Science.gov

Sample records for 1h nmr-based metabolic

  1. Biochemical effects of venlafaxine on astrocytes as revealed by (1)H NMR-based metabolic profiling.

    PubMed

    Sun, Lu; Fang, Liang; Lian, Bin; Xia, Jin-Jun; Zhou, Chan-Juan; Wang, Ling; Mao, Qiang; Wang, Xin-Fa; Gong, Xue; Liang, Zi-Hong; Bai, Shun-Jie; Liao, Li; Wu, Yu; Xie, Peng

    2017-01-31

    As a serotonin-norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects. Accumulating evidence shows that venlafaxine may target astrocytes to exert its antidepressant activity, although the underlying pharmacological mechanisms remained largely unknown. Here, we used a (1)H nuclear magnetic resonance (NMR)-based metabonomics method coupled with multivariate statistical analysis to characterize the metabolic profiling of astrocytes treated with venlafaxine to explore the potential mechanism of its antidepressant effect. In total, 31 differential metabolites involved in energy, amino acid and lipid metabolism were identified. Ingenuity pathway analysis was used to identify the predicted pathways and biological functions with venlafaxine and fluoxetine. The most significantly altered network was "amino acid metabolism, cellular growth and proliferation", with a score above 20. Certain metabolites (lysine, tyrosine, glutamate, methionine, ethanolamine, fructose-6-phosphate, and phosphorylethanolamine) are involved in and play a central role in this network. Collectively, the biological effects of venlafaxine on astrocytes provide us with the further understanding of the mechanisms by which venlafaxine treats major depressive disorder.

  2. 1H NMR-based metabolic profiling reveals the effects of fluoxetine on lipid and amino acid metabolism in astrocytes.

    PubMed

    Bai, Shunjie; Zhou, Chanjuan; Cheng, Pengfei; Fu, Yuying; Fang, Liang; Huang, Wen; Yu, Jia; Shao, Weihua; Wang, Xinfa; Liu, Meiling; Zhou, Jingjing; Xie, Peng

    2015-04-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte's lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.

  3. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  4. 1H-NMR-based metabolic signatures of clinical outcomes in trauma patients--beyond lactate and base deficit.

    PubMed

    Cohen, Mitchell J; Serkova, Natalie J; Wiener-Kronish, Jeanine; Pittet, Jean-Francois; Niemann, Claus U

    2010-07-01

    The determination of reliable biomarkers capable to predict clinical outcome of a trauma patient remains essential toward better therapeutic management of the patient in the intensive care unit. Assessment of global metabolic profiling using quantitative nuclear magnetic resonance (NMR)-based metabolomics offers an attractive modern methodology for fast and comprehensive determination of multiple circulating metabolites and for establishing metabolic phenotype of survivors versus nonsurvivors. Multivariate data analysis on 43 quantitative metabolic parameters identified three lipid metabolites, triacylglycerol, glycerol heads of phospholipids, and monounsaturated fatty acids, as being the most discriminative markers to separate survivors versus nonsurvivors at the time of admission. Glucose and glutamate were intermediate predictors, followed by lactate and hydroxybutyrate as two low-weight predictors. Ultimately, cellular and subcellular failure in nonsurviving trauma patients results in multiple systemic biochemical effects and in changes in circulating metabolites in the blood that are characteristic for decreased lipid synthesis and urea cycle activity in the liver, and for increased hyperglycemia, lactic, and ketoacidosis.

  5. (1)H NMR-Based Global Metabolic Studies of Pseudomonas aeruginosa upon Exposure of the Quorum Sensing Inhibitor Resveratrol.

    PubMed

    Chen, Tongtong; Sheng, Jiyang; Fu, Yonghong; Li, Minghui; Wang, Junsong; Jia, Ai-Qun

    2017-02-03

    Quorum sensing (QS) is a process of bacterial communication that has been a novel target for drug discovery. Pyocyanin quantification assay confirmed that resveratrol was an effective quorum sensing inhibitor (QSI) against Pseudomonas aeruginosa PAO1. In this study, the global metabolite changes of P. aeruginosa PAO1 exposed to QSI resveratrol were investigated by (1)H NMR spectroscopy. A total of 40 metabolites containing amino acids, organic acid, organic amine, and energy storage compounds were identified. The changed metabolic profile indicated that resveratrol influenced pathways including oxidative stress, protein synthesis, and energy metabolism. Oxidative stress could upregulate the expression of genes related to QS in P. aeruginosa. It suggested that resveratrol could inhibit the QS systems in P. aeruginosa PAO1 by relieving oxidative stress due to its antioxidant activity. On the other hand, resveratrol could attenuate the pathogenicity of P. aeruginosa PAO1 by disturbing the TCA cycle so that anaerobic respiration could suppress the virulence because anaerobiosis could induce the loss of cytotoxicity regulated by QS in P. aeruginosa. These findings deepened our comprehending of the metabolic responses of P. aeruginosa PAO1 to resveratrol and pinpointed the possible underlying mechanism of resveratrol's inhibition effect on QS in P. aeruginosa PAO1.

  6. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A (1)H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a (1)H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  7. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation

    PubMed Central

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-01-01

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = −0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism. PMID:27808173

  8. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics.

    PubMed

    Hwang, Geum-Sook; Yang, Ji-Young; Ryu, Do Hyun; Kwon, Tae-Hwan

    2010-02-01

    Lithium (Li) treatment for bipolar affective disorders is associated with a variety of renal side effects. The metabolic response of the kidney to chronic Li treatment has rarely been studied. We applied a novel method of (1)H-nuclear magnetic resonance (NMR)-based metabonomics to integrate metabolic profiling and to identify the changes in the levels of metabolites in the kidney and urine from rats with Li-induced NDI. Metabolic profiles of urine and kidney homogenate [3 different zones (cortex, outer medulla, and inner medulla) or whole kidney] were investigated using high-resolution NMR spectroscopy coupled with pattern recognition methods. The accurate concentrations of metabolites in kidney homogenates and urine were rapidly measured using the target-profiling procedure, and the difference in the levels of metabolites was compared using multivariate analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis. Major endogenous metabolites for kidney homogenates contained products of glycolysis (glucose, lactate) and amino acids, as well as organic osmolytes (e.g., betaine, myo-inositol, taurine, and glycerophosphocholine). Many metabolites revealed changes in their levels, including decreased levels of organic osmolytes and amino acids in the inner medulla. A number of urinary metabolites were changed in Li-induced NDI, and in particular, elevated urinary levels of acetate, lactate, allantoin, trimethylamine, and creatine could suggest Li-induced renal cell stress or injury. Taken together, metabonomics of kidney tissue and urine based on (1)H-NMR spectroscopy could provide insight into the effects of Li-induced renal effects and cell injury.

  9. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars.

    PubMed

    Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick

    2016-04-20

    Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation.

  10. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach.

    PubMed

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.

  11. (1)H-NMR based metabolomics study for the detection of the human urine metabolic profile effects of Origanum dictamnus tea ingestion.

    PubMed

    Takis, Panteleimon G; Oraiopoulou, Mariam-Eleni; Konidaris, Constantinos; Troganis, Anastassios N

    2016-09-14

    (1)H NMR spectroscopy was employed to investigate the repercussion of Origanum dictamnus tea ingestion in several volunteers' urine metabolic profiles, among them two with chronic inflammatory bowel diseases (IBD), mild IBD and Crohn's disease. Herein, we demonstrate that the concentrations of a lot of urinary metabolites such as hippurate, trimethylamine oxide (TMAO), citrate, and creatinine are altered, which prompts the intestinal microflora function/content perturbation as well as kidney function regulation by dictamnus tea. Interestingly, our preliminary results showed that a high dose of dictamnus tea intake appeared to be toxic for a person with Crohn's disease, since it caused high endogenous ethanol excretion in urine. All subjects' metabolic effects caused by the dictamnus tea appeared to be reversible, when all volunteers stopped its consumption. Finally, we highlight that individuals' metabolic phenotype is reflected in their urine biofluid before and after the dictamnus tea effect while all individuals have some common and different metabolic responses to this tea, implying that each phenotype has a quite different response to this tea consumption.

  12. 1H NMR-based metabolic fingerprinting of urine metabolites after consumption of lingonberries (Vaccinium vitis-idaea) with a high-fat meal.

    PubMed

    Lehtonen, Henna-Maria; Lindstedt, Anni; Järvinen, Riikka; Sinkkonen, Jari; Graça, Gonçalo; Viitanen, Matti; Kallio, Heikki; Gil, Ana M

    2013-06-01

    The use of NMR metabolomics in clinical trials is growing; however, reports of postprandial experiments in humans are scarce. The present study investigated whether consumption of lingonberries as a supplement to an oil-rich meal modifies the postprandial fingerprints of human urine. Urine samples were analysed by (1)H NMR, and untargeted multivariate analysis was applied to the data for comprehensive fingerprinting. A clear separation of postprandial lingonberry meal samples was revealed. To evaluate statistical differences, a targeted approach was applied for the informative spectral areas. Significantly (p<0.05) increased levels of polyphenol metabolites, hippuric acid and 4-hydroxyhippuric acid, and decreased creatinine and dimethylamine levels were the major explanations for the grouping of the postprandial samples after the different meals. Thus, inclusion of polyphenol-rich lingonberry powder in a rapeseed oil-rich meal modifies the metabolic profile of urine which may be used to reveal both consumption of berries and health-promoting changes in the common metabolism.

  13. Metabolic changes in the midgut of Eri silkworm after Oral administration of 1-deoxynojirimycin: A 1H-NMR-based metabonomic study

    PubMed Central

    Wen, Chao-Wei; Dong, Min-Jian; Lin, Qiu-Ting; Zhang, Shang-Zhi

    2017-01-01

    1-deoxynojirimycin (DNJ) is a natural D-glucose analogue and has a strong physiological activity in inhibiting α-glucosidase in vivo. The antidiabetic effects of DNJ in mice or other mammals were extensively explored, but the physiological and toxic roles of DNJ in insects was seldom reported. In this study, the biological effects of DNJ were examined in midgut extracts of fourth-instar larvae of Eri silkworm (Samia cynthia ricini, Saturniidae). Based on nuclear magnetic resonance (NMR) metabonomics technology, we analyzed the alterations of glycometabolism, lipids, and energy metabolism pathways in the midgut of S. cynthia ricini caused by DNJ. Pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) showed that four groups of latex, 0.25% DNJ, 0.5% DNJ and the mixture of 0.5% DNJ and latex (1:1) were distinctly different from the control group. Moreover, several metabolic pathways of DNJ-mediated modulation in the midgut were identified. Compared with the control group, alanine, succinate, glutamate, and fumarate concentrations decreased in three groups of 0.5% DNJ, latex, and the mixture, choline levels increased in two DNJ groups, and trehalose levels increased in all experimental groups. Therefore, these results suggest that DNJ modulated lipid metabolism by limiting the hydrolysis pathways of phospholipids metabolism. Additionally, DNJ has a potent negative effect on energy metabolism by inhibiting the hydrolysis of trehalose, glycolysis and the tricarboxylic acid (TCA) cycle. Overall, DNJ, as a single-ingredient, is an efficient substance for modulating lipid metabolism and inhibiting energy metabolism. PMID:28249023

  14. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach.

    PubMed

    Dong, Ge; Wang, Junsong; Guo, Pingping; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2015-02-01

    Arisaematis Rhizoma (AR), a famous traditional Chinese medicine, has been widely used in Asia over thousands of years. Documented with noticeable toxicity in ancient books, AR has been used to treat various diseases in the clinic. Therefore, it is important to assess the toxicity of AR dynamically and holistically. In this study, a (1)H NMR-based metabolomics approach complemented with serum chemistry and histopathology has been applied to investigate the toxicity of AR. Rats were intragastrically administered with AR (0, 0.5 and 1 g kg(-1) body weight) for 30 days, and serum and urine samples were collected. Their (1)H NMR profiles were analyzed by multivariate pattern recognition techniques to denote metabolic variations induced by AR, and 13 metabolites in urine and 6 metabolites in serum were significantly altered, which suggested that disturbances in energy metabolism, perturbation of the gut microflora environment, membrane damage, folate deficiency and injury of kidneys are produced by AR. Histopathology showed a slight vacuolization of the glomerular matrix and edema of renal tubular epithelial cells in kidneys of AR administered rats, which were evidenced by increased levels of blood urea nitrogen and creatinine in serum chemistry. Our results indicated that oral administration of crude AR was found to induce slight renal toxicity. Therefore, precautions should be made to monitor the potential nephrotoxicity of AR in clinical use. The metabolomics approach provided a promising tool for the study and better understanding of TCM-induced toxicity dynamically and holistically.

  15. (1)H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio).

    PubMed

    Yoon, Changshin; Yoon, Dahye; Cho, Junghee; Kim, Siwon; Lee, Heonho; Choi, Hyeonsoo; Kim, Suhkmann

    2017-04-03

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to study the response of zebrafish (Danio rerio) to increasing concentrations of bisphenol A (4,4'-(propane-2,2-diyl)diphenol, BPA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to detect aberrant metabolomic profiles after 72 h of BPA exposure at all levels tested (0.01, 0.1, and 1.0 mg/L). The OPLS-DA score plots showed that BPA exposure caused significant alterations in the metabolome. The metabolomic changes in response to BPA exposure generally exhibited nonlinear patterns, with the exception of reduced levels of several metabolites, including glutamine, inosine, lactate, and succinate. As the level of BPA exposure increased, individual metabolite patterns indicated that the zebrafish metabolome was subjected to severe oxidative stress. Interestingly, ATP levels increased significantly at all levels of BPA exposure. In the present study, we demonstrated the applicability of (1)H-NMR-based metabolomics to identify the discrete nature of metabolic changes.

  16. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.

    PubMed

    Son, Hong-Seok; Hwang, Geum-Sook; Kim, Ki Myong; Kim, Eun-Young; van den Berg, Frans; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2009-02-01

    (1)H NMR spectroscopy coupled with multivariate statistical analysis was used for the first time to investigate metabolic changes in musts during alcoholic fermentation and wines during aging. Three Saccharomyces cerevisiae yeast strains (RC-212, KIV-1116, and KUBY-501) were also evaluated for their impacts on the metabolic changes in must and wine. Pattern recognition (PR) methods, including PCA, PLS-DA, and OPLS-DA scores plots, showed clear differences for metabolites among musts or wines for each fermentation stage up to 6 months. Metabolites responsible for the differentiation were identified as valine, 2,3-butanediol (2,3-BD), pyruvate, succinate, proline, citrate, glycerol, malate, tartarate, glucose, N-methylnicotinic acid (NMNA), and polyphenol compounds. PCA scores plots showed continuous movements away from days 1 to 8 in all musts for all yeast strains, indicating continuous and active fermentation. During alcoholic fermentation, the highest levels of 2,3-BD, succinate, and glycerol were found in musts with the KIV-1116 strain, which showed the fastest fermentation or highest fermentative activity of the three strains, whereas the KUBY-501 strain showed the slowest fermentative activity. This study highlights the applicability of NMR-based metabolomics for monitoring wine fermentation and evaluating the fermentative characteristics of yeast strains.

  17. Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis.

    PubMed

    Tarachiwin, Lucksanaporn; Masako, Osawa; Fukusaki, Eiichiro

    2008-07-23

    (1)H NMR spectrometry in combination with multivariate analysis was considered to provide greater information on quality assessment over an ordinary sensory testing method due to its high reliability and high accuracy. The sensory quality evaluation of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) was carried out by means of (1)H NMR-based metabolomics. Multivariate analyses by partial least-squares projections to latent structures-discrimination analysis (PLS-DA) and PLS-regression offered extensive information for quality differentiation and quality evaluation, respectively. The impact of watermelon and rootstock cultivars on the sensory qualities of watermelon was determined on the basis of (1)H NMR metabolic fingerprinting and profiling. The significant metabolites contributing to the discrimination were also identified. A multivariate calibration model was successfully constructed by PLS-regression with extremely high reliability and accuracy. Thus, (1)H NMR-based metabolomics with multivariate analysis was considered to be one of the most suitable complementary techniques that could be applied to assess and predict the sensory quality of watermelons and other horticultural plants.

  18. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    PubMed

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna.

  19. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    PubMed Central

    Rawat, Atul; Dubey, Durgesh; Guleria, Anupam; Kumar, Umesh; Keshari, Amit K.; Chaturvedi, Swati; Prakash, Anand; Saha, Sudipta; Kumar, Dinesh

    2016-01-01

    Introduction: Erythromycin (ERY) is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group): control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR) spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a) increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b) decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a) decreased TCA cycle activity and enhanced fatty acid oxidation, (b) dysfunction of lipid and amino acid metabolism and (c) oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new drug

  20. Study of the Cardiotoxicity of Venenum Bufonis in Rats using an 1H NMR-Based Metabolomics Approach

    PubMed Central

    Wang, Junsong; Guo, Pingping; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2015-01-01

    Venenum Bufonis, a well-known traditional Chinese medicine, has been widely used in Asia and has gained popularity in Western countries over the last decade. Venenum Bufonis has obvious side effects that have been observed in clinical settings, but few studies have reported on its cardiotoxicity. In this work, the cardiotoxicity of Venenum Bufonis was investigated using a 11H NMR-based metabolomics approach. The 1H NMR profiles of the serum, myocardial extracts and liver extracts of specific-pathogen-free rats showed that Venenum Bufonis produced significant metabolic perturbations dose-dependently with a distinct time effect, peaking at 2 hr after dosing and attenuating gradually. Clinical chemistry, electrocardiographic recordings, and histopathological evaluation provided additional evidence of Venenum Bufonis-induced cardiac damage that complemented and supported the metabolomics findings. The combined results demonstrated that oxidative stress, mitochondrial dysfunction, and energy metabolism perturbations were associated with the cardiac damage that results from Venenum Bufonis. PMID:25781638

  1. [Study on three different species tibetan medicine sea buckthorn by 1H-NMR-based metabonomics].

    PubMed

    Su, Yong-Wen; Tan, Er; Zhang, Jing; You, Jia-Li; Liu, Yue; Liu, Chuan; Zhou, Xiang-Dong; Zhang, Yi

    2014-11-01

    The 1H-NMR fingerprints of three different species tibetan medicine sea buckthorn were established by 1H-HMR metabolomics to find out different motablism which could provide a new method for the quality evaluation of sea buckthorn. The obtained free induction decay (FID) signal will be imported into MestReNova software and into divide segments. The data will be normalized and processed by principal component analysis and.partial least squares discriminant analysis to perform pattern recognition. The results showed that 25 metabolites belonging to different chemical types were detected from sea buckthorn,including flavonoids, triterpenoids, amino acids, carbohydrates, fatty acids, etc. PCA and PLS-DA analysis showed three different varietiest of sea buckthorn that can be clearly separated by the content of L-quebrachitol, malic acid and some unidentified sugars, which can be used as the differences metabolites of three species of sea buckthorn. 1H-NMR-based metabonomies method had a holistic characteristic with sample preparation and handling. The results of this study can offer an important reference for the species identification and quality control of sea buckthorn.

  2. Combining biochemical with (1)H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism.

    PubMed

    Shen, Xiao-Li; Liu, Huan; Xiang, Huan; Qin, Xue-Mei; Du, Guan-Hua; Tian, Jun-Sheng

    2016-09-10

    Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal metabolism of carbohydrates, lipids and proteins. Genipin possesses a wide spectrum of biological activities including ameliorating effects on diabetes, but the definite mechanism of this effect remains unknown. To investigate the antidiabetic activities of genipin and explore the biochemical changes of serum endogenous metabolites on diabetic rats induced by alloxan, (1)H NMR spectroscopy coupled with multivariate data analysis was used to. All rats were randomly divided into six groups including negative control (NC) group, diabetic mellitus (DM) group, metformin hydrochloride group, high dose group of genipin, middle dose group of genipin and low dose group of genipin. Diabetes was induced by a single intraperitoneal injection of 120mg/kg body weight of alloxan. Serum samples were collected for the (1)H NMR-based metabolomics and clinical biochemical analysis. Daily oral administration of genipin (25, 50 and 100mg/kg body weight) and metformin hydrochloride (125mg/kg) for two weeks showed beneficial effects on blood glucose level (P<0.01). Significant differences in the metabolic profile as well as the result of biochemical parameters between the diabetic group and the control group were observed. The PLS-DA scores and corresponding loading plots demonstrated that genipin significantly restored the abnormal metabolic state. Detailed analysis of the altered metabolite levels indicated that genipin significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism and amino acid metabolism. Genipin showed the best anti-diabetic effects at a dose of 100mg/kg in rats. This finding indicates that chemical and metabolomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment.

  3. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus).

    PubMed

    Xu, Hua-Dong; Wang, Jun-Song; Li, Ming-Hui; Liu, Yan; Chen, Ting; Jia, Ai-Qun

    2015-02-01

    Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment.

  4. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil.

    PubMed

    Lankadurai, Brian P; Furdui, Vasile I; Reiner, Eric J; Simpson, André J; Simpson, Myrna J

    2013-08-27

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined.

  5. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    PubMed Central

    Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  6. 1H-NMR-based metabolomic study on toxicity of methomyl and methidathion in fish.

    PubMed

    Yoon, Dahye; Kim, Siwon; Lee, Minji; Yoon, Changshin; Kim, Suhkmann

    2016-12-01

    A (1)H-nuclear magnetic resonance (NMR) spectroscopy with multivariate analysis was applied to detect the toxicity of antiacetylcholinesterase insecticides, methomyl (methyl (1E)-N-(methylcarbamoyloxy)ethanimidothioate) and methidathion (3-(dimethoxyphosphinothioyl sulfanylmethyl)-5-methoxy-1,3,4-thiadiazol-2-one), using zebrafish (Danio rerio) and Chinese bleak (Aphyocypris chinensis). Generally, methomyl and methidathion have been believed not to highly accumulate in fish tissues. However, these pesticides showed their toxicity by altering patterns of whole-body metabolites in neurotransmitter balance, energy metabolism, oxidative stress, and muscle maintenance in low concentrations. We used Pearson correlation analysis to contextualize the metabolic markers in pesticide treated groups. We observed that the positive correlations of choline with acetate and betaine in untreated control were shifted to null correlations showing acetylcholinesterase specific toxicity. This research demonstrated the applicability and potential of NMR metabolomics in detecting toxic effects of insecticide with a modicum of concentrations in aquatic environment.

  7. (1)H NMR-based metabolomics reveals neurochemical alterations in the brain of adolescent rats following acute methylphenidate administration.

    PubMed

    Quansah, Emmanuel; Ruiz-Rodado, Victor; Grootveld, Martin; Probert, Fay; Zetterström, Tyra S C

    2017-03-06

    The psychostimulant methylphenidate (MPH) is increasingly used in the treatment of attention deficit hyperactivity disorder (ADHD). While there is little evidence for common brain pathology in ADHD, some studies suggest a right hemisphere dysfunction among people diagnosed with the condition. However, in spite of the high usage of MPH in children and adolescents, its mechanism of action is poorly understood. Given that MPH blocks the neuronal transporters for dopamine and noradrenaline, most research into the effects of MPH on the brain has largely focused on these two monoamine neurotransmitter systems. Interestingly, recent studies have demonstrated metabolic changes in the brain of ADHD patients, but the impact of MPH on endogenous brain metabolites remains unclear. In this study, a proton nuclear magnetic resonance ((1)H NMR)-based metabolomics approach was employed to investigate the effects of MPH on brain biomolecules. Adolescent male Sprague Dawley rats were injected intraperitoneally with MPH (5.0 mg/kg) or saline (1.0 ml/kg), and cerebral extracts from the left and right hemispheres were analysed. A total of 22 variables (representing 13 distinct metabolites) were significantly increased in the MPH-treated samples relative to the saline-treated controls. The upregulated metabolites included: amino acid neurotransmitters such as GABA, glutamate and aspartate; large neutral amino acids (LNAA), including the aromatic amino acids (AAA) tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline; and metabolites associated with energy and cell membrane dynamics, such as creatine and myo-inositol. No significant differences in metabolite concentrations were found between the left and right cerebral hemispheres. These findings provide new insights into the mechanisms of action of the anti-ADHD drug MPH.

  8. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    PubMed

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  9. Harvest year effects on Apulian EVOOs evaluated by 1H NMR based metabolomics

    PubMed Central

    De Pascali, Sandra A.

    2016-01-01

    Nine hundred extra virgin olive oils (EVOO) were extracted from individual olive trees of four olive cultivars (Coratina, Cima di Mola, Ogliarola, Peranzana), originating from the provinces of Bari and Foggia (Apulia region, Southern Italy) and collected during two consecutive harvesting seasons (2013/14 and 2014/15). Following genetic identification of individual olive trees, a detailed Apulian EVOO NMR database was built using 900 oils samples obtained from 900 cultivar certified single trees. A study on the olive oil lipid profile was carried out by statistical multivariate analysis (Principal Component Analysis, PCA, Partial Least-Squares Discriminant Analysis, PLS-DA, Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA). Influence of cultivar and weather conditions, such as the summer rainfall, on the oil metabolic profile have been evaluated. Mahalanobis distances and J2 criterion have been measured to assess the quality of resulting scores clusters for each cultivar in the two harvesting campaigns. The four studied cultivars showed non homogeneous behavior. Notwithstanding the geographical spread and the wide number of samples, Coratina showed a consistent behavior of its metabolic profile in the two considered harvests. Among the other three Peranzana showed the second more consistent behavior, while Cima di Mola and Ogliarola having the biggest change over the two years. PMID:27994965

  10. NMR-based metabolic profiling of rice wines by F(2)-selective total correlation spectra.

    PubMed

    Koda, Masanori; Furihata, Kazuo; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2012-05-16

    In this study, we performed NMR-based metabolic profiling of major rice wines (Japanese sake, Chinese Shaoxing wine, and Korean makgeolli). In the (1)H NMR spectra, the rice wines showed broad resonances in the region of about 7.9-9.0 ppm. These resonances showed many and complex correlations with approximately 0.5-4.5 ppm in the F(2)-selective TOCSY (total correlation spectroscopy) spectra, and these correlations were attributed mainly to peptides. These spectral patterns were characteristic of individual rice wines, and the combination of F(2)-selective TOCSY spectra and principal component analysis enabled us to classify the rice wine species. Furthermore, it also provided information about raw materials, namely, what type of koji (rice koji or wheat koji) was used. These spectra may be useful as a new "fingerprint" for quality control or food authentication.

  11. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2008-03-15

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  12. Discovery of safety biomarkers for realgar in rat urine using UFLC-IT-TOF/MS and 1H NMR based metabolomics.

    PubMed

    Huang, Yin; Tian, Yuan; Li, Geng; Li, Yuanyuan; Yin, Xinjuan; Peng, Can; Xu, Fengguo; Zhang, Zunjian

    2013-05-01

    As an arsenical, realgar (As4S4) is known as a poison and paradoxically as a therapeutic agent. However, a complete understanding of the precise biochemical alterations accompanying the toxicity and therapy effects of realgar is lacking. Using a combined ultrafast liquid chromatography (UFLC) coupled with ion trap time-of-flight mass spectrometry (IT-TOF/MS) and (1)H NMR spectroscopy based metabolomics approach, we were able to delineate significantly altered metabolites in the urine samples of realgar-treated rats. The platform stability of the liquid chromatography LC/MS and NMR techniques was systematically investigated, and the data processing method was carefully optimized. Our results indicate significant perturbations in amino acid metabolism, citric acid cycle, choline metabolism, and porphyrin metabolism. Thirty-six metabolites were proposed as potential safety biomarkers related to disturbances caused by realgar, and glycine and serine are expected to serve as the central contacts in the metabolic pathways related to realgar-induced disturbance. The LC/MS and NMR based metabolomics approach established provided a systematic and holistic view of the biochemical effects of realgar on rats, and might be employed to investigate other drugs or xenobiotics in the future.

  13. LC-MS- and (1)H NMR-Based Metabolomic Analysis and in Vitro Toxicological Assessment of 43 Aristolochia Species.

    PubMed

    Michl, Johanna; Kite, Geoffrey C; Wanke, Stefan; Zierau, Oliver; Vollmer, Guenter; Neinhuis, Christoph; Simmonds, Monique S J; Heinrich, Michael

    2016-01-22

    Species of Aristolochia are used as herbal medicines worldwide. They cause aristolochic acid nephropathy (AAN), a devastating disease associated with kidney failure and renal cancer. Aristolochic acids I and II (1 and 2) are considered to be responsible for these nephrotoxic and carcinogenic effects. A wide range of other aristolochic acid analogues (AAAs) exist, and their implication in AAN may have been overlooked. An LC-MS- and (1)H NMR-based metabolomic analysis was carried out on 43 medicinally used Aristolochia species. The cytotoxicity and genotoxicity of 28 Aristolochia extracts were measured in human kidney (HK-2) cells. Compounds 1 and 2 were found to be the most common AAAs. However, AA IV (3), aristolactam I (4), and aristolactam BI (5) were also widespread. No correlation was found between the amounts of 1 or 2 and extract cytotoxicity against HK-2 cells. The genotoxicity and cytotoxicity of the extracts could be linked to their contents of 5, AA D (8), and AA IIIa (10). These results undermine the assumption that 1 and 2 are exclusively responsible for the toxicity of Aristolochia species. Other analogues are likely to contribute to their toxicity and need to be considered as nephrotoxic agents. These findings facilitate understanding of the nephrotoxic mechanisms of Aristolochia and have significance for the regulation of herbal medicines.

  14. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez, Miguel Ángel; Vinaixa, Maria; Chiva-Blanch, Gemma; Estruch, Ramon; Correig, Xavier; Andrés-Lacueva, Cristina

    2012-08-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100mL/day, alcohol control). After each period, 24-h urine samples were collected and analyzed by (1) H-NMR. According to the results of a one-way ANOVA, significant markers were grouped in four categories: alcohol-related markers (ethanol); gin-related markers; wine-related markers; and gut microbiota markers (hippurate and 4-hydroxphenylacetic acid). Wine metabolites were classified into two groups; first, metabolites of food metabolome: tartrate (RWA and RWD), ethanol, and mannitol (RWA); and second, biomarkers that relates to endogenous modifications after wine consumption, comprising branched-chain amino acid (BCAA) metabolite (3-methyl-oxovalerate). Additionally, a possible interaction between alcohol and gut-related biomarkers has been identified. To our knowledge, this is the first time that this approach has been applied in a nutritional intervention with red wine. The results show the capacity of this approach to obtain a comprehensive metabolome picture including food metabolome and endogenous biomarkers of moderate wine intake.

  15. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    PubMed Central

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  16. Metabolic classification of South American Ilex species by NMR-based metabolomics.

    PubMed

    Kim, Hye Kyong; Saifullah; Khan, Saifullah; Wilson, Erica G; Kricun, Sergio D Prat; Meissner, Axel; Goraler, Sibel; Deelder, André M; Choi, Young Hae; Verpoorte, Robert

    2010-05-01

    The genus Ilex to which mate (Ilex paraguariensis) belongs, consists of more than 500 species. A wide range of metabolites including saponins and phenylpropanoids has been reported from Ilex species. However, despite the previous works on the Ilex metabolites, the metabolic similarities between species which can be used for chemotaxonomy of the species are not clear yet. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics was applied to the classification of 11 South American Ilex species, namely, Ilex argentina, Ilex brasiliensis, Ilex brevicuspis, Ilex dumosa var. dumosa, I. dumosa var. guaranina, Ilex integerrima, Ilex microdonta, I. paraguariensis var. paraguariensis, Ilex pseudobuxus, Ilex taubertiana, and Ilex theezans. (1)H NMR combined with principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) showed a clear separation between species and resulted in four groups based on metabolomic similarities. The signal congestion of (1)H NMR spectra was overcome by the implementation of two-dimensional (2D)-J-resolved and heteronuclear single quantum coherence (HSQC). From the results obtained by 1D- and 2D-NMR-based metabolomics it was concluded that species included in group A (I. paraguariensis) were metabolically characterized by a higher amount of xanthines, and phenolics including phenylpropanoids and flavonoids; group B (I. dumosa var. dumosa and I. dumosa var. guaranina) with oleanane type saponins; group C (I. brasiliensis, I. integerrima, I. pseudobuxus and I. theezans) with arbutin and dicaffeoylquinic acids, and group D (I. argentina, I. brevicuspis, I. microdonta and I. taubertiana) with the highest level of ursane-type saponins. Clear metabolomic discrimination of Ilex species and varieties in this study makes the chemotaxonomic classification of Ilex species possible.

  17. Metabolite Variation in Lean and Obese Streptozotocin (STZ)-Induced Diabetic Rats via (1)H NMR-Based Metabolomics Approach.

    PubMed

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Ismail, Amin; Abas, Faridah

    2016-12-19

    Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using (1)H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.

  18. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin

    PubMed Central

    Deng, Ming-Jie; Lin, Xiao-Dong; Lin, Qiu-Ting; Wen, De-Fu; Zhang, Mei-Ling; Wang, Xian-Qin; Gao, Hong-Chang; Xu, Jia-Ping

    2015-01-01

    We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity. PMID:26148185

  19. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin.

    PubMed

    Deng, Ming-Jie; Lin, Xiao-Dong; Lin, Qiu-Ting; Wen, De-Fu; Zhang, Mei-Ling; Wang, Xian-Qin; Gao, Hong-Chang; Xu, Jia-Ping

    2015-01-01

    We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity.

  20. Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks.

    PubMed

    Southam, Andrew D; Easton, John M; Stentiford, Grant D; Ludwig, Christian; Arvanitis, Theodoros N; Viant, Mark R

    2008-12-01

    Histopathologically well-characterized fish liver was analyzed by 800 MHz 1H NMR metabolomics to identify metabolic changes between healthy and tumor tissue. Data were analyzed by multivariate statistics and metabolic correlation networks, and results revealed elevated anaerobic metabolism and reduced choline metabolism in tumor tissue. Significant negative correlations were observed between alanine-acetate (p = 3.0 x 10(-5)) and between proline-acetate (p = 0.003) in tumors only, suggesting alanine and proline are utilized as alternative energy sources in flatfish liver tumors.

  1. 1H-NMR-Based Endometabolome Profiles of Burkholderia cenocepacia Clonal Variants Retrieved from a Cystic Fibrosis Patient during Chronic Infection

    PubMed Central

    Moreira, Ana S.; Lourenço, Artur B.; Sá-Correia, Isabel

    2016-01-01

    During cystic fibrosis (CF) chronic lung infections, bacteria of the Burkholderia cepacia complex (Bcc) are exposed for several years to a stressful and changing environment. These environmental challenges results in genetic changes of the initial infecting strain with the consequent diversification of genotypes and phenotypes. The exploitation of functional and comparative genomic approaches has suggested that such diversification is associated with massive metabolic remodeling but these alterations are poorly understood. In the present work, we have explored a high resolution 1H-NMR-based metabolomic approach coupled to multivariate analysis to compare the endometabolome of three B. cenocepacia clonal variants retrieved from a CF patient from the onset of infection (IST439) until death with cepacia syndrome after 3.5 years (IST4113 and IST4134), to complement former proteomic and transcriptomic analyses. A fourth clonal variant (IST4129) retrieved from the same CF patient when the clinical condition worsened during the last months of life, was also examined since it was found to lack the third replicon. The metabolomic profiles obtained, based on the complete 1H-NMR spectra, highlight the separation of the four clonal variants examined, the most distinct profile corresponding to IST4129. Results indicate a variable content of several amino acids in the different isolates examined and suggest that glycolysis and the glyoxylate shunt are favored in late variants. Moreover, the concentration of two metabolites with demonstrated cellular protective functions against stress, glycine-betaine and trehalose, is different in the different isolates examined. However, no clear correlation could be established between their content and stress tolerance. For example, IST4113, previously found to be the most resistant variant to antimicrobials of different classes, exhibits low levels of trehalose and glycine-betaine but the highest resistance to heat and oxidative stress

  2. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction.

    PubMed

    Zheng, Hong; Lin, Qiuting; Wang, Dan; Xu, Pengtao; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui; Yan, Zhihan; Gao, Hongchang

    2017-04-01

    Diabetes mellitus (DM) can result in cognitive dysfunction, but its potential metabolic mechanisms remain unclear. In the present study, we analyzed the metabolite profiling in eight different brain regions of the normal rats and the streptozotocin (STZ)-induced diabetic rats accompanied by cognitive dysfunction using a (1)H NMR-based metabolomic approach. A mixed linear model analysis was performed to assess the effects of DM, brain region and their interaction on metabolic changes. We found that different brain regions in rats displayed significant metabolic differences. In addition, the hippocampus was more susceptible to DM compared with other brain regions in rats. More interestingly, significant interaction effects of DM and brain region were observed on alanine, creatine/creatine-phosphate, lactate, succinate, aspartate, glutamate, glutamine, γ-aminobutyric acid, glycine, choline, N-acetylaspartate, myo-inositol and taurine. Based on metabolic pathway analysis, we speculate that cognitive dysfunction in the STZ-induced diabetic rats may be associated with brain region-specific metabolic alterations involving energy metabolism, neurotransmitters, membrane metabolism and osmoregulation.

  3. (1)H NMR-based metabolomics study on a goldfish model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

    PubMed

    Lu, Zhaoguang; Wang, Junsong; Li, Minghui; Liu, Qingwang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-11-05

    A goldfish (Carassius auratus) model of Parkinson's disease (PD) was constructed by a single dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to previously reported methods. Global metabolite changes in brain of the MPTP induced goldfish model of PD were investigated. (1)H NMR-based metabolomics combined with various statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) found significant increase of leucine, isoleucine, valine, alanine, alanylalanine, creatinine, myo-inositol, 18:2 fatty acid, total fatty acids, arachic alcohol, taurine and significant decrease of N-acetylaspartate, (phospho)creatine, (phospho)choline, betaine, glutamine, 3-hexenedioate, acetamide, malonate, isocitrate, scyllo-inositol, phosphatidylcholines, cholesterols, n-3 fatty acids, polyunsaturated fatty acids (PUFAs) in brain of MPTP induced PD goldfish. These disturbed metabolite levels were involved in oxidative stress, energy failure, neuronal cell injury and death, consistent with those observed in clinical PD patients, and rodents and primates model of PD, indicating that the acute MPTP model of goldfish was an ideal and valuable model for PD research. In addition, several unusual metabolites in brain were significantly changed between MPTP induced PD and control goldfish, which might also play an important role in the pathogenesis of PD. This study also demonstrated the applicability and potential of (1)H NMR-based metabolomics approach for evaluation of animal models of disease induced by chemicals, such as MPTP-induced PD goldfish.

  4. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.

  5. 1H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats

    PubMed Central

    Lin, Taijie; Gu, Jinping; Huang, Caihua; Zheng, Suli; Lin, Xu; Xie, Liangdi; Lin, Donghai

    2016-01-01

    Aims. To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods. Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. Results. The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. Conclusions. Metabolic dysfunction is involved in the development and progression of PAH. PMID:27057080

  6. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  7. (1)H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Kärkkäinen, Johanna; Wik, Tiia-Riikka; Niemelä, Matti; Lappalainen, Katja; Joensuu, Päivi; Lajunen, Marja

    2016-01-20

    The use of natural resources in a development of products and materials is currently increasing. Starch is one of the investigated resources due to its bioavailability, biodegradability, safety and affordability. In this study, native barley starch was sulfated using a SO3-pyridine complex. The reaction was carried out for the first time using 1-allyl-3-methylimidazolium chloride ionic liquid, an excellent solvent for the starch modification. Reaction conditions (temperature, time and amount of the reagent) were studied using an experimental design. Starch sulfates with the degree of substitution (DS) 1.37 were obtained when the reaction was carried out at 40 °C for 75 min with 4:1 molar ratio of SO3-pyridine complex:anhydroglucose unit. The determination of DS was based on (1)H NMR instead of elemental analysis, which showed overestimated DS values in this study. Starch sulfates were analyzed with FTIR and HPLC, which showed that products contained small and large sulfated molecules.

  8. Characterization of Chinese liquor starter, "Daqu", by flavor type with 1H NMR-based nontargeted analysis.

    PubMed

    Wu, Xiao-He; Zheng, Xiao-Wei; Han, Bei-Zhong; Vervoort, Jacques; Nout, M J Robert

    2009-12-09

    "Daqu" is a fermentation starter and substrate complex that is used to initiate fermentations for the production of Chinese liquor (alcoholic spirit). Several different types of Daqu are customary used, having different flavours, i.e. light, strong, or sauce flavor. With the aim to develop objective methods to characterize and distinguish such different types of Daqu, nontargeted analyses of extracts from three typical flavor types of Daqu were carried out using (1)H nuclear magnetic resonance (NMR) spectroscopy. A significant separation of spectra of Daqu of light-flavor, strong-flavor and sauce-flavor types was achieved using principal components analysis. The separation could be attributed to higher levels of glycerol, malate, acetate and N-acetylglutamine in light-flavor Daqu; higher levels of mannitol, betaine, trimethylamine and pyroglutamate in strong-flavor Daqu; and higher levels of lactate, isoleucine, leucine, isovalerate and valine in sauce-flavor Daqu. These metabolites were regarded as the representative metabolites or biomarkers characteristic for each type of Daqu and could be associated with some of the microorganisms that have been reported in Daqu. This study highlights the application of nontargeted analysis techniques based on NMR in process research and quality control in Daqu production and liquor fermentation.

  9. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with H-NMR based metabolic profiling.

    PubMed

    Kim, So-Hyun; K Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-05-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The (1)H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of (1)H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake.

  10. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Yang, Cuiyun; Zhang, Linbao; Li, Lianzhen; Liu, Sujing; Yu, Junbao; You, Liping; Zhou, Di; Xia, Chuanhai; Zhao, Jianmin; Wu, Huifeng

    2011-08-01

    Cadmium is a non-essential element to living organisms and has become the severe contaminant in both seawater and sediment in the intertidal zones of the Bohai Sea. The halophyte, Suaeda salsa is the pioneer plant in the intertidal zones of Bohai Sea and has been widely applied in environmental sciences. In this study, the dose- and time-dependent effects induced by environmentally relevant concentrations (2, 10 and 50 μg l(-1)) of cadmium were characterized in S. salsa using NMR-based metabolomics. The levels of amino acids (valine, leucine, glutamate, tyrosine, etc.), carbohydrates (glucose, sucrose and fructose), intermediates of tricarboxylic acid cycle (succinate, citrate, etc.) and osmolyte (betaine) were altered in the S. salsa samples after cadmium exposures. These metabolic biomarkers indicated the elevated protein degradation and disturbances in the osmotic regulation and energy metabolism caused by cadmium in S. salsa. Overall, our results demonstrated the applicability of NMR-based metabolomics for the detection of metabolic biomarkers that could be used for the interpretation of toxicological effects induced by contaminants in the pioneer plant S. salsa in the intertidal zones. In addition, the metabolic biomarkers could be potentially useful for the bio-monitoring of contaminants in the intertidal zones.

  11. High resolution 1H NMR-based metabonomic study of the auditory cortex analogue of developing chick (Gallus gallus domesticus) following prenatal chronic loud music and noise exposure.

    PubMed

    Kumar, Vivek; Nag, Tapas Chandra; Sharma, Uma; Mewar, Sujeet; Jagannathan, Naranamangalam R; Wadhwa, Shashi

    2014-10-01

    Proper functional development of the auditory cortex (ACx) critically depends on early relevant sensory experiences. Exposure to high intensity noise (industrial/traffic) and music, a current public health concern, may disrupt the proper development of the ACx and associated behavior. The biochemical mechanisms associated with such activity dependent changes during development are poorly understood. Here we report the effects of prenatal chronic (last 10 days of incubation), 110dB sound pressure level (SPL) music and noise exposure on metabolic profile of the auditory cortex analogue/field L (AuL) in domestic chicks. Perchloric acid extracts of AuL of post hatch day 1 chicks from control, music and noise groups were subjected to high resolution (700MHz) (1)H NMR spectroscopy. Multivariate regression analysis of the concentration data of 18 metabolites revealed a significant class separation between control and loud sound exposed groups, indicating a metabolic perturbation. Comparison of absolute concentration of metabolites showed that overstimulation with loud sound, independent of spectral characteristics (music or noise) led to extensive usage of major energy metabolites, e.g., glucose, β-hydroxybutyrate and ATP. On the other hand, high glutamine levels and sustained levels of neuromodulators and alternate energy sources, e.g., creatine, ascorbate and lactate indicated a systems restorative measure in a condition of neuronal hyperactivity. At the same time, decreased aspartate and taurine levels in the noise group suggested a differential impact of prenatal chronic loud noise over music exposure. Thus prenatal exposure to loud sound especially noise alters the metabolic activity in the AuL which in turn can affect the functional development and later auditory associated behaviour.

  12. Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by (1)H NMR-based metabolomics.

    PubMed

    Cappello, Tiziana; Pereira, Patrícia; Maisano, Maria; Mauceri, Angela; Pacheco, Mário; Fasulo, Salvatore

    2016-12-01

    Mercury (Hg) is recognized as a dangerous contaminant due to its bioaccumulation and biomagnification within trophic levels, leading to serious health risks to aquatic biota. Therefore, there is an urgent need to unravel the mechanisms underlying the toxicity of Hg. To this aim, a metabolomics approach based on protonic nuclear magnetic resonance ((1)H NMR), coupled with chemometrics, was performed on the gills of wild golden grey mullets L. aurata living in an Hg-polluted area in Ria de Aveiro (Portugal). Gills were selected as target organ due to their direct and continuous interaction with the surrounding environment. As a consequence of accumulated inorganic Hg and methylmercury, severe changes in the gill metabolome were observed, indicating a compromised health status of mullets. Numerous metabolites, i.e. amino acids, osmolytes, carbohydrates, and nucleotides, were identified as potential biomarkers of Hg toxicity in fish gills. Specifically, decrease of taurine and glycerophosphocholine, along with increased creatine level, suggested Hg interference with the ion-osmoregulatory processes. The rise of lactate indicated anaerobic metabolism enhancement. Moreover, the increased levels of amino acids suggested the occurrence of protein catabolism, further supported by the augmented alanine, involved in nitrogenous waste excretion. Increased level of isobutyrate, a marker of anoxia, was suggestive of onset of hypoxic stress at the Hg contaminated site. Moreover, the concomitant reduction in glycerophosphocholine and phosphocholine reflected the occurrence of membrane repair processes. Finally, perturbation in antioxidant defence system was revealed by the depletion in glutathione and its constituent amino acids. All these data were also compared to the differential Hg-induced metabolic responses previously observed in liver of the same mullets (Brandão et al., 2015). Overall, the environmental metabolomics approach demonstrated its effectiveness in the

  13. (1)H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae.

    PubMed

    Melvin, Steven D; Habener, Leesa J; Leusch, Frederic D L; Carroll, Anthony R

    2017-03-01

    Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the expected response patterns may be explained by differences in the receptivity or uptake of the compounds in non-mammalian species. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy revealed evidence of broad metabolic dysregulation in exposed animals, and possible interaction between the solvent and mixture. Specifically, increased lactic acid and branched-chain amino acids were observed, with responses tending to follow a non-monotonic pattern. Overall, results demonstrate

  14. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics.

    PubMed

    Georgiev, Milen I; Ali, Kashif; Alipieva, Kalina; Verpoorte, Robert; Choi, Young Hae

    2011-11-01

    The genus Verbascum L. (mulleins) comprises of about 360 species of flowering plants in the Scrophulariaceae family. Mulleins have been used in the traditional folk medicine for centuries, for treatment of a wide range of human ailments, inter alia bronchitis, tuberculosis, asthma, and different inflammations. Despite all applications the knowledge of the metabolites, accumulated in different mullein species, is still limited and based mainly on determination of the major compounds. Here we report the application of 1H NMR metabolic fingerprinting in combination with principal component analyses (PCA) in five different Verbascum species. Based on the obtained results mulleins were divided in two groups: group A (Verbascum phlomoides and Verbascum densiflorum) and group B (Verbascum xanthophoeniceum, Verbascum nigrum and Verbascum phoeniceum). Further it was found that the plants in group B accumulate higher amounts of bioactive iridoid and phenylethanoid glycosides. V. xanthophoeniceum and V. nigrum accumulate higher amounts of the pharmaceutically-important harpagoside (∼0.5% on dry weight basis) and verbascoside, forsythoside B and leucosceptoside B (in total 5.6-5.8% on dry weight basis), which underlines the possibility for their application in pharmaceutical industry. To the best of our knowledge this is the first report on the analyses of Verbascum sp. leaf metabolome.

  15. Discrimination of wild types and hybrids of Duboisia myoporoides and Duboisia leichhardtii at different growth stages using (1)H NMR-based metabolite profiling and tropane alkaloids-targeted HPLC-MS analysis.

    PubMed

    Ullrich, Sophie Friederike; Averesch, Nils J H; Castellanos, Leonardo; Choi, Young Hae; Rothauer, Andreas; Kayser, Oliver

    2016-11-01

    Duboisia species, which belong to the family of Solanaceae, are commercially cultivated in large scale, as they are main source of the pharmaceutically-used active compound scopolamine. In this study, (1)H NMR-based metabolite profiling linking primary with secondary metabolism and additional quantification via HPCL-MS with special focus on the tropane alkaloids were applied to compare leaf and root extracts of three wild types and two hybrids of Duboisia myoporoides and D. leichhardtii at different developmental stages grown under controlled conditions in climate chambers and under agricultural field plantation. Based on the leaf extracts, a clear distinction between the Duboisia hybrids and the wild types Duboisia myoporoides and D. leichhardtii using principal component analysis of (1)H NMR data was observed. The average content in scopolamine in the hybrids of Duboisia cultivated in climate chambers increased significantly from month 3-6 after potting of the rooted cuttings, however not so for the examined wild types. The Duboisia hybrids grown in climate chambers showed higher growth and contained more sugars and amino acids than Duboisia hybrids grown in the field, which in contrast showed an enhanced flux towards tropane alkaloids as well as flavonoids. For a more detailed analysis of tropane alkaloids, an appropriate HPLC-MS method was developed and validated. The measurements revealed large differences in the alkaloid pattern within the different genotypes under investigation, especially regarding the last enzymatic step, the conversion from hyoscamine to scopolamine by the hyoscyamine 6β-hydroxylase. Scopolamine was found in highest concentrations in Duboisia hybrids (20.04 ± 4.05 and 17.82 ± 3.52 mg/g dry wt) followed by Duboisia myoporoides (12.71 ± 2.55 mg/g dry wt), both showing a high selectivity for scopolamine in contrast to Duboisia leichhardtii (3.38 ± 0.59 and 5.09 ± 1.24 mg/g dry wt) with hyoscyamine being the

  16. A NMR-based, non-targeted multistep metabolic profiling revealed L-rhamnitol as a metabolite that characterised apples from different geographic origins.

    PubMed

    Tomita, Satoru; Nemoto, Tadashi; Matsuo, Yosuke; Shoji, Toshihiko; Tanaka, Fukuyo; Nakagawa, Hiroyuki; Ono, Hiroshi; Kikuchi, Jun; Ohnishi-Kameyama, Mayumi; Sekiyama, Yasuyo

    2015-05-01

    This study utilises (1)H NMR-based metabolic profiling to characterise apples of five cultivars grown either in Japan (Fuji, Orin, and Jonagold) or New Zealand (Fuji, Jazz, and Envy). Principal component analysis (PCA) showed a clear separation between the Fuji-Orin-Jonagold class and the Jazz-Envy class, primarily corresponding to the differences in sugar signals, such as sucrose, glucose, and fructose. Multistep PCA removed the influence of dominant sugars and highlighted minor metabolites such as aspartic acid, 2-methylmalate, and an unidentified compound. These minor metabolites separated the apples into two classes according to different geographical areas. Subsequent partial least squares discriminant analysis (PLS-DA) indicated the importance of the unidentified metabolite. This metabolite was isolated using charcoal chromatography, and was identified as L-rhamnitol by 2D NMR and LC/MS analyses. The remarkable contribution of L-rhamnitol to geographic discrimination suggests that apples may be characterised according to various factors, including storage duration, cultivation method, and climate.

  17. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  18. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative (1)H NMR Metabonomic Study.

    PubMed

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied (1)H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  19. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments.

    PubMed

    Stockman, Brian J; Kothe, Michael; Kohls, Darcy; Weibley, Laura; Connolly, Brendan J; Sheils, Alissa L; Cao, Qing; Cheng, Alan C; Yang, Lily; Kamath, Ajith V; Ding, Yuan-Hua; Charlton, Maura E

    2009-02-01

    Aberrant activation of the phosphoinositide 3-kinase pathway because of genetic mutations of essential signalling proteins has been associated with human diseases including cancer and diabetes. The pivotal role of 3-phosphoinositide-dependent kinase-1 in the PI3K signalling cascade has made it an attractive target for therapeutic intervention. The N-terminal lobe of the 3-phosphoinositide-dependent kinase-1 catalytic domain contains a docking site which recognizes the non-catalytic C-terminal hydrophobic motifs of certain substrate kinases. The binding of substrate in this so-called PDK1 Interacting Fragment pocket allows interaction with 3-phosphoinositide-dependent kinase-1 and enhanced phosphorylation of downstream kinases. NMR spectroscopy was used to a screen 3-phosphoinositide-dependent kinase-1 domain construct against a library of chemically diverse fragments in order to identify small, ligand-efficient fragments that might interact at either the ATP site or the allosteric PDK1 Interacting Fragment pocket. While majority of the fragment hits were determined to be ATP-site binders, several fragments appeared to interact with the PDK1 Interacting Fragment pocket. Ligand-induced changes in 1H-15N TROSY spectra acquired using uniformly 15N-enriched PDK1 provided evidence to distinguish ATP-site from PDK1 Interacting Fragment-site binding. Caliper assay data and 19F NMR assay data on the PDK1 Interacting Fragment pocket fragments and structurally related compounds identified them as potential allosteric activators of PDK1 function.

  20. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using 1H-NMR-based metabolomics profiles

    PubMed Central

    Tian, Jun-sheng; Xia, Xiao-tao; Wu, Yan-fei; Zhao, Lei; Xiang, Huan; Du, Guan-hua; Zhang, Xiang; Qin, Xue-mei

    2016-01-01

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance (1H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method. PMID:27650680

  1. 1H NMR-based metabonomic analysis of the serum and urine of rats following subchronic exposure to dichlorvos, deltamethrin, or a combination of these two pesticides.

    PubMed

    Wang, Hui-Ping; Liang, Yu-Jie; Sun, Ying-Jian; Chen, Jia-Xiang; Hou, Wei-Yuan; Long, Ding-Xin; Wu, Yi-Jun

    2013-05-25

    Metabonomic analysis, clinical chemical analysis and histopathology were used to investigate the toxic effects of subchronic exposure to dichlorvos, deltamethrin, and a combination of these two pesticides, in rats. Weight loss, hind limb weakness and histopathological changes in kidney tissue were only observed in rats exposed to high doses of deltamethrin, or a combination of deltamethrin and dichlorvos. Urinary metabonomic analysis indicated that exposure to a mixture of dichlorvos and deltamethrin was followed by increases in urinary lactate, dimethylamine, N-glycoprotein (NAC) and glycine similar to those observed in rats treated with either dichlorvos or deltamethrin alone. Serum metabonomic analysis suggests that dichlorvos induced an increase in lactate and alanine and a decrease in dimethylglycine (DMG), NAC and very low- and low-density lipoprotein (VLDL/LDL). High levels of lactate and low levels of NAC and VLDL/LDL were observed in the deltamethrin treatment group. Treating rats with a mixture of dichlorvos and deltamethrin caused an increase in serum lactate, trimethylamine-N-oxide (TMAO), choline and alanine, with the highest levels of these metabolites observed in those that received the highest dose. Exposure to a mixture of dichlorvos and deltamethrin also resulted in a decrease in serum acetone, DMG, NAC, and VLDL/LDL. Changes in serum TMAO, alanine, choline and acetone in this treatment group were higher than in rats treated with either dichlorvos or deltamethrin. These results suggest that exposing rats to subchronic doses of dichlorvos, deltamethrin, or a combination of these pesticides, disrupted the energy metabolism of the liver and reduced kidney function.

  2. NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease

    PubMed Central

    Sekiyama, Yasuyo; Okazaki, Kazuyuki; Kikuchi, Jun; Ikeda, Seishi

    2017-01-01

    Cercospora leaf spot (CLS) is one of the most serious leaf diseases for sugar beet (Beta vulgaris L.) worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR)-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. 1H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D2O)-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA) of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS) or orthogonal PLS (OPLS) analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs) of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance) from resistant genotypes (genotypes with resistance greater than a moderate level) before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort. PMID:28134762

  3. Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy.

    PubMed

    Kim, So-Hyun; Cho, Somi K; Hyun, Sun-Hee; Park, Hae-Eun; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.

  4. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  5. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    PubMed

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

  6. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images.

  7. Urinary (1)H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study.

    PubMed

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina

    2017-04-07

    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a (1)H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.

  8. NMR-based evaluation of the metabolic profile and response to dichloroacetate of human prostate cancer cells.

    PubMed

    Kailavasan, Mithun; Rehman, Ishtiaq; Reynolds, Steven; Bucur, Adriana; Tozer, Gillian; Paley, Martyn

    2014-05-01

    The aim of this study was to evaluate the metabolic profile of human prostate cancer cells that have different metastatic potential and to determine their response to dichloroacetate (DCA) using NMR technology. Two isogenic human prostate cancer cell lines, differing in their metastatic potential [LNCaP (poorly metastatic) and LNCaP-LN3 (highly metastatic)], were studied. Metabolite ratios from NMR spectral integrals acquired at a field strength of 9.4 T using a 5-mm broadband probe with an NMR-compatible bioreactor were compared in the presence and absence of the pyruvate dehydrogenase kinase inhibitor DCA. Lactate dehydrogenase (LDH) isoenzymes were assessed by zymography. Following the treatment of cells with 50 mm DCA, there was a significant reduction in the lactate/choline, lactate/creatine, lactate/alanine and the combined lactate/(choline + creatine + alanine) ratios in LNCaP-LN3 cells relative to LNCaP cells. No significant changes in metabolite ratios were found in LNCaP cells following DCA treatment. As expected, LDH zymography assays showed an absence of the LDH-B subunit in LNCaP-LN3 cells, whereas both LDH-A and LDH-B subunits were present in LNCaP cells. DCA was shown to significantly modify the metabolite ratios in highly metastatic LNCaP-LN3 cells, but not in poorly metastatic LNCaP cells. This effect was probably related to the absence of the LDH-B subunit in LNCaP-LN3 cells, and could have a bearing on cancer treatment with DCA and related compounds.

  9. NMR-based evaluation of the metabolic profile and response to dichloroacetate of human prostate cancer cells

    PubMed Central

    Kailavasan, Mithun; Rehman, Ishtiaq; Reynolds, Steven; Bucur, Adriana; Tozer, Gillian; Paley, Martyn

    2014-01-01

    The aim of this study was to evaluate the metabolic profile of human prostate cancer cells that have different metastatic potential and to determine their response to dichloroacetate (DCA) using NMR technology. Two isogenic human prostate cancer cell lines, differing in their metastatic potential [LNCaP (poorly metastatic) and LNCaP-LN3 (highly metastatic)], were studied. Metabolite ratios from NMR spectral integrals acquired at a field strength of 9.4 T using a 5-mm broadband probe with an NMR-compatible bioreactor were compared in the presence and absence of the pyruvate dehydrogenase kinase inhibitor DCA. Lactate dehydrogenase (LDH) isoenzymes were assessed by zymography. Following the treatment of cells with 50 mm DCA, there was a significant reduction in the lactate/choline, lactate/creatine, lactate/alanine and the combined lactate/(choline + creatine + alanine) ratios in LNCaP-LN3 cells relative to LNCaP cells. No significant changes in metabolite ratios were found in LNCaP cells following DCA treatment. As expected, LDH zymography assays showed an absence of the LDH-B subunit in LNCaP-LN3 cells, whereas both LDH-A and LDH-B subunits were present in LNCaP cells. DCA was shown to significantly modify the metabolite ratios in highly metastatic LNCaP-LN3 cells, but not in poorly metastatic LNCaP cells. This effect was probably related to the absence of the LDH-B subunit in LNCaP-LN3 cells, and could have a bearing on cancer treatment with DCA and related compounds. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:24639007

  10. Metabolic Alterations in Parkinson's Disease after Thalamotomy, as Revealed by 1H MR Spectroscopy

    PubMed Central

    Baik, Hyun-Man; Lee, Hyoung-Koo; Suh, Tae-Suk; Son, Byung-Chul; Lee, Jae-Mun

    2002-01-01

    Objective To determine, using proton magnetic resonance spectroscopy (1H MRS) whether thalamotomy in patients with Parkinson's disease gives rise to significant changes in regional brain metabolism. Materials and Methods Fifteen patients each underwent stereotactic thalamotomy for the control of medically refractory parkinsonian tremor. Single-voxel 1H MRS was performed on a 1.5T unit using a STEAM sequence (TR/TM/TE, 2000/14/20 msec), and spectra were obtained from substantia nigra, thalamus and putamen areas, with volumes of interest of 7-8ml, before and after thalamotomy. NAA/Cho, NAA/Cr and Cho/Cr metabolite ratios were calculated from relative peak area measurements, and any changes were recorded and assessed. Results In the substantia nigra and thalamus, NAA/Cho ratios were generally low. In the substantia nigra of 80% of patients (12/15) who showed clinical improvement, decreased NAA/Cho ratios were observed in selected voxels after thalamic surgery (p < 0.05). In the thalamus of 67% of such patients (10/15), significant decreases were also noted (p < 0.05). Conclusion Our results suggest that the NAA/Cho ratio may be a valuable criterion for the evaluation of Parkinson's disease patients who show clinical improvement following surgery. By highlighting variations in this ratio, 1H MRS may help lead to a better understanding of the pathophysiologic processes occurring in those with Parkinson's disease. PMID:12271163

  11. A 1H NMR-based metabolomics approach to evaluate the geographical authenticity of herbal medicine and its application in building a model effectively assessing the mixing proportion of intentional admixtures: A case study of Panax ginseng: Metabolomics for the authenticity of herbal medicine.

    PubMed

    Nguyen, Huy Truong; Lee, Dong-Kyu; Choi, Young-Geun; Min, Jung-Eun; Yoon, Sang Jun; Yu, Yun-Hyun; Lim, Johan; Lee, Jeongmi; Kwon, Sung Won; Park, Jeong Hill

    2016-05-30

    Ginseng, the root of Panax ginseng has long been the subject of adulteration, especially regarding its origins. Here, 60 ginseng samples from Korea and China initially displayed similar genetic makeup when investigated by DNA-based technique with 23 chloroplast intergenic space regions. Hence, (1)H NMR-based metabolomics with orthogonal projections on the latent structure-discrimination analysis (OPLS-DA) were applied and successfully distinguished between samples from two countries using seven primary metabolites as discrimination markers. Furthermore, to recreate adulteration in reality, 21 mixed samples of numerous Korea/China ratios were tested with the newly built OPLS-DA model. The results showed satisfactory separation according to the proportion of mixing. Finally, a procedure for assessing mixing proportion of intentionally blended samples that achieved good predictability (adjusted R(2)=0.8343) was constructed, thus verifying its promising application to quality control of herbal foods by pointing out the possible mixing ratio of falsified samples.

  12. Tissue metabolic profiling of lymph node metastasis of colorectal cancer assessed by 1H NMR.

    PubMed

    Zhang, Hailong; Qiao, Liang; Li, Xiaopeng; Wan, Yang; Yang, Li; Wang, Huijuan

    2016-12-01

    Lymph node metastasis is a decisive prognostic and therapeutic staging factor for colorectal cancer (CRC), which is one of the most prevalent types of cancer and a malignant tumor. The metabolic profiling of tissue samples from a large cohort of lymph node non‑metastatic CRC patients (n=73), lymph node metastatic CRC patients (n=52) and normal controls (n=41) was performed using 1H nuclear magnetic resonance (NMR) together with multivariate statistical analyses. Excellent separation was obtained between CRC patients and normal controls, and CRC patients were also perfectly classified according to lymph node metastasis. Forty‑two distinguishing metabolites were identified, which revealed disturbance of glycolysis, glutaminolysis, fatty acid metabolism, choline metabolism and amino acids, suggesting that cellular functions in energy production, macromolecular synthesis, oxidative stress and immune escape of cancer cells are affected in CRC. In total, 10 tissue metabolites were significantly disturbed between non‑metastatic and metastatic CRC patients. The present study firstly staged CRC patients by lymph node metastasis by metabolomic approach. The identified metabolites may be associated with the neoplasia, invasion and metastasis of the tumor. The results suggest the promising application of these metabolites in clinical therapy, and further understanding of the related mechanism warrants further investigation.

  13. Early metabolic changes measured by 1H MRS in healthy and dystrophic muscle after injury.

    PubMed

    Xu, Su; Pratt, Stephen J P; Spangenburg, Espen E; Lovering, Richard M

    2012-09-01

    Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy ((1)H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic (mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo (1)H MRS regarding skeletal muscle injury.

  14. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.

  15. 1H NMR to investigate metabolism and energy supply in rhesus macaque sperm.

    PubMed

    Lin, Ching-Yu; Hung, Pei-hsuan; VandeVoort, Catherine A; Miller, Marion G

    2009-07-01

    Sperm ATP is derived primarily from either glycolysis or mitochondrial oxidative phosphorylation. In the present studies, (1)H NMR spectroscopy was used to characterize the metabolite profile in primate sperm treated either with alpha-chlorohydrin (ACH), a known inhibitor of sperm glycolysis or pentachlorophenol (PCP), an uncoupler of oxidative phosphorylation. Sperm were collected from monkeys in the fall and spring, washed and incubated with either the media control, ACH (0.5mM) or PCP (50 microM). Using principal components analysis, PC1 scores plot indicated that the greatest level of variance was found between fall and spring samples and not chemical-treated samples. However, PC4 scores plot did show a consistent effect of ACH treatment. From the PC1 loadings plot, metabolites contributing to the seasonal differences were higher levels of formate in the fall and higher levels of carnitine and acetylcarnitine in the spring as well as possible differences in lipoprotein content. The PC4 loadings plot indicated that ACH treatment decreased lactate and ATP consistent with inhibition of glycolysis. Carnitine also was decreased and acetylcarnitine increased although the latter was not statistically significant. With PCP-treated sperm, no difference between control and treated samples could be discerned suggesting either that primate sperm are insensitive to uncoupling agents or that glycolysis played the more important role in maintaining sperm ATP levels. Overall, NMR studies may prove useful in the development of metabolomic markers that signal sperm metabolic impairments and have the potential to provide useful biomarkers for reproductive health.

  16. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity.

  17. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE PAGES

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  18. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    SciTech Connect

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.

  19. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  20. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  1. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    PubMed

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction.

  2. (1)H NMR metabolomics analysis of renal cell carcinoma cells: Effect of VHL inactivation on metabolism.

    PubMed

    Cuperlovic-Culf, Miroslava; Cormier, Kevin; Touaibia, Mohamed; Reyjal, Julie; Robichaud, Sarah; Belbraouet, Mehdi; Turcotte, Sandra

    2016-05-15

    Von Hippel-Lindau (VHL) is an onco-suppressor involved in oxygen and energy-dependent promotion of protein ubiquitination and proteosomal degradation. Loss of function mutations of VHL (VHL-cells) result in organ specific cancers with the best studied example in renal cell carcinomas. VHL has a well-established role in deactivation of hypoxia-inducible factor (HIF-1) and in regulation of PI3K/AKT/mTOR activity. Cell culture metabolomics analysis was utilized to determined effect of VHL and HIF-1α or HIF-2α on metabolism of renal cell carcinomas (RCC). RCC cells were stably transfected with VHL or shRNA designed to silence HIF-1α or HIF-2α genes. Obtained metabolic data was analysed qualitatively, searching for overall effects on metabolism as well as quantitatively, using methods developed in our group in order to determine specific metabolic changes. Analysis of the effect of VHL and HIF silencing on cellular metabolic footprints and fingerprints provided information about the metabolic pathways affected by VHL through HIF function as well as independently of HIF. Through correlation network analysis as well as statistical analysis of significant metabolic changes we have determined effects of VHL and HIF on energy production, amino acid metabolism, choline metabolism as well as cell regulation and signaling. VHL was shown to influence cellular metabolism through its effect on HIF proteins as well as by affecting activity of other factors.

  3. REGIONAL METABOLIC PATTERNS IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE A 1H MRS STUDY

    PubMed Central

    Kantarci, K.; Jack, C.R.; Xu, Y.C.; Campeau, N.G.; O'Brien, P.C.; Smith, G.E.; Ivnik, R.J.; Boeve, B.F.; Kokmen, E.; Tangalos, E.G.; Petersen, R.C.

    2009-01-01

    Background: Mild cognitive impairment (MCI) is a recently described transitional clinical state between normal aging and Alzheimer's disease (AD). With the assumption that amnestic MCI patients had pathologic changes corresponding to an early phase and probable AD patients to a later phase of the disease progression, we could approximate the temporal course of proton magnetic resonance spectroscopy (1H-MRS) alterations in AD with a cross-sectional sampling scheme. Methods: We compared 1H-MRS findings in the superior temporal lobe, posterior cingulate gyri and medial occipital lobe among 21 patients with MCI, 21 patients with probable AD, and 63 elderly controls. These areas are known to be involved at different neurofibrillary pathologic stages of AD. Results: The N-acetyl aspartate (NAA) /creatine (Cr) ratios were significantly lower in AD patients compared to both MCI and normal control subjects in the left superior temporal and the posterior cingulate volumes of interest (VOI) and there were no between-group differences in the medial occipital VOI. Myoinositol (MI) /Cr ratios measured from the posterior cingulate VOI were significantly higher in both MCI and AD patients than controls. The choline (Cho) /Cr ratios measured from the posterior cingulate VOI were higher in AD patients compared to both MCI and control subjects. Conclusion: These findings suggest that the initial 1H MRS change in the pathologic progression of AD is an increase in MI /Cr. A decrease in NAA /Cr and an increase in Cho /Cr develop later in the disease course. PMID:10908893

  4. Retinal metabolic changes in an experimental model of optic nerve transection by ex vivo 1H magnetic resonance spectroscopy.

    PubMed

    Li, Shuang; Huang, Mingming; Wang, Xinghua; Wang, Xuxia; Chen, Fei; Lei, Hao; Jiang, Fagang

    2011-12-01

    This study aims to investigate the retinal metabolic processes in a rat axotomy model. Retinal metabolic changes in optic nerve transection (ONT) rat model were analyzed by (1)H magnetic resonance spectroscopy ((1)H-MRS). Retinal ganglion cells (RGCs) densities were assessed from retinal whole mounts. The retina was stained immunohistochemically with glial fibrillary acidic protein (GFAP). The results showed that the retina in ONT rats had significantly decreased concentrations of γ-aminobutyric acid (GABA), N-acetylaspartate (NAA), taurine (Tau), creatine (Cr) and increased concentrations of alanine (Ala) compared with control. Examination of glutamate (Glu), glutamine (Gln) and Glx (Glu + Gln) concentrations disclosed no significant differences. The mean density of RGCs reduced from 2,249 ± 87 cells/mm(2) in control group to 320 ± 56 cells/mm(2) in ONT group. GFAP immunoreactivity was markedly higher in ONT group than that in control group. The retinal metabolism after ONT was associated with neurotransmitter recycling/production perturbation, as well as other metabolic disequilibrium.

  5. Investigation of relative metabolic changes in the organs and plasma of rats exposed to X-ray radiation using HR-MAS (1)H NMR and solution (1)H NMR.

    PubMed

    Jang, Won Gyo; Park, Ju Yeon; Lee, Jueun; Bang, Eunjung; Kim, So Ra; Lee, Eun Kyeong; Yun, Hyun Jin; Kang, Chang-Mo; Hwang, Geum-Sook

    2016-04-01

    Excess exposure to ionizing radiation generates reactive oxygen species and increases the cellular inflammatory response by modifying various metabolic pathways. However, an investigation of metabolic perturbations and organ-specific responses based on the amount of radiation during the acute phase has not been conducted. In this study, high-resolution magic-angle-spinning (HR-MAS) NMR and solution NMR-based metabolic profiling were used to investigate dose-dependent metabolic changes in multiple organs and tissues--including the jejunum, spleen, liver, and plasma--of rats exposed to X-ray radiation. The organs, tissues, and blood samples were obtained 24, 48, and 72 h after exposure to low-dose (2 Gy) and high-dose (6 Gy) X-ray radiation and subjected to metabolite profiling and multivariate analyses. The results showed the time course of the metabolic responses, and many significant changes were detected in the high-dose compared with the low-dose group. Metabolites with antioxidant properties showed acute responses in the jejunum and spleen after radiation exposure. The levels of metabolites related to lipid and protein metabolism were decreased in the jejunum. In addition, amino acid levels increased consistently at all post-irradiation time points as a consequence of activated protein breakdown. Consistent with these changes, plasma levels of tricarboxylic acid cycle intermediate metabolites decreased. The liver did not appear to undergo remarkable metabolic changes after radiation exposure. These results may provide insight into the major metabolic perturbations and mechanisms of the biological systems in response to pathophysiological damage caused by X-ray radiation.

  6. Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis.

    PubMed

    Du, Yao; Zheng, Hong; Xia, Huanhuan; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui; Yan, Zhihan; Gao, Hongchang

    2017-01-01

    Amyloid β (Aβ) deposition has been implicated in the pathogenesis of Alzheimer's disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25-35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis (ASCA). Our results show that Aβ25-35 injection, time, and their interaction had statistically significant effects on the hippocampus and serum metabolome. Furthermore, we identified key metabolites that mainly contributed to these effects. After Aβ25-35 injection from 1 to 2 weeks, the levels of lactate, N-acetylaspartate, creatine, and taurine were decreased in rat hippocampus, while an increase in lactate and decreases in LDL/VLDL and glucose were observed in rat serum. Therefore, we suggest that the reduction in energy and lipid metabolism as well as an increase in anaerobic glycolysis may occur at the early stage of Aβ25-35 deposition.

  7. Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis

    PubMed Central

    Du, Yao; Xia, Huanhuan; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui

    2017-01-01

    Amyloid β (Aβ) deposition has been implicated in the pathogenesis of Alzheimer's disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25–35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis (ASCA). Our results show that Aβ25–35 injection, time, and their interaction had statistically significant effects on the hippocampus and serum metabolome. Furthermore, we identified key metabolites that mainly contributed to these effects. After Aβ25–35 injection from 1 to 2 weeks, the levels of lactate, N-acetylaspartate, creatine, and taurine were decreased in rat hippocampus, while an increase in lactate and decreases in LDL/VLDL and glucose were observed in rat serum. Therefore, we suggest that the reduction in energy and lipid metabolism as well as an increase in anaerobic glycolysis may occur at the early stage of Aβ25–35 deposition. PMID:28243597

  8. Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors: (1)H-MRS study.

    PubMed

    Artzi, Moran; Liberman, Gilad; Vaisman, Nachum; Bokstein, Felix; Vitinshtein, Faina; Aizenstein, Orna; Ben Bashat, Dafna

    2017-04-01

    Normal brain cells depend on glucose metabolism, yet they have the flexibility to switch to the usage of ketone bodies during caloric restriction. In contrast, tumor cells lack genomic and metabolic flexibility and are largely dependent on glucose. Ketogenic-diet (KD) was suggested as a therapeutic option for malignant brain cancer. This study aimed to detect metabolic brain changes in patients with malignant brain gliomas on KD using proton magnetic-resonance-spectroscopy ((1)H-MRS). Fifty MR scans were performed longitudinally in nine patients: four patients with recurrent glioblastoma (GB) treated with KD in addition to bevacizumab; one patient with gliomatosis-cerebri treated with KD only; and four patients with recurrent GB who did not receive KD. MR scans included conventional imaging and (1)H-MRS acquired from normal appearing-white-matter (NAWM) and lesion. High adherence to KD was obtained only in two patients, based on high urine ketones; in these two patients ketone bodies, Acetone and Acetoacetate were detected in four MR spectra-three within the NAWM and one in the lesion area -4 and 25 months following initiation of the diet. No ketone-bodies were detected in the control group. In one patient with gliomatosis-cerebri, who adhered to the diet for 3 years and showed stable disease, an increase in glutamin + glutamate and reduction in N-Acetyl-Aspartate and myo-inositol were detected during KD. (1)H-MRS was able to detect ketone-bodies in patients with brain tumors who adhered to KD. Yet it remains unclear whether accumulation of ketone bodies is due to increased brain uptake or decreased utilization of ketone bodies within the brain.

  9. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation.

    PubMed

    Zheng, Hong; Lorenzen, Janne K; Astrup, Arne; Larsen, Lesli H; Yde, Christian C; Clausen, Morten R; Bertram, Hanne Christine

    2016-02-23

    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO) and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study.

  10. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation

    PubMed Central

    Zheng, Hong; Lorenzen, Janne K.; Astrup, Arne; Larsen, Lesli H.; Yde, Christian C.; Clausen, Morten R.; Bertram, Hanne Christine

    2016-01-01

    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO) and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study. PMID:26907339

  11. Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H NMR and HPLC–ESI-MS

    PubMed Central

    Safer, Stefan; Cicek, Serhat S.; Pieri, Valerio; Schwaiger, Stefan; Schneider, Peter; Wissemann, Volker; Stuppner, Hermann

    2011-01-01

    The genus Leontopodium, mainly distributed in Central and Eastern Asia, consists of ca. 34–58 different species. The European Leontopodium alpinum, commonly known as Edelweiss, has a long tradition in folk medicine. Recent research has resulted in the identification of prior unknown secondary metabolites, some of them with interesting biological activities. Despite this, nearly nothing is known about the Asian species of the genus. In this study, we applied proton nuclear magnetic resonance (1H NMR) spectroscopy and liquid chromatography–mass spectrometry (LC–MS) metabolic fingerprinting to reveal insights into the metabolic patterns of 11 different Leontopodium species, and to conclude on their taxonomic relationship. Principal component analysis (PCA) of 1H NMR fingerprints revealed two species groups. Discriminators for these groups were identified as fatty acids and sucrose for group A, and ent-kaurenoic acid and derivatives thereof for group B. Five diterpenes together with one sesquiterpene were isolated from Leontopodium franchetii roots; the compounds were described for the first time for L. franchetii: ent-kaur-16-en-19-oic acid, methyl-15α-angeloyloxy-ent-kaur-16-en-19-oate, methyl-ent-kaur-16-en-19-oate, 8-acetoxymodhephene, 19-acetoxy-ent-kaur-16-ene, methyl-15β–angeloyloxy-16,17-epoxy-ent-kauran-19-oate. In addition, differences in the metabolic profile between collected and cultivated species could be observed using a partial least squares-discriminant analysis (PLS-DA). PCA of the LC–MS fingerprints revealed three groups. Discriminating signals were compared to literature data and identified as two bisabolane derivatives responsible for discrimination of group A and C, and one ent-kaurenoic acid derivative, discriminating group B. A taxonomic relationship between a previously unidentified species and L. franchetii and Leontopodium sinense could be determined by comparing NMR fingerprints. This finding supports recent molecular data

  12. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles.

    PubMed

    Sun, Qi; Xu, Xi; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis.

  13. 1H-NMR metabolic profiling of cerebrospinal fluid in patients with complex regional pain syndrome-related dystonia.

    PubMed

    Meissner, Axel; van der Plas, Anton A; van Dasselaar, Nick T; Deelder, André M; van Hilten, Jacobus J; Mayboroda, Oleg A

    2014-01-01

    In complex regional pain syndrome (CRPS)-related dystonia, compelling evidence points to the involvement of the central nervous system, but the underpinning pathobiology is still unclear. Thus, to enable a hypothesis-free, unbiased view of the problem and to obtain new insight into the pathobiology of dystonia in CRPS, we applied an exploratory metabolomics analysis of cerebrospinal fluid (CSF) of patients with CRPS-related dystonia. (1)H-NMR spectroscopy in combination with multivariate modeling were used to investigate metabolic profiles of a total of 105 CSF samples collected from patients with CRPS-related dystonia and controls. We found a significantly different metabolic profile of CSF in CRPS patients compared to controls. The differences were already reflected in the first two principal components of the principal component analysis model, which is an indication that the variance associated with CRPS is stronger than variance caused by such classical confounders as gender, age, or individual differences. A supervised analysis generated a strong model pinpointing the most important metabolites contributed to the metabolic signature of patients with CRPS-related dystonia. From the set of identified discriminators, the most relevant metabolites were 2-keto-isovalerate, glucose, glutamine, and lactate, which all showed increased concentrations, and urea, which showed decreased concentration in CRPS subjects. Our findings point at a catabolic state in chronic CRPS patients with dystonia that is likely associated with inflammation.

  14. NMR-based metabolic profiling in healthy individuals overfed different types of fat: links to changes in liver fat accumulation and lean tissue mass

    PubMed Central

    Elmsjö, A; Rosqvist, F; Engskog, M K R; Haglöf, J; Kullberg, J; Iggman, D; Johansson, L; Ahlström, H; Arvidsson, T; Risérus, U; Pettersson, C

    2015-01-01

    Background: Overeating different dietary fatty acids influence the amount of liver fat stored during weight gain, however, the mechanisms responsible are unclear. We aimed to identify non-lipid metabolites that may differentiate between saturated (SFA) and polyunsaturated fatty acid (PUFA) overfeeding using a non-targeted metabolomic approach. We also investigated the possible relationships between plasma metabolites and body fat accumulation. Methods: In a randomized study (LIPOGAIN study), n=39 healthy individuals were overfed with muffins containing SFA or PUFA. Plasma samples were precipitated with cold acetonitrile and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition techniques were used to overview the data, identify variables contributing to group classification and to correlate metabolites with fat accumulation. Results: We previously reported that SFA causes a greater accumulation of liver fat, visceral fat and total body fat, whereas lean tissue levels increases less compared with PUFA, despite comparable weight gain. In this study, lactate and acetate were identified as important contributors to group classification between SFA and PUFA (P<0.05). Furthermore, the fat depots (total body fat, visceral adipose tissue and liver fat) and lean tissue correlated (P(corr)>0.5) all with two or more metabolites (for example, branched amino acids, alanine, acetate and lactate). The metabolite composition differed in a manner that may indicate higher insulin sensitivity after a diet with PUFA compared with SFA, but this needs to be confirmed in future studies. Conclusion: A non-lipid metabolic profiling approach only identified a few metabolites that differentiated between SFA and PUFA overfeeding. Whether these metabolite changes are involved in depot-specific fat storage and increased lean tissue mass during overeating needs further investigation. PMID:26479316

  15. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy.

    PubMed

    Embade, Nieves; Mariño, Zoe; Diercks, Tammo; Cano, Ainara; Lens, Sabela; Cabrera, Diana; Navasa, Miquel; Falcón-Pérez, Juan M; Caballería, Joan; Castro, Azucena; Bosch, Jaume; Mato, José M; Millet, Oscar

    2016-01-01

    Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection (HCV). Despite its high incidence and the severe economic and medical consequences, liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic methods. While several techniques have been tested for the detection of fibrosis, the available biomarkers still present severe limitations that preclude their use in clinical diagnostics. Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis were analyzed by NMR spectroscopy and the results were submitted to multivariate and univariate statistical analysis. PLS-DA test was able to discriminate between advanced fibrotic and non-fibrotic patients and several metabolites were found to be up or downregulated in patients with cirrhosis. The suitability of the most significantly regulated metabolites was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-density lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients. Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnostic application for NMR spectroscopy.

  16. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    PubMed

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms.

  17. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    PubMed Central

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  18. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    PubMed

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  19. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    PubMed Central

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  20. Metabolic Study of Breast MCF-7 Tumor Spheroids after Gamma Irradiation by 1H NMR Spectroscopy and Microimaging

    PubMed Central

    Palma, Alessandra; Grande, Sveva; Luciani, Anna Maria; Mlynárik, Vladimír; Guidoni, Laura; Viti, Vincenza; Rosi, Antonella

    2016-01-01

    Multicellular tumor spheroids are an important model system to investigate the response of tumor cells to radio- and chemotherapy. They share more properties with the original tumor than cells cultured as 2D monolayers do, which helps distinguish the intrinsic properties of monolayer cells from those induced during cell aggregation in 3D spheroids. The paper investigates some metabolic aspects of small tumor spheroids of breast cancer and their originating MCF-7 cells, grown as monolayer, by means of high–resolution (HR) 1H NMR spectroscopy and MR microimaging before and after gamma irradiation. The spectra of spheroids were characterized by higher intensity of mobile lipids, mostly neutral lipids, and glutamine (Gln) signals with respect to their monolayer cells counterpart, mainly owing to the lower oxygen supply in spheroids. Morphological changes of small spheroids after gamma-ray irradiation, such as loss of their regular shape, were observed by MR microimaging. Lipid signal intensity increased after irradiation, as evidenced in both MR localized spectra of the single spheroid and in HR NMR spectra of spheroid suspensions. Furthermore, the intense Gln signal from spectra of irradiated spheroids remained unchanged, while the low Gln signal observed in monolayer cells increased after irradiation. Similar results were observed in cells grown in hypoxic conditions. The different behavior of Gln in 2D monolayers and in 3D spheroids supports the hypothesis that a lower oxygen supply induces both an upregulation of Gln synthetase and a downregulation of glutaminases with the consequent increase in Gln content, as already observed under hypoxic conditions. The data herein indicate that 1H NMR spectroscopy can be a useful tool for monitoring cell response to different constraints. The use of spheroid suspensions seems to be a feasible alternative to localized spectroscopy since similar effects were found after radiation treatment. PMID:27200293

  1. Metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity.

    PubMed

    Xu, Chuchu; Xia, Cheng; Sun, Yuhang; Xiao, Xinhuan; Wang, Gang; Fan, Ziling; Shu, Shi; Zhang, Hongyou; Xu, Chuang; Yang, Wei

    2016-10-01

    To understand the differences in metabolic changes between cows with ovarian inactivity and estrus cows, we selected cows at 60-90 days postpartum from an intensive dairy farm. According to clinical manifestations, B-ultrasound scan, rectal examination, 10 cows were assigned to the estrus group (A) and 10 to the ovarian inactivity group (B). All plasma samples were analyzed by (1)H-nuclear magnetic resonance spectroscopy to compare plasma metabolomic profiles between the groups. We used multivariate pattern recognition to screen for different metabolites in plasma of anestrus cows. Compared with normal estrous cows, there were abnormalities in 12 kinds of metabolites in postpartum cows with ovarian inactivity (|r|> 0.602), including an increase in acetic acid (r = -0.817), citric acid (r = -0.767), and tyrosine (r = -0.714), and a decrease in low-density lipoprotein (r = 0.820), very low-density lipoprotein (r = 0.828), lipids (r = 0.769), alanine (r = 0.816), pyruvate (r = 0.721), creatine (r = 0.801), choline (r = 0.639), phosphorylcholine (r = 0.741), and glycerophosphorylcholine (r = 0.881). These metabolites were closely related to abnormality of glucose, amino acid, lipoprotein and choline metabolism, which may disturb the normal estrus. The decrease in plasma creatine and the increase in tyrosine were new changes for ovarian inactivity of postpartum cows. The decrease in plasma creatine and choline and the increase in tyrosine and p-hydroxyphenylalanine in cows with ovarian inactivity provide new directions for research on the mechanism of ovarian inactivity in cows.

  2. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    PubMed Central

    Zulak, Katherine G; Weljie, Aalim M; Vogel, Hans J; Facchini, Peter J

    2008-01-01

    Background Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR) metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which generate secondary

  3. Non-invasive diagnosis of papillary thyroid microcarcinoma: a NMR-based metabolomics approach

    PubMed Central

    Lu, Jinghui; Hu, Sanyuan; Miccoli, Paolo; Zeng, Qingdong; Liu, Shaozhuang; Ran, Lin; Hu, Chunxiao

    2016-01-01

    Papillary thyroid microcarcinoma (PTMC) is a subtype of papillary thyroid carcinoma (PTC). Because its diameter is less than 10 mm, diagnosing it accurately is difficult with traditional methods such as image examinations and FNA (Fine Needle Aspiration). Investigating the metabolic changes induced by PTMC may enhance the understanding of its pathogenesis and provide important information for a new diagnosis method and treatment plan. In this study, high resolution magic angle spin (HRMAS) spectroscopy and 1H-nuclear magnetic resonance (1H-NMR) spectroscopy were used to screen metabolic changes in thyroid tissues and plasma from PTMC patients respectively. The results revealed reduced levels of fatty acids and elevated levels of several amino acids (phenylalanine, tyrosine, lactate, serine, cystine, lysine, glutamine/glutamate, taurine, leucine, alanine, isoleucine and valine) in thyroid tissues, as well as reduced levels of amino acids such as valine, tyrosine, proline, lysine, leucine and elevated levels of glucose, mannose, pyruvate and 3-hydroxybutyrate in plasma, are involved in the metabolic alterations in PTMC. In addition, a receiver operating characteristic (ROC) curve model for PTMC prediction was able to classify cases with good sensitivity and specificity using 9 significant changed metabolites in plasma. This work illustrates that the NMR-based metabolomics approach is capable of providing more sensitive diagnostic results and more systematic therapeutic information for PTMC. PMID:27835583

  4. A (1)H NMR metabolic profiling to the assessment of protein tyrosine phosphatase 1B role in liver regeneration after partial hepatectomy.

    PubMed

    Samino, Sara; Revuelta-Cervantes, Jesús; Vinaixa, Maria; Rodríguez, Miguel Ángel; Valverde, Angela M; Correig, Xavier

    2013-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the tyrosine kinase growth factor signaling pathway, which is involved in major physiological mechanisms such as liver regeneration. We investigate early hepatic metabolic events produced by partial hepatectomy (PHx) for PTP1B deficient (PTP1B KO) and wild type (WT) mice using proton nuclear magnetic resonance spectroscopy. Metabolic response of the two genotypes produced 24 h upon PHx is compared using magic angle spinning high-resolution nuclear magnetic resonance ((1)H-HR-MAS-NMR) on intact liver tissues. In addition, genotype-associated metabolic profile changes were monitored during the first 48 h after PHx using high-resolution nuclear magnetic resonance ((1)H-HR-NMR) on liver extracts. A marked increase of lipid-related signals in regenerating livers was observed after 24 h PHx in either intact tissues or liver extracts studies. In spite of this common initial metabolic response, results obtained 48 h after PHx on liver extracts indicate a genotype-differential metabolic pattern. This metabolic pattern resulted in line with well known regenerative features such as more sustained cell proliferation, a better management of lipids as energy fuel and lessened liver injury for PTP1B KO mice as compared to WT. Taken together, these findings suggest the metabolic basis to the pivotal role of PTP1B in liver regeneration.

  5. Structural optimization of quinolon-4(1H)-imines as dual-stage antimalarials: toward increased potency and metabolic stability.

    PubMed

    Ressurreição, Ana S; Gonçalves, Daniel; Sitoe, Ana R; Albuquerque, Inês S; Gut, Jiri; Góis, Ana; Gonçalves, Lídia M; Bronze, Maria R; Hanscheid, Thomas; Biagini, Giancarlo A; Rosenthal, Philip J; Prudêncio, Miguel; O'Neill, Paul; Mota, Maria M; Lopes, Francisca; Moreira, Rui

    2013-10-10

    Discovery of novel effective and safe antimalarials has been traditionally focused on targeting erythrocytic parasite stages that cause clinical symptoms. However, elimination of malaria parasites from the human population will be facilitated by intervention at different life-cycle stages of the parasite, including the obligatory developmental phase in the liver, which precedes the erythrocytic stage. We have previously reported that N-Mannich-based quinolon-4(1H)-imines are potent antiplasmodial agents but present several stability liabilities. We now report our efforts to optimize quinolon-4(1H)-imines as dual-stage antiplasmodial agents endowed with chemical and metabolic stability. We report compounds active against both the erythrocytic and exoerythrocytic forms of malaria parasites, such as the quinolon-4(1H)-imine 5p (IC50 values of 54 and 710 nM against the erythrocytic and exoerythrocytic forms), which constitute excellent starting points for further lead optimization as dual-stage antimalarials.

  6. Optimised protocols for the metabolic profiling of S. cerevisiae by 1H-NMR and HRMAS spectroscopy.

    PubMed

    Palomino-Schätzlein, Martina; Molina-Navarro, Maria Micaela; Tormos-Pérez, Marta; Rodríguez-Navarro, Susana; Pineda-Lucena, Antonio

    2013-10-01

    An optimised extraction protocol for the analysis of Saccharomyces cerevisiae aqueous and organic metabolites by nuclear magnetic resonance spectroscopy that allows the identification and quantification of up to 50 different compounds is presented. The method was compared with other metabolic profiling protocols for S. cerevisiae, where generally different analytical techniques are applied for metabolite quantification. In addition, the analysis of intact S. cerevisiae cells by HRMAS was implemented for the first time as a complementary method. The optimised protocols were applied to study the metabolic effect of glucose and galactose on S. cerevisiae growth. Furthermore, the metabolic reaction of S. cerevisiae to osmotic stress has been studied.

  7. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress.

  8. Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on (1)H NMR, UHPLC-HRMS, and Metabolic Databases.

    PubMed

    Chatzimitakos, Theodoros G; Stalikas, Constantine D

    2016-09-02

    Metal nanoparticles (NPs) have proven to be more toxic than bulk analogues of the same chemical composition due to their unique physical properties. The NPs, lately, have drawn the attention of researchers because of their antibacterial and biocidal properties. In an effort to shed light on the mechanism through which the bacteria elimination is achieved and the metabolic changes they undergo, an untargeted metabolomic fingerprint study was carried out on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species. The (1)H NMR spectroscopy, in conjunction with high resolution mass-spectrometry (HRMS) and an unsophisticated data processing workflow were implemented. The combined NMR/HRMS data, supported by an open-access metabolomic database, proved to be efficacious in the process of assigning a putative annotation to a wide range of metabolite signals and is a useful tool to appraise the metabolome alterations, as a consequence of bacterial response to NPs. Interestingly, not all the NPs diminished the intracellular metabolites; bacteria treated with iron NPs produced metabolites not present in the nonexposed bacteria sample, implying the activation of previously inactive metabolic pathways. In contrast, copper and iron-copper NPs reduced the annotated metabolites, alluding to the conclusion that the metabolic pathways (mainly alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, glutathione metabolism, and arginine and proline metabolism) were hindered by the interactions of NPs with the intracellular metabolites.

  9. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    PubMed

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD.

  10. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis

    PubMed Central

    Guleria, Anupam; Pratap, Avadhesh; Dubey, Durgesh; Rawat, Atul; Chaurasia, Smriti; Sukesh, Edavalath; Phatak, Sanat; Ajmani, Sajal; Kumar, Umesh; Khetrapal, Chunni Lal; Bacon, Paul; Misra, Ramnath; Kumar, Dinesh

    2016-01-01

    Management of patient with Lupus Nephritis (LN) continues to remain a challenge for the treating physicians because of considerable morbidity and even mortality. The search of biomarkers in serum and urine is a focus of researchers to unravel new targets for therapy. In the present study, the utility of NMR-based serum metabolomics has been evaluated for the first time in discriminating LN patients from non-nephritis lupus patients (SLE) and further to get new insights into the underlying disease processes for better clinical management. Metabolic profiling of sera obtained from 22 SLE patients, 40 LN patients and 30 healthy controls (HC) were performed using high resolution 1D 1H-CPMG and diffusion edited NMR spectra to identify the potential molecular biomarkers. Using multivariate analysis, we could distinguish SLE and LN patients from HC and LN from SLE patients. Compared to SLE patients, the LN patients had increased serum levels of lipid metabolites (including LDL/VLDL lipoproteins), creatinine and decreased levels of acetate. Our results revealed that metabolic markers especially lipids and acetate derived from NMR spectroscopy has high sensitivity and specificity to distinguish LN among SLE patients and has the potential to be a useful adjunctive tool in diagnosis and clinical management of LN. PMID:27739464

  11. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy

    PubMed Central

    Tikunov, Andrey P.; Johnson, Christopher B.; Lee, Haakil; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding 1H NMR peak assignments for future NMR-based metabolomic studies in oysters. PMID:21116407

  12. Retrospective analysis of application of compressive sensing to 1H MR metabolic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Geethanath, Sairam; Baek, Hyeonman; Kodibagkar, Vikram D.

    2010-03-01

    Magnetic resonance spectroscopic imaging (MRSI) has been shown to provide valuable information about the biochemistry of the anatomy of interest and thus has been increasingly used in clinical research. However, the long acquisition time associated with multidimensional MRSI is a barrier for translation of this technology to the clinic. A novel approach using the application of compressive sensing, to reduce the acquisition time of MRSI is proposed. Reconstruction of data, simulated to be acquired through compressed sensing is implemented on a computer generated phantom simulating two metabolites of the human brain. The effect of Gaussian noise on this phantom is evaluated. A retrospective analysis of the application of such a reconstruction method for 1H MRSI of previously acquired in vitro brain phantom MRSI data is performed for the first time. On comparison of the reconstruction of the in vitro and computer generated phantoms from undersampled data to that performed from complete k-space; the errors in reconstruction was less than 1%. This indicates that our approach has a significant potential to reduce acquisition times for MRSI studies by 50% which could aid in MRSI being routinely used in the clinic.

  13. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis1

    PubMed Central

    Choi, Young Hae; Tapias, Elisabet Casas; Kim, Hye Kyong; Lefeber, Alfons W.M.; Erkelens, Cornelis; Verhoeven, Jacobus Th.J.; Brzin, Jernej; Zel, Jana; Verpoorte, Robert

    2004-01-01

    A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the 1H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. PMID:15286294

  14. 1H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence.

    PubMed

    Adriani, W; Canese, R; Podo, F; Laviola, G

    2007-01-01

    Administration of methylphenidate (MPH, Ritalin) to children affected by attention deficit hyperactivity disorder (ADHD) is an elective therapy, which however raises concerns for public health, due to possible persistent neuro-behavioral alterations. We investigated potential long-term consequences at adulthood of MPH exposure during adolescence, by means of behavioral and brain MRS assessment in drug-free state. Wistar adolescent rats (30- to 44-day-old) were treated with MPH (0 or 2 mg/kg once/day for 14 days) and then left undisturbed until adulthood. Levels of impulsive behavior were assessed in the intolerance-to-delay task: Food-restricted rats were tested in operant chambers with two nose-poking holes, delivering one food pellet immediately, or five pellets after a delay whose length was increased over days. MPH-exposed animals showed a less marked shifting profile from the large/late to the small/soon reward, suggesting reduced basal levels of impulsivity, compared to controls. In vivo MRI-guided 1H MRS examinations at 4.7 T in anaesthetised animals revealed long-term biochemical changes in the dorsal striatum (STR), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of MPH-exposed rats. Notably, total creatine and taurine, metabolites respectively involved in bioenergetics and synaptic efficiency, were up-regulated in the STR and conversely down-regulated in the NAcc of MPH-exposed rats. A strong correlation was evident between non-phosphorylated creatine in the STR and behavioral impulsivity. Moreover, unaltered total creatine and increased phospho-creatine/creatine ratio were detected in the PFC, suggesting improved cortical energetic performance. Because of this enduring rearrangement in the forebrain function, MPH-exposed animals may be more efficient when faced with delay of reinforcement. In summary, MPH exposure during adolescence produced enduring MRS-detectable biochemical modifications in brain reward-related circuits, which may account for

  15. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    SciTech Connect

    Bag, Swarnendu; Banerjee, Deb Ranjan; Basak, Amit; Das, Amit Kumar; Pal, Mousumi; Banerjee, Rita; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  16. Evidence for altered metabolic pathways during environmental stress: (1)H-NMR spectroscopy based metabolomics and clinical studies on subjects of sea-voyage and Antarctic-stay.

    PubMed

    Yadav, Anand Prakash; Chaturvedi, Shubhra; Mishra, Kamla Prasad; Pal, Sunil; Ganju, Lilly; Singh, Shashi Bala

    2014-08-01

    The Antarctic context is an analogue of space travel, with close similarity in ambience of extreme climate, isolation, constrained living spaces, disrupted sleep cycles, and environmental stress. The present study examined the impact of the harsh habitat of Antarctica on human physiology and its metabolic pathways, by analyzing human serum samples, using (1)H-NMR spectroscopy for identification of metabolites; and quantifying other physiological and clinical parameters for correlation between expression data and metabolite data. Sera from seven adult males (of median age 36years) who participated in this study, from the 28th Indian Expeditionary group to the Antarctica station Maitri, were collected in chronological sequence. These included: i) baseline control; ii) during ship journey; iii) at Antarctica, in the months of March, May, August and November; to enable study of temporal evolution of monitored physiological states. 29 metabolites in serum were identified from the 400MHz (1)H-NMR spectra. Out of these, 19 metabolites showed significant variations in levels, during the ship journey and the stay at Maitri, compared to the base-line levels. Further biochemical analysis also supported these results, indicating that the ship journey, and the long-term Antarctic exposure, affected kidney and liver functioning. Our metabolite data highlights for the first time the effect of environmental stress on the patho-physiology of the human system. Multivariate analysis tools were employed for this metabonomics study, using (1)H-NMR spectroscopy.

  17. Metabolic Signatures of Lung Cancer in Sputum and Exhaled Breath Condensate Detected by 1H Magnetic Resonance Spectroscopy: A Feasibility Study

    PubMed Central

    Ahmed, Naseer; Bezabeh, Tedros; Ijare, Omkar B.; Myers, Renelle; Alomran, Reem; Aliani, Michel; Nugent, Zoann; Banerji, Shantanu; Kim, Julian; Qing, Gefei; Bshouty, Zoheir

    2016-01-01

    OBJECTIVES Lung cancer is one of the most lethal cancers. Currently, there are no biomarkers for early detection, monitoring treatment response, and detecting recurrent lung cancer. We undertook this study to determine if 1H magnetic resonance spectroscopy (MRS) of sputum and exhaled breath condensate (EBC), as a noninvasive tool, can identify metabolic biomarkers of lung cancer. MATERIALS AND METHODS Sputum and EBC samples were collected from 20 patients, comprising patients with pathologically confirmed non-small cell lung cancer (n = 10) and patients with benign respiratory conditions (n = 10). Both sputum and EBC samples were collected from 18 patients; 2 patients provided EBC samples only. 1H MR spectra were obtained on a Bruker Avance 400 MHz nuclear magnetic resonance (NMR) spectrometer. Sputum samples were further confirmed cytologically to distinguish between true sputum and saliva. RESULTS In the EBC samples, median concentrations of propionate, ethanol, acetate, and acetone were higher in lung cancer patients compared to the patients with benign conditions. Median concentration of methanol was lower in lung cancer patients (0.028 mM) than in patients with benign conditions (0.067 mM; P = 0.028). In the combined sputum and saliva and the cytologically confirmed sputum samples, median concentrations of N-acetyl sugars, glycoprotein, propionate, lysine, acetate, and formate were lower in the lung cancer patients than in patients with benign conditions. Glucose was found to be consistently absent in the combined sputum and saliva samples (88%) as well as in the cytologically confirmed sputum samples (86%) of lung cancer patients. CONCLUSION Absence of glucose in sputum and lower concentrations of methanol in EBC of lung cancer patients discerned by 1H MRS may serve as metabolic biomarkers of lung cancer for early detection, monitoring treatment response, and detecting recurrence. PMID:27891048

  18. ¹H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar).

    PubMed

    Wagner, Liane; Trattner, Sofia; Pickova, Jana; Gómez-Requeni, Pedro; Moazzami, Ali A

    2014-03-15

    A (1)H NMR-based metabolomics approach was used to explore the impact of dietary sesamin on the liver and white muscle metabolic profile of Atlantic salmon (Salmo salar). Fish were fed diets containing different n-6/n-3 fatty acid ratios (V0.5 or V1) and sesamin contents [without (S0), low (SL) 1.16 g/kg feed, and high (SH) 5.8 g/kg feed] for 4 months. Liver and white muscle extracts of aqueous polar and chloroform lipid phases were collected. Multivariate data analyses (PCA and OPLS-DA) of liver chloroform phase showed that high levels of sesamin affected the metabolic profile impartially of the n-6/n-3 ratio. In the aqueous phase, the metabolome of liver and white muscle were affected in fish fed an n-6/n-3 ratio of 1.0 and 0.5, respectively. With high inclusion of sesamin, the levels of several metabolites (e.g. glucose, glycogen, leucine, valine, creatine, carnitine, lactate, nucleosides) were increased. These metabolites are mainly associated with energy metabolism, suggesting that high sesamin inclusion affects liver and white muscle metabolism in fish. This is consistent with lower body weights found in fish fed high sesamin content.

  19. Metabolomic insight into soy sauce through (1)H NMR spectroscopy.

    PubMed

    Ko, Bong-Kuk; Ahn, Hyuk-Jin; van den Berg, Frans; Lee, Cherl-Ho; Hong, Young-Shick

    2009-08-12

    Soy sauce, a well-known seasoning in Asia and throughout the world, consists of many metabolites that are produced during fermentation or aging and that have various health benefits. However, their comprehensive assessment has been limited due to targeted or instrumentally specific analysis. This paper presents for the first time a metabolic characterization of soy sauce, especially that aged up to 12 years, to obtain a global understanding of the metabolic variations through (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Elevated amino acids and organic acids and the consumption of carbohydrate were associated with continuous involvement of microflora in aging for 12 years. In particular, continuous increases in the levels of betaine were found during aging for up to 12 years, demonstrating that microbial- or enzyme-related metabolites were also coupled with osmotolerant or halophilic bacteria present during aging. This work provides global insights into soy sauce through a (1)H NMR-based metabolomic approach that enhances the current understanding of the holistic metabolome and allows assessment of soy sauce quality.

  20. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems.

  1. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using (1)H- and (13)C-NMR spectroscopy.

    PubMed

    Roy, Maggie; Beauvieux, Marie-Christine; Naulin, Jérôme; El Hamrani, Dounia; Gallis, Jean-Louis; Cunnane, Stephen C; Bouzier-Sore, Anne-Karine

    2015-07-01

    The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-(13)C]glucose (Glc) or [2,4-(13)C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by (1)H- and (13)C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-(13)C]Glc infusion whereas they were higher in KD rats after [2,4-(13)C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control.

  2. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using 1H- and 13C-NMR spectroscopy

    PubMed Central

    Roy, Maggie; Beauvieux, Marie-Christine; Naulin, Jérôme; El Hamrani, Dounia; Gallis, Jean-Louis; Cunnane, Stephen C; Bouzier-Sore, Anne-Karine

    2015-01-01

    The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-13C]glucose (Glc) or [2,4-13C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by 1H- and 13C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-13C]Glc infusion whereas they were higher in KD rats after [2,4-13C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control. PMID:25785828

  3. Analysis of bacterial biofilms using NMR-based metabolomics.

    PubMed

    Zhang, Bo; Powers, Robert

    2012-06-01

    Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.

  4. Regional metabolic alteration of Alzheimer's disease in mouse brain expressing mutant human APP-PS1 by 1H HR-MAS.

    PubMed

    Woo, Dong-Cheol; Lee, Sung-Ho; Lee, Do-Wan; Kim, Sang-Young; Kim, Goo-Young; Rhim, Hyang-Shuk; Choi, Chi-Bong; Kim, Hwi-Yool; Lee, Chang-Uk; Choe, Bo-Young

    2010-07-29

    This study aimed to find the most sensitive brain region of APP-PS1 mice in early-stage Alzheimer's disease (AD) and to compare the findings with wild-type mouse brain using (1)H high resolution magic angle spectroscopy (HR-MAS). At 18 and 35 weeks of age, the object recognition test was performed with both APP-PS1 and wild-type mice, and the metabolite concentrations were measured in six brain regions at 38-42 weeks using (1)H HR-MAS. Compared to that of wild-type mice, the memory index of the APP-PS1 mice at 18 weeks was not significantly different; however, the memory index of the APP-PS1 mice at 35 weeks was significantly lower. Similar to the results of the (1)H HR-MAS, the [N-acetyl aspartate (NAA)+acetate (Acet)] level in APP-PS1 mice was decreased in the hippocampus and temporal cortex, and the myo-inositol (mIns) level was increased in the entire brain. In addition, scyllo-inositol (sIns) was also elevated in the frontal, occipital, and parietal cortices, hippocampus and thalamus. These findings demonstrated that the behavioral abnormalities of the APP-PS1 mice started at about 30 weeks of age and that the hippocampus and temporal cortex were the most sensitive regions during early-stage AD. In addition, the results of this study confirmed that an increase of mIns and sIns precedes the reduction of the NAA level. These findings demonstrated that the metabolism of the APP-PS1 mouse was associated with early-stage AD. Furthermore, the regional neurochemical profile of APP-PS1 mouse can be used to investigate the pathophysiological mechanisms associated with AD.

  5. Analysis of brain metabolism by proton magnetic resonance spectroscopy (1H-MRS) in attention-deficit/hyperactivity disorder suggests a generalized differential ontogenic pattern from controls.

    PubMed

    Arcos-Burgos, Mauricio; Londoño, Ana C; Pineda, David A; Lopera, Francisco; Palacio, Juan David; Arbelaez, Andres; Acosta, Maria T; Vélez, Jorge I; Castellanos, Francisco Xavier; Muenke, Maximilian

    2012-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most common behavioral disorder of childhood. Preliminary studies with proton magnetic resonance spectroscopy ((1)H-MRS) of the brain have reported differences in brain metabolite concentration-to-Cr ratios between individuals with ADHD and unaffected controls in several frontal brain regions including anterior cingulate cortex. Using multivoxel (1)H-MRS, we compared 14 individuals affected with ADHD to 20 individuals without ADHD from the same genetic isolate. After controlling by sex, age, and multiple testing, we found significant differences at the right posterior cingulate of the Glx/Cr ratio density distribution function between ADHD cases and controls (P < 0.05). Furthermore, we found several interactions of metabolite concentration-to-Cr ratio, age, and ADHD status: Ins/Cr and Glx/Cr ratios at the left posterior cingulate, and NAA/Cr at the splenius, right posterior cingulate, and at the left posterior cingulate. We also found a differential metabolite ratio interaction between ADHD cases and controls for Ins/Cr and NAA/Cr at the right striatum. These results show that: (1) NAA/Cr, Glx/Cr, and Ins/Cr ratios, as reported in other studies, exhibit significant differences between ADHD cases and controls; (2) differences of these metabolite ratios between ADHD cases and controls evolve in specific and recognizable patterns throughout age, a finding that replicates previous results obtained by structural MRI, where is demonstrated that brain ontogeny follows a different program in ADHD cases and controls; (3) Ins/Cr and NAA/Cr ratios, at the right striatum, interact in a differential way between ADHD cases and controls. As a whole, these results replicate previous 1H-MRS findings and add new intriguing differential metabolic and ontogeny patterns between ADHD cases and controls that warrant further pursue.

  6. High-Resolution Magic-Angle Spinning-(1)H NMR Spectroscopy-Based Metabolic Profiling of Hippocampal Tissue in Rats with Depression-Like Symptoms.

    PubMed

    Akimoto, Hayato; Oshima, Shinji; Ohara, Kousuke; Negishi, Akio; Hiroyama, Hanako; Nemoto, Tadashi; Kobayashi, Daisuke

    2017-03-04

    Depressive disorders cause large socioeconomic effects influencing not only the patients themselves but also their family and broader community as well. To better understand the physiologic factors underlying depression, in this study, we performed metabolomics analysis, an omics technique that comprehensively analyzes small molecule metabolites in biological samples. Specifically, we utilized high-resolution magic-angle spinning-(1)H NMR (HRMAS-(1)H NMR) spectroscopy to comprehensively analyze the changes in metabolites in the hippocampal tissue of rats exposed to chronic stress (CS) via multi-step principal component analysis (multi-step PCA). The rats subjected to CS exhibited obvious depression-like behaviors. High correlations were observed between the first principal component (PC1) score in the score plot obtained using multi-step PCA and measurements from depression-like behavioral testing (body weight, sucrose preference test, and open field test). Alanine, glutamate, glutamine, and aspartate levels in the hippocampal tissue were significantly lower, whereas N-acetylaspartate, myo-inositol, and creatine were significantly higher in the CS group compared to the control (non-CS) group. As alanine, glutamate, and glutamine are known to be involved in energy metabolism, especially in the TCA cycle, chronic exogenous stress may have induced abnormalities in energy metabolism in the brains of the rats. The results suggest that N-acetylaspartate and creatine levels may have increased in order to complement the loss of energy-producing activity resulting from the development of the depression-like disorder. Multi-step PCA therefore allowed an exploration of the degree of depression-like symptoms as represented by changes in intrinsic metabolites.

  7. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  8. Metabolic changes in rat prefrontal cortex and hippocampus induced by chronic morphine treatment studied ex vivo by high resolution 1H NMR spectroscopy.

    PubMed

    Gao, Hongchang; Xiang, Yun; Sun, Ninglei; Zhu, Hang; Wang, Yaqiang; Liu, Maili; Ma, Yuanye; Lei, Hao

    2007-01-01

    Ex vivo(1)H NMR spectroscopy was used to measure changes in the concentrations of cerebral metabolites in the prefrontal cortex (PFC) and hippocampus of rats subjected to repeated morphine treatment known to cause tolerance/dependence. The results show that repeated morphine exposure induces significant changes in the concentrations of a number of cerebral metabolites, and such changes are region specific. After 10 days of repeated morphine treatment, the concentration of gamma-aminobutyric acid (GABA) increased significantly in the PFC (20+/-11%), but decreased in the hippocampus (-31+/-12%), compared to control. In contrast, the glutamate (Glu) concentrations in both the PFC (-15+/-8%) and hippocampus (-13+/-4%) decreased significantly. Significant changes were also observed in the concentrations of hippocampal glutamine (Gln), myo-inositol, taurine, and N-acetyl aspartate. These morphine-induced changes were reversed during a subsequent 5-day withdrawal period. It is suggested that the observed concentration changes for Glu, Gln and GABA are most likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle. Changes in the metabolism of this neurotransmitter system might be part of the adaptive measures taken by the central nervous system in response to repeated morphine exposure and subsequent withdrawal.

  9. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling

    PubMed Central

    Aliferis, Konstantinos A.; Chamoun, Rony; Jabaji, Suha

    2015-01-01

    The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. PMID:26042135

  10. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306.

    PubMed

    Pegos, Vanessa R; Canevarolo, Rafael R; Sampaio, Aline P; Balan, Andrea; Zeri, Ana C M

    2014-04-22

    Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri's metabolism by 1H-NMR spectroscopy.

  11. Modeling sickle cell vasoocculsion in the rat leg: Quantification of trapped sickle cells and correlation with sup 31 P metabolic and sup 1 H magnetic resonance imaging changes

    SciTech Connect

    Fabry, M.E.; Rajanayagam, V.; Fine, E.; Holland, S.; Gore, J.C.; Nagel, R.L.; Kaul, D.K. )

    1989-05-01

    The authors have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m ({sup 99m}Tc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative {sup 99m}Tc imaging, {sup 31}P magnetic resonance spectroscopy by surface coil at 2 teslas, and {sup 1}H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 {mu}l of SS4 cells was trapped in the microcirculation of the thigh. In contrast, fewer SS discocytes (SS2) or AA cells were trapped. After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T{sub 1} reached a broad maximum at 18-28 hr. When T{sub 1} obtained at this time was plotted against the volume of cells trapped, an increase of T{sub 1} over the control value of 411 {plus minus} 48 msec was found that was proportional to the number of cells trapped. They conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by {sup 1}H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate.

  12. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    PubMed

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  13. Slow magic angle sample spinning: a non- or minimally invasive method for high-resolution 1H nuclear magnetic resonance (NMR) metabolic profiling.

    PubMed

    Hu, Jian Zhi

    2011-01-01

    High-resolution (1)H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kilohertz or more (i.e., high-resolution magic angle spinning (hr-MAS)), is a well-established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow MAS, using the concept of two-dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimally invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow sample spinning used. Although slow MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in-depth evaluation of the principles associated with slow MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H(2)O, where an unusually large magnetic susceptibility field gradient is obtained.

  14. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    PubMed

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures.

  15. Tracing bacterial metabolism using multi-nuclear (1H, 2H, and 13C) Solid State NMR: Realizing an Idea Initiated by James Scott

    NASA Astrophysics Data System (ADS)

    Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.

    2011-12-01

    Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid

  16. Quantitative 1H-NMR-Metabolomics Reveals Extensive Metabolic Reprogramming and the Effect of the Aquaglyceroporin FPS1 in Ethanol-Stressed Yeast Cells

    PubMed Central

    Lourenço, Artur B.; Roque, Filipa C.; Teixeira, Miguel C.; Ascenso, José R.; Sá-Correia, Isabel

    2013-01-01

    A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance. PMID:23408980

  17. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    SciTech Connect

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-11-01

    A metabonomic approach using {sup 1}H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. {sup 1}H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary {sup 1}H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  18. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  19. (1)H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool.

    PubMed

    Zira, Athina N; Theocharis, Stamatios E; Mitropoulos, Dionisios; Migdalis, Vasilios; Mikros, Emmanuel

    2010-08-06

    (1)H NMR based metabonomic approach was applied in order to monitor the alterations of plasma metabolic profile in Renal Cell Carcinoma (RCC) patients and controls. (1)H NMR spectra of plasma samples from 32 RCC patients and 13 controls (patients exhibiting benign urologic disease) were recorded and analyzed using multivariate statistical techniques. Alterations in the levels of LDL/VLDL, NAC, lactate, and choline were observed between RCC patients and controls discriminating these groups in Principal Component Analysis (PCA) plots. Post OSC PLS-DA presented a satisfactory clustering between T1 with T3 RCC patients. Decrease in plasma lipid concentrations in RCC patients was verified using conventional clinical chemistry analysis. The results suggest that combination of (1)H NMR spectroscopy with PCA has potential in cancer diagnosis; however, a limitation of the method to monitor RCC is that major biomarkers revealed (lipoproteins and choline) in this metabolic profile are not unique to RCC but may be the result of the presence of any malignancy.

  20. Rationale and Design of RNAFH Study: Effect of Rosuvastatin (10 mg/d) on Nonalcoholic Fatty Liver in Metabolic Syndrome Patients without Overt Diabetes Evaluated by 1H-Magnetic Resonance Spectroscopy

    PubMed Central

    Wang, Xuan; Yang, Jing; Zhou, Mei-cen; Li, Wei; Xu, Ling-ling

    2016-01-01

    Objective. The RNAFH study (effect of rosuvastatin on nonalcoholic fatty liver disease in metabolic syndrome patients without overt diabetes evaluated by 1H-MRS) is a prospective randomized, single-center, open-label trail designed to assess the effect of rosuvastatin on the intrahepatocellular lipid (IHCL) level of nonalcoholic fatty liver disease (NAFLD). Methods. 40 NAFLD patients meeting inclusion and exclusion criteria with metabolic syndrome (MS) but without overt diabetes mellitus will be included. Patients will be randomized to 52-week treatment with either rosuvastatin (10 mg/d) or blank control. The primary end point is IHCL evaluated by 1H-MRS, which was considered to be the most accurate noninvasive method for the evaluation of NAFLD. Secondary end points include homeostasis model assessment of insulin resistance (HOMA-IR) index on behalf of insulin resistance level and lipid parameters. Safety indicators will be monitored such as liver function, renal function, muscle stability, and glucose metabolism. The aims of the present study are noteworthy in respect that (1) IHCL is a quantitative indicator for evaluating the degree of fatty liver disease and 1H-MRS is a noninvasive technique to provide this specific index precisely, (2) meanwhile the HOMA-IR index and lipid parameters will be monitored, and (3) the safety of rosuvastatin treatment for 52 weeks will be evaluated including glucose metabolism, muscle stability, liver function, and renal function. PMID:27872642

  1. Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru

    2016-08-16

    Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using (1)H, (13)C, (1)H-(1)H DQF-COSY, (1)H-(13)C edited-HSQC, (1)H-(13)C CT-HMBC, and (1)H-(13)C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.

  2. (1)H-Nuclear magnetic resonance-based metabolic profiling of nonsteroidal anti-inflammatory drug-induced adverse effects in rats.

    PubMed

    Um, So Young; Park, Jung Hyun; Chung, Myeon Woo; Choi, Ki Hwan; Lee, Hwa Jeong

    2016-09-10

    Nonsteroidal anti-inflammatory drugs (NSAIDs), which are globally prescribed, exhibit mainly anti-inflammatory and analgesic effects but also can cause adverse effects including gastrointestinal erosions, ulceration, bleeding, and perforation. The purpose of this study was to investigate surrogate biomarkers associated with the gastrointestinal (GI) damage caused by NSAID treatment using pattern recognition analysis of (1)H-nuclear magnetic resonance ((1)H NMR) spectra of rat urine. Urine was collected for 5h after oral administration of the following NSAIDs at low or high doses: acetylsalicylic acid (10 or 200mgkg(-1)), diclofenac (0.5 or 15mgkg(-1)), piroxicam (1 or 10mgkg(-1)), indomethacin (1 or 25mgkg(-1)), or ibuprofen (10, or 150mgkg(-1)) as nonselective COX inhibitors and celecoxib (10 or 100mgkg(-1)) as a COX-2 selective inhibitor. The urine was analyzed using 500MHz (1)H NMR for spectral binning and targeted profiling and the level of gastric damage was examined. The nonselective COX inhibitors caused severe gastric damage while no lesions were observed in the celecoxib-treated rats. The (1)H NMR urine spectra were divided into spectral bins (0.04ppm) for global profiling, and a total of 44 endogenous metabolites were assigned for targeted profiling. Multivariate data analyses were performed to recognize the spectral pattern of endogenous metabolites related to NSAIDs using partial least square-discrimination analysis (PLS-DA). The (1)H NMR spectra clustered differently according to gastric damage score in global profiling. In targeted profiling, the endogenous metabolites of citrate, allantoin, 2-oxoglutarate, acetate, benzoate, glycine, and trimethylamine N-oxide were selected as putative biomarkers for gastric damage caused by NSAIDs. These putative biomarkers might be useful for predicting the risk of adverse effects caused by NSAIDs in the early stage of drug development process.

  3. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    NASA Astrophysics Data System (ADS)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  4. Effects of reactive oxygen species on metabolism monitored by longitudinal 1H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    NASA Astrophysics Data System (ADS)

    Constans, J. M.; Collet, S.; Guillamo, J. S.; Hossu, G.; Lacombe, S.; Gauduel, Y. A.; Houée Levin, C.; Dou, W.; Ruan, S.; Barré, L.; Rioult, F.; Derlon, J. M.; Lechapt-Zalcman, E.; Valable, S.; Chapon, F.; Courtheoux, P.; Fong, V.; Kauffmann, F.

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  5. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    PubMed Central

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species. PMID:25785229

  6. Triple Negative Breast Cancer and Metabolic Regulation

    DTIC Science & Technology

    2014-08-01

    metabolism . SA2. NMR-based Investigations of Metabolic Reprogramming in TNBC. The objective is to use NMR-based metabolomic analysis in TNBC models to...resulting metastases. Together, the applications of NMR for metabolite analysis with the molecular studies on metabolic signaling from Aim 1 create a...opportunity to classify TNBC and with future applications to MRI/MRS imaging. Our NMR-based metabolic analysis provides an excellent entry for

  7. Prospective evaluation of potential toxicity of repeated doses of Thymus vulgaris L. extracts in rats by means of clinical chemistry, histopathology and NMR-based metabonomic approach.

    PubMed

    Benourad, Fouzia; Kahvecioglu, Zehra; Youcef-Benkada, Mokhtar; Colet, Jean-Marie

    2014-10-01

    In the field of natural extracts, research generally focuses on the study of their biological activities for food, cosmetic, or pharmacological purposes. The evaluation of their adverse effects is often overlooked. In this study, the extracts of Thymus vulgaris L. were obtained by two different extraction methods. Intraperitoneal injections of both extracts were given daily for four days to male Wistar Han rats, at two different doses for each extract. The evaluation of the potential toxic effects included histopathological examination of liver, kidney, and lung tissues, as well as serum biochemistry of liver and kidney parameters, and (1)H-NMR-based metabonomic profiles of urine. The results showed that no histopathological changes were observed in the liver and kidney in rats treated with both extracts of thyme. Serum biochemical investigations revealed significant increases in blood urea nitrogen, creatinine, and uric acid in animals treated with polyphenolic extract at both doses. In these latter groups, metabonomic analysis revealed alterations in a number of urine metabolites involved in the energy metabolism in liver mitochondria. Indeed, the results showed alterations of glycolysis, Krebs cycle, and β-oxidative pathways as evidenced by increases in lactate and ketone bodies, and decreases in citrate, α-ketoglutarate, creatinine, hippurate, dimethylglycine, and dimethyalanine. In conclusion, this work showed that i.p. injection of repeated doses of thyme extracts causes some disturbances of intermediary metabolism in rats. The metabonomic study revealed interesting data which could be further used to determine the cellular pathways affected by such treatments.

  8. Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Rensen, Willeke; Coluccia, Antonio; Piscitelli, Francesco; Gatti, Valerio; Bolognesi, Alessio; Lavecchia, Antonio; Granata, Ilaria; Porta, Amalia; Maresca, Bruno; Soriani, Alessandra; Iannitto, Maria Luisa; Mariani, Marisa; Santoni, Angela; Brancale, Andrea; Ferlini, Cristiano; Dondio, Giulio; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Novellino, Ettore; Silvestri, Romano

    2011-01-01

    New arylthioindoles (ATIs) were obtained by replacing the 2-alkoxycarbonyl group with a bioisosteric 5-membered heterocycle nucleus. The new ATIs 5, 8, and 10 inhibited tubulin polymerization, reduced cell growth of a panel of human transformed cell lines, and showed higher metabolic stability than the reference ester 3. These compounds induced mitotic arrest and apoptosis at a similar level as combretastatin A-4 and vinblastine and triggered caspase-3 expression in a significant fraction of cells in both p53-proficient and p53-defective cell lines. Importantly, ATIs 5, 8, and 10 were more effective than vinorelbine, vinblastine, and paclitaxel as growth inhibitors of the P-glycoprotein-overexpressing cell line NCI/ADR-RES. Compound 5 was shown to have medium metabolic stability in both human and mouse liver microsomes, in contrast to the rapidly degraded reference ester 3, and a pharmacokinetic profile in the mouse characterized by a low systemic clearance and excellent oral bioavailability. PMID:22044164

  9. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  10. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: (1)H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies.

    PubMed

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-08-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using (1)H-magnetic resonance spectroscopy ((1)H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was used for data acquisition. An echo planar imaging sequence was used for resting-state fMRI, whereas a point resolved spectroscopy sequence was used for (1)H-MRS. Regional Saturation Technique, Data Processing Assistant for Resting-State fMRI, and Statistical Parameter Mapping 8 were used to analyze the fMRI data. The (1)H-MRS data were analyzed using LCModel software. At 1 h after oral administration of codeine phosphate (1.0 mg/kg), the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity were altered in different brain areas. The choline content was significantly increased in the right and left frontal lobes following codeine phosphate administration (P=0.02 and P=0.03, respectively), whereas the inositol content was significantly decreased in the left frontal lobe (P=0.02). There was no change in the glutamic acid content in the frontal lobes. In conclusion, the functions of different brain regions can be affected by a single, low-dose administration of codeine phosphate. The alterations in metabolite content in the two frontal lobes may be associated with changes in brain function, whereas the ALFF in the globus pallidus may have an effect on codeine phosphate addiction. Finally, glutamic acid may be useful in the estimation of codeine dependence.

  11. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: 1H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies

    PubMed Central

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-01-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using 1H-magnetic resonance spectroscopy (1H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was used for data acquisition. An echo planar imaging sequence was used for resting-state fMRI, whereas a point resolved spectroscopy sequence was used for 1H-MRS. Regional Saturation Technique, Data Processing Assistant for Resting-State fMRI, and Statistical Parameter Mapping 8 were used to analyze the fMRI data. The 1H-MRS data were analyzed using LCModel software. At 1 h after oral administration of codeine phosphate (1.0 mg/kg), the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity were altered in different brain areas. The choline content was significantly increased in the right and left frontal lobes following codeine phosphate administration (P=0.02 and P=0.03, respectively), whereas the inositol content was significantly decreased in the left frontal lobe (P=0.02). There was no change in the glutamic acid content in the frontal lobes. In conclusion, the functions of different brain regions can be affected by a single, low-dose administration of codeine phosphate. The alterations in metabolite content in the two frontal lobes may be associated with changes in brain function, whereas the ALFF in the globus pallidus may have an effect on codeine phosphate addiction. Finally, glutamic acid may be useful in the estimation of codeine dependence. PMID:27446252

  12. An NMR-Based Metabolomic Approach to Investigate the Effects of Supplementation with Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  13. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  14. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  15. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a 1H NMR Metabolomics Approach

    PubMed Central

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a 1H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment. PMID:26798649

  16. Application of (1)H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis.

    PubMed

    Zabek, Adam; Swierkot, Jerzy; Malak, Anna; Zawadzka, Iga; Deja, Stanisław; Bogunia-Kubik, Katarzyna; Mlynarz, Piotr

    2016-01-05

    Rheumatoid arthritis is a chronic autoimmune-based inflammatory disease that leads to progressive joint degeneration, disability, and an increased risk of cardiovascular complications, which is the main cause of mortality in this population of patients. Although several biomarkers are routinely used in the management of rheumatoid arthritis, there is a high demand for novel biomarkers to further improve the early diagnosis of rheumatoid arthritis, stratification of patients, and the prediction of a better response to a specific therapy. In this study, the metabolomics approach was used to provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy. The results indicated that twelve metabolites were important for the discrimination of healthy control and rheumatoid arthritis. Notably, valine, isoleucine, lactate, alanine, creatinine, GPC  APC and histidine relative levels were lower in rheumatoid arthritis, whereas 3-hydroxyisobutyrate, acetate, NAC, acetoacetate and acetone relative levels were higher. Simultaneously, the analysis of the concentration of metabolites in rheumatoid arthritis and 3 months after induction treatment revealed that L1, 3-hydroxyisobutyrate, lysine, L5, acetoacetate, creatine, GPC+APC, histidine and phenylalanine were elevated in RA, whereas leucine, acetate, betaine and formate were lower. Additionally, metabolomics tools were employed to discriminate between patients with different IL-17A genotypes. Metabolomics may provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy in rheumatoid arthritis.

  17. A NMR-based metabolomic approach for differentiation of hagfish dental and somatic skeletal muscles.

    PubMed

    Chiu, Kuo-Hsun; Ding, Shangwu; Chen, Yan-Wen; Lee, Che-Hsin; Mok, Hin-Kiu

    2011-09-01

    The hagfish dental muscle is a large and specialized element of the feeding apparatus that helps ingest food. This muscle has enzymatic activities and contractile properties different from the hagfish somatic skeletal muscle. To verify the functional relevance of protein alterations, we examined the metabolomic differentiation of hagfish dental and somatic skeletal muscles using ¹H-nuclear magnetic resonance (NMR)-based metabolomics and multivariate analysis that separated hagfish dental and somatic muscles by principal component analysis and partial least squares for discriminant analysis. Our analysis of assigned metabolites showed that anserine and taurine levels were higher in dental muscle, but creatine, fructose, glucose, glycerate, pyruvate, and succinate levels were higher in somatic muscle. We concluded that the primary energy sources of dental and somatic muscles are related to the citric acid cycle and the anaerobic glycolysis and metabolism of creatine. Thus, ¹H-NMR-based metabolomics can be integrated with the previous proteomic approach to derive biochemical and physiological information about hagfish muscles.

  18. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  19. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on 1H Nuclear Magnetic Resonance

    PubMed Central

    Wen, Chao-wei; Lin, Xiao-dong; Dong, Min-jian; Deng, Ming-jie

    2016-01-01

    1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, 1H nuclear magnetic resonance (1H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) on the fat body glycometabolism and energy metabolism of the fourth-instar larvae of Eri silkworms, Samia cynthia ricini. Metabolic pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) of fat body extracts indicated that the groups of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) were significantly different from the control group. Further, compared to the control group, the metabolites levels of lactate, trehalose, succinate, malate, and fumarate were remarkably changed in experimental groups, which were involved in glycolysis, hydrolysis of trehalose, and tricarboxylic acid (TCA) cycle. Our results indicate that DNJ has a positive impact on the reverse energy metabolism of Eri silkworms and metabonomic analysis based on NMR can be used as a tool to identify potential biomarkers. PMID:27294120

  20. In vitro metabolism of 2-[6-(4-chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone, ML3000), an inhibitor of cyclooxygenase-1 and -2 and 5-lipoxygenase.

    PubMed

    Albrecht, Wolfgang; Unger, Anke; Nussler, Andreas K; Laufer, Stefan

    2008-05-01

    2-[6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone) is a dual inhibitor of both cyclooxygenase isoforms and 5-lipoxygenase and under development for treatment of osteoarthritis. In conventional in vitro assays using liver microsomes and NADPH as cosubstrate, a high metabolic stability of licofelone was observed. In the presence of UDP-glucuronic acid, licofelone is rapidly converted into the corresponding acyl glucuronide, M1. These results are in conflict with data from clinical studies. After administration of licofelone to humans, M1 plasma concentrations were negligibly low, whereas the exposure of the hydroxy-metabolite M2 achieved values of approximately 20% compared with that of the parent drug. Metabolism studies with human hepatocytes and dual-activity assays with microsomes, which allowed the simultaneous monitoring of hydroxylation and glucuronidation reactions, were performed, and the metabolic pathway of licofelone was elucidated. After glucuronidation, predominantly catalyzed by UDP glucuronosyltransferase (UGT) isoforms UGT2B7, UGT1A9, and UGT1A3, M1 is converted into the hydroxy-glucuronide M3 in a CYP2C8-dependent reaction. The enzyme specificities were investigated using recombinant human cytochrome P450 and UGT isoforms as test systems. In vitro drug-interaction studies using the 6alpha-hydroxylation of paclitaxel as control reaction confirmed that neither licofelone nor M1 is a relevant inhibitor of CYP2C8. The formation of M3 was also observed with liver microsomes from cynomolgus monkeys, but in incubations with mouse and rat liver microsomes, M1 remained unchanged. The clinical relevance of these findings is discussed.

  1. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  2. Novel approaches for the taxonomic and metabolic characterization of lactobacilli: Integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR

    PubMed Central

    Parolin, Carola; Giordani, Barbara; Compri, Monica; Cevenini, Roberto; Vitali, Beatrice

    2017-01-01

    Lactobacilli represent a wide range of bacterial species with several implications for the human host. They play a crucial role in maintaining the ecological equilibrium of different biological niches and are essential for fermented food production and probiotic formulation. Despite the consensus about the ‘health-promoting’ significance of Lactobacillus genus, its genotypic and phenotypic characterization still poses several difficulties. The aim of this study was to assess the integration of different approaches, genotypic (16S rRNA gene sequencing), proteomic (MALDI-TOF MS) and metabolomic (1H-NMR), for the taxonomic and metabolic characterization of Lactobacillus species. For this purpose we analyzed 40 strains of various origin (intestinal, vaginal, food, probiotics), belonging to different species. The high discriminatory power of MALDI-TOF for species identification was underlined by the excellent agreement with the genotypic analysis. Indeed, MALDI-TOF allowed to correctly identify 39 out of 40 Lactobacillus strains at the species level, with an overall concordance of 97.5%. In the perspective to simplify the MALDI TOF sample preparation, especially for routine practice, we demonstrated the perfect agreement of the colony-picking from agar plates with the protein extraction protocol. 1H-NMR analysis, applied to both culture supernatants and bacterial lysates, identified a panel of metabolites whose variations in concentration were associated with the taxonomy, but also revealed a high intra-species variability that did not allow a species-level identification. Therefore, despite not suitable for mere taxonomic purposes, metabolomics can be useful to correlate particular biological activities with taxonomy and to understand the mechanisms related to the antimicrobial effect shown by some Lactobacillus species. PMID:28207855

  3. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.

    PubMed

    de Graaf, Robin A; Behar, Kevin L

    2014-07-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays a central role in cellular metabolism both as a coenzyme for electron-transfer enzymes as well as a substrate for a wide range of metabolic pathways. In the current study NAD(+) was detected on rat brain in vivo at 11.7T by 3D localized (1)H MRS of the NAD(+) nicotinamide protons in the 8.7-9.5 ppm spectral region. Avoiding water perturbation was critical to the detection of NAD(+) as strong, possibly indirect cross-relaxation between NAD(+) and water would lead to a several-fold reduction of the NAD(+) intensity in the presence of water suppression. Water perturbation was minimized through the use of localization by adiabatic spin-echo refocusing (LASER) in combination with frequency-selective excitation. The NAD(+) concentration in the rat cerebral cortex was determined at 296 ± 28 μm, which is in good agreement with recently published (31) P NMR-based results as well as results from brain extracts in vitro (355 ± 34 μm). The T1 relaxation time constants of the NAD(+) nicotinamide protons as measured by inversion recovery were 280 ± 65 and 1136 ± 122 ms in the absence and presence of water inversion, respectively. This confirms the strong interaction between NAD(+) nicotinamide and water protons as observed during water suppression. The T2 relaxation time constants of the NAD(+) nicotinamide protons were determined at 60 ± 13 ms after confounding effects of scalar coupling evolution were taken into account. The simplicity of the MR sequence together with the robustness of NAD(+) signal detection and quantification makes the presented method a convenient choice for studies on NAD(+) metabolism and function. As the method does not critically rely on magnetic field homogeneity and spectral resolution it should find immediate applications in rodents and humans even at lower magnetic fields.

  4. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach

    PubMed Central

    Liu, Xinfeng; Gao, Jian; Chen, Jianxin; Wang, Zhiyong; Shi, Qi; Man, Hongxue; Guo, Shuzhen; Wang, Yingfeng; Li, Zhongfeng; Wang, Wei

    2016-01-01

    Type 2 diabetic coronary heart disease (T2DM-CHD) is a kind of serious and complex disease. Great attention has been paid to exploring its mechanism; however, the detailed understanding of T2DM-CHD is still limited. Plasma samples from 15 healthy controls, 13 coronary heart disease (CHD) patients, 15 type 2 diabetes mellitus (T2DM) patients and 28 T2DM-CHD patients were analyzed in this research. The potential biomarkers of CHD and T2DM were detected and screened out by 1H NMR-based plasma metabolic profiling and multivariate data analysis. About 11 and 12 representative metabolites of CHD and T2DM were identified respectively, mainly including alanine, arginine, proline, glutamine, creatinine and acetate. Then the diagnostic model was further constructed based on the previous metabolites of CHD and T2DM to detect T2DM-CHD with satisfying sensitivity of 92.9%, specificity of 93.3% and accuracy of 93.2%, validating the robustness of 1H NMR-based plasma metabolic profiling to diagnostic strategy. The results demonstrated that the NMR-based metabolomics approach processed good performance to identify diagnostic plasma biomarkers and most identified metabolites related to T2DM and CHD could be considered as predictors of T2DM-CHD as well as the therapeutic targets for prevention, which provided new insight into diagnosing and forecasting of complex diseases. PMID:27470195

  5. Combined Transcriptomic–1H NMR Metabonomic Study Reveals That Monoethylhexyl Phthalate Stimulates Adipogenesis and Glyceroneogenesis in Human Adipocytes

    PubMed Central

    2011-01-01

    Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-1H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP. PMID:22017230

  6. NMR-based metabolomic investigation of bioactivity of chemical constituents in black raspberry (Rubus occidentalis L.) fruit extracts.

    PubMed

    Paudel, Liladhar; Wyzgoski, Faith J; Giusti, M Monica; Johnson, Jodee L; Rinaldi, Peter L; Scheerens, Joseph C; Chanon, Ann M; Bomser, Joshua A; Miller, A Raymond; Hardy, James K; Reese, R Neil

    2014-02-26

    Black raspberry (Rubus occidentalis L.) (BR) fruit extracts with differing compound profiles have shown variable antiproliferative activities against HT-29 colon cancer cell lines. This study used partial least-squares (PLS) regression analysis to develop a high-resolution (1)H NMR-based multivariate statistical model for discerning the biological activity of BR constituents. This model identified specific bioactive compounds and ascertained their relative contribution against cancer cell proliferation. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside were the predominant contributors to the extract bioactivity, but salicylic acid derivatives (e.g., salicylic acid glucosyl ester), quercetin 3-glucoside, quercetin 3-rutinoside, p-coumaric acid, epicatechin, methyl ellagic acid derivatives (e.g., methyl ellagic acetyl pentose), and citric acid derivatives also contributed significantly to the antiproliferative activity of the berry extracts. This approach enabled the identification of new bioactive components in BR fruits and demonstrates the utility of the method for assessing chemopreventive compounds in foods and food products.

  7. NMR-based metabolomics for the environmental assessment of Kaohsiung Harbor sediments exemplified by a marine amphipod (Hyalella azteca).

    PubMed

    Chiu, K H; Dong, C D; Chen, C F; Tsai, M L; Ju, Y R; Chen, T M; Chen, C W

    2017-03-03

    Inflow of wastewater from upstream causes a large flux of pollutants to enter Kaohsiung Harbor in Taiwan daily. To reveal the ecological risk posed by Kaohsiung Harbor sediments, an ecological metabolomic approach was employed to investigate environmental factors pertinent to the physiological regulation of the marine amphipod Hyalella azteca. The amphipods were exposed to sediments collected from different stream inlets of the Love River (LR), Canon River (CR), Jen-Gen River (JR), and Salt River (SR). Harbor entrance 1 (E1) was selected as a reference site. After 10-day exposure, metabolomic analysis of the Hyalella azteca revealed differences between two groups: {E1, LR, CR} and {JR, SR}. The metabolic pathways identified in the two groups of amphipods were significantly different. The results demonstrated that NMR-based metabolomics can be effectively used to characterize metabolic response related to sediment from polluted areas.

  8. Revealing Potential Biomarkers of Functional Dyspepsia by Combining 1H NMR Metabonomics Techniques and an Integrative Multi-objective Optimization Method.

    PubMed

    Wu, Qiaofeng; Zou, Meng; Yang, Mingxiao; Zhou, Siyuan; Yan, Xianzhong; Sun, Bo; Wang, Yong; Chang, Shyang; Tang, Yong; Liang, Fanrong; Yu, Shuguang

    2016-01-08

    Metabonomics methods have gradually become important auxiliary tools for screening disease biomarkers. However, recognition of metabolites or potential biomarkers closely related to either particular clinical symptoms or prognosis has been difficult. The current study aims to identify potential biomarkers of functional dyspepsia (FD) by a new strategy that combined hydrogen nuclear magnetic resonance ((1)H NMR)-based metabonomics techniques and an integrative multi-objective optimization (LPIMO) method. First, clinical symptoms of FD were evaluated using the Nepean Dyspepsia Index (NDI), and plasma metabolic profiles were measured by (1)H NMR. Correlations between the key metabolites and the NDI scores were calculated. Then, LPIMO was developed to identify a multi-biomarker panel by maximizing diagnostic ability and correlation with the NDI score. Finally, a KEGG database search elicited the metabolic pathways in which the potential biomarkers are involved. The results showed that glutamine, alanine, proline, HDL, β-glucose, α-glucose and LDL/VLDL levels were significantly altered in FD patients. Among them, phosphatidycholine (PtdCho) and leucine/isoleucine (Leu/Ile) were positively and negatively correlated with the NDI Symptom Index (NDSI) respectively. Our procedure not only significantly improved the credibility of the biomarkers, but also demonstrated the potential of further explorations and applications to diagnosis and treatment of complex disease.

  9. Revealing Potential Biomarkers of Functional Dyspepsia by Combining 1H NMR Metabonomics Techniques and an Integrative Multi-objective Optimization Method

    PubMed Central

    Wu, Qiaofeng; Zou, Meng; Yang, Mingxiao; Zhou, Siyuan; Yan, Xianzhong; Sun, Bo; Wang, Yong; Chang, Shyang; Tang, Yong; Liang, Fanrong; Yu, Shuguang

    2016-01-01

    Metabonomics methods have gradually become important auxiliary tools for screening disease biomarkers. However, recognition of metabolites or potential biomarkers closely related to either particular clinical symptoms or prognosis has been difficult. The current study aims to identify potential biomarkers of functional dyspepsia (FD) by a new strategy that combined hydrogen nuclear magnetic resonance (1H NMR)-based metabonomics techniques and an integrative multi-objective optimization (LPIMO) method. First, clinical symptoms of FD were evaluated using the Nepean Dyspepsia Index (NDI), and plasma metabolic profiles were measured by 1H NMR. Correlations between the key metabolites and the NDI scores were calculated. Then, LPIMO was developed to identify a multi-biomarker panel by maximizing diagnostic ability and correlation with the NDI score. Finally, a KEGG database search elicited the metabolic pathways in which the potential biomarkers are involved. The results showed that glutamine, alanine, proline, HDL, β-glucose, α-glucose and LDL/VLDL levels were significantly altered in FD patients. Among them, phosphatidycholine (PtdCho) and leucine/isoleucine (Leu/Ile) were positively and negatively correlated with the NDI Symptom Index (NDSI) respectively. Our procedure not only significantly improved the credibility of the biomarkers, but also demonstrated the potential of further explorations and applications to diagnosis and treatment of complex disease. PMID:26743458

  10. Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification.

    PubMed

    Fonville, Judith M; Maher, Anthony D; Coen, Muireann; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2010-03-01

    Spectroscopic profiling of biological samples is an integral part of metabolically driven top-down systems biology and can be used for identifying biomarkers of toxicity and disease. However, optimal biomarker information recovery and resonance assignment still pose significant challenges in NMR-based complex mixture analysis. The reduced signal overlap as achieved when projecting two-dimensional (2D) J-resolved (JRES) NMR spectra can be exploited to mitigate this problem and, here, full-resolution (1)H JRES projections have been evaluated as a tool for metabolic screening and biomarker identification. We show that the recoverable information content in JRES projections is intrinsically different from that in the conventional one-dimensional (1D) and Carr-Purcell-Meiboom-Gill (CPMG) spectra, because of the combined result of reduction of the over-representation of highly split multiplet peaks and relaxation editing. Principal component and correlation analyses of full-resolution JRES spectral data demonstrated that peak alignment is necessary. The application of statistical total correlation spectroscopy (STOCSY) to JRES projections improved the identification of previously overlapped small molecule resonances in JRES (1)H NMR spectra, compared to conventional 1D and CPMG spectra. These approaches are demonstrated using a galactosamine-induced hepatotoxicity study in rats and show that JRES projections have a useful and complementary role to standard one-dimensional experiments in complex mixture analysis for improved biomarker identification.

  11. Applying 1H NMR Spectroscopy to Detect Changes in the Urinary Metabolite Levels of Chinese Half-Pipe Snowboarders after Different Exercises

    PubMed Central

    Wang, Fuqiu; Han, Jiao; Geng, Zhufeng; Deng, Zhiwei; Qiao, Decai

    2015-01-01

    Monitoring physical training is important for the health and performance of athletes, and real-time assessment of fatigue is crucial to improve training efficiency. The relationship between key biomarkers and exercise has been reported. The aim of this study was to determine the effects of different levels of training exercises on the urine metabolome. 1H NMR-based metabolomics analysis was performed on urine samples from half-pipe snowboarders, and spectral profiles were subjected to PCA and PLS-DA. Our results show that metabolic profiles varied during different stages of exercises. Lactate, alanine, trimethylamine, malonate, taurine, and glycine levels decreased while TMAO and phenylalanine levels increased in the stage with higher amount and intensity of exercise. Although the amount of exercise was reduced in subsequent stage, no significant variations of metabolic profile were found. Metabolic changes induced by training level were analyzed with related metabolic pathway. Studying metabolome changes can provide a better understanding of the physiology of athletes and could aid in adjusting training. PMID:26101694

  12. Dose responsive effects of cisplatin in L02 cells using NMR-based metabolomics.

    PubMed

    Liu, Shu; Wang, Wei; Zhou, Xueyi; Gu, Runhuan; Ding, Zongli

    2014-01-01

    Cisplatin is an effective chemotherapeutic agent for the treatment of various cancers, such as bladder cancer, epithelial ovarian cancer, cervical cancer, and so on. However, cisplatin can cause various side effects. In this study, the dose-responsive effects of cisplatin were investigated in an in vitro model of human liver cells (L02) using NMR-based metabolomics. The inverted U-shaped curve of cell proliferation confirmed the hormetic effects of cisplatin (from 1 nM to 1 mM) in L02 cells. However, the metabolite changes revealed both U-shaped (ethanol, lactate, aspartate, choline, etc.) and inverted U-shaped (glutamate, glutamine, 4-aminobutyrate, myo-inositol, etc.) curves induced by three typical concentrations of cisplatin which covered the inverted U-shaped curve as indicated by the cell proliferation assay. These findings suggested that a macroscopic hormesis phenomenon on the cell proliferation could be reflected by both stimulated and inhibited metabolites and corresponding metabolic pathways to cisplatin treatments. Therefore, a global analysis using metabolomics may give a broader view into the dose-response relationship than using a single endpoint at molecular levels.

  13. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow.

    PubMed

    Wu, Changsheng; Du, Chao; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P

    2017-02-24

    Mining of microbial genomes has revealed that actinomycetes harbor far more biosynthetic potential for bioactive natural products than anticipated. Activation of (cryptic) biosynthetic gene clusters and identification of the corresponding metabolites has become a focal point for drug discovery. Here, we applied NMR-based metabolomics combined with bioinformatics to identify novel C-glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 and to elucidate the biosynthetic pathway. Following activation of the cryptic qin gene cluster for a type II polyketide synthase (PKS) by constitutive expression of its pathway-specific activator, bioinformatics coupled to NMR profiling facilitated the chromatographic isolation and structural elucidation of qinimycins A-C (1-3). The intriguing structural features of the qinimycins, including 8-C-glycosylation, 5,14-epoxidation, and 13-hydroxylation, distinguished these molecules from the model pyranonaphthoquinones actinorhodin, medermycin, and granaticin. Another novelty lies in the unusual fusion of a deoxyaminosugar to the pyranonaphthoquinone backbone during biosynthesis of the antibiotics BE-54238 A and B (4, 5). Qinimycins showed weak antimicrobial activity against Gram-positive bacteria. Our work shows the utility of combining bioinformatics, targeted activation of cryptic gene clusters, and NMR-based metabolic profiling as an effective pipeline for the discovery of microbial natural products with distinctive skeletons.

  14. Toxicological effects of environmentally relevant lead and zinc in halophyte Suaeda salsa by NMR-based metabolomics.

    PubMed

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao; Pang, Qiuying; Feng, Jianghua

    2012-11-01

    Lead (Pb) and zinc (Zn) are two typical metal contaminants with high levels in both seawater and sediment in the intertidal zones of the Bohai Sea. Suaeda salsa is the pioneer halophyte plant in the intertidal zones of the Bohai Sea. In the present work, the short (1 week) and long term (1 month) toxicological effects of environmentally relevant concentrations of Pb and Zn were characterized in S. salsa using NMR-based metabolomics combined with antioxidant enzyme activities. After metal exposure for 1 week, no significant metabolic responses were detected in root tissues of S. salsa. The significant metabolic responses included the increase of isocaproate, glucose and fructose, and decrease of malate, citrate and sucrose in root tissues of S. salsa exposed to Pb for 1 month. The increased phosphocholine and betaine, and decreased choline were uniquely found in Zn-exposed samples. The metabolic changes including decreased malate, citrate and sucrose were detected in both Pb and Zn-exposed groups. These metabolic biomarkers revealed that both Pb and Zn exposures could induce osmotic stress and disturbances in energy metabolism in S. salsa after exposures for 1 month. Overall, this work demonstrates that metabolomics can be used to elucidate toxicological effects of environmentally relevant metal contaminants using halophyte S. salsa as the bioindicator.

  15. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics.

    PubMed

    Cappello, Tiziana; Mauceri, Angela; Corsaro, Carmelo; Maisano, Maria; Parrino, Vincenzo; Lo Paro, Giuseppe; Messina, Giuseppe; Fasulo, Salvatore

    2013-12-15

    Metabolic responses to environmental pollution, mainly related to Hg and PAHs, were investigated in mussels. Specimens of Mytilus galloprovincialis, sedentary filter-feeders, were caged in anthropogenic-impacted and reference sites along the Augusta coastline (Sicily, Italy). The gills, mainly involved in nutrient uptake, digestion and gas exchange, were selected as target organ being the first organ to be affected by pollutants. Severe alterations in gill tissue were observed in mussels from the industrial area compared with control, while gill metabolic profiles, obtained by (1)H NMR spectroscopy and analyzed by multivariate statistics, exhibited significant changes in amino acids, energy metabolites, osmolytes and neurotransmitters. Overall, the morphological changes and metabolic disturbance detected in gill tissues may suggest that the mussels transplanted to the contaminated field site were suffering from adverse environmental condition. The concurrent morphological and metabolomic investigations as applied here result effective in assessing the environmental influences on health status of aquatic organisms.

  16. The Anti-Oxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota

    PubMed Central

    Cai, Jingwei; Zhang, Limin; Jones, Richard A.; Correll, Jared B.; Hatzakis, Emmanuel; Smith, Philip B.; Gonzalez, Frank J.; Patterson, Andrew D.

    2016-01-01

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver 1H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum 1H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles were observed in germ-free mice thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function resulting in reduced host energy availability and a significant shift in liver metabolism towards a more catabolic state. PMID:26696396

  17. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    PubMed

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-05

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.

  18. NMR-Based Metabolomic Analysis of Spatial Variation in Soft Corals

    PubMed Central

    He, Qing; Sun, Ruiqi; Liu, Huijuan; Geng, Zhufeng; Chen, Dawei; Li, Yinping; Han, Jiao; Lin, Wenhan; Du, Shushan; Deng, Zhiwei

    2014-01-01

    Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined 1H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation. PMID:24686560

  19. NMR based investigations of the effects of aging on the motional properties of cellular silicone foams

    SciTech Connect

    Maxwell, R S; Balazs, B

    2000-10-04

    The aging of polymeric composite materials, such as filled polydimethylsiloxane foams, through factors such as thermal and mechanical stresses, environment, radiation, and chemical attack can affect the length of time for which a given material can maintain its engineering performance. Iterative interactions and cumulative reactions may result in the material or device reaching a critical age where its properties fail unexpectedly and catastrophically. The mechanical property changes associated with multi-mechanism aging may be subtle, and may not necessarily change linearly as a function of time in service. Since such linear relationships are often used in lifetime predictions, there is a fundamental need to develop and employ spectroscopic methods to investigate the structural and motional changes that occur in these organic-inorganic materials as a result of aging in chemically, thermally, or radioactively harsh environments. We have used multinuclear nuclear magnetic resonance (NMR) spectroscopy to characterize aging signatures in a series of PDMS based composite materials. Unfortunately, {sup 13}C, {sup 29}Si, and {sup 1}H magic angle spinning NMR spectra remain unchanged with gamma radiation exposure up to 50Mrad. This suggests that the speciation related changes are small and occur at a frequency of less than approximately 1% of the monomer units. As a result, we have shifted focus and have employed relaxation studies to monitor changes in motional properties of the copolymer foams caused by irradiation. We have measured spin-lattice, spin-spin, and rotating frame spin-lattice relaxation times for PDMS model rubbers with variable cross link density and filler content, for M9760 foams irradiated from 0 to 50Mrad, and for dehydrated M9760 foams. Spin-lattice relaxation times, in general, are sensitive to fast molecular motions in the MHz frequency range. Spin-spin and rotating frame relaxation times, on the other hand, are sensitive to changes in slower motion

  20. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  1. NMR-based metabolomics for organic farming traceability of early potatoes.

    PubMed

    Pacifico, Daniela; Casciani, Lorena; Ritota, Mena; Mandolino, Giuseppe; Onofri, Chiara; Moschella, Anna; Parisi, Bruno; Cafiero, Caterina; Valentini, Massimiliano

    2013-11-20

    (1)H HRMAS-NMR spectroscopy was successfully used to determine the metabolic profiles of 78 tubers obtained from three early genotypes grown under organic and conventional management. The variation in total hydrogen, carbon, and nitrogen contents was also assessed. A PLS-DA multivariate statistical analysis provided good discrimination among the varieties and cropping systems (100% unknown samples placed in a cross-validation blind test), suggesting that this method is a powerful and rapid tool for tracing organic potatoes. As a result of the farming system, the nitrogen content decreased by 11-14% in organic tubers, whereas GABA and lysine accumulated in the organic tubers of all clones. Clear variations in primary metabolites are discussed to provide a better understanding of the metabolic pathway modifications resulting from agronomical practices.

  2. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats.

    PubMed

    Xu, Jingjing; Zheng, Xujuan; Cheng, Kian-Kai; Chang, Xiaorong; Shen, Guiping; Liu, Mi; Wang, Yadong; Shen, Jiacheng; Zhang, Yuan; He, Qida; Dong, Jiyang; Yang, Zongbao

    2017-03-30

    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as (1)H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.

  3. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats

    PubMed Central

    Xu, Jingjing; Zheng, Xujuan; Cheng, Kian-Kai; Chang, Xiaorong; Shen, Guiping; Liu, Mi; Wang, Yadong; Shen, Jiacheng; Zhang, Yuan; He, Qida; Dong, Jiyang; Yang, Zongbao

    2017-01-01

    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations. PMID:28358020

  4. Biochemical studies of Piper betle L leaf extract on obese treated animal using 1H-NMR-based metabolomic approach of blood serum samples.

    PubMed

    Abdul Ghani, Zuleen Delina Fasya; Husin, Juani Mazmin; Rashid, Ahmad Hazri Ab; Shaari, Khozirah; Chik, Zamri

    2016-12-24

    Piper betle L. (PB) belongs to the Piperaceae family. The presence of a fairly large quantity of diastase in the betel leaf is deemed to play an important role in starch digestion and calls for the study of weight loss activities and metabolite profile from PB leaf extracts using metabolomics approach to be performed. PB dried leaves were extracted with 70% ethanol and the extracts were subjected to five groups of rats fed with high fat (HF) and standard diet (SD). They were then fed with the extracts in two doses and compared with a negative control group given water only according to the study protocol. The body weights and food intakes were monitored every week. At the end of the study, blood serum of the experimental animal was analysed to determine the biochemical and metabolite changes. PB treated group demonstrated inhibition of body weight gain without showing an effect on the food intake. In serum bioassay, the PB treated group (HF/PB (100mg/kg and 500mg/kg) showed an increased in glucose and cholesterol levels compared to the Standard Diet (SD/WTR) group, a decrease in LDL level and increase in HDL level when compared with High Fat Diet (HF/WTR) group. For metabolite analysis, two separation models were made to determine the metabolite changes via group activities. The best separation of PCA serum in Model 1 and 2 was achieved in principle component 1 and principle component 2. SUS-Plot model showed that HF group was characterized by high-level of glucose, glycine and alanine. Increase in the β-hydroxybutyrate level similar with SD group animals was evident in the HF/PB(500mg/kg) group. This finding suggested that the administration of 500mg/kg PB extracts leads to increase in oxidation process in the body thus maintaining the body weight and without giving an effect on the appetite even though HF was continuously consumed by the animals until the end of the studies and also a reduction in food intake, thus maintaining their body weight although they were continuously consumed HF.

  5. 1H NMR-based lipidomics of rodent fur: species-specific lipid profiles and SCD1 inhibitor-related dermal toxicity.

    PubMed

    Khandelwal, Purnima; Stryker, Steven; Chao, Hannguang; Aranibar, Nelly; Lawrence, R Michael; Madireddi, Malavi; Zhao, Wenjun; Chen, Luping; Reily, Michael D

    2014-07-01

    A method is described that allows noninvasive identification and quantitative assessment of lipid classes present in sebaceous excretions in rodents. The method relies on direct high-field proton NMR analysis of common group lipid protons in deuterated organic solvent extracts of fur. Extracts from as little as 15 mg of fur from rat, mouse, and hamster provided acceptable results on a 600 MHz NMR equipped with a cryogenically cooled proton-observe probe. In rats, sex- and age-related differences in lipid composition are larger than differences in fur collected from various body regions within an individual and much larger than interanimal differences in age- and sex-matched specimens. The utility of this method to noninvasively monitor drug-induced sebaceous gland atrophy in rodents is demonstrated in rats dosed with a stearoyl-CoA desaturase 1 (SCD1) inhibitor. In this model, a 35% reduction in sebum lipids, extracted from fur, was observed. Finally, structural elucidation of cholesta-7,24-dien-3β-ol ester as the most prominent, previously unidentified sebum sterol ester in male Syrian hamsters is described. The utility of this method for drug and cosmetic safety and efficacy assessment is discussed.

  6. [1H NMR based metabolomics study of bu-zhong-yi-qi-tang in the spleen-qi deficiency rat model].

    PubMed

    Chen, Lei; Xiang, Huan; Xing, Jie; Tian, Jun-Sheng; Qin, Xue-Mei; Du, Guan-Hua

    2014-09-01

    The present study aimed to investigate the effect and the mechanisms of Bu-zhong-yi-qi-tang (BZYQ) on Spleen-Qi deficiency rat's model using nuclear magnetic resonance (NMR) metabolomics and multivariate statistical analysis methods. The rat Spleen-Qi deficiency model was established as follows: oral administration of Radix Rhei extract, loaded swimming and starvation for 24 h. The body weight and motor behavior of the rats were measured and recorded once a week. BZYQ could significantly improve body weight and behavioral of Spleen-Qi deficiency model rats compared with the model group (P < 0.05, 0.01). After drug administration, the changes in the levels of endogenous metabolites in the spleen including decreasing lactate, taurine and hypoxanthine, increasing glutamate and scyllo-inositol compared with the model group. The metabolomics approach is an effective tool for the investigation of the pharmacologic mechanism of BZYQ and it is helpful to further research.

  7. NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda, L Gerardo

    2016-09-02

    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using (1)H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host-microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding.

  8. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes

    PubMed Central

    Gandhi, Adarsh S.; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B.; Huestis, Marilyn A.

    2014-01-01

    N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolic profiles. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 μmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h phase I metabolites predominated, while at 3 h phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 μmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 7.2±0.6 min and intrinsic clearance (CLint) was 93.6 mL·min−1·kg−1. This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing. PMID:24827428

  9. Specific metabolic fingerprint of a dietary exposure to a very low dose of endosulfan.

    PubMed

    Canlet, Cécile; Tremblay-Franco, Marie; Gautier, Roselyne; Molina, Jérôme; Métais, Benjamin; Blas-Y Estrada, Florence; Gamet-Payrastre, Laurence

    2013-01-01

    Like other persistent organochlorine pesticides, endosulfan residues have been detected in foods including fruit, vegetables, and fish. The aim of our study was to assess the impact of a dietary exposure to low doses of endosulfan from foetal development until adult age on metabolic homeostasis in mice and to identify biomarkers of exposure using an (1)H-NMR-based metabonomic approach in various tissues and biofluids. We report in both genders an increase in plasma glucose as well as changes in levels of factors involved in the regulation of liver oxidative stress, confirming the prooxidant activities of this compound. Some metabolic changes were distinct in males and females. For example in plasma, a decrease in lipid LDL and choline content was only observed in female. Lactate levels in males were significantly increased. In conclusion, our results show that metabolic changes in liver could be linked to the onset of pathologies like diabetes and insulin resistance. Moreover from our results it appears that the NMR-based metabonomic approach could be useful for the characterization in plasma of a dietary exposure to low dose of pesticide in human.

  10. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Analysis of plasma metabolic biomarkers in the development of 4-nitroquinoline-1-oxide-induced oral carcinogenesis in rats

    PubMed Central

    KONG, XIANGLI; YANG, XIAOQIN; ZHOU, JINGLIN; CHEN, SIXIU; LI, XIAOYU; JIAN, FAN; DENG, PENGCHI; LI, WEI

    2015-01-01

    The aim of the present study was to identify time-dependent changes in the expression of metabolic biomarkers during the various stages of oral carcinogenesis to provide an insight into the sequential mechanism of oral cancer development. An 1H nuclear magnetic resonance (NMR)-based metabolomics approach was used to analyze the blood plasma samples of Sprague-Dawley rats exhibiting various oral lesions induced by the administration of 4-nitroquinoline-1-oxide (4NQO) in drinking water. The 1H NMR spectra were processed by principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) to determine the metabolic differences between the three developmental stages of oral mucosa cancer (health, oral leukoplakia [OLK] and oral squamous cell carcinoma [OSCC]). The variable importance in projection (VIP) score derived from the PLS-DA model was used to screen for important metabolites, whose significance was further verified through analysis of variance (ANOVA). Data from the present study indicated that 4NQO-induced rat oral carcinogenesis produced oral pre-neoplastic and neoplastic lesions and provided an effective model for analyzing sequential changes in the 1H NMR spectra of rat blood plasma. The 1H NMR-based metabolomics approach clearly differentiates between healthy, OLK and OSSC rats in the PCA and PLS-DA models. Furthermore, lactic acid, choline, glucose, proline, valine, isoleucine, aspartic acid and 2-hydroxybutyric acid demonstrated VIP>1 in the PLS-D model and P<0.05 with ANOVA. It was also identified that increases in lactic acid, choline and glucose, and decreases in proline, valine, isoleucine, aspartic acid and 2-hydroxybutyric acid may be relative to the characteristic mechanisms of oral carcinogenesis. Therefore, these plasma metabolites may serve as metabolic biomarkers in oral carcinogenesis and assist in the early diagnosis and preventive treatment of oral cancer. PMID:25435976

  12. (1)H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures.

    PubMed

    Li, Pei; Wei, Dan-Dan; Wang, Jun-Song; Yang, Ming-Hua; Kong, Ling-Yi

    2016-01-05

    The anticonvulsive properties of diazepam have been extensively studied, mainly focusing on the γ-amino butyrate (GABA) system. The aim of this investigation was to integrally analyze the metabolic events related to neuroprotection of diazepam on anisatin-induced convulsive seizures by a NMR-based metabolomic approach combined with histopathological examination and behavior examination. Multivariate analysis on metabolic profiles of the piriform cortex and cerebellum of mice revealed that diazepam could relieve mice suffering from the convulsive seizures by recovering destructed neurotransmitter and neuromodulator metabolism, ameliorating oxidative stress, alleviating the disturbance in energy, amino acid and nucleic acid metabolism in anisatin intoxicated mice. This integrated metabolomics study provided a powerful and highly effective approach to elucidate therapeutic effects and assessed the safety of diazepam. This study should be helpful for our understanding of convulsive seizures, and provide a holistic view of the treatment effects of benzodiazepine on convulsive seizures.

  13. Robustness of NMR-based metabolomics to generate comparable data sets for olive oil cultivar classification. An inter-laboratory study on Apulian olive oils.

    PubMed

    Piccinonna, Sara; Ragone, Rosa; Stocchero, Matteo; Del Coco, Laura; De Pascali, Sandra Angelica; Schena, Francesco Paolo; Fanizzi, Francesco Paolo

    2016-05-15

    Nuclear Magnetic Resonance (NMR) spectroscopy is emerging as a powerful technique in olive oil fingerprinting, but its analytical robustness has to be proved. Here, we report a comparative study between two laboratories on olive oil (1)H NMR fingerprinting, aiming to demonstrate the robustness of NMR-based metabolomics in generating comparable data sets for cultivar classification. Sample preparation and data acquisition were performed independently in two laboratories, equipped with different resolution spectrometers (400 and 500 MHz), using two identical sets of mono-varietal olive oils. Partial Least Squares (PLS)-based techniques were applied to compare the data sets produced by the two laboratories. Despite differences in spectrum baseline, and in intensity and shape of peaks, the amount of shared information was significant (almost 70%) and related to cultivar (same metabolites discriminated between cultivars). In conclusion, regardless of the variability due to operator and machine, the data sets from the two participating units were comparable for the purpose of classification.

  14. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Zhang, Linbao; You, Liping; Cong, Ming; Zhao, Jianmin; Wu, Huifeng; Li, Chenghua; Liu, Dongyan; Yu, Junbao

    2011-03-01

    The Manila clam (Ruditapes philippinarum) has been considered a good sentinel species for metal pollution monitoring in estuarine tidal flats. Along the Bohai coast of China, there are dominantly distributed three species of clams (White, Liangdao Red and Zebra in Yantai population) endowed with distinct tolerances to environmental stressors. In this study, adductor muscle samples were collected from both control and acute mercury exposed White, Liangdao Red and Zebra clams, and the extracts were analyzed by NMR-based metabolomics to compare the metabolic profiles and responses to the acute mercury exposure to determine the most sensitive clam species capable of acting as abioindicator for heavy metal pollution monitoring. The major abundant metabolites in the White clam sample were branched-chain amino acids (leucine, isoleucine and valine), lactate, arginine, aspartate, acetylcholine, homarine and ATP/ADP, while the metabolite profile of Zebra clam sample comprised high levels of glutamine, acetoacetate, betaine, taurine and one unidentified metabolite. For the Liangdao Red clam sample, the metabolite profile relatively exhibited high amount of branched-chain amino acids, arginine, glutamate, succinate, acetylcholine, homarine and two unassigned metabolites. After 48h exposure of 20μgL(-1) Hg(2+), the metabolic profiles showed significant differences between three clam species, which included increased lactate, succinate, taurine, acetylcholine, betaine and homarine and decreased alanine, arginine, glutamine, glutamate, acetoacetate, glycine and ATP/ADP in White clam samples, and elevated succinate, taurine and acetylcholine, and declined glutamine, glycine, and aspartate in Liangdao Red clam samples, while the increased branched-chain amino acids, lactate, succinate, acetylcholine and homarine, and reduced alanine, acetoacetate, glycine and taurine were observed in the Zebra clam samples. Overall, our findings showed that White clams could be a preferable

  15. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135), using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes.

    PubMed

    Gandhi, Adarsh S; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B; Huestis, Marilyn A

    2015-03-01

    N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on Internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolites. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 µmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation, and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h, phase I metabolites predominated, while at 3 h, phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 µmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 3.1 ± 0.2 min and intrinsic clearance (CLint ) was 208.8 mL · min(-1)  · kg(-1) . This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing.

  16. Phenylphenalenones protect banana plants from infection by Mycosphaerella fijiensis and are deactivated by metabolic conversion.

    PubMed

    Hidalgo, William; Chandran, Jima N; Menezes, Riya C; Otálvaro, Felipe; Schneider, Bernd

    2016-03-01

    Phenylphenalenones, polycyclic aromatic natural products from some monocotyledonous plants, are known as phytoalexins in banana (Musa spp.). In this study, (1) H nuclear magnetic resonance (NMR)-based metabolomics along with liquid chromatography and mass spectrometry were used to explore the chemical responses of the susceptible 'Williams' and the resistant 'Khai Thong Ruang' Musa varieties to the ascomycete fungus Mycosphaerella fijiensis, the agent of the black leaf Sigatoka disease. Principal component analysis discriminated strongly between infected and non-infected plant tissue, mainly because of specialized metabolism induced in response to the fungus. Phenylphenalenones are among the major induced compounds, and the resistance level of the plants was correlated with the progress of the disease. However, a virulent strain of M. fijiensis was able to overcome plant resistance by converting phenylphenalenones to sulfate conjugates. Here, we report the first metabolic detoxification of fungitoxic phenylphenalenones to evade the chemical defence of Musa plants.

  17. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  18. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics.

    PubMed

    Yuk, Jimmy; Simpson, Myrna J; Simpson, André J

    2012-07-01

    Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.

  19. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  20. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  1. Metabolic influence of Botrytis cinerea infection in champagne base wine.

    PubMed

    Hong, Young-Shick; Cilindre, Clara; Liger-Belair, Gerard; Jeandet, Philippe; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2011-07-13

    Botrytis cinerea infection of grape berries leads to changes in the chemical composition of grape and the corresponding wine and, thus, affects wine quality. The metabolic effect of Botrytis infection in Champagne base wine was investigated through a (1)H NMR-based metabolomic approach. Isoleucine, leucine, threonine, valine, arginine, proline, glutamine, γ-aminobutyric acid (GABA), succinate, malate, citrate, tartarate, fructose, glucose, oligosaccharides, amino acid derivatives, 2,3-butanediol, acetate, glycerol, tyrosine, 2-phenylethanol, trigonelline, and phenylpropanoids in a grape must and wine were identified by (1)H NMR spectroscopy and contributed to metabolic differentiations between healthy and botrytized wines by using multivariate statistical analysis such as principal component analysis (PCA). Lowered levels of glycerol, 2,3-butanediol, succinate, tyrosine, valine derivative, and phenylpropanoids but higher levels of oligosaccharides in the botrytized wines were main discriminant metabolites, demonstrating that Botrytis infection of grape caused the fermentative retardation during alcoholic fermentation because the main metabolites responsible for the differentiation are fermentative products. Moreover, higher levels of several oligosaccharides in the botrytized wines also indicated the less fermentative behavior of yeast in the botrytized wines. This study highlights a metabolomic approach for better understanding of the comprehensive metabolic influences of Botrytis infection of grape berries in Champagne wines.

  2. NMR-based metabolomics of prostate cancer: a protagonist in clinical diagnostics.

    PubMed

    Kumar, Deepak; Gupta, Ashish; Nath, Kavindra

    2016-06-01

    Advances in the application of NMR spectroscopy-based metabolomic profiling of prostate cancer comprises a potential tactic for understanding the impaired biochemical pathways arising due to a disease evolvement and progression. This technique involves qualitative and quantitative estimation of plethora of small molecular weight metabolites of body fluids or tissues using state-of-the-art chemometric methods delivering an important platform for translational research from basic to clinical, to reveal the pathophysiological snapshot in a single step. This review summarizes the present arrays and recent advancements in NMR-based metabolomics and a glimpse of currently used medical imaging tactics, with their role in clinical diagnosis of prostate cancer.

  3. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc.

    PubMed

    Aru, Violetta; Sarais, Giorgia; Savorani, Francesco; Engelsen, Søren Balling; Cesare Marincola, Flaminia

    2016-06-15

    This study investigated the effects of 48h heavy metal exposure upon the metabolic profiles of Ruditapes decussatus and Ruditapes philippinarum using (1)H NMR metabolomics. Both species were exposed to increasing concentrations of lead nitrate (10, 40, 60 and 100μg/L) and zinc chloride (20, 50, 100 and 150μg/L), under laboratory conditions. ICP-OES analysis was further performed on the clams' samples in order to verify the occurrence of heavy metal bioaccumulation. With respect to the controls, the metabolic profiles of treated R. decussatus exhibited higher levels of organic osmolytes and lower contents of free amino acids. An opposite behavior was shown by R. philippinarum. In terms of heavy metal, the exposure effects were more evident in the case of Pb rather than Zn. These findings show that NMR-based metabolomics has the required sensitivity and specificity for the identification of metabolites that can act as sensitive indicators of contaminant-induced stress.

  4. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis)

    PubMed Central

    Watanabe, Miki; Roth, Terri L.; Bauer, Stuart J.; Lane, Adam; Romick-Rosendale, Lindsey E.

    2016-01-01

    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health

  5. Computer-Aided Design of Fragment Mixtures for NMR-Based Screening

    PubMed Central

    Arroyo, Xavier; Goldflam, Michael; Feliz, Miguel; Belda, Ignasi; Giralt, Ernest

    2013-01-01

    Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library. PMID:23516512

  6. Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Zhao, Zhenghuan; Feng, Jianghua; Gao, Jinhao; Chen, Zhong

    2013-11-01

    Recently, some types of MnO nanoparticle (Mn-NP) with favorable imaging capacity have been developed to improve the biocompatible profile of the existing Mn-based MRI contrast agent Mn-DPDP; however, the overall bio-effects and potential toxicity remain largely unknown. In this study, 1H NMR-based metabolic profiling, integrated with traditional biochemical analysis and histopathological examinations, was used to investigate the absorption, distribution, metabolism, excretion and toxicity of Mn-NPs as candidates for MRI contrast agent. The metabolic responses in biofluids (plasma and urine) and tissues (liver, spleen, kidney, lung and brain) from rats could be divided into four classes following Mn-NP administration: Mn biodistribution-dependent, time-dependent, dose-dependent and complicated metabolic variations. The variations of these metabolites involved in lipid, energy, amino acid and other nutrient metabolism, which disclosed the metabolic fate and biological effects of Mn-NPs in rats. The changes of metabolic profile implied that the disturbance and impairment of biological functions induced by Mn-NP exposure were correlated with the particle size and the surface chemistry of nanoparticles. Integration of metabonomic technology with traditional methods provides a promising tool to understand the toxicological behavior of biomedical nanomaterials and will result in informed decision-making during drug development.

  7. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.

  8. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  9. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  10. NMR-Based Multi Parametric Quality Control of Fruit Juices: SGF Profiling

    PubMed Central

    Spraul, Manfred; Schütz, Birk; Rinke, Peter; Koswig, Susanne; Humpfer, Eberhard; Schäfer, Hartmut; Mörtter, Monika; Fang, Fang; Marx, Ute C.; Minoja, Anna

    2009-01-01

    With SGF Profiling™ we introduce an NMR-based screening method for the quality control of fruit juices. This method has been developed in a joint effort by Bruker BioSpin GmbH and SGF International e.V. The system is fully automated with respect to sample transfer, measurement, data analysis and reporting and is set up on an Avance 400 MHz flow-injection NMR spectrometer. For each fruit juice a multitude of parameters related to quality and authenticity are evaluated simultaneously from a single data set acquired within a few minutes. This multimarker/multi-aspect NMR screening approach features low cost-per-sample and is highly competitive with conventional and targeted fruit juice quality control methods. PMID:22253974

  11. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  12. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  13. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  14. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  15. NMR-based metabolomic investigations on the differential responses in adductor muscles from two pedigrees of Manila clam Ruditapes philippinarum to Cadmium and Zinc.

    PubMed

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao

    2011-01-01

    Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature). In addition, Manila clam is a good biomonitor/bioindicator in "Mussel Watch Programs" and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra) of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc) using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine), succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals.

  16. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  17. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.

  19. Differential toxicological effects induced by mercury in gills from three pedigrees of Manila clam Ruditapes philippinarum by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Zhang, Linbao; You, Liping; Yu, Junbao; Zhao, Jianmin; Li, Lianzhen; Wang, Qing; Li, Fei; Li, Chenghua; Liu, Dongyan; Wu, Huifeng

    2011-01-01

    Mercury is a hazardous pollutant in the Bohai marine environments due to its high toxicity to the marine organisms and subsequent ecological risk. Manila clam Ruditapes philippinarum is one of important sentinel organisms in 'Mussel Watch Program' launched in China and therefore used as a bioindicator in marine and coastal ecotoxicology. There are dominantly distributed three pedigrees of clam (White, Liangdao Red and Zebra) in Yantai population endowed with different tolerances to environmental stressors. In this study, gill tissues were collected from both untreated and mercury exposed White, Liangdao Red and Zebra clams, and the extracts were analyzed by NMR-based metabolomics to compare the original metabolomes and the toxicological effects induced by mercury exposure in three pedigrees. The major abundant metabolites in White clam sample were branched-chain amino acids, lactate, alanine, arginine, acetoacetate, glutamate, succinate, citrate, malonate and taurine, while the metabolite profile of Liangdao Red clam sample comprises relative high levels of alanine, arginine, glutamate, succinate and glycogen. For Zebra clam sample, the metabolite profile exhibited relatively high amount of aspartate, acetylcholine and homarine. After 48 h exposure of 20 μg l(-1) Hg(2+), the metabolic profiles from all the three pedigrees of clams commonly showed significant increases in alanine, arginine, glutamate, aspartate, α-ketoglutarate, glycine and ATP/ADP, and decreases in citrate, taurine and homarine. The unique metabolic differences between the metabolomes of gill tissues from Hg(2+)-exposed White, Liangdao Red and Zebra clams were found, including elevated acetylcholine and branched-chain amino acids in White clams, and the declined succinate in both White and Liangdao Red samples as well as the declined betaine in Zebra and White clams. Overall, our findings showed the differential toxicological responses to mercury exposure and that White clams could be a

  20. Metabolic Analysis

    NASA Astrophysics Data System (ADS)

    Tolstikov, Vladimir V.

    Analysis of the metabolome with coverage of all of the possibly detectable components in the sample, rather than analysis of each individual metabolite at a given time, can be accomplished by metabolic analysis. Targeted and/or nontargeted approaches are applied as needed for particular experiments. Monitoring hundreds or more metabolites at a given time requires high-throughput and high-end techniques that enable screening for relative changes in, rather than absolute concentrations of, compounds within a wide dynamic range. Most of the analytical techniques useful for these purposes use GC or HPLC/UPLC separation modules coupled to a fast and accurate mass spectrometer. GC separations require chemical modification (derivatization) before analysis, and work efficiently for the small molecules. HPLC separations are better suited for the analysis of labile and nonvolatile polar and nonpolar compounds in their native form. Direct infusion and NMR-based techniques are mostly used for fingerprinting and snap phenotyping, where applicable. Discovery and validation of metabolic biomarkers are exciting and promising opportunities offered by metabolic analysis applied to biological and biomedical experiments. We have demonstrated that GC-TOF-MS, HPLC/UPLC-RP-MS and HILIC-LC-MS techniques used for metabolic analysis offer sufficient metabolome mapping providing researchers with confident data for subsequent multivariate analysis and data mining.

  1. A Pilot Metabolic Profiling Study of Patients With Neonatal Jaundice and Response to Phototherapy.

    PubMed

    Cai, A; Qi, S; Su, Z; Shen, H; Yang, Y; Cai, W; Dai, Y

    2016-08-01

    Phototherapy has been widely used in treating neonatal jaundice, but detailed metabonomic profiles of neonatal jaundice patients and response to phototherapy have not been characterized. Our aim was to depict the serum metabolic characteristics of neonatal jaundice patients relative to controls and changes in response to phototherapy. A (1) H nuclear magnetic resonance (NMR)-based metabonomic approach was employed to study the metabolic profiling of serum from healthy infants (n = 25) and from infants with neonatal jaundice (n = 30) pre- and postphototherapy. The acquired data were processed by multivariate principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA). The PLS-DA and OPLS-DA model identified nine metabolites capable of distinguishing patients from controls. In addition, 28 metabolites such as β-glucose, α-glucose, valine, and pyruvate changed in response to phototherapy. This study offers useful information on metabolic disorders in neonatal jaundice patients and the effects of phototherapy on lipids, amino acid, and energy metabolism.

  2. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats

    PubMed Central

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-01-01

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats. PMID:27527211

  3. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH NMR BASED METABOLOMICS

    EPA Science Inventory

    Recently, metabolomics, or the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, has been employed to enable rapid identification of the mechanisms of toxicity for compounds of environmental...

  4. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  5. 1H NMR Metabolomics Study of Metastatic Melanoma in C57BL/6J Mouse Spleen

    PubMed Central

    Wang, Xuan; Hu, Mary; Feng, Ju; Liu, Maili; Hu, Jian Zhi

    2014-01-01

    Melanoma is a malignant tumor of melanocytes. Although extensive investigations have been done to study metabolic changes in primary melanoma in vivo and in vitro, little effort has been devoted to metabolic profiling of metastatic tumors in organs other than lymph nodes. In this work, NMR-based metabolomics combined with multivariate data analysis is used to study metastatic B16-F10 melanoma in C57BL/6J mouse spleen. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to find important metabolites responsible for discriminating the control and the melanoma groups. Two different strategies, i.e. spectral binning and spectral deconvolution, are used to reduce the original spectral data before statistical analysis. Spectral deconvolution is found to be superior for identifying a set of discriminatory metabolites between the control and the melanoma groups, especially when the sample size is small. OPLS results show that the melanoma group can be well separated from its control group. It is found that taurine, glutamate, aspartate, O-Phosphoethanolamine, niacinamide,ATP, lipids and glycerol derivatives are decreased statistically and significantly while alanine, malate, xanthine, histamine, dCTP, GTP, thymidine, 2′-Deoxyguanosine are statistically and significantly elevated. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in spleen. PMID:25383071

  6. Crystalline 1H-1,2,3-triazol-5-ylidenes

    SciTech Connect

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  7. Classification of fermented soymilk during fermentation by 1H NMR coupled with principal component analysis and elucidation of free-radical scavenging activities.

    PubMed

    Yang, Seung-Ok; Kim, So-Hyun; Cho, Sayeon; Lee, JaeHwan; Kim, Young-Suk; Yun, Sung-Seob; Choi, Hyung-Kyoon

    2009-05-01

    Changes in metabolites in fermented soymilk prepared with selected Bifidobacterium and Streptococci strains were analyzed using a (1)H-NMR-based metabolomic technique. Principal components analysis (PCA) allowed the clear separation of 50% methanol extracts from fermented soymilk with different fermentation times by combining principal components PC1 and PC3, which accounted for 55.1% of the total variance. Loading plot analysis was performed to select major compounds contributing to the separation, and the relative levels of selected metabolites were determined. In addition, the free-radical scavenging activities of each sample were investigated, and the underlying mechanisms were elucidated by determining the total phenolics and total flavonoids contents of each sample. The present study suggests the usefulness of combining (1)H-NMR with PCA in discriminating fermented soymilk samples with different fermentation times, and elucidates of the factors affecting free-radical scavenging activities of fermented soymilk.

  8. Metabonomics approach to determine metabolic differences between green tea and black tea consumption.

    PubMed

    Van Dorsten, Ferdi A; Daykin, Clare A; Mulder, Theo P J; Van Duynhoven, John P M

    2006-09-06

    The purpose of this study was to compare the effects of black and green tea consumption on human metabolism. Seventeen healthy male volunteers consumed black tea, green tea, or caffeine in a randomized crossover study. Twenty-four-hour urine and blood plasma samples were analyzed by NMR-based metabonomics, that is, high-resolution 1H NMR metabolic profiling combined with multivariate statistics. Green and black tea consumption resulted in similar increases in urinary excretion of hippuric acid and 1,3-dihydroxyphenyl-2-O-sulfate, both of which are end products of tea flavonoid degradation by colonic bacteria. Several unidentified aromatic metabolites were detected in urine specifically after green tea intake. Interestingly, green and black tea intake also had a different impact on endogenous metabolites in urine and plasma. Green tea intake caused a stronger increase in urinary excretion of several citric acid cycle intermediates, which suggests an effect of green tea flavanols on human oxidative energy metabolism and/or biosynthetic pathways.

  9. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology

    PubMed Central

    Zhao, Liangcai; Dong, Minjian; Liao, Shixian; Du, Yao; Zhou, Qi; Zheng, Hong; Chen, Minjiang; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Renal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, 1H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively. The results revealed that reduced levels of bioenergy synthesis and branched chain amino acids (BCAAs), as well as elevated levels of indoxyl sulfate (IS) are involved in metabolic alterations of renal fibrosis rats. Next, by pharmacological treatment we found that reduction of IS levels could prevent the renal fibrotic symptoms. Therefore, we suggested that urinary IS may be used as a potential biomarker for the diagnosis of renal fibrosis, and a therapeutic target for drugs. Novel attempt combining metabonomics and pharmacology was established that have ability to provide more systematic diagnostic and therapeutic information of diseases. PMID:27256510

  10. Distinctive Metabolism of Flavonoid between Cultivated and Semiwild Soybean Unveiled through Metabolomics Approach.

    PubMed

    Yun, Dae-Yong; Kang, Young-Gyu; Yun, Bohyun; Kim, Eun-Hee; Kim, Myoyeon; Park, Jun Seong; Lee, John Hwan; Hong, Young-Shick

    2016-07-27

    Soybeans are an important crop for agriculture and food, resulting in an increase in the range of its application. Recently, soybean leaves have been used not only for food products but also in the beauty industry. To provide useful and global metabolite information on the development of soy-based products, we investigated the metabolic evolution and cultivar-dependent metabolite variation in the leaves of cultivated (Glycine max) and semiwild (G. gracilis) soybean, through a (1)H NMR-based metabolomics approach, as they grew from V (vegetative) 1 to R (reproductive) 7 growth stages. The levels of primary metabolites, such as sucrose, amino acids, organic acids, and fatty acids, were decreased both in the G. gracilis and G. max leaves. However, the secondary metabolites, such as pinitol, rutin, and polyphenols, were increased while synthesis of glucose was elevated as the leaves grew. When metabolite variations between G. gracilis and G. max are compared, it was noteworthy that rutin and its precursor, quercetin-3-O-glucoside, were found only in G. gracilis but not in G. max. Furthermore, levels of pinitol, proline, β-alanine, and acetic acid, a metabolite related to adaptation toward environmental stress, were different between the two soybean cultivars. These results highlight their distinct metabolism for adaptation to environmental conditions and their intrinsic metabolic phenotype. This study therefore provides important information on the cultivar-dependent metabolites of soybean leaves for better understanding of plant physiology toward the development of soy-based products.

  11. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  12. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation.

    PubMed

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain.

  13. First example of hepatocyte transplantation to alleviate ornithine transcarbamylase deficiency, monitored by NMR-based metabonomics.

    PubMed

    Legido-Quigley, Cristina; Cloarec, Olivier; Parker, David A; Murphy, Gerard M; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K; Mitry, Ragai R; Vilca-Melendez, Hector; Rela, Mohamed; Dhawan, Anil; Heaton, Nigel

    2009-12-01

    We demonstrate the effective use of NMR spectroscopic profiles of urine and plasma from the first successful use of hepatocyte transplantation as a bridge to auxiliary partial orthotopic liver transplantation in a child antenatally diagnosed with severe ornithine transcarbamylase deficiency. In this single-patient study, NMR profiles indicated that the disrupted urea cycle could be normalized by hepatocyte cell infusion and this was confirmed using orthogonal partial least-squares-based chemometrics. However, despite dietary manipulations and adminstration of ammonia scavengers, the desired reduction in plasma ammonia was not consistently achieved between sessions of hepatocyte transplantation due to episodes of sepsis. A subsequent liver transplant corrected the metabolic abnormalities. The use of metabolic profiling has been shown to be a promising method for evaluating the efficacy of cell infusions and has demonstrated the capability for the early detection of response to therapy in real time, an approach that may be of use in wider clinical settings.

  14. NMR-Based Metabolomic Analysis of Huanglongbing-Asymptomatic and -Symptomatic Citrus Trees.

    PubMed

    Freitas, Deisy dos Santos; Carlos, Eduardo Fermino; Gil, Márcia Cristina Soares de Souza; Vieira, Luiz Gonzaga Esteves; Alcantara, Glaucia Braz

    2015-09-02

    Huanglongbing (HLB) is one of the most severe diseases that affects citrus trees worldwide and is associated with the yet uncultured bacteria Candidatus Liberibacter spp. To assess the metabolomic differences between HLB-asymptomatic and -symptomatic tissues, extracts from leaf and root samples taken from a uniform 6-year-old commercial orchard of Valencia trees were subjected to nuclear magnetic resonance (NMR) and chemometrics. The results show that the symptomatic trees had higher sucrose content in their leaves and no variation in their roots. In addition, proline betaine and malate were detected in smaller amounts in the HLB-affected symptomatic leaves. The changes in metabolic processes of the plant in response to HLB are corroborated by the relationship between the bacterial levels and the metabolic profiles.

  15. Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics.

    PubMed

    Schock, Tracey B; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W; Bearden, Daniel W

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production.

  16. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis.

    PubMed

    Emwas, Abdul-Hamid; Roy, Raja; McKay, Ryan T; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G A Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S

    2016-02-05

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many "unwanted" or "undesirable" compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment.

  17. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis

    PubMed Central

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment. PMID:26745651

  18. Evaluation of Pacific White Shrimp (Litopenaeus vannamei) Health during a Superintensive Aquaculture Growout Using NMR-Based Metabolomics

    PubMed Central

    Schock, Tracey B.; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W.; Bearden, Daniel W.

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  19. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  20. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  1. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics.

    PubMed

    Mushtaq, Mian Yahya; Marçal, Rosilene Moretti; Champagne, Danielle L; van der Kooy, Frank; Verpoorte, Robert; Choi, Young Hae

    2014-09-01

    We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies.

  2. Extraction of alkaloids for NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection.

    PubMed

    Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W

    2012-11-01

    A museum collection of Cinchonae cortex samples (n = 117), from the period 1850-1950, was extracted with a mixture of chloroform-d1, methanol-d4, water-d2, and perchloric acid in the ratios 5 : 5 : 1 : 1. The extracts were directly analyzed using 1H NMR spectroscopy (600 MHz) and the spectra evaluated using principal component analysis (PCA) and total statistical correlation spectroscopy (STOCSY). A new method called STOCSY-CA, where CA stands for component analysis, is described, and an analysis using this method is presented. It was found that the samples had a rather homogenous content of the well-known cinchona alkaloids quinine, cinchonine, and cinchonidine without any apparent clustering. Signals from analogues were detected but not in substantial amounts. The main variation was related to the absolute amounts of extracted alkaloids, which was attributed to the evolution of the Cinchona tree cultivation during the period in which the samples were collected.

  3. NMR based metabonomics study on celiac disease in the blood serum

    PubMed Central

    Fathi, Fariba; Ektefa, Fatemeh; Arefi Oskouie, Afsaneh; Rostami, Kamran; Rezaei-Tavirani, Mostafa; Houshang Mohammad Alizadeh, Amir; Tafazzoli, Mohsen

    2013-01-01

    Aim The aim of this study is to look for the proper methods that would be a major step towards untreated CD diagnosis and seek the metabolic biomarkers causes of CD and compare them to control group. Background Celiac disease (CD) is a common autoimmune disorder that is not easily diagnosed using the clinical tests. Patients and methods Thirty cases and 30 controls were entered into this study. Metabolic profiling was obtained using proton nuclear magnetic resonance spectroscopy (1HNMR) to seek metabolites that are helpful for the detection of CD. Classification of CD and healthy subject was done using random forest (RF). Results The obtained classification model showed an 89% correct classification of CD and healthy subject for the external test set. The metabolites that caused changes in people with CD were identified using RF; these metabolites include lactate, valine and lipid. Conclusion The findings of the present study reveal serum lactate, valin and lipid levels in CD patient are lower than healthy cohorts. This metabolite may provide diagnostic tools as well as insight into potential targets for disease therapy. PMID:24834271

  4. Liver Metabolite Concentrations Measured with 1H MR Spectroscopy

    PubMed Central

    Pettigrew, Roderic I.; Gharib, Ahmed M.

    2012-01-01

    Purpose: To determine the feasibility of measuring choline and glycogen concentrations in normal human liver in vivo with proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy. Materials and Methods: Signed consent to participate in an institutional review board–approved and HIPAA-compliant study was obtained from 46 subjects (mean age, 46 years ± 17 [standard deviation]; 24 women) consecutively recruited during 285 days. Navigator-gated MR images were used to select 8-mL volumes for point-resolved spectroscopy (PRESS) with a 35-msec echo time. Line widths were minimized with fast breath-hold B0 field mapping and further manual shimming. Navigator-gated spectra were recorded with and without water suppression to determine metabolite concentrations with water signals as an internal reference. In three subjects, echo time was varied to determine the glycogen and choline T2. Linear regression analysis was used to examine relations between choline, hepatic lipid content, body mass index, glycogen content, and age. Results: Choline concentrations could be determined in 46 of 48 studies and was found to be 8.6 mmol per kilogram of wet weight ± 3.1 (range, 3.8–17.6; n = 44). Twenty-seven spectra in 25 individuals with narrow line widths and low lipid content were adequate for quantitation of glycogen. The glycogen (glucosyl unit) concentration was 38.1 mmol/kg wet weight ± 14.4. The T2 of combined glycogen peaks in the liver of three subjects was 36 msec ± 8. Choline levels showed a weak but significant correlation with glycogen (r2 = 0.15; P < .05) but not with lipid content. Conclusion: Navigator-gated and gradient-echo shimmed PRESS 1H MR spectroscopy may allow quantification of liver metabolites that are important for understanding and identifying disorders of glucose and lipid metabolism. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112344/-/DC1 PMID:22891360

  5. (1)H nuclear magnetic resonance-based extracellular metabolomic analysis of multidrug resistant Tca8113 oral squamous carcinoma cells.

    PubMed

    Wang, Hui; Chen, Jiao; Feng, Yun; Zhou, Wenjie; Zhang, Jihua; Yu, Y U; Wang, Xiaoqian; Zhang, Ping

    2015-06-01

    A major obstacle of successful chemotherapy is the development of multidrug resistance (MDR) in the cancer cells, which is difficult to reverse. Metabolomic analysis, an emerging approach that has been increasingly applied in various fields, is able to reflect the unique chemical fingerprints of specific cellular processes in an organism. The assessment of such metabolite changes can be used to identify novel therapeutic biomarkers. In the present study, (1)H nuclear magnetic resonance (NMR) spectroscopy was used to analyze the extracellular metabolomic spectrum of the Tca8113 oral squamous carcinoma cell line, in which MDR was induced using the carboplatin (CBP) and pingyangmycin (PYM) chemotherapy drugs in vitro. The data were analyzed using the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) methods. The results demonstrated that the extracellular metabolomic spectrum of metabolites such as glutamate, glycerophosphoethanol amine, α-Glucose and β-Glucose for the drug-induced Tca8113 cells was significantly different from the parental Tca8113 cell line. A number of biochemicals were also significantly different between the groups based on their NMR spectra, with drug-resistant cells presenting relatively higher levels of acetate and lower levels of lactate. In addition, a significantly higher peak was observed at δ 3.35 ppm in the spectrum of the PYM-induced Tca8113 cells. Therefore, (1)H NMR-based metabolomic analysis has a high potential for monitoring the formation of MDR during clinical tumor chemotherapy in the future.

  6. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics

    PubMed Central

    2010-01-01

    Background Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach. Methods Differentiated mouse myotube cultures (C2C12) were exposed to 5 mM creatine monohydrate (CMH) for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension of protein separation was pI 5-8 and second dimension was a 12.5% Criterion gel. Differentially expressed protein spots of significance were excised from the gel, desalted and identified by peptide mass fingerprinting using MALDI-TOF MS. For NMR metabonomic studies, chloroform/methanol extractions of the myotubes were subjected to one-dimensional 1H NMR spectroscopy and the intracellular oxidative status of myotubes was assessed by intracellular DCFH2 oxidation after 24 h pre-incubation with CMH. Results The identified differentially expressed proteins included vimentin, malate dehydrogenase, peroxiredoxin, thioredoxin dependent peroxide reductase, and 75 kDa and 78 kDa glucose regulated protein precursors. After CMH exposure, up-regulated proteomic spots correlated positively with the NMR signals from creatine, while down-regulated proteomic spots were negatively correlated with these NMR signals. The identified differentially regulated proteins were related to energy metabolism, glucose regulated stress, cellular structure and the antioxidative defence system. The

  7. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.

    PubMed

    Caligiani, Augusta; Palla, Luigi; Acquotti, Domenico; Marseglia, Angela; Palla, Gerardo

    2014-08-15

    This study reports for the first time the use of (1)H NMR technique combined with chemometrics to study the metabolic profile of cocoa (Theobroma cacao L.) beans of different varieties, origin and fermentation levels. Results of PCA applied to cocoa bean (1)H NMR dataset showed that the main factor influencing the cocoa bean metabolic profile is the fermentation level. In fact well fermented brown beans form a group clearly separated from unfermented, slaty, and underfermented, violet, beans, independently of the variety or geographical origin. Considering only well fermented beans, the metabolic profile obtained by (1)H NMR permitted to discriminate between some classes of samples. The National cocoa of Ecuador, known as Arriba, showed the most peculiar characteristics, while the samples coming from the African region showed some similar traits. The dataset obtained, representative of all the classes of soluble compounds of cocoa, was therefore useful to characterise fermented cocoa beans as a function of their origin and fermentation level.

  8. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    PubMed

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  9. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    NASA Astrophysics Data System (ADS)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  10. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  11. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans.

    PubMed

    Izrayelit, Yevgeniy; Robinette, Steven L; Bose, Neelanjan; von Reuss, Stephan H; Schroeder, Frank C

    2013-02-15

    Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonate at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans.

  12. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans

    PubMed Central

    Izrayelit, Yevgeniy; Robinette, Steven L.; Bose, Neelanjan; von Reuss, Stephan H.; Schroeder, Frank C.

    2012-01-01

    Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonte at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans. PMID:23163760

  13. Automated quantum mechanical total line shape fitting model for quantitative NMR-based profiling of human serum metabolites.

    PubMed

    Mihaleva, Velitchka V; Korhonen, Samuli-Petrus; van Duynhoven, John; Niemitz, Mathias; Vervoort, Jacques; Jacobs, Doris M

    2014-05-01

    An automated quantum mechanical total line shape (QMTLS) fitting model was implemented for quantitative nuclear magnetic resonance (NMR)-based profiling of 42 metabolites in ultrafiltrated human serum samples. Each metabolite was described by a set of chemical shifts, J-couplings, and line widths. These parameters were optimized for each metabolite in each sample by iteratively minimizing the difference between the calculated and the experimental spectrum. In total, 92.0 to 98.1 % of the signal intensities in the experimental spectrum could be explained by the calculated spectrum. The model was validated by comparison to signal integration of metabolites with isolated signals and by means of standard additions. Metabolites present at average concentration higher than 50 μM were quantified with average absolute relative error less than 10 % when using different initial parameters for the fitting procedure. Furthermore, the biological applicability of the QMTLS model was demonstrated on 287 samples from an intervention study in 37 human volunteers undergoing an exercise challenge. Our automated QMTLS model was able to cope with the large dynamic range of metabolite concentrations in serum and proved to be suitable for high-throughput analysis.

  14. Metabolic Profiling of an Echinostoma caproni Infection in the Mouse for Biomarker Discovery

    PubMed Central

    Saric, Jasmina; Li, Jia V.; Wang, Yulan; Keiser, Jennifer; Bundy, Jake G.; Holmes, Elaine; Utzinger, Jürg

    2008-01-01

    Background Metabolic profiling holds promise with regard to deepening our understanding of infection biology and disease states. The objectives of our study were to assess the global metabolic responses to an Echinostoma caproni infection in the mouse, and to compare the biomarkers extracted from different biofluids (plasma, stool, and urine) in terms of characterizing acute and chronic stages of this intestinal fluke infection. Methodology/Principal Findings Twelve female NMRI mice were infected with 30 E. caproni metacercariae each. Plasma, stool, and urine samples were collected at 7 time points up to day 33 post-infection. Samples were also obtained from non-infected control mice at the same time points and measured using 1H nuclear magnetic resonance (NMR) spectroscopy. Spectral data were subjected to multivariate statistical analyses. In plasma and urine, an altered metabolic profile was already evident 1 day post-infection, characterized by reduced levels of plasma choline, acetate, formate, and lactate, coupled with increased levels of plasma glucose, and relatively lower concentrations of urinary creatine. The main changes in the urine metabolic profile started at day 8 post-infection, characterized by increased relative concentrations of trimethylamine and phenylacetylglycine and lower levels of 2-ketoisocaproate and showed differentiation over the course of the infection. Conclusion/Significance The current investigation is part of a broader NMR-based metabonomics profiling strategy and confirms the utility of this approach for biomarker discovery. In the case of E. caproni, a diagnosis based on all three biofluids would deliver the most comprehensive fingerprint of an infection. For practical purposes, however, future diagnosis might aim at a single biofluid, in which case urine would be chosen for further investigation, based on quantity of biomarkers, ease of sampling, and the degree of differentiation from the non-infected control group. PMID

  15. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; ...

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  16. Gelified Biofluids for High-Resolution Magic Angle Spinning (1)H NMR Analysis: The Case of Urine.

    PubMed

    Takis, Panteleimon G; Tenori, Leonardo; Ravera, Enrico; Luchinat, Claudio

    2017-01-17

    In this letter, we propose an alternative, effective protocol for metabolomic characterization of biofluids based on their gelification and subsequent application of high-resolution magic angle spinning (HRMAS) (1)H nuclear magnetic resonance (NMR). The sample handling is very rapid and reproducible, and much less than 40 μL of neat urine are needed to obtain a sample. Our results indicate that the HRMAS spectra of gelified urine encompass all metabolites in the NMR fingerprint, as observed by solution NMR. The proposed approach can be efficiently integrated into the NMR based metabolomics analyses routines: multivariate statistical analysis of both solution and HRMAS data produced very similar statistical models, with high classification accuracy. One of the key advantages offered by the gelification approach is the improved short-term (up to 24 h) preservation of nonfrozen HRMAS NMR gel urine samples compared to the solution samples, which could lead to an alternative way for transportation or domestic collection of biofluids, without the need of cold-storage and reducing the risks of leakage.

  17. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  18. (1)H NMR To Explore the Metabolome of Exhaled Breath Condensate in α1-Antitrypsin Deficient Patients: A Pilot Study.

    PubMed

    Airoldi, Cristina; Ciaramelli, Carlotta; Fumagalli, Marco; Bussei, Rita; Mazzoni, Valeria; Viglio, Simona; Iadarola, Paolo; Stolk, Jan

    2016-12-02

    The metabolomic analysis of exhaled breath condensate (EBC) may provide insights on both the pathology of pulmonary disorders and the response to therapy. This pilot study describes the ability of nuclear magnetic resonance (NMR)-based metabolomics to discriminate α1-antitrypsin deficient (AATD)-patients, who were diagnosed with moderate to severe emphysema, from healthy individuals. Comparative analysis of samples from these two homogeneous cohorts of individuals resulted in the generation of NMR profiles that were different from both a qualitative and a quantitative point-of-view. Among the identified metabolites that separated patients from controls, acetoin, propionate, acetate, and propane-1,2 diol were those presenting the biggest difference. Unambiguous confirmation that the two groups could be completely differentiated on the basis of their metabolite content came from the application of univariate and multivariate statistical analysis (principal component analysis, partial least squares discriminant analysis (PLS-DA), and orthogonal PLS-DA). MetaboAnalyst 3.0 platform, used to define a relationship among metabolites, allowed us to observe that pyruvate metabolism is the most-involved pathway, most of metabolites being originated from pyruvate. These preliminary data suggest that NMR, with its ability to differentiate the metabolic fingerprint of EBC of AATD patients from that of healthy controls, has a potential "clinical applicability" in this area.

  19. Identification of Metabolic Pathways Influenced by the G-Protein Coupled Receptors GprB and GprD in Aspergillus nidulans

    PubMed Central

    de Souza, Wagner R.; Morais, Enyara Rezende; Krohn, Nadia Graciele; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Caldana, Camila; Semelka, Charles T.; Tikunov, Andrey P.; Macdonald, Jeffrey M.; Goldman, Gustavo Henrique

    2013-01-01

    Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and 1H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The 1H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development. PMID:23658706

  20. Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans.

    PubMed

    de Souza, Wagner R; Morais, Enyara Rezende; Krohn, Nadia Graciele; Savoldi, Marcela; Goldman, Maria Helena S; Rodrigues, Fernando; Caldana, Camila; Semelka, Charles T; Tikunov, Andrey P; Macdonald, Jeffrey M; Goldman, Gustavo Henrique

    2013-01-01

    Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and (1)H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The (1)H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development.

  1. Gender-Specific Metabolomic Profiling of Obesity in Leptin-Deficient ob/ob Mice by 1H NMR Spectroscopy

    PubMed Central

    Kim, Sang-Woo; Jung, Youngae; Bae, Hyun-Whee; Lee, Daeyoup; Park, Sung Goo; Lee, Chul-Ho; Hwang, Geum-Sook; Chi, Seung-Wook

    2013-01-01

    Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender. PMID:24098417

  2. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry

    PubMed Central

    Yong, Wei Peng; Yeow, Chen Hua

    2016-01-01

    Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS. PMID:27611679

  3. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation.

    PubMed

    Heyman, Heino Martin; Senejoux, François; Seibert, Isabell; Klimkait, Thomas; Maharaj, Vinesh Jaichand; Meyer, Jacobus Johannes Marion

    2015-06-01

    South Africa being home to more than 35% of the world's Helichrysum species (c.a. 244) of which many are used in traditional medicine, is seen potentially as a significant resource in the search of new anti-HIV chemical entities. It was established that five of the 30 Helichrysum species selected for this study had significant anti-HIV activity ranging between 12 and 21 μg/mL (IC50) by using an in-house developed DeCIPhR method on a full virus model. Subsequent toxicity tests also revealed little or no toxicity for these active extracts. With the use of NMR-based metabolomics, the search for common chemical characteristics within the plant extract was conducted, which resulted in specific chemical shift areas identified that could be linked to the anti-HIV activity of the extracts. The NMR chemical shifts associated with the activity were identified to be 2.56-3.08 ppm, 5.24-6.28 ppm, 6.44-7.04 ppm and 7.24-8.04 ppm. This activity profile was then used to guide the fractionation process by narrowing down and focusing the fractionation and purification processes to speed up the putative identification of five compounds with anti-HIV activity in the most active species, Helichrysum populifolium. The anti-HIV compounds identified for the first time from H. populifolium were three dicaffeoylquinic acid derivatives, i.e. 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives i.e. 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid, with the latter being identified for the first time in the genus.

  4. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    PubMed Central

    Cocco, Eleonora; Murgia, Federica; Lorefice, Lorena; Barberini, Luigi; Poddighe, Simone; Frau, Jessica; Fenu, Giuseppe; Coghe, Giancarlo; Murru, Maria Rita; Murru, Raffaele; Del Carratore, Francesco; Atzori, Luigi

    2015-01-01

    Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS. PMID:26740964

  5. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  6. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  7. Metabolic profiles to define the genome: can we hear the phenotypes?

    PubMed Central

    Griffin, Julian L

    2004-01-01

    There is an increased reliance on genetically modified organisms as a functional genomic tool to elucidate the role of genes and their protein products. Despite this, many models do not express the expected phenotype thought to be associated with the gene or protein. There is thus an increased need to further define the phenotype resultant from a genetic modification to understand how the transcriptional or proteomic network may conspire to alter the expected phenotype. This is best typified by the description of the silent phenotype in genetic manipulations of yeast. High-resolution proton nuclear magnetic resonance ((1)H NMR) spectroscopy provides an ideal mechanism for the profiling of metabolites within biofluids, tissue extracts or, with recent advances, intact tissues. These metabolic datasets can be readily mined using a range of pattern recognition techniques, including hierarchical cluster analysis, principal components analysis, partial least squares and neural networks, with the combined approach being termed metabolomics. This review describes the application of NMR-based metabolomics or metabonomics to genetic and chemical interventions in a number of different species, demonstrating the versatility of such an approach, as well as suggesting how it may be integrated with other "omic" technologies. PMID:15306403

  8. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  9. Nuclear receptor NR1H3 in familial multiple sclerosis

    PubMed Central

    Wang, Zhe; Sadovnick, A. Dessa; Traboulsee, Anthony L.; Ross, Jay P.; Bernales, Cecily Q.; Encarnacion, Mary; Yee, Irene M.; de Lemos, Madonna; Greenwood, Talitha; Lee, Joshua D.; Wright, Galen; Ross, Colin J.; Zhang, Si; Song, Weihong; Vilariño-Güell, Carles

    2016-01-01

    SUMMARY Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS. PMID:27253448

  10. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  11. Design, high-level expression, purification and characterization of soluble fragments of the hepatitis C virus NS3 RNA helicase suitable for NMR-based drug discovery methods and mechanistic studies.

    PubMed

    Gesell, J J; Liu, D; Madison, V S; Hesson, T; Wang, Y S; Weber, P C; Wyss, D F

    2001-08-01

    RNA helicases represent a family of enzymes that unwind double-stranded (ds) RNA in a nucleoside triphosphate (NTP)-dependent fashion and which are required in all aspects of cellular RNA metabolism and processing. The hepatitis C virus (HCV) non-structural 3 (NS3) protein possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion of the 631 amino acid residue bifunctional enzyme. The HCV NS3 RNA helicase is of key importance in the life cycle of HCV, which makes it a target for the development of therapeutics. However, neither the precise mechanism nor the substrate structure has been defined for this enzyme. For nuclear magnetic resonance (NMR)-based drug discovery methods and for mechanistic studies we engineered, prepared and characterized various truncated constructs of the 451-residue HCV NS3 RNA helicase. Our goal was to produce smaller fragments of the enzyme, which would be amenable to solution NMR techniques while retaining their native NTP and/or nucleic acid binding sites. Solution conditions were optimized to obtain high-quality heteronuclear NMR spectra of nitrogen-15 isotope-labeled constructs, which are typical of well-folded monomeric proteins. Moreover, NMR binding studies and functional data directly support the correct folding of these fragments.

  12. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  13. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH THE USE OF NMR BASED METABONOMICS

    EPA Science Inventory

    In support of the Environmental Protection Agency's Computational Toxicology Program, metabonomics, the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, is being employed to enable rapid id...

  14. HIST1H2AA — EDRN Public Portal

    Cancer.gov

    HIST1H2AA, a member of the histone 2A family, is a core component of the nucleosome. The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (the octamer wraps approximately 147 bp of DNA). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. The HIST1H2AA gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene contain a palindromic termination element.

  15. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  16. Ultrasonic degradation of 1-H-benzotriazole in water.

    PubMed

    Zúñiga-Benítez, Henry; Soltan, Jafar; Peñuela, Gustavo

    2014-01-01

    This paper reports on the effect of different parameters of ultrasonic power, pollutant initial concentration, pH and the presence of co-existing chemical species (oxygen, nitrogen, ozone, and radical scavengers) on the ultrasonic degradation of the endocrine disruptor 1-H-benzotriazole. Increasing the 1-H-benzotriazole initial concentration from 41.97 to 167.88 μM increased the pollutant degradation rate by 40%. Likewise, a high applied ultrasonic power enhanced the extent of 1-H-benzotriazole removal and its initial degradation rate, which was accelerated in the presence of ozone and oxygen, but inhibited by nitrogen. The most favorable pH for the ultrasonic degradation was acidic media, reaching ∼90% pollutant removal in 2 h. The hydroxyl free radical concentration in the reaction medium was proportional to the ultrasound power and the irradiation time. Kinetic models based on a Langmuir-type mechanism were used to predict the pollutant sonochemical degradation. It was concluded that degradation takes place at both the bubble-liquid interfacial region and in the bulk solution, and OH radicals were the main species responsible for the reaction. Hydroxyl free radicals were generated by water pyrolysis and then diffused into the interfacial region and the bulk solution where most of the solute molecules were present.

  17. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    also mildly increased in ADH{sup −} deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH{sup +} deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH{sup −} deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH{sup +} deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD. -- Highlights: ► Dose-dependent ethanol-induced fatty liver was studied in deer mouse model. ► A NMR-based lipidomic approach with histology and dry lipid weights was used. ► We used principal component analysis (PCA) to analyze the NMR lipidomic data. ► Dose-dependent clustering patterns by PCA were compared among the groups.

  18. 1H NMR metabolomics study of spleen from C57BL/6 mice exposed to gamma radiation

    DOE PAGES

    Xiao, Xiongjie; Hu, M.; Liu, M.; ...

    2016-01-27

    Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize tomore » constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. As a result, these significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation.« less

  19. 1H NMR Metabolomics Study of Spleen from C57BL/6 Mice Exposed to Gamma Radiation

    PubMed Central

    Xiao, X; Hu, M; Liu, M; Hu, JZ

    2016-01-01

    Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize to constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. These significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation. PMID:27019763

  20. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.

    PubMed

    Mazzei, Pierluigi; Spaccini, Riccardo; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2013-11-13

    We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir.

  1. Quantitative analysis of four major diterpenoids in Andrographis paniculata by 1H NMR and its application for quality control of commercial preparations.

    PubMed

    Yang, Minghua; Wang, Junsong; Kong, Lingyi

    2012-11-01

    A quantitative proton nuclear magnetic resonance technique (qHNMR) has been successfully introduced to quantify andrographolide, dehydroandrographolide, deoxyandrographolide and neoandrographolide in Andrographis paniculata, a commonly used important traditional Chinese medicine. Creative use of trifluoroacetic acid-d, which satisfactorily resolved the overlapping signals of these compounds in crowded regions of δ 4.5-5.6 ppm in (1)H NMR spectrum, made their quantification possible. Optimization of other experimental conditions, including internal standard, NMR pulse sequence, and NMR relaxation delay time, finally established the (1)H NMR based quantification approach, which was validated with satisfactory accuracy, precision, repeatability, and recovery. Except for deoxyandrographolide and neoandrographolide in two compound recipes, this method was successfully applied to quantify the four major components in fourteen raw herb materials and five commercial preparations, providing quantification results in good agreement with those determined by HPLC. The inherent advantages of qHNMR, such as its rapidity and simplicity, make itself a feasible alternative to HPLC for the quality control of A. paniculata raw material and herbal preparations.

  2. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  3. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  4. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  5. Complete assignment of NMR data of 22 phenyl-1H-pyrazoles' derivatives.

    PubMed

    de Oliveira, Aline Lima; Alves de Oliveira, Carlos Henrique; Mairink, Laura Maia; Pazini, Francine; Menegatti, Ricardo; Lião, Luciano Morais

    2011-08-01

    Complete assignment of (1)H and (13)C NMR chemical shifts and J((1)H/(1)H and (1)H/(19)F) coupling constants for 22 1-phenyl-1H-pyrazoles' derivates were performed using the concerted application of (1)H 1D and (1)H, (13)C 2D gs-HSQC and gs-HMBC experiments. All 1-phenyl-1H-pyrazoles' derivatives were synthesized as described by Finar and co-workers. The formylated 1-phenyl-1H-pyrazoles' derivatives were performed under Duff's conditions.

  6. Differentiation between cortical atrophy and hydrocephalus using 1H MRS.

    PubMed

    Bluml, S; McComb, J G; Ross, B D

    1997-03-01

    Quantitative 1H MRS to determine cerebral metabolite patterns and MRI to determine CSF flow were applied to 12 patients with ventricular dilation-Group A, cortical atrophy (N = 5); or Group B, hydrocephalus (N = 7)- and in 9 normal controls. While mean brain water (Group A = 80% +/- 6; Group B = 86% +/- 5; normal = 85% +/- 4) did not differ between the two groups of patients and controls, 1H MRS distinguished those patients with cortical atrophy (Group A) (N-acetylaspartate/ creatine (NAA/Cr) = 0.69 +/- 0.17, versus normal = 1.06 +/- 0.16; P < 0.002; [NAA] = 5.9 +/- 1.3 mmoles/kg, versus normal 8.0 +/- 1.4; P < 0.02) from those with hydrocephalus (Group B) (NAA/Cr = 1.16 +/- 0.11; [NAA] = 9.2 +/- 1.2; P > 0.13 and P > 0.07). Lactate levels were elevated in 3/5 patients with cortical atrophy, but in 0/7 of those with hydrocephalus. Mean absolute concentrations (mmoles/kg) of the five major cerebral osmolytes were 41 +/- 4 (Group A), 43 +/- 6 (Group B), and 42 +/- 4 (normal), so that despite massive brain deformation, constant osmolality was maintained. 1H MRS may directly benefit surgical planning in hydrocephalus infants by clearly identifying those with cortical atrophy who do not require CSF diversion. Thinning of the cortical mantle in hydrocephalus may result from osmotically driven reduction in individual cell volumes, (shrinkage), rather than brain-compression.

  7. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  8. 1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    PubMed Central

    De Pascali, Sandra A.; Del Coco, Laura; Felline, Serena; Mollo, Ernesto; Terlizzi, Antonio; Fanizzi, Francesco P.

    2015-01-01

    The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet. PMID:26058009

  9. Correlation of fractional anisotropy and metabolite concentrations measured using 1H-MRS of cerebral white matter in healthy adults.

    PubMed

    Cheng, Sainan; Liu, Qiang; Lv, Yubo; Han, Wenwen; Yu, Ke; Li, Yuchao; Gong, Tao; Zhang, Yi

    2014-01-01

    Fractional anisotropy (FA) is currently an ideal index capable of reflecting the white matter structure. 1H magnetic resonance spectroscopy (1H-MRS) is often used as a noninvasive concentration measurement of important neurochemicals in vivo. This study was conducted to investigate the relationship between FA and metabolite concentrations by comparing 1H-MRS of bilateral medium corona radiata in healthy adults. The data of diffusion tensor imaging (DTI) and 1H-MRS were acquired from 31 healthy adults using a 3.0 T MR system. All subjects were divided into three groups: the total group (mean age=42 years), the junior group (mean age=29 years) and the senior group (mean age=56 years). There was a negative correlation between FA and age in three groups (r=-0.146, r=-0.204, r=-0.162, p<0.05). The positive correlation of FA with corresponding concentrations of N-acetylaspartate (NAA) was significant in three groups (r=0.339, r=0.213, r=0.430, respectively, p<0.05). The positive correlation of FA with the corresponding NAA/Cr was only significant difference between the total 353 samples and the junior group (r=0.166, r=0.305, respectively, p<0.05). Combining 1H-MRS with DTI reveals the relationship between structure and metabolic characteristics of white matter.

  10. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  11. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  12. 23Na and (1)H NMR microimaging of intact plants.

    PubMed

    Olt, S; Krötz, E; Komor, E; Rokitta, M; Haase, A

    2000-06-01

    (23)Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using (23)Na as well as (1)H NMR microimaging. Experiments were performed at 11.75 T with a double resonant (23)Na-(1)H probehead. The probehead was homebuilt and equipped with a climate chamber. T(1) and T(2) of (23)Na were measured in the cross section of the hypocotyl. Within 85 min (23)Na images with an in-plane resolution of 156 x 156 micrometer were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, (23)Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  13. (1)H MRS: a potential biomarker of in utero placental function.

    PubMed

    Macnaught, Gillian; Gray, Calum; Walker, Jane; Simpson, Mary; Norman, Jane; Semple, Scott; Denison, Fiona

    2015-10-01

    The placenta is a temporary organ that is essential for a healthy pregnancy. It performs several important functions, including the transport of nutrients, the removal of waste products and the metabolism of certain substances. Placental disorders have been found to account for over 50% of stillbirths. Despite this, there are currently no methods available to directly and non-invasively assess placental function in utero. The primary aim of this pilot study was to investigate the use of (1)H MRS for this purpose. (1)H MRS offers the possibility to detect several placental metabolites, including choline, lipids and the amino acids glutamine and glutamate (Glx), which are vital to fetal development and placental function. Here, in utero placental spectra were acquired from nine small for gestational age (SGA) pregnancies, a cohort who are at increased risk of perinatal morbidity and mortality, and from nine healthy gestation-matched pregnancies. All subjects were between 26 and 39 weeks of gestation. Placenta Glx, choline and lipids at 1.3 and 0.9 ppm were quantified as amplitude ratios to that of intrinsic H2O. Wilcoxon signed rank tests indicated a significant difference in Glx/H2O (p = 0.024) between the two groups, but not in choline/H2O (p = 0.722) or in either lipid/H2O ratio (1.3 ppm, p = 0.813; 0.9 ppm, p = 0.058). This study has demonstrated that (1)H MRS has potential for the detection of placental metabolites in utero. This warrants further investigation as a tool for the monitoring of placental function.

  14. Discovery, Synthesis, and Optimization of Antimalarial 4(1H)-Quinolone-3-Diarylethers

    PubMed Central

    2014-01-01

    The historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class of orally active antimalarial 4(1H)-quinolone-3-diarylethers. The initial prototype, ELQ-233, exhibited low nanomolar IC50 values against all tested strains including clinical isolates harboring resistance to atovaquone. ELQ-271 represented the next critical step in the iterative optimization process, as it was stable to metabolism and highly effective in vivo. Continued analoging revealed that the substitution pattern on the benzenoid ring of the quinolone core significantly influenced reactivity with the host enzyme. This finding led to the rational design of highly selective ELQs with outstanding oral efficacy against murine malaria that is superior to established antimalarials chloroquine and atovaquone. PMID:24720377

  15. NMR-based metabonomics reveals relationship between pre-slaughter exercise stress, the plasma metabolite profile at time of slaughter, and water-holding capacity in pigs.

    PubMed

    Bertram, H C; Oksbjerg, N; Young, J F

    2010-01-01

    Nuclear magnetic resonance (NMR)-based metabonomics was applied to investigate the effects of pre-slaughter exercise stress on the plasma metabolite profile at time of slaughter. The study included a total of 40 slaughter pigs, which were exposed to one of the following treatments: No pre-slaughter stress (control treatment), pre-slaughter exercise on a treadmill and subsequently 0, 1, or 3h rest prior to slaughter. NMR-based metabonomics revealed a clear difference in the plasma metabolite profile at time of slaughter between control pigs and pigs exercised without rest, which mainly could be ascribed to increased plasma lactate due to exercise. A resting period of 1 or 3h prior to slaughter reversed the stress-induced perturbations in the plasma metabolite profile. The plasma metabolite profile at time of slaughter was highly correlated with muscle temperature 1 min post-mortem, and a correlation to WHC was also demonstrated. Lactate was found to be the metabolite of importance for the association between the plasma metabolome and pH, temperature and WHC.

  16. NMR-Based Lipid Profiling of High Density Lipoprotein Particles in Healthy Subjects with Low, Normal, and Elevated HDL-Cholesterol.

    PubMed

    Kostara, Christina E; Tsimihodimos, Vasilis; Elisaf, Moses S; Bairaktari, Eleni T

    2017-03-21

    Recent studies suggest that the cholesterol content of HDL (high density lipoproteins) may provide limited information on their antiatherogenic properties and that the composition and particles' structure provide more information on their functionality. We used NMR-based (nuclear magnetic resonance-based) lipidomics to study the relationships of serum HDL-C (HDL-cholesterol) levels with the lipid composition of HDL particles in three groups of subjects selected on the basis of their HDL-C levels. Subjects with low and high HDL-C levels exhibited differences in HDL lipidome compared to those with normal HDL-C levels. In pattern recognition analysis, the discrimination power among all groups was of high significance. The low HDL-C group presented enrichment of the core in triglycerides and depletion in cholesterol esters, whereas the high HDL-C group showed a decrease in triglycerides content. Additionally, as HDL-C increases, all lipid classes are esterified with higher percentage of unsaturated than saturated fatty acids. In addition to the aforementioned differences, the surface layer is enriched in sphingomyelin and free cholesterol in the high HDL-C level group. NMR-based lipidomic analysis of HDL can be particularly useful since it provides insights into molecular features and helps in the characterization of the atheroprotective function of HDL lipoproteins and in the identification of novel biomarkers of cardiovascular risk.

  17. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    PubMed Central

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  18. NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Zhou, Zijian; Feng, Jianghua; Cai, Shuhui; Gao, Jinhao; Chen, Zhong

    2014-05-01

    MnO-embedded iron oxide nanoparticles (MnIO-NPs) can be treated as potential dual-modal contrast agents. However, their overall bio-effects and potential toxicity remain unknown. In this study, the metabolic effects of MnIO-NPs (dosed at 1 and 5 mg Fe/kg) on Sprague-Dawley rats were investigated using metabonomic analysis, histopathological examination, and conventional biochemical analysis. The histological changes included a focal inflammation in the liver at high-dose and a slightly enlarged area of splenic white pulp after 48 h post-dose. Blood biochemical analysis showed that albumin, globulins, aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen, and glucose changed distinctly compared to the control. The metabonomic analysis of body fluids (serum and urine) and tissues (liver, kidney, and spleen) indicated that MnIO-NPs induced metabolic perturbation in rats including energy, nucleotides, amino acids and phospholipid metabolisms. Besides, the variations of supportive nutrients: valine, leucine, isoleucine, nicotinamide adenine dinucleotide (phosphate), and nicotinamide, and the conjugation substrates: glycine, taurine, glutamine, glutathione, and methyl donors (formate, sarcosine, dimethylglycine, choline, and betaine) were involved in detoxification reaction of MnIO-NPs. The obtained information would provide identifiable ground for the candidate selection and optimization.

  19. Neurochemical abnormalities in unmedicated bipolar depression and mania: a 2D 1H MRS investigation.

    PubMed

    Xu, Jun; Dydak, Ulrike; Harezlak, Jaroslaw; Nixon, Jonathan; Dzemidzic, Mario; Gunn, Abigail D; Karne, Harish S; Anand, Amit

    2013-09-30

    The neurobiology and neurochemistry of bipolar disorder and its different phases are poorly understood. This study investigated metabolite abnormalities in both unmedicated bipolar depression as well as mania using 2D 1H magnetic resonance spectroscopy imaging (MRSI). MRSI data were obtained from 24 unmedicated bipolar disorder (BP) subjects (12 (hypo)manic (BPM)) and 12 depressed (BPD), and 20 closely matched healthy controls. 2D 1H MRSI data were collected from a 15-mm axial slice placed along the anterior commissure-posterior commissure (AC-PC) line to measure brain metabolites bilaterally in the thalamus and also the anterior and posterior cingulate cortex (ACC and PCC). Brain Lac/Cr levels were significantly increased in the BP group as a whole compared to healthy controls. Glutamate abnormalities varied across bipolar state as well as brain region: significantly increased Glx/Cr values were found in the left thalamus in BPD, but BPM had decreased Glu/Cr and Glx/Cr levels in the PCC when compared to healthy controls and decreased Glu/Cr levels even when compared to the BPD subjects group. The findings of the study point to state-related abnormalities of oxidative and glutamate metabolism in bipolar disorder.

  20. Sterol-dependent membrane association of the marine sponge-derived bicyclic peptide Theonellamide A as examined by (1)H NMR.

    PubMed

    Cornelio, Kimberly; Espiritu, Rafael Atillo; Todokoro, Yasuto; Hanashima, Shinya; Kinoshita, Masanao; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Yoshida, Minoru; Matsunaga, Shigeki

    2016-11-01

    Theonellamide A (TNM-A) is an antifungal bicyclic dodecapeptide isolated from a marine sponge Theonella sp. Previous studies have shown that TNM-A preferentially binds to 3β-hydroxysterol-containing membranes and disrupts membrane integrity. In this study, several (1)H NMR-based experiments were performed to investigate the interaction mode of TNM-A with model membranes. First, the aggregation propensities of TNM-A were examined using diffusion ordered spectroscopy; the results indicate that TNM-A tends to form oligomeric aggregates of 2-9 molecules (depending on peptide concentration) in an aqueous environment, and this aggregation potentially influences the membrane-disrupting activity of the peptide. Subsequently, we measured the (1)H NMR spectra of TNM-A with sodium dodecyl sulfate-d25 (SDS-d25) micelles and small dimyristoylphosphatidylcholine (DMPC)-d54/dihexanoylphosphatidylcholine (DHPC)-d22 bicelles in the presence of a paramagnetic quencher Mn(2+). These spectra indicate that TNM-A poorly binds to these membrane mimics without sterol and mostly remains in the aqueous media. In contrast, broader (1)H signals of TNM-A were observed in 10mol% cholesterol-containing bicelles, indicating that the peptide efficiently binds to sterol-containing bilayers. The addition of Mn(2+) to these bicelles also led to a decrease in the relative intensity and further line-broadening of TNM-A signals, indicating that the peptide stays near the surface of the bilayers. A comparison of the relative signal intensities with those of phospholipids showed that TNM-A resides in the lipid-water interface (close to the C2' portion of the phospholipid acyl chain). This shallow penetration of TNM-A to lipid bilayers induces an uneven membrane curvature and eventually disrupts membrane integrity. These results shed light on the atomistic mechanism accounting for the membrane-disrupting activity of TNM-A and the important role of cholesterol in its mechanism of action.

  1. Crystal structure of 1H,1'H-[2,2'-biimid-azol]-3-ium hydrogen tartrate hemi-hydrate.

    PubMed

    Gao, Xiao-Li; Bian, Li-Fang; Guo, Shao-Wei

    2014-11-01

    In the crystal of the title hydrated salt, C6H7N4 (+)·C4H5O6 (-)·0.5H2O, the bi-imidazole monocation, 1H,1'H-[2,2'-biimidazol]-3-ium, is hydrogen bonded, via N-H⋯O, O-H⋯O and O-H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol-ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C-H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter-actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

  2. In vivo 1H MRS in the assessment of the therapeutic response of breast cancer patients.

    PubMed

    Sharma, Uma; Baek, Hyeon Man; Su, Min Ying; Jagannathan, Naranamangalam R

    2011-07-01

    MRI and in vivo MRS have rapidly evolved as sensitive tools for diagnosis and therapeutic monitoring in cancer research. In vivo MRS provides information on tumor metabolism, which is clinically valuable in the diagnosis and assessment of tumor response to therapy for the management of women with breast diseases. Several centers complement breast MRI studies with (1)H MRS to improve the specificity of diagnosis. Malignant breast tissues show elevated water-to-fat ratio and choline-containing compounds (total choline, tCho), and any effect of therapy on tissue viability or metabolism will be manifested as changes in these levels. Sequential (1)H MRS studies have shown significantly reduced tCho levels during the course of therapy in patients who were responders. However, there are challenges in using in vivo MRS because of the relatively low sensitivity in detecting the tCho resonance with decreased lesion size or significant reduction in the tumor volume during therapy. MRS is also technically challenging because of the low signal-to-noise ratio and heterogeneous distribution of fat and glandular tissues in the breast. MRS is best utilized for the diagnosis of focal masses, most commonly seen in patients with ductal-type neoplasms; however, it has limitations in detecting nonfocal masses, such as the linear pattern of tumors seen in invasive lobular carcinoma. Further work is required to assess the clinical utility of quantitative MRS, with the goal of automation, which will reduce the subjectivity currently inherent in both qualitative and semi-quantitative MRS.

  3. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  4. Hexamethyldisiloxane-based nanoprobes for (1) H MRI oximetry.

    PubMed

    Gulaka, Praveen K; Rastogi, Ujjawal; McKay, Madalyn A; Wang, Xianghui; Mason, Ralph P; Kodibagkar, Vikram D

    2011-12-01

    Quantitative in vivo oximetry has been reported using (19) F MRI in conjunction with reporter molecules, such as perfluorocarbons, for tissue oxygenation (pO(2) ). Recently, hexamethyldisiloxane (HMDSO) has been proposed as a promising alternative reporter molecule for (1) H MRI-based measurement of pO(2) . To aid biocompatibility for potential systemic administration, we prepared various nanoemulsion formulations using a wide range of HMDSO volume fractions and HMDSO to surfactant ratios. Calibration curves (R(1) versus pO(2) ) for all emulsion formulations were found to be linear and similar to neat HMDSO for low surfactant concentrations (<10% v/v). A small temperature dependence in the calibration curves was observed, similar to previous reports on neat HMDSO, and was characterized to be approximately 1 Torr/ °C under hypoxic conditions. To demonstrate application in vivo, 100 µL of this nanoemulsion was administered to healthy rat thigh muscle (Fisher 344, n=6). Dynamic changes in mean thigh tissue pO(2) were measured using the PISTOL (proton imaging of siloxanes to map tissue oxygenation levels) technique in response to oxygen challenge. Changing the inhaled gas to oxygen for 30 min increased the mean pO(2) significantly (p<0.001) from 39 ± 7 to 275 ± 27 Torr. When the breathing gas was switched back to air, the tissue pO(2) decreased to a mean value of 45 ± 6 Torr, not significantly different from baseline (p>0.05), in 25 min. A first-order exponential fit to this part of the pO(2) data (i.e. after oxygen challenge) yielded an oxygen consumption-related kinetic parameter k=0.21 ± 0.04 min(-1) . These results demonstrate the feasibility of using HMDSO nanoemulsions as nanoprobes of pO(2) and their utility to assess oxygen dynamics in vivo, further developing quantitative (1) H MRI oximetry.

  5. Metabonomics investigation of human urine after ingestion of green tea with gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and (1)H NMR spectroscopy.

    PubMed

    Law, Wai Siang; Huang, Pei Yun; Ong, Eng Shi; Ong, Choon Nam; Li, Sam Fong Yau; Pasikanti, Kishore Kumar; Chan, Eric Chun Yong

    2008-08-01

    A method using gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and (1)H NMR with pattern recognition tools such as principle components analysis (PCA) was used to study the human urinary metabolic profiles after the intake of green tea. From the normalized peak areas obtained from GC/MS and LC/MS and peak heights from (1)H NMR, statistical analyses were used in the identification of potential biomarkers. Metabolic profiling by GC/MS provided a different set of quantitative signatures of metabolites that can be used to characterize the molecular changes in human urine samples. A comparison of normalized metabonomics data for selected metabolites in human urine samples in the presence of potential overlapping peaks after tea ingestion from LC/MS and (1)H NMR showed the reliability of the current approach and method of normalization. The close agreements of LC/MS with (1)H NMR data showed that the effects of ion suppression in LC/MS for early eluting metabolites were not significant. Concurrently, the specificity of detecting the stated metabolites by (1)H NMR and LC/MS was demonstrated. Our data showed that a number of metabolites involved in glucose metabolism, citric acid cycle and amino acid metabolism were affected immediately after the intake of green tea. The proposed approach provided a more comprehensive picture of the metabolic changes after intake of green tea in human urine. The multiple analytical approach together with pattern recognition tools is a useful platform to study metabolic profiles after ingestion of botanicals and medicinal plants.

  6. Mapping of prostate cancer by 1H MRSI.

    PubMed

    Kobus, Thiele; Wright, Alan J; Scheenen, Tom W J; Heerschap, Arend

    2014-01-01

    In many studies, it has been demonstrated that (1)H MRSI of the human prostate has great potential to aid prostate cancer management, e.g. in the detection and localisation of cancer foci in the prostate or in the assessment of its aggressiveness. It is particularly powerful in combination with T2 -weighted MRI. Nevertheless, the technique is currently mainly used in a research setting. This review provides an overview of the state-of-the-art of three-dimensional MRSI, including the specific hardware required, dedicated data acquisition sequences and information on the spectral content with background on the MR-visible metabolites. In clinical practice, it is important that relevant MRSI results become available rapidly, reliably and in an easy digestible way. However, this functionality is currently not fully available for prostate MRSI, which is a major obstacle for routine use by inexperienced clinicians. Routine use requires more automation in the processing of raw data than is currently available. Therefore, we pay specific attention in this review on the status and prospects of the automated handling of prostate MRSI data, including quality control. The clinical potential of three-dimensional MRSI of the prostate is illustrated with literature examples on prostate cancer detection, its localisation in the prostate, its role in the assessment of cancer aggressiveness and in the selection and monitoring of therapy.

  7. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  8. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  9. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood.

  10. An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency.

    PubMed

    Wu, Xiangyu; Li, Ning; Li, Hongde; Tang, Huiru

    2014-04-07

    Plant metabolomic analysis has become an essential part of functional genomics and systems biology and requires effective extraction of both primary and secondary metabolites from plant cells. To establish an optimized extraction method for the NMR-based analysis, we used the seeds of mungbean (Vigna radiata cv. Elü no. 1) as a model and systematically investigated the dependence of the metabolite composition in plant extracts on various extraction parameters including cell-breaking methods, extraction solvents, number of extraction repeats, tissue-to-solvent ratio, and extract-to-buffer ratio (for final NMR analysis). We also compared two NMR approaches for quantitative metabolomic analysis from completely relaxed spectra directly and from partially relaxed spectra calculated with T1. By maximizing the extraction efficiency and signal-to-noise ratio but minimizing inter-sample chemical-shift variations and metabolite degradations, we established a parameter-optimized protocol for NMR-based plant seed metabolomic analysis. We concluded that aqueous methanol was the best extraction solvent with an optimal tissue-to-solvent ratio of about 1 : 10-1 : 15 (mg per μL). The combination of tissuelyser homogenization with ultrasonication was the choice of cell-breaking method with three repeated extractions being necessary. For NMR analysis, the optimal extract-to-solvent was around 5-8 mg mL(-1) and completely relaxed spectra were ideal for intrinsically quantitative metabolomic analysis although partially relaxed spectra were employable for comparative metabolomics. This optimized method will offer ensured data quality for high-throughput and reliable plant metabolomics studies.

  11. NMR-based metabonomics study of sub-acute hepatotoxicity induced by silica nanoparticles in rats after intranasal exposure.

    PubMed

    Parveen, A; Rizvi, S H M; Gupta, A; Singh, R; Ahmad, I; Mahdi, F; Mahdi, A A

    2012-12-22

    Silica nanoparticles (SiO(2) NPs) are widely used commercially; however, their potential toxicity on human health has attracted particular attention. In the present study, the intranasal toxicological effect of 10nm and 80nm SiO(2) NPs (dosed at 150μg for 90 days) on rats was investigated using conventional approaches and metabonomics analysis of serum. Oxidative stress was measured by assessing Lipid peroxide (LPO) levels and enzymatic activities of Superoxide dismutase (SOD), Catalase (CAT), and Glutathione (GSH) levels in liver tissue homogenate. These biochemical observations were supplemented by histological examination of liver sections. SiO(2) NPs enhanced lipid peroxidation with concomitant reduction in SOD, CAT, and GSH content. In addition, SiO(2) NPs also produced alterations in hepatic histopathology. We also evaluated the effect of SiO(2) NPs on the activities of hepatic enzymes such as aminotransferases (ALT/AST) and alkaline phosphatase (ALP) which revealed significant increase in their activity when compared with control. Metabonomic profile of 90 days SiO(2) NPs treated rat sera exhibited significant increase in lactate, alanine, acetate, creatine and choline coupled with a considerable decrease in glucose level. These perturbations, on the whole, implicate impairment in tricarboxylic acid cycle and liver metabolism, which suggests that silica nanoparticles may have a potential to induce hepatotoxicity in rats.

  12. NMR-Based Metabolomic Study on Isatis tinctoria: Comparison of Different Accessions, Harvesting Dates, and the Effect of Repeated Harvesting.

    PubMed

    Guldbrandsen, Niels; Kostidis, Sarantos; Schäfer, Hartmut; De Mieri, Maria; Spraul, Manfred; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Hamburger, Matthias

    2015-05-22

    Isatis tinctoria is an ancient dye and medicinal plant with potent anti-inflammatory and antiallergic properties. Metabolic differences were investigated by NMR spectroscopy of accessions from different origins that were grown under identical conditions on experimental plots. For these accessions, metabolite profiles at different harvesting dates were analyzed, and single and repeatedly harvested plants were compared. Leaf samples were shock-frozen in liquid N2 immediately after being harvested, freeze-dried, and cryomilled prior to extraction. Extracts were prepared by pressurized liquid extraction with ethyl acetate and 70% aqueous methanol. NMR spectra were analyzed using a combination of different methods of multivariate data analysis such as principal component analysis (PCA), canonical analysis (CA), and k-nearest neighbor concept (k-NN). Accessions and harvesting dates were well separated in the PCA/CA/k-NN analysis in both extracts. Pairwise statistical total correlation spectroscopy (STOCSY) revealed unsaturated fatty acids, porphyrins, carbohydrates, indole derivatives, isoprenoids, phenylpropanoids, and minor aromatic compounds as the cause of these differences. In addition, the metabolite profile was affected by the repeated harvest regime, causing a decrease of 1,5-anhydroglucitol, sucrose, unsaturated fatty acids, porphyrins, isoprenoids, and a flavonoid.

  13. Application of ICA to realistically simulated 1H-MRS data

    PubMed Central

    Kalyanam, Ravi; Boutte, David; Hutchison, Kent E; Calhoun, Vince D

    2015-01-01

    Introduction 1H-MRS signals from brain tissues capture information on in vivo brain metabolism and neuronal biomarkers. This study aims to advance the use of independent component analysis (ICA) for spectroscopy data by objectively comparing the performance of ICA and LCModel in analyzing realistic data that mimics many of the known properties of in vivo data. Methods This work identifies key features of in vivo 1H-MRS signals and presents methods to simulate realistic data, using a basis set of 12 metabolites typically found in the human brain. The realistic simulations provide a much needed ground truth to evaluate performances of various MRS analysis methods. ICA is applied to collectively analyze multiple realistic spectra and independent components identified with our generative model to obtain ICA estimates. These same data are also analyzed using LCModel and the comparisons between the ground-truth and the analysis estimates are presented. The study also investigates the potential impact of modeling inaccuracies by incorporating two sets of model resonances in simulations. Results The simulated fid signals incorporating line broadening, noise, and residual water signal closely resemble the in vivo signals. Simulation analyses show that the resolution performances of both LCModel and ICA are not consistent across metabolites and that while ICA resolution can be improved for certain resonances, ICA is as effective as, or better than, LCModel in resolving most model resonances. Conclusion The results show that ICA can be an effective tool in comparing multiple spectra and complements existing approaches for providing quantified estimates. PMID:26221570

  14. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations.

    PubMed

    Holzer, Wolfgang; Eller, Gernot A; Datterl, Barbara; Habicht, Daniela

    2009-07-01

    NMR spectroscopic studies are undertaken with derivatives of 2-pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts ((1)H, (13)C, (15)N) and coupling constants ((1)H,(1)H; (13)C,(1)H; (15)N,(1)H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of (13)C,(1)H spin coupling constants is accomplished by 2D (delta,J) long-range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3-hydroxy-2-pyrazinecarboxylic acid are discussed.

  15. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  16. NMR-based metabonomic analysis of normal rat urine and faeces in response to (±)-venlafaxine treatment.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda-Vallejo, Luis G

    2016-05-10

    (±)-Venlafaxine, a bicyclic antidepressant of the serotonin-norepinephrine reuptake inhibitor (SNRI) class, is prescribed for the treatment of depression and anxiety disorders. As is the case with other antidepressants, its precise mechanisms of action are still unknown. Pharmacometabonomic approaches allow for the detection of diverse metabolites, unlike classic methods for analysing drug interaction based on single metabolites and linear pathways. This provides a global view of the state of homeostasis during treatment and an insight into the mechanisms of action of a drug. Accordingly, the final outcome of treatment is characterised by the network of reactome pathways derived from the on-target and off-target effects of the drug. Regarding antidepressants, the drug network may be located in the gut-microbiome-brain-liver-kidney-immune-cardiovascular system axis (GMBLKICA), implying that neurotransmitters participate as signalling molecules in bidirectional communication. If their bioavailability is increased, this communication and the state of homeostasis may be disrupted. With a pharmacometabonomic approach using NMR in combination with different chemometric methods, a determination was made of subtle changes in the metabolic profile (metabotype) of urine and faeces in normal Wistar rats following a single administration of pharmacological doses of (±)-venlafaxine hydrochloride. Based on the drug-response metabotypes observed, (±)-venlafaxine had effects on gut microbial co-metabolites and osmolytes. Hence, it can be hypothesized that bidirectional communication in the multiorgan axis was perturbed by this drug, and very likely by its active metabolite, (±)-desvenlafaxine. This disrupted signalling could be related not only to therapeutic and adverse effects, but also to the lag period in treatment response.

  17. Polymeric (1) H MRI Probes for Visualizing Tumor In Vivo.

    PubMed

    Kondo, Teruyuki; Kimura, Yu; Yamada, Hisatsugu; Aoyama, Yasuhiro

    2017-04-07

    Magnetic resonance imaging (MRI) has become a prominent non- or low-invasive imaging technique, providing high-resolution, three-dimensional images as well as physiological information about tissues. Low-molecular-weight Gd-MRI contrast agents (CAs), such as Gd-DTPA (DTPA: diethylenetriaminepentaacetic acid), are commonly used in the clinical diagnosis, while macromolecular Gd-MRI CAs have several advantages over low-molecular-weight Gd-MRI CAs, which help minimize the dose of CAs and the risk of side effects. Accordingly, we developed chiral dendrimer Gd-MRI CAs, which showed high r1 values. The association constant values (Ka ) of S-isomeric dendrimer CAs to bovine serum albumin (BSA) were higher than those of R-isomeric dendrimer CAs. Besides, based on a totally new concept, we developed (13) C/(15) N-enriched multiple-resonance NMR/MRI probes, which realized highly selective observation of the probes and analysis of metabolic reactions of interest. This account summarizes our recent study on developing both chiral dendrimer Gd-MRI CAs, and self-traceable (13) C/(15) N-enriched phosphorylcholine polymer probes for early detection of tumors.

  18. Measurements of intracellular volumes by 59Co and 2H/1H NMR and their physiological applications.

    PubMed

    Askenasy, Nadir; Navon, Gil

    2005-04-01

    Determination of the intracellular water volumes using NMR spectroscopy was performed using the NMR-visible nuclei: 59Co and 2H or 1H. Accurate measurement of intracellular water in cell suspensions and perfused organs is an important physiological parameter in the context of electrolyte homeostasis and energy metabolism, in particular when these parameters are monitored by non-invasive NMR spectroscopy. Furthermore, repeated or continuous monitoring of intracellular water provided significant insights into the physiology of cardiac muscle and sarcolemmal membrane permeability and integrity.

  19. Discovery of (R)-4-cyclopropyl-7,8-difluoro-5-(4-(trifluoromethyl)phenylsulfonyl)-4,5-dihydro-1H-pyrazolo[4,3-c]quinoline (ELND006) and (R)-4-cyclopropyl-8-fluoro-5-(6-(trifluoromethyl)pyridin-3-ylsulfonyl)-4,5-dihydro-2H-pyrazolo[4,3-c]quinoline (ELND007): metabolically stable γ-secretase Inhibitors that selectively inhibit the production of amyloid-β over Notch.

    PubMed

    Probst, Gary; Aubele, Danielle L; Bowers, Simeon; Dressen, Darren; Garofalo, Albert W; Hom, Roy K; Konradi, Andrei W; Marugg, Jennifer L; Mattson, Matthew N; Neitzel, Martin L; Semko, Chris M; Sham, Hing L; Smith, Jenifer; Sun, Minghua; Truong, Anh P; Ye, Xiaocong M; Xu, Ying-Zi; Dappen, Michael S; Jagodzinski, Jacek J; Keim, Pamela S; Peterson, Brian; Latimer, Lee H; Quincy, David; Wu, Jing; Goldbach, Erich; Ness, Daniel K; Quinn, Kevin P; Sauer, John-Michael; Wong, Karina; Zhang, Hongbin; Zmolek, Wes; Brigham, Elizabeth F; Kholodenko, Dora; Hu, Kang; Kwong, Grace T; Lee, Michael; Liao, Anna; Motter, Ruth N; Sacayon, Patricia; Santiago, Pamela; Willits, Christopher; Bard, Frédérique; Bova, Michael P; Hemphill, Susanna S; Nguyen, Lam; Ruslim, Lany; Tanaka, Kevin; Tanaka, Pearl; Wallace, William; Yednock, Ted A; Basi, Guriqbal S

    2013-07-11

    Herein, we describe our strategy to design metabolically stable γ-secretase inhibitors which are selective for inhibition of Aβ generation over Notch. We highlight our synthetic strategy to incorporate diversity and chirality. Compounds 30 (ELND006) and 34 (ELND007) both entered human clinical trials. The in vitro and in vivo characteristics for these two compounds are described. A comparison of inhibition of Aβ generation in vivo between 30, 34, Semagacestat 41, Begacestat 42, and Avagacestat 43 in mice is made. 30 lowered Aβ in the CSF of healthy human volunteers.

  20. Synthesis of 1H-indazoles and 1H-pyrazoles via FeBr3/O2 mediated intramolecular C-H amination.

    PubMed

    Zhang, Tianshui; Bao, Weiliang

    2013-02-01

    A new synthesis of substituted 1H-indazoles and 1H-pyrazoles from arylhydrazones via FeBr(3)/O(2) mediated C-H activation/C-N bond formation reactions is reported. The corresponding 1,3-diaryl-substituted indazoles and trisubstituted pyrazoles were obtained in moderate to excellent yields under mild conditions.

  1. Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system.

    PubMed

    Ellis, James Keith; Athersuch, Toby James; Cavill, Rachel; Radford, Robert; Slattery, Craig; Jennings, Paul; McMorrow, Tara; Ryan, Michael P; Ebbels, Timothy Mark David; Keun, Hector Charles

    2011-01-01

    Toxicity testing is vital to protect human health from exposure to toxic chemicals in the environment. Furthermore, combining novel cellular models with molecular profiling technologies, such as metabolomics can add new insight into the molecular basis of toxicity and provide a rich source of biomarkers that are urgently required in a 21st Century approach to toxicology. We have used an NMR-based metabolic profiling approach to characterise for the first time the metabolome of the RPTEC/TERT1 cell line, an immortalised non-tumour human renal epithelial cell line that recapitulates phenotypic characteristics that are absent in other in vitro renal cell models. RPTEC/TERT1 cells were cultured with either the dosing vehicle (DMSO) or with exposure to one of six compounds (nifedipine, potassium bromate, monuron, D-mannitol, ochratoxin A and sodium diclofenac), several of which are known to cause renal effects. Aqueous intracellular and culture media metabolites were profiled by (1)H NMR spectroscopy at 6, 24 and 72 hours of exposure to a low effect dose (IC(10)). We defined the metabolome of the RPTEC/TERT1 cell line and used a principal component analysis approach to derive a panel of key metabolites, which were altered by chemical exposure. By considering only major changes (±1.5 fold change from control) across this metabolite panel we were able to show specific alterations to cellular processes associated with chemical treatment. Our findings suggest that metabolic profiling of RPTEC/TERT1 cells can report on the effect of chemical exposure on multiple cellular pathways at low-level exposure, producing different response profiles for the different compounds tested with a greater number of major metabolic effects observed in the toxin treated cells. Importantly, compounds with established links to chronic renal toxicity produced more diverse and severe perturbations to the cellular metabolome than non-toxic compounds in this model. As these changes can be

  2. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit.

    PubMed

    Garcia-Simon, Monica; Morales, Jose M; Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.

  3. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit

    PubMed Central

    Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by 1H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a 1H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA. PMID:26565633

  4. Intrauterine fetal brain NMR spectroscopy: 1H and 31P studies in rats

    SciTech Connect

    Nakada, T.; Kwee, I.L.; Suzuki, N.; Houkin, K. )

    1989-11-01

    Fetal brain metabolism was investigated in utero noninvasively using multinuclear nuclear magnetic resonance spectroscopy in rats at two representative prenatal stages: early (17-18 days) and late (20-21 days) stages. Phosphorus-31 (31P) spectroscopy revealed that phosphocreatine is significantly lower in the early stage and increases to the level of early neonates by the late prenatal stage. Intracellular pH at the early stage was found to be strikingly high (7.52 +/- 0.21) and decreased to a level similar to that of neonates by the late stage (7.29 +/- 0.07). Phosphomonoester levels at both stages were similar to the values reported for early neonates. Water-suppressed proton (1H) spectroscopy demonstrated a distinctive in vivo fetal brain spectral pattern characterized by low levels of N-acetyl aspartate and high levels of taurine. High-resolution proton spectroscopy and homonuclear chemical-shift correlate spectroscopy of brain perchloric acid extracts confirmed these in vivo findings. In vitro 31P spectroscopy of acidified chloroform methanol extracts showed the characteristic membrane phospholipid profiles of fetal brain. The phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) ratio (PE/PC) did not show significant changes between the two stages at 0.40 +/- 0.11, a value similar to that of early neonates.

  5. Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single-voxel (1)H MRS.

    PubMed

    Vellido, A; Romero, E; Julià-Sapé, M; Majós, C; Moreno-Torres, Á; Pujol, J; Arús, C

    2012-06-01

    This article investigates methods for the accurate and robust differentiation of metastases from glioblastomas on the basis of single-voxel (1)H MRS information. Single-voxel (1)H MR spectra from a total of 109 patients (78 glioblastomas and 31 metastases) from the multicenter, international INTERPRET database, plus a test set of 40 patients (30 glioblastomas and 10 metastases) from three different centers in the Barcelona (Spain) metropolitan area, were analyzed using a robust method for feature (spectral frequency) selection coupled with a linear-in-the-parameters single-layer perceptron classifier. For the test set, a parsimonious selection of five frequencies yielded an area under the receiver operating characteristic curve of 0.86, and an area under the convex hull of the receiver operating characteristic curve of 0.91. Moreover, these accurate results for the discrimination between glioblastomas and metastases were obtained using a small number of frequencies that are amenable to metabolic interpretation, which should ease their use as diagnostic markers. Importantly, the prediction can be expressed as a simple formula based on a linear combination of these frequencies. As a result, new cases could be straightforwardly predicted by integrating this formula into a computer-based medical decision support system. This work also shows that the combination of spectra acquired at different TEs (short TE, 20-32 ms; long TE, 135-144 ms) is key to the successful discrimination between glioblastomas and metastases from single-voxel (1)H MRS.

  6. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study.

    PubMed

    Maddock, Richard J; Casazza, Gretchen A; Buonocore, Michael H; Tanase, Costin

    2011-08-15

    Vigorous exercise increases lactate and glucose uptake by the brain in excess of the increase in brain oxygen uptake. The metabolic fate of this non-oxidized carbohydrate entering the brain is poorly understood, but accumulation of lactate in the brain and/or increased net synthesis of amino acid neurotransmitters are possible explanations. Previous proton magnetic resonance spectroscopy (1H-MRS) studies using conventional pulse sequences have not detected changes in brain lactate following exercise. This contrasts with 1H-MRS studies showing increased brain lactate when blood lactate levels are raised by an intravenous infusion of sodium lactate. Using a J-editing 1H-MRS technique for measuring lactate, we demonstrated a significant 19% increase in lactate in the visual cortex following graded exercise to approximately 85% of predicted maximum heart rate. However, the magnitude of the increase was insufficient to account for more than a small fraction of the non-oxidized carbohydrate entering the brain with exercise. We also report a significant 18% increase in Glx (combined signal from glutamate and glutamine) in visual cortex following exercise, which may represent an activity-dependent increase in glutamate. Future studies will be necessary to test the hypothesis that non-oxidized carbohydrate entering the brain during vigorous exercise is directed, in part, toward increased net synthesis of amino acid neurotransmitters. The possible relevance of these findings to panic disorder and major depression is discussed.

  7. 13C and 1H Nuclear Magnetic Resonance Study of Glycogen Futile Cycling in Strains of the Genus Fibrobacter

    PubMed Central

    Matheron, Christelle; Delort, Anne-Marie; Gaudet, Geneviève; Forano, Evelyne; Liptaj, Tibor

    1998-01-01

    We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics. PMID:12033219

  8. Discrimination of cabbage (Brassica rapa ssp. pekinensis) cultivars grown in different geographical areas using ¹H NMR-based metabolomics.

    PubMed

    Kim, Jahan; Jung, Youngae; Song, Byeongyeol; Bong, Yeon-Sik; Ryu, Do Hyun; Lee, Kwang-Sik; Hwang, Geum-Sook

    2013-04-15

    Cabbage (Brassica rapa ssp. pekinensis) is one of the most popular foods in Asia and is widely cultivated in many countries for the production of lightly fermented vegetables. In this study, metabolomic analysis was performed to distinguish two cultivars of cabbage grown in different geographical areas, Korea and China, using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Principal component analysis (PCA) showed clear discrimination between extracts of cabbage grown in Korea and China for two different cultivars (Chunmyeong and Chunjung). The major biochemicals (metabolites) that contributed to discrimination between cabbages grown in the two regions were 4-aminobutyrate (GABA), acetate, asparagine, leucine, isoleucine, O-phosphocholine, phenylacetate, phenylalanine, succinate, sucrose, tyrosine, and valine. These results suggest that the levels of the major metabolites that differ significantly between cabbages grown in these two areas were influenced by environmental factors such as climate and geology. Our study demonstrates that ¹H NMR based on metabolomics, coupled with multivariate statistics, can be applied to identify the regions of cultivation of various cabbage cultivars.

  9. Elevated levels of GABA+ in migraine detected using (1) H-MRS.

    PubMed

    Aguila, Maria-Eliza R; Lagopoulos, Jim; Leaver, Andrew M; Rebbeck, Trudy; Hübscher, Markus; Brennan, Patrick C; Refshauge, Kathryn M

    2015-07-01

    γ-Aminobutyric acid (GABA) has been implicated in several pain conditions, yet no study has systematically evaluated GABA levels in migraine using (1) H-MRS. The accurate detection, separation and quantification of GABA in individuals with migraine could elucidate the role of this neurotransmitter in migraine pathophysiology. Such information may eventually be useful in the diagnosis and development of more effective treatments for migraine. The aims of this study were therefore to compare the concentration of GABA+ in individuals with migraine with that in asymptomatic individuals, and to determine the diagnostic potential of GABA+ in the classification of those with or without migraine. In this case-control study, GABA+ levels in the brain were determined in 19 participants with migraine and 19 matched controls by (1) H-MRS using Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence. The diagnostic accuracy of GABA+ for the detection of migraine and the optimal cut-off value were determined by receiver operating characteristic analysis. GABA+ levels were significantly higher (p = 0.002) in those with migraine [median, 1.41 institutional units (IU); interquartile range, 1.31-1.50 IU] than in controls (median, 1.18 IU; interquartile range, 1.12-1.35 IU). The GABA+ concentration appears to have good accuracy for the classification of individuals with or without migraine [area under the curve (95% confidence interval), 0.837 (0.71-0.96); p < 0.001]. The optimal GABA+ cut-off value for migraine was 1.30 IU, with a sensitivity of 84.2%, specificity of 68.4% and positive likelihood ratio of +2.67. The outcomes of this study suggest altered GABA metabolism in migraine. These results add to the scarce evidence on the putative role of GABA in migraine and provide a basis to further explore the causal relationship between GABA+ and the pathophysiology of migraine. This study also demonstrates that GABA+ concentration has good diagnostic accuracy for migraine

  10. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  11. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  12. [Study on derivatives of 5-amino-4-acylamino-1H-pyrazole as inhibitors of furin].

    PubMed

    Kibirev, V K; Osadchuk, T V; Vadziuk, O B; Shablykin, O V; Kozachenko, A P; Chumachenko, S A; Popil'nichenko, S V; Brovarets, V S

    2011-01-01

    A series of 5-amino-1H-pyrazoles was synthesized and studied as inhibitors of furin. The most potent compound, 5-amino-4-acetylamino-3-(4-methylphenylamino)1H-pyrazole, was found to retard the activity of furin by mixed-type inhibition with K = 288 microM. These findings permit to plan new ways for chemical modifications of the 5-amino-1H-pyrazole structure and design more potent furin inhibitors of non-peptide nature.

  13. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action.

    PubMed

    McKelvie, Jennifer R; Wolfe, David M; Celejewski, Magda A; Alaee, Mehran; Simpson, André J; Simpson, Myrna J

    2011-12-01

    Nuclear magnetic resonance (NMR)--based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms.

  14. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    PubMed Central

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  15. Skeletal muscle AMP-activated protein kinase γ1(H151R) overexpression enhances whole body energy homeostasis and insulin sensitivity.

    PubMed

    Schönke, Milena; Myers, Martin G; Zierath, Juleen R; Björnholm, Marie

    2015-10-01

    AMP-activated protein kinase (AMPK) is a major sensor of energy homeostasis and stimulates ATP-generating processes such as lipid oxidation and glycolysis in peripheral tissues. The heterotrimeric enzyme consists of a catalytic α-subunit, a β-subunit that is important for enzyme activity, and a noncatalytic γ-subunit that binds AMP and activates the AMPK complex. We generated a skeletal muscle Cre-inducible transgenic mouse model expressing a mutant γ1-subunit (AMPKγ1(H151R)), resulting in chronic AMPK activation. The expression of the predominant AMPKγ3 isoform in skeletal muscle was reduced in extensor digitorum longus (EDL) muscle (81-83%) of AMPKγ1(H151R) transgenic mice, whereas the abundance and phosphorylation of the AMPK target acetyl-CoA carboxylase was increased in tibialis anterior muscle. Glycogen content was increased 10-fold in gastrocnemius muscle. Whole body carbohydrate oxidation was increased by 11%, and whereas glucose tolerance was unaffected, insulin sensitivity was increased in AMPKγ1(H151R) transgenic mice. Furthermore, perigonadal white adipose tissue mass and serum leptin were reduced in female AMPKγ1(H151R) transgenic mice by 38 and 51% respectively. Conversely, in male AMPKγ1(H151R) transgenic mice, food intake was increased (14%), but body weight and body composition were unaltered, presumably because of increased energy expenditure. In conclusion, transgenic activation of skeletal muscle AMPKγ1 in this model plays an important sex-specific role in skeletal muscle metabolism and whole body energy homeostasis.

  16. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor.

    PubMed

    Barrett, Terrance D; Palomino, Heather L; Brondstetter, Theresa I; Kanelakis, Kimon C; Wu, Xiaodong; Haug, Peter V; Yan, Wen; Young, Andrew; Hua, Hong; Hart, Juliet C; Tran, Da-Thao; Venkatesan, Hariharan; Rosen, Mark D; Peltier, Hillary M; Sepassi, Kia; Rizzolio, Michele C; Bembenek, Scott D; Mirzadegan, Tara; Rabinowitz, Michael H; Shankley, Nigel P

    2011-06-01

    The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors. JNJ-42041935, was a potent (pK(I) = 7.3-7.9), 2-oxoglutarate competitive, reversible, and selective inhibitor of PHD enzymes. In addition, JNJ-42041935 was used to compare the effect of selective inhibition of PHD to intermittent, high doses (50 μg/kg i.p.) of an exogenous erythropoietin receptor agonist in an inflammation-induced anemia model in rats. JNJ-42041935 (100 μmol/kg, once a day for 14 days) was effective in reversing inflammation-induced anemia, whereas erythropoietin had no effect. The results demonstrate that JNJ-42041935 is a new pharmacological tool, which can be used to investigate PHD inhibition and demonstrate that PHD inhibitors offer great promise for the treatment of inflammation-induced anemia.

  17. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    PubMed

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  18. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  19. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  20. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy.

    PubMed

    Bazzucchi, Moira; Bertolotti, Luigi; Giammarioli, Monica; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-02-23

    We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h.

  1. A critical evaluation of heteronuclear TOCSY (HEHAHA) experiments for 1H,6Li spin pairs.

    PubMed

    Bergander, Klaus; Hüls, Dietmar; Glaser, Steffen J; Günther, Harald; Luy, Burkhard

    2014-12-01

    Heteronuclear TOCSY (HEHAHA) experiments for (1) H,(6) Li spin pairs in organolithium compounds with adjacent strongly coupled (1) H,(1) H spin systems showed unexpected cross peak behaviour: for n-butyllithium (1) H,(6) Li cross peaks were completely missing, whereas for the dimer of (Z)-2-lithio-1-(o-lithiophenyl)ethane, a cross peak for remote protons was observed even at very short mixing times. It was assumed that strong magnetization transfer within the proton spin systems was responsible for these results, which prevented unambiguous chemical shift assignments. Selective experiments with the (6) Li,(1) H-HET-PLUSH-TACSY sequence then showed the expected (6) Li,(1) H cross peaks for the transfer via the directly coupled (1) H and (6) Li nuclei. For n-butyllithium transfer to H(Cα) via an unresolved heteronuclear coupling constant below 0.1 Hz is unambiguously observed. Cross peaks in the 2D (6) Li,(1) H-HET-PLUSH-TACSY spectra for the dimer of (Z)-2-lithio-1-(o-lithiophenyl)ethane are readily explained by the measured coupling network and the corresponding active mixing conditions.

  2. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  3. An oxazolo[3,2-b]indazole route to 1H-indazolones.

    PubMed

    Oakdale, James S; Solano, Danielle M; Fettinger, James C; Haddadin, Makhluf J; Kurth, Mark J

    2009-07-02

    The novel heterocycle 2,3-dihydrooxazolo[3,2-b]indazole has been synthesized and utilized to provide easy access to 1H-indazolones, particularly the previously unreported 2-(2-alkoxyethyl)-1H-indazol-3(2H)-ones. Mechanistic as well as optimization and reaction scope studies are reported.

  4. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy

    PubMed Central

    Bazzucchi, Moira; Bertolotti, Luigi; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-01-01

    ABSTRACT We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h. PMID:28232427

  5. Functionalized tetrahydro-1H-pyrido[4,3-b]indoles: a novel chemotype with Sirtuin 2 inhibitory activity.

    PubMed

    Yang, Tianming; Chen, Xiao; Jin, Hai-xiao; Sethi, Gautam; Go, Mei-Lin

    2015-03-06

    Sirtuins are protein deacylases with regulatory roles in metabolism and stress response. Functionalized tetrahydro-1H-pyrido[4,3-b]indoles were identified as preferential sirtuin 2 inhibitors, with in vitro inhibitory potencies in the low micromolar concentrations (IC50 3-4 μM) for the more promising candidates. The functional relevance of sirtuin inhibition was corroborated in western blots that showed hyperacetylation of p53 and α-tubulin in treated HepG2 and MDA-MB-231 cells. Molecular docking showed that the tetrahydropyridoindole scaffold was positioned in the NAD + pocket and the acetylated substrate channel of the sirtuin 2 protein by van der Waals/hydrophobic, H bonding and stacking interactions. Functionalized tetrahydropyridoindoles represent a novel class of sirtuin 2 inhibitors that could be further explored for its therapeutic potential.

  6. Regulation of Human Cytochrome P4501A1 (hCYP1A1): A Plausible Target for Chemoprevention?

    PubMed Central

    Santes-Palacios, Rebeca; Ornelas-Ayala, Diego; Cabañas, Noel; Marroquín-Pérez, Ana; Hernández-Magaña, Alexis; del Rosario Olguín-Reyes, Sitlali

    2016-01-01

    Human cytochrome P450 1A1 (hCYP1A1) has been an object of study due to its role in precarcinogen metabolism; for this reason it is relevant to know more in depth the mechanisms that rule out its expression and activity, which make this enzyme a target for the development of novel chemiopreventive agents. The aim of this work is to review the origin, regulation, and structural and functional characteristics of CYP1A1 letting us understand its role in the bioactivation of precarcinogen and the consequences of its modulation in other physiological processes, as well as guide us in the study of this important protein. PMID:28105425

  7. Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using 1H-NMR spectroscopy.

    PubMed

    Picone, Gianfranco; Laghi, Luca; Gardini, Fausto; Lanciotti, Rosalba; Siroli, Lorenzo; Capozzi, Francesco

    2013-12-15

    Cultures of Escherichia coli 555 were grown at four levels of carvacrol (0-2 mM) and the E. coli endo-metabolome was extracted and measured by (1)H NMR spectroscopy. The results show that glucose concentration is going up with concentration of carvacrol and so do formate until the highest concentration is reached, from which point it suddenly decreases. This is interpreted as if the bacteria are increasingly unable to further metabolize glucose and as if the bacteria increasingly shifts with higher levels of carvacrol toward sugar fermentation as carbon source, until the level of carvacrol reaches a level (2.00 mM), where the E. coli must give up. Additionally, the multivariate Principal Component Analysis suggests that the adaptation occurring at sub-lethal doses of carvacrol is different from that occurring at higher doses.

  8. Modelled microgravity cultivation modulates N-acylhomoserine lactone production in Rhodospirillum rubrum S1H independently of cell density.

    PubMed

    Mastroleo, Felice; Van Houdt, Rob; Atkinson, Steve; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    2013-12-01

    The photosynthetic alphaproteobacterium Rhodospirillum rubrum S1H is part of the Micro-Ecological Life Support System Alternative (MELiSSA) project that is aiming to develop a closed life support system for oxygen, water and food production to support human life in space in forthcoming long-term space exploration missions. In the present study, R. rubrum S1H was cultured in a rotating wall vessel (RWV), simulating partial microgravity conditions on Earth. The bacterium showed a significant response to cultivation in simulated microgravity at the transcriptomic, proteomic and metabolic levels. In simulated microgravity conditions three N-acyl-l-homoserine lactones (C10-HSL, C12-HSL and 3-OH-C14-HSL) were detected in concentrations that were twice those detected under normal gravity, while no differences in cell density was detected. In addition, R. rubrum cultivated in modelled microgravity showed higher pigmentation than the normal gravity control, without change in culture oxygenation. When compared to randomized microgravity cultivation using a random positioning machine, significant overlap for the top differentially expressed genes and proteins was observed. Cultivation in this new artificial environment of simulated microgravity showed new properties of this well-known bacterium, including its first, to our knowledge, complete quorum-sensing-related N-acylhomoserine lactone profile.

  9. 1H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis

    PubMed Central

    Puig-Castellví, Francesc; Alfonso, Ignacio; Piña, Benjamin; Tauler, Romà

    2016-01-01

    Disruption of specific metabolic pathways constitutes the mode of action of many known toxicants and it is responsible for the adverse phenotypes associated to human genetic defects. Conversely, many industrial applications rely on metabolic alterations of diverse microorganisms, whereas many therapeutic drugs aim to selectively disrupt pathogens’ metabolism. In this work we analyzed metabolic changes induced by auxotrophic starvation conditions in yeast in a non-targeted approach, using one-dimensional proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and chemometric analyses. Analysis of the raw spectral datasets showed specific changes linked to the different stages during unrestricted yeast growth, as well as specific changes linked to each of the four tested starvation conditions (L-methionine, L-histidine, L-leucine and uracil). Analysis of changes in concentrations of more than 40 metabolites by Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) showed the normal progression of key metabolites during lag, exponential and stationary unrestricted growth phases, while reflecting the metabolic blockage induced by the starvation conditions. In this case, different metabolic intermediates accumulated over time, allowing identification of the different metabolic pathways specifically affected by each gene disruption. This synergy between NMR metabolomics and molecular biology may have clear implications for both genetic diagnostics and drug development. PMID:27485935

  10. Haemolymph from Mytilus galloprovincialis: Response to copper and temperature challenges studied by (1)H-NMR metabonomics.

    PubMed

    Digilio, Giuseppe; Sforzini, Susanna; Cassino, Claudio; Robotti, Elisa; Oliveri, Caterina; Marengo, Emilio; Musso, Davide; Osella, Domenico; Viarengo, Aldo

    2016-01-01

    Numerous studies on molluscs have been carried out to clarify the physiological roles of haemolymph serum proteins and haemocytes. However, little is known about the presence and functional role of the serum metabolites. In this study, Nuclear Magnetic Resonance (NMR) was used to assess whether changes of the metabolic profile of Mytilus galloprovincialis haemolymph may reflect alterations of the physiological status of the organisms due to environmental stressors, namely copper and temperature. Mussel haemolymph was taken from the posterior adductor muscle after a 4-day exposure to ambient (16 °C) or high temperature (24 °C) and in the absence or presence (5 μg/L, 20 μg/L, or 40 μg/L) of sublethal copper (Cu(2+)). The total glutathione (GSH) concentration in the haemolymph of both control and treated mussels was minimal, indicating the absence of significant contaminations by muscle intracellular metabolites due to the sampling procedure. In the (1)H-NMR spectrum of haemolymph, 27 metabolites were identified unambiguously. The separate and combined effects of exposure to copper and temperature on the haemolymph metabolic profile were assessed by Principal Component Analysis (PCA) and Ranking-PCA multivariate analysis. Changes of the metabolomic profile due to copper exposure at 16 °C became detectable at a dose of 20 μg/L copper. Alanine, lysine, serine, glutamine, glycogen, glucose and protein aliphatics played a major role in the classification of the metabolic changes according to the level of copper exposition. High temperature (24 °C) and high copper levels caused a coherent increase of a common set of metabolites (mostly glucose, serine, and lysine), indicating that the metabolic impairment due to high temperature is enforced by the presence of copper. Overall, the results demonstrate that, as for human blood plasma, the analysis of haemolymph metabolites represents a promising tool for the diagnosis of pollutant-induced stress syndrome in marine

  11. Increasing 14N NQR signal by 1H-14N level crossing with small magnetic fields.

    PubMed

    Thurber, Kent R; Sauer, Karen L; Buess, Michael L; Klug, Christopher A; Miller, Joel B

    2005-11-01

    NQR detection of materials, such as TNT, is hindered by the low signal-to-noise ratio at low NQR frequencies. Sweeping small (0-26 mT) magnetic fields to shift the (1)H NMR frequency relative to the (14)N NQR frequencies can provide a significant increase of the (14)N NQR signal-to-noise ratio. Three effects of (1)H-(14)N level crossing are demonstrated in diglycine hydrochloride and TNT. These effects are (1) transferring (1)H polarization to one or more of the (14)N transitions, including the use of an adiabatic flip of the (1)H polarization during the field sweep, (2) shortening the effective (14)N T(1) by the interaction of (1)H with the (14)N transitions, (3) "level transfer" effect where the third (14)N (spin 1) energy level or other (14)N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured (14)N transition by the (1)H. The (14)N NQR signal-to-noise ratio can be increased by a factor of 2.5 for one (14)N site in diglycine hydrochloride (and 2.2 in TNT), even though the maximum (1)H frequency used in this work, 111 6 kHz, is only 30% larger than the measured (14)N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

  12. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  13. 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels.

    PubMed

    Nolan, Christine M; Gelbaum, Leslie T; Lyon, L Andrew

    2006-10-01

    We describe investigations of insulin release from thermoresponsive microgels using variable temperature (1)H NMR. Microgel particles composed of poly(N-isopropylacrylamide) were loaded with the peptide via a swelling technique, and this method was compared to simple equilibrium partitioning. Variable temperature (1)H NMR studies suggest that the swelling loading method results in enhanced entrapment of the peptide versus equilibrium partitioning. A centrifugation-loading assay supports this finding. Pseudo-temperature jump (1)H NMR measurements suggest that the insulin release rate is partially decoupled from microgel collapse. These types of direct release investigations could prove to be useful methods in the future design of controlled macromolecule drug delivery devices.

  14. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  15. Conformational evaluation and detailed 1H and 13C NMR assignments of eremophilanolides.

    PubMed

    Burgueño-Tapia, Eleuterio; Hernández, Luis R; Reséndiz-Villalobos, Adriana Y; Joseph-Nathan, Pedro

    2004-10-01

    Extensive application of 1D and 2D NMR methodology, combined with molecular modeling, allowed the complete 1H and 13C NMR assignments of eremophilanolides from Senecio toluccanus. Comparison of the experimental 1H, 1H coupling constant values with those generated employing a generalized Karplus-type relationship, using dihedral angles extracted from MMX and DFT calculations, revealed that the epoxidized eremophilanolides 1 and 2 show conformational rigidity at room temperature, whereas molecules 3-6, containing an isolated double bond, are conformationally mobile.

  16. Systemic Metabolic Responses of Broiler Chickens and Piglets to Acute T-2 Toxin Intravenous Exposure.

    PubMed

    Wan, Qianfen; He, Qinghua; Deng, Xianbai; Hao, Fuhua; Tang, Huiru; Wang, Yulan

    2016-01-27

    The aim of this study is to thoroughly investigate the toxicity mechanism of mycotoxin T-2 toxin and to further understand the endogenous metabolic alterations induced by T-2 toxin. To achieve this, a nuclear magnetic resonance (NMR)-based metabonomics approach was used to analyze the metabolic alterations induced by a single intravenous injection of T-2 toxin (0.5 mg/kg of body weight) in piglets and broiler chickens. A range of metabolites in the plasma, liver, kidney, and spleen of broiler chickens and plasma of piglets was changed following T-2 toxin injection. For example, a rapid increase of amino acids together with a significant reduction of glucose and lipid occurred in the plasma of broiler chickens and piglets following T-2 toxin treatment. A significant accumulation of amino acids and modulated nucleotides were detected in the liver, kidney, and spleen of T-2 toxin-treated broiler chickens. These data indicated that T-2 toxin caused endogenous metabolic changes in multiple organs and perturbed various metabolic pathways, including energy, amino acid, and nucleotide metabolism, as well as oxidative stress. We also observed elevated levels of tryptophan in the T-2 toxin-treated broiler chickens, which may explain the reported neurotoxic effects of T-2 toxin. These findings provide important information on the toxicity of T-2 toxin and demonstrate the power of the NMR-based metabonomics approach in exploring the toxicity mechanism of xenobiotics.

  17. Biochemical assessment of red blood cells during storage by 1H nuclear magnetic resonance spectroscopy. Identification of a biomarker of their level of protection against oxidative stress

    PubMed Central

    Pertinhez, Thelma A.; Casali, Emanuela; Lindner, Luisa; Spisni, Alberto; Baricchi, Roberto; Berni, Pamela

    2014-01-01

    Background Blood transfusion is an established therapeutic practice. The characteristics of blood components at different storage times are expected to affect the efficacy of transfusion therapy. Metabolic profiling by nuclear magnetic resonance (NMR) spectroscopy requires little or no sample treatment and allows identification of more than 50 soluble metabolites in a single experiment. The aim of this study was to assess the metabolic behaviour of red blood cells during 42 days of storage in blood bank conditions. Materials and methods Red blood cells (RBC), collected from eight healthy male donors, aged 25–50 years, were prepared as prestorage leukoreduced erythrocyte concentrates and stored under standard blood bank conditions. Samples taken at various storage times were separated in two fractions: the supernatant, recovered after centrifugation, and the red blood cell lysate obtained after protein depletion by ultrafiltration. The metabolic profile of the red blood cells was determined from analysis of 1H-NMR spectra. Results The red blood cell supernatant was studied to track the consumption of the preservative additives and to detect and quantify up to 30 metabolites excreted by the erythrocytes. The NMR spectra of the RBC lysate provided complementary information on some biochemical pathways and set the basis for building a time-dependent red blood cell metabolic profile. Discussion We proved the analytical power of 1H-NMR spectroscopy to study red blood cell metabolism under blood bank conditions. A potential biomarker able to provide information on the level of cellular oxidative stress protection was identified. Our data support the hypothesis that a more detailed knowledge of metabolic modifications during storage opens the way to the development of new and more effective protocols for red blood cell conservation and patient-oriented transfusion therapy. PMID:24960643

  18. Quantitative 1H Nuclear Magnetic Resonance Metabolite Profiling as a Functional Genomics Platform to Investigate Alkaloid Biosynthesis in Opium Poppy1[W

    PubMed Central

    Hagel, Jillian M.; Weljie, Aalim M.; Vogel, Hans J.; Facchini, Peter J.

    2008-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The plant is widely cultivated as the only commercial source of the narcotic analgesics morphine and codeine. Variations in plant secondary metabolism as a result of genetic diversity are often associated with perturbations in other metabolic pathways. As part of a functional genomics platform, we used 1H nuclear magnetic resonance (NMR) metabolite profiling for the analysis of primary and secondary metabolism in opium poppy. Aqueous and chloroform extracts of six different opium poppy cultivars were subjected to chemometric analysis. Principle component analysis of the 1H NMR spectra for latex extracts clearly distinguished two varieties, including a low-alkaloid variety and a high-thebaine, low-morphine cultivar. Distinction was also made between pharmaceutical-grade opium poppy cultivars and a condiment variety. Such phenotypic differences were not observed in root extracts. Loading plots confirmed that morphinan alkaloids contributed predominantly to the variance in latex extracts. Quantification of 34 root and 21 latex metabolites, performed using Chenomx NMR Suite version 4.6, showed major differences in the accumulation of specific alkaloids in the latex of the low-alkaloid and high-thebaine, low-morphine varieties. Relatively few differences were found in the levels of other metabolites, indicating that the variation was specific for alkaloid metabolism. Exceptions in the low-alkaloid cultivar included an increased accumulation of the alkaloid precursor tyramine and reduced levels of sucrose, some amino acids, and malate. Real-time polymerase chain reaction analysis of 42 genes involved in primary and secondary metabolism showed differential gene expression mainly associated with alkaloid biosynthesis. Reduced alkaloid levels in the condiment variety were associated with the

  19. Urinary (1)H-NMR and GC-MS metabolomics predicts early and late onset neonatal sepsis.

    PubMed

    Fanos, Vassilios; Caboni, Pierluigi; Corsello, Giovanni; Stronati, Mauro; Gazzolo, Diego; Noto, Antonio; Lussu, Milena; Dessì, Angelica; Giuffrè, Mario; Lacerenza, Serafina; Serraino, Francesca; Garofoli, Francesca; Serpero, Laura Domenica; Liori, Barbara; Carboni, Roberta; Atzori, Luigi

    2014-03-01

    The purpose of this article is to study one of the most significant causes of neonatal morbidity and mortality: neonatal sepsis. This pathology is due to a bacterial or fungal infection acquired during the perinatal period. Neonatal sepsis has been categorized into two groups: early onset if it occurs within 3-6 days and late onset after 4-7 days. Due to the not-specific clinical signs, along with the inaccuracy of available biomarkers, the diagnosis is still a major challenge. In this regard, the use of a combined approach based on both nuclear magnetic resonance ((1)H-NMR) and gas-chromatography-mass spectrometry (GC-MS) techniques, coupled with a multivariate statistical analysis, may help to uncover features of the disease that are still hidden. The objective of our study was to evaluate the capability of the metabolomics approach to identify a potential metabolic profile related to the neonatal septic condition. The study population included 25 neonates (15 males and 10 females): 9 (6 males and 3 females) patients had a diagnosis of sepsis and 16 were healthy controls (9 males and 7 females). This study showed a unique metabolic profile of the patients affected by sepsis compared to non-affected ones with a statistically significant difference between the two groups (p = 0.05).

  20. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra.

    PubMed

    Rae, Caroline D

    2014-01-01

    The current knowledge of the normal biochemistry of compounds that give rise to resonances in human brain proton magnetic resonance spectra measureable at readily available field strengths (i.e. ≤3 T) is reviewed. Molecules covered include myo- and scyllo-inositol, glycerophospho- and phospho-choline and choline, creatine and phosphocreatine, N-acetylaspartate, N-acetylaspartylglutamate, glutamate, glutamine, γ-aminobutyrate, glucose, glutathione and lactate. The factors which influence changes in the levels of these compounds are discussed. As most proton resonances in the brain at low field are derived from a combination of moieties whose biochemistry is complex and interrelated, an understanding of the mechanisms underlying why these species change is crucial to meaningful interpretation of human brain spectra.

  1. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  2. Deproto-metallation using a mixed lithium-zinc base and computed CH acidity of 1-aryl 1H-benzotriazoles and 1-aryl 1H-indazoles.

    PubMed

    Nagaradja, Elisabeth; Chevallier, Floris; Roisnel, Thierry; Dorcet, Vincent; Halauko, Yury S; Ivashkevich, Oleg A; Matulis, Vadim E; Mongin, Florence

    2014-03-07

    1-Aryl-1H-benzotriazoles and -1H-indazoles were synthesized, and their deproto-metallation using the base prepared by mixing LiTMP with ZnCl2·TMEDA (1/3 equiv.) was studied. In the indazole series, reactions occurring at the 3 position were followed by ring opening, and functionalization of the substrate was only found possible (on the sulfur ring) using 2-thienyl as aryl group. In the benzotriazole series, either mono- or bis-deprotonation (depending on the amount of base employed) was achieved with phenyl, 4-methoxyphenyl and 2-thienyl as aryl group, and bis-deprotonation in the case of 4-chlorophenyl and 4-trifluoromethylphenyl. The experimental results were analyzed with the help of the CH acidities of the substrates, determined in THF solution using the DFT B3LYP method.

  3. 1H NMR quantitative determination of photosynthetic pigments from green beans (Phaseolus vulgaris L.).

    PubMed

    Valverde, Juan; This, Hervé

    2008-01-23

    Using 1H nuclear magnetic resonance spectroscopy (1D and 2D), the two types of photosynthetic pigments (chlorophylls, their derivatives, and carotenoids) of "green beans" (immature pods of Phaseolus vulgaris L.) were analyzed. Compared to other analytical methods (light spectroscopy or chromatography), 1H NMR spectroscopy is a fast analytical way that provides more information on chlorophyll derivatives (allomers and epimers) than ultraviolet-visible spectroscopy. Moreover, it gives a large amount of data without prior chromatographic separation.

  4. Practical Methylation Procedure for (1H)-1,2,4-Triazole (Postprint)

    DTIC Science & Technology

    2007-09-01

    Francis Group, LLC. 14. ABSTRACT Conversion of (1H)-1,2,4-triazole to its sodium salt with methanolic sodium methoxide is followed by reaction ...From - To) 04-06-2007 Journal Article 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Practical Methylation Procedure for (1H)-1,2,4-Triazole (Postprint...continuous extraction (chloroform/water) with a final short-path distillation under a controlled vacuum to obtain spectroscopically pure 1- methyl -1,2,4

  5. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome.

  6. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  7. Alternative determination of blood alcohol concentration by (1)H NMR spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K

    2016-02-05

    A rapid, accurate and specific proton nuclear magnetic resonance ((1)H NMR) spectroscopic method is developed to determine ethanol in blood, known as the blood alcohol concentration (BAC). The limits of detection and quantification are 0.02g/L and 0.07g/L, respectively. The (1)H NMR spectra show linearity for whole blood and serum samples of a concentration range of 0.00-3.00g/L (R(2)>0.9995). The (1)H NMR method is applied and validated for whole blood as the sample media. Real driving under influence case samples are analyzed with the reference enzyme-based alcohol dehydrogenase and headspace gas chromatography techniques by the Forensic Medicine in Bonn. The reference results are compared with the (1)H NMR spectroscopic results. The validation and comparison indicate that (1)H NMR is suitable for the quantification of BAC in whole blood. This technique has the advantages of automated analysis with good measurement precision and fast sample throughput. A drop of blood (V=20μL) is adequate for an analysis leading to a possible simplification of the sample collection. Due to the non-destructive method, follow-up examinations by (1)H NMR spectroscopy or DNA determinations by different techniques (PCR, in situ hybridization) are possible in resolving legal disputes.

  8. NMR-Metabolic Methodology in the Study of GM Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  9. (1)H NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese).

    PubMed

    Picone, Gianfranco; Trimigno, Alessia; Tessarin, Paola; Donnini, Silvia; Rombolà, Adamo Domenico; Capozzi, Francesco

    2016-12-15

    The increasing demand for natural foods and beverages, i.e. prepared by excluding synthetic chemicals along the whole production chain, has boosted the adoption of organic and biodynamic cultivation methods which are based on protocols avoiding use of synthetic pesticides. This trend is striking in viticulture, since wine production is largely shaped by the varying drinking attitudes of environment-friendly consumers. Using (1)H NMR, the compositions of grape berries, collected at harvest in 2009 and 2011, in experimental plots cultivated either with biodynamic or organic methods, were compared. Although the analysis provides a comprehensive metabolic profile of berries, the resulting distinctive pattern consists of a few molecules. Lower content of sugars, coumaric and caffeic acids, as well as higher amount of γ-aminobutyric acid (GABA) were observed in biodynamic grapes. The (1)H NMR foodomics approach evidenced a diverse fruit metabolome that could be associated to a different physiological response of plants to the agronomic environment.

  10. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries.

    PubMed

    Forino, Martino; Tartaglione, Luciana; Dell'Aversano, Carmela; Ciminiello, Patrizia

    2016-03-01

    Biological properties of fruits of Lycium barbarum (goji berries) have been ascribed to their high content of nutrients and phenolics. Comprehensive studies aimed at unambiguously identifying the phenolic components in goji berries are still lacking. In this paper, we report on the isolation and NMR-based identification of the major phenolics in commercially available goji berries. Together with already known phenolics, including caffeic acid, p-coumaric acid, rutin, scopoletin, N-trans-feruloyl tyramine, and N-cis-feruloyl tyramine, an unreported N-feruloyl tyramine dimer was characterized as the most abundant polyphenol isolated from the berries. Usually divalent molecules show enhanced biological activities than their corresponding monomers.

  11. NMR-based approach to the analysis of radiopharmaceuticals: radiochemical purity, specific activity, and radioactive concentration values by proton and tritium NMR spectroscopy.

    PubMed

    Schenk, David J; Dormer, Peter G; Hesk, David; Pollack, Scott R; Lavey, Carolee Flader

    2015-06-15

    Compounds containing tritium are widely used across the drug discovery and development landscape. These materials are widely utilized because they can be efficiently synthesized and produced at high specific activity. Results from internally calibrated (3)H and (1)H nuclear magnetic resonance (NMR) spectroscopy suggests that at least in some cases, this calibrated approach could supplement or potentially replace radio-high-performance liquid chromatography for radiochemical purity, dilution and scintillation counting for the measurement of radioactivity per volume, and liquid chromatography/mass spectrometry analysis for the determination of specific activity. In summary, the NMR-derived values agreed with those from the standard approaches to within 1% to 9% for solution count and specific activity. Additionally, the NMR-derived values for radiochemical purity deviated by less than 5%. A benefit of this method is that these values may be calculated at the same time that (3)H NMR analysis provides the location and distribution of tritium atoms within the molecule. Presented and discussed here is the application of this method, advantages and disadvantages of the approach, and a rationale for utilizing internally calibrated (1)H and (3)H NMR spectroscopy for specific activity, radioactive concentration, and radiochemical purity whenever acquiring (3)H NMR for tritium location.

  12. A Metabolomic Approach (1H HRMAS NMR Spectroscopy) Supported by Histology to Study Early Post-transplantation Responses in Islet-transplanted Livers

    PubMed Central

    Vivot, Kevin; Benahmed, Malika A.; Seyfritz, Elodie; Bietiger, William; Elbayed, Karim; Ruhland, Elisa; Langlois, Allan; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Gies, Jean-Pierre; Namer, Izzie-Jacques; Sigrist, Séverine; Reix, Nathalie

    2016-01-01

    Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. 1H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation. Inflammatory markers (Interleukin-6, α2-macroglobulin) are not suitable to follow islet reactions as they are not islet specific. To study islet specific inflammatory events, immunohistochemistry was performed on sections of islet transplanted livers for thrombin (indicator of the instant blood-mediated inflammatory reaction (IBMIR)) and granulocytes and macrophages. We observed a specific correlation between IBMIR and granulocyte and macrophage infiltration after 12 h. In parallel, we identified a metabolic response associated with transplantation: after 12 h, glucose, alanine, aspartate, glutamate and glutathione were significantly increased. An increase of glucose is a marker of tissue degradation, and could be explained by immune cell infiltration. Alanine, aspartate and glutamate are inter-connected in a common metabolic pathway known to be activated during hypoxia. An increase of glutathione revealed the presence of antioxidant protection. In this study, IBMIR visualization combined with 1H HRMAS NMR facilitated the characterization of cellular and molecular pathways recruited following islet transplantation. PMID:27766032

  13. (1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress.

    PubMed

    Zhao, Lijuan; Huang, Yuxiong; Hu, Jerry; Zhou, Hongjun; Adeleye, Adeyemi S; Keller, Arturo A

    2016-02-16

    Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.

  14. 1H, 13C, and 15N resonance assignments of an enzymatically active domain from the catalytic component (CDTa, residues 216-420) of a binary toxin from Clostridium difficile.

    PubMed

    Roth, Braden M; Godoy-Ruiz, Raquel; Varney, Kristen M; Rustandi, Richard R; Weber, David J

    2016-04-01

    Clostridium difficile is a bacterial pathogen and is the most commonly reported source of nosocomial infection in industrialized nations. Symptoms of C. difficile infection (CDI) include antibiotic-associated diarrhea, pseudomembranous colitis, sepsis and death. Over the last decade, rates and severity of hospital infections in North America and Europe have increased dramatically and correlate with the emergence of a hypervirulent strain of C. difficile characterized by the presence of a binary toxin, CDT (C. difficile toxin). The binary toxin consists of an enzymatic component (CDTa) and a cellular binding component (CDTb) that together form the active binary toxin complex. CDTa harbors a pair of structurally similar but functionally distinct domains, an N-terminal domain (residues 1-215; (1-215)CDTa) that interacts with CDTb and a C-terminal domain (residues 216-420; (216-420)CDTa) that harbors the intact ADP-ribosyltransferase (ART) active site. Reported here are the (1)H, (13)C, and (15)N backbone resonance assignments of the 23 kDa, 205 amino acid C-terminal enzymatic domain of CDTa, termed (216-420)CDTa. These NMR resonance assignments for (216-420)CDTa represent the first for a family of ART binary toxins and provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.

  15. Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time

    PubMed Central

    Brasili, Elisa; Miccheli, Alfredo; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Di Cocco, Maria E.; Cechinel, Valdir Filho; Tocci, Noemi; Valletta, Alessio; Pasqua, Gabriella

    2016-01-01

    The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through 1H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related “overcrowding stress”) and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest. PMID:27148330

  16. Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time.

    PubMed

    Brasili, Elisa; Miccheli, Alfredo; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Di Cocco, Maria E; Cechinel, Valdir Filho; Tocci, Noemi; Valletta, Alessio; Pasqua, Gabriella

    2016-01-01

    The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through (1)H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related "overcrowding stress") and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest.

  17. Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products1234

    PubMed Central

    Kulakowski, Daniel; Lankin, David C; McAlpine, James B; Chen, Shao-Nong

    2016-01-01

    In the field of food and nutrition, complex natural products (NPs) are typically obtained from cells/tissues of diverse organisms such as plants, mushrooms, and animals. Among them, edible fruits, grains, and vegetables represent most of the human diet. Because of an important dietary dependence, the comprehensive metabolomic analysis of dietary NPs, performed holistically via the assessment of as many metabolites as possible, constitutes a fundamental building block for understanding the human diet. Both mass spectrometry (MS) and nuclear magnetic resonance (NMR) are important complementary analytic techniques, covering a wide range of metabolites at different concentrations. Particularly, 1-dimensional 1H-NMR offers an unbiased overview of all metabolites present in a sample without prior knowledge of its composition, thereby leading to an untargeted analysis. In the past decade, NMR-based metabolomics in plant and food analyses has evolved considerably. The scope of the present review, covering literature of the past 5 y, is to address the relevance of 1H-NMR–based metabolomics in food plant studies, including a comparison with MS-based techniques. Major applications of NMR-based metabolomics for the quality control of dietary NPs and assessment of their nutritional values are presented. PMID:27180381

  18. Disorders of Carbohydrate Metabolism

    MedlinePlus

    ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Carbohydrates are sugars. ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism NOTE: This is ...

  19. Quantitative Determination of Carthamin in Carthamus Red by 1H-NMR Spectroscopy.

    PubMed

    Yoshida, Takamitsu; Terasaka, Kazuyoshi; Kato, Setsuko; Bai, Fan; Sugimoto, Naoki; Akiyama, Hiroshi; Yamazaki, Takeshi; Mizukami, Hajime

    2013-01-01

    Carthamus Red is a food colorant prepared from the petals of Carthamus tinctorius (Asteraceae) whose major pigment is carthamin. Since an authentic carthamin standard is difficult to obtain commercially for the preparation of calibration curves in HPLC assays, we applied (1)H-NMR spectroscopy to the quantitative determination of carthamin in commercial preparations of Carthamus Red. Carthamus Red was repeatedly extracted in methanol and the extract was dissolved in pyridine-d(5) containing hexamethyldisilane (HMD) prior to (1)H-NMR spectroscopic analysis. The carthamin contents were calculated from the ratios of singlet signal intensities at approximately σ: 9.3 derived from H-16 of carthamin to those of the HMD signal at σ: 0. The integral ratios exhibited good repeatability among NMR spectroscopic analyses. Both the intra-day and inter-day assay variations had coefficients of variation of <5%. Based on the coefficient of absorption, the carthamin contents of commercial preparations determined by (1)H-NMR spectroscopy correlated well with those determined by colorimetry, although the latter were always approximately 1.3-fold higher than the former, irrespective of the Carthamus Red preparations. In conclusion, the quantitative (1)H-NMR spectroscopy used in the present study is simple and rapid, requiring no carthamin standard for calibration. After HMD concentration has been corrected using certified reference materials, the carthamin contents determined by (1)H-NMR spectroscopy are System of Units (SI)-traceable.

  20. A disc wind interpretation of the strong Fe Kα features in 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Tomaru, Ryota; Watanabe, Shin; Takahashi, Tadayuki

    2016-10-01

    1H 0707-495 is the most convincing example of a supermassive black hole with an X-ray spectrum being dominated by extremely smeared, relativistic reflection, with the additional requirement of strongly supersolar iron abundance. However, here we show that the iron features in its 2-10 keV spectrum are rather similar to the archetypal wind dominated source, PDS 456. We fit all the 2-10 keV spectra from 1H 0707-495 using the same wind model as used for PDS 456, but viewed at higher inclination so that the iron absorption line is broader but not so blueshifted. This gives a good overall fit to the data from 1H 0707-495, and an extrapolation of this model to higher energies also gives a good match to the NuSTAR data. Small remaining residuals indicate that the iron line emission is stronger than in PDS 456. This is consistent with the wider angle wind expected from a continuum-driven wind from the super-Eddington mass accretion rate in 1H 0707-495, and/or the presence of residual reflection from the underlying disc though the presence of the absorption line in the model removes the requirement for highly relativistic smearing, and highly supersolar iron abundance. We suggest that the spectrum of 1H 0707-495 is sculpted more by absorption in a wind than by extreme relativistic effects in strong gravity.

  1. 1H relaxation dispersion in solutions of nitroxide radicals: influence of electron spin relaxation.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Kowalewski, J; Rössler, E A; Moscicki, J

    2013-03-28

    The work presents a theory of nuclear ((1)H) spin-lattice relaxation dispersion for solutions of (15)N and (14)N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)]. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The (1)H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the (1)H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against (1)H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-(15)N and 4-oxo-TEMPO-d16-(14)N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both (14)N and (15)N systems and explains the features of (1)H relaxation dispersion resulting from the electron spin relaxation.

  2. 1H relaxation dispersion in solutions of nitroxide radicals: Influence of electron spin relaxation

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-03-01

    The work presents a theory of nuclear (1H) spin-lattice relaxation dispersion for solutions of 15N and 14N radicals, including electron spin relaxation effects. The theory is a generalization of the approach presented by Kruk et al. [J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854. The electron spin relaxation is attributed to the anisotropic part of the electron spin-nitrogen spin hyperfine interaction modulated by rotational dynamics of the paramagnetic molecule, and described by means of Redfield relaxation theory. The 1H relaxation is caused by electron spin-proton spin dipole-dipole interactions which are modulated by relative translational motion of the solvent and solute molecules. The spectral density characterizing the translational dynamics is described by the force-free-hard-sphere model. The electronic relaxation influences the 1H relaxation by contributing to the fluctuations of the inter-molecular dipolar interactions. The developed theory is tested against 1H spin-lattice relaxation dispersion data for glycerol solutions of 4-oxo-TEMPO-d16-15N and 4-oxo-TEMPO-d16-14N covering the frequency range of 10 kHz-20 MHz. The studies are carried out as a function of temperature starting at 328 K and going down to 290 K. The theory gives a consistent overall interpretation of the experimental data for both 14N and 15N systems and explains the features of 1H relaxation dispersion resulting from the electron spin relaxation.

  3. The structure and properties of 5,6-dinitro-1H-benzotriazole

    NASA Astrophysics Data System (ADS)

    Santa María, Dolores; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José

    2016-06-01

    5,6-Dinitro-1H-benzotriazole crystallizes in the monoclinic system, space group P21/c. The asymmetric unit contains the planar 1H-tautomer together with a water molecule of crystallization. Each water molecule is hydrogen bonded to three adjacent 5,6-dinitrobenzotriazoles forming a tape along the b-axis of the crystal. These tapes stack along the c-axis through hydrogen bonds involving the water molecules and one of the nitro groups leading to a bidimensional structure. Solid-state 13C and 15N CPMAS NMR allow to confirm that the tautomer present is the 1H one. In DMSO-d6 solution the results are quite different and, based on GIAO/B3LYP/6-311++G(d,p) calculations, lead us to conclude that the major tautomer is the 5,6-dinitro-2H-benzotriazole, a surprising result that contradicts the rule that the major tautomer in solution coincides with the one present in the crystal. An anhydrous pseudopolymorph of 5,6-dinitro-1H-benzotriazole has been obtained as a non-crystalline form and from solid-state NMR and theoretical calculations, we conclude that it is an 1H-tautomer.

  4. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  5. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  6. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  7. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  8. Brain temperature and pH measured by (1)H chemical shift imaging of a thulium agent.

    PubMed

    Coman, Daniel; Trubel, Hubert K; Rycyna, Robert E; Hyder, Fahmeed

    2009-02-01

    Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non-invasive methods. At 11.7 T, we demonstrate that a thulium-based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by (1)H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi-parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor - which has a predominantly extracellular presence - depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium-based method compared well with other methods for temperature ((1)H MRS of N-acetylaspartate and water; copper-constantan thermocouple wire) and pH ((31)P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in alpha-chloralose-anesthetized and renal-ligated rats revealed temperature (33-34 degrees C) and pH (7.3-7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately using Biosensor Imaging of Redundant Deviation in Shifts (BIRDS).

  9. 1H NMR Metabolomics Reveals Association of High Expression of Inositol 1, 4, 5 Trisphosphate Receptor and Metabolites in Breast Cancer Patients

    PubMed Central

    Chagtoo, Megha; Agarwal, Gaurav; George, Nelson; Sinha, Neeraj; Godbole, Madan M.

    2017-01-01

    1H NMR is used to detect alterations in metabolites and their linkage to metabolic processes in a number of pathological conditions including breast cancer. Inositol 1, 4, 5 trisphosphate (IP3R) receptor is an intracellular calcium channel known to regulate metabolism and cellular bioenergetics. Its expression is up regulated in a number of cancers. However, its linkage to metabolism in disease conditions has not been evaluated. This study was designed to determine the association if any, of these metabolites with altered expression of IP3R in breast cancer. We used 1H NMR to identify metabolites in the serum of breast cancer patients (n = 27) and performed Real-time Polymerase Chain Reaction analysis for quantifying the expression of IP3R type 3 and type 2 in tissues from breast cancer patients (n = 40). Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA) clearly distinguished patients with high/low IP3R expression from healthy subjects. The present study revealed high expression of IP3R type 2 and type 3 in human breast tumor tissue compared to adjacent non-tumorous tissue. Moreover, patients with ≥ 2-fold increase in IP3R (high IP3R group) had significantly higher concentration of metabolic intermediates compared to those with < 2-fold increase in IP3R (low IP3R group). We observed an increase in lipoprotein content and the levels of metabolites like lactate, lysine and alanine and a decrease in the levels of pyruvate and glucose in serum of high IP3R group patients when compared to those in healthy subjects. Receiver operating characteristic (ROC) curve analysis was performed to show the clinical utility of metabolites. In addition to the human studies, functional relevance of IP3Rs in causing metabolic disruption was observed in MCF-7 and MDA MB-231 cells. Results from our studies bring forth the importance of metabolic (or metabolomics) profiling of serum by 1H NMR in conjunction with tissue expression studies for

  10. Comparisons of parallel potential biomarkers of 1H-MRS-measured hepatic lipid content in patients with non-alcoholic fatty liver disease.

    PubMed

    Shih, Kai-Lun; Su, Wei-Wen; Chang, Chia-Chu; Kor, Chew-Teng; Chou, Chen-Te; Chen, Ting-Yu; Wu, Hung-Ming

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease. This cross-sectional study aimed to evaluate whether parallel clinical features and serum markers are related to the severity of NAFLD. We enrolled 111 participants with different metabolic syndrome (MetS) scores (zero, n = 22; one, n = 19; two, n = 22; and ≥ three, n = 48) and used 1H-MRS to measure liver fat content. Biochemical profiles and potential biomarkers of NAFLD were measured in fasting plasma. We found that 1H-MRS-measured fat content was significantly associated with MetS score ≥1, endotoxin, and hs-CRP. Ordinal logistic regression analysis revealed that MetS score ≥2 and endotoxin were predictive of NAFLD (1H-MRS > 5%) and that endotoxin, hs-CRP, and malondialdehyde (MDA) were predictive of NAFLD with liver injury (1H-MRS > 9.67%). Endotoxin plus MetS score was shown to be the most accurate predictor of overall NAFLD (AUC = 0.854; (95% CI: 0.785-0.924), P < 0.001), and endotoxin plus hs-CRP and MDA was found to be predictive of NAFLD with liver injury (0.868; (0.801-0.936), P < 0.001). These results suggest that MetS score plus certain serum biomarkers with 1H-MRS findings may hold promise for developing an effective model for monitoring the severity of NAFLD.

  11. Skeletal muscle AMP-activated protein kinase γ1H151R overexpression enhances whole body energy homeostasis and insulin sensitivity

    PubMed Central

    Schönke, Milena; Myers, Martin G.; Zierath, Juleen R.

    2015-01-01

    AMP-activated protein kinase (AMPK) is a major sensor of energy homeostasis and stimulates ATP-generating processes such as lipid oxidation and glycolysis in peripheral tissues. The heterotrimeric enzyme consists of a catalytic α-subunit, a β-subunit that is important for enzyme activity, and a noncatalytic γ-subunit that binds AMP and activates the AMPK complex. We generated a skeletal muscle Cre-inducible transgenic mouse model expressing a mutant γ1-subunit (AMPKγ1H151R), resulting in chronic AMPK activation. The expression of the predominant AMPKγ3 isoform in skeletal muscle was reduced in extensor digitorum longus (EDL) muscle (81–83%) of AMPKγ1H151R transgenic mice, whereas the abundance and phosphorylation of the AMPK target acetyl-CoA carboxylase was increased in tibialis anterior muscle. Glycogen content was increased 10-fold in gastrocnemius muscle. Whole body carbohydrate oxidation was increased by 11%, and whereas glucose tolerance was unaffected, insulin sensitivity was increased in AMPKγ1H151R transgenic mice. Furthermore, perigonadal white adipose tissue mass and serum leptin were reduced in female AMPKγ1H151R transgenic mice by 38 and 51% respectively. Conversely, in male AMPKγ1H151R transgenic mice, food intake was increased (14%), but body weight and body composition were unaltered, presumably because of increased energy expenditure. In conclusion, transgenic activation of skeletal muscle AMPKγ1 in this model plays an important sex-specific role in skeletal muscle metabolism and whole body energy homeostasis. PMID:26306597

  12. Nanoscale electrodeposition of Al on n -Si(1 1 1) : H from an ionic liquid

    NASA Astrophysics Data System (ADS)

    Aravinda, C. L.; Burger, B.; Freyland, W.

    2007-02-01

    The H-terminated Si(1 1 1)/ionic liquid interface has been imaged by scanning tunneling microscopy (STM) for the first time. Employing the ionic liquid AlCl-[Cmim]+ nanoscale electrodeposition of Al on Si(1 1 1) : H substrates has been investigated by in situ electrochemical scanning probe techniques at room temperature. No underpotential deposition of Al is found. Nucleation of Al begins at the Nernst potential with the formation of large islands spread all over the substrate. Under the influence of the scanning STM tip, these islands are easily disturbed which makes it difficult to image the initial stages of electrochemical phase formation. We explain this by a relatively high mobility of the islands due to the poor wetting of Al on the Si(1 1 1) : H substrate. The 3D growth of Al on Si(1 1 1) : H follows a Volmer-Weber growth mode. Scanning tunneling spectra of larger Al clusters show clearly metallic characteristics.

  13. Aminosilanes derived from 1H-benzimidazole-2(3H)-thione.

    PubMed

    Palomo-Molina, Juliana; García-Báez, Efrén V; Contreras, Rosalinda; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-09-01

    Two new molecular structures, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C-H···π interactions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R2(2)(8) rings via N-H···S interactions, along with parallel π-π interactions between imidazole and benzene rings.

  14. Amino­silanes derived from 1H-benzimidazole-2(3H)-thione

    PubMed Central

    Palomo-Molina, Juliana; García-Báez, Efrén V.; Contreras, Rosalinda; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-01-01

    Two new mol­ecular structures, namely 1,3-bis­(tri­methyl­silyl)-1H-benzimidazole-2(3H)-thione, C13H22N2SSi2, (2), and 1-tri­methyl­silyl-1H-benzimidazole-2(3H)-thione, C10H14N2SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π inter­actions between the centroid of the benzmidazole system and the SiMe3 groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R 2 2(8) rings via N—H⋯S inter­actions, along with parallel π–π inter­actions between imidazole and benzene rings. PMID:26322611

  15. Measurement of rates of transport across erythrocyte membranes by 1H nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Guy, Robert D.; Tahir Razi, M.; Rabenstein, Dallas L.

    The use of 1H NMR to monitor the transport of small molecules across the membrane of erythrocytes is evaluated. Cells are separated, as a function of time, from a suspension medium containing the small molecule of interest, and then analyzed for the small molecule by 1H NMR. 1H NMR spectra of either the intact cells or cell lysate are measured by the protein saturation pulse/Fourier transform (PSP/FT) technique. With this technique, interfering hemoglobin resonances are suppressed with a selective presaturation pulse and high-resolution spectra are obtained for small molecules. The detection limit is on the order of 0. 10 m M Membrane transport rates were measured for alanine, penicillamine, N-acetylpenicillamine, and S-methylcysteine.

  16. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  17. Congenital Cataracts and Gut Dysmotility in a DYNC1H1 Dyneinopathy Patient

    PubMed Central

    Gelineau-Morel, Rose; Lukacs, Marshall; Weaver, K. Nicole; Hufnagel, Robert B.; Gilbert, Donald L.; Stottmann, Rolf W.

    2016-01-01

    Whole exome sequencing continues to end the diagnostic odyssey for a number of patients and expands our knowledge of phenotypes associated with gene mutations. We describe an 11-year-old female patient with a constellation of symptoms including congenital cataracts, gut dysmotility, sensory neuropathy, and bifrontal polymicrogyria. Whole exome sequencing was performed and identified a de novo heterozygous missense mutation in the ATPase motor domain of cytoplasmic dynein heavy chain 1 (DYNC1H1), which is known to be involved in neuronal migration and retrograde axonal transport. The mutation was found to be highly damaging by multiple prediction programs. The residue is highly conserved, and reported mutations in this gene result in a variety of phenotypes similar to that of our patient. We report only the second case of congenital cataracts and the first of gut dysmotility in a patient with DYNC1H1, thus expanding the spectrum of disease seen in DYNC1H1 dyneinopathies. PMID:27754416

  18. Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges.

    PubMed

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2013-12-01

    Clam Ruditapes philippinarum is one of the important marine aquaculture species in North China. However, pathogens can often cause diseases and lead to massive mortalities and economic losses of clam. In this work, we compared the metabolic responses induced by Vibrio anguillarum and Vibrio splendidus challenges towards hepatopancreas of clam using NMR-based metabolomics. Metabolic responses suggested that both V. anguillarum and V. splendidus induced disturbances in energy metabolism and osmotic regulation, oxidative and immune stresses with different mechanisms, as indicated by correspondingly differential metabolic biomarkers (e.g., amino acids, ATP, glucose, glycogen, taurine, betaine, choline and hypotaurine) and altered mRNA expression levels of related genes including ATP synthase, ATPase, glutathione peroxidase, heat shock protein 90, defensin and lysozyme. However, V. anguillarum caused more severe oxidative and immune stresses in clam hepatopancreas than V. splendidus. Our results indicated that metabolomics could be used to elucidate the biological effects of pathogens to the marine clam R. philippinarum.

  19. A novel platform for automated high-throughput fluxome profiling of metabolic variants.

    PubMed

    Heux, Stéphanie; Poinot, Juliette; Massou, Stéphane; Sokol, Serguei; Portais, Jean-Charles

    2014-09-01

    Advances in metabolic engineering are enabling the creation of a large number of cell factories. However, high-throughput platforms do not yet exist for rapidly analyzing the metabolic network of the engineered cells. To fill the gap, we developed an integrated solution for fluxome profiling of large sets of biological systems and conditions. This platform combines a robotic system for (13)C-labelling experiments and sampling of labelled material with NMR-based isotopic fingerprinting and automated data interpretation. As a proof-of-concept, this workflow was applied to discriminate between Escherichia coli mutants with gradual expression of the glucose-6-phosphate dehydrogenase. Metabolic variants were clearly discriminated while pathways that support metabolic flexibility towards modulation of a single enzyme were elucidating. By directly connecting the data flow between cell cultivation and flux quantification, considerable advances in throughput, robustness, release of resources and screening capacity were achieved. This will undoubtedly facilitate the development of efficient cell factories.

  20. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-06

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c".

  1. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  2. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  3. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  4. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  5. 40 CFR 721.1750 - 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium salts. 721.1750 Section 721.1750... 1H-Benzotriazole, 5-(pen-tyl-oxy)- and 1H-ben-zo-tri-a-zole, 5-(pen-tyl-oxy)-, sodium and potassium...-tyl-oxy)-, sodium salt (PMN P-92-35), and 1H-benzotriazole, 5-(pentyloxy)- , potassium salt (PMN...

  6. Elevated Glutamatergic Compounds in Pregenual Anterior Cingulate in Pediatric Autism Spectrum Disorder Demonstrated by 1H MRS and 1H MRSI

    PubMed Central

    Bejjani, Anthony; O'Neill, Joseph; Kim, John A.; Frew, Andrew J.; Yee, Victor W.; Ly, Ronald; Kitchen, Christina; Salamon, Noriko; McCracken, James T.; Toga, Arthur W.; Alger, Jeffry R.; Levitt, Jennifer G.

    2012-01-01

    Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy (1H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging (1H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD. PMID:22848344

  7. Two configurations of the four-ring birdcage coil for 1H imaging and 1H-decoupled 31P spectroscopy of the human head.

    PubMed

    Murphy-Boesch, J; Srinivasan, R; Carvajal, L; Brown, T R

    1994-02-01

    The four-ring birdcage resonator, a new class of dual-tuned birdcage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  8. Two Configurations of the Four-Ring Birdcage Coil for 1H Imaging and 1H-Decoupled 31P Spectroscopy of the Human Head

    NASA Astrophysics Data System (ADS)

    Murphyboesch, J.; Srinivasan, R.; Carvajal, L.; Brown, T. R.

    The four-ring birdcage resonator, a new class of dual-tuned birdeage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.

  9. (1)H chemical shift differences of Prelog-Djerassi lactone derivatives: DFT and NMR conformational studies.

    PubMed

    Aímola, Túlio J; Lima, Dimas J P; Dias, Luiz C; Tormena, Cláudio F; Ferreira, Marco A B

    2015-02-21

    This work reports an experimental and theoretical study of the conformational preferences of several Prelog-Djerassi lactone derivatives, to elucidate the (1)H NMR chemical shift differences in the lactonic core that are associated with the relative stereochemistry of these derivatives. The boat-like conformation of explains the anomalous (1)H chemical shift between H-5a and H-5b, in which the two methyl groups (C-8 and C-9) face H-5b, leading to its higher shielding effect.

  10. A practical, metal-free synthesis of 1H-indazoles.

    PubMed

    Counceller, Carla M; Eichman, Chad C; Wray, Brenda C; Stambuli, James P

    2008-03-06

    The synthesis of 1H-indazoles is achieved from o-aminobenzoximes by the selective activation of the oxime in the presence of the amino group. The reaction occurs with a variety of substituted o-aminobenzoximes using a slight excess of methanesulfonyl chloride and triethylamine at 0-23 degrees C and is amenable to scale-up. The synthesis of 1H-indazoles under these conditions is extremely mild compared with previous synthetic approaches and affords the desired compounds in good to excellent yields.

  11. Urinary metabonomics study of the hepatoprotective effects of total alkaloids from Corydalis saxicola Bunting on carbon tetrachloride-induced chronic hepatotoxicity in rats using (1)H NMR analysis.

    PubMed

    Wu, Fang; Zheng, Hua; Yang, Zheng-Teng; Cheng, Bang; Wu, Jin-Xia; Liu, Xu-Wen; Tang, Chao-Ling; Lu, Shi-Yin; Chen, Zhao-Ni; Song, Fang-Ming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Liang, Yong-Hong; Song, Hui; Su, Zhi-Heng

    2017-03-19

    Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl4)-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance ((1)H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl4-induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl4-induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the

  12. Molecular Structures from [superscript 1]H NMR Spectra: Education Aided by Internet Programs

    ERIC Educational Resources Information Center

    Debska, Barbara; Guzowska-Swider, Barbara

    2007-01-01

    The article presents the way in which freeware Internet programs can be applied to teach [superscript 1]H NMR spectroscopy. The computer programs described in this article are part of the educational curriculum that explores spectroscopy and spectra interpretation. (Contains 6 figures.)

  13. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  14. 32 CFR 1630.15 - Class 1-H: Registrant not subject to processing for induction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for induction. 1630.15 Section 1630.15 National Defense Other Regulations Relating to National Defense... induction. In Class 1-H shall be placed any registrant who is not eligible for Class 1-A and is not currently subject to processing for induction....

  15. 32 CFR 1630.15 - Class 1-H: Registrant not subject to processing for induction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for induction. 1630.15 Section 1630.15 National Defense Other Regulations Relating to National Defense... induction. In Class 1-H shall be placed any registrant who is not eligible for Class 1-A and is not currently subject to processing for induction....

  16. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  17. Investigation of 1H MRS for quantification of hepatic triglyceride in lean and obese cats.

    PubMed

    Clark, M H; Larsen, R; Lu, W; Hoenig, M

    2013-10-01

    (1)H magnetic resonance spectroscopy ((1)H MRS) is the preferred technique for noninvasive quantification of hepatic triglyceride in humans. Domestic cats are subject to liver lipid accumulation, but MRS has not been investigated for quantification of liver fat in cats. The purpose of this project was to explore a technique for (1)H MRS measurement of hepatic triglyceride in lean and obese cats. Hepatic (1)H MRS was performed, using a 3T imaging unit and a single-voxel spin-echo spectroscopy sequence, on 6 lean (3.3-4.6 kg) and 12 obese cats (5.2-9.8 kg). Median liver fat percentages in lean and obese cats were 1.3% and 6.8%, respectively. Results are biologically plausible, based on chemical assay in a separate group of cats; however, full validation of the method is necessary before other conclusions can be drawn. This report should provide a foundation for the further development of spectroscopic techniques for studying hepatic lipid accumulation in cats.

  18. Experimental test of Bell's inequality via the 1H(d,2He)n reaction

    SciTech Connect

    Saito, T.; Sakai, H.; Kuboki, H.; Sasano, M.; Yako, K.; Ikeda, T.; Itoh, K.; Kawabata, T.; Maeda, Y.; Suda, K.; Uesaka, T.; Matsui, N.; Satou, Y.; Sekiguchi, K.; Tamii, A.

    2005-05-06

    To test Bell's inequality, measurements of spin correlations between two protons in the spin singlet state have been performed. Proton pairs in the singlet state were produced by the 1H(d,2He)n reaction at Ed = 270 MeV.

  19. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  20. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  1. Aminosilanes derived from 1H-benzimidazole-2(3H)-thione

    SciTech Connect

    Palomo-Molina, Juliana; García-Báez, Efrén V.; Pineda-Urbina, Kayim; Ramos-Organillo, Angel

    2015-08-12

    In two trimethylsilyl-substituted 1H-benzimidazole-2(3H)-thiones, noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe{sub 3} groups form helicoidal arrangements in one, and dimerization results in the formation of R{sub s} {sup 2}(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings, in the second compound. Two new molecular structures, namely 1,3-bis(trimethylsilyl)-1H-benzimidazole-2(3H)-thione, C{sub 13}H{sub 22}N{sub 2}SSi{sub 2}, (2), and 1-trimethylsilyl-1H-benzimidazole-2(3H)-thione, C{sub 10}H{sub 14}N{sub 2}SSi, (3), are reported. Both systems were derived from 1H-benzimidazole-2(3H)-thione. Noncovalent C—H⋯π interactions between the centroid of the benzmidazole system and the SiMe{sub 3} groups form helicoidal arrangements in (2). Dimerization of (3) results in the formation of R{sub 2}{sup 2}(8) rings via N—H⋯S interactions, along with parallel π–π interactions between imidazole and benzene rings.

  2. Synthesis of 1H-indazoles from N-tosylhydrazones and nitroaromatic compounds.

    PubMed

    Liu, Zhenxing; Wang, Long; Tan, Haocheng; Zhou, Shiyi; Fu, Tianren; Xia, Ying; Zhang, Yan; Wang, Jianbo

    2014-05-21

    A new method for the synthesis of 1H-indazoles from readily available N-tosylhydrazones and nitroaromatic compounds has been developed. This transformation occurs under transition-metal-free conditions and shows a wide substrate scope. The method has been successfully applied to the formal synthesis of a bioactive compound, WAY-169916.

  3. Synthesis of 1H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis.

    PubMed

    Wang, Qiang; Li, Xingwei

    2016-05-06

    Nitrosobenzenes have been used as a convenient aminating reagent for the efficient synthesis of 1H-indazoles via rhodium and copper catalyzed C-H activation and C-N/N-N coupling. The reaction occurred under redox-neutral conditions with high efficiency and functional group tolerance. Moreover, a rhodacyclic imidate complex has been identified as a key intermediate.

  4. One-pot synthesis of novel 2,3-dihydro-1H-indazoles.

    PubMed

    Breton, Gary W; Lepore, Antonio J

    2011-11-16

    A copper(I)-mediated one-pot synthesis of 2,3-dihydro-1H-indazole heterocycles has been developed. This synthetic route provides the desired indazoles in moderate to good yields (55%-72%) which are substantially better than those achievable with an alternative two-step reaction sequence. The reaction is tolerant of functionality on the aromatic ring.

  5. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy

    PubMed Central

    Harms, M.B.; Ori-McKenney, K.M.; Scoto, M.; Tuck, E.P.; Bell, S.; Ma, D.; Masi, S.; Allred, P.; Al-Lozi, M.; Reilly, M.M.; Miller, L.J.; Jani-Acsadi, A.; Pestronk, A.; Shy, M.E.; Muntoni, F.; Vallee, R.B.

    2012-01-01

    Objective: To identify the gene responsible for 14q32-linked dominant spinal muscular atrophy with lower extremity predominance (SMA-LED, OMIM 158600). Methods: Target exon capture and next generation sequencing was used to analyze the 73 genes in the 14q32 linkage interval in 3 SMA-LED family members. Candidate gene sequencing in additional dominant SMA families used PCR and pooled target capture methods. Patient fibroblasts were biochemically analyzed. Results: Regional exome sequencing of all candidate genes in the 14q32 interval in the original SMA-LED family identified only one missense mutation that segregated with disease state—a mutation in the tail domain of DYNC1H1 (I584L). Sequencing of DYNC1H1 in 32 additional probands with lower extremity predominant SMA found 2 additional heterozygous tail domain mutations (K671E and Y970C), confirming that multiple different mutations in the same domain can cause a similar phenotype. Biochemical analysis of dynein purified from patient-derived fibroblasts demonstrated that the I584L mutation dominantly disrupted dynein complex stability and function. Conclusions: We demonstrate that mutations in the tail domain of the heavy chain of cytoplasmic dynein (DYNC1H1) cause spinal muscular atrophy and provide experimental evidence that a human DYNC1H1 mutation disrupts dynein complex assembly and function. DYNC1H1 mutations were recently found in a family with Charcot-Marie-Tooth disease (type 2O) and in a child with mental retardation. Both of these phenotypes show partial overlap with the spinal muscular atrophy patients described here, indicating that dynein dysfunction is associated with a range of phenotypes in humans involving neuronal development and maintenance. PMID:22459677

  6. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  7. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy

    PubMed Central

    Scoto, Mariacristina; Rossor, Alexander M.; Harms, Matthew B.; Cirak, Sebahattin; Calissano, Mattia; Robb, Stephanie; Manzur, Adnan Y.; Martínez Arroyo, Amaia; Rodriguez Sanz, Aida; Mansour, Sahar; Fallon, Penny; Hadjikoumi, Irene; Klein, Andrea; Yang, Michele; De Visser, Marianne; Overweg-Plandsoen, W.C.G. (Truus); Baas, Frank; Taylor, J. Paul; Benatar, Michael; Connolly, Anne M.; Al-Lozi, Muhammad T.; Nixon, John; de Goede, Christian G.E.L.; Foley, A. Reghan; Mcwilliam, Catherine; Pitt, Matthew; Sewry, Caroline; Phadke, Rahul; Hafezparast, Majid; Chong, W.K. “Kling”; Mercuri, Eugenio; Baloh, Robert H.; Reilly, Mary M.

    2015-01-01

    Objective: To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. Methods: Patients with a phenotype suggestive of a motor, non–length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1. Results: We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features. Conclusion: Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions. PMID:25609763

  8. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  9. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  10. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal.

    PubMed

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-21

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups P1 and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline P1 structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  11. Structural, electronic and vibrational properties of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) crystal

    NASA Astrophysics Data System (ADS)

    Colle, Renato; Grosso, Giuseppe; Cassinese, Antonio; Centore, Roberto

    2013-09-01

    We present a theoretical and experimental investigation of the crystalline structure of N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2) that has been deduced combining experimental XRD data, obtained from powders, with global-optimization algorithms which allow to identify Bravais lattice, primitive cell parameters, and space group of the crystal. The XRD spectrum calculated for the proposed crystalline structure very well reproduces the measured XRD data. Our results suggest the triclinic lattice structure of spatial groups Poverline{1} and P1, respectively, for the crystalline PDI-FCN2-1,7 and PDI-FCN2-1,6 isomers. In both cases, the primitive cell contains a single molecule. On the proposed crystalline structures, KS-DFT cell energy calculations, including van der Waals interactions, have been performed to assign the minimum energy geometrical structure and orientation of the molecule inside the corresponding primitive cell. These calculations evidence the molecular packing that characterizes the strong anisotropy of the PDI-FCN2 crystal. Electronic band-structures calculated for both isomers within the Kohn-Sham density-functional theory indicate that the crystalline Poverline{1} structure is an indirect gap semiconductor, while the P1 structure is a direct gap semiconductor. The electronic band structure calculations on the optimized crystal geometries highlight strong anisotropy in the dispersion curves E(k), which roots at the molecular packing in the crystal. Finally, the vibrational spectrum of both crystalline isomers has been calculated in the harmonic approximation and the dominant vibrational frequencies have been associated to collective motions of selected atoms in the molecules.

  12. Evaluation of the ERETIC method as an improved quantitative reference for 1H HR-MAS spectroscopy of prostate tissue.

    PubMed

    Albers, Mark J; Butler, Thomas N; Rahwa, Iman; Bao, Nguyen; Keshari, Kayvan R; Swanson, Mark G; Kurhanewicz, John

    2009-03-01

    The Electronic REference To access In vivo Concentrations (ERETIC) method was applied to (1)H HR-MAS spectroscopy. The accuracy, precision, and stability of ERETIC as a quantitative reference were evaluated in solution and human prostate tissue samples. For comparison, the reliability of 3-(trimethylsilyl)propionic-2,2,3,3-d(4) acid (TSP) as a quantitation reference was also evaluated. The ERETIC and TSP peak areas were found to be stable in solution over the short-term and long-term, with long-term relative standard deviations (RSDs) of 4.10% and 2.60%, respectively. Quantification of TSP in solution using the ERETIC peak as a reference and a calibrated, rotor-dependent conversion factor yielded results with a precision < or =2.9% and an accuracy error < or =4.2% when compared with the expected values. The ERETIC peak area reproducibility was superior to TSP's reproducibility, corrected for mass, in both prostate surgical and biopsy samples (4.53% vs. 21.2% and 3.34% vs. 31.8%, respectively). Furthermore, the tissue TSP peaks exhibited only 27.5% of the expected area, which would cause an overestimation of metabolite concentrations if used as a reference. The improved quantification accuracy and precision provided by ERETIC may enable the detection of smaller metabolic differences that may exist between individual tissue samples and disease states.

  13. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  14. The Development and Application of Novel IR and NMR-Based Model for the Evaluation of Carminative Effect of Artemisia judaica L. Essential Oil

    PubMed Central

    Alzweiri, Muhammed; Alrawashdeh, Ibrahim M.; Bardaweel, Sanaa K.

    2014-01-01

    Artemisia judaica L. is a medicinal plant that is traditionally used to relieve abdominal pains through its carminative activity. In this study, spectroscopic analysis was employed to investigate the carminative activity associated with A. judaica. Using infrared spectroscopy, the carminative activity was evaluated based on the first derivative of IR-characteristic stretching signal of CO2. Our results indicate that A. judaica oil effectively reduced the response of CO2 signal equivalent to thymol standard. Additionally, 1H-NMR spectroscopy was utilized to assess surface activity of A. judaica crude oil through the reduction of interfacial tension in a D2O/CDCl3 system. Apparently, 10 mg of the oil was able to solubilize water in a chloroform layer up to 4.3% (w/w). In order to correlate the observed surface activity of the oil to its actual composition, GC-MS and GC-FID structural analysis were undertaken. The results revealed that the oil composition consists of oxygenated terpenes which might be responsible for the carminative effect. Furthermore, owing to its sensitivity, our model provides a fundamental basis for the pharmacological assessment of trace amounts of oils with high precision and accuracy. PMID:25614741

  15. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis

    PubMed Central

    Gu, Jinping; Hu, Xiaomin; Shao, Wei; Ji, Tianhai; Yang, Wensheng; Zhuo, Huiqin; Jin, Zeyu; Huang, Huiying; Chen, Jiacheng; Huang, Caihua; Lin, Donghai

    2016-01-01

    Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. Alterations in metabolic pathways are inextricably linked to GC progression. However, the underlying molecular mechanisms remain elusive. We performed NMR-based metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, revealed significantly altered metabolic pathways correlated with the progression of gastric carcinogenesis. Rats were histologically classified into four pathological groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, HGD; GC) and the normal control group (CON). The metabolic profiles of the five groups were clearly distinguished from each other. Furthermore, significant inter-metabolite correlations were extracted and used to reconstruct perturbed metabolic networks associated with the four pathological stages compared with the normal stage. Then, significantly altered metabolic pathways were identified by pathway analysis. Our results showed that oxidative stress-related metabolic pathways, choline phosphorylation and fatty acid degradation were continually disturbed during gastric carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in gastric dysplasia and GC. The GC stage showed more changed metabolite levels and more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine and threonine metabolism) substantially contributed to the metabolic alterations in GC. These results lay the basis for addressing the molecular mechanisms underlying gastric carcinogenesis and extend our understanding of GC progression. PMID:27527852

  16. (2)H-decoupling-accelerated (1)H spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons.

    PubMed

    Negoro, M; Nakayama, K; Tateishi, K; Kagawa, A; Takeda, K; Kitagawa, M

    2010-10-21

    In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.

  17. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis

    PubMed Central

    Cruz, Thomas; Gleizes, Marie; Balayssac, Stéphane; Mornet, Etienne; Marsal, Grégory; Millán, José Luis; Martino, Myriam Malet; Nowak, Lionel G; Gilard, Véronique; Fonta, Caroline

    2017-01-01

    Tissue Nonspecific Alkaline Phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However TNAP’s role in the nervous system remains poorly understood. In order to investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1H- and 31P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of one week-old animals, 8 displayed significantly different concentration in Akp2−/− compared to Akp2+/+ and Akp2+/− mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA) and N-acetyl-aspartyl-glutamate (NAAG), with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP. PMID:28072448

  18. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Polissiou, Moschos G; Consonni, Roberto

    2015-04-15

    In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w).

  19. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology.

  20. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    PubMed

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  1. The morphology of C–S–H: Lessons from {sup 1}H nuclear magnetic resonance relaxometry

    SciTech Connect

    Valori, A.; McDonald, P.J.; Scrivener, K.L.

    2013-07-15

    {sup 1}H nuclear magnetic resonance has been applied to cement pastes, and in particular calcium silicate hydrate (C–S–H), for the characterisation of porosity and pore water interactions for over three decades. However, there is now renewed interest in the method, given that it has been shown to be non-invasive, non-destructive and fully quantitative. It is possible to make measurements of pore size distribution, specific surface area, C–S–H density and water fraction and water dynamics over 6 orders of magnitude from nano- to milli-seconds. This information comes in easily applied experiments that are increasingly well understood, on widely available equipment. This contribution describes the basic experiments for a cement audience new to the field and reviews three decades of work. It concludes with a summary of the current state of understanding of cement pore morphology from the perspective of {sup 1}H NMR.

  2. Inclusion complex of benzocaine and β-cyclodextrin: 1H NMR and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan

    2013-11-01

    The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.

  3. 4(1H)-Quinolones with liver stage activity against Plasmodium berghei.

    PubMed

    Lacrue, Alexis N; Sáenz, Fabián E; Cross, R Matthew; Udenze, Kenneth O; Monastyrskyi, Andrii; Stein, Steven; Mutka, Tina S; Manetsch, Roman; Kyle, Dennis E

    2013-01-01

    With the exception of primaquine, tafenoquine, and atovaquone, there are very few antimalarials that target liver stage parasites. In this study, a transgenic Plasmodium berghei parasite (1052Cl1; PbGFP-Luc(con)) that expresses luciferase was used to assess the anti-liver stage parasite activity of ICI 56,780, a 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), as well as two 3-phenyl-4(1H)-quinolones (P4Q), P4Q-146 and P4Q-158, by using bioluminescent imaging (BLI). Results showed that all of the compounds were active against liver stage parasites; however, ICI 56,780 and P4Q-158 were the most active, with low nanomolar activity in vitro and causal prophylactic activity in vivo. This potent activity makes these compounds ideal candidates for advancement as novel antimalarials.

  4. 1H NMR profiling as an approach to differentiate conventionally and organically grown tomatoes.

    PubMed

    Hohmann, Monika; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2014-08-20

    This study describes the approach of (1)H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between (1)H NMR spectra of organically and conventionally grown tomatoes.

  5. Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.

    PubMed

    Santos, Sofia A; Lukens, Amanda K; Coelho, Lis; Nogueira, Fátima; Wirth, Dyann F; Mazitschek, Ralph; Moreira, Rui; Paulo, Alexandra

    2015-09-18

    A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.

  6. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    NASA Astrophysics Data System (ADS)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  7. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  8. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  9. Shaft Sinking at the Nevada Test Site, U1h Shaft Project

    SciTech Connect

    B. Briggs; R. Musick

    2001-03-01

    The U1h Shaft Project is a design/build subcontract to construct one 6.1 meter (m) (20 feet (ft)) finished diameter shaft to a depth of 321.6 m (1,055 ft.) at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the U.S. Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 321.6 m (1,055 ft.) of concrete lined shaft, development of a shaft station at a depth of 297.5 m (976 ft.), and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper will describe the design phase, the excavation and lining operation, shaft station construction and the contractual challenges encountered on this project.

  10. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  11. Nuclear magnetic resonance-based metabolomics enable detection of the effects of a whole grain rye and rye bran diet on the metabolic profile of plasma in prostate cancer patients.

    PubMed

    Moazzami, Ali A; Zhang, Jie-Xian; Kamal-Eldin, Afaf; Aman, Per; Hallmans, Göran; Johansson, Jan-Erik; Andersson, Sven-Olof

    2011-12-01

    Prostate cancer (PC) is the most common cancer in the Western world and the second most important cancer causing male deaths, after lung cancer, in the United States and Britain. Lifestyle and dietary changes are recommended for men diagnosed with early-stage PC. It has been shown that a diet rich in whole grain (WG) rye reduces the progression of early-stage PC, but the underlying mechanism is not clear. This study sought to identify changes in the metabolic signature of plasma in patients with early-stage PC following intervention with a diet rich in WG rye and rye bran product (RP) compared with refined white wheat product (WP) as a tool for mechanistic investigation of the beneficial health effects of RP on PC progression. Seventeen PC patients received 485 g RP or WP in a randomized, controlled, crossover design during a period of 6 wk with a 2-wk washout period. At the end of each intervention period, plasma was collected after fasting and used for (1)H NMR-based metabolomics. Multilevel partial least squares discriminant analysis was used for paired comparisons of multivariate data. A metabolomics analysis of plasma showed an increase in 5 metabolites, including 3-hydroxybutyric acid, acetone, betaine, N,N-dimethylglycine, and dimethyl sulfone, after RP. To understand these metabolic changes, fasting plasma homocysteine, leptin, adiponectin, and glucagon were measured separately. The plasma homocysteine concentration was lower (P = 0.017) and that of leptin tended to be lower (P = 0.07) after RP intake compared to WP intake. The increase in plasma 3-hydroxybutyric acid and acetone after RP suggests a shift in energy metabolism from anabolic to catabolic status, which could explain some of the beneficial health effects of WG rye, i.e., reduction in prostate-specific antigen and reduced 24-h insulin secretion. In addition, the increase in betaine and N,N-dimethylglycine and the decrease in homocysteine show a favorable shift in homocysteine metabolism after RP

  12. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  13. Lipid and water suppression by selective 1H homonuclear polarization transfer.

    PubMed

    Hardy, C J; Dumoulin, C L

    1987-07-01

    A pulse sequence is presented which uses Polarization Transfer by a Selective Homonuclear Technique (POTSHOT) to retain all resonances, in phase, from a selected coupled spin system while suppressing all other peaks, from both coupled an