular electrostatic potential map (MEP) was studied for predicting the reactive sites.

  16. (1)H and (13)C NMR assignments for two new steroids from the coral Chromonephthea sp.

    PubMed

    Geng, Hua-Wei; Liao, Xiao-Jian; Xu, Shi-Hai

    2009-04-01

    Two new steroids isolated from EtOH extracts of the South China Sea soft coral Chromonephthea sp. were identified. One-dimensional (1D) and two-dimensional (2D) NMR experiments including COSY, HSQC, HMBC and NOESY were used for the determination of their structure.

  17. Determination of the illicit drug gamma-hydroxybutyrate (GHB) in human saliva and beverages by 1H NMR analysis.

    PubMed

    Grootveld, Martin; Algeo, Deborah; Silwood, Christopher J L; Blackburn, John C; Clark, Anthony D

    2006-01-01

    High resolution 1H NMR spectroscopy has been employed to investigate the detection and quantification of the illicit "date-rape" drug gamma-hydroxybutyrate (GHB) in both human saliva and a commonly-consumed low-alcohol beer product. Data acquired revealed that this multicomponent analytical technique provided unequivocal evidence for the detection of this agent by this technique in both of these matrices, i.e., all three of its resonances [those ascribable to the alpha-CH2 (t, delta=2.25 ppm), beta-CH2 (tt, delta=1.81 ppm) and gamma-CH2 (t, delta=3.61 ppm) group protons] were present in spectra acquired on human saliva, and two of these (the alpha- and beta-CH2 group signals) in the beverage product examined, the latter observation attributable to overlap of the gamma-CH2 1H resonance with those of carbohydrates. Since good linear calibration relationships between the intensities of each of the NMR-visible signals and added GHB concentration (the former normalised to that of an external 3-trimethylsilyl [2,2,3,3-2H4]- propionate standard present in a coaxial NMR tube insert) were observed, this illicit drug is also readily quantifiable in such multicomponent samples. Our data demonstrate the advantages offered by this technique when applied to the analysis of illicit drugs in multicomponent sample matrices such as human biofluids and beverage products. PMID:17012769

  18. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  19. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  20. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  1. Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS.

    PubMed

    Godejohann, Markus; Heintz, Lea; Daolio, Cristina; Berset, Jean-Daniel; Muff, Daniel

    2009-09-15

    The aim of the present study was to explore the capabilities of the combination of 1H NMR (proton nuclear magnetic resonance) mixture analysis and HPLC-SPE-NMR/TOF-MS (high-performance liquid chromatography coupled to solid-phase extraction and nuclear magnetic resonance and time-of-flight mass spectrometry) for the characterization of xenobiotic contaminants in groundwater samples. As an example, solid-phase extracts of two groundwater samples taken from a former ammunition destruction site in Switzerland were investigated. 1H NMR spectra of postcolumn SPE enriched compounds, together with accurate mass measurements, allowed the structural elucidation of unknowns. This untargeted approach allowed us to identify expected residues of explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT), Hexogen (RDX) and Octogen (HMX), degradation products of TNT (1,3,5-trinitrobenzene (1,3,5-TNB), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), 3,5-dinitrophenol (3,5-DNP), 3,5-dinitroaniline (3,5-DNA), 2,6-dinitroanthranite, and 2-Hydroxy-4,6-dinitrobenzonitrile), benzoic acid, Bisphenol A (a known endocrine disruptor compound), and some toxicologically relevant additives for propelling charges: Centralite I (1,3-diethyl-1,3-diphenylurea), DPU (N,N-diphenylurethane), N,N-diphenylcarbamate (Acardite II), and N-methyl-N-phenylurethane. To our knowledge, this is the first report of the presence of these additives in environmental samples. Extraction recoveries for Centralite I and DPU have been determined. Contaminants identified by our techniques were quantified based on HPLC-UV (HPLC-ultraviolet detection) and 1H NMR mixture analysis. The concentrations of the contaminants ranged between 0.1 and 48 microg/L assuming 100% recovery for the SPE step.

  2. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  3. (1)H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice.

    PubMed

    Alves Filho, Elenilson G; Almeida, Francisca D L; Cavalcante, Rosane S; de Brito, Edy S; Cullen, Patrick J; Frias, Jesus M; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2016-08-01

    This study evaluated the effect of atmospheric cold plasma and ozone treatments on the key compounds (sugars, amino acids and short chain organic acids) in orange juice by NMR and chemometric analysis. The juice was directly and indirectly exposed to atmospheric cold plasma field at 70kV for different treatment time (15, 30, 45 and 60sec). For ozone processing different loads were evaluated. The Principal Component Analysis shown that the groups of compounds are affected differently depending on the processing. The ozone was the processing that more affected the aromatic compounds and atmospheric cold plasma processing affected more the aliphatic compounds. However, these variations did not result in significant changes in orange juice composition as a whole. Thus, NMR data and chemometrics were suitable to follow quality changes in orange juice processing by atmospheric cold plasma and ozone.

  4. {sup 1}H NMR relaxometry as an indicator of setting and water depletion during cement hydration

    SciTech Connect

    Wang, Biyun; Faure, Paméla; Thiéry, Mickaël; Baroghel-Bouny, Véronique

    2013-03-15

    Proton nuclear magnetic resonance relaxometry has been used to detect setting and microstructure evolution during cement hydration. NMR measurements were performed since casting, during setting and until hardening (from 0 to 3 days). The mobility of water molecules was assessed by an analysis focused on the diagram of longitudinal relaxation time T{sub 1} generated by an Inversion Recovery sequence. The initial stiffening of the solid network was identified by an analysis of the relaxation rate 1/T{sub 1}. The kinetics of water depletion was investigated by using a simple one-pulse acquisition sequence. In parallel, conventional techniques (Vicat needle and temperature monitoring), as well as numerical simulations of hydration, were used to complement and validate these NMR results. Cement pastes and mortars with different water-to-cement ratios made of grey or white OPCs were tested. Furthermore, the effects of the addition of sand, super-plasticizer and silica fume on the hydration kinetics were investigated.

  5. Communication: Molecular dynamics and 1H NMR of n-hexane in liquid crystals

    NASA Astrophysics Data System (ADS)

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; de Lange, Cornelis A.; Dong, Ronald Y.; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-01

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  6. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    SciTech Connect

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; Lange, Cornelis A. de; Dong, Ronald Y.; Muccioli, Luca Pizzirusso, Antonio Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  7. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  8. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  9. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  10. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  11. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and 1H-NMR

    PubMed Central

    Arana, Victoria Andrea; Esseiva, Pierre; Pazos, Diego

    2016-01-01

    In a previous work using 1H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions. PMID:27516919

  12. Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS

    PubMed Central

    Pan, Jianyang; Gong, Xingchu; Qu, Haibin

    2016-01-01

    A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM. PMID:27776128

  13. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and (1)H-NMR.

    PubMed

    Arana, Victoria Andrea; Medina, Jessica; Esseiva, Pierre; Pazos, Diego; Wist, Julien

    2016-01-01

    In a previous work using (1)H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions. PMID:27516919

  14. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and (1)H-NMR.

    PubMed

    Arana, Victoria Andrea; Medina, Jessica; Esseiva, Pierre; Pazos, Diego; Wist, Julien

    2016-01-01

    In a previous work using (1)H-NMR we reported encouraging steps towards the construction of a robust expert system for the discrimination of coffees from Colombia versus nearby countries (Brazil and Peru), to assist the recent protected geographical indication granted to Colombian coffee in 2007. This system relies on fingerprints acquired on a 400 MHz magnet and is thus well suited for small scale random screening of samples obtained at resellers or coffee shops. However, this approach cannot easily be implemented at harbour's installations, due to the elevated operational costs of cryogenic magnets. This limitation implies shipping the samples to the NMR laboratory, making the overall approach slower and thereby more expensive and less attractive for large scale screening at harbours. In this work, we report on our attempt to obtain comparable classification results using alternative techniques that have been reported promising as an alternative to NMR: GC-MS and GC-C-IRMS. Although statistically significant information could be obtained by all three methods, the results show that the quality of the classifiers depends mainly on the number of variables included in the analysis; hence NMR provides an advantage since more molecules are detected to obtain a model with better predictions.

  15. Combining 1H NMR spectroscopy and multivariate regression techniques to quantitatively determine falsification of porcine heparin with bovine species.

    PubMed

    Monakhova, Yulia B; Diehl, Bernd W K

    2015-11-10

    (1)H NMR spectroscopy was used to distinguish pure porcine heparin and porcine heparin blended with bovine species and to quantify the degree of such adulteration. For multivariate modelling several statistical methods such as partial least squares regression (PLS), ridge regression (RR), stepwise regression with variable selection (SR), stepwise principal component regression (SPCR) were utilized for modeling NMR data of in-house prepared blends (n=80). The models were exhaustively validated using independent test and prediction sets. PLS and RR showed the best performance for estimating heparin falsification regarding its animal origin with the limit of detection (LOD) and root mean square error of validation (RMSEV) below 2% w/w and 1% w/w, respectively. Reproducibility expressed in coefficients of variation was estimated to be below 10% starting from approximately 5% w/w of bovine adulteration. Acceptable calibration model was obtained by SPCR, by its application range was limited, whereas SR is least recommended for heparin matrix. The developed method was found to be applicable also to heparinoid matrix (not purified heparin). In this case root mean square of prediction (RMSEP) and LOD were approximately 7% w/w and 8% w/w, respectively. The simple and cheap NMR method is recommended for screening of heparin animal origin in parallel with official NMR test of heparin authenticity and purity.

  16. 1H NMR analysis of complexation of hydrotropic agents nicotinamide and caffeine with aromatic biologically active molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.

    2004-07-01

    NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.

  17. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: classification, prediction and detection of adulteration.

    PubMed

    Fang, Guihua; Goh, Jing Yeen; Tay, Manjun; Lau, Hiu Fung; Li, Sam Fong Yau

    2013-06-01

    The correct identification of oils and fats is important to consumers from both commercial and health perspectives. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy, gas chromatography-mass spectrometry (GC/MS) fingerprinting and chemometrics were employed successfully for the quality control of oils and fats. Principal component analysis (PCA) of both techniques showed group clustering of 14 types of oils and fats. Partial least squares discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) using GC/MS data had excellent classification sensitivity and specificity compared to models using NMR data. Depending on the availability of the instruments, data from either technique can effectively be applied for the establishment of an oils and fats database to identify unknown samples. Partial least squares (PLS) models were successfully established for the detection of as low as 5% of lard and beef tallow spiked into canola oil, thus illustrating possible applications in Islamic and Jewish countries.

  18. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  19. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis.

    PubMed

    Jung, Youngae; Lee, Jueun; Kim, Ho Kyoung; Moon, Byeong Cheol; Ji, Yunui; Ryu, Do Hyun; Hwang, Geum-Sook

    2012-12-01

    Curcuma is used to treat skin diseases and colic inflammatory disorders, and in insect repellants and antimicrobial and antidiabetic medications. Two Curcuma species (C. aromatica and C. longa) grown in Jeju-do and Jin-do were used in this study. Methanolic extracts were analyzed by (1)H NMR spectroscopy, and metabolite profiling coupled with multivariate analysis was applied to characterize the differences between species or origin. PCA analysis showed significantly greater differences between species than origins, and the metabolites responsible for the differences were identified. The concentrations of sugars (glucose, fructose, and sucrose) and essential oils (eucalyptol, curdione, and germacrone) were significantly different between the two species. However, the samples from Jeju-do and Jin-do were different mainly in their concentrations of organic acids (fumarate, succinate, acetate, and formate) and sugars. This study demonstrates that NMR-based metabolomics is an efficient method for fingerprinting and determining differences between Curcuma species or those grown in different regions.

  20. Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1H NMR spectroscopy.

    PubMed

    Siciliano, Carlo; Belsito, Emilia; De Marco, Rosaria; Di Gioia, Maria Luisa; Leggio, Antonella; Liguori, Angelo

    2013-01-15

    High resolution (1)H NMR spectroscopy was proposed for the determination of the fatty acid chain profile of lipids in pork meat products during ripening. Two typical Mediterranean PDO salami produced in Calabria, a region in the Southern Italy, were chosen as a case of study. Quantitative NMR analysis provided the fatty acid chain profiles of total lipid extracts. The transesterification of total lipid extracts furnished FAME mixtures that enabled quantitation of fatty acid acyl chains in the acylglycerol and FFA portions. In all cases, oleyl chains were predominant, and high amounts of polyunsaturated fatty acid chains were observed. The proposed spectroscopic method allowed also the estimation of the most important nutritional parameters of dry fermented meat products.

  1. Study of the Cardiotoxicity of Venenum Bufonis in Rats using an 1H NMR-Based Metabolomics Approach

    PubMed Central

    Wang, Junsong; Guo, Pingping; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2015-01-01

    Venenum Bufonis, a well-known traditional Chinese medicine, has been widely used in Asia and has gained popularity in Western countries over the last decade. Venenum Bufonis has obvious side effects that have been observed in clinical settings, but few studies have reported on its cardiotoxicity. In this work, the cardiotoxicity of Venenum Bufonis was investigated using a 11H NMR-based metabolomics approach. The 1H NMR profiles of the serum, myocardial extracts and liver extracts of specific-pathogen-free rats showed that Venenum Bufonis produced significant metabolic perturbations dose-dependently with a distinct time effect, peaking at 2 hr after dosing and attenuating gradually. Clinical chemistry, electrocardiographic recordings, and histopathological evaluation provided additional evidence of Venenum Bufonis-induced cardiac damage that complemented and supported the metabolomics findings. The combined results demonstrated that oxidative stress, mitochondrial dysfunction, and energy metabolism perturbations were associated with the cardiac damage that results from Venenum Bufonis. PMID:25781638

  2. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  3. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  4. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  5. Phenylalanine and tyrosine methyl ester intramolecular interactions and conformational analysis by (1)H NMR and infrared spectroscopies and theoretical calculations.

    PubMed

    Cormanich, Rodrigo A; Ducati, Lucas C; Tormena, Cláudio F; Rittner, Roberto

    2014-04-01

    Amino acid conformational analysis in solution are scarce, since these compounds present a bipolar zwitterionic structure ((+)H3NCHRCOO(-)) in these media. Also, intramolecular hydrogen bonds have been classified as the sole interactions governing amino acid conformational behavior in the literature. In the present work we propose phenylalanine and tyrosine methyl ester conformational studies in different solvents by (1)H NMR and infrared spectroscopies and theoretical calculations. Both experimental and theoretical results are in agreement and suggest that the conformational behavior of the phenylalanine and tyrosine methyl esters are similar and are dictated by the interplay between steric and hyperconjugative interactions.

  6. J-Modulation in ID NMR 1H Spectrum of Taurine and Aspartate Using Spin-Echo Technique

    NASA Astrophysics Data System (ADS)

    Oturak, Halil; Sağlam, Adnan; Bahçeli, Semiha

    1999-05-01

    This study reports on a theoretical calculation of Hahn's spin-echo experiment in case of a model A2B2 spin system with a strongly coupling character and gives the experimental results of one-dimension 1H high-resolution NMR spectra of taurine and aspartate. The calculated amplitudes of the spin-echoes for two different proton groups of taurine are given. Using results of our calculations for taurine, the computer simulations of J-modulation are implemented. It is shown that the agreement be-tween the experimental and simulated spectra is good.

  7. Hydrogen cluster/network in tobermorite as studied by multiple-quantum spin counting {sup 1}H NMR

    SciTech Connect

    Mogami, Yuuki; Yamazaki, Satoru; Matsuno, Shinya; Matsui, Kunio; Noda, Yasuto; Takegoshi, K.

    2014-12-15

    Proton multiple-quantum (MQ) spin-counting experiment has been employed to study arrangement of hydrogen atoms in 9 Å/11 Å natural/synthetic tobermorites. Even though all tobermorite samples give similar characterless, broad static-powder {sup 1}H NMR spectra, their MQ spin-counting spectra are markedly different; higher quanta in 11 Å tobermorite do not grow with the MQ excitation time, while those in 9 Å one do. A statistical analysis of the MQ results recently proposed [26] is applied to show that hydrogens align in 9 Å tobermorite one dimensionally, while in 11 Å tobermorite they exist as a cluster of 5–8 hydrogen atoms.

  8. 31P{1H}NMR and carbonyl force constants of unsymmetrical bidentate phosphine complexes of group (VI) metal carbonyls

    NASA Astrophysics Data System (ADS)

    Jesu Raj, Joe Gerald; Pathak, Devendra Deo; Kapoor, Pramesh N.

    2015-05-01

    In our present work we report synthesis of an unsymmetrical diphos ligand, 1-diphenylphosphino-2-di-m-tolylphosphinoethane and its coordinate complexes with group (VI) metal carbonyls such as Cr(CO)6 Mo(CO)6 and W(CO)6. The synthesized ligand and its complexes have been completely characterized by elemental analyses, FTIR, 1HNMR, 31P{1H}NMR and FAB mass spectrometry methods. Special emphasis has been given to calculations of carbonyl force constants. Based on the spectroscopic evidences it has been confirmed that these metal carbonyl complexes with the ditertiary phosphine ligand showed cis geometry in their molecular structure.

  9. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    SciTech Connect

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  10. Dynamic behaviour of water in hydrogel containing hydrophobic side chains as studied by pulse 1H NMR

    NASA Astrophysics Data System (ADS)

    Yasunaga, H.; Shirakawa, Y.; Urakawa, H.; Kajiwara, K.

    2002-01-01

    1H NMR measurements on spin-lattice relaxation time ( T1) and spin-spin relaxation time ( T2) were carried out on water contained in water-swollen copolymer gels prepared from hydrophilic methacrylic acid and hydrophobic stearyl methacrylate (SMA) or lauryl methacrylate (LMA). The degree of swelling of the copolymer gels decreases drastically with increasing component of hydrophobic monomers. 1H T1 and T2 of water show linear relationship with the cube root of the degree of swelling. Motion of water is restrained with the decreasing network size and the amount of hydrophobic groups in the network. T1 measurements with temperature change revealed that the hydrogen bondings in water are decreased by introducing hydrophobic groups into the hydro gel..

  11. In vivo localized 1H NMR spectroscopy at 11.7 Tesla

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Field, James; Brereton, Ian M.; Moxon, Leith N.; Shannon, Gerald F.; Doddrell, David M.

    The SPACE volume-selection technique has been used to acquire high-resolution 1H spectra from the brain of neonate mice at 11.7 T (500 MHz). Spectra were acquired from voxels smaller than 20 μl. The spectra display elevated intensities of resonances arising from taurine and reduced intensities of those arising from N-acetylaspartate, when compared to those of mature animals, correlating well with in vitro studies. An integrated probe design consisting of separate transmission and reception RF coils and linear gradient coils is described. Comments are made concerning the advantages and disadvantages of performing gradient-encoded localized spectroscopy at this field strength.

  12. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-01-01

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance. PMID:24104201

  13. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy.

    PubMed

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-10-09

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance.

  14. Individual Human Metabolic Phenotype Analyzed by (1)H NMR of Saliva Samples.

    PubMed

    Wallner-Liebmann, Sandra; Tenori, Leonardo; Mazzoleni, Antonio; Dieber-Rotheneder, Martina; Konrad, Manuela; Hofmann, Peter; Luchinat, Claudio; Turano, Paola; Zatloukal, Kurt

    2016-06-01

    Saliva is an important physiological fluid that contains a complex mixture of analytes that may produce a characteristic individual signature. In recent years, it has been demonstrated that urine possesses a clear signature of the individual metabolic phenotype. Here NMR-based metabolomics was employed to analyze saliva from 23 healthy volunteers. About six saliva samples were collected daily from each individual for 10 consecutive days: 7 days in a real-life situation (days 1-7, Phase I) and 3 days (days 8-10, Phase II) under a standardized diet plus a physical exercise program at day 10. The result is the first demonstration of the existence of an individual metabolic phenotype in saliva. A systematic comparative analysis with urine samples from the same collection scheme demonstrates that the individual phenotype in saliva is slightly weaker than that in urine but less influenced by diet. PMID:27087681

  15. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    PubMed

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna. PMID:26809854

  16. Determination of metabolites by 1H NMR and GC: analysis for organic osmolytes in crude tissue extracts.

    PubMed

    Fan, T W; Colmer, T D; Lane, A N; Higashi, R M

    1993-10-01

    World-wide salinity and drought problems necessitate the understanding of biological adaptation to water deficit. Osmotic adjustment via organic solutes is a common strategy for organisms to deal with water deficit problems. Numerous water-soluble organic metabolites across several chemical classes are commonly utilized as osmolytes, including betaines, sulfonium and sulfonate compounds, amino acids, carbohydrates, and polyols. To deal with the complexity and variability in osmolyte composition, we have devised an analytical approach that combines high-resolution 1H NMR and GLC to provide both structure identification and quantification of a broad spectrum of compounds. This combined approach also facilitated direct analyses of crude tissue extracts without extensive sample preparation, making it well-suited for a convenient screening of potential osmolytes. The structures of known osmolytes were confirmed from two-dimensional total correlation 1H NMR spectra, which also yielded structural information about unknown compounds. Five each terrestrial plant and marine animal species were examined for 41 metabolites, including osmolyte candidates glycinebetaine, dimethylsulfoniopropionate, taurine, proline, glycine, asparagine, alanine, glutamine, glucose, and sucrose. The osmotic function of glycinebetaine, proline, asparagine, glutamine, glucose, and sucrose was also demonstrated in leaves of Distichlis spicata under different salinity treatments.

  17. Effect of 1,10-phenanthroline aromaticity in carboxylic acids:1H NMR spectroscopy, GIAO calculations and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Machado, Camila M. B.; Santos, Vanessa F. C.; Belarmino, Marcia K. D. L.; França, José A. A.; Moura, Gustavo L. C.; Lima, Nathalia B. D.

    2016-08-01

    Hydrogen bonding represents a class of chemical interactions, which are directly responsible for several physical properties, such as: energetic stabilities, boiling points, vibrational modes, bond lengths, etc. In this article, we examine from the point of view of 1H NMR spectroscopy and GIAO calculations, the effects associated with the process of formation of the hydrogen bonds as they appear in the chemical shifts of the acidic hydrogens in the complexes between nitrogenated compounds, PHEN, BIPY and DIBIPY, and carboxylic acids, HOOCH, HOOCCH3 and HOOCC6H5. All computational simulations were performed using the quantum chemical methods B3LYP/6-31++G(d,p) and ωB97X-D/def2-TZVP. The 1H NMR spectroscopy results showed that, in both cases, the hydrogen nucleus of the OH group is the most affected in the process of hydrogen bond formation. For the complexes involving PHEN we observed that the hydrogen nucleus is more strongly shielded when compared with this signal in the corresponding complexes involving BIPY and DIBIPY.

  18. Urea's effect on the ribonuclease A catalytic efficiency: a kinetic, 1H NMR and molecular orbital study.

    PubMed

    Almarza, Jorge; Rincón, Luis; Bahsas, Alí; Pinto, María Angela; Brito, Francisco

    2013-02-01

    Understanding of protein-urea interactions is one of the greatest challenges to modern structural protein chemistry. Based in enzyme kinetics experiments and (1)H NMR spectroscopic analysis we proposed that urea, at low concentrations, directly interacts with the protonated histidines of the active center of RNase A, following a simple model of competitive inhibition. These results were supported by theoretical analysis based on the frontier molecular orbital theory and suggest that urea might establish a favorable interaction with the cationic amino acids. Our experimental evidence and theoretical analysis indicate that the initials steps of the molecular mechanism of Urea-RNase A interaction passes through the establishment of a three center four electron adduct. Also, our results would explain the observed disruption of the (1)H NMR signals corresponding to H12 and H119 (involved in catalysis) of the RNase A studied in the presence of urea. Our interaction model of urea-amino acids (cationic) can be extended to explain the inactivation of other enzymes with cationic amino acids at the active site.

  19. Analysis of the electronic, IR, and 1H NMR spectra of conjugated oligomers based on 4,4'-triphenylamine vinylene

    NASA Astrophysics Data System (ADS)

    Baryshnikov, G. V.; Minaeva, V. A.; Minaev, B. F.; Sun, V.-H.; Grigoras, M.

    2016-09-01

    Two types of conjugated oligomers based on 4,4'-triphenylamine vinylene have been synthesized and characterized by the methods of IR, UV-visible, and 1H NMR spectroscopy. The corresponding spectra have also been simulated theoretically at the density functional theory level with application of the B3LYP and BMK hybrid exchange-correlation functionals. A comparative analysis of the experimental and theoretical spectra of polymers and oligomers has revealed regularities of the manifestation of spectral signals depending on the conjugation chain length and the presence of a substituent in the triphenylamine core. It has been established, in particular, that the absolute intensity of IR bands satisfies a linear dependence with increase in the degree of polymerization; however, no frequency shift is observed at the same time. The position of the main peak in electron absorption spectra demonstrates the bathochromic shift with an increase in the oligomeric chain length due to the narrowing of the energy gap between the boundary molecular orbitals. Based on the theoretical estimation of the hydrogen atoms chemical shifts, the signals of various protons types in the strongly broadened experimental 1H NMR spectra of the bis-(4-iodine phenyl)-phenylamine and N,N-bis-(4-iodine phenyl)-4'-(phenylethynyl)-phenylamine polymerization products have also been identified.

  20. Anthocyanin incorporated dental copolymer: bacterial growth inhibition, mechanical properties, and compound release rates and stability by (1)h NMR.

    PubMed

    Hrynash, Halyna; Pilly, Vinay Kumar; Mankovskaia, Alexandra; Xiong, Yaoyang; Nogueira Filho, Getulio; Bresciani, Eduardo; Lévesque, Céline Marie; Prakki, Anuradha

    2014-01-01

    Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon). Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30 mol%) and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX), except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans) for 24 h. Cell viability (n = 3) was assessed by counting the number of colony forming units on replica agar plates. Flexural strength (FS) and elastic modulus (E) were tested on a universal testing machine (n = 8). Compound release and chemical stability were evaluated by UV spectrophotometry and (1)H NMR (n = 3). Data were analyzed by one-way ANOVA and Tukey's test ( α = 0.05). Results. Both compounds inhibited S. mutans growth, with CHX being most effective (P < 0.05). Control resin had the lowest FS and E values, followed by ACY and CHX, with statistical difference between control and CHX groups for both mechanical properties (P < 0.05). The 24 h compound release rates were ACY: 1.33 μg/mL and CHX: 1.92 μg/mL. (1)H NMR spectra suggests that both compounds remained stable after being released in water. Conclusion. The present findings indicate that anthocyanins might be used as a natural antibacterial agent in resin based materials.

  1. Sequential sup 1 H NMR assignments and secondary structure of an IgG-binding domain from protein G

    SciTech Connect

    Lian, L.Y.; Yang, J.C.; Derrick, J.P.; Sutcliffe, M.J.; Roberts, G.C.K. ); Murphy, J.P.; Goward, C.R.; Atkinson, T. )

    1991-06-04

    Protein G is a member of a class of cell surface bacterial proteins from Streptococcus that bind IgG with high affinity. A fragment of molecular mass 6,988, which retains IgG-binding activity, has been generated by proteolytic digestion and analyzed by {sup 1}H NMR. Two-dimenstional DQF-COSY, TOCSY, and NOESY spectra have been employed to assign the {sup 1}H NMR spectrum of the peptide. Elements of regular secondary structure have been identified by using nuclear Overhauser enhancement, coupling constant, and amide proton exchange data. The secondary structure consists of a central {alpha}-helix (Ala28-Val44), flanked by two portions of {beta}-sheet (Val5-Val26 and Asp45-Lys62). This is a fundamentally different arrangement of secondary structure from that of protein A, which is made up of three consecutive {alpha}-helics in free solution. The authors conclude that the molecular mechanisms underlying the association of protein A and protein G with IgG are different.

  2. Correlation of tryptophan fluorescence intensity decay parameters with sup 1 H NMR-determined rotamer conformations: (tryptophan sup 2 )oxytocin

    SciTech Connect

    Ross, J.B.A.; Schwartz, G.P.; Laws, W.R. ); Wyssbrod, H.R.; Porter, R.A. ); Michaels, C.A. )

    1992-02-18

    While the fluorescence decay kinetics of tyrosine model compounds can be explained in terms of heterogeneity derived from the three ground-state {chi}{sup 1} rotamers, a similar correlation has yet to be directly observed for a tryptophan residue. In addition, the asymmetric indole ring might also lead to heterogeneity from {chi}{sup 2} rotations. In this paper, the time-resolved and steady-state fluorescence properties of (tryptophan{sup 2})oxytocin at pH 3 are presented and compared with {sup 1}H NMR results. According to the unrestricted analyses of individual fluorescence decay curves taken as a function of emission wavelength-independent decay constants, only three exponential terms are required. In addition, the preexponential weighting factors (amplitudes) have the same relative relationship (weights) as the {sup 1}H NMR-determined {chi}{sup 1} rotamer populations of the indole side chain. {sup 15}N was used in heteronuclear coupling experiments to confirm the rotamer assignments. Inclusion of a linked function restricting the decay amplitudes to the {chi}{sup 1} rotamer populations in the individual decay curve analyses and in the global analysis confirms this correlation. According to qualitative nuclear Overhauser data, there are two {chi}{sup 2} populations.

  3. Nearly 10(6)-fold enhancements in intermolecular (1)H double-quantum NMR experiments by nuclear hyperpolarization.

    PubMed

    Mishkovsky, Mor; Eliav, Uzi; Navon, Gil; Frydman, Lucio

    2009-09-01

    Intermolecular Multiple-Quantum Coherences (iMQCs) can yield interesting NMR information of high potential usefulness in spectroscopy and imaging - provided their associated sensitivity limitations can be overcome. A recent study demonstrated that ex situ dynamic nuclear polarization (DNP) could assist in overcoming sensitivity problems for iMQC-based experiments on (13)C nuclei. In the present work we show that a similar approach is possible when targeting the protons of a hyperpolarized solvent. It was found that although the DNP procedure enhances single-quantum (1)H signals by about 600, which is significantly less than in optimized low-gamma liquid-state counterparts, the non-linear dependence of iMQC-derived signals on polarization can yield very large enhancements approaching 10(6). Cleary no practical amount of data averaging can match this kind of sensitivity gains. The fact that DNP endows iMQC-based (1)H NMR spectra with a sensitivity that amply exceeds that of their thermally polarized single-quantum counterpart, is confirmed in a number of simple single-scan 2D imaging experiments.

  4. [Discrimination of patients with Xiao-Chaihu Tang syndrome using 1H NMR metabonomics and partial least square analysis].

    PubMed

    Xing, Jie; Yuan, Shu-chun; Sun, Hui-min; Fan, Ma-li; Li, Zhen-yu; Qin, Xue-mei

    2015-08-01

    1H NMR metabonomics approach was used to reveal the chemical difference of urine between patients with Xiao-Chaihu Tang syndrome (XCHTS) and healthy participants (HP). The partial least square method was used to establish a model to distinguish the patients with Xiao-Chaihu-Tang syndrome from the healthy controls. Thirty-four endogenous metabolites were identified in the 1H NMR spectrum, and orthogonal partial least squares discriminant analysis showed the urine of patients with Xiao-Chaihu Tang syndrome and healthy participants could be separated clearly. It is indicated that the metabolic profiling of patients with Xiao-Chaihu Tang syndrome was changed obviously. Fifteen metabolites were found by S-pot of OPLS-DA and VIP value. The contents of leucine, formic acid, glycine, hippuric acid and uracil increased in the urine of patients, while threonine, 2-hydroxyisobutyrate, acetamide, 2-oxoglutarate, citric acid, dimethylamine, malonic acid, betaine, trimethylamine oxide, phenylacetyl glycine, and uridine decreased. These metabolites involve the intestinal microbial balance, energy metabolism and amino acid metabolism pathways, which is related with the major symptom of Xiao-Chaihu Tang syndrome. The patients with Xiao-Chaihu Tang syndrome could be identified and predicted correctly using the established partial least squares model. This study could be served as the basis for the accurate diagnostic and reasonable administration of Xiao-Chaihu-Tang syndrome.

  5. Development and Validation of Quantitative (1)H NMR Spectroscopy for the Determination of Total Phytosterols in the Marine Seaweed Sargassum.

    PubMed

    Zhang, Xiu-Li; Wang, Cong; Chen, Zhen; Zhang, Pei-Yu; Liu, Hong-Bing

    2016-08-10

    Knowledge of phytosterol (PS) contents in marine algae is currently lacking compared to those in terrestrial plants. The present studies developed a quantitative (1)H NMR method for the determination of the total PSs in Sargassum. The characteristic proton signal H-3α in PSs was used for quantification, and 2,3,4,5-tetrachloro-nitrobenzene was used as an internal standard. Seaweed samples could be recorded directly after total lipid extraction and saponification. The results showed that the PS contents in Sargassum fusiforme (788.89-2878.67 mg/kg) were significantly higher than those in Sargassum pallidum (585.33-1596.00 mg/kg). The variable contents in both species suggested that fixed raw materials are very important for future research and development. Orthogonal projection to latent structures discriminant analysis was carried out in the spectral region of δ 3.00-6.50 in the (1)H NMR spectrum. S. fusiforme and S. pallidum could be separated well, and the key sterol marker was fucosterol. PMID:27447194

  6. Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC–ESI-MS

    PubMed Central

    Safer, Stefan; Cicek, Serhat S.; Pieri, Valerio; Schwaiger, Stefan; Schneider, Peter; Wissemann, Volker; Stuppner, Hermann

    2011-01-01

    The genus Leontopodium, mainly distributed in Central and Eastern Asia, consists of ca. 34–58 different species. The European Leontopodium alpinum, commonly known as Edelweiss, has a long tradition in folk medicine. Recent research has resulted in the identification of prior unknown secondary metabolites, some of them with interesting biological activities. Despite this, nearly nothing is known about the Asian species of the genus. In this study, we applied proton nuclear magnetic resonance (1H NMR) spectroscopy and liquid chromatography–mass spectrometry (LC–MS) metabolic fingerprinting to reveal insights into the metabolic patterns of 11 different Leontopodium species, and to conclude on their taxonomic relationship. Principal component analysis (PCA) of 1H NMR fingerprints revealed two species groups. Discriminators for these groups were identified as fatty acids and sucrose for group A, and ent-kaurenoic acid and derivatives thereof for group B. Five diterpenes together with one sesquiterpene were isolated from Leontopodium franchetii roots; the compounds were described for the first time for L. franchetii: ent-kaur-16-en-19-oic acid, methyl-15α-angeloyloxy-ent-kaur-16-en-19-oate, methyl-ent-kaur-16-en-19-oate, 8-acetoxymodhephene, 19-acetoxy-ent-kaur-16-ene, methyl-15β–angeloyloxy-16,17-epoxy-ent-kauran-19-oate. In addition, differences in the metabolic profile between collected and cultivated species could be observed using a partial least squares-discriminant analysis (PLS-DA). PCA of the LC–MS fingerprints revealed three groups. Discriminating signals were compared to literature data and identified as two bisabolane derivatives responsible for discrimination of group A and C, and one ent-kaurenoic acid derivative, discriminating group B. A taxonomic relationship between a previously unidentified species and L. franchetii and Leontopodium sinense could be determined by comparing NMR fingerprints. This finding supports recent molecular data

  7. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    PubMed

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation. PMID:24752730

  8. {sup 1}H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    SciTech Connect

    Zhang, Ying; Lin, Lianjie; Xu, Yanbin; Lin, Yan; Jin, Yu; Zheng, Changqing

    2013-04-19

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ({sup 1}H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC.

  9. (1)H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit.

    PubMed

    Goulas, Vlasios; Minas, Ioannis S; Kourdoulas, Panayiotis M; Lazaridou, Athina; Molassiotis, Athanassios N; Gerothanassis, Ioannis P; Manganaris, George A

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. 'Canada Giant', 'Ferrovia') were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: 'Canada Giant' fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile 'Ferrovia' possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, (1)H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. 'Ferrovia' fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an (1)H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2-8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  10. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit

    PubMed Central

    Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by 1H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a 1H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA. PMID:26565633

  11. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit.

    PubMed

    Garcia-Simon, Monica; Morales, Jose M; Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.

  12. Metabolic Study of Breast MCF-7 Tumor Spheroids after Gamma Irradiation by 1H NMR Spectroscopy and Microimaging

    PubMed Central

    Palma, Alessandra; Grande, Sveva; Luciani, Anna Maria; Mlynárik, Vladimír; Guidoni, Laura; Viti, Vincenza; Rosi, Antonella

    2016-01-01

    Multicellular tumor spheroids are an important model system to investigate the response of tumor cells to radio- and chemotherapy. They share more properties with the original tumor than cells cultured as 2D monolayers do, which helps distinguish the intrinsic properties of monolayer cells from those induced during cell aggregation in 3D spheroids. The paper investigates some metabolic aspects of small tumor spheroids of breast cancer and their originating MCF-7 cells, grown as monolayer, by means of high–resolution (HR) 1H NMR spectroscopy and MR microimaging before and after gamma irradiation. The spectra of spheroids were characterized by higher intensity of mobile lipids, mostly neutral lipids, and glutamine (Gln) signals with respect to their monolayer cells counterpart, mainly owing to the lower oxygen supply in spheroids. Morphological changes of small spheroids after gamma-ray irradiation, such as loss of their regular shape, were observed by MR microimaging. Lipid signal intensity increased after irradiation, as evidenced in both MR localized spectra of the single spheroid and in HR NMR spectra of spheroid suspensions. Furthermore, the intense Gln signal from spectra of irradiated spheroids remained unchanged, while the low Gln signal observed in monolayer cells increased after irradiation. Similar results were observed in cells grown in hypoxic conditions. The different behavior of Gln in 2D monolayers and in 3D spheroids supports the hypothesis that a lower oxygen supply induces both an upregulation of Gln synthetase and a downregulation of glutaminases with the consequent increase in Gln content, as already observed under hypoxic conditions. The data herein indicate that 1H NMR spectroscopy can be a useful tool for monitoring cell response to different constraints. The use of spheroid suspensions seems to be a feasible alternative to localized spectroscopy since similar effects were found after radiation treatment. PMID:27200293

  13. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  14. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  15. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    PubMed

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  16. Relative stability of guanosine-cytidine diribonucleotide cores: a 1H NMR assessment.

    PubMed

    Sinclair, A; Alkema, D; Bell, R A; Coddington, J M; Hughes, D W; Neilson, T; Romaniuk, P J

    1984-06-01

    Proton NMR was used to study the secondary structure and melting behavior of six self-complementary oligoribonucleotide tetramers, each containing two guanosine and two cytidine residues (GGCC, CCGG, GCCG, CGGC, GCGC, and CGCG). GGCC and CCGG formed perfect duplexes containing four G.C base pairs with Tms of 54 and 47.8 degrees C, respectively; GCCG and CGGC formed staggered duplexes with two G.C base pairs and four 3' double-dangling bases, with Tms of 35.5 and 29.2 degrees C, respectively; GCGC formed a perfect duplex with a Tm of 49.9 degrees C, while CGCG formed a staggered duplex with a Tm of 36.9 degrees C. From these results, an order of stability of the cores containing two G.C base pairs was proposed: GC:GC is more stable than GG:CC which is more stable than CG:CG. The RY model for secondary structure stability prediction was applied to the above tetramers with reasonable success. Suggestions for refinements are discussed.

  17. 1H NMR study of the effect of heme insertion on the folding of apomyoglobin

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiko; Takemoto, Kenji; Matsuo, Hitomi

    2002-01-01

    NMR signals arising from His EF5 and His GH1 N ɛH protons of sperm whale myoglobin and apomyoglobin have been assigned, and the protein folding has been studied through the analysis of these signals. His EF5 and His GH1 N ɛH protons participate in the internal hydrogen bonds at the B-GH and EF-H interfaces, respectively, and their signals are remarkably sensitive to local structural alterations at these sites. The shifts of these signals in alkaline pH condition were only slightly affected by the removal of heme, indicating that the overall protein folding is essentially retained in apoprotein. The line width of His EF5 proton signal, however, increased largely in the spectra of apomyoglobin and this result suggests a conformational lability of the EF-H interface in the absence of heme. Furthermore, the His EF5 proton signal was found to be influenced by not only the orientation of heme relative to the protein, but also by the type of hemin used to reconstitute apomyoglobin. These results clearly demonstrate the presence of a long-range structural correlation between the heme active site and the EF-H interface.

  18. Conformational properties of trans-2-halo-acetoxycyclohexanes: 1H NMR, solvation and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Freitas, Matheus P.; Tormena, Cláudio F.; Rittner, Roberto; Abraham, Raymond J.

    2005-01-01

    Conformational analyses of trans-2-halo-acetoxycyclohexanes have been performed through NMR, theoretical calculations and solvation theory. The solvent dependence of coupling constants analysed together with solvation parameters of the main calculated geometries allowed the determination of both the individual couplings and difference energies between the possible ax-ax and eq-eq conformations. For all the halo-compounds eq-eq is the most stable form in the vapour phase and in solution. The molar fractions ( naa) of the ax-ax conformer are 0.28, 0.30, 0.28 and 0.22 in the vapour phase for fluoro ( 1), chloro ( 2), bromo ( 3) and iodo ( 4) derivatives, respectively, decreasing to 0.06, 0.10, 0.12 and 0.12 in DMSO, calculated through MODELS and BESTFIT, using the solvation theory. The governing factors of these conformational equilibria are the classical steric and electrostatic interactions, as well as the ' gauche effect', especially for the fluoro compound. The acetoxy group effect has also been compared with previous results for the hydroxy and methoxy derivatives.

  19. 1H and 2H NMR studies of water in work-free wheat flour doughs.

    PubMed

    d'Avignon, D A; Hung, C C; Pagel, M T; Hart, B; Bretthorst, G L; Ackerman, J J

    1991-01-01

    Proton and deuterium NMR relaxation methods were used to characterize water compartmentalization and hydration in work-free wheat flour doughs. Transverse (spin-spin) relaxation measurements define three motionally unique water compartments in the work-free dough preparations. The apparent occupancy fraction and relative mobility of each water domain are found to be functions of moisture content, temperature, and flour type. Additionally, the number of relaxation-resolved water compartments and their characteristic relaxation rate constants are found to depend critically on both moisture content and the interpulse-delay employed for the multi-pulse relaxation experiments. Under controlled experimental conditions, dynamics between the three water compartments can be observed to be consistent with the onset of flour hydration. The most notable observation during the initial period of hydration is a loss of "free" or "loosely bound" water to environments characterized by less mobility. Freezing studies show that hard wheat doughs have slightly less amorphous, non-freezable water than do soft wheat flour doughs prepared under similar conditions. PMID:1746346

  20. Revealing the metabonomic variation of rosemary extracts using 1H NMR spectroscopy and multivariate data analysis.

    PubMed

    Xiao, Chaoni; Dai, Hui; Liu, Hongbing; Wang, Yulan; Tang, Huiru

    2008-11-12

    The molecular compositions of rosemary ( Rosmarinus officinalis L.) extracts and their dependence on extraction solvents, seasons, and drying processes were systematically characterized using NMR spectroscopy and multivariate data analysis. The results showed that the rosemary metabonome was dominated by 33 metabolites including sugars, amino acids, organic acids, polyphenolic acids, and diterpenes, among which quinate, cis-4-glucosyloxycinnamic acid, and 3,4,5-trimethoxyphenylmethanol were found in rosemary for the first time. Compared with water extracts, the 50% aqueous methanol extracts contained higher levels of sucrose, succinate, fumarate, malonate, shikimate, and phenolic acids, but lower levels of fructose, glucose, citrate, and quinate. Chloroform/methanol was an excellent solvent for selective extraction of diterpenes. From February to August, the levels of rosmarinate and quinate increased, whereas the sucrose level decreased. The sun-dried samples contained higher concentrations of rosmarinate, sucrose, and some amino acids but lower concentrations of glucose, fructose, malate, succinate, lactate, and quinate than freeze-dried ones. These findings will fill the gap in the understanding of rosemary composition and its variations.

  1. Solid state 1H NMR studies of cell wall materials of potatoes

    NASA Astrophysics Data System (ADS)

    Tang, Huiru; Belton, Peter S.; Ng, Annie; Waldron, Keith W.; Ryden, Peter

    1999-04-01

    Cell wall materials from potatoes ( Solanum tuberosum) prepared by two different methods have been studied using NMR proton relaxation times. Spin lattice relaxation in both the rotating and laboratory frames as well as transverse relaxation have been measured over a range of temperatures and hydration levels. It was observed that the sample prepared using a DMSO extraction showed anomalous behaviour of spin lattice relaxation in the laboratory frame probably due to residual solvent in the sample. Spin lattice relaxation in the laboratory frame is the result of hydroxymethyl rotation and another unidentified high frequency motion. In the rotating frame relaxation is adequately explained by hydroxymethyl rotation alone. In neither experiment is methyl group rotation observed, calculation suggests that this is due to the low density of methyl groups in the sample. Non-freezing water in potato cell walls, α-cellulose and pectin was found about 0.2, 0.04 and 0.18 g per gram dry matter, indicating preferable hydration of pectin compared to cellulose. The effects of hydration are most noticeable in the measurements that reflect low frequency motions, particularly transverse relaxation, where both second moments and the relative intensity of signals arising from immobile material are reduced by hydration.

  2. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae).

    PubMed

    Seger, Christoph; Sturm, Sonja; Mair, Maria-Elisabeth; Ellmerer, Ernst P; Stuppner, Hermann

    2005-06-01

    2D NMR-derived 1H and 13C NMR signal assignments of six structurally closely related cucurbitacin derivatives are presented. The investigated 2-O-beta-D-glucopyranosylcucurbitacins I, J, K, and L were obtained from Citrullus colocynthis (L.) Schrader whereas the aglyca cucurbitacin E and I were isolated from Ecballium elaterium L.

  3. sup 1 H NMR study of renal trimethylamine responses to dehydration and acute volume loading in man

    SciTech Connect

    Avison, M.J.; Rothman, D.L.; Nixon, T.W.; Long, W.S.; Siegel, N.J. )

    1991-07-15

    The authors have used volume-localized {sup 1}H NMR spectroscopy to detect and measure changes in medullary trimethylamines (TMAs) in the human kidney in vivo. Localized water-suppressed {sup 1}H spectra were collected from a volume of interest located within the renal medulla by using a stimulated echo-based localization scheme. The principal resonances in the medullary {sup 1}H spectrum were residual water, lipid, and TMAs. The TMA line width was 7-15 Hz before filtering, and the signal-to-noise ratio was 40:1. In four normal volunteers, 15 hr of dehydration led to a significant increase in urine ismolality and decrease in body weight and an increase in medullary TMAs. A subsequent water load caused a transient water diuresis, a return to euvolemic body weight, and a significant reduction in medullary TMAs within 4 hr. These results suggest that TMAs may play an osmoregulatory role in the medulla of the normal human kidney.

  4. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  5. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    PubMed Central

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  6. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Gjersing, E; Chinn, S; Maxwell, R S; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2006-09-06

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The materials were synthesized with two different types of crosslinks, with functionalities of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional ({phi}=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the mechanical properties of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform non-affinely, in agreement with theory. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical engineering silicone materials and to gain significant insight into structure-property relationships.

  7. Investigation of network heterogeneities in filled, trimodal, highly functional PDMS networks by 1H Multiple Quantum NMR

    SciTech Connect

    Maxwell, R; Gjersing, E; Chinn, S; Giuliani, J; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2007-03-20

    The segmental order and dynamics of polymer network chains in a filled, tri-modal silicone foam network have been studied by static 1H Multiple Quantum (MQ) NMR methods to gain insight into the structure property relationships. The foam materials were synthesized with two different types of crosslinks, with functionalities, {phi}, of 4 and near 60. The network chains were composed of distributions of high, low, and medium molecular weight chains. Crosslinking was accomplished by standard acid catalyzed reactions. MQ NMR methods have detected domains with residual dipolar couplings (<{Omega}{sub d}>) of near 4 kRad/s and 1 kRad/s assigned to (a) the shorter polymer chains and chains near the multifunctional (f=60) crosslinking sites and to (b) the longer polymer chains far from these sites. Three structural variables were systematically varied and the mechanical properties via compression and distributions of residual dipolar couplings measured in order to gain insight in to the network structural motifs that contribute significantly to the composite properties. The partitioning of and the average values of the residual dipolar couplings for the two domains were observed to be dependent on formulation variable and provided increased insight into the network structure of these materials which are unavailable from swelling and spin-echo methods. The results of this study suggest that the domains with high crosslink density contribute significantly to the high strain modulus, while the low crosslink density domains do not. This is in agreement with theories and experimental studies on silicone bimodal networks over the last 20 years. In-situ MQ-NMR of swollen sample suggests that the networks deform heterogeneously and non-affinely. The heterogeneity of the deformation process was observed to depend on the amount of the high functionality crosslinking site PMHS. The NMR experiments shown here provide increased ability to characterize multimodal networks of typical

  8. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  9. Molecular Mechanics and Variable-Temperature 1H NMR Studies on N,N-Diethyl-m-toluamide. An Undergraduate NMR and Molecular Modeling Experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Bruce L.; Fort, Raymond C., Jr.

    2001-04-01

    A combination of molecular modeling and variable-temperature NMR experiments is used to analyze the barrier to rotation about the amide bond of N,N-diethyl-m-toluamide (DEET). This approach utilizes the ability of computers to calculate the potential energy of a set of conformations obtained from a dihedral drive around the N-CO bond. The results of this experiment demonstrate a substantial barrier of 15.9 kcal/mol. These data are applied to a set of 1H NMR spectra taken over a range of temperatures from 9 to 85 °C. At very low temperatures the conformation is "locked" and the spectrum displays two sets of triplets and two sets of quartets for the two nonequivalent ethyl groups. However, at high temperature the rapid rotation about the amide linkage produces only one quartet and one triplet, characteristic of two indistinguishable ethyl groups. The experiment offers students hands-on experience with two important laboratory instruments and allows for both qualitative and quantitative analysis of the data. This experiment is scheduled to coincide with lecture discussion of NMR spectroscopy, after the fundamentals of bond rotation have been presented.

  10. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  11. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  12. Electronic states and molecular dynamics of single-component molecular conductors [M (tmdt) 2] (M =Ni , Pt) studied by 13C and 1H NMR

    NASA Astrophysics Data System (ADS)

    Takagi, Rina; Miyagawa, Kazuya; Yoshimura, Masahide; Gangi, Hiro; Kanoda, Kazushi; Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko

    2016-01-01

    The molecular conductors [M(tmdt) 2] (M =Ni , Pt) consisting of single molecular species are investigated with 13C NMR and 1H NMR. The temperature dependences of the 13C NMR shift and relaxation rate provide microscopic evidence for the metallic nature with appreciable electron correlations. Both compounds exhibit an anomalous frequency-dependent enhancement in the 1H nuclear spin-lattice relaxation rate in a wide temperature range. These observations signify the presence of extraordinary molecular motions with low energy excitations.

  13. Monitoring biodegradation of poly(butylene sebacate) by Gel Permeation Chromatography, (1)H-NMR and (31)P-NMR techniques.

    PubMed

    Siotto, Michela; Zoia, Luca; Tosin, Maurizio; Degli Innocenti, Francesco; Orlandi, Marco; Mezzanotte, Valeria

    2013-02-15

    The increasing use of new generation plastics has been accompanied by the development of standard methods for studying their biodegradability. Generally, test methods are based on the measurement of CO(2) production, i.e. the mineralization degree of the tested materials. However, in order to describe the biodegradation process, the determination of the residual amount of tested material which remains in the environment and its chemical characterization can be very important. In this study, the biodegradation in soil of a model polyester (poly(butylene sebacate)) was monitored. Gel Permeation Chromatography and Nuclear Magnetic Resonance ((31)P-NMR and (1)H-NMR) were used in order to obtain information about the polyester structure and the possible by-products that can be found in soil during and at the end of the incubation. The polyester mineralization (i.e. the CO(2) production) was tested according to ASTM 5988 standard method for 245 days. When the polyester mineralization was about 21% and 37% (after 78 and 140 days of incubation) and at the end of the process (63% of mineralization, 100% if compared to the cellulose used as reference material), the soil was extracted with chloroform (solvent of the tested substance) and the extracts were analyzed using GPC and NMR acquisitions. The analytical acquisitions showed high molecular weight polyester in soil during the incubation (78 and 140 days): the polyester concentration decreased but its structure remained almost the same with a slow decreasing in molecular weight. At the end of the test (245 days) no film of the polyester could be extracted from the soil: NMR acquisitions and GPC analyses of the extracts suggested a strong degraded structure of the residual polyester. Even if at the end of the process only 63% of carbon had been lost by mineralization, the whole of the added polyester seems to have disappeared after about eight months of incubation, suggesting substantial biomass formation.

  14. 13C and 1H chemical shift assignments and conformation confirmation of trimedlure-Y via 2-D NMR

    NASA Astrophysics Data System (ADS)

    Warthen, J. D.; Waters, R. M.; McGovern, T. P.

    The conformation of 1,1-dimethylethyl 5-chloro- cis-2-methylcyclohexane-1-carboxylate (trimedlure-Y) was confirmed as 1,2,5 equatorial, axial, equatorial via 13C, 1H, APT, CSCM and COSY NMR analyses. The carbon and proton nuclei in trimedlure-Y and the previously unassigned eight cyclohexyl protons (1.50-2.60 ppm) in 1,1-dimethylethyl 5-chloro- trans-2-methylcyclohexane-1-carboxylate (trimedlure-B 1; 1,2,5 equatorial, equatorial, equatorial) were also characterized by these methods. The effects of the 2-CH 3 in the axial or equatorial conformation upon the chemical shifts of the other nuclei in the molecule are discussed.

  15. Structural determination of the active site of a sweet protein. A 1H NMR investigation of pMNEI.

    PubMed

    Tancredi, T; Iijima, H; Saviano, G; Amodeo, P; Temussi, P A

    1992-09-21

    pMNEI, a single chain sweet protein related to monellin, has been studied by means of 1H NMR at 500 MHz. A partial sequential assignment performed by means of the MCD method allowed the determination of the secondary structure of a large portion of the beta-sheet of pMNEI that contains a likely 'sweet finger': the loop connecting the beta-strands from residue 59 to residue 78, corresponding to segment 16-35 of the A chain of monellin. The detailed three-dimensional structure of the loop (Tyr66-Ala67-Ser68-Asp69), determined from several interresidue and intraresidue NOEs and subsequent energy minimization, shows that the side chains of Tyr66 and Asp69 fit our model of the sweet receptor in a manner very similar to that of the side chains of Phe and Asp of aspartame. PMID:1526280

  16. Rapid determination of γ-value and xanthate group distribution on viscose by liquid-state (1)H NMR spectroscopy.

    PubMed

    Wöss, Kateryna; Weber, Hansjörg; Grundnig, Peter; Röder, Thomas; Weber, Hedda K

    2016-05-01

    A method for the determination of the γ-value and more importantly the distribution of xanthate groups on cellulose xanthate produced during the viscose process is presented. The method is based upon stabilization of xanthate groups attached to the cellulose chain by reaction with 4-methylbenzyl bromide and analysis of the resulting product by liquid-state (1)H NMR. Careful analysis of the proton-spectrum using deconvolution gave a very fast method for the measurement of the γ-value which compared well with the data obtained by IR spectroscopy. In addition it could be shown that the distribution of the xanthate groups on the anhydroglucose monomeric unit (xanthation at position 2, 3 or 6) changes significantly during ripening. The method gave useful results even for viscose with low γ-values of about 25. PMID:26877011

  17. (1)H NMR-Based Metabolomics Reveals a Pedoclimatic Metabolic Imprinting in Ready-to-Drink Carrot Juices.

    PubMed

    Tomassini, Alberta; Sciubba, Fabio; Di Cocco, Maria Enrica; Capuani, Giorgio; Delfini, Maurizio; Aureli, Walter; Miccheli, Alfredo

    2016-06-29

    Carrots are usually consumed in their native form or processed into many different products. Carrot juice is a popular beverage consumed throughout the world and is attracting increasing attention due to its nutritional value, being a natural source of bioactive compounds. Ready-to-drink carrot juices produced in the same factory were analyzed by (1)H nuclear magnetic resonance (NMR) spectroscopy. The juices were made from carrot roots of the same cultivar grown in three different geographical areas in Italy. More than 30 compounds have been identified and quantified, and the data was subjected to univariate ANOVA and multivariate analyses. Clear geographical-dependent clustering was observed, and the metabolic profiles were related to the different pedoclimatic conditions. The proposed phytoprofiling approach could be employed on an industrial scale to evaluate finished products involving different sites of supply of the raw material, thus improving both the quality and uniformity of the juices. PMID:27281439

  18. Investigations of acetaminophen binding to bovine serum albumin in the presence of fatty acid: Fluorescence and 1H NMR studies

    NASA Astrophysics Data System (ADS)

    Bojko, B.; Sułkowska, A.; Maciążek-Jurczyk, M.; Równicka, J.; Sułkowski, W. W.

    2009-04-01

    The binding of acetaminophen to bovine serum albumin (BSA) was studied by the quenching fluorescence method and the proton nuclear magnetic resonance technique ( 1H NMR). For fluorescence measurements 1-anilino-9-naphthalene sulfonate (ANS) hydrophobic probe was used to verify subdomain IIIA as acetaminophen's likely binding site. Three binding sites of acetaminophen in subdomain IIA of bovine serum albumin were found. Quenching constants calculated by the Stern-Volmer modified method were used to estimate the influence of myristic acid (MYR) on the drug binding to the albumin. The influence of [fatty acid]/[albumin] molar ratios on the affinity of the protein towards acetaminophen was described. Changes of chemical shifts and relaxation times of the drug indicated that the presence of MYR inhibits interaction in the AA-albumin complex. It is suggested that the elevated level of fatty acids does not significantly influence the pharmacokinetics of acetaminophen.

  19. Geoclimatic, morphological, and temporal effects on Lebanese olive oils composition and classification: A (1)H NMR metabolomic study.

    PubMed

    Merchak, Noelle; El Bacha, Elias; Bou Khouzam, Rola; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph

    2017-02-15

    Two hundred and thirty-four Lebanese olive samples were collected from different regions and the corresponding oils were analysed by (1)H NMR spectroscopy. The variables obtained, related to fatty acids and minor components, were used as inputs in univariate and multivariate analyses aiming to characterize and classify the oils according to geographical, morphological, and temporal factors. Samples were sorted according to the colour, size, and shape of olives, which allowed statistically significant classifications to be achieved. A sequential strategy was developed to discriminate among samples from different altitudes and latitudes. Following this strategy, obvious trends and classifications were obtained at subregional level. Furthermore, the shift in the harvest date within a range of three weeks was considered and its effect on the classification models was investigated. Likewise, the harvest year effect was evaluated; the precipitation level in April and May had a significant impact on the characteristics of the oils. PMID:27664649

  20. Study of the formation of carbonyl compounds in edible oils and fats by 1H-NMR and FTIR

    NASA Astrophysics Data System (ADS)

    Moya Moreno, M. C. M.; Mendoza Olivares, D.; Amézquita López, F. J.; Peris Martínez, V.; Bosch Reig, F.

    1999-05-01

    Oils and fats start decomposing from the moment they are isolated from their natural environment. Heating accelerates oxidative rancidity and frying at high temperatures produces thermal degradation with the formation of decomposition products, such as aldehydes, ketones, free acids and hydroxilic compounds that in high levels can be harmful to human health. The decomposition products formed up to 300°C were determined by means of 1H-NMR spectroscopy and an FTIR spectroscopic method was developed for the quantification of carbonyl compounds generated during heating. The results show that there is a formation of carbonyl compounds starting at 150°C and when the sample was heated at 300°C for 40 min, the following contents (expressed as butyraldehyde mass fraction) were found: olive oil 10.5%, sunflower oil 11.3%, corn oil 3.0%, seeds oil (sunflower, safflower and canola seed) 6.6% and lard 3.5%.

  1. Formation of κ-carrageenan-gelatin polyelectrolyte complexes studied by (1)H NMR, UV spectroscopy and kinematic viscosity measurements.

    PubMed

    Voron'ko, Nicolay G; Derkach, Svetlana R; Vovk, Mikhail A; Tolstoy, Peter M

    2016-10-20

    The intermolecular interactions between an anionic polysaccharide from the red algae κ-carrageenan and a gelatin polypeptide, forming stoichiometric polysaccharide-polypeptide (bio)polyelectrolyte complexes in the aqueous phase, were examined. The major method of investigation was high-resolution (1)H NMR spectroscopy. Additional data were obtained by UV absorption spectroscopy, light scattering dispersion and capillary viscometry. Experimental data were interpreted in terms of the changing roles of electrostatic interactions, hydrophobic interactions and hydrogen bonds when κ-carrageenan-gelatin complexes are formed. At high temperatures, when biopolymer macromolecules in solution are in the state of random coil, hydrophobic interactions make a major contribution to complex stabilization. At the temperature of gelatin's coil→helix conformational transition and at lower temperatures, electrostatic interactions and hydrogen bonds play a defining role in complex formation. A proposed model of the κ-carrageenan-gelatin complex is discussed. PMID:27474666

  2. Geoclimatic, morphological, and temporal effects on Lebanese olive oils composition and classification: A (1)H NMR metabolomic study.

    PubMed

    Merchak, Noelle; El Bacha, Elias; Bou Khouzam, Rola; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph

    2017-02-15

    Two hundred and thirty-four Lebanese olive samples were collected from different regions and the corresponding oils were analysed by (1)H NMR spectroscopy. The variables obtained, related to fatty acids and minor components, were used as inputs in univariate and multivariate analyses aiming to characterize and classify the oils according to geographical, morphological, and temporal factors. Samples were sorted according to the colour, size, and shape of olives, which allowed statistically significant classifications to be achieved. A sequential strategy was developed to discriminate among samples from different altitudes and latitudes. Following this strategy, obvious trends and classifications were obtained at subregional level. Furthermore, the shift in the harvest date within a range of three weeks was considered and its effect on the classification models was investigated. Likewise, the harvest year effect was evaluated; the precipitation level in April and May had a significant impact on the characteristics of the oils.

  3. (1)H NMR-Based Metabolomics Reveals a Pedoclimatic Metabolic Imprinting in Ready-to-Drink Carrot Juices.

    PubMed

    Tomassini, Alberta; Sciubba, Fabio; Di Cocco, Maria Enrica; Capuani, Giorgio; Delfini, Maurizio; Aureli, Walter; Miccheli, Alfredo

    2016-06-29

    Carrots are usually consumed in their native form or processed into many different products. Carrot juice is a popular beverage consumed throughout the world and is attracting increasing attention due to its nutritional value, being a natural source of bioactive compounds. Ready-to-drink carrot juices produced in the same factory were analyzed by (1)H nuclear magnetic resonance (NMR) spectroscopy. The juices were made from carrot roots of the same cultivar grown in three different geographical areas in Italy. More than 30 compounds have been identified and quantified, and the data was subjected to univariate ANOVA and multivariate analyses. Clear geographical-dependent clustering was observed, and the metabolic profiles were related to the different pedoclimatic conditions. The proposed phytoprofiling approach could be employed on an industrial scale to evaluate finished products involving different sites of supply of the raw material, thus improving both the quality and uniformity of the juices.

  4. Structural determination of the active site of a sweet protein. A 1H NMR investigation of pMNEI.

    PubMed

    Tancredi, T; Iijima, H; Saviano, G; Amodeo, P; Temussi, P A

    1992-09-21

    pMNEI, a single chain sweet protein related to monellin, has been studied by means of 1H NMR at 500 MHz. A partial sequential assignment performed by means of the MCD method allowed the determination of the secondary structure of a large portion of the beta-sheet of pMNEI that contains a likely 'sweet finger': the loop connecting the beta-strands from residue 59 to residue 78, corresponding to segment 16-35 of the A chain of monellin. The detailed three-dimensional structure of the loop (Tyr66-Ala67-Ser68-Asp69), determined from several interresidue and intraresidue NOEs and subsequent energy minimization, shows that the side chains of Tyr66 and Asp69 fit our model of the sweet receptor in a manner very similar to that of the side chains of Phe and Asp of aspartame.

  5. In vitro 1H-NMR spectroscopic analysis of metabolites in fast- and slow-twitch muscles of young rats.

    PubMed

    Yoshioka, Yoshichika; Masuda, Tsutomu; Nakano, Hirokazu; Miura, Hiroyuki; Nakaya, Shigeyuki; Itazawa, Shun-Ichi; Kubokawa, Manabu

    2002-01-01

    The lactate (LAC), creatine (CRN), taurine (TAU), anserine (ANS) and carnosine (CAR) content of the masseter muscles (MM), long extensor muscles of digits (EDL) and soleus muscles (SOL) of young rats were determined using in vitro 1H-NMR spectroscopy to assess the significance of CRN, TAU, ANS and CAR in these muscles. The muscles of Wistar rats at the ages of 6, 12 and 18 weeks were dissected after decapitation and used for the metabolite analyses. The LAC and CAR content of all muscle groups showed no age dependence. The CRN content was increased age-dependently in MM but not in EDL or SOL. The LAC and CRN content was higher in MM and EDL (fast-twitch) than in SOL (slow-twitch) (P<0.01-0.001 at 18 weeks). A significant positive correlation existed between the LAC and CRN content (P<0.00001, r=0.80), suggesting that the CRN content reflects the capacity of the anaerobic glycolysis of the individual muscles. The TAU content was higher in SOL and MM than in EDL (P<0.05) and showed an approximately 1.5-fold increase with age in all three muscle groups. The ANS content was higher in EDL than in SOL and MM (P<0.001), and showed an approximately threefold increase with age in all three muscle groups. The ANS content positively correlated with the LAC content (P<0.001, r=0.41), and the chemical shift of the imidazole proton in ANS showed a correlation with the LAC content (P<0.0001, r>0.76), indicating that ANS would buffer the pH change produced by LAC. These results suggest that 1H-NMR spectroscopy would provide an adjunct method of assessing the muscle types and their development.

  6. Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra.

    PubMed

    De Meyer, Tim; Sinnaeve, Davy; Van Gasse, Bjorn; Rietzschel, Ernst-R; De Buyzere, Marc L; Langlois, Michel R; Bekaert, Sofie; Martins, José C; Van Criekinge, Wim

    2010-10-01

    Proton nuclear magnetic resonance ((1)H-NMR)-based metabolomics enables the high-resolution and high-throughput assessment of a broad spectrum of metabolites in biofluids. Despite the straightforward character of the experimental methodology, the analysis of spectral profiles is rather complex, particularly due to the requirement of numerous data preprocessing steps. Here, we evaluate how several of the most common preprocessing procedures affect the subsequent univariate analyses of blood serum spectra, with a particular focus on how the standard methods perform compared to more advanced examples. Carr-Purcell-Meiboom-Gill 1D (1)H spectra were obtained for 240 serum samples from healthy subjects of the Asklepios study. We studied the impact of different preprocessing steps--integral (standard method) and probabilistic quotient normalization; no, equidistant (standard), and adaptive-intelligent binning; mean (standard) and maximum bin intensity data summation--on the resonance intensities of three different types of metabolites: triglycerides, glucose, and creatinine. The effects were evaluated by correlating the differently preprocessed NMR data with the independently measured metabolite concentrations. The analyses revealed that the standard methods performed inferiorly and that a combination of probabilistic quotient normalization after adaptive-intelligent binning and maximum intensity variable definition yielded the best overall results (triglycerides, R = 0.98; glucose, R = 0.76; creatinine, R = 0.70). Therefore, at least in the case of serum metabolomics, these or equivalent methods should be preferred above the standard preprocessing methods, particularly for univariate analyses. Additional optimization of the normalization procedure might further improve the analyses.

  7. Aliphatic β-nitroalcohols for therapeutic corneoscleral cross-linking: chemical stability studies using 1H-NMR spectroscopy†

    PubMed Central

    Li, Xia; Li, Yongjun; Kim, MiJung; Trokel, Stephen L.; Turro, Nicholas J.; Paik, David C.

    2013-01-01

    Recent studies suggest that aliphatic β-nitro alcohols (BNAs) may represent a useful class of compounds for use as in vivo therapeutic corneoscleral cross-linking agents with higher order nitroalcohols (HONAs) showing enhanced efficacy over the mono-nitroalcohols. The current study was undertaken in order to evaluate the chemical stability of these compounds during storage conditions. Two mono-nitroalcohols (2-nitroethanol=2ne and 2-nitro-1-propanol=2nprop) and two HONAs, a nitrodiol (2-methyl-2-nitro-1,3-propanediol=MNPD), and a nitrotriol (2-hydroxymethyl-2-nitro-1,3-propanediol=HNPD) were monitored for chemical stability by 1H-NMR for up to 7 months. Each compound was studied at two concentrations (1% and 10%) either in unbuffered H2O or 0.2 M NaH2PO4/Na2HPO4 (pH=5), and at 0°C and room temperature (RT) for a total of 8 conditions for each compound. The 1H-NMR spectra for the starting material were compared to subsequent spectra. Under all 4 of the conditions studied, both the nitrodiol (MNPD) and nitrotriol (HNPD) were stable for the duration of 7 months. 2nprop became unstable under all conditions at 3 months. 2ne was the most unstable of all the compounds tested. HONAs exhibit excellent chemical stability under long-term storage conditions. In contrast, the nitromonols tested are significantly less stable. These findings are relevant to the translation of this technology into clinical use. PMID:23998198

  8. Detection, identification and quantification by 1H NMR of adulterants in 150 herbal dietary supplements marketed for improving sexual performance.

    PubMed

    Gilard, Véronique; Balayssac, Stéphane; Tinaugus, Aurélie; Martins, Nathalie; Martino, Robert; Malet-Martino, Myriam

    2015-01-01

    One hundred and fifty dietary supplements (DS) marketed to increase sexual performance were analyzed. All these formulations were claimed to contain only natural compounds, plant extracts and/or vitamins. (1)H NMR spectroscopy was used for detecting the presence of adulterants and for their identification and quantification. Mass spectrometry was used as a complementary method for confirming the chemical structures. 61% of DS were adulterated with phosphodiesterase-5 inhibitors (PDE-5i) (27% with the PDE-5i medicines sildenafil, tadalafil and vardenafil, and 34% with their structurally modified analogues). Among them, 64% contained only one PDE-5i and 36% mixtures of two, three and even four. The amounts of PDE-5i medicines were higher than the maximum recommended dose in 25% of DS tainted with these drugs. Additional 5.5% DS included other drugs for the treatment of sexual dysfunction (yohimbine, flibanserin, phentolamine, dehydroepiandrosterone or testosterone). Some DS (2.5%) contained products (osthole, icariin) extracted from plants known to improve sexual performance. Only 31% of the samples could be considered as true herbal/natural products. A follow-up over time of several DS revealed that manufacturers make changes in the chemical composition of the formulations. Lack of quality or consistent manufacture (contamination possibly due to inadequate cleaning of the manufacturing chain, presence of impurities or degradation products, various compositions of a given DS with the same batch number, inadequate labelling) indicated poor manufacturing practices. In conclusion, this paper demonstrates the power of (1)H NMR spectroscopy as a first-line method for the detection of adulterated herbal/natural DS and the need for more effective quality control of purported herbal DS. PMID:25459948

  9. Characterization of tea cultivated at four different altitudes using 1H NMR analysis coupled with multivariate statistics.

    PubMed

    Ohno, Akiko; Oka, Kitaro; Sakuma, Chiseko; Okuda, Haruhiro; Fukuhara, Kiyoshi

    2011-05-25

    The taste of black tea differs according to the different areas in which the tea is grown, even for the same species of tea. A combination of (1)H NMR spectroscopy and partial least-squares discriminate analysis (PLS-DA) was used to assess the quality differences of tea leaves from four cultivation areas with different elevations, RAN > 1800 m, UDA = 1200 m, MEDA = 600 m, and YATA < 300 m, in Sri Lanka. As a result of a statistical analysis, PLS-DA showed a separation between high- and low-quality black teas derived from the four different tea cultivation areas. RAN from the highest elevation showed characteristic trends in the levels of theaflavin and theaflavin 3,3'-digallate that were found only in RAN, and the levels of theanine and caffeine were higher, and the levels of thearubigins, especially thearubigin 3,3'-digallate, were lower in RAN than in UDA, MEDA, and YATA. The structures of these components were determined by 1D and 2D NMR analyses. These results demonstrate that this method can be used to evaluate black tea quality according to the chemical composition or metabolites, which are characteristic of the tea leaves cultivated in four regions with different elevations in Sri Lanka.

  10. Benzocaine complexation with p-sulfonic acid calix[n]arene: experimental ((1) H-NMR) and theoretical approaches.

    PubMed

    Arantes, Lucas M; Varejão, Eduardo V V; Pelizzaro-Rocha, Karin J; Cereda, Cíntia M S; de Paula, Eneida; Lourenço, Maicon P; Duarte, Hélio A; Fernandes, Sergio A

    2014-05-01

    The aim of this work was to study the interaction between the local anesthetic benzocaine and p-sulfonic acid calix[n]arenes using NMR and theoretical calculations and to assess the effects of complexation on cytotoxicity of benzocaine. The architectures of the complexes were proposed according to (1) H NMR data (Job plot, binding constants, and ROESY) indicating details on the insertion of benzocaine in the cavity of the calix[n]arenes. The proposed inclusion compounds were optimized using the PM3 semiempirical method, and the electronic plus nuclear repulsion energy contributions were performed at the DFT level using the PBE exchange/correlation functional and the 6-311G(d) basis set. The remarkable agreement between experimental and theoretical approaches adds support to their use in the structural characterization of the inclusion complexes. In vitro cytotoxic tests showed that complexation intensifies the intrinsic toxicity of benzocaine, possibly by increasing the water solubility of the anesthetic and favoring its partitioning inside of biomembranes.

  11. Ion-pair assisted extraction followed by (1)H NMR determination of biogenic amines in food and biological matrices.

    PubMed

    Chatzimitakos, T; Exarchou, V; Ordoudi, S A; Fiamegos, Y; Stalikas, C

    2016-07-01

    A selective method for the extraction and determination of six biogenic amines (BAs) by NMR is presented. Briefly, BAs are extracted into an organic solvent via the use of an ion pairing agent, followed by a back extraction in D2O in order to acquire the (1)H NMR spectra. The method is studied with respect to the critical experimental parameters and is successfully applied to selected food substrates (dark chocolate, banana, gouda cheese) and biological samples (urine and blood plasma) signifying its potential as an alternative tool for BAs determination. Accurate and precise results are consistently achieved with all matrixes studied. The calculated limits of detection and limits of quantitation were found to be in the ranges 0.05-0.13μg/mL and 0.14-0.38μg/mL, respectively, for biological samples while for food samples they were in the ranges 2.25-6.25μg/g and 6.75-18.7μg/g, respectively. PMID:26920317

  12. High-Resolution (1)H NMR Spectroscopy Discriminates Amniotic Fluid of Fetuses with Congenital Diaphragmatic Hernia from Healthy Controls.

    PubMed

    Croitor-Sava, Anca; Beck, Veronika; Sandaite, Inga; Van Huffel, Sabine; Dresselaers, Tom; Claus, Filip; Himmelreich, Uwe; Deprest, Jan

    2015-11-01

    Lung hypoplasia in congenital diaphragmatic hernia (CDH) is a life-threatening birth defect. Severe cases can be offered tracheal occlusion to boost prenatal lung development, although defining those to benefit remains challenging. Metabonomics of (1)H NMR spectra collected from amniotic fluid (AF) can identify general changes in diseased versus healthy fetuses. AF embodies lung secretions and hence might contain pulmonary next to general markers of disease in CDH fetuses. AF from 81 healthy and 22 CDH fetuses was collected. NMR spectroscopy was performed at 400 MHz to compare AF from fetuses with CDH against controls. Several advanced feature extraction methods based on statistical tests that explore spectral variability, similarity, and dissimilarity were applied and compared. This resulted in the identification of 30 spectral regions, which accounted for 80% variability between CDH and controls. Combination with automated classification discriminates AF from CDH versus healthy fetuses with up to 92% accuracy. Within the identified spectral regions, isoleucine, leucine, valine, pyruvate, GABA, glutamate, glutamine, citrate, creatine, creatinine, taurine, and glucose were the most concentrated metabolites. As the metabolite pattern of AF changes with fetal development, we have excluded metabolites with a high age-related variability and repeated the analysis with 12 spectral regions, which has resulted in similar classification accuracy. From this analysis, it was possible to distinguish between AF from CDH fetuses versus healthy controls independent of gestational age. PMID:26348471

  13. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus).

    PubMed

    Xu, Hua-Dong; Wang, Jun-Song; Li, Ming-Hui; Liu, Yan; Chen, Ting; Jia, Ai-Qun

    2015-02-01

    Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment. PMID:25528421

  14. Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid.

    PubMed

    Veitch, N C; Williams, R J

    1990-04-30

    The binding of aromatic donor molecules to plant peroxidases has been investigated by examining the complex formed between horseradish peroxidase isoenzyme C and indole-3-propionic acid using two-dimensional 1H-NMR spectroscopy. Despite the relatively high molecular mass and paramagnetism of the protein, this technique can be successfully applied to provide new information on the structure of the complex. A number of relatively well-resolved resonances in certain regions of the one-dimensional spectrum are assigned to amino acid type on the basis of the two-dimensional experiments. Two phenylalanine side chains are found to interact at positions close to the haem group as shown by nuclear Overhauser effect spectroscopy (NOESY). Furthermore, the NOESY spectrum of the complex reveals distinct interactions between these phenylalanine residues and the indole ring of the donor molecule. The binding site is found to comprise of these phenylalanine side chains and also the methyl group of a leucine or valine residue. On the basis of the model structure of horseradish peroxidase isoenzyme C proposed by Welinder and Nørskov-Lauritsen and information from previous studies of the related turnip peroxidases, possible locations for this binding site are discussed. The NMR methods adopted here may be generally applicable to the study of peroxidase--aromatic-donor interactions. PMID:2338080

  15. High-resolution magic angle spinning (1) H NMR measurement of ligand concentration in solvent-saturated chromatographic beads.

    PubMed

    Elwinger, Fredrik; Furó, István

    2016-04-01

    A method based on (1) H high-resolution magic angle spinning NMR has been developed for measuring concentration accurately in heterogeneous materials like that of ligands in chromatography media. Ligand concentration is obtained by relating the peak integrals for a butyl ligand in the spectrum of a water-saturated chromatography medium to the integral of the added internal reference. The method is fast, with capacity of 10 min total sample preparation and analysis time per sample; precise, with a reproducibility expressed as 1.7% relative standard deviation; and accurate, as indicated by the excellent agreement of derived concentration with that obtained previously by (13) C single-pulse excitation MAS NMR. The effects of radiofrequency field inhomogeneity, spin rate, temperature increase due to spinning, and distribution and re-distribution of medium and reference solvent both inside the rotor during spinning and between bulk solvent and pore space are discussed in detail. © 2016 The Authors Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  16. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus).

    PubMed

    Xu, Hua-Dong; Wang, Jun-Song; Li, Ming-Hui; Liu, Yan; Chen, Ting; Jia, Ai-Qun

    2015-02-01

    Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment.

  17. (1)H NMR based metabolomics approach to study the toxic effects of dichlorvos on goldfish (Carassius auratus).

    PubMed

    Liu, Yan; Chen, Ting; Li, Ming-Hui; Xu, Hua-Dong; Jia, Ai-Qun; Zhang, Jian-Fa; Wang, Jun-Song

    2015-11-01

    Dichlorvos (DDVP), one of the most widely used organophosphorus pesticides (OPs), has caused serious pollution in environment. In this study, (1)H nuclear magnetic resonance (NMR) based metabolomics approach combined with histopathological and immunohistochemical examination, and biochemical assays were used to investigate toxicities of DDVP on goldfish (Carassius auratus). After 10 days' exposure of DDVP at three dosages of 5.18, 2.59 and 1.73 mg/L, goldfish tissues (gill, brain, liver and kidney) and serum were collected. Histopathology revealed severe impairment of gills, livers and kidneys, and immunohistochemistry disclosed glial fibrillary acidic protein (GFAP) positive reactive astrocytes in brains. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed that DDVP influenced many metabolites (glutamate, aspartate, acetylcholine, 4-aminobutyrate, glutathione, AMP and lactate in brain; glutathione, glucose, histamine in liver; BCAAs, AMP, aspartate, glutamate, riboflavin in kidney) dose-dependently, involved with imbalance of neurotransmitters, oxidative stress, and disorders of energy and amino acid metabolism. Several self-protection mechanisms concerning glutamate degradation and glutathione (GSH) redox system were found in DDVP intoxicated goldfish.

  18. (1)H and (13)C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403).

    PubMed

    Xia, Xue-Kui; Huang, Hua-Rong; She, Zhi-Gang; Shao, Chang-Lun; Liu, Fan; Cai, Xiao-Ling; Vrijmoed, L L P; Lin, Yong-Cheng

    2007-11-01

    We report the unambiguous assignments of the (1)H and (13)C NMR spectra of two new natural products, namely, 1,4,5,6,7,9-hexahydroxy-2-methoxy-7-methyl-5beta,9beta,8abeta, 6alpha,10aalpha-hexahydroanthracen-10 (10aH)-one (1) and 1,4,6-trihydroxy-2-methoxy-7-methylanthracene-9, 10-dione (2), together with three known anthraquinones. These compounds were all isolated from the marine endophytic fungus No. 1403 collected from the South China Sea. Compounds 3 and 4 were isolated from the marine fungus for the first time. The structures were elucidated by the spectroscopic methods 1D and 2D NMR including COSY, HMQC, HMBC and NOE, and HREIMS. In our cytotoxicity assays, compound 5 showed cytotoxicity toward KB and KBv-200 cells with IC(50) of 1.40 and 2.58 microg/ml, respectively. In addition, the plausible biogenic relationship of compounds 1, 2, 3 and 4 is discussed.

  19. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    PubMed

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  20. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    PubMed Central

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-01-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained. PMID:7948693

  1. One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV-Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives.

    PubMed

    El-Faham, Ayman; Soliman, Saied M; Osman, Sameh M; Ghabbour, Hazem A; Siddiqui, Mohammed R H; Fun, Hoong-Kun; Albericio, Fernando

    2016-04-15

    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f=0.1389), 204.2 nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems. PMID:26845586

  2. N,N-Di- n-octyl- N,N-dimethyl and N,N-di- n-nonyl- N,N-dimethyl ammonium cholates: 13C and 15N CPMAS NMR, powder X-ray diffraction and thermoanalytical characterization

    NASA Astrophysics Data System (ADS)

    Kolehmainen, Erkki; Lahtinen, Manu; Valkonen, Arto; Behera, Babita; Kauppinen, Reijo

    2009-07-01

    N,N-Di- n-octyl- N,N-dimethyl cholate ( 1) and N,N-di- n-nonyl- N,N-dimethyl ammonium cholate ( 2) have been prepared by crystallization from equimolar mixtures of sodium cholate and quaternary N,N-di- n-alkyl- N,N-dimethyl ( n-octyl or n-nonyl) ammonium bromides. The formed crystalline materials have been structurally characterized by 13C and 15N cross polarization magic angle spinning (CPMAS) NMR, powder X-ray diffraction (PXRD) and thermoanalytical (TGA/DTA and DSC) methods and compared with each other. Powder X-ray diffraction patterns of 1 and 2 reveal clear similarities. Combined with the thermoanalytical data of these structures an existence of two hydrated polymorphs (most probably mono- and dihydrates) can be proposed. This presumption is further supported by 13C CPMAS NMR showing clearly double resonances for the carboxylic and majority of other carbons in these quaternary ammonium cholates. Owing to the endogenous character of cholate anion these ionic structures possess great potential in many pharmaceutical applications such as controlled drug delivery.

  3. One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV-Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives

    NASA Astrophysics Data System (ADS)

    El-Faham, Ayman; Soliman, Saied M.; Osman, Sameh M.; Ghabbour, Hazem A.; Siddiqui, Mohammed R. H.; Fun, Hoong-Kun; Albericio, Fernando

    2016-04-01

    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R2 = 0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1 nm (f = 0.1389), 204.2 nm (f = 0.2053), 205.0 (f = 0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.

  4. Orientational and structural properties of ferroelectric liquid crystal with a broad temperature range in the SmC(*) phase by (13)C NMR, x-ray scattering and dielectric spectroscopy.

    PubMed

    Bubnov, Alexej; Domenici, Valentina; Hamplová, Věra; Kašpar, Miroslav; Veracini, Carlo Alberto; Glogarová, Milada

    2009-01-21

    Thermotropic liquid crystalline materials laterally substituted by a methyl group on the aromatic ring of the alkoxybenzoate unit far from the chiral centre exhibit a very broad temperature range in the ferroelectric smectic C* (SmC(*)) phase on cooling (including supercooling) with a very high spontaneous polarization (∼210 nC cm(-2)) and tilt angle (∼43°) at saturation. We are presenting a detailed study of the physical properties of a ferroelectric compound, representative of this category of liquid crystals, by means of solid state (13)C-NMR, small angle x-ray scattering, dielectric spectroscopy and optical methods of the tilted SmC(*). Values of the spontaneous tilt angle measured optically are compared to those determined from the x-ray data and discussed. In addition, the viscosity has been determined in the SmC(*) phase by different experimental methods. (13)C NMR data allowed us to get information about the degree of orientational order of the SmC(*) phase and revealed the complete unwinding of the helical axis at the magnetic field of 9.4 T. This result is discussed in the framework of recent publications on the effect of the magnetic field on the supra-molecular structure of the SmC(*) phase.

  5. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  6. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  7. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  8. X-ray

    MedlinePlus

    ... is very low. Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies in the womb are more sensitive to the risks of x-rays. Tell your health care provider if you think you might be pregnant.

  9. Synthesis, spectroscopic characterization and X-ray structure of [1,2a]benzimidazol-2-yl amidine

    NASA Astrophysics Data System (ADS)

    Hajri, A.; Smirani, W.; Abderrahim, R.

    2011-09-01

    [1,2a]Benzimidazol-2-yl amidine was synthesized by adding cyclopentanamine to iminoester in ethanol. The structure of amidine 1 was characterized by IR, 1H NMR, 1H- 1H NOESY, 13C NMR, DEPT, XHCOR spectra, thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry thermograms (DSC), elementary analysis as well as by X-ray diffraction. The single crystals suitable for X-ray measurement were obtained by recrystallization at room temperature. The amidine group of a model was found to have Z configuration in the crystal. This compound crystallizes in a P2 1/n monoclinic unit cell with parameters a = 12.679(2) Å, b = 8.468(3) Å, c = 13.108(2) Å, β = 96.538(2)°, V = 1398.2 Å 3 and Z = 4.

  10. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  11. Solid state {sup 1}H and {sup 13}C NMR structural investigation of a poly(ethylene oxide) hydrogel

    SciTech Connect

    Badiger, M.V.; Graham, N.B.; Law, R.V.; Snape, C.E.

    1993-12-31

    A cross-linked poly (ethylene oxide)/polyurethane hydrogel cross-linked with 1,2,6 hexane-triol and designated PEG4050/1HT [measured M{sup n} of 4050 for poly (ethylene oxide) glycol (PEG) and a mole ratio of 1:1 for the PEG to the 1,2,6 hexane-triol] has been characterized by high resolution {sup 1}H and {sup 13}C NMR. {sup 1}H thermal (T{sub 1}) and rotating frame (T{sub 1{rho}}) and {sup 13}CT{sub 1} relaxation times were determined for the powdered dry and swollen hydrogel with the standard variants of the cross-polarization pulse sequence which was used in conjunction with magic-angle spinning (MAS). The rotating frame relaxation measurements confirmed that crystalline and amorphous regions were present in the dry hydrogel but showed unabiguously that the crystalline regions are confined to the poly (ethylene oxide) chains, Upon hydration, there is a decrease in the cross polarization efficiency from the enhanced mobility by the poly (ethylene oxide) chains are affected to a much greater extent that the urethane and hexane segments, the characteristic time constant, T{sub CH} increasing by more than order of magnitude compared to no more than a factor of two for the latter. Clearly, the hydration involves hydrogen bonding between the water and principally the oxygens in the poly (ethylene oxide) chains. The {sup 1}H MAS spectra of the dry and hydrated samples confirmed that considerable averaging of the dipolar interactions occurs on hydration to give a well-resolved spectrum.

  12. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  13. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2007-04-21

    The relation between the performance of a self-humidifying H(2)/O(2) polymer electrolyte membrane fuel cell and the amount and distribution of water as observed using (1)H NMR microscopy was investigated. The integrated (1)H NMR image signal intensity (proportional to water content) from the region of the polymer electrolyte membrane between the catalyst layers was found to correlate well with the power output of the fuel cell. Several examples are provided which demonstrate the sensitivity of the (1)H NMR image intensity to the operating conditions of the fuel cell. Changes in the O(2)(g) flow rate cause predictable trends in both the power density and the image intensity. Higher power densities, achieved by decreasing the resistance of the external circuit, were found to increase the water in the PEM. An observed plateau of both the power density and the integrated (1)H NMR image signal intensity from the membrane electrode assembly and subsequent decline of the power density is postulated to result from the accumulation of H(2)O(l) in the gas diffusion layer and cathode flow field. The potential of using (1)H NMR microscopy to obtain the absolute water content of the polymer electrolyte membrane is discussed and several recommendations for future research are provided.

  14. Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol

    PubMed Central

    Zhang, Tao; Paluch, Krzysztof; Scalabrino, Gaia; Frankish, Neil; Healy, Anne-Marie; Sheridan, Helen

    2015-01-01

    The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy. PMID:25750458

  15. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  16. Laboratory x ray lasers

    NASA Astrophysics Data System (ADS)

    Matthews, D. L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics was the development of the x ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product (approximately 5.5, this corresponds to an amplification of approximately 250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at approximately 20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, progress in the development of the x ray laser was rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity GL of approximately 17 at 20 nm, efficiency (x ray laser energy/pump energy) approximately 10(exp 6), the demonstration of double and triple pass amplification (hinting at the possibility of producing x ray wavelength resonators), the focusing of x ray lasers to pump other types of lasers and the first demonstration of an x ray hologram produced by an x ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.

  17. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  18. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  19. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  20. Structure and equilibria of Ca 2+-complexes of glucose and sorbitol from multinuclear ( 1H, 13C and 43Ca) NMR measurements supplemented with molecular modelling calculations

    NASA Astrophysics Data System (ADS)

    Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.

    2011-05-01

    Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.