Science.gov

Sample records for 1h nmr-based metabolomics

  1. (1)H-NMR-based metabolomic studies of bisphenol A in zebrafish (Danio rerio).

    PubMed

    Yoon, Changshin; Yoon, Dahye; Cho, Junghee; Kim, Siwon; Lee, Heonho; Choi, Hyeonsoo; Kim, Suhkmann

    2017-04-03

    Proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to study the response of zebrafish (Danio rerio) to increasing concentrations of bisphenol A (4,4'-(propane-2,2-diyl)diphenol, BPA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to detect aberrant metabolomic profiles after 72 h of BPA exposure at all levels tested (0.01, 0.1, and 1.0 mg/L). The OPLS-DA score plots showed that BPA exposure caused significant alterations in the metabolome. The metabolomic changes in response to BPA exposure generally exhibited nonlinear patterns, with the exception of reduced levels of several metabolites, including glutamine, inosine, lactate, and succinate. As the level of BPA exposure increased, individual metabolite patterns indicated that the zebrafish metabolome was subjected to severe oxidative stress. Interestingly, ATP levels increased significantly at all levels of BPA exposure. In the present study, we demonstrated the applicability of (1)H-NMR-based metabolomics to identify the discrete nature of metabolic changes.

  2. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach.

    PubMed

    Dong, Ge; Wang, Junsong; Guo, Pingping; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2015-02-01

    Arisaematis Rhizoma (AR), a famous traditional Chinese medicine, has been widely used in Asia over thousands of years. Documented with noticeable toxicity in ancient books, AR has been used to treat various diseases in the clinic. Therefore, it is important to assess the toxicity of AR dynamically and holistically. In this study, a (1)H NMR-based metabolomics approach complemented with serum chemistry and histopathology has been applied to investigate the toxicity of AR. Rats were intragastrically administered with AR (0, 0.5 and 1 g kg(-1) body weight) for 30 days, and serum and urine samples were collected. Their (1)H NMR profiles were analyzed by multivariate pattern recognition techniques to denote metabolic variations induced by AR, and 13 metabolites in urine and 6 metabolites in serum were significantly altered, which suggested that disturbances in energy metabolism, perturbation of the gut microflora environment, membrane damage, folate deficiency and injury of kidneys are produced by AR. Histopathology showed a slight vacuolization of the glomerular matrix and edema of renal tubular epithelial cells in kidneys of AR administered rats, which were evidenced by increased levels of blood urea nitrogen and creatinine in serum chemistry. Our results indicated that oral administration of crude AR was found to induce slight renal toxicity. Therefore, precautions should be made to monitor the potential nephrotoxicity of AR in clinical use. The metabolomics approach provided a promising tool for the study and better understanding of TCM-induced toxicity dynamically and holistically.

  3. (1)H NMR-based metabolomic approach for understanding the fermentation behaviors of wine yeast strains.

    PubMed

    Son, Hong-Seok; Hwang, Geum-Sook; Kim, Ki Myong; Kim, Eun-Young; van den Berg, Frans; Park, Won-Mok; Lee, Cherl-Ho; Hong, Young-Shick

    2009-02-01

    (1)H NMR spectroscopy coupled with multivariate statistical analysis was used for the first time to investigate metabolic changes in musts during alcoholic fermentation and wines during aging. Three Saccharomyces cerevisiae yeast strains (RC-212, KIV-1116, and KUBY-501) were also evaluated for their impacts on the metabolic changes in must and wine. Pattern recognition (PR) methods, including PCA, PLS-DA, and OPLS-DA scores plots, showed clear differences for metabolites among musts or wines for each fermentation stage up to 6 months. Metabolites responsible for the differentiation were identified as valine, 2,3-butanediol (2,3-BD), pyruvate, succinate, proline, citrate, glycerol, malate, tartarate, glucose, N-methylnicotinic acid (NMNA), and polyphenol compounds. PCA scores plots showed continuous movements away from days 1 to 8 in all musts for all yeast strains, indicating continuous and active fermentation. During alcoholic fermentation, the highest levels of 2,3-BD, succinate, and glycerol were found in musts with the KIV-1116 strain, which showed the fastest fermentation or highest fermentative activity of the three strains, whereas the KUBY-501 strain showed the slowest fermentative activity. This study highlights the applicability of NMR-based metabolomics for monitoring wine fermentation and evaluating the fermentative characteristics of yeast strains.

  4. Quality evaluation and prediction of Citrullus lanatus by 1H NMR-based metabolomics and multivariate analysis.

    PubMed

    Tarachiwin, Lucksanaporn; Masako, Osawa; Fukusaki, Eiichiro

    2008-07-23

    (1)H NMR spectrometry in combination with multivariate analysis was considered to provide greater information on quality assessment over an ordinary sensory testing method due to its high reliability and high accuracy. The sensory quality evaluation of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) was carried out by means of (1)H NMR-based metabolomics. Multivariate analyses by partial least-squares projections to latent structures-discrimination analysis (PLS-DA) and PLS-regression offered extensive information for quality differentiation and quality evaluation, respectively. The impact of watermelon and rootstock cultivars on the sensory qualities of watermelon was determined on the basis of (1)H NMR metabolic fingerprinting and profiling. The significant metabolites contributing to the discrimination were also identified. A multivariate calibration model was successfully constructed by PLS-regression with extremely high reliability and accuracy. Thus, (1)H NMR-based metabolomics with multivariate analysis was considered to be one of the most suitable complementary techniques that could be applied to assess and predict the sensory quality of watermelons and other horticultural plants.

  5. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez, Miguel Ángel; Vinaixa, Maria; Chiva-Blanch, Gemma; Estruch, Ramon; Correig, Xavier; Andrés-Lacueva, Cristina

    2012-08-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100mL/day, alcohol control). After each period, 24-h urine samples were collected and analyzed by (1) H-NMR. According to the results of a one-way ANOVA, significant markers were grouped in four categories: alcohol-related markers (ethanol); gin-related markers; wine-related markers; and gut microbiota markers (hippurate and 4-hydroxphenylacetic acid). Wine metabolites were classified into two groups; first, metabolites of food metabolome: tartrate (RWA and RWD), ethanol, and mannitol (RWA); and second, biomarkers that relates to endogenous modifications after wine consumption, comprising branched-chain amino acid (BCAA) metabolite (3-methyl-oxovalerate). Additionally, a possible interaction between alcohol and gut-related biomarkers has been identified. To our knowledge, this is the first time that this approach has been applied in a nutritional intervention with red wine. The results show the capacity of this approach to obtain a comprehensive metabolome picture including food metabolome and endogenous biomarkers of moderate wine intake.

  6. Study of the Cardiotoxicity of Venenum Bufonis in Rats using an 1H NMR-Based Metabolomics Approach

    PubMed Central

    Wang, Junsong; Guo, Pingping; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2015-01-01

    Venenum Bufonis, a well-known traditional Chinese medicine, has been widely used in Asia and has gained popularity in Western countries over the last decade. Venenum Bufonis has obvious side effects that have been observed in clinical settings, but few studies have reported on its cardiotoxicity. In this work, the cardiotoxicity of Venenum Bufonis was investigated using a 11H NMR-based metabolomics approach. The 1H NMR profiles of the serum, myocardial extracts and liver extracts of specific-pathogen-free rats showed that Venenum Bufonis produced significant metabolic perturbations dose-dependently with a distinct time effect, peaking at 2 hr after dosing and attenuating gradually. Clinical chemistry, electrocardiographic recordings, and histopathological evaluation provided additional evidence of Venenum Bufonis-induced cardiac damage that complemented and supported the metabolomics findings. The combined results demonstrated that oxidative stress, mitochondrial dysfunction, and energy metabolism perturbations were associated with the cardiac damage that results from Venenum Bufonis. PMID:25781638

  7. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    PubMed

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna.

  8. 1H-NMR-based metabolomic study on toxicity of methomyl and methidathion in fish.

    PubMed

    Yoon, Dahye; Kim, Siwon; Lee, Minji; Yoon, Changshin; Kim, Suhkmann

    2016-12-01

    A (1)H-nuclear magnetic resonance (NMR) spectroscopy with multivariate analysis was applied to detect the toxicity of antiacetylcholinesterase insecticides, methomyl (methyl (1E)-N-(methylcarbamoyloxy)ethanimidothioate) and methidathion (3-(dimethoxyphosphinothioyl sulfanylmethyl)-5-methoxy-1,3,4-thiadiazol-2-one), using zebrafish (Danio rerio) and Chinese bleak (Aphyocypris chinensis). Generally, methomyl and methidathion have been believed not to highly accumulate in fish tissues. However, these pesticides showed their toxicity by altering patterns of whole-body metabolites in neurotransmitter balance, energy metabolism, oxidative stress, and muscle maintenance in low concentrations. We used Pearson correlation analysis to contextualize the metabolic markers in pesticide treated groups. We observed that the positive correlations of choline with acetate and betaine in untreated control were shifted to null correlations showing acetylcholinesterase specific toxicity. This research demonstrated the applicability and potential of NMR metabolomics in detecting toxic effects of insecticide with a modicum of concentrations in aquatic environment.

  9. (1)H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus).

    PubMed

    Xu, Hua-Dong; Wang, Jun-Song; Li, Ming-Hui; Liu, Yan; Chen, Ting; Jia, Ai-Qun

    2015-02-01

    Butachlor, one of the most widely used herbicides in agriculture, has been reported with high ecotoxicity to aquatic plants and animals. In this study, a (1)H NMR based metabolomics approach combined with histopathological examination and biochemical assays was applied to comprehensively investigate the toxic effects of butachlor on four important organs (gill, brain, liver and kidney) of goldfish (Carassius auratus) for the first time. After 10 days' butachlor exposure at two dosages of 3.2 and 0.64 μmol/L, fish tissues (gill, brain, liver and kidney) and serum were collected. Histopathological inspection revealed severe impairment of gill filaments and obvious cellular edema in livers and kidneys. The increase of glutathione peroxidase (GSH-Px) activity in gill and methane dicarboxylic aldehyde (MDA) level in four tissues reflected the disturbance of antioxidative system in the intoxicated goldfish. Serum lactate dehydrogenase (LDH) activity and creatinine (CRE) level were increased in butachlor exposure groups, suggesting liver and kidney injuries induced by butachlor. Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed metabolic changes that were related to the toxic effects of butachlor including oxidative stress, disorder of energy metabolism and amino acids metabolism, and disturbance of neurotransmitter balance in butachlor exposed goldfish. This integrated metabolomics approach provided a molecular basis underlying the toxicity of butachlor and demonstrated that metabolomics was a powerful and highly effective approach to elucidate the toxicity and underlying mechanisms of herbicides and pesticides, applicable for their risk assessment.

  10. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    PubMed Central

    Rawat, Atul; Dubey, Durgesh; Guleria, Anupam; Kumar, Umesh; Keshari, Amit K.; Chaturvedi, Swati; Prakash, Anand; Saha, Sudipta; Kumar, Dinesh

    2016-01-01

    Introduction: Erythromycin (ERY) is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group): control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR) spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a) increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b) decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a) decreased TCA cycle activity and enhanced fatty acid oxidation, (b) dysfunction of lipid and amino acid metabolism and (c) oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new drug

  11. Combining biochemical with (1)H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism.

    PubMed

    Shen, Xiao-Li; Liu, Huan; Xiang, Huan; Qin, Xue-Mei; Du, Guan-Hua; Tian, Jun-Sheng

    2016-09-10

    Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal metabolism of carbohydrates, lipids and proteins. Genipin possesses a wide spectrum of biological activities including ameliorating effects on diabetes, but the definite mechanism of this effect remains unknown. To investigate the antidiabetic activities of genipin and explore the biochemical changes of serum endogenous metabolites on diabetic rats induced by alloxan, (1)H NMR spectroscopy coupled with multivariate data analysis was used to. All rats were randomly divided into six groups including negative control (NC) group, diabetic mellitus (DM) group, metformin hydrochloride group, high dose group of genipin, middle dose group of genipin and low dose group of genipin. Diabetes was induced by a single intraperitoneal injection of 120mg/kg body weight of alloxan. Serum samples were collected for the (1)H NMR-based metabolomics and clinical biochemical analysis. Daily oral administration of genipin (25, 50 and 100mg/kg body weight) and metformin hydrochloride (125mg/kg) for two weeks showed beneficial effects on blood glucose level (P<0.01). Significant differences in the metabolic profile as well as the result of biochemical parameters between the diabetic group and the control group were observed. The PLS-DA scores and corresponding loading plots demonstrated that genipin significantly restored the abnormal metabolic state. Detailed analysis of the altered metabolite levels indicated that genipin significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism and amino acid metabolism. Genipin showed the best anti-diabetic effects at a dose of 100mg/kg in rats. This finding indicates that chemical and metabolomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment.

  12. LC-MS- and (1)H NMR-Based Metabolomic Analysis and in Vitro Toxicological Assessment of 43 Aristolochia Species.

    PubMed

    Michl, Johanna; Kite, Geoffrey C; Wanke, Stefan; Zierau, Oliver; Vollmer, Guenter; Neinhuis, Christoph; Simmonds, Monique S J; Heinrich, Michael

    2016-01-22

    Species of Aristolochia are used as herbal medicines worldwide. They cause aristolochic acid nephropathy (AAN), a devastating disease associated with kidney failure and renal cancer. Aristolochic acids I and II (1 and 2) are considered to be responsible for these nephrotoxic and carcinogenic effects. A wide range of other aristolochic acid analogues (AAAs) exist, and their implication in AAN may have been overlooked. An LC-MS- and (1)H NMR-based metabolomic analysis was carried out on 43 medicinally used Aristolochia species. The cytotoxicity and genotoxicity of 28 Aristolochia extracts were measured in human kidney (HK-2) cells. Compounds 1 and 2 were found to be the most common AAAs. However, AA IV (3), aristolactam I (4), and aristolactam BI (5) were also widespread. No correlation was found between the amounts of 1 or 2 and extract cytotoxicity against HK-2 cells. The genotoxicity and cytotoxicity of the extracts could be linked to their contents of 5, AA D (8), and AA IIIa (10). These results undermine the assumption that 1 and 2 are exclusively responsible for the toxicity of Aristolochia species. Other analogues are likely to contribute to their toxicity and need to be considered as nephrotoxic agents. These findings facilitate understanding of the nephrotoxic mechanisms of Aristolochia and have significance for the regulation of herbal medicines.

  13. (1)H NMR-based metabolomics reveals neurochemical alterations in the brain of adolescent rats following acute methylphenidate administration.

    PubMed

    Quansah, Emmanuel; Ruiz-Rodado, Victor; Grootveld, Martin; Probert, Fay; Zetterström, Tyra S C

    2017-03-06

    The psychostimulant methylphenidate (MPH) is increasingly used in the treatment of attention deficit hyperactivity disorder (ADHD). While there is little evidence for common brain pathology in ADHD, some studies suggest a right hemisphere dysfunction among people diagnosed with the condition. However, in spite of the high usage of MPH in children and adolescents, its mechanism of action is poorly understood. Given that MPH blocks the neuronal transporters for dopamine and noradrenaline, most research into the effects of MPH on the brain has largely focused on these two monoamine neurotransmitter systems. Interestingly, recent studies have demonstrated metabolic changes in the brain of ADHD patients, but the impact of MPH on endogenous brain metabolites remains unclear. In this study, a proton nuclear magnetic resonance ((1)H NMR)-based metabolomics approach was employed to investigate the effects of MPH on brain biomolecules. Adolescent male Sprague Dawley rats were injected intraperitoneally with MPH (5.0 mg/kg) or saline (1.0 ml/kg), and cerebral extracts from the left and right hemispheres were analysed. A total of 22 variables (representing 13 distinct metabolites) were significantly increased in the MPH-treated samples relative to the saline-treated controls. The upregulated metabolites included: amino acid neurotransmitters such as GABA, glutamate and aspartate; large neutral amino acids (LNAA), including the aromatic amino acids (AAA) tyrosine and phenylalanine, both of which are involved in the metabolism of dopamine and noradrenaline; and metabolites associated with energy and cell membrane dynamics, such as creatine and myo-inositol. No significant differences in metabolite concentrations were found between the left and right cerebral hemispheres. These findings provide new insights into the mechanisms of action of the anti-ADHD drug MPH.

  14. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil.

    PubMed

    Lankadurai, Brian P; Furdui, Vasile I; Reiner, Eric J; Simpson, André J; Simpson, Myrna J

    2013-08-27

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined.

  15. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    PubMed Central

    Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  16. (1)H NMR-based metabolomics study on a goldfish model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

    PubMed

    Lu, Zhaoguang; Wang, Junsong; Li, Minghui; Liu, Qingwang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-11-05

    A goldfish (Carassius auratus) model of Parkinson's disease (PD) was constructed by a single dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to previously reported methods. Global metabolite changes in brain of the MPTP induced goldfish model of PD were investigated. (1)H NMR-based metabolomics combined with various statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) found significant increase of leucine, isoleucine, valine, alanine, alanylalanine, creatinine, myo-inositol, 18:2 fatty acid, total fatty acids, arachic alcohol, taurine and significant decrease of N-acetylaspartate, (phospho)creatine, (phospho)choline, betaine, glutamine, 3-hexenedioate, acetamide, malonate, isocitrate, scyllo-inositol, phosphatidylcholines, cholesterols, n-3 fatty acids, polyunsaturated fatty acids (PUFAs) in brain of MPTP induced PD goldfish. These disturbed metabolite levels were involved in oxidative stress, energy failure, neuronal cell injury and death, consistent with those observed in clinical PD patients, and rodents and primates model of PD, indicating that the acute MPTP model of goldfish was an ideal and valuable model for PD research. In addition, several unusual metabolites in brain were significantly changed between MPTP induced PD and control goldfish, which might also play an important role in the pathogenesis of PD. This study also demonstrated the applicability and potential of (1)H NMR-based metabolomics approach for evaluation of animal models of disease induced by chemicals, such as MPTP-induced PD goldfish.

  17. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.

  18. Metabolite Variation in Lean and Obese Streptozotocin (STZ)-Induced Diabetic Rats via (1)H NMR-Based Metabolomics Approach.

    PubMed

    Abu Bakar Sajak, Azliana; Mediani, Ahmed; Maulidiani; Ismail, Amin; Abas, Faridah

    2016-12-19

    Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using (1)H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.

  19. Discovery of safety biomarkers for realgar in rat urine using UFLC-IT-TOF/MS and 1H NMR based metabolomics.

    PubMed

    Huang, Yin; Tian, Yuan; Li, Geng; Li, Yuanyuan; Yin, Xinjuan; Peng, Can; Xu, Fengguo; Zhang, Zunjian

    2013-05-01

    As an arsenical, realgar (As4S4) is known as a poison and paradoxically as a therapeutic agent. However, a complete understanding of the precise biochemical alterations accompanying the toxicity and therapy effects of realgar is lacking. Using a combined ultrafast liquid chromatography (UFLC) coupled with ion trap time-of-flight mass spectrometry (IT-TOF/MS) and (1)H NMR spectroscopy based metabolomics approach, we were able to delineate significantly altered metabolites in the urine samples of realgar-treated rats. The platform stability of the liquid chromatography LC/MS and NMR techniques was systematically investigated, and the data processing method was carefully optimized. Our results indicate significant perturbations in amino acid metabolism, citric acid cycle, choline metabolism, and porphyrin metabolism. Thirty-six metabolites were proposed as potential safety biomarkers related to disturbances caused by realgar, and glycine and serine are expected to serve as the central contacts in the metabolic pathways related to realgar-induced disturbance. The LC/MS and NMR based metabolomics approach established provided a systematic and holistic view of the biochemical effects of realgar on rats, and might be employed to investigate other drugs or xenobiotics in the future.

  20. Application of (1)H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis.

    PubMed

    Zabek, Adam; Swierkot, Jerzy; Malak, Anna; Zawadzka, Iga; Deja, Stanisław; Bogunia-Kubik, Katarzyna; Mlynarz, Piotr

    2016-01-05

    Rheumatoid arthritis is a chronic autoimmune-based inflammatory disease that leads to progressive joint degeneration, disability, and an increased risk of cardiovascular complications, which is the main cause of mortality in this population of patients. Although several biomarkers are routinely used in the management of rheumatoid arthritis, there is a high demand for novel biomarkers to further improve the early diagnosis of rheumatoid arthritis, stratification of patients, and the prediction of a better response to a specific therapy. In this study, the metabolomics approach was used to provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy. The results indicated that twelve metabolites were important for the discrimination of healthy control and rheumatoid arthritis. Notably, valine, isoleucine, lactate, alanine, creatinine, GPC  APC and histidine relative levels were lower in rheumatoid arthritis, whereas 3-hydroxyisobutyrate, acetate, NAC, acetoacetate and acetone relative levels were higher. Simultaneously, the analysis of the concentration of metabolites in rheumatoid arthritis and 3 months after induction treatment revealed that L1, 3-hydroxyisobutyrate, lysine, L5, acetoacetate, creatine, GPC+APC, histidine and phenylalanine were elevated in RA, whereas leucine, acetate, betaine and formate were lower. Additionally, metabolomics tools were employed to discriminate between patients with different IL-17A genotypes. Metabolomics may provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy in rheumatoid arthritis.

  1. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  2. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars.

    PubMed

    Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick

    2016-04-20

    Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation.

  3. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A (1)H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a (1)H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  4. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation

    PubMed Central

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-01-01

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = −0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism. PMID:27808173

  5. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin

    PubMed Central

    Deng, Ming-Jie; Lin, Xiao-Dong; Lin, Qiu-Ting; Wen, De-Fu; Zhang, Mei-Ling; Wang, Xian-Qin; Gao, Hong-Chang; Xu, Jia-Ping

    2015-01-01

    We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity. PMID:26148185

  6. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin.

    PubMed

    Deng, Ming-Jie; Lin, Xiao-Dong; Lin, Qiu-Ting; Wen, De-Fu; Zhang, Mei-Ling; Wang, Xian-Qin; Gao, Hong-Chang; Xu, Jia-Ping

    2015-01-01

    We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity.

  7. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach.

    PubMed

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.

  8. Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by (1)H NMR-based metabolomics.

    PubMed

    Cappello, Tiziana; Pereira, Patrícia; Maisano, Maria; Mauceri, Angela; Pacheco, Mário; Fasulo, Salvatore

    2016-12-01

    Mercury (Hg) is recognized as a dangerous contaminant due to its bioaccumulation and biomagnification within trophic levels, leading to serious health risks to aquatic biota. Therefore, there is an urgent need to unravel the mechanisms underlying the toxicity of Hg. To this aim, a metabolomics approach based on protonic nuclear magnetic resonance ((1)H NMR), coupled with chemometrics, was performed on the gills of wild golden grey mullets L. aurata living in an Hg-polluted area in Ria de Aveiro (Portugal). Gills were selected as target organ due to their direct and continuous interaction with the surrounding environment. As a consequence of accumulated inorganic Hg and methylmercury, severe changes in the gill metabolome were observed, indicating a compromised health status of mullets. Numerous metabolites, i.e. amino acids, osmolytes, carbohydrates, and nucleotides, were identified as potential biomarkers of Hg toxicity in fish gills. Specifically, decrease of taurine and glycerophosphocholine, along with increased creatine level, suggested Hg interference with the ion-osmoregulatory processes. The rise of lactate indicated anaerobic metabolism enhancement. Moreover, the increased levels of amino acids suggested the occurrence of protein catabolism, further supported by the augmented alanine, involved in nitrogenous waste excretion. Increased level of isobutyrate, a marker of anoxia, was suggestive of onset of hypoxic stress at the Hg contaminated site. Moreover, the concomitant reduction in glycerophosphocholine and phosphocholine reflected the occurrence of membrane repair processes. Finally, perturbation in antioxidant defence system was revealed by the depletion in glutathione and its constituent amino acids. All these data were also compared to the differential Hg-induced metabolic responses previously observed in liver of the same mullets (Brandão et al., 2015). Overall, the environmental metabolomics approach demonstrated its effectiveness in the

  9. Discovery, screening and evaluation of a plasma biomarker panel for subjects with psychological suboptimal health state using 1H-NMR-based metabolomics profiles

    PubMed Central

    Tian, Jun-sheng; Xia, Xiao-tao; Wu, Yan-fei; Zhao, Lei; Xiang, Huan; Du, Guan-hua; Zhang, Xiang; Qin, Xue-mei

    2016-01-01

    Individuals in the state of psychological suboptimal health keep increasing, only scales and questionnaires were used to diagnose in clinic under current conditions, and symptoms of high reliability and accuracy are destitute. Therefore, the noninvasive and precise laboratory diagnostic methods are needed. This study aimed to develop an objective method through screen potential biomarkers or a biomarker panel to facilitate the diagnosis in clinic using plasma metabolomics. Profiles were based on H-nuclear magnetic resonance (1H-NMR) metabolomics techniques combing with multivariate statistical analysis. Furthermore, methods of correlation analysis with Metaboanalyst 3.0 for selecting a biomarker panel, traditional Chinese medicine (TCM) drug intervention for validating the close relations between the biomarker panel and the state and the receiver operating characteristic curves (ROC curves) analysis for evaluation of clinical diagnosis ability were carried out. 9 endogenous metabolites containing trimethylamine oxide (TMAO), glutamine, N-acetyl-glycoproteins, citrate, tyrosine, phenylalanine, isoleucine, valine and glucose were identified and considered as potential biomarkers. Then a biomarker panel consisting of phenylalanine, glutamine, tyrosine, citrate, N-acetyl-glycoproteins and TMAO was selected, which exhibited the highest area under the curve (AUC = 0.971). This study provided critical insight into the pathological mechanism of psychological suboptimal health and would supply a novel and valuable diagnostic method. PMID:27650680

  10. [1H NMR based metabolomics study of bu-zhong-yi-qi-tang in the spleen-qi deficiency rat model].

    PubMed

    Chen, Lei; Xiang, Huan; Xing, Jie; Tian, Jun-Sheng; Qin, Xue-Mei; Du, Guan-Hua

    2014-09-01

    The present study aimed to investigate the effect and the mechanisms of Bu-zhong-yi-qi-tang (BZYQ) on Spleen-Qi deficiency rat's model using nuclear magnetic resonance (NMR) metabolomics and multivariate statistical analysis methods. The rat Spleen-Qi deficiency model was established as follows: oral administration of Radix Rhei extract, loaded swimming and starvation for 24 h. The body weight and motor behavior of the rats were measured and recorded once a week. BZYQ could significantly improve body weight and behavioral of Spleen-Qi deficiency model rats compared with the model group (P < 0.05, 0.01). After drug administration, the changes in the levels of endogenous metabolites in the spleen including decreasing lactate, taurine and hypoxanthine, increasing glutamate and scyllo-inositol compared with the model group. The metabolomics approach is an effective tool for the investigation of the pharmacologic mechanism of BZYQ and it is helpful to further research.

  11. Biochemical studies of Piper betle L leaf extract on obese treated animal using 1H-NMR-based metabolomic approach of blood serum samples.

    PubMed

    Abdul Ghani, Zuleen Delina Fasya; Husin, Juani Mazmin; Rashid, Ahmad Hazri Ab; Shaari, Khozirah; Chik, Zamri

    2016-12-24

    Piper betle L. (PB) belongs to the Piperaceae family. The presence of a fairly large quantity of diastase in the betel leaf is deemed to play an important role in starch digestion and calls for the study of weight loss activities and metabolite profile from PB leaf extracts using metabolomics approach to be performed. PB dried leaves were extracted with 70% ethanol and the extracts were subjected to five groups of rats fed with high fat (HF) and standard diet (SD). They were then fed with the extracts in two doses and compared with a negative control group given water only according to the study protocol. The body weights and food intakes were monitored every week. At the end of the study, blood serum of the experimental animal was analysed to determine the biochemical and metabolite changes. PB treated group demonstrated inhibition of body weight gain without showing an effect on the food intake. In serum bioassay, the PB treated group (HF/PB (100mg/kg and 500mg/kg) showed an increased in glucose and cholesterol levels compared to the Standard Diet (SD/WTR) group, a decrease in LDL level and increase in HDL level when compared with High Fat Diet (HF/WTR) group. For metabolite analysis, two separation models were made to determine the metabolite changes via group activities. The best separation of PCA serum in Model 1 and 2 was achieved in principle component 1 and principle component 2. SUS-Plot model showed that HF group was characterized by high-level of glucose, glycine and alanine. Increase in the β-hydroxybutyrate level similar with SD group animals was evident in the HF/PB(500mg/kg) group. This finding suggested that the administration of 500mg/kg PB extracts leads to increase in oxidation process in the body thus maintaining the body weight and without giving an effect on the appetite even though HF was continuously consumed by the animals until the end of the studies and also a reduction in food intake, thus maintaining their body weight although they

  12. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  13. (1)H-NMR based metabolomics study for the detection of the human urine metabolic profile effects of Origanum dictamnus tea ingestion.

    PubMed

    Takis, Panteleimon G; Oraiopoulou, Mariam-Eleni; Konidaris, Constantinos; Troganis, Anastassios N

    2016-09-14

    (1)H NMR spectroscopy was employed to investigate the repercussion of Origanum dictamnus tea ingestion in several volunteers' urine metabolic profiles, among them two with chronic inflammatory bowel diseases (IBD), mild IBD and Crohn's disease. Herein, we demonstrate that the concentrations of a lot of urinary metabolites such as hippurate, trimethylamine oxide (TMAO), citrate, and creatinine are altered, which prompts the intestinal microflora function/content perturbation as well as kidney function regulation by dictamnus tea. Interestingly, our preliminary results showed that a high dose of dictamnus tea intake appeared to be toxic for a person with Crohn's disease, since it caused high endogenous ethanol excretion in urine. All subjects' metabolic effects caused by the dictamnus tea appeared to be reversible, when all volunteers stopped its consumption. Finally, we highlight that individuals' metabolic phenotype is reflected in their urine biofluid before and after the dictamnus tea effect while all individuals have some common and different metabolic responses to this tea, implying that each phenotype has a quite different response to this tea consumption.

  14. (1)H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae.

    PubMed

    Melvin, Steven D; Habener, Leesa J; Leusch, Frederic D L; Carroll, Anthony R

    2017-03-01

    Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the expected response patterns may be explained by differences in the receptivity or uptake of the compounds in non-mammalian species. Proton nuclear magnetic resonance ((1)H NMR) spectroscopy revealed evidence of broad metabolic dysregulation in exposed animals, and possible interaction between the solvent and mixture. Specifically, increased lactic acid and branched-chain amino acids were observed, with responses tending to follow a non-monotonic pattern. Overall, results demonstrate

  15. A 1H NMR-based metabolomics approach to evaluate the geographical authenticity of herbal medicine and its application in building a model effectively assessing the mixing proportion of intentional admixtures: A case study of Panax ginseng: Metabolomics for the authenticity of herbal medicine.

    PubMed

    Nguyen, Huy Truong; Lee, Dong-Kyu; Choi, Young-Geun; Min, Jung-Eun; Yoon, Sang Jun; Yu, Yun-Hyun; Lim, Johan; Lee, Jeongmi; Kwon, Sung Won; Park, Jeong Hill

    2016-05-30

    Ginseng, the root of Panax ginseng has long been the subject of adulteration, especially regarding its origins. Here, 60 ginseng samples from Korea and China initially displayed similar genetic makeup when investigated by DNA-based technique with 23 chloroplast intergenic space regions. Hence, (1)H NMR-based metabolomics with orthogonal projections on the latent structure-discrimination analysis (OPLS-DA) were applied and successfully distinguished between samples from two countries using seven primary metabolites as discrimination markers. Furthermore, to recreate adulteration in reality, 21 mixed samples of numerous Korea/China ratios were tested with the newly built OPLS-DA model. The results showed satisfactory separation according to the proportion of mixing. Finally, a procedure for assessing mixing proportion of intentionally blended samples that achieved good predictability (adjusted R(2)=0.8343) was constructed, thus verifying its promising application to quality control of herbal foods by pointing out the possible mixing ratio of falsified samples.

  16. NMR-based Metabolomics for Cancer Research

    EPA Science Inventory

    Metabolomics is considered as a complementary tool to other omics platforms to provide a snapshot of the cellular biochemistry and physiology taking place at any instant. Metabolmics approaches have been widely used to provide comprehensive and quantitative analyses of the metabo...

  17. Analysis of bacterial biofilms using NMR-based metabolomics.

    PubMed

    Zhang, Bo; Powers, Robert

    2012-06-01

    Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.

  18. [Study on three different species tibetan medicine sea buckthorn by 1H-NMR-based metabonomics].

    PubMed

    Su, Yong-Wen; Tan, Er; Zhang, Jing; You, Jia-Li; Liu, Yue; Liu, Chuan; Zhou, Xiang-Dong; Zhang, Yi

    2014-11-01

    The 1H-NMR fingerprints of three different species tibetan medicine sea buckthorn were established by 1H-HMR metabolomics to find out different motablism which could provide a new method for the quality evaluation of sea buckthorn. The obtained free induction decay (FID) signal will be imported into MestReNova software and into divide segments. The data will be normalized and processed by principal component analysis and.partial least squares discriminant analysis to perform pattern recognition. The results showed that 25 metabolites belonging to different chemical types were detected from sea buckthorn,including flavonoids, triterpenoids, amino acids, carbohydrates, fatty acids, etc. PCA and PLS-DA analysis showed three different varietiest of sea buckthorn that can be clearly separated by the content of L-quebrachitol, malic acid and some unidentified sugars, which can be used as the differences metabolites of three species of sea buckthorn. 1H-NMR-based metabonomies method had a holistic characteristic with sample preparation and handling. The results of this study can offer an important reference for the species identification and quality control of sea buckthorn.

  19. Metabolic classification of South American Ilex species by NMR-based metabolomics.

    PubMed

    Kim, Hye Kyong; Saifullah; Khan, Saifullah; Wilson, Erica G; Kricun, Sergio D Prat; Meissner, Axel; Goraler, Sibel; Deelder, André M; Choi, Young Hae; Verpoorte, Robert

    2010-05-01

    The genus Ilex to which mate (Ilex paraguariensis) belongs, consists of more than 500 species. A wide range of metabolites including saponins and phenylpropanoids has been reported from Ilex species. However, despite the previous works on the Ilex metabolites, the metabolic similarities between species which can be used for chemotaxonomy of the species are not clear yet. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomics was applied to the classification of 11 South American Ilex species, namely, Ilex argentina, Ilex brasiliensis, Ilex brevicuspis, Ilex dumosa var. dumosa, I. dumosa var. guaranina, Ilex integerrima, Ilex microdonta, I. paraguariensis var. paraguariensis, Ilex pseudobuxus, Ilex taubertiana, and Ilex theezans. (1)H NMR combined with principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) showed a clear separation between species and resulted in four groups based on metabolomic similarities. The signal congestion of (1)H NMR spectra was overcome by the implementation of two-dimensional (2D)-J-resolved and heteronuclear single quantum coherence (HSQC). From the results obtained by 1D- and 2D-NMR-based metabolomics it was concluded that species included in group A (I. paraguariensis) were metabolically characterized by a higher amount of xanthines, and phenolics including phenylpropanoids and flavonoids; group B (I. dumosa var. dumosa and I. dumosa var. guaranina) with oleanane type saponins; group C (I. brasiliensis, I. integerrima, I. pseudobuxus and I. theezans) with arbutin and dicaffeoylquinic acids, and group D (I. argentina, I. brevicuspis, I. microdonta and I. taubertiana) with the highest level of ursane-type saponins. Clear metabolomic discrimination of Ilex species and varieties in this study makes the chemotaxonomic classification of Ilex species possible.

  20. NMR-based Metabolomics Applications in Biological and Environmental Science

    EPA Science Inventory

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used bybiologists to study the dynamic response of biological systems (cells, tissues, or wholeorganisms) under diverse physiological or pathological conditions. Metabolomics deals with the quali...

  1. Metabolomic insight into soy sauce through (1)H NMR spectroscopy.

    PubMed

    Ko, Bong-Kuk; Ahn, Hyuk-Jin; van den Berg, Frans; Lee, Cherl-Ho; Hong, Young-Shick

    2009-08-12

    Soy sauce, a well-known seasoning in Asia and throughout the world, consists of many metabolites that are produced during fermentation or aging and that have various health benefits. However, their comprehensive assessment has been limited due to targeted or instrumentally specific analysis. This paper presents for the first time a metabolic characterization of soy sauce, especially that aged up to 12 years, to obtain a global understanding of the metabolic variations through (1)H NMR spectroscopy coupled with multivariate pattern recognition techniques. Elevated amino acids and organic acids and the consumption of carbohydrate were associated with continuous involvement of microflora in aging for 12 years. In particular, continuous increases in the levels of betaine were found during aging for up to 12 years, demonstrating that microbial- or enzyme-related metabolites were also coupled with osmotolerant or halophilic bacteria present during aging. This work provides global insights into soy sauce through a (1)H NMR-based metabolomic approach that enhances the current understanding of the holistic metabolome and allows assessment of soy sauce quality.

  2. Non-invasive diagnosis of papillary thyroid microcarcinoma: a NMR-based metabolomics approach

    PubMed Central

    Lu, Jinghui; Hu, Sanyuan; Miccoli, Paolo; Zeng, Qingdong; Liu, Shaozhuang; Ran, Lin; Hu, Chunxiao

    2016-01-01

    Papillary thyroid microcarcinoma (PTMC) is a subtype of papillary thyroid carcinoma (PTC). Because its diameter is less than 10 mm, diagnosing it accurately is difficult with traditional methods such as image examinations and FNA (Fine Needle Aspiration). Investigating the metabolic changes induced by PTMC may enhance the understanding of its pathogenesis and provide important information for a new diagnosis method and treatment plan. In this study, high resolution magic angle spin (HRMAS) spectroscopy and 1H-nuclear magnetic resonance (1H-NMR) spectroscopy were used to screen metabolic changes in thyroid tissues and plasma from PTMC patients respectively. The results revealed reduced levels of fatty acids and elevated levels of several amino acids (phenylalanine, tyrosine, lactate, serine, cystine, lysine, glutamine/glutamate, taurine, leucine, alanine, isoleucine and valine) in thyroid tissues, as well as reduced levels of amino acids such as valine, tyrosine, proline, lysine, leucine and elevated levels of glucose, mannose, pyruvate and 3-hydroxybutyrate in plasma, are involved in the metabolic alterations in PTMC. In addition, a receiver operating characteristic (ROC) curve model for PTMC prediction was able to classify cases with good sensitivity and specificity using 9 significant changed metabolites in plasma. This work illustrates that the NMR-based metabolomics approach is capable of providing more sensitive diagnostic results and more systematic therapeutic information for PTMC. PMID:27835583

  3. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis

    PubMed Central

    Guleria, Anupam; Pratap, Avadhesh; Dubey, Durgesh; Rawat, Atul; Chaurasia, Smriti; Sukesh, Edavalath; Phatak, Sanat; Ajmani, Sajal; Kumar, Umesh; Khetrapal, Chunni Lal; Bacon, Paul; Misra, Ramnath; Kumar, Dinesh

    2016-01-01

    Management of patient with Lupus Nephritis (LN) continues to remain a challenge for the treating physicians because of considerable morbidity and even mortality. The search of biomarkers in serum and urine is a focus of researchers to unravel new targets for therapy. In the present study, the utility of NMR-based serum metabolomics has been evaluated for the first time in discriminating LN patients from non-nephritis lupus patients (SLE) and further to get new insights into the underlying disease processes for better clinical management. Metabolic profiling of sera obtained from 22 SLE patients, 40 LN patients and 30 healthy controls (HC) were performed using high resolution 1D 1H-CPMG and diffusion edited NMR spectra to identify the potential molecular biomarkers. Using multivariate analysis, we could distinguish SLE and LN patients from HC and LN from SLE patients. Compared to SLE patients, the LN patients had increased serum levels of lipid metabolites (including LDL/VLDL lipoproteins), creatinine and decreased levels of acetate. Our results revealed that metabolic markers especially lipids and acetate derived from NMR spectroscopy has high sensitivity and specificity to distinguish LN among SLE patients and has the potential to be a useful adjunctive tool in diagnosis and clinical management of LN. PMID:27739464

  4. NMR-based metabolomics of prostate cancer: a protagonist in clinical diagnostics.

    PubMed

    Kumar, Deepak; Gupta, Ashish; Nath, Kavindra

    2016-06-01

    Advances in the application of NMR spectroscopy-based metabolomic profiling of prostate cancer comprises a potential tactic for understanding the impaired biochemical pathways arising due to a disease evolvement and progression. This technique involves qualitative and quantitative estimation of plethora of small molecular weight metabolites of body fluids or tissues using state-of-the-art chemometric methods delivering an important platform for translational research from basic to clinical, to reveal the pathophysiological snapshot in a single step. This review summarizes the present arrays and recent advancements in NMR-based metabolomics and a glimpse of currently used medical imaging tactics, with their role in clinical diagnosis of prostate cancer.

  5. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics.

    PubMed

    Mushtaq, Mian Yahya; Marçal, Rosilene Moretti; Champagne, Danielle L; van der Kooy, Frank; Verpoorte, Robert; Choi, Young Hae

    2014-09-01

    We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies.

  6. 1H NMR-based metabolic profiling reveals the effects of fluoxetine on lipid and amino acid metabolism in astrocytes.

    PubMed

    Bai, Shunjie; Zhou, Chanjuan; Cheng, Pengfei; Fu, Yuying; Fang, Liang; Huang, Wen; Yu, Jia; Shao, Weihua; Wang, Xinfa; Liu, Meiling; Zhou, Jingjing; Xie, Peng

    2015-04-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is a prescribed and effective antidepressant and generally used for the treatment of depression. Previous studies have revealed that the antidepressant mechanism of fluoxetine was related to astrocytes. However, the therapeutic mechanism underlying its mode of action in astrocytes remains largely unclear. In this study, primary astrocytes were exposed to 10 µM fluoxetine; 24 h post-treatment, a high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic approach coupled with multivariate statistical analysis was used to characterize the metabolic variations of intracellular metabolites. The orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots of the spectra demonstrated that the fluoxetine-treated astrocytes were significantly distinguished from the untreated controls. In total, 17 differential metabolites were identified to discriminate the two groups. These key metabolites were mainly involved in lipids, lipid metabolism-related molecules and amino acids. This is the first study to indicate that fluoxetine may exert antidepressant action by regulating the astrocyte's lipid and amino acid metabolism. These findings should aid our understanding of the biological mechanisms underlying fluoxetine therapy.

  7. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy

    PubMed Central

    Tikunov, Andrey P.; Johnson, Christopher B.; Lee, Haakil; Stoskopf, Michael K.; Macdonald, Jeffrey M.

    2010-01-01

    The Eastern oyster (Crassostrea virginica) is a useful, robust model marine organism for tissue metabolism studies. Its relatively few organs are easily delineated and there is sufficient understanding of their functions based on classical assays to support interpretation of advanced spectroscopic approaches. Here we apply high-resolution proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis to C. virginica to investigate the differences in the metabolic profile of different organ groups, and magnetic resonance imaging (MRI) to non-invasively identify the well separated organs. Metabolites were identified in perchloric acid extracts of three portions of the oyster containing: (1) adductor muscle, (2) stomach and digestive gland, and (3) mantle and gills. Osmolytes dominated the metabolome in all three organ blocks with decreasing concentration as follows: betaine > taurine > proline > glycine > ß-alanine > hypotaurine. Mitochondrial metabolism appeared most pronounced in the adductor muscle with elevated levels of carnitine facilitating ß-oxidation, and ATP, and phosphoarginine synthesis, while glycogen was elevated in the mantle/gills and stomach/digestive gland. A biochemical schematic is presented that relates metabolites to biochemical pathways correlated with physiological organ functions. This study identifies metabolites and corresponding 1H NMR peak assignments for future NMR-based metabolomic studies in oysters. PMID:21116407

  8. A NMR-based metabolomic approach for differentiation of hagfish dental and somatic skeletal muscles.

    PubMed

    Chiu, Kuo-Hsun; Ding, Shangwu; Chen, Yan-Wen; Lee, Che-Hsin; Mok, Hin-Kiu

    2011-09-01

    The hagfish dental muscle is a large and specialized element of the feeding apparatus that helps ingest food. This muscle has enzymatic activities and contractile properties different from the hagfish somatic skeletal muscle. To verify the functional relevance of protein alterations, we examined the metabolomic differentiation of hagfish dental and somatic skeletal muscles using ¹H-nuclear magnetic resonance (NMR)-based metabolomics and multivariate analysis that separated hagfish dental and somatic muscles by principal component analysis and partial least squares for discriminant analysis. Our analysis of assigned metabolites showed that anserine and taurine levels were higher in dental muscle, but creatine, fructose, glucose, glycerate, pyruvate, and succinate levels were higher in somatic muscle. We concluded that the primary energy sources of dental and somatic muscles are related to the citric acid cycle and the anaerobic glycolysis and metabolism of creatine. Thus, ¹H-NMR-based metabolomics can be integrated with the previous proteomic approach to derive biochemical and physiological information about hagfish muscles.

  9. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    PubMed Central

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species. PMID:25785229

  10. Biochemical effects of venlafaxine on astrocytes as revealed by (1)H NMR-based metabolic profiling.

    PubMed

    Sun, Lu; Fang, Liang; Lian, Bin; Xia, Jin-Jun; Zhou, Chan-Juan; Wang, Ling; Mao, Qiang; Wang, Xin-Fa; Gong, Xue; Liang, Zi-Hong; Bai, Shun-Jie; Liao, Li; Wu, Yu; Xie, Peng

    2017-01-31

    As a serotonin-norepinephrine reuptake inhibitor [SNRI], venlafaxine is one of the most commonly prescribed clinical antidepressants, with a broad range of antidepressant effects. Accumulating evidence shows that venlafaxine may target astrocytes to exert its antidepressant activity, although the underlying pharmacological mechanisms remained largely unknown. Here, we used a (1)H nuclear magnetic resonance (NMR)-based metabonomics method coupled with multivariate statistical analysis to characterize the metabolic profiling of astrocytes treated with venlafaxine to explore the potential mechanism of its antidepressant effect. In total, 31 differential metabolites involved in energy, amino acid and lipid metabolism were identified. Ingenuity pathway analysis was used to identify the predicted pathways and biological functions with venlafaxine and fluoxetine. The most significantly altered network was "amino acid metabolism, cellular growth and proliferation", with a score above 20. Certain metabolites (lysine, tyrosine, glutamate, methionine, ethanolamine, fructose-6-phosphate, and phosphorylethanolamine) are involved in and play a central role in this network. Collectively, the biological effects of venlafaxine on astrocytes provide us with the further understanding of the mechanisms by which venlafaxine treats major depressive disorder.

  11. ¹H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar).

    PubMed

    Wagner, Liane; Trattner, Sofia; Pickova, Jana; Gómez-Requeni, Pedro; Moazzami, Ali A

    2014-03-15

    A (1)H NMR-based metabolomics approach was used to explore the impact of dietary sesamin on the liver and white muscle metabolic profile of Atlantic salmon (Salmo salar). Fish were fed diets containing different n-6/n-3 fatty acid ratios (V0.5 or V1) and sesamin contents [without (S0), low (SL) 1.16 g/kg feed, and high (SH) 5.8 g/kg feed] for 4 months. Liver and white muscle extracts of aqueous polar and chloroform lipid phases were collected. Multivariate data analyses (PCA and OPLS-DA) of liver chloroform phase showed that high levels of sesamin affected the metabolic profile impartially of the n-6/n-3 ratio. In the aqueous phase, the metabolome of liver and white muscle were affected in fish fed an n-6/n-3 ratio of 1.0 and 0.5, respectively. With high inclusion of sesamin, the levels of several metabolites (e.g. glucose, glycogen, leucine, valine, creatine, carnitine, lactate, nucleosides) were increased. These metabolites are mainly associated with energy metabolism, suggesting that high sesamin inclusion affects liver and white muscle metabolism in fish. This is consistent with lower body weights found in fish fed high sesamin content.

  12. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems.

  13. Dose responsive effects of cisplatin in L02 cells using NMR-based metabolomics.

    PubMed

    Liu, Shu; Wang, Wei; Zhou, Xueyi; Gu, Runhuan; Ding, Zongli

    2014-01-01

    Cisplatin is an effective chemotherapeutic agent for the treatment of various cancers, such as bladder cancer, epithelial ovarian cancer, cervical cancer, and so on. However, cisplatin can cause various side effects. In this study, the dose-responsive effects of cisplatin were investigated in an in vitro model of human liver cells (L02) using NMR-based metabolomics. The inverted U-shaped curve of cell proliferation confirmed the hormetic effects of cisplatin (from 1 nM to 1 mM) in L02 cells. However, the metabolite changes revealed both U-shaped (ethanol, lactate, aspartate, choline, etc.) and inverted U-shaped (glutamate, glutamine, 4-aminobutyrate, myo-inositol, etc.) curves induced by three typical concentrations of cisplatin which covered the inverted U-shaped curve as indicated by the cell proliferation assay. These findings suggested that a macroscopic hormesis phenomenon on the cell proliferation could be reflected by both stimulated and inhibited metabolites and corresponding metabolic pathways to cisplatin treatments. Therefore, a global analysis using metabolomics may give a broader view into the dose-response relationship than using a single endpoint at molecular levels.

  14. Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Zhang, Mimin; Miyakawa, Takuya; Tanokura, Masaru

    2016-08-16

    Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using (1)H, (13)C, (1)H-(1)H DQF-COSY, (1)H-(13)C edited-HSQC, (1)H-(13)C CT-HMBC, and (1)H-(13)C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5-hydroxymethylfurfural, di-d-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time.

  15. NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction.

    PubMed

    Zheng, Hong; Lin, Qiuting; Wang, Dan; Xu, Pengtao; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui; Yan, Zhihan; Gao, Hongchang

    2017-04-01

    Diabetes mellitus (DM) can result in cognitive dysfunction, but its potential metabolic mechanisms remain unclear. In the present study, we analyzed the metabolite profiling in eight different brain regions of the normal rats and the streptozotocin (STZ)-induced diabetic rats accompanied by cognitive dysfunction using a (1)H NMR-based metabolomic approach. A mixed linear model analysis was performed to assess the effects of DM, brain region and their interaction on metabolic changes. We found that different brain regions in rats displayed significant metabolic differences. In addition, the hippocampus was more susceptible to DM compared with other brain regions in rats. More interestingly, significant interaction effects of DM and brain region were observed on alanine, creatine/creatine-phosphate, lactate, succinate, aspartate, glutamate, glutamine, γ-aminobutyric acid, glycine, choline, N-acetylaspartate, myo-inositol and taurine. Based on metabolic pathway analysis, we speculate that cognitive dysfunction in the STZ-induced diabetic rats may be associated with brain region-specific metabolic alterations involving energy metabolism, neurotransmitters, membrane metabolism and osmoregulation.

  16. Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks.

    PubMed

    Southam, Andrew D; Easton, John M; Stentiford, Grant D; Ludwig, Christian; Arvanitis, Theodoros N; Viant, Mark R

    2008-12-01

    Histopathologically well-characterized fish liver was analyzed by 800 MHz 1H NMR metabolomics to identify metabolic changes between healthy and tumor tissue. Data were analyzed by multivariate statistics and metabolic correlation networks, and results revealed elevated anaerobic metabolism and reduced choline metabolism in tumor tissue. Significant negative correlations were observed between alanine-acetate (p = 3.0 x 10(-5)) and between proline-acetate (p = 0.003) in tumors only, suggesting alanine and proline are utilized as alternative energy sources in flatfish liver tumors.

  17. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  18. NMR-based metabolomics for the environmental assessment of Kaohsiung Harbor sediments exemplified by a marine amphipod (Hyalella azteca).

    PubMed

    Chiu, K H; Dong, C D; Chen, C F; Tsai, M L; Ju, Y R; Chen, T M; Chen, C W

    2017-03-03

    Inflow of wastewater from upstream causes a large flux of pollutants to enter Kaohsiung Harbor in Taiwan daily. To reveal the ecological risk posed by Kaohsiung Harbor sediments, an ecological metabolomic approach was employed to investigate environmental factors pertinent to the physiological regulation of the marine amphipod Hyalella azteca. The amphipods were exposed to sediments collected from different stream inlets of the Love River (LR), Canon River (CR), Jen-Gen River (JR), and Salt River (SR). Harbor entrance 1 (E1) was selected as a reference site. After 10-day exposure, metabolomic analysis of the Hyalella azteca revealed differences between two groups: {E1, LR, CR} and {JR, SR}. The metabolic pathways identified in the two groups of amphipods were significantly different. The results demonstrated that NMR-based metabolomics can be effectively used to characterize metabolic response related to sediment from polluted areas.

  19. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    PubMed

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  20. An NMR-Based Metabolomic Approach to Investigate the Effects of Supplementation with Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  1. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  2. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics.

    PubMed

    Cappello, Tiziana; Mauceri, Angela; Corsaro, Carmelo; Maisano, Maria; Parrino, Vincenzo; Lo Paro, Giuseppe; Messina, Giuseppe; Fasulo, Salvatore

    2013-12-15

    Metabolic responses to environmental pollution, mainly related to Hg and PAHs, were investigated in mussels. Specimens of Mytilus galloprovincialis, sedentary filter-feeders, were caged in anthropogenic-impacted and reference sites along the Augusta coastline (Sicily, Italy). The gills, mainly involved in nutrient uptake, digestion and gas exchange, were selected as target organ being the first organ to be affected by pollutants. Severe alterations in gill tissue were observed in mussels from the industrial area compared with control, while gill metabolic profiles, obtained by (1)H NMR spectroscopy and analyzed by multivariate statistics, exhibited significant changes in amino acids, energy metabolites, osmolytes and neurotransmitters. Overall, the morphological changes and metabolic disturbance detected in gill tissues may suggest that the mussels transplanted to the contaminated field site were suffering from adverse environmental condition. The concurrent morphological and metabolomic investigations as applied here result effective in assessing the environmental influences on health status of aquatic organisms.

  3. (1)H nuclear magnetic resonance-based extracellular metabolomic analysis of multidrug resistant Tca8113 oral squamous carcinoma cells.

    PubMed

    Wang, Hui; Chen, Jiao; Feng, Yun; Zhou, Wenjie; Zhang, Jihua; Yu, Y U; Wang, Xiaoqian; Zhang, Ping

    2015-06-01

    A major obstacle of successful chemotherapy is the development of multidrug resistance (MDR) in the cancer cells, which is difficult to reverse. Metabolomic analysis, an emerging approach that has been increasingly applied in various fields, is able to reflect the unique chemical fingerprints of specific cellular processes in an organism. The assessment of such metabolite changes can be used to identify novel therapeutic biomarkers. In the present study, (1)H nuclear magnetic resonance (NMR) spectroscopy was used to analyze the extracellular metabolomic spectrum of the Tca8113 oral squamous carcinoma cell line, in which MDR was induced using the carboplatin (CBP) and pingyangmycin (PYM) chemotherapy drugs in vitro. The data were analyzed using the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) methods. The results demonstrated that the extracellular metabolomic spectrum of metabolites such as glutamate, glycerophosphoethanol amine, α-Glucose and β-Glucose for the drug-induced Tca8113 cells was significantly different from the parental Tca8113 cell line. A number of biochemicals were also significantly different between the groups based on their NMR spectra, with drug-resistant cells presenting relatively higher levels of acetate and lower levels of lactate. In addition, a significantly higher peak was observed at δ 3.35 ppm in the spectrum of the PYM-induced Tca8113 cells. Therefore, (1)H NMR-based metabolomic analysis has a high potential for monitoring the formation of MDR during clinical tumor chemotherapy in the future.

  4. 1H-NMR-based metabolic signatures of clinical outcomes in trauma patients--beyond lactate and base deficit.

    PubMed

    Cohen, Mitchell J; Serkova, Natalie J; Wiener-Kronish, Jeanine; Pittet, Jean-Francois; Niemann, Claus U

    2010-07-01

    The determination of reliable biomarkers capable to predict clinical outcome of a trauma patient remains essential toward better therapeutic management of the patient in the intensive care unit. Assessment of global metabolic profiling using quantitative nuclear magnetic resonance (NMR)-based metabolomics offers an attractive modern methodology for fast and comprehensive determination of multiple circulating metabolites and for establishing metabolic phenotype of survivors versus nonsurvivors. Multivariate data analysis on 43 quantitative metabolic parameters identified three lipid metabolites, triacylglycerol, glycerol heads of phospholipids, and monounsaturated fatty acids, as being the most discriminative markers to separate survivors versus nonsurvivors at the time of admission. Glucose and glutamate were intermediate predictors, followed by lactate and hydroxybutyrate as two low-weight predictors. Ultimately, cellular and subcellular failure in nonsurviving trauma patients results in multiple systemic biochemical effects and in changes in circulating metabolites in the blood that are characteristic for decreased lipid synthesis and urea cycle activity in the liver, and for increased hyperglycemia, lactic, and ketoacidosis.

  5. Robustness of NMR-based metabolomics to generate comparable data sets for olive oil cultivar classification. An inter-laboratory study on Apulian olive oils.

    PubMed

    Piccinonna, Sara; Ragone, Rosa; Stocchero, Matteo; Del Coco, Laura; De Pascali, Sandra Angelica; Schena, Francesco Paolo; Fanizzi, Francesco Paolo

    2016-05-15

    Nuclear Magnetic Resonance (NMR) spectroscopy is emerging as a powerful technique in olive oil fingerprinting, but its analytical robustness has to be proved. Here, we report a comparative study between two laboratories on olive oil (1)H NMR fingerprinting, aiming to demonstrate the robustness of NMR-based metabolomics in generating comparable data sets for cultivar classification. Sample preparation and data acquisition were performed independently in two laboratories, equipped with different resolution spectrometers (400 and 500 MHz), using two identical sets of mono-varietal olive oils. Partial Least Squares (PLS)-based techniques were applied to compare the data sets produced by the two laboratories. Despite differences in spectrum baseline, and in intensity and shape of peaks, the amount of shared information was significant (almost 70%) and related to cultivar (same metabolites discriminated between cultivars). In conclusion, regardless of the variability due to operator and machine, the data sets from the two participating units were comparable for the purpose of classification.

  6. Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics.

    PubMed

    Schock, Tracey B; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W; Bearden, Daniel W

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production.

  7. Evaluation of Pacific White Shrimp (Litopenaeus vannamei) Health during a Superintensive Aquaculture Growout Using NMR-Based Metabolomics

    PubMed Central

    Schock, Tracey B.; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W.; Bearden, Daniel W.

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  8. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  9. Applications of NMR-based metabolomics in biological and environmental research

    EPA Science Inventory

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used by biologists to study the dynamic response of biological systems (cells, tissues, or whole organisms) under diverse physiological or pathological conditions. Metabolomics deals with the qu...

  10. 1H-NMR-Based Endometabolome Profiles of Burkholderia cenocepacia Clonal Variants Retrieved from a Cystic Fibrosis Patient during Chronic Infection

    PubMed Central

    Moreira, Ana S.; Lourenço, Artur B.; Sá-Correia, Isabel

    2016-01-01

    During cystic fibrosis (CF) chronic lung infections, bacteria of the Burkholderia cepacia complex (Bcc) are exposed for several years to a stressful and changing environment. These environmental challenges results in genetic changes of the initial infecting strain with the consequent diversification of genotypes and phenotypes. The exploitation of functional and comparative genomic approaches has suggested that such diversification is associated with massive metabolic remodeling but these alterations are poorly understood. In the present work, we have explored a high resolution 1H-NMR-based metabolomic approach coupled to multivariate analysis to compare the endometabolome of three B. cenocepacia clonal variants retrieved from a CF patient from the onset of infection (IST439) until death with cepacia syndrome after 3.5 years (IST4113 and IST4134), to complement former proteomic and transcriptomic analyses. A fourth clonal variant (IST4129) retrieved from the same CF patient when the clinical condition worsened during the last months of life, was also examined since it was found to lack the third replicon. The metabolomic profiles obtained, based on the complete 1H-NMR spectra, highlight the separation of the four clonal variants examined, the most distinct profile corresponding to IST4129. Results indicate a variable content of several amino acids in the different isolates examined and suggest that glycolysis and the glyoxylate shunt are favored in late variants. Moreover, the concentration of two metabolites with demonstrated cellular protective functions against stress, glycine-betaine and trehalose, is different in the different isolates examined. However, no clear correlation could be established between their content and stress tolerance. For example, IST4113, previously found to be the most resistant variant to antimicrobials of different classes, exhibits low levels of trehalose and glycine-betaine but the highest resistance to heat and oxidative stress

  11. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  12. Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics.

    PubMed

    Georgiev, Milen I; Ali, Kashif; Alipieva, Kalina; Verpoorte, Robert; Choi, Young Hae

    2011-11-01

    The genus Verbascum L. (mulleins) comprises of about 360 species of flowering plants in the Scrophulariaceae family. Mulleins have been used in the traditional folk medicine for centuries, for treatment of a wide range of human ailments, inter alia bronchitis, tuberculosis, asthma, and different inflammations. Despite all applications the knowledge of the metabolites, accumulated in different mullein species, is still limited and based mainly on determination of the major compounds. Here we report the application of 1H NMR metabolic fingerprinting in combination with principal component analyses (PCA) in five different Verbascum species. Based on the obtained results mulleins were divided in two groups: group A (Verbascum phlomoides and Verbascum densiflorum) and group B (Verbascum xanthophoeniceum, Verbascum nigrum and Verbascum phoeniceum). Further it was found that the plants in group B accumulate higher amounts of bioactive iridoid and phenylethanoid glycosides. V. xanthophoeniceum and V. nigrum accumulate higher amounts of the pharmaceutically-important harpagoside (∼0.5% on dry weight basis) and verbascoside, forsythoside B and leucosceptoside B (in total 5.6-5.8% on dry weight basis), which underlines the possibility for their application in pharmaceutical industry. To the best of our knowledge this is the first report on the analyses of Verbascum sp. leaf metabolome.

  13. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats.

    PubMed

    Xu, Jingjing; Zheng, Xujuan; Cheng, Kian-Kai; Chang, Xiaorong; Shen, Guiping; Liu, Mi; Wang, Yadong; Shen, Jiacheng; Zhang, Yuan; He, Qida; Dong, Jiyang; Yang, Zongbao

    2017-03-30

    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as (1)H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.

  14. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats

    PubMed Central

    Xu, Jingjing; Zheng, Xujuan; Cheng, Kian-Kai; Chang, Xiaorong; Shen, Guiping; Liu, Mi; Wang, Yadong; Shen, Jiacheng; Zhang, Yuan; He, Qida; Dong, Jiyang; Yang, Zongbao

    2017-01-01

    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations. PMID:28358020

  15. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.

  16. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Yang, Cuiyun; Zhang, Linbao; Li, Lianzhen; Liu, Sujing; Yu, Junbao; You, Liping; Zhou, Di; Xia, Chuanhai; Zhao, Jianmin; Wu, Huifeng

    2011-08-01

    Cadmium is a non-essential element to living organisms and has become the severe contaminant in both seawater and sediment in the intertidal zones of the Bohai Sea. The halophyte, Suaeda salsa is the pioneer plant in the intertidal zones of Bohai Sea and has been widely applied in environmental sciences. In this study, the dose- and time-dependent effects induced by environmentally relevant concentrations (2, 10 and 50 μg l(-1)) of cadmium were characterized in S. salsa using NMR-based metabolomics. The levels of amino acids (valine, leucine, glutamate, tyrosine, etc.), carbohydrates (glucose, sucrose and fructose), intermediates of tricarboxylic acid cycle (succinate, citrate, etc.) and osmolyte (betaine) were altered in the S. salsa samples after cadmium exposures. These metabolic biomarkers indicated the elevated protein degradation and disturbances in the osmotic regulation and energy metabolism caused by cadmium in S. salsa. Overall, our results demonstrated the applicability of NMR-based metabolomics for the detection of metabolic biomarkers that could be used for the interpretation of toxicological effects induced by contaminants in the pioneer plant S. salsa in the intertidal zones. In addition, the metabolic biomarkers could be potentially useful for the bio-monitoring of contaminants in the intertidal zones.

  17. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis.

    PubMed

    Emwas, Abdul-Hamid; Roy, Raja; McKay, Ryan T; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G A Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S

    2016-02-05

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many "unwanted" or "undesirable" compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment.

  18. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis

    PubMed Central

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment. PMID:26745651

  19. NMR-BASED METABOLOMIC STUDIES OF ENDOCRINE DISRUPTION IN SMALL FISH MODELS

    EPA Science Inventory

    Metabolomics is now being widely used to obtain complementary information to genomic and proteomic studies. Among the various approaches used in metabolomics, NMR spectroscopy is particularly powerful, in part because it is relatively non-selective, and is amenable to the study o...

  20. Harvest year effects on Apulian EVOOs evaluated by 1H NMR based metabolomics

    PubMed Central

    De Pascali, Sandra A.

    2016-01-01

    Nine hundred extra virgin olive oils (EVOO) were extracted from individual olive trees of four olive cultivars (Coratina, Cima di Mola, Ogliarola, Peranzana), originating from the provinces of Bari and Foggia (Apulia region, Southern Italy) and collected during two consecutive harvesting seasons (2013/14 and 2014/15). Following genetic identification of individual olive trees, a detailed Apulian EVOO NMR database was built using 900 oils samples obtained from 900 cultivar certified single trees. A study on the olive oil lipid profile was carried out by statistical multivariate analysis (Principal Component Analysis, PCA, Partial Least-Squares Discriminant Analysis, PLS-DA, Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA). Influence of cultivar and weather conditions, such as the summer rainfall, on the oil metabolic profile have been evaluated. Mahalanobis distances and J2 criterion have been measured to assess the quality of resulting scores clusters for each cultivar in the two harvesting campaigns. The four studied cultivars showed non homogeneous behavior. Notwithstanding the geographical spread and the wide number of samples, Coratina showed a consistent behavior of its metabolic profile in the two considered harvests. Among the other three Peranzana showed the second more consistent behavior, while Cima di Mola and Ogliarola having the biggest change over the two years. PMID:27994965

  1. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH NMR BASED METABOLOMICS

    EPA Science Inventory

    Recently, metabolomics, or the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, has been employed to enable rapid identification of the mechanisms of toxicity for compounds of environmental...

  2. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow.

    PubMed

    Wu, Changsheng; Du, Chao; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P

    2017-02-24

    Mining of microbial genomes has revealed that actinomycetes harbor far more biosynthetic potential for bioactive natural products than anticipated. Activation of (cryptic) biosynthetic gene clusters and identification of the corresponding metabolites has become a focal point for drug discovery. Here, we applied NMR-based metabolomics combined with bioinformatics to identify novel C-glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 and to elucidate the biosynthetic pathway. Following activation of the cryptic qin gene cluster for a type II polyketide synthase (PKS) by constitutive expression of its pathway-specific activator, bioinformatics coupled to NMR profiling facilitated the chromatographic isolation and structural elucidation of qinimycins A-C (1-3). The intriguing structural features of the qinimycins, including 8-C-glycosylation, 5,14-epoxidation, and 13-hydroxylation, distinguished these molecules from the model pyranonaphthoquinones actinorhodin, medermycin, and granaticin. Another novelty lies in the unusual fusion of a deoxyaminosugar to the pyranonaphthoquinone backbone during biosynthesis of the antibiotics BE-54238 A and B (4, 5). Qinimycins showed weak antimicrobial activity against Gram-positive bacteria. Our work shows the utility of combining bioinformatics, targeted activation of cryptic gene clusters, and NMR-based metabolic profiling as an effective pipeline for the discovery of microbial natural products with distinctive skeletons.

  3. Toxicological effects of environmentally relevant lead and zinc in halophyte Suaeda salsa by NMR-based metabolomics.

    PubMed

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao; Pang, Qiuying; Feng, Jianghua

    2012-11-01

    Lead (Pb) and zinc (Zn) are two typical metal contaminants with high levels in both seawater and sediment in the intertidal zones of the Bohai Sea. Suaeda salsa is the pioneer halophyte plant in the intertidal zones of the Bohai Sea. In the present work, the short (1 week) and long term (1 month) toxicological effects of environmentally relevant concentrations of Pb and Zn were characterized in S. salsa using NMR-based metabolomics combined with antioxidant enzyme activities. After metal exposure for 1 week, no significant metabolic responses were detected in root tissues of S. salsa. The significant metabolic responses included the increase of isocaproate, glucose and fructose, and decrease of malate, citrate and sucrose in root tissues of S. salsa exposed to Pb for 1 month. The increased phosphocholine and betaine, and decreased choline were uniquely found in Zn-exposed samples. The metabolic changes including decreased malate, citrate and sucrose were detected in both Pb and Zn-exposed groups. These metabolic biomarkers revealed that both Pb and Zn exposures could induce osmotic stress and disturbances in energy metabolism in S. salsa after exposures for 1 month. Overall, this work demonstrates that metabolomics can be used to elucidate toxicological effects of environmentally relevant metal contaminants using halophyte S. salsa as the bioindicator.

  4. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans.

    PubMed

    Izrayelit, Yevgeniy; Robinette, Steven L; Bose, Neelanjan; von Reuss, Stephan H; Schroeder, Frank C

    2013-02-15

    Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonate at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans.

  5. 2D NMR-based metabolomics uncovers interactions between conserved biochemical pathways in the model organism Caenorhabditis elegans

    PubMed Central

    Izrayelit, Yevgeniy; Robinette, Steven L.; Bose, Neelanjan; von Reuss, Stephan H.; Schroeder, Frank C.

    2012-01-01

    Ascarosides are small-molecule signals that play a central role in C. elegans biology, including dauer formation, aging, and social behaviors, but many aspects of their biosynthesis remain unknown. Using automated 2D NMR-based comparative metabolomics, we identified ascaroside ethanolamides as shunt metabolites in C. elegans mutants of daf-22, a gene with homology to mammalian 3-ketoacyl-CoA thiolases predicted to function in conserved peroxisomal lipid β-oxidation. Two groups of ethanolamides feature β-keto functionalization confirming the predicted role of daf-22 in ascaroside biosynthesis, whereas α-methyl substitution points to unexpected inclusion of methylmalonte at a late stage in the biosynthesis of long-chain fatty acids in C. elegans. We show that ascaroside ethanolamide formation in response to defects in daf-22 and other peroxisomal genes is associated with severe depletion of endocannabinoid pools. These results indicate unexpected interaction between peroxisomal lipid β-oxidation and the biosynthesis of endocannabinoids, which are major regulators of lifespan in C. elegans. Our study demonstrates the utility of unbiased comparative metabolomics for investigating biochemical networks in metazoans. PMID:23163760

  6. Positional Enrichment by Proton Analysis (PEPA): A One-Dimensional (1) H-NMR Approach for (13) C Stable Isotope Tracer Studies in Metabolomics.

    PubMed

    Vinaixa, Maria; Rodríguez, Miguel A; Aivio, Suvi; Capellades, Jordi; Gómez, Josep; Canyellas, Nicolau; Stracker, Travis H; Yanes, Oscar

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of (13) C-satellite peaks using 1D-(1) H-NMR spectra. In comparison with (13) C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of (13) C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of (1) H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.

  7. NMR-Based Metabolomic Analysis of Huanglongbing-Asymptomatic and -Symptomatic Citrus Trees.

    PubMed

    Freitas, Deisy dos Santos; Carlos, Eduardo Fermino; Gil, Márcia Cristina Soares de Souza; Vieira, Luiz Gonzaga Esteves; Alcantara, Glaucia Braz

    2015-09-02

    Huanglongbing (HLB) is one of the most severe diseases that affects citrus trees worldwide and is associated with the yet uncultured bacteria Candidatus Liberibacter spp. To assess the metabolomic differences between HLB-asymptomatic and -symptomatic tissues, extracts from leaf and root samples taken from a uniform 6-year-old commercial orchard of Valencia trees were subjected to nuclear magnetic resonance (NMR) and chemometrics. The results show that the symptomatic trees had higher sucrose content in their leaves and no variation in their roots. In addition, proline betaine and malate were detected in smaller amounts in the HLB-affected symptomatic leaves. The changes in metabolic processes of the plant in response to HLB are corroborated by the relationship between the bacterial levels and the metabolic profiles.

  8. (1)H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures.

    PubMed

    Li, Pei; Wei, Dan-Dan; Wang, Jun-Song; Yang, Ming-Hua; Kong, Ling-Yi

    2016-01-05

    The anticonvulsive properties of diazepam have been extensively studied, mainly focusing on the γ-amino butyrate (GABA) system. The aim of this investigation was to integrally analyze the metabolic events related to neuroprotection of diazepam on anisatin-induced convulsive seizures by a NMR-based metabolomic approach combined with histopathological examination and behavior examination. Multivariate analysis on metabolic profiles of the piriform cortex and cerebellum of mice revealed that diazepam could relieve mice suffering from the convulsive seizures by recovering destructed neurotransmitter and neuromodulator metabolism, ameliorating oxidative stress, alleviating the disturbance in energy, amino acid and nucleic acid metabolism in anisatin intoxicated mice. This integrated metabolomics study provided a powerful and highly effective approach to elucidate therapeutic effects and assessed the safety of diazepam. This study should be helpful for our understanding of convulsive seizures, and provide a holistic view of the treatment effects of benzodiazepine on convulsive seizures.

  9. NMR-based metabolomic investigation of bioactivity of chemical constituents in black raspberry (Rubus occidentalis L.) fruit extracts.

    PubMed

    Paudel, Liladhar; Wyzgoski, Faith J; Giusti, M Monica; Johnson, Jodee L; Rinaldi, Peter L; Scheerens, Joseph C; Chanon, Ann M; Bomser, Joshua A; Miller, A Raymond; Hardy, James K; Reese, R Neil

    2014-02-26

    Black raspberry (Rubus occidentalis L.) (BR) fruit extracts with differing compound profiles have shown variable antiproliferative activities against HT-29 colon cancer cell lines. This study used partial least-squares (PLS) regression analysis to develop a high-resolution (1)H NMR-based multivariate statistical model for discerning the biological activity of BR constituents. This model identified specific bioactive compounds and ascertained their relative contribution against cancer cell proliferation. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside were the predominant contributors to the extract bioactivity, but salicylic acid derivatives (e.g., salicylic acid glucosyl ester), quercetin 3-glucoside, quercetin 3-rutinoside, p-coumaric acid, epicatechin, methyl ellagic acid derivatives (e.g., methyl ellagic acetyl pentose), and citric acid derivatives also contributed significantly to the antiproliferative activity of the berry extracts. This approach enabled the identification of new bioactive components in BR fruits and demonstrates the utility of the method for assessing chemopreventive compounds in foods and food products.

  10. NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus.

    PubMed

    Boroujerdi, Arezue F B; Vizcaino, Maria I; Meyers, Alexander; Pollock, Elizabeth C; Huynh, Sara Lien; Schock, Tracey B; Morris, Pamela J; Bearden, Daniel W

    2009-10-15

    Coral bleaching occurs when the symbioses between coral animals and their zooxanthellae is disrupted, either as part of a natural cycle or as the result of unusual events. The bacterium Vibrio coralliilyticus (type strain ATCC BAA-450) has been linked to coral disease globally (for example in the Mediterranean, Red Sea, Indian Ocean, and Great Barrier Reef) and like many other Vibrio species exhibits a temperature-dependent pathogenicity. The temperature-dependence of V. corallillyticus in regard to its metabolome was investigated. Nuclear magnetic resonance (NMR) spectra were obtained of methanol-water extracts of intracellula rmetabolites (endometabolome) from multiple samples of the bacteria cultured into late stationary phase at 27 degrees C (virulent form) and 24 degrees C (avirulent form). The spectra were subjected to principal components analysis (PCA), and significant temperature-based separations in PC1, PC2, and PC3 dimensions were observed. Betaine, succinate, and glutamate were identified as metabolites that caused the greatest temperature-based separations in the PC scores plots. With increasing temperature, betaine was shown to be down regulated, while succinate and glutamate were up regulated.

  11. NMR-Based Metabolomic Analysis of Spatial Variation in Soft Corals

    PubMed Central

    He, Qing; Sun, Ruiqi; Liu, Huijuan; Geng, Zhufeng; Chen, Dawei; Li, Yinping; Han, Jiao; Lin, Wenhan; Du, Shushan; Deng, Zhiwei

    2014-01-01

    Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined 1H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation. PMID:24686560

  12. NMR-based metabolomics for organic farming traceability of early potatoes.

    PubMed

    Pacifico, Daniela; Casciani, Lorena; Ritota, Mena; Mandolino, Giuseppe; Onofri, Chiara; Moschella, Anna; Parisi, Bruno; Cafiero, Caterina; Valentini, Massimiliano

    2013-11-20

    (1)H HRMAS-NMR spectroscopy was successfully used to determine the metabolic profiles of 78 tubers obtained from three early genotypes grown under organic and conventional management. The variation in total hydrogen, carbon, and nitrogen contents was also assessed. A PLS-DA multivariate statistical analysis provided good discrimination among the varieties and cropping systems (100% unknown samples placed in a cross-validation blind test), suggesting that this method is a powerful and rapid tool for tracing organic potatoes. As a result of the farming system, the nitrogen content decreased by 11-14% in organic tubers, whereas GABA and lysine accumulated in the organic tubers of all clones. Clear variations in primary metabolites are discussed to provide a better understanding of the metabolic pathway modifications resulting from agronomical practices.

  13. An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency.

    PubMed

    Wu, Xiangyu; Li, Ning; Li, Hongde; Tang, Huiru

    2014-04-07

    Plant metabolomic analysis has become an essential part of functional genomics and systems biology and requires effective extraction of both primary and secondary metabolites from plant cells. To establish an optimized extraction method for the NMR-based analysis, we used the seeds of mungbean (Vigna radiata cv. Elü no. 1) as a model and systematically investigated the dependence of the metabolite composition in plant extracts on various extraction parameters including cell-breaking methods, extraction solvents, number of extraction repeats, tissue-to-solvent ratio, and extract-to-buffer ratio (for final NMR analysis). We also compared two NMR approaches for quantitative metabolomic analysis from completely relaxed spectra directly and from partially relaxed spectra calculated with T1. By maximizing the extraction efficiency and signal-to-noise ratio but minimizing inter-sample chemical-shift variations and metabolite degradations, we established a parameter-optimized protocol for NMR-based plant seed metabolomic analysis. We concluded that aqueous methanol was the best extraction solvent with an optimal tissue-to-solvent ratio of about 1 : 10-1 : 15 (mg per μL). The combination of tissuelyser homogenization with ultrasonication was the choice of cell-breaking method with three repeated extractions being necessary. For NMR analysis, the optimal extract-to-solvent was around 5-8 mg mL(-1) and completely relaxed spectra were ideal for intrinsically quantitative metabolomic analysis although partially relaxed spectra were employable for comparative metabolomics. This optimized method will offer ensured data quality for high-throughput and reliable plant metabolomics studies.

  14. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Zhang, Linbao; You, Liping; Cong, Ming; Zhao, Jianmin; Wu, Huifeng; Li, Chenghua; Liu, Dongyan; Yu, Junbao

    2011-03-01

    The Manila clam (Ruditapes philippinarum) has been considered a good sentinel species for metal pollution monitoring in estuarine tidal flats. Along the Bohai coast of China, there are dominantly distributed three species of clams (White, Liangdao Red and Zebra in Yantai population) endowed with distinct tolerances to environmental stressors. In this study, adductor muscle samples were collected from both control and acute mercury exposed White, Liangdao Red and Zebra clams, and the extracts were analyzed by NMR-based metabolomics to compare the metabolic profiles and responses to the acute mercury exposure to determine the most sensitive clam species capable of acting as abioindicator for heavy metal pollution monitoring. The major abundant metabolites in the White clam sample were branched-chain amino acids (leucine, isoleucine and valine), lactate, arginine, aspartate, acetylcholine, homarine and ATP/ADP, while the metabolite profile of Zebra clam sample comprised high levels of glutamine, acetoacetate, betaine, taurine and one unidentified metabolite. For the Liangdao Red clam sample, the metabolite profile relatively exhibited high amount of branched-chain amino acids, arginine, glutamate, succinate, acetylcholine, homarine and two unassigned metabolites. After 48h exposure of 20μgL(-1) Hg(2+), the metabolic profiles showed significant differences between three clam species, which included increased lactate, succinate, taurine, acetylcholine, betaine and homarine and decreased alanine, arginine, glutamine, glutamate, acetoacetate, glycine and ATP/ADP in White clam samples, and elevated succinate, taurine and acetylcholine, and declined glutamine, glycine, and aspartate in Liangdao Red clam samples, while the increased branched-chain amino acids, lactate, succinate, acetylcholine and homarine, and reduced alanine, acetoacetate, glycine and taurine were observed in the Zebra clam samples. Overall, our findings showed that White clams could be a preferable

  15. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation.

    PubMed

    Heyman, Heino Martin; Senejoux, François; Seibert, Isabell; Klimkait, Thomas; Maharaj, Vinesh Jaichand; Meyer, Jacobus Johannes Marion

    2015-06-01

    South Africa being home to more than 35% of the world's Helichrysum species (c.a. 244) of which many are used in traditional medicine, is seen potentially as a significant resource in the search of new anti-HIV chemical entities. It was established that five of the 30 Helichrysum species selected for this study had significant anti-HIV activity ranging between 12 and 21 μg/mL (IC50) by using an in-house developed DeCIPhR method on a full virus model. Subsequent toxicity tests also revealed little or no toxicity for these active extracts. With the use of NMR-based metabolomics, the search for common chemical characteristics within the plant extract was conducted, which resulted in specific chemical shift areas identified that could be linked to the anti-HIV activity of the extracts. The NMR chemical shifts associated with the activity were identified to be 2.56-3.08 ppm, 5.24-6.28 ppm, 6.44-7.04 ppm and 7.24-8.04 ppm. This activity profile was then used to guide the fractionation process by narrowing down and focusing the fractionation and purification processes to speed up the putative identification of five compounds with anti-HIV activity in the most active species, Helichrysum populifolium. The anti-HIV compounds identified for the first time from H. populifolium were three dicaffeoylquinic acid derivatives, i.e. 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives i.e. 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid, with the latter being identified for the first time in the genus.

  16. Investigations of La Rioja terroir for wine production using 1H NMR metabolomics.

    PubMed

    López-Rituerto, Eva; Savorani, Francesco; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M; Engelsen, Søren Balling

    2012-04-04

    In this study, La Rioja wine terroir was investigated by the use of (1)H NMR metabolomics on must and wine samples. Rioja is a small wine region in central northern Spain which can geographically be divided into three subareas (Rioja Alta, Rioja Baja, and Rioja Alavesa). The winemaking process from must, through alcoholic and malolactic fermentation, was followed by NMR metabolomics and chemometrics of nine wineries in the Rioja subareas (terroirs). Application of interval extended canonical variate analysis (iECVA) showed discriminative power between wineries which are geographically very close. Isopentanol and isobutanol compounds were found to be key biomarkers for this differentiation.

  17. (1)H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Kärkkäinen, Johanna; Wik, Tiia-Riikka; Niemelä, Matti; Lappalainen, Katja; Joensuu, Päivi; Lajunen, Marja

    2016-01-20

    The use of natural resources in a development of products and materials is currently increasing. Starch is one of the investigated resources due to its bioavailability, biodegradability, safety and affordability. In this study, native barley starch was sulfated using a SO3-pyridine complex. The reaction was carried out for the first time using 1-allyl-3-methylimidazolium chloride ionic liquid, an excellent solvent for the starch modification. Reaction conditions (temperature, time and amount of the reagent) were studied using an experimental design. Starch sulfates with the degree of substitution (DS) 1.37 were obtained when the reaction was carried out at 40 °C for 75 min with 4:1 molar ratio of SO3-pyridine complex:anhydroglucose unit. The determination of DS was based on (1)H NMR instead of elemental analysis, which showed overestimated DS values in this study. Starch sulfates were analyzed with FTIR and HPLC, which showed that products contained small and large sulfated molecules.

  18. (1)H NMR-Based Global Metabolic Studies of Pseudomonas aeruginosa upon Exposure of the Quorum Sensing Inhibitor Resveratrol.

    PubMed

    Chen, Tongtong; Sheng, Jiyang; Fu, Yonghong; Li, Minghui; Wang, Junsong; Jia, Ai-Qun

    2017-02-03

    Quorum sensing (QS) is a process of bacterial communication that has been a novel target for drug discovery. Pyocyanin quantification assay confirmed that resveratrol was an effective quorum sensing inhibitor (QSI) against Pseudomonas aeruginosa PAO1. In this study, the global metabolite changes of P. aeruginosa PAO1 exposed to QSI resveratrol were investigated by (1)H NMR spectroscopy. A total of 40 metabolites containing amino acids, organic acid, organic amine, and energy storage compounds were identified. The changed metabolic profile indicated that resveratrol influenced pathways including oxidative stress, protein synthesis, and energy metabolism. Oxidative stress could upregulate the expression of genes related to QS in P. aeruginosa. It suggested that resveratrol could inhibit the QS systems in P. aeruginosa PAO1 by relieving oxidative stress due to its antioxidant activity. On the other hand, resveratrol could attenuate the pathogenicity of P. aeruginosa PAO1 by disturbing the TCA cycle so that anaerobic respiration could suppress the virulence because anaerobiosis could induce the loss of cytotoxicity regulated by QS in P. aeruginosa. These findings deepened our comprehending of the metabolic responses of P. aeruginosa PAO1 to resveratrol and pinpointed the possible underlying mechanism of resveratrol's inhibition effect on QS in P. aeruginosa PAO1.

  19. Characterization of Chinese liquor starter, "Daqu", by flavor type with 1H NMR-based nontargeted analysis.

    PubMed

    Wu, Xiao-He; Zheng, Xiao-Wei; Han, Bei-Zhong; Vervoort, Jacques; Nout, M J Robert

    2009-12-09

    "Daqu" is a fermentation starter and substrate complex that is used to initiate fermentations for the production of Chinese liquor (alcoholic spirit). Several different types of Daqu are customary used, having different flavours, i.e. light, strong, or sauce flavor. With the aim to develop objective methods to characterize and distinguish such different types of Daqu, nontargeted analyses of extracts from three typical flavor types of Daqu were carried out using (1)H nuclear magnetic resonance (NMR) spectroscopy. A significant separation of spectra of Daqu of light-flavor, strong-flavor and sauce-flavor types was achieved using principal components analysis. The separation could be attributed to higher levels of glycerol, malate, acetate and N-acetylglutamine in light-flavor Daqu; higher levels of mannitol, betaine, trimethylamine and pyroglutamate in strong-flavor Daqu; and higher levels of lactate, isoleucine, leucine, isovalerate and valine in sauce-flavor Daqu. These metabolites were regarded as the representative metabolites or biomarkers characteristic for each type of Daqu and could be associated with some of the microorganisms that have been reported in Daqu. This study highlights the application of nontargeted analysis techniques based on NMR in process research and quality control in Daqu production and liquor fermentation.

  20. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis)

    PubMed Central

    Watanabe, Miki; Roth, Terri L.; Bauer, Stuart J.; Lane, Adam; Romick-Rosendale, Lindsey E.

    2016-01-01

    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health

  1. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  2. Urinary (1)H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study.

    PubMed

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina

    2017-04-07

    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a (1)H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.

  3. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    PubMed Central

    Tavel, Laurette; Fontana, Francesca; Garcia Manteiga, Josè Manuel; Mari, Silvia; Mariani, Elisabetta; Caneva, Enrico; Sitia, Roberto; Camnasio, Francesco; Marcatti, Magda; Cenci, Simone; Musco, Giovanna

    2016-01-01

    Multiple myeloma (MM) is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions. PMID:27809247

  4. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics.

    PubMed

    Yuk, Jimmy; Simpson, Myrna J; Simpson, André J

    2012-07-01

    Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.

  5. 1H NMR Metabolomics Study of Metastatic Melanoma in C57BL/6J Mouse Spleen

    PubMed Central

    Wang, Xuan; Hu, Mary; Feng, Ju; Liu, Maili; Hu, Jian Zhi

    2014-01-01

    Melanoma is a malignant tumor of melanocytes. Although extensive investigations have been done to study metabolic changes in primary melanoma in vivo and in vitro, little effort has been devoted to metabolic profiling of metastatic tumors in organs other than lymph nodes. In this work, NMR-based metabolomics combined with multivariate data analysis is used to study metastatic B16-F10 melanoma in C57BL/6J mouse spleen. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to find important metabolites responsible for discriminating the control and the melanoma groups. Two different strategies, i.e. spectral binning and spectral deconvolution, are used to reduce the original spectral data before statistical analysis. Spectral deconvolution is found to be superior for identifying a set of discriminatory metabolites between the control and the melanoma groups, especially when the sample size is small. OPLS results show that the melanoma group can be well separated from its control group. It is found that taurine, glutamate, aspartate, O-Phosphoethanolamine, niacinamide,ATP, lipids and glycerol derivatives are decreased statistically and significantly while alanine, malate, xanthine, histamine, dCTP, GTP, thymidine, 2′-Deoxyguanosine are statistically and significantly elevated. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in spleen. PMID:25383071

  6. Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by (1)H-NMR-based metabonomics.

    PubMed

    Hwang, Geum-Sook; Yang, Ji-Young; Ryu, Do Hyun; Kwon, Tae-Hwan

    2010-02-01

    Lithium (Li) treatment for bipolar affective disorders is associated with a variety of renal side effects. The metabolic response of the kidney to chronic Li treatment has rarely been studied. We applied a novel method of (1)H-nuclear magnetic resonance (NMR)-based metabonomics to integrate metabolic profiling and to identify the changes in the levels of metabolites in the kidney and urine from rats with Li-induced NDI. Metabolic profiles of urine and kidney homogenate [3 different zones (cortex, outer medulla, and inner medulla) or whole kidney] were investigated using high-resolution NMR spectroscopy coupled with pattern recognition methods. The accurate concentrations of metabolites in kidney homogenates and urine were rapidly measured using the target-profiling procedure, and the difference in the levels of metabolites was compared using multivariate analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis. Major endogenous metabolites for kidney homogenates contained products of glycolysis (glucose, lactate) and amino acids, as well as organic osmolytes (e.g., betaine, myo-inositol, taurine, and glycerophosphocholine). Many metabolites revealed changes in their levels, including decreased levels of organic osmolytes and amino acids in the inner medulla. A number of urinary metabolites were changed in Li-induced NDI, and in particular, elevated urinary levels of acetate, lactate, allantoin, trimethylamine, and creatine could suggest Li-induced renal cell stress or injury. Taken together, metabonomics of kidney tissue and urine based on (1)H-NMR spectroscopy could provide insight into the effects of Li-induced renal effects and cell injury.

  7. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis

    PubMed Central

    Cocco, Eleonora; Murgia, Federica; Lorefice, Lorena; Barberini, Luigi; Poddighe, Simone; Frau, Jessica; Fenu, Giuseppe; Coghe, Giancarlo; Murru, Maria Rita; Murru, Raffaele; Del Carratore, Francesco; Atzori, Luigi

    2015-01-01

    Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to define the metabolic pathways potentially related to MS pathogenesis. Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88 healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with principal components analysis followed by a supervised analysis (orthogonal partial least squares discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx software, and the receiver operating characteristic (ROC) curves were calculated. Results: The model obtained with the OPLS-DA identified predictive metabolic differences between the patients with MS and HC (R2X = 0.615, R2Y = 0.619, Q2 = 0.476; p < 0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline, which were higher in the MS group. The suitability of the model was evaluated using an external set of samples. The values returned by the model were used to build the corresponding ROC curve (area under the curve of 0.98). Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in patients with MS compared with HC. With the exception of choline, the main metabolic changes could be connected to 2 different metabolic pathways: tryptophan metabolism and energy metabolism. Metabolomics appears to represent a promising noninvasive approach for the study of MS. PMID:26740964

  8. 1H NMR-based metabolic fingerprinting of urine metabolites after consumption of lingonberries (Vaccinium vitis-idaea) with a high-fat meal.

    PubMed

    Lehtonen, Henna-Maria; Lindstedt, Anni; Järvinen, Riikka; Sinkkonen, Jari; Graça, Gonçalo; Viitanen, Matti; Kallio, Heikki; Gil, Ana M

    2013-06-01

    The use of NMR metabolomics in clinical trials is growing; however, reports of postprandial experiments in humans are scarce. The present study investigated whether consumption of lingonberries as a supplement to an oil-rich meal modifies the postprandial fingerprints of human urine. Urine samples were analysed by (1)H NMR, and untargeted multivariate analysis was applied to the data for comprehensive fingerprinting. A clear separation of postprandial lingonberry meal samples was revealed. To evaluate statistical differences, a targeted approach was applied for the informative spectral areas. Significantly (p<0.05) increased levels of polyphenol metabolites, hippuric acid and 4-hydroxyhippuric acid, and decreased creatinine and dimethylamine levels were the major explanations for the grouping of the postprandial samples after the different meals. Thus, inclusion of polyphenol-rich lingonberry powder in a rapeseed oil-rich meal modifies the metabolic profile of urine which may be used to reveal both consumption of berries and health-promoting changes in the common metabolism.

  9. Discrimination of cabbage (Brassica rapa ssp. pekinensis) cultivars grown in different geographical areas using ¹H NMR-based metabolomics.

    PubMed

    Kim, Jahan; Jung, Youngae; Song, Byeongyeol; Bong, Yeon-Sik; Ryu, Do Hyun; Lee, Kwang-Sik; Hwang, Geum-Sook

    2013-04-15

    Cabbage (Brassica rapa ssp. pekinensis) is one of the most popular foods in Asia and is widely cultivated in many countries for the production of lightly fermented vegetables. In this study, metabolomic analysis was performed to distinguish two cultivars of cabbage grown in different geographical areas, Korea and China, using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Principal component analysis (PCA) showed clear discrimination between extracts of cabbage grown in Korea and China for two different cultivars (Chunmyeong and Chunjung). The major biochemicals (metabolites) that contributed to discrimination between cabbages grown in the two regions were 4-aminobutyrate (GABA), acetate, asparagine, leucine, isoleucine, O-phosphocholine, phenylacetate, phenylalanine, succinate, sucrose, tyrosine, and valine. These results suggest that the levels of the major metabolites that differ significantly between cabbages grown in these two areas were influenced by environmental factors such as climate and geology. Our study demonstrates that ¹H NMR based on metabolomics, coupled with multivariate statistics, can be applied to identify the regions of cultivation of various cabbage cultivars.

  10. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  11. Differential toxicological effects induced by mercury in gills from three pedigrees of Manila clam Ruditapes philippinarum by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Zhang, Linbao; You, Liping; Yu, Junbao; Zhao, Jianmin; Li, Lianzhen; Wang, Qing; Li, Fei; Li, Chenghua; Liu, Dongyan; Wu, Huifeng

    2011-01-01

    Mercury is a hazardous pollutant in the Bohai marine environments due to its high toxicity to the marine organisms and subsequent ecological risk. Manila clam Ruditapes philippinarum is one of important sentinel organisms in 'Mussel Watch Program' launched in China and therefore used as a bioindicator in marine and coastal ecotoxicology. There are dominantly distributed three pedigrees of clam (White, Liangdao Red and Zebra) in Yantai population endowed with different tolerances to environmental stressors. In this study, gill tissues were collected from both untreated and mercury exposed White, Liangdao Red and Zebra clams, and the extracts were analyzed by NMR-based metabolomics to compare the original metabolomes and the toxicological effects induced by mercury exposure in three pedigrees. The major abundant metabolites in White clam sample were branched-chain amino acids, lactate, alanine, arginine, acetoacetate, glutamate, succinate, citrate, malonate and taurine, while the metabolite profile of Liangdao Red clam sample comprises relative high levels of alanine, arginine, glutamate, succinate and glycogen. For Zebra clam sample, the metabolite profile exhibited relatively high amount of aspartate, acetylcholine and homarine. After 48 h exposure of 20 μg l(-1) Hg(2+), the metabolic profiles from all the three pedigrees of clams commonly showed significant increases in alanine, arginine, glutamate, aspartate, α-ketoglutarate, glycine and ATP/ADP, and decreases in citrate, taurine and homarine. The unique metabolic differences between the metabolomes of gill tissues from Hg(2+)-exposed White, Liangdao Red and Zebra clams were found, including elevated acetylcholine and branched-chain amino acids in White clams, and the declined succinate in both White and Liangdao Red samples as well as the declined betaine in Zebra and White clams. Overall, our findings showed the differential toxicological responses to mercury exposure and that White clams could be a

  12. NMR-based plasma metabolomic discrimination for male fertility assessment of rats treated with Eurycoma longifolia extracts.

    PubMed

    Ebrahimi, Forough; Ibrahim, Baharudin; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Chan, Kit-Lam

    2017-03-17

    Male infertility is one of the leading causes of infertility which affects many couples worldwide. Semen analysis is a routine examination of male fertility status which is usually performed on semen samples obtained through masturbation that may be inconvenient to patients. Eurycoma longifolia (Tongkat Ali, TA), native to Malaysia, has been traditionally used as a remedy to boost male fertility. In our recent studies in rats, upon the administration of high-quassinoid content extracts of TA including TA water (TAW), quassinoid-rich TA (TAQR) extracts, and a low-quassinoid content extract including quassinoid-poor TA (TAQP) extract, sperm count (SC) increased in TAW- and TAQR-treated rats when compared to the TAQP-treated and control groups. Consequently, the rats were divided into normal- (control and TAQP-treated) and high- (TAW- and TAQR-treated) SC groups [Ebrahimi et al. 2016]. Post-treatment rat plasma was collected. An optimized plasma sample preparation method was developed with respect to the internal standards sodium 3- (trimethylsilyl) propionate- 2,2,3,3- d4 (TSP) and deuterated 4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA). Carr-Purcell-Meibum-Gill (CPMG) experiments combined with orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to evaluate plasma metabolomic changes in normal- and high-SC rats. The potential biomarkers associated with SC increase were investigated to assess fertility by capturing the metabolomic profile of plasma. DSA was selected as the optimized internal standard for plasma analysis due to its significantly smaller half-height line width (W h/2) compared to that of TSP. The validated OPLS-DA model clearly discriminated the CPMG profiles in regard to the SC level. Plasma profiles of the high-SC group contained higher levels of alanine, lactate, and histidine, while ethanol concentration was significantly higher in the normal-SC group. This approach might be a new alternative applicable to the

  13. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  14. NMR-based metabolomic investigations on the differential responses in adductor muscles from two pedigrees of Manila clam Ruditapes philippinarum to Cadmium and Zinc.

    PubMed

    Wu, Huifeng; Liu, Xiaoli; Zhao, Jianmin; Yu, Junbao

    2011-01-01

    Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature). In addition, Manila clam is a good biomonitor/bioindicator in "Mussel Watch Programs" and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra) of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc) using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine), succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals.

  15. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains.

    PubMed

    Mazzei, Pierluigi; Spaccini, Riccardo; Francesca, Nicola; Moschetti, Giancarlo; Piccolo, Alessandro

    2013-11-13

    We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir.

  16. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a 1H NMR Metabolomics Approach

    PubMed Central

    Gooda Sahib Jambocus, Najla; Saari, Nazamid; Ismail, Amin; Mahomoodally, Mohamad Fawzi; Abdul Hamid, Azizah

    2016-01-01

    The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a 1H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment. PMID:26798649

  17. (1)H NMR To Explore the Metabolome of Exhaled Breath Condensate in α1-Antitrypsin Deficient Patients: A Pilot Study.

    PubMed

    Airoldi, Cristina; Ciaramelli, Carlotta; Fumagalli, Marco; Bussei, Rita; Mazzoni, Valeria; Viglio, Simona; Iadarola, Paolo; Stolk, Jan

    2016-12-02

    The metabolomic analysis of exhaled breath condensate (EBC) may provide insights on both the pathology of pulmonary disorders and the response to therapy. This pilot study describes the ability of nuclear magnetic resonance (NMR)-based metabolomics to discriminate α1-antitrypsin deficient (AATD)-patients, who were diagnosed with moderate to severe emphysema, from healthy individuals. Comparative analysis of samples from these two homogeneous cohorts of individuals resulted in the generation of NMR profiles that were different from both a qualitative and a quantitative point-of-view. Among the identified metabolites that separated patients from controls, acetoin, propionate, acetate, and propane-1,2 diol were those presenting the biggest difference. Unambiguous confirmation that the two groups could be completely differentiated on the basis of their metabolite content came from the application of univariate and multivariate statistical analysis (principal component analysis, partial least squares discriminant analysis (PLS-DA), and orthogonal PLS-DA). MetaboAnalyst 3.0 platform, used to define a relationship among metabolites, allowed us to observe that pyruvate metabolism is the most-involved pathway, most of metabolites being originated from pyruvate. These preliminary data suggest that NMR, with its ability to differentiate the metabolic fingerprint of EBC of AATD patients from that of healthy controls, has a potential "clinical applicability" in this area.

  18. Taking Metabolomics to the Field: A Pilot Study in a Great Lakes Area of Concern (AOC)

    EPA Science Inventory

    Measurement of changes in endogenous metabolites via 1H-NMR-based metabolomics has shown great potential for assessing organisms exposed to environmental pollutants, and thus could aid the efforts of risk assessors. However, to date, the application of metabolomics to ecologi...

  19. Gender-Specific Metabolomic Profiling of Obesity in Leptin-Deficient ob/ob Mice by 1H NMR Spectroscopy

    PubMed Central

    Kim, Sang-Woo; Jung, Youngae; Bae, Hyun-Whee; Lee, Daeyoup; Park, Sung Goo; Lee, Chul-Ho; Hwang, Geum-Sook; Chi, Seung-Wook

    2013-01-01

    Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender. PMID:24098417

  20. 1H NMR metabolomics study of spleen from C57BL/6 mice exposed to gamma radiation

    DOE PAGES

    Xiao, Xiongjie; Hu, M.; Liu, M.; ...

    2016-01-27

    Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize tomore » constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. As a result, these significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation.« less

  1. 1H NMR Metabolomics Study of Spleen from C57BL/6 Mice Exposed to Gamma Radiation

    PubMed Central

    Xiao, X; Hu, M; Liu, M; Hu, JZ

    2016-01-01

    Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize to constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. These significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation. PMID:27019763

  2. 1H NMR Metabolomics: A New Molecular Level Tool for Assessment of Organic Contaminant Bioavailability to Earthworms in Soil

    NASA Astrophysics Data System (ADS)

    McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not

  3. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit.

    PubMed

    Garcia-Simon, Monica; Morales, Jose M; Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by (1)H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a (1)H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA.

  4. Prognosis Biomarkers of Severe Sepsis and Septic Shock by 1H NMR Urine Metabolomics in the Intensive Care Unit

    PubMed Central

    Modesto-Alapont, Vicente; Gonzalez-Marrachelli, Vannina; Vento-Rehues, Rosa; Jorda-Miñana, Angela; Blanquer-Olivas, Jose; Monleon, Daniel

    2015-01-01

    Early diagnosis and patient stratification may improve sepsis outcome by a timely start of the proper specific treatment. We aimed to identify metabolomic biomarkers of sepsis in urine by 1H-NMR spectroscopy to assess the severity and to predict outcomes. Urine samples were collected from 64 patients with severe sepsis or septic shock in the ICU for a 1H NMR spectra acquisition. A supervised analysis was performed on the processed spectra, and a predictive model for prognosis (30-days mortality/survival) of sepsis was constructed using partial least-squares discriminant analysis (PLS-DA). In addition, we compared the prediction power of metabolomics data respect the Sequential Organ Failure Assessment (SOFA) score. Supervised multivariate analysis afforded a good predictive model to distinguish the patient groups and detect specific metabolic patterns. Negative prognosis patients presented higher values of ethanol, glucose and hippurate, and on the contrary, lower levels of methionine, glutamine, arginine and phenylalanine. These metabolites could be part of a composite biopattern of the human metabolic response to sepsis shock and its mortality in ICU patients. The internal cross-validation showed robustness of the metabolic predictive model obtained and a better predictive ability in comparison with SOFA values. Our results indicate that NMR metabolic profiling might be helpful for determining the metabolomic phenotype of worst-prognosis septic patients in an early stage. A predictive model for the evolution of septic patients using these metabolites was able to classify cases with more sensitivity and specificity than the well-established organ dysfunction score SOFA. PMID:26565633

  5. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments.

    PubMed

    Stockman, Brian J; Kothe, Michael; Kohls, Darcy; Weibley, Laura; Connolly, Brendan J; Sheils, Alissa L; Cao, Qing; Cheng, Alan C; Yang, Lily; Kamath, Ajith V; Ding, Yuan-Hua; Charlton, Maura E

    2009-02-01

    Aberrant activation of the phosphoinositide 3-kinase pathway because of genetic mutations of essential signalling proteins has been associated with human diseases including cancer and diabetes. The pivotal role of 3-phosphoinositide-dependent kinase-1 in the PI3K signalling cascade has made it an attractive target for therapeutic intervention. The N-terminal lobe of the 3-phosphoinositide-dependent kinase-1 catalytic domain contains a docking site which recognizes the non-catalytic C-terminal hydrophobic motifs of certain substrate kinases. The binding of substrate in this so-called PDK1 Interacting Fragment pocket allows interaction with 3-phosphoinositide-dependent kinase-1 and enhanced phosphorylation of downstream kinases. NMR spectroscopy was used to a screen 3-phosphoinositide-dependent kinase-1 domain construct against a library of chemically diverse fragments in order to identify small, ligand-efficient fragments that might interact at either the ATP site or the allosteric PDK1 Interacting Fragment pocket. While majority of the fragment hits were determined to be ATP-site binders, several fragments appeared to interact with the PDK1 Interacting Fragment pocket. Ligand-induced changes in 1H-15N TROSY spectra acquired using uniformly 15N-enriched PDK1 provided evidence to distinguish ATP-site from PDK1 Interacting Fragment-site binding. Caliper assay data and 19F NMR assay data on the PDK1 Interacting Fragment pocket fragments and structurally related compounds identified them as potential allosteric activators of PDK1 function.

  6. High resolution 1H NMR-based metabonomic study of the auditory cortex analogue of developing chick (Gallus gallus domesticus) following prenatal chronic loud music and noise exposure.

    PubMed

    Kumar, Vivek; Nag, Tapas Chandra; Sharma, Uma; Mewar, Sujeet; Jagannathan, Naranamangalam R; Wadhwa, Shashi

    2014-10-01

    Proper functional development of the auditory cortex (ACx) critically depends on early relevant sensory experiences. Exposure to high intensity noise (industrial/traffic) and music, a current public health concern, may disrupt the proper development of the ACx and associated behavior. The biochemical mechanisms associated with such activity dependent changes during development are poorly understood. Here we report the effects of prenatal chronic (last 10 days of incubation), 110dB sound pressure level (SPL) music and noise exposure on metabolic profile of the auditory cortex analogue/field L (AuL) in domestic chicks. Perchloric acid extracts of AuL of post hatch day 1 chicks from control, music and noise groups were subjected to high resolution (700MHz) (1)H NMR spectroscopy. Multivariate regression analysis of the concentration data of 18 metabolites revealed a significant class separation between control and loud sound exposed groups, indicating a metabolic perturbation. Comparison of absolute concentration of metabolites showed that overstimulation with loud sound, independent of spectral characteristics (music or noise) led to extensive usage of major energy metabolites, e.g., glucose, β-hydroxybutyrate and ATP. On the other hand, high glutamine levels and sustained levels of neuromodulators and alternate energy sources, e.g., creatine, ascorbate and lactate indicated a systems restorative measure in a condition of neuronal hyperactivity. At the same time, decreased aspartate and taurine levels in the noise group suggested a differential impact of prenatal chronic loud noise over music exposure. Thus prenatal exposure to loud sound especially noise alters the metabolic activity in the AuL which in turn can affect the functional development and later auditory associated behaviour.

  7. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis

    PubMed Central

    Cruz, Thomas; Gleizes, Marie; Balayssac, Stéphane; Mornet, Etienne; Marsal, Grégory; Millán, José Luis; Martino, Myriam Malet; Nowak, Lionel G; Gilard, Véronique; Fonta, Caroline

    2017-01-01

    Tissue Nonspecific Alkaline Phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However TNAP’s role in the nervous system remains poorly understood. In order to investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1H- and 31P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of one week-old animals, 8 displayed significantly different concentration in Akp2−/− compared to Akp2+/+ and Akp2+/− mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA) and N-acetyl-aspartyl-glutamate (NAAG), with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP. PMID:28072448

  8. Whole Blood Metabolomics by (1)H NMR Spectroscopy Provides a New Opportunity To Evaluate Coenzymes and Antioxidants.

    PubMed

    Nagana Gowda, G A; Raftery, Daniel

    2017-03-30

    Conventional human blood metabolomics employs serum or plasma and provides a wealth of metabolic information therein. However, this approach lacks the ability to measure and evaluate important metabolites such as coenzymes and antioxidants that are present at high concentrations in red blood cells. As an important alternative to serum/plasma metabolomics, we show here that a simple (1)H NMR experiment can simultaneously measure coenzymes and antioxidants in extracts of whole human blood, in addition to the nearly 70 metabolites that were shown to be quantitated in serum/plasma recently [ Anal. Chem. 2015 , 87 , 706 - 715 ]. Coenzymes of redox reactions: oxidized/reduced nicotinamide adenine dinucleotide (NAD(+) and NADH) and nicotinamide adenine dinucleotide phosphate (NADP(+) and NADPH); coenzymes of energy including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP); and antioxidants, the sum of oxidized and reduced glutathione (GSSG and GSH) can be measured with essentially no additional effort. A new method was developed for detecting many of these unstable species without affecting other blood/blood plasma metabolites. The identities of coenzymes and antioxidants in blood NMR spectra were established combining 1D/2D NMR techniques, chemical shift databases, pH measurements and, finally, spiking with authentic compounds. This is the first study to report identification of major coenzymes and antioxidants and quantify them, simultaneously, with the large pool of other metabolites in human blood using NMR spectroscopy. Considering that the levels of coenzymes and antioxidants represent a sensitive measure of cellular functions in health and numerous diseases, the NMR method presented here potentially opens a new chapter in the metabolomics of blood.

  9. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGES

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; ...

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  10. Metabolomics in Lung Inflammation: A High Resolution 1H NMR Study of Mice Exposed to Silica Dust

    PubMed Central

    Hu, Jian Zhi; Rommereim, Donald N.; Minard, Kevin R.; Woodstock, Angie; Harrer, Bruce J.; Wind, Robert A.; Phipps, Richard P.; Sime, Patricia J.

    2010-01-01

    Here we report the first 1H NMR metabolomics studies on excised lungs and bronchoalveolar lavage fluid (BALF) from mice exposed to crystalline silica. High resolution 1H NMR metabolic profiling on intact excised lungs was performed using slow magic angle sample spinning (slow-MAS) 1H PASS (phase altered spinning sidebands) at a sample spinning rate of 80 Hz. Metabolic profiling on BALF was completed using fast magic angle spinning at 2kHz. Major findings are that the relative concentrations of choline, phosphocholine (PC) and glycerophosphocholine(GPC) were statistically significantly increased in silica-exposed mice compared to sham controls, indicating an altered membrane choline phospholipids metabolism (MCPM). The relative concentrations of glycogen/glucose, lactate and creatine were also statistically significantly increased in mice exposed to silica dust, suggesting that cellular energy pathways were affected by silica dust. Elevated levels of glycine, lysine, glutamate, proline and 4-hydroxyproline were also increased in exposed mice, suggesting the activation of a collagen pathway. Furthermore, metabolic profiles in mice exposed to silica dust were found to be spatially heterogeneous, in consistent with regional inflammation revealed by in vivo magnetic resonance imaging (MRI). PMID:20020862

  11. Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using 1H-NMR spectroscopy.

    PubMed

    Picone, Gianfranco; Laghi, Luca; Gardini, Fausto; Lanciotti, Rosalba; Siroli, Lorenzo; Capozzi, Francesco

    2013-12-15

    Cultures of Escherichia coli 555 were grown at four levels of carvacrol (0-2 mM) and the E. coli endo-metabolome was extracted and measured by (1)H NMR spectroscopy. The results show that glucose concentration is going up with concentration of carvacrol and so do formate until the highest concentration is reached, from which point it suddenly decreases. This is interpreted as if the bacteria are increasingly unable to further metabolize glucose and as if the bacteria increasingly shifts with higher levels of carvacrol toward sugar fermentation as carbon source, until the level of carvacrol reaches a level (2.00 mM), where the E. coli must give up. Additionally, the multivariate Principal Component Analysis suggests that the adaptation occurring at sub-lethal doses of carvacrol is different from that occurring at higher doses.

  12. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    SciTech Connect

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  13. NMR-Based Metabolomic Profiling of Overweight Adolescents: An Elucidation of the Effects of Inter-/Intraindividual Differences, Gender, and Pubertal Development

    PubMed Central

    Yde, Christian C.; Mølgaard, Christian; Michaelsen, Kim F.; Larnkjær, Anni; Bertram, Hanne C.

    2014-01-01

    The plasma and urine metabolome of 192 overweight 12–15-year-old adolescents (BMI of 25.4 ± 2.3 kg/m2) were examined in order to elucidate gender, pubertal development measured as Tanner stage, physical activity measured as number of steps taken daily, and intra-/interindividual differences affecting the metabolome detected by proton NMR spectroscopy. Higher urinary excretion of citrate, creatinine, hippurate, and phenylacetylglutamine and higher plasma level of phosphatidylcholine and unsaturated lipid were found for girls compared with boys. The results suggest that gender differences in the metabolome are being commenced already in childhood. The relationship between Tanner stage and the metabolome showed that pubertal development stage was positively related to urinary creatinine excretion and negatively related to urinary citrate content. No relations between physical activity and the metabolome could be identified. The present study for the first time provides comprehensive information about associations between the metabolome and gender, pubertal development, and physical activity in overweight adolescents, which is an important subject group to approach in the prevention of obesity and life-style related diseases. While this study is preliminary, these results may have the potential to translate into clinical applicability upon further investigations; if biomarkers for Tanner stage can be established, these might be used for identification of individuals susceptible to an early pubertal development. PMID:24800239

  14. A phytochemical comparison of saw palmetto products using gas chromatography and 1H nuclear magnetic resonance spectroscopy metabolomic profiling

    PubMed Central

    Booker, Anthony; Suter, Andy; Krnjic, Ana; Strassel, Brigitte; Zloh, Mire; Said, Mazlina; Heinrich, Michael

    2014-01-01

    Objectives Preparations containing saw palmetto berries are used in the treatment of benign prostatic hyperplasia (BPH). There are many products on the market, and relatively little is known about their chemical variability and specifically the composition and quality of different saw palmetto products notwithstanding that in 2000, an international consultation paper from the major urological associations from the five continents on treatments for BPH demanded further research on this topic. Here, we compare two analytical approaches and characterise 57 different saw palmetto products. Methods An established method – gas chromatography – was used for the quantification of nine fatty acids, while a novel approach of metabolomic profiling using 1H nuclear magnetic resonance (NMR) spectroscopy was used as a fingerprinting tool to assess the overall composition of the extracts. Key findings The phytochemical analysis determining the fatty acids showed a high level of heterogeneity of the different products in the total amount and of nine single fatty acids. A robust and reproducible 1H NMR spectroscopy method was established, and the results showed that it was possible to statistically differentiate between saw palmetto products that had been extracted under different conditions but not between products that used a similar extraction method. Principal component analysis was able to determine those products that had significantly different metabolites. Conclusions The metabolomic approach developed offers novel opportunities for quality control along the value chain of saw palmetto and needs to be followed further, as with this method, the complexity of a herbal extract can be better assessed than with the analysis of a single group of constituents. PMID:24417505

  15. (1)H NMR metabolomics analysis of renal cell carcinoma cells: Effect of VHL inactivation on metabolism.

    PubMed

    Cuperlovic-Culf, Miroslava; Cormier, Kevin; Touaibia, Mohamed; Reyjal, Julie; Robichaud, Sarah; Belbraouet, Mehdi; Turcotte, Sandra

    2016-05-15

    Von Hippel-Lindau (VHL) is an onco-suppressor involved in oxygen and energy-dependent promotion of protein ubiquitination and proteosomal degradation. Loss of function mutations of VHL (VHL-cells) result in organ specific cancers with the best studied example in renal cell carcinomas. VHL has a well-established role in deactivation of hypoxia-inducible factor (HIF-1) and in regulation of PI3K/AKT/mTOR activity. Cell culture metabolomics analysis was utilized to determined effect of VHL and HIF-1α or HIF-2α on metabolism of renal cell carcinomas (RCC). RCC cells were stably transfected with VHL or shRNA designed to silence HIF-1α or HIF-2α genes. Obtained metabolic data was analysed qualitatively, searching for overall effects on metabolism as well as quantitatively, using methods developed in our group in order to determine specific metabolic changes. Analysis of the effect of VHL and HIF silencing on cellular metabolic footprints and fingerprints provided information about the metabolic pathways affected by VHL through HIF function as well as independently of HIF. Through correlation network analysis as well as statistical analysis of significant metabolic changes we have determined effects of VHL and HIF on energy production, amino acid metabolism, choline metabolism as well as cell regulation and signaling. VHL was shown to influence cellular metabolism through its effect on HIF proteins as well as by affecting activity of other factors.

  16. Metabolomics study of Saw palmetto extracts based on 1H NMR spectroscopy.

    PubMed

    de Combarieu, Eric; Martinelli, Ernesto Marco; Pace, Roberto; Sardone, Nicola

    2015-04-01

    Preparations containing Saw palmetto extracts are used in traditional medicine to treat benign prostatic hyperplasia. According to the European and the American Pharmacopoeias, the extract is obtained from comminuted Saw palmetto berries by a suitable extracting procedure using ethanol or supercritical carbon dioxide or a mixture of n-hexane and methylpentanes. In the present study an approach to metabolomics profiling using nuclear magnetic resonance (NMR) has been used as a finger-printing tool to assess the overall composition of the extracts. The phytochemical analysis coupled with principal component analysis (PCA) showed the same composition of the Saw palmetto extracts obtained with carbon dioxide and hexane with minor not significant differences for extracts obtained with ethanol. In fact these differences are anyhow lower than the batch-to-batch variability ascribable to the natural-occurring variability in the Saw palmetto fruits' phytochemical composition. The fingerprinting analysis combined with chemometric method, is a technique, which would provide a tool to comprehensively assess the quality control of Saw palmetto extracts.

  17. Metabolomic Characterization of Nipple Aspirate Fluid by 1H NMR Spectroscopy and GC-MS

    PubMed Central

    Tredwell, Gregory D.; Miller, Jessica A.; Chow, H.-H. Sherry; Thompson, Patricia A.; Keun, Hector C.

    2015-01-01

    Nipple aspirate fluid (NAF) is a noninvasively obtained biofluid from the duct openings of the breast. NAF components are constantly secreted, metabolized, and reabsorbed by the epithelial lining of the lactiferous ducts of the breast. NAF has been studied as a potential breast tissue surrogate for the discovery of novel breast cancer risk, early detection, and treatment response biomarkers. We report the first unsupervised metabolite characterization of nipple aspirate fluid using NMR and GC-MS using convenience samples previously collected from four premenopausal and four postmenopausal women. A total of 38 metabolites were identified using the two analytical techniques, including amino acids, organic acids, fatty acids, and carbohydrates. Analytical reproducibility of metabolites in NAF by GC-MS was high across different extraction and analysis days. Overall, 31 metabolites had a coefficient of variation below 20%. By GC-MS, there were eight metabolites unique to NAF, 19 unique to plasma, and 24 shared metabolites. Correlative analysis of shared metabolites between matched NAF and plasma samples from pre- and postmenopausal women shows almost no correlations, with the exception being lactic acid, which was significantly negatively correlated (R2 = 0.57; P = 0.03). These results suggest that NAF is metabolically distinct from plasma and that the application of metabolomic strategies may be useful for future studies investigating breast cancer risk and intervention response biomarkers. PMID:24364541

  18. Evaluation of Metabolomic Changes as a Biomarker of Chondrogenic Differentiation in 3D-cultured Human Mesenchymal Stem Cells Using Proton (1H) Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Jang, Moo-Young; Chun, Song-I; Mun, Chi-Woong; Hong, Kwan Soo; Shin, Jung-Woog

    2013-01-01

    Purpose The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using 1H nuclear magnetic resonance (NMR) spectroscopy. Materials and Methods hMSCs (2×106 cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra. Results During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs. Conclusions In this study, we confirm that metabolomic changes detected by 1H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation. PMID:24205199

  19. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation.

    PubMed

    Zheng, Hong; Lorenzen, Janne K; Astrup, Arne; Larsen, Lesli H; Yde, Christian C; Clausen, Morten R; Bertram, Hanne Christine

    2016-02-23

    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO) and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study.

  20. Metabolic Effects of a 24-Week Energy-Restricted Intervention Combined with Low or High Dairy Intake in Overweight Women: An NMR-Based Metabolomics Investigation

    PubMed Central

    Zheng, Hong; Lorenzen, Janne K.; Astrup, Arne; Larsen, Lesli H.; Yde, Christian C.; Clausen, Morten R.; Bertram, Hanne Christine

    2016-01-01

    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO) and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study. PMID:26907339

  1. Unambiguous Metabolite Identification in High-Throughput Metabolomics by Hybrid 1H-NMR/ESI-MS1 Approach

    SciTech Connect

    2016-10-18

    The invention improves accuracy of metabolite identification by combining direct infusion ESI-MS with one-dimensional 1H-NMR spectroscopy. First, we apply a standard 1H-NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in a metabolomics reference libraries. This generates a list of candidate metabolites. The list contains both false positive and ambiguous identifications. The software tool (the invention) takes the list of candidate metabolites, generated from NMRbased metabolite identification, and then calculates, for each of the candidate metabolites, the monoisotopic mass-tocharge (m/z) ratios for each commonly observed ion, fragment and adduct feature. These are then used to assign m/z ratios in experimental ESI-MS spectra of the same sample. Detection of the signals of a given metabolite in both NMR and MS spectra resolves the ambiguities, and therefore, significantly improves the confidence of the identification.

  2. Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis.

    PubMed

    Du, Yao; Zheng, Hong; Xia, Huanhuan; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui; Yan, Zhihan; Gao, Hongchang

    2017-01-01

    Amyloid β (Aβ) deposition has been implicated in the pathogenesis of Alzheimer's disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25-35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis (ASCA). Our results show that Aβ25-35 injection, time, and their interaction had statistically significant effects on the hippocampus and serum metabolome. Furthermore, we identified key metabolites that mainly contributed to these effects. After Aβ25-35 injection from 1 to 2 weeks, the levels of lactate, N-acetylaspartate, creatine, and taurine were decreased in rat hippocampus, while an increase in lactate and decreases in LDL/VLDL and glucose were observed in rat serum. Therefore, we suggest that the reduction in energy and lipid metabolism as well as an increase in anaerobic glycolysis may occur at the early stage of Aβ25-35 deposition.

  3. Early Effect of Amyloid β-Peptide on Hippocampal and Serum Metabolism in Rats Studied by an Integrated Method of NMR-Based Metabolomics and ANOVA-Simultaneous Component Analysis

    PubMed Central

    Du, Yao; Xia, Huanhuan; Zhao, Liangcai; Hu, Wenyi; Bai, Guanghui

    2017-01-01

    Amyloid β (Aβ) deposition has been implicated in the pathogenesis of Alzheimer's disease. However, the early effect of Aβ deposition on metabolism remains unclear. In the present study, thus, we explored the metabolic changes in the hippocampus and serum during first 2 weeks of Aβ25–35 injection in rats by using an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis (ASCA). Our results show that Aβ25–35 injection, time, and their interaction had statistically significant effects on the hippocampus and serum metabolome. Furthermore, we identified key metabolites that mainly contributed to these effects. After Aβ25–35 injection from 1 to 2 weeks, the levels of lactate, N-acetylaspartate, creatine, and taurine were decreased in rat hippocampus, while an increase in lactate and decreases in LDL/VLDL and glucose were observed in rat serum. Therefore, we suggest that the reduction in energy and lipid metabolism as well as an increase in anaerobic glycolysis may occur at the early stage of Aβ25–35 deposition. PMID:28243597

  4. Urinary (1)H-NMR and GC-MS metabolomics predicts early and late onset neonatal sepsis.

    PubMed

    Fanos, Vassilios; Caboni, Pierluigi; Corsello, Giovanni; Stronati, Mauro; Gazzolo, Diego; Noto, Antonio; Lussu, Milena; Dessì, Angelica; Giuffrè, Mario; Lacerenza, Serafina; Serraino, Francesca; Garofoli, Francesca; Serpero, Laura Domenica; Liori, Barbara; Carboni, Roberta; Atzori, Luigi

    2014-03-01

    The purpose of this article is to study one of the most significant causes of neonatal morbidity and mortality: neonatal sepsis. This pathology is due to a bacterial or fungal infection acquired during the perinatal period. Neonatal sepsis has been categorized into two groups: early onset if it occurs within 3-6 days and late onset after 4-7 days. Due to the not-specific clinical signs, along with the inaccuracy of available biomarkers, the diagnosis is still a major challenge. In this regard, the use of a combined approach based on both nuclear magnetic resonance ((1)H-NMR) and gas-chromatography-mass spectrometry (GC-MS) techniques, coupled with a multivariate statistical analysis, may help to uncover features of the disease that are still hidden. The objective of our study was to evaluate the capability of the metabolomics approach to identify a potential metabolic profile related to the neonatal septic condition. The study population included 25 neonates (15 males and 10 females): 9 (6 males and 3 females) patients had a diagnosis of sepsis and 16 were healthy controls (9 males and 7 females). This study showed a unique metabolic profile of the patients affected by sepsis compared to non-affected ones with a statistically significant difference between the two groups (p = 0.05).

  5. Discrimination of wild types and hybrids of Duboisia myoporoides and Duboisia leichhardtii at different growth stages using (1)H NMR-based metabolite profiling and tropane alkaloids-targeted HPLC-MS analysis.

    PubMed

    Ullrich, Sophie Friederike; Averesch, Nils J H; Castellanos, Leonardo; Choi, Young Hae; Rothauer, Andreas; Kayser, Oliver

    2016-11-01

    Duboisia species, which belong to the family of Solanaceae, are commercially cultivated in large scale, as they are main source of the pharmaceutically-used active compound scopolamine. In this study, (1)H NMR-based metabolite profiling linking primary with secondary metabolism and additional quantification via HPCL-MS with special focus on the tropane alkaloids were applied to compare leaf and root extracts of three wild types and two hybrids of Duboisia myoporoides and D. leichhardtii at different developmental stages grown under controlled conditions in climate chambers and under agricultural field plantation. Based on the leaf extracts, a clear distinction between the Duboisia hybrids and the wild types Duboisia myoporoides and D. leichhardtii using principal component analysis of (1)H NMR data was observed. The average content in scopolamine in the hybrids of Duboisia cultivated in climate chambers increased significantly from month 3-6 after potting of the rooted cuttings, however not so for the examined wild types. The Duboisia hybrids grown in climate chambers showed higher growth and contained more sugars and amino acids than Duboisia hybrids grown in the field, which in contrast showed an enhanced flux towards tropane alkaloids as well as flavonoids. For a more detailed analysis of tropane alkaloids, an appropriate HPLC-MS method was developed and validated. The measurements revealed large differences in the alkaloid pattern within the different genotypes under investigation, especially regarding the last enzymatic step, the conversion from hyoscamine to scopolamine by the hyoscyamine 6β-hydroxylase. Scopolamine was found in highest concentrations in Duboisia hybrids (20.04 ± 4.05 and 17.82 ± 3.52 mg/g dry wt) followed by Duboisia myoporoides (12.71 ± 2.55 mg/g dry wt), both showing a high selectivity for scopolamine in contrast to Duboisia leichhardtii (3.38 ± 0.59 and 5.09 ± 1.24 mg/g dry wt) with hyoscyamine being the

  6. (1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress.

    PubMed

    Zhao, Lijuan; Huang, Yuxiong; Hu, Jerry; Zhou, Hongjun; Adeleye, Adeyemi S; Keller, Arturo A

    2016-02-16

    Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.

  7. Using NMR-Based Metabolomics to Evaluate Postprandial Urinary Responses Following Consumption of Minimally Processed Wheat Bran or Wheat Aleurone by Men and Women.

    PubMed

    Garg, Ramandeep; Brennan, Lorraine; Price, Ruth K; Wallace, Julie M W; Strain, J J; Gibney, Mike J; Shewry, Peter R; Ward, Jane L; Garg, Lalit; Welch, Robert W

    2016-02-17

    Wheat bran, and especially wheat aleurone fraction, are concentrated sources of a wide range of components which may contribute to the health benefits associated with higher consumption of whole-grain foods. This study used NMR metabolomics to evaluate urine samples from baseline at one and two hours postprandially, following the consumption of minimally processed bran, aleurone or control by 14 participants (7 Females; 7 Males) in a randomized crossover trial. The methodology discriminated between the urinary responses of control, and bran and aleurone, but not between the two fractions. Compared to control, consumption of aleurone or bran led to significantly and substantially higher urinary concentrations of lactate, alanine, N-acetylaspartate acid and N-acetylaspartylglutamate and significantly and substantially lower urinary betaine concentrations at one and two hours postprandially. There were sex related differences in urinary metabolite profiles with generally higher hippurate and citrate and lower betaine in females compared to males. Overall, this postprandial study suggests that acute consumption of bran or aleurone is associated with a number of physiological effects that may impact on energy metabolism and which are consistent with longer term human and animal metabolomic studies that used whole-grain wheat diets or wheat fractions.

  8. Using NMR-Based Metabolomics to Evaluate Postprandial Urinary Responses Following Consumption of Minimally Processed Wheat Bran or Wheat Aleurone by Men and Women

    PubMed Central

    Garg, Ramandeep; Brennan, Lorraine; Price, Ruth K.; Wallace, Julie M. W.; Strain, J. J.; Gibney, Mike J.; Shewry, Peter R.; Ward, Jane L.; Garg, Lalit; Welch, Robert W.

    2016-01-01

    Wheat bran, and especially wheat aleurone fraction, are concentrated sources of a wide range of components which may contribute to the health benefits associated with higher consumption of whole-grain foods. This study used NMR metabolomics to evaluate urine samples from baseline at one and two hours postprandially, following the consumption of minimally processed bran, aleurone or control by 14 participants (7 Females; 7 Males) in a randomized crossover trial. The methodology discriminated between the urinary responses of control, and bran and aleurone, but not between the two fractions. Compared to control, consumption of aleurone or bran led to significantly and substantially higher urinary concentrations of lactate, alanine, N-acetylaspartate acid and N-acetylaspartylglutamate and significantly and substantially lower urinary betaine concentrations at one and two hours postprandially. There were sex related differences in urinary metabolite profiles with generally higher hippurate and citrate and lower betaine in females compared to males. Overall, this postprandial study suggests that acute consumption of bran or aleurone is associated with a number of physiological effects that may impact on energy metabolism and which are consistent with longer term human and animal metabolomic studies that used whole-grain wheat diets or wheat fractions. PMID:26901221

  9. Quantitative 1H-NMR-Metabolomics Reveals Extensive Metabolic Reprogramming and the Effect of the Aquaglyceroporin FPS1 in Ethanol-Stressed Yeast Cells

    PubMed Central

    Lourenço, Artur B.; Roque, Filipa C.; Teixeira, Miguel C.; Ascenso, José R.; Sá-Correia, Isabel

    2013-01-01

    A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance. PMID:23408980

  10. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining (1)H NMR metabolomics and conventional biochemical assays.

    PubMed

    Cappello, Tiziana; Brandão, Fátima; Guilherme, Sofia; Santos, Maria Ana; Maisano, Maria; Mauceri, Angela; Canário, João; Pacheco, Mário; Pereira, Patrícia

    2016-04-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione+oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to be

  11. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306.

    PubMed

    Pegos, Vanessa R; Canevarolo, Rafael R; Sampaio, Aline P; Balan, Andrea; Zeri, Ana C M

    2014-04-22

    Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri's metabolism by 1H-NMR spectroscopy.

  12. Is 1H NMR metabolomics becoming the promising early biomarker for neonatal sepsis and for monitoring the antibiotic toxicity?

    PubMed

    Noto, Antonio; Mussap, Michele; Fanos, Vassilios

    2014-06-01

    Metabolomics, the latest of omics disciplines, has been successfully used in various fields of basic research such as pharmacology and toxicology. Recently, this new science has gained an important role in the translational research of diagnostics. In this regard, the challenge for neonatologists and medical laboratories is to diagnose neonatal sepsis, a disease with high mortality and morbidity due to the difficulty in diagnosing it. Metabolomics, through its ability to identify perturbations caused by this condition, aims at recognizing metabolites that characterize neonatal sepsis with high specificity and sensitivity. The purpose of this review is to highlight the ability of metabolomics to find early biomarkers for this condition, as well as to predict the toxic effects caused by antibiotics.

  13. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach.

    PubMed

    Dall'Acqua, Stefano; Stocchero, Matteo; Boschiero, Irene; Schiavon, Mariano; Golob, Samuel; Uddin, Jalal; Voinovich, Dario; Mammi, Stefano; Schievano, Elisabetta

    2016-03-01

    Curcuminoids possess powerful antioxidant activity as demonstrated in many chemical in vitro tests and in several in vivo trials. Nevertheless, the mechanism of this activity is not completely elucidated and studies on the in vivo antioxidant effects are still needed. Metabolomics may be used as an attractive approach for such studies and in this paper, we describe the effects of oral administration of a Curcuma longa L. extract (150 mg/kg of total curcuminoids) to 12 healthy rats with particular attention to urinary markers of oxidative stress. The experiment was carried out over 33 days and changes in the 24-h urine samples metabolome were evaluated by (1)H NMR and HPLC-MS. Both techniques produced similar representations for the collected samples confirming our previous study. Modifications of the urinary metabolome lead to the observation of different variables proving the complementarity of (1)H NMR and HPLC-MS for metabolomic purposes. The urinary levels of allantoin, m-tyrosine, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine were decreased in the treated group thus supporting an in vivo antioxidant effect of the oral administration of Curcuma extract to healthy rats. On the other hand, urinary TMAO levels were higher in the treated compared to the control group suggesting a role of curcumin supplementation on microbiota or on TMAO urinary excretion. Furthermore, the urinary levels of the sulphur containing compounds taurine and cystine were also changed suggesting a role for such constituents in the biochemical pathways involved in Curcuma extract bioactivity and indicating the need for further investigation on the complex role of antioxidant curcumin effects.

  14. Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on (1)H NMR, UHPLC-HRMS, and Metabolic Databases.

    PubMed

    Chatzimitakos, Theodoros G; Stalikas, Constantine D

    2016-09-02

    Metal nanoparticles (NPs) have proven to be more toxic than bulk analogues of the same chemical composition due to their unique physical properties. The NPs, lately, have drawn the attention of researchers because of their antibacterial and biocidal properties. In an effort to shed light on the mechanism through which the bacteria elimination is achieved and the metabolic changes they undergo, an untargeted metabolomic fingerprint study was carried out on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species. The (1)H NMR spectroscopy, in conjunction with high resolution mass-spectrometry (HRMS) and an unsophisticated data processing workflow were implemented. The combined NMR/HRMS data, supported by an open-access metabolomic database, proved to be efficacious in the process of assigning a putative annotation to a wide range of metabolite signals and is a useful tool to appraise the metabolome alterations, as a consequence of bacterial response to NPs. Interestingly, not all the NPs diminished the intracellular metabolites; bacteria treated with iron NPs produced metabolites not present in the nonexposed bacteria sample, implying the activation of previously inactive metabolic pathways. In contrast, copper and iron-copper NPs reduced the annotated metabolites, alluding to the conclusion that the metabolic pathways (mainly alanine, aspartate, and glutamate metabolism, beta-alanine metabolism, glutathione metabolism, and arginine and proline metabolism) were hindered by the interactions of NPs with the intracellular metabolites.

  15. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on 1H Nuclear Magnetic Resonance

    PubMed Central

    Wen, Chao-wei; Lin, Xiao-dong; Dong, Min-jian; Deng, Ming-jie

    2016-01-01

    1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, 1H nuclear magnetic resonance (1H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) on the fat body glycometabolism and energy metabolism of the fourth-instar larvae of Eri silkworms, Samia cynthia ricini. Metabolic pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) of fat body extracts indicated that the groups of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) were significantly different from the control group. Further, compared to the control group, the metabolites levels of lactate, trehalose, succinate, malate, and fumarate were remarkably changed in experimental groups, which were involved in glycolysis, hydrolysis of trehalose, and tricarboxylic acid (TCA) cycle. Our results indicate that DNJ has a positive impact on the reverse energy metabolism of Eri silkworms and metabonomic analysis based on NMR can be used as a tool to identify potential biomarkers. PMID:27294120

  16. (1)H NMR and GC-MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply.

    PubMed

    Zhao, Lijuan; Hu, Jerry; Huang, Yuxiong; Wang, Hongtao; Adeleye, Adeyemi; Ortiz, Cruz; Keller, Arturo A

    2017-01-01

    It is imperative to study the interaction of nanoparticles residuals with crop plants in agricultural soils, due to the increased application of nanotechnology in agriculture. So far, a few studies have focused on the impact of nanoparticles on fruit quality and nutritional supply. In this work, a thorough and comprehensive analysis of metabolite changes of cucumber fruits from plants under nano-Cu stress was possible through the use of both (1)H NMR and GC-MS. The results of supervised partial least-squares discriminant analysis from both platforms showed that cucumber fruit extracts samples were clearly grouped based on the nano-Cu level in soil. This indicates that the fruit metabolite profile was influenced by exposure to nano-Cu. GC-MS data showed concentrations of some sugars, organic acids, amino acids, and fatty acids were increased or decreased by nano-Cu. Several metabolites, such as methylnicotinamide (MNA), trigonelline, imidazole, quinolinate were only detected and quantified by (1)H NMR. Our results showed that combining the two platforms provided a comprehensive understanding about the metabolites (nutrient supply) changes in cucumber fruits impacted by exposure to nano-Cu.

  17. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    PubMed Central

    Zulak, Katherine G; Weljie, Aalim M; Vogel, Hans J; Facchini, Peter J

    2008-01-01

    Background Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR) metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which generate secondary

  18. Pro-Oxidant Role of Silibinin in DMBA/TPA Induced Skin Cancer: 1H NMR Metabolomic and Biochemical Study

    PubMed Central

    Sati, Jasmine; Mohanty, Biraja Prasad; Garg, Mohan Lal; Koul, Ashwani

    2016-01-01

    Silibinin, a major bioactive flavonolignan in Silybum marianum, has received considerable attention in view of its anticarcinogenic activity. The present study examines its anticancer potential against 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin cancer. Male LACA mice were randomly segregated into 4 groups: Control, DMBA/TPA, Silibinin and Silibinin+DMBA/TPA. Tumors in DMBA/TPA and Silibinin+DMBA/TPA groups were histologically graded as squamous cell carcinoma. In the Silibinin+DMBA/TPA group, significant reduction in tumor incidence (23%), tumor volume (64.4%), and tumor burden (84.8%) was observed when compared to the DMBA/TPA group. The underlying protective mechanism of Silibinin action was studied at pre-initiation (2 weeks), post-initiation (10 weeks) and promotion (22 weeks) stages of the skin carcinogenesis. The antioxidant nature of Silibinin was evident at the end of 2 weeks of its treatment. However, towards the end of 10 and 22 weeks, elevated lipid peroxidation (LPO) levels indicate the pro-oxidative nature of Silibinin in the cancerous tissue. TUNEL assay revealed enhanced apoptosis in the Silibinin+DMBA/TPA group with respect to the DMBA/TPA group. Therefore, it may be suggested that raised LPO could be responsible for triggering apoptosis in the Silibinin+DMBA/TPA group. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to determine the metabolic profile of the skin /skin tumors. Dimethylamine (DMA), glycerophosphocholine (GPC), glucose, lactic acid, taurine and guanine were identified as the major contributors for separation between the groups from the Principal Component Analysis (PCA) of the metabolite data. Enhanced DMA levels with no alteration in GPC, glucose and lactate levels reflect altered choline metabolism with no marked Warburg effect in skin tumors. However, elevated guanine levels with potent suppression of taurine and glucose levels in the Silibinin+DMBA/TPA group are

  19. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2008-03-15

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  20. Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals.

    PubMed

    Schicho, Rudolf; Shaykhutdinov, Rustem; Ngo, Jennifer; Nazyrova, Alsu; Schneider, Christopher; Panaccione, Remo; Kaplan, Gilaad G; Vogel, Hans J; Storr, Martin

    2012-06-01

    Serologic biomarkers for inflammatory bowel disease (IBD) have yielded variable differentiating ability. Quantitative analysis of a large number of metabolites is a promising method to detect IBD biomarkers. Human subjects with active Crohn's disease (CD) and active ulcerative colitis (UC) were identified, and serum, plasma, and urine specimens were obtained. We characterized 44 serum, 37 plasma, and 71 urine metabolites by use of (1)H NMR spectroscopy and "targeted analysis" to differentiate between diseased and non-diseased individuals, as well as between the CD and UC cohorts. We used multiblock principal component analysis and hierarchical OPLS-DA for comparing several blocks derived from the same "objects" (e.g., subject) to examine differences in metabolites. In serum and plasma of IBD patients, methanol, mannose, formate, 3-methyl-2-oxovalerate, and amino acids such as isoleucine were the metabolites most prominently increased, whereas in urine, maximal increases were observed for mannitol, allantoin, xylose, and carnitine. Both serum and plasma of UC and CD patients showed significant decreases in urea and citrate, whereas in urine, decreases were observed, among others, for betaine and hippurate. Quantitative metabolomic profiling of serum, plasma, and urine discriminates between healthy and IBD subjects. However, our results show that the metabolic differences between the CD and UC cohorts are less pronounced.

  1. 1H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis

    PubMed Central

    Puig-Castellví, Francesc; Alfonso, Ignacio; Piña, Benjamin; Tauler, Romà

    2016-01-01

    Disruption of specific metabolic pathways constitutes the mode of action of many known toxicants and it is responsible for the adverse phenotypes associated to human genetic defects. Conversely, many industrial applications rely on metabolic alterations of diverse microorganisms, whereas many therapeutic drugs aim to selectively disrupt pathogens’ metabolism. In this work we analyzed metabolic changes induced by auxotrophic starvation conditions in yeast in a non-targeted approach, using one-dimensional proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and chemometric analyses. Analysis of the raw spectral datasets showed specific changes linked to the different stages during unrestricted yeast growth, as well as specific changes linked to each of the four tested starvation conditions (L-methionine, L-histidine, L-leucine and uracil). Analysis of changes in concentrations of more than 40 metabolites by Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) showed the normal progression of key metabolites during lag, exponential and stationary unrestricted growth phases, while reflecting the metabolic blockage induced by the starvation conditions. In this case, different metabolic intermediates accumulated over time, allowing identification of the different metabolic pathways specifically affected by each gene disruption. This synergy between NMR metabolomics and molecular biology may have clear implications for both genetic diagnostics and drug development. PMID:27485935

  2. 1H NMR Metabolomics Reveals Association of High Expression of Inositol 1, 4, 5 Trisphosphate Receptor and Metabolites in Breast Cancer Patients

    PubMed Central

    Chagtoo, Megha; Agarwal, Gaurav; George, Nelson; Sinha, Neeraj; Godbole, Madan M.

    2017-01-01

    1H NMR is used to detect alterations in metabolites and their linkage to metabolic processes in a number of pathological conditions including breast cancer. Inositol 1, 4, 5 trisphosphate (IP3R) receptor is an intracellular calcium channel known to regulate metabolism and cellular bioenergetics. Its expression is up regulated in a number of cancers. However, its linkage to metabolism in disease conditions has not been evaluated. This study was designed to determine the association if any, of these metabolites with altered expression of IP3R in breast cancer. We used 1H NMR to identify metabolites in the serum of breast cancer patients (n = 27) and performed Real-time Polymerase Chain Reaction analysis for quantifying the expression of IP3R type 3 and type 2 in tissues from breast cancer patients (n = 40). Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA) clearly distinguished patients with high/low IP3R expression from healthy subjects. The present study revealed high expression of IP3R type 2 and type 3 in human breast tumor tissue compared to adjacent non-tumorous tissue. Moreover, patients with ≥ 2-fold increase in IP3R (high IP3R group) had significantly higher concentration of metabolic intermediates compared to those with < 2-fold increase in IP3R (low IP3R group). We observed an increase in lipoprotein content and the levels of metabolites like lactate, lysine and alanine and a decrease in the levels of pyruvate and glucose in serum of high IP3R group patients when compared to those in healthy subjects. Receiver operating characteristic (ROC) curve analysis was performed to show the clinical utility of metabolites. In addition to the human studies, functional relevance of IP3Rs in causing metabolic disruption was observed in MCF-7 and MDA MB-231 cells. Results from our studies bring forth the importance of metabolic (or metabolomics) profiling of serum by 1H NMR in conjunction with tissue expression studies for

  3. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna.

    PubMed

    Nagato, Edward G; Lankadurai, Brian P; Soong, Ronald; Simpson, André J; Simpson, Myrna J

    2015-09-01

    Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies.

  4. (1)H-NMR analysis of the human urinary metabolome in response to an 18-month multi-component exercise program and calcium-vitamin-D3 supplementation in older men.

    PubMed

    Sheedy, John R; Gooley, Paul R; Nahid, Amsha; Tull, Dedreia L; McConville, Malcolm J; Kukuljan, Sonja; Nowson, Caryl A; Daly, Robin M; Ebeling, Peter R

    2014-11-01

    The musculoskeletal benefits of calcium and vitamin-D3 supplementation and exercise have been extensively studied, but the effect on metabolism remains contentious. Urine samples were analyzed by (1)H-NMR spectroscopy from participants recruited for an 18-month, randomized controlled trial of a multi-component exercise program and calcium and vitamin-D3 fortified milk consumption. It was shown previously that no increase in musculoskeletal composition was observed for participants assigned to the calcium and vitamin-D3 intervention, but exercise resulted in increased bone mineral density, total lean body mass, and muscle strength. Retrospective metabolomics analysis of urine samples from patients involved in this study revealed no distinct changes in the urinary metabolome in response to the calcium and vitamin-D3 intervention, but significant changes followed the exercise intervention, notably a reduction in creatinine and an increase in choline, guanidinoacetate, and hypoxanthine (p < 0.001, fold change > 1.5). These metabolites are intrinsically involved in anaerobic ATP synthesis, intracellular buffering, and methyl-balance regulation. The exercise intervention had a marked effect on the urine metabolome and markers of muscle turnover but none of these metabolites were obvious markers of bone turnover. Measurement of specific urinary exercise biomarkers may provide a basis for monitoring performance and metabolic response to exercise regimes.

  5. 1H-NMR and MS Based Metabolomics Study of the Intervention Effect of Curcumin on Hyperlipidemia Mice Induced by High-Fat Diet

    PubMed Central

    Li, Ze-Yun; Ding, Li-Li; Li, Jin-Mei; Xu, Bao-Li; Yang, Li; Bi, Kai-Shun; Wang, Zheng-Tao

    2015-01-01

    Curcumin, a principle bioactive component of Curcuma longa L, is well known for its anti-hyperlipidemia effect. However, no holistic metabolic information of curcumin on hyperlipidemia models has been revealed, which may provide us an insight into the underlying mechanism. In the present work, NMR and MS based metabolomics was conducted to investigate the intervention effect of curcumin on hyperlipidemia mice induced by high-fat diet (HFD) feeding for 12 weeks. The HFD induced animals were orally administered with curcumin (40, 80 mg/kg) or lovastatin (30 mg/kg, positive control) once a day during the inducing period. Serum biochemistry assay of TC, TG, LDL-c, and HDL-c was conducted and proved that treatment of curcumin or lovastatin can significantly improve the lipid profiles. Subsequently, metabolomics analysis was carried out for urine samples. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) was employed to investigate the anti-hyperlipidemia effect of curcumin and to detect related potential biomarkers. Totally, 35 biomarkers were identified, including 31 by NMR and nine by MS (five by both). It turned out that curcumin treatment can partially recover the metabolism disorders induced by HFD, with the following metabolic pathways involved: TCA cycle, glycolysis and gluconeogenesis, synthesis of ketone bodies and cholesterol, ketogenesis of branched chain amino acid, choline metabolism, and fatty acid metabolism. Besides, NMR and MS based metabolomics proved to be powerful tools in investigating pharmacodynamics effect of natural products and underlying mechanisms. PMID:25786031

  6. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with H-NMR based metabolic profiling.

    PubMed

    Kim, So-Hyun; K Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-05-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The (1)H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of (1)H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake.

  7. Urinary metabolomic fingerprinting after consumption of a probiotic strain in women with mastitis.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Marinic, Jelena; Tulipani, Sara; Garcia-Aloy, Mar; Espinosa-Martos, Irene; Jiménez, Esther; Rodríguez, Juan Miguel; Andres-Lacueva, Cristina

    2014-09-01

    Infectious mastitis is a common condition among lactating women, with staphylococci and streptococci being the main aetiological agents. In this context, some lactobacilli strains isolated from breast milk appear to be particularly effective for treating mastitis and, therefore, constitute an attractive alternative to antibiotherapy. A (1)H NMR-based metabolomic approach was applied to detect metabolomic differences after consuming a probiotic strain (Lactobacillus salivarius PS2) in women with mastitis. 24h urine of women with lactational mastitis was collected at baseline and after 21 days of probiotic (PB) administration. Multivariate analysis (OSC-PLS-DA and hierarchical clustering) showed metabolome differences after PB treatment. The discriminant metabolites detected at baseline were lactose, and ibuprofen and acetaminophen (two pharmacological drugs commonly used for mastitis pain), while, after PB intake, creatine and the gut microbial co-metabolites hippurate and TMAO were detected. In addition, a voluntary desertion of the pharmacological drugs ibuprofen and acetaminophen was observed after probiotic administration. The application of NMR-based metabolomics enabled the identification of the overall effects of probiotic consumption among women suffering from mastitis and highlighted the potential of this approach in evaluating the outcomes of probiotics consumption. To our knowledge, this is the first time that this approach has been applied in women with mastitis during lactation.

  8. (1)H NMR metabolomic profiling of the blue crab (Callinectes sapidus) from the Adriatic Sea (SE Italy): A comparison with warty crab (Eriphia verrucosa), and edible crab (Cancer pagurus).

    PubMed

    Zotti, Maurizio; De Pascali, Sandra Angelica; Del Coco, Laura; Migoni, Danilo; Carrozzo, Leonardo; Mancinelli, Giorgio; Fanizzi, Francesco Paolo

    2016-04-01

    The metabolomic profile of blue crab (Callinectes sapidus) captured in the Acquatina lagoon (SE Italy) was compared to an autochthonous (Eriphia verrucosa) and to a commercial crab species (Cancer pagurus). Both lipid and aqueous extracts of raw claw muscle were analyzed by (1)H NMR spectroscopy and MVA (multivariate data analysis). Aqueous extracts were characterized by a higher inter-specific discriminating power compared to lipid fractions. Specifically, higher levels of glutamate, alanine and glycine characterized the aqueous extract of C. sapidus, while homarine, lactate, betaine and taurine characterized E. verrucosa and C. pagurus. On the other hand, only the signals of monounsaturated fatty acids distinguished the lipid profiles of the three crab species. These results support the commercial exploitation and the integration of the blue crab in human diet of European countries as an healthy and valuable seafood.

  9. Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy.

    PubMed

    Kim, So-Hyun; Cho, Somi K; Hyun, Sun-Hee; Park, Hae-Eun; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.

  10. Metabolomic quality control of commercial Asian ginseng, and cultivated and wild American ginseng using (1)H NMR and multi-step PCA.

    PubMed

    Zhao, Huiying; Xu, Jin; Ghebrezadik, Helen; Hylands, Peter J

    2015-10-10

    Ginseng, mainly Asian ginseng and American ginseng, is the most widely consumed herbal product in the world . However, the existing quality control method is not adequate: adulteration is often seen in the market. In this study, 31 batches of ginseng from Chinese stores were analyzed using (1)H NMR metabolite profiles together with multi-step principal component analysis. The most abundant metabolites, sugars, were excluded from the NMR spectra after the first principal component analysis, in order to reveal differences contributed by less abundant metabolites. For the first time, robust, distinctive and representative differences of Asian ginseng from American ginseng were found and the key metabolites responsible were identified as sucrose, glucose, arginine, choline, and 2-oxoglutarate and malate. Differences between wild and cultivated ginseng were identified as ginsenosides. A substitute cultivated American ginseng was noticed. These results demonstrated that the combination of (1)H NMR and PCA is effective in quality control of ginseng.

  11. Evidence for altered metabolic pathways during environmental stress: (1)H-NMR spectroscopy based metabolomics and clinical studies on subjects of sea-voyage and Antarctic-stay.

    PubMed

    Yadav, Anand Prakash; Chaturvedi, Shubhra; Mishra, Kamla Prasad; Pal, Sunil; Ganju, Lilly; Singh, Shashi Bala

    2014-08-01

    The Antarctic context is an analogue of space travel, with close similarity in ambience of extreme climate, isolation, constrained living spaces, disrupted sleep cycles, and environmental stress. The present study examined the impact of the harsh habitat of Antarctica on human physiology and its metabolic pathways, by analyzing human serum samples, using (1)H-NMR spectroscopy for identification of metabolites; and quantifying other physiological and clinical parameters for correlation between expression data and metabolite data. Sera from seven adult males (of median age 36years) who participated in this study, from the 28th Indian Expeditionary group to the Antarctica station Maitri, were collected in chronological sequence. These included: i) baseline control; ii) during ship journey; iii) at Antarctica, in the months of March, May, August and November; to enable study of temporal evolution of monitored physiological states. 29 metabolites in serum were identified from the 400MHz (1)H-NMR spectra. Out of these, 19 metabolites showed significant variations in levels, during the ship journey and the stay at Maitri, compared to the base-line levels. Further biochemical analysis also supported these results, indicating that the ship journey, and the long-term Antarctic exposure, affected kidney and liver functioning. Our metabolite data highlights for the first time the effect of environmental stress on the patho-physiology of the human system. Multivariate analysis tools were employed for this metabonomics study, using (1)H-NMR spectroscopy.

  12. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective

    PubMed Central

    Rankin, Naomi J.; Preiss, David; Welsh, Paul; Burgess, Karl E.V.; Nelson, Scott M.; Lawlor, Debbie A.; Sattar, Naveed

    2014-01-01

    The ability to phenotype metabolic profiles in serum has increased substantially in recent years with the advent of metabolomics. Metabolomics is the study of the metabolome, defined as those molecules with an atomic mass less than 1.5 kDa. There are two main metabolomics methods: mass spectrometry (MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy, each with its respective benefits and limitations. MS has greater sensitivity and so can detect many more metabolites. However, its cost (especially when heavy labelled internal standards are required for absolute quantitation) and quality control is sub-optimal for large cohorts. 1H NMR is less sensitive but sample preparation is generally faster and analysis times shorter, resulting in markedly lower analysis costs. 1H NMR is robust, reproducible and can provide absolute quantitation of many metabolites. Of particular relevance to cardio-metabolic disease is the ability of 1H NMR to provide detailed quantitative data on amino acids, fatty acids and other metabolites as well as lipoprotein subparticle concentrations and size. Early epidemiological studies suggest promise, however, this is an emerging field and more data is required before we can determine the clinical utility of these measures to improve disease prediction and treatment. This review describes the theoretical basis of 1H NMR; compares MS and 1H NMR and provides a tabular overview of recent 1H NMR-based research findings in the atherosclerosis field, describing the design and scope of studies conducted to date. 1H NMR metabolomics-CVD related research is emerging, however further large, robustly conducted prospective, genetic and intervention studies are needed to advance research on CVD risk prediction and to identify causal pathways amenable to intervention. PMID:25299963

  13. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective.

    PubMed

    Rankin, Naomi J; Preiss, David; Welsh, Paul; Burgess, Karl E V; Nelson, Scott M; Lawlor, Debbie A; Sattar, Naveed

    2014-11-01

    The ability to phenotype metabolic profiles in serum has increased substantially in recent years with the advent of metabolomics. Metabolomics is the study of the metabolome, defined as those molecules with an atomic mass less than 1.5 kDa. There are two main metabolomics methods: mass spectrometry (MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy, each with its respective benefits and limitations. MS has greater sensitivity and so can detect many more metabolites. However, its cost (especially when heavy labelled internal standards are required for absolute quantitation) and quality control is sub-optimal for large cohorts. (1)H NMR is less sensitive but sample preparation is generally faster and analysis times shorter, resulting in markedly lower analysis costs. (1)H NMR is robust, reproducible and can provide absolute quantitation of many metabolites. Of particular relevance to cardio-metabolic disease is the ability of (1)H NMR to provide detailed quantitative data on amino acids, fatty acids and other metabolites as well as lipoprotein subparticle concentrations and size. Early epidemiological studies suggest promise, however, this is an emerging field and more data is required before we can determine the clinical utility of these measures to improve disease prediction and treatment. This review describes the theoretical basis of (1)H NMR; compares MS and (1)H NMR and provides a tabular overview of recent (1)H NMR-based research findings in the atherosclerosis field, describing the design and scope of studies conducted to date. (1)H NMR metabolomics-CVD related research is emerging, however further large, robustly conducted prospective, genetic and intervention studies are needed to advance research on CVD risk prediction and to identify causal pathways amenable to intervention.

  14. A Metabolomic Approach (1H HRMAS NMR Spectroscopy) Supported by Histology to Study Early Post-transplantation Responses in Islet-transplanted Livers

    PubMed Central

    Vivot, Kevin; Benahmed, Malika A.; Seyfritz, Elodie; Bietiger, William; Elbayed, Karim; Ruhland, Elisa; Langlois, Allan; Maillard, Elisa; Pinget, Michel; Jeandidier, Nathalie; Gies, Jean-Pierre; Namer, Izzie-Jacques; Sigrist, Séverine; Reix, Nathalie

    2016-01-01

    Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. 1H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation. Inflammatory markers (Interleukin-6, α2-macroglobulin) are not suitable to follow islet reactions as they are not islet specific. To study islet specific inflammatory events, immunohistochemistry was performed on sections of islet transplanted livers for thrombin (indicator of the instant blood-mediated inflammatory reaction (IBMIR)) and granulocytes and macrophages. We observed a specific correlation between IBMIR and granulocyte and macrophage infiltration after 12 h. In parallel, we identified a metabolic response associated with transplantation: after 12 h, glucose, alanine, aspartate, glutamate and glutathione were significantly increased. An increase of glucose is a marker of tissue degradation, and could be explained by immune cell infiltration. Alanine, aspartate and glutamate are inter-connected in a common metabolic pathway known to be activated during hypoxia. An increase of glutathione revealed the presence of antioxidant protection. In this study, IBMIR visualization combined with 1H HRMAS NMR facilitated the characterization of cellular and molecular pathways recruited following islet transplantation. PMID:27766032

  15. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis.

    PubMed

    Gogna, Navdeep; Hamid, Neda; Dorai, Kavita

    2015-11-10

    Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity.

  16. Metabolomics of meat exudate: Its potential to evaluate beef meat conservation and aging.

    PubMed

    Castejón, David; García-Segura, Juan Manuel; Escudero, Rosa; Herrera, Antonio; Cambero, María Isabel

    2015-12-11

    In this study we analyzed the exudate of beef to evaluate its potential as non invasive sampling for nuclear magnetic resonance (NMR) based metabolomic analysis of meat samples. Exudate, as the natural juice from raw meat, is an easy to obtain matrix that it is usually collected in small amounts in commercial meat packages. Although meat exudate could provide complete and homogeneous metabolic information about the whole meat piece, this sample has been poorly studied. Exudates from 48 beef samples of different breeds, cattle and storage times have been studied by (1)H NMR spectroscopy. The liquid exudate spectra were compared with those obtained by High Resolution Magic Angle Spinning (HRMAS) of the original meat pieces. The close correlation found between both spectra (>95% of coincident peaks in both registers; Spearman correlation coefficient = 0.945) lead us to propose the exudate as an excellent alternative analytical matrix with a view to apply meat metabolomics. 60 metabolites could be identified through the analysis of mono and bidimensional exudate spectra, 23 of them for the first time in NMR meat studies. The application of chemometric tools to analyze exudate dataset has revealed significant metabolite variations associated with meat aging. Hence, NMR based metabolomics have made it possible both to classify meat samples according to their storage time through Principal Component Analysis (PCA), and to predict that storage time through Partial Least Squares (PLS) regression.

  17. Metabolomic investigation of Mytilus galloprovincialis (Lamarck 1819) caged in aquatic environments.

    PubMed

    Fasulo, Salvatore; Iacono, Francesco; Cappello, Tiziana; Corsaro, Carmelo; Maisano, Maria; D'Agata, Alessia; Giannetto, Alessia; De Domenico, Elena; Parrino, Vincenzo; Lo Paro, Giuseppe; Mauceri, Angela

    2012-10-01

    Environmental metabolomics was applied to assess the metabolic responses in transplanted mussels to environmental pollution. Specimens of Mytilus galloprovincialis, sedentary filter-feeders, were caged in anthropogenic-impacted and reference sites along the Augusta coastline (Sicily, Italy). Chemical analysis revealed increased levels of PAHs in the digestive gland of mussels from the industrial area compared with control, and marked morphological changes were also observed. Digestive gland metabolic profiles, obtained by 1H NMR spectroscopy and analyzed by multivariate statistics, showed changes in metabolites involved in energy metabolism. Specifically, changes in lactate and acetoacetate could indicate increased anaerobic fermentation and alteration in lipid metabolism, respectively, suggesting that the mussels transplanted to the contaminated field site were suffering from adverse environmental condition. The NMR-based environmental metabolomics applied in this study results thus in it being a useful and effective tool for assessing environmental influences on the health status of aquatic organisms.

  18. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas.

  19. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles.

    PubMed

    Li, LianZhen; Wu, Huifeng; Ji, Chenglong; van Gestel, Cornelis A M; Allen, Herbert E; Peijnenburg, Willie J G M

    2015-09-01

    We examined the short-term toxicity of AgNPs and AgNO3 to Daphnia magna at sublethal levels using (1)H NMR-based metabolomics. Two sizes of polyvinylpyrrolidone-coated AgNPs (10 and 40nm) were synthesized and characterized and their Ag(+) release was studied using centrifugal ultrafiltration and inductively coupled plasma mass spectrometry. Multivariate statistical analysis of the (1)H NMR spectra showed significant changes in the D. magna metabolic profiles following 48h exposure to both AgNP particle sizes and Ag(+) exposure. Most of the metabolic biomarkers for AgNP exposure, including 3-hydroxybutyrate, arginine, lysine and phosphocholine, were identical to those of the Ag(+)-exposed groups, suggesting that the dominant effects of both AgNPs were due to released Ag(+). The observed metabolic changes implied that the released Ag(+) induced disturbance in energy metabolism and oxidative stress, a proposed mechanism of AgNP toxicity. Elevated levels of lactate in all AgNP-treated but not in Ag(+)-treated groups provided evidence for Ag-NP enhanced anaerobic metabolism. These findings show that (1)H NMR-based metabolomics provides a sensitive measure of D. magna response to AgNPs and that further targeted assays are needed to elucidate mechanisms of action of nanoparticle-induced toxicity.

  20. Classification of fermented soymilk during fermentation by 1H NMR coupled with principal component analysis and elucidation of free-radical scavenging activities.

    PubMed

    Yang, Seung-Ok; Kim, So-Hyun; Cho, Sayeon; Lee, JaeHwan; Kim, Young-Suk; Yun, Sung-Seob; Choi, Hyung-Kyoon

    2009-05-01

    Changes in metabolites in fermented soymilk prepared with selected Bifidobacterium and Streptococci strains were analyzed using a (1)H-NMR-based metabolomic technique. Principal components analysis (PCA) allowed the clear separation of 50% methanol extracts from fermented soymilk with different fermentation times by combining principal components PC1 and PC3, which accounted for 55.1% of the total variance. Loading plot analysis was performed to select major compounds contributing to the separation, and the relative levels of selected metabolites were determined. In addition, the free-radical scavenging activities of each sample were investigated, and the underlying mechanisms were elucidated by determining the total phenolics and total flavonoids contents of each sample. The present study suggests the usefulness of combining (1)H-NMR with PCA in discriminating fermented soymilk samples with different fermentation times, and elucidates of the factors affecting free-radical scavenging activities of fermented soymilk.

  1. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis

    PubMed Central

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-01-01

    Aim: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Methods: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to 1H-NMR-based metabolomic analysis. Results: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Conclusion: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The 1H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines. PMID:24632844

  2. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach

    PubMed Central

    Liu, Xinfeng; Gao, Jian; Chen, Jianxin; Wang, Zhiyong; Shi, Qi; Man, Hongxue; Guo, Shuzhen; Wang, Yingfeng; Li, Zhongfeng; Wang, Wei

    2016-01-01

    Type 2 diabetic coronary heart disease (T2DM-CHD) is a kind of serious and complex disease. Great attention has been paid to exploring its mechanism; however, the detailed understanding of T2DM-CHD is still limited. Plasma samples from 15 healthy controls, 13 coronary heart disease (CHD) patients, 15 type 2 diabetes mellitus (T2DM) patients and 28 T2DM-CHD patients were analyzed in this research. The potential biomarkers of CHD and T2DM were detected and screened out by 1H NMR-based plasma metabolic profiling and multivariate data analysis. About 11 and 12 representative metabolites of CHD and T2DM were identified respectively, mainly including alanine, arginine, proline, glutamine, creatinine and acetate. Then the diagnostic model was further constructed based on the previous metabolites of CHD and T2DM to detect T2DM-CHD with satisfying sensitivity of 92.9%, specificity of 93.3% and accuracy of 93.2%, validating the robustness of 1H NMR-based plasma metabolic profiling to diagnostic strategy. The results demonstrated that the NMR-based metabolomics approach processed good performance to identify diagnostic plasma biomarkers and most identified metabolites related to T2DM and CHD could be considered as predictors of T2DM-CHD as well as the therapeutic targets for prevention, which provided new insight into diagnosing and forecasting of complex diseases. PMID:27470195

  3. Applying 1H NMR Spectroscopy to Detect Changes in the Urinary Metabolite Levels of Chinese Half-Pipe Snowboarders after Different Exercises

    PubMed Central

    Wang, Fuqiu; Han, Jiao; Geng, Zhufeng; Deng, Zhiwei; Qiao, Decai

    2015-01-01

    Monitoring physical training is important for the health and performance of athletes, and real-time assessment of fatigue is crucial to improve training efficiency. The relationship between key biomarkers and exercise has been reported. The aim of this study was to determine the effects of different levels of training exercises on the urine metabolome. 1H NMR-based metabolomics analysis was performed on urine samples from half-pipe snowboarders, and spectral profiles were subjected to PCA and PLS-DA. Our results show that metabolic profiles varied during different stages of exercises. Lactate, alanine, trimethylamine, malonate, taurine, and glycine levels decreased while TMAO and phenylalanine levels increased in the stage with higher amount and intensity of exercise. Although the amount of exercise was reduced in subsequent stage, no significant variations of metabolic profile were found. Metabolic changes induced by training level were analyzed with related metabolic pathway. Studying metabolome changes can provide a better understanding of the physiology of athletes and could aid in adjusting training. PMID:26101694

  4. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  5. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    NASA Astrophysics Data System (ADS)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  6. Establishing Substantial Equivalence: Metabolomics

    NASA Astrophysics Data System (ADS)

    Beale, Michael H.; Ward, Jane L.; Baker, John M.

    Modern ‘metabolomic’ methods allow us to compare levels of many structurally diverse compounds in an automated fashion across a large number of samples. This technology is ideally suited to screening of populations of plants, including trials where the aim is the determination of unintended effects introduced by GM. A number of metabolomic methods have been devised for the determination of substantial equivalence. We have developed a methodology, using [1H]-NMR fingerprinting, for metabolomic screening of plants and have applied it to the study of substantial equivalence of field-grown GM wheat. We describe here the principles and detail of that protocol as applied to the analysis of flour generated from field plots of wheat. Particular emphasis is given to the downstream data processing and comparison of spectra by multivariate analysis, from which conclusions regarding metabolome changes due to the GM can be assessed against the background of natural variation due to environment.

  7. Gelified Biofluids for High-Resolution Magic Angle Spinning (1)H NMR Analysis: The Case of Urine.

    PubMed

    Takis, Panteleimon G; Tenori, Leonardo; Ravera, Enrico; Luchinat, Claudio

    2017-01-17

    In this letter, we propose an alternative, effective protocol for metabolomic characterization of biofluids based on their gelification and subsequent application of high-resolution magic angle spinning (HRMAS) (1)H nuclear magnetic resonance (NMR). The sample handling is very rapid and reproducible, and much less than 40 μL of neat urine are needed to obtain a sample. Our results indicate that the HRMAS spectra of gelified urine encompass all metabolites in the NMR fingerprint, as observed by solution NMR. The proposed approach can be efficiently integrated into the NMR based metabolomics analyses routines: multivariate statistical analysis of both solution and HRMAS data produced very similar statistical models, with high classification accuracy. One of the key advantages offered by the gelification approach is the improved short-term (up to 24 h) preservation of nonfrozen HRMAS NMR gel urine samples compared to the solution samples, which could lead to an alternative way for transportation or domestic collection of biofluids, without the need of cold-storage and reducing the risks of leakage.

  8. Strategy for Nuclear-Magnetic-Resonance-Based Metabolomics of Human Feces.

    PubMed

    Lamichhane, Santosh; Yde, Christian C; Schmedes, Mette S; Jensen, Henrik Max; Meier, Sebastian; Bertram, Hanne Christine

    2015-06-16

    Metabolomic analyses of fecal material are gaining increasing attention because the gut microbial ecology and activity have an impact on the human phenotype and regulate host metabolism. Sample preparation is a crucial step, and in this study, we recommend a methodology for extraction and analysis of fresh feces by NMR-based metabolomics. The evaluation of extraction solvents showed that buffer extraction is a suitable approach to extract metabolic information in feces. Therefore, the effects of weight-to-buffer (Wf:Vb) combinations and the effect of sonication and freeze-thaw cycles on the reproducibility, chemical shift variability, and signal-to-noise ratio (SNR) of the (1)H NMR spectra were evaluated. On the basis of our results, we suggest that fresh fecal extraction with a Wf:Vb ratio of 1:2 may be the optimum choice to determine the overall metabolite composition of feces. In fact, more than 60 metabolites have been assigned in the NMR spectra obtained from the fresh fecal buffer extract, and assignments of the lipophilic signals are also presented. To our knowledge, some of the metabolites are reported here for the very first time employing (1)H NMR spectroscopy on human fecal extracts.

  9. Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1H NMR spectroscopy.

    PubMed

    Liu, Guangmang; Xiao, Liang; Cao, Wei; Fang, Tingting; Jia, Gang; Chen, Xiaoling; Zhao, Hua; Wu, Caimei; Wang, Jing

    2016-02-01

    Numerous factors can induce oxidative stress in animal production and lead to growth retardation, disease, and even death. Arginine and N-carbamylglutamate can alleviate the effects of oxidative stress. However, the systematic changes in metabolic biochemistry linked to oxidative stress and arginine and N-carbamylglutamate treatment remain largely unknown. This study aims to examine the effects of arginine and N-carbamylglutamate on rat metabolism under oxidative stress. Thirty rats were randomly divided into three dietary groups (n = 10 each). The rats were fed a basal diet supplemented with 0 (control), 1% arginine, or 0.1% N-carbamylglutamate for 30 days. On day 28, the rats in each treatment were intraperitoneally injected with diquat at 12 mg per kg body weight or sterile solution. Urine and plasma samples were analyzed by metabolomics. Compared with the diquat group, the arginine + diquat group had significantly lower levels of acetamide, alanine, lysine, pyruvate, tyrosine, α-glucose, and β-glucose in plasma; N-carbamylglutamate + diquat had higher levels of 3-hydroxybutyrate, 3-methylhistidine, acetone, allantoin, asparagine, citrate, phenylalanine, trimethylamine-N-oxide, and tyrosine, and lower levels of low density lipoprotein, lipid, lysine, threonine, unsaturated lipid, urea, and very low density lipoprotein (P < 0.05) in plasma. Compared with the diquat group, the arginine + diquat group had significantly higher levels of citrate, creatinine, homogentisate, and α-ketoglutarate while lower levels of acetamide, citrulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, propionate, and β-glucose (P < 0.05) in urine. Compared with the diquat group, the N-carbamylglutamate + diquat group had significantly higher levels of allantoin, citrate, homogentisate, phenylacetylglycine, α-ketoglutarate, and β-glucose while lower levels of acetamide, acetate, acetone, benzoate, citrulline, ethanol

  10. Facilitated Visual Interpretation of Scores in Principal Component Analysis by Bioactivity-Labeling of 1H-NMR Spectra-Metabolomics Investigation and Identification of a New α-Glucosidase Inhibitor in Radix Astragali.

    PubMed

    Liu, Yueqiu; Nyberg, Nils T; Jäger, Anna K; Staerk, Dan

    2017-03-06

    Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract's bioactivity.

  11. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    PubMed

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  12. Analysis of urinary metabolomic profiling for unstable angina pectoris disease based on nuclear magnetic resonance spectroscopy.

    PubMed

    Li, Zhongfeng; Liu, Xinfeng; Wang, Juan; Gao, Jian; Guo, Shuzhen; Gao, Kuo; Man, Hongxue; Wang, Yingfeng; Chen, Jianxin; Wang, Wei

    2015-12-01

    (1)H NMR-based urinary metabolic profiling is used for investigating the unstable angina pectoris (UAP) metabolic signatures, in order to find out candidate biomarkers to facilitate medical diagnosis. In this work, 27 urine samples from UAP patients and 20 healthy controls were used. The metabolic profiles of the samples were analyzed by multivariate statistics analysis, including PCA, PLS-DA and OPLS-DA. The PCA analysis exhibited slight separation with R(2)X of 0.681 and Q2 of 0.251, while the PLS-DA (R(2)X = 0.121, R(2)Y = 0.931, and Q(2) = 0.661) and the OPLS-DA (R(2)X = 0.121, R(2)Y = 0.931, Q(2) = 0.653) demonstrated that the model showed good performance. By OPLS-DA, 20 metabolites were identified. A diagnostic model was further constructed using the receiver-operator characteristic (ROC) curves (AUC = 0.953), which exhibited a satisfying sensitivity of 92.6%, specificity of 90% and accuracy of 89.1%. The results demonstrated that the NMR-based metabolomics approach showed good performance in identifying diagnostic urinary biomarkers, providing new insights into the metabolic process related to UAP.

  13. Metabolomic changes during cellular transformation monitored by metabolite-metabolite correlation analysis and correlated with gene expression.

    PubMed

    Madhu, Basetti; Narita, Masako; Jauhiainen, Alexandra; Menon, Suraj; Stubbs, Marion; Tavaré, Simon; Narita, Masashi; Griffiths, John R

    To investigate metabolic changes during cellular transformation, we used a (1)H NMR based metabolite-metabolite correlation analysis (MMCA) method, which permits analysis of homeostatic mechanisms in cells at the steady state, in an inducible cell transformation model. Transcriptomic data were used to further explain the results. Transformed cells showed many more metabolite-metabolite correlations than control cells. Some had intuitively plausible explanations: a shift from glycolysis to amino acid oxidation after transformation was accompanied by a strongly positive correlation between glucose and glutamine and a strongly negative one between lactate and glutamate; there were also many correlations between the branched chain amino acids and the aromatic amino acids. Others remain puzzling: after transformation strong positive correlations developed between choline and a group of five amino acids, whereas the same amino acids showed negative correlations with phosphocholine, a membrane phospholipid precursor. MMCA in conjunction with transcriptome analysis has opened a new window into the metabolome.

  14. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Azam, Kenan; Vadivelu, Ilango; Burant, Charles; Edison, Arthur; Fiehn, Oliver; Higashi, Richard; Nair, K. Sreekumaran; Sumner, Susan; Subramaniam, Shankar

    2016-01-01

    The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world. PMID:26467476

  15. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools.

    PubMed

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Azam, Kenan; Vadivelu, Ilango; Burant, Charles; Edison, Arthur; Fiehn, Oliver; Higashi, Richard; Nair, K Sreekumaran; Sumner, Susan; Subramaniam, Shankar

    2016-01-04

    The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world.

  16. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    PubMed

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

  17. Reproductive physiology and ovarian folliculogenesis examined via 1H-NMR metabolomics signatures: a comparative study of large and small follicles in three mammalian species (Bos taurus, Sus scrofa domesticus and Equus ferus caballus).

    PubMed

    Gérard, Nadine; Fahiminiya, Somayyeh; Grupen, Christopher G; Nadal-Desbarats, Lydie

    2015-01-01

    The aim of this study was to characterize the composition of follicular fluid (FF) collected from the small and large follicles of three mammalian species, Bos taurus, Sus scrofa domesticus, and Equus ferus caballus, that display distinct ovulatory properties. For each species, five large FF samples and five small FF samples were analyzed using 1H-NMR spectroscopy. The FF metabolic profiles of the three species were very distinct. In cows and mares, the metabolic profiles of large FF and small FF were also very distinct. The concentrations of seventeen identified metabolites differed significantly between the sample groups. In mares, fourteen metabolites were found at much greater concentrations in large FF than in small FF (p<0.05). In cows, four metabolites differed in concentration between the large FF and small FF samples (p<0.05). A common feature of the monovulatory species was that the concentrations of α- and β-glucose were much greater in large FF compared with small FF (p<0.05). Sow FF was characterized by the apparent absence of citrate (detected in cow and mare FF), and the presence of succinate (not detected in cow and mare FF). Another obvious difference between species was the concentration of lactate, which was minimal in mare FF compared with cow and sow FF (p<0.05). The findings provide valuable insights into reproductive physiology broadly, and indicate that the activities of central metabolic enzymes differ enormously between these species. Future investigations into species-specific differences in follicle metabolism would increase our understanding of the processes critical to folliculogenesis and the acquisition of oocyte developmental competence.

  18. Rule-Mining for the Early Prediction of Chronic Kidney Disease Based on Metabolomics and Multi-Source Data

    PubMed Central

    Luck, Margaux; Bertho, Gildas; Bateson, Mathilde; Karras, Alexandre; Yartseva, Anastasia; Thervet, Eric

    2016-01-01

    1H Nuclear Magnetic Resonance (NMR)-based metabolic profiling is very promising for the diagnostic of the stages of chronic kidney disease (CKD). Because of the high dimension of NMR spectra datasets and the complex mixture of metabolites in biological samples, the identification of discriminant biomarkers of a disease is challenging. None of the widely used chemometric methods in NMR metabolomics performs a local exhaustive exploration of the data. We developed a descriptive and easily understandable approach that searches for discriminant local phenomena using an original exhaustive rule-mining algorithm in order to predict two groups of patients: 1) patients having low to mild CKD stages with no renal failure and 2) patients having moderate to established CKD stages with renal failure. Our predictive algorithm explores the m-dimensional variable space to capture the local overdensities of the two groups of patients under the form of easily interpretable rules. Afterwards, a L2-penalized logistic regression on the discriminant rules was used to build predictive models of the CKD stages. We explored a complex multi-source dataset that included the clinical, demographic, clinical chemistry, renal pathology and urine metabolomic data of a cohort of 110 patients. Given this multi-source dataset and the complex nature of metabolomic data, we analyzed 1- and 2-dimensional rules in order to integrate the information carried by the interactions between the variables. The results indicated that our local algorithm is a valuable analytical method for the precise characterization of multivariate CKD stage profiles and as efficient as the classical global model using chi2 variable section with an approximately 70% of good classification level. The resulting predictive models predominantly identify urinary metabolites (such as 3-hydroxyisovalerate, carnitine, citrate, dimethylsulfone, creatinine and N-methylnicotinamide) as relevant variables indicating that CKD significantly

  19. High-resolution quantitative metabolome analysis of urine by automated flow injection NMR.

    PubMed

    Da Silva, Laeticia; Godejohann, Markus; Martin, François-Pierre J; Collino, Sebastiano; Bürkle, Alexander; Moreno-Villanueva, María; Bernhardt, Jürgen; Toussaint, Olivier; Grubeck-Loebenstein, Beatrix; Gonos, Efstathios S; Sikora, Ewa; Grune, Tilman; Breusing, Nicolle; Franceschi, Claudio; Hervonen, Antti; Spraul, Manfred; Moco, Sofia

    2013-06-18

    Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.

  20. High-Resolution Quantitative Metabolome Analysis of Urine by Automated Flow Injection NMR

    PubMed Central

    2013-01-01

    Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) 1H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ∼20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation. PMID:23718684

  1. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE PAGES

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  2. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    SciTech Connect

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.

  3. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice

    PubMed Central

    Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G.; Hao, Ruixin; Correll, Jared; Smith, Philip B.; Chiaro, Christopher R.; Perdew, Gary H.; Patterson, Andrew D.

    2016-01-01

    Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) were assessed using global 1H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolic profiling of extracts obtained from serum and liver. 1H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was also observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure. PMID:26023891

  4. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats

    PubMed Central

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-01-01

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats. PMID:27527211

  5. Hepatotoxicity of Chlorpyrifos in Zebrafish Liver Cells by NMR-based Metabolomics

    EPA Science Inventory

    For decades chlorpyrifos (CPS) has been one of the most widely used organophosphate insecticides for a variety of agricultural and public health applications. The extensive use of CPS inevitably results in exposure to a small number of the human population. It is believed that ...

  6. NMR-based Metabolomics for Studying Toxicity, Compensation, and Recovery in Small Fish Exposed to EDCs

    EPA Science Inventory

    Determining the impact(s) on fish and other aquatic organisms of exposure to endocrine disrupting compounds (EDCs) is critical for determining the risks that these chemicals pose. However, to accurately evaluate these risks, beyond simply measuring a “before and after exposure” ...

  7. (13)C-NMR-Based Metabolomic Profiling of Typical Asian Soy Sauces.

    PubMed

    Kamal, Ghulam Mustafa; Yuan, Bin; Hussain, Abdullah Ijaz; Wang, Jie; Jiang, Bin; Zhang, Xu; Liu, Maili

    2016-09-02

    It has been a strong consumer interest to choose high quality food products with clear information about their origin and composition. In the present study, a total of 22 Asian soy sauce samples have been analyzed in terms of (13)C-NMR spectroscopy. Spectral data were analyzed by multivariate statistical methods in order to find out the important metabolites causing the discrimination among typical soy sauces from different Asian regions. It was found that significantly higher concentrations of glutamate in Chinese red cooking (CR) soy sauce may be the result of the manual addition of monosodium glutamate (MSG) in the final soy sauce product. Whereas lower concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different fermentation period used in production of CR soy sauce, on the other hand, the concentration of some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups. The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman (SK), whereas much higher in Japanese shoyu (JS) and Taiwan (China) light (TL), which depict the influence of climatic conditions. Therefore, the results of our study directly indicate the influences of traditional ways of fermentation, climatic conditions and the selection of raw materials and can be helpful for consumers to choose their desired soy sauce products, as well as for researchers in further authentication studies about soy sauce.

  8. NMR-based metabolic profiling of rice wines by F(2)-selective total correlation spectra.

    PubMed

    Koda, Masanori; Furihata, Kazuo; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2012-05-16

    In this study, we performed NMR-based metabolic profiling of major rice wines (Japanese sake, Chinese Shaoxing wine, and Korean makgeolli). In the (1)H NMR spectra, the rice wines showed broad resonances in the region of about 7.9-9.0 ppm. These resonances showed many and complex correlations with approximately 0.5-4.5 ppm in the F(2)-selective TOCSY (total correlation spectroscopy) spectra, and these correlations were attributed mainly to peptides. These spectral patterns were characteristic of individual rice wines, and the combination of F(2)-selective TOCSY spectra and principal component analysis enabled us to classify the rice wine species. Furthermore, it also provided information about raw materials, namely, what type of koji (rice koji or wheat koji) was used. These spectra may be useful as a new "fingerprint" for quality control or food authentication.

  9. 1H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats

    PubMed Central

    Lin, Taijie; Gu, Jinping; Huang, Caihua; Zheng, Suli; Lin, Xu; Xie, Liangdi; Lin, Donghai

    2016-01-01

    Aims. To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods. Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. Results. The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. Conclusions. Metabolic dysfunction is involved in the development and progression of PAH. PMID:27057080

  10. Metabolomics Characterization of U.S. and Japanese F-15 and C-130 Flight Line Crews Exposed to Jet Fuel Volatile Organic Compounds and Aerosols

    DTIC Science & Technology

    2014-09-30

    concerning level of exposure and the corresponding biological response associated with human jet fuel exposure, nuclear magnetic resonance (NMR)-based...Magnetic Resonance Spectroscopy, Jet Fuel, Human, Biomarkers 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES...associated with human jet fuel exposure, nuclear magnetic resonance (NMR)-based metabolomics analysis of human urine was utilized for characterization of

  11. Distinctive Metabolism of Flavonoid between Cultivated and Semiwild Soybean Unveiled through Metabolomics Approach.

    PubMed

    Yun, Dae-Yong; Kang, Young-Gyu; Yun, Bohyun; Kim, Eun-Hee; Kim, Myoyeon; Park, Jun Seong; Lee, John Hwan; Hong, Young-Shick

    2016-07-27

    Soybeans are an important crop for agriculture and food, resulting in an increase in the range of its application. Recently, soybean leaves have been used not only for food products but also in the beauty industry. To provide useful and global metabolite information on the development of soy-based products, we investigated the metabolic evolution and cultivar-dependent metabolite variation in the leaves of cultivated (Glycine max) and semiwild (G. gracilis) soybean, through a (1)H NMR-based metabolomics approach, as they grew from V (vegetative) 1 to R (reproductive) 7 growth stages. The levels of primary metabolites, such as sucrose, amino acids, organic acids, and fatty acids, were decreased both in the G. gracilis and G. max leaves. However, the secondary metabolites, such as pinitol, rutin, and polyphenols, were increased while synthesis of glucose was elevated as the leaves grew. When metabolite variations between G. gracilis and G. max are compared, it was noteworthy that rutin and its precursor, quercetin-3-O-glucoside, were found only in G. gracilis but not in G. max. Furthermore, levels of pinitol, proline, β-alanine, and acetic acid, a metabolite related to adaptation toward environmental stress, were different between the two soybean cultivars. These results highlight their distinct metabolism for adaptation to environmental conditions and their intrinsic metabolic phenotype. This study therefore provides important information on the cultivar-dependent metabolites of soybean leaves for better understanding of plant physiology toward the development of soy-based products.

  12. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  13. Metabolomics in food science.

    PubMed

    Cevallos-Cevallos, Juan Manuel; Reyes-De-Corcuera, José Ignacio

    2012-01-01

    Metabolomics, the newest member of the omics techniques, has become an important tool in agriculture, pharmacy, and environmental sciences. Advances in compound extraction, separation, detection, identification, and data analysis have allowed metabolomics applications in food sciences including food processing, quality, and safety. This chapter discusses recent advances and applications of metabolomics in food science.

  14. Can NMR solve some significant challenges in metabolomics?

    NASA Astrophysics Data System (ADS)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  15. Can NMR solve some significant challenges in metabolomics?

    PubMed Central

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  16. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    PubMed Central

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  17. A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2015-01-15

    Metal pollution has been of great concern in the estuaries in Southern China. In this study, metabolic differences between oysters Crassostrea hongkongensis from clean and metal-polluted sites were characterized using NMR-based metabolomics. We collected oyster samples from one clean (Jiuzhen) and two metal polluted sites (Baijiao and Fugong). The metal concentrations in oyster gills indicated that both the Baijiao and Fugong sites were severely polluted by several metals, including Cr, Ni, Cu, Zn, Ag, Cd and Pb. In particular, Cu and Zn were the major contaminants from the Baijiao and Fugong sites. Compared with those oysters from the clean site (JZ), metal pollution in BJ and FG induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways, as indicated by different metabolic biomarkers. This study demonstrates that NMR-based metabolomics is a useful tool for characterizing metabolic responses induced by metal pollution.

  18. Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28.

    PubMed

    Wu, Changsheng; Du, Chao; Gubbens, Jacob; Choi, Young Hae; van Wezel, Gilles P

    2015-10-23

    Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with antimicrobial activity against Bacillus subtilis. The metabolite-guided genome mining of Streptomyces sp. MBT28 combined with proteomics identified a gene cluster with an indole prenyltransferase that catalyzes the conversion of tryptophan into 7-prenylisatin. This study underlines the applicability of NMR-based metabolomics in facilitating the discovery of novel antibiotics.

  19. Metabolomics and Epidemiology Working Group

    Cancer.gov

    The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.

  20. Pharma-metabolomics in neonatology: is it a dream or a fact?

    PubMed

    Fanos, Vassilios; Barberini, Luigi; Antonucci, Roberto; Atzori, Luigi

    2012-01-01

    The 'omics' technologies represent analytical approaches that have a holistic view on molecules such as genes, transcripts, proteins and metabolites constituting a cell, tissue or organism. The profiling of genes, transcripts and proteins has been referred to as genomics, transcriptomics and proteomics. Finally, there is the youngest and most rapidly increasing of the "omics" disciplines: metabolomics. Metabolomics appears to be a new, very useful tool in neonatology, especially in the fields of pharma-metabolomics and nutri- metabolomics. Since it appears to be predictive and preventive, it can be considered the 'new clinical chemistry' for personalized neonatal medicine. At present, the use of metabolomics in neonatology is still in the pioneering phase. In clinical practice, only a limited number of metabolites are routinely measured in the biofluids of newborns by conventional analytical methods to study the metabolic status of the organism. However, the management of sick or preterm newborns might be improved if more information on perinatal/ neonatal maturational processes and their metabolic background were available. The aim of this review, after a general introduction on pharma-metabolomics, is to present the potential of NMR-based metabolomic analysis of newbom urine in neonatology in the field of pharmacology.

  1. Amniotic fluid metabolomics and biochemistry analysis provides novel insights into the diet-regulated foetal growth in a pig model

    PubMed Central

    Wan, Jin; Jiang, Fei; Zhang, Jiao; Xu, Qingsong; Chen, Daiwen; Yu, Bing; Mao, Xiangbing; Yu, Jie; Luo, Yuheng; He, Jun

    2017-01-01

    Foetal loss and intrauterine growth restriction are major problems in mammals, but there are few effective ways in preventing it. Intriguingly, chitosan oligosaccharide (COS), a biomaterial derived from chitosan, can promote foetal survival and growth. Therefore, we have investigated how COS affects foetal survival and growth in a pig model. Fifty-two sows were divided into two treatment groups (n = 26) and fed either solely a control diet or a control diet that includes 100 mg/kg COS. Amniotic fluid and foetus samples from six sows that were of average body weight in each group were collected on gestation day 35. We applied a 1H NMR-based metabolomics approach combined with biochemistry analysis to track the changes that occurred in the amniotic fluid of pregnant sows after COS intervention. Maternal COS inclusion had enhanced (P < 0.05) the foetal survival rate and size at 35 days. COS supplementation had both increased (P < 0.05) SOD, CAT and T-AOC activities and elevated (P < 0.05) IL-10, IgG and IgM concentrations in the amniotic fluid. Moreover, COS had affected (P < 0.05) the amniotic fluid’s lysine, citrate, glucose and hypoxanthine levels. Overall, COS inclusion induced amniotic fluid antioxidant status and metabolic profiles modifications characterising improvements in foetal survival and growth in a pig model. PMID:28300194

  2. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  3. Cancer Metabolomics and the Human Metabolome Database

    PubMed Central

    Wishart, David S.; Mandal, Rupasri; Stanislaus, Avalyn; Ramirez-Gaona, Miguel

    2016-01-01

    The application of metabolomics towards cancer research has led to a renewed appreciation of metabolism in cancer development and progression. It has also led to the discovery of metabolite cancer biomarkers and the identification of a number of novel cancer causing metabolites. The rapid growth of metabolomics in cancer research is also leading to challenges. In particular, with so many cancer-associate metabolites being identified, it is often difficult to keep track of which compounds are associated with which cancers. It is also challenging to track down information on the specific pathways that particular metabolites, drugs or drug metabolites may be affecting. Even more frustrating are the difficulties associated with identifying metabolites from NMR or MS spectra. Fortunately, a number of metabolomics databases are emerging that are designed to address these challenges. One such database is the Human Metabolome Database (HMDB). The HMDB is currently the world’s largest and most comprehensive, organism-specific metabolomics database. It contains more than 40,000 metabolite entries, thousands of metabolite concentrations, >700 metabolic and disease-associated pathways, as well as information on dozens of cancer biomarkers. This review is intended to provide a brief summary of the HMDB and to offer some guidance on how it can be used in metabolomic studies of cancer. PMID:26950159

  4. Cancer Metabolomics and the Human Metabolome Database.

    PubMed

    Wishart, David S; Mandal, Rupasri; Stanislaus, Avalyn; Ramirez-Gaona, Miguel

    2016-03-02

    The application of metabolomics towards cancer research has led to a renewed appreciation of metabolism in cancer development and progression. It has also led to the discovery of metabolite cancer biomarkers and the identification of a number of novel cancer causing metabolites. The rapid growth of metabolomics in cancer research is also leading to challenges. In particular, with so many cancer-associate metabolites being identified, it is often difficult to keep track of which compounds are associated with which cancers. It is also challenging to track down information on the specific pathways that particular metabolites, drugs or drug metabolites may be affecting. Even more frustrating are the difficulties associated with identifying metabolites from NMR or MS spectra. Fortunately, a number of metabolomics databases are emerging that are designed to address these challenges. One such database is the Human Metabolome Database (HMDB). The HMDB is currently the world's largest and most comprehensive, organism-specific metabolomics database. It contains more than 40,000 metabolite entries, thousands of metabolite concentrations, >700 metabolic and disease-associated pathways, as well as information on dozens of cancer biomarkers. This review is intended to provide a brief summary of the HMDB and to offer some guidance on how it can be used in metabolomic studies of cancer.

  5. Serum Metabolomics of Burkitt Lymphoma Mouse Models

    PubMed Central

    Yang, Fengmin; Du, Jie; Zhang, Hong; Ruan, Guorui; Xiang, Junfeng; Wang, Lixia; Sun, Hongxia; Guan, Aijiao; Shen, Gang; Liu, Yan; Guo, Xiaomeng; Li, Qian; Tang, Yalin

    2017-01-01

    Burkitt lymphoma (BL) is a rare and highly aggressive type of non-Hodgkin lymphoma. The mortality rate of BL patients is very high due to the rapid growth rate and frequent systemic spread of the disease. A better understanding of the pathogenesis, more sensitive diagnostic tools and effective treatment methods for BL are essential. Metabolomics, an important aspect of systems biology, allows the comprehensive analysis of global, dynamic and endogenous biological metabolites based on their nuclear magnetic resonance (NMR) and mass spectrometry (MS). It has already been used to investigate the pathogenesis and discover new biomarkers for disease diagnosis and prognosis. In this study, we analyzed differences of serum metabolites in BL mice and normal mice by NMR-based metabolomics. We found that metabolites associated with energy metabolism, amino acid metabolism, fatty acid metabolism and choline phospholipid metabolism were altered in BL mice. The diagnostic potential of the metabolite differences was investigated in this study. Glutamate, glycerol and choline had a high diagnostic accuracy; in contrast, isoleucine, leucine, pyruvate, lysine, α-ketoglutarate, betaine, glycine, creatine, serine, lactate, tyrosine, phenylalanine, histidine and formate enabled the accurate differentiation of BL mice from normal mice. The discovery of abnormal metabolism and relevant differential metabolites may provide useful clues for developing novel, noninvasive approaches for the diagnosis and prognosis of BL based on these potential biomarkers. PMID:28129369

  6. NMR-based metabonomics reveals relationship between pre-slaughter exercise stress, the plasma metabolite profile at time of slaughter, and water-holding capacity in pigs.

    PubMed

    Bertram, H C; Oksbjerg, N; Young, J F

    2010-01-01

    Nuclear magnetic resonance (NMR)-based metabonomics was applied to investigate the effects of pre-slaughter exercise stress on the plasma metabolite profile at time of slaughter. The study included a total of 40 slaughter pigs, which were exposed to one of the following treatments: No pre-slaughter stress (control treatment), pre-slaughter exercise on a treadmill and subsequently 0, 1, or 3h rest prior to slaughter. NMR-based metabonomics revealed a clear difference in the plasma metabolite profile at time of slaughter between control pigs and pigs exercised without rest, which mainly could be ascribed to increased plasma lactate due to exercise. A resting period of 1 or 3h prior to slaughter reversed the stress-induced perturbations in the plasma metabolite profile. The plasma metabolite profile at time of slaughter was highly correlated with muscle temperature 1 min post-mortem, and a correlation to WHC was also demonstrated. Lactate was found to be the metabolite of importance for the association between the plasma metabolome and pH, temperature and WHC.

  7. Metabolomics: A Primer.

    PubMed

    Liu, Xiaojing; Locasale, Jason W

    2017-04-01

    Metabolomics generates a profile of small molecules that are derived from cellular metabolism and can directly reflect the outcome of complex networks of biochemical reactions, thus providing insights into multiple aspects of cellular physiology. Technological advances have enabled rapid and increasingly expansive data acquisition with samples as small as single cells; however, substantial challenges in the field remain. In this primer we provide an overview of metabolomics, especially mass spectrometry (MS)-based metabolomics, which uses liquid chromatography (LC) for separation, and discuss its utilities and limitations. We identify and discuss several areas at the frontier of metabolomics. Our goal is to give the reader a sense of what might be accomplished when conducting a metabolomics experiment, now and in the near future.

  8. Metabolomics in chemical ecology.

    PubMed

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  9. The Human Serum Metabolome

    PubMed Central

    Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.

    2011-01-01

    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215

  10. Metabolomics and malaria biology

    PubMed Central

    Lakshmanan, Viswanathan; Rhee, Kyu Y.; Daily, Johanna P.

    2010-01-01

    Metabolomics has ushered in a novel and multi-disciplinary realm in biological research. It has provided researchers with a platform to combine powerful biochemical, statistical, computational, and bioinformatics techniques to delve into the mysteries of biology and disease. The application of metabolomics to study malaria parasites represents a major advance in our approach towards gaining a more comprehensive perspective on parasite biology and disease etiology. This review attempts to highlight some of the important aspects of the field of metabolomics, and its ongoing and potential future applications to malaria research. PMID:20970461

  11. Metabolomic assessment of fermentative capability of soybean starter treated with high pressure.

    PubMed

    Ko, Bong-Kuk; Kim, Ki Myong; Hong, Young-Shick; Lee, Cherl-Ho

    2010-08-11

    Meju, a brick of dried fermented soybean naturally inoculated with microorganisms, is a starter used for producing traditional Korean fermented soybean products such as soybean paste (doenjang) and soy sauce (ganjang). In order to reduce aging time during production of soybean paste and soy sauce, high pressure (HP) treatment was applied to the meju starter at 500 MPa of pressure for 10 min at 15 degrees C. Fermentative behaviors of normal and HP-treated meju were assessed and compared through physicochemical and (1)H NMR-based metabolomic analysis. All mejues were incubated for 3 weeks at 30 degrees C. At 1 week of incubation, total bacterial population decreased mainly due to a reduction of water content by spontaneous evaporation during the incubation period. As the incubation time increased, glutamate, proline, betain, choline, and phosphocholine levels increased in both normal and HP-treated mejues, indicating that microorganisms in the mejues synthesize these metabolites to endure intracellular hyperosmotic stress induced by the reduction in water content. Through 3 weeks of incubation, the amino-type nitrogen contents and neutral protease activities in HP-treated meju were significantly higher (p < 0.05) than in normal meju, even though total bacterial content in HP-treated meju was 2 or 3 times lower. Moreover, marked increases in glycerol, acetate, tyrosine, and choline levels were observed in HP-treated meju compared to normal meju. In particular, higher levels of tyrosine in HP-treated meju were consistent with the increased neutral protease activities compared to normal meju, indicating an improvement in enzyme stability with HP treatment. These findings highlight a new or better understanding of the influence of the HP or physical treatments on fermentative products in food processing, such as those associated with soybean paste and soy sauce, regarding metabolic behaviors in fermentative starter induced by HP treatment.

  12. NMR-Based Metabolomic Study on Isatis tinctoria: Comparison of Different Accessions, Harvesting Dates, and the Effect of Repeated Harvesting.

    PubMed

    Guldbrandsen, Niels; Kostidis, Sarantos; Schäfer, Hartmut; De Mieri, Maria; Spraul, Manfred; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Hamburger, Matthias

    2015-05-22

    Isatis tinctoria is an ancient dye and medicinal plant with potent anti-inflammatory and antiallergic properties. Metabolic differences were investigated by NMR spectroscopy of accessions from different origins that were grown under identical conditions on experimental plots. For these accessions, metabolite profiles at different harvesting dates were analyzed, and single and repeatedly harvested plants were compared. Leaf samples were shock-frozen in liquid N2 immediately after being harvested, freeze-dried, and cryomilled prior to extraction. Extracts were prepared by pressurized liquid extraction with ethyl acetate and 70% aqueous methanol. NMR spectra were analyzed using a combination of different methods of multivariate data analysis such as principal component analysis (PCA), canonical analysis (CA), and k-nearest neighbor concept (k-NN). Accessions and harvesting dates were well separated in the PCA/CA/k-NN analysis in both extracts. Pairwise statistical total correlation spectroscopy (STOCSY) revealed unsaturated fatty acids, porphyrins, carbohydrates, indole derivatives, isoprenoids, phenylpropanoids, and minor aromatic compounds as the cause of these differences. In addition, the metabolite profile was affected by the repeated harvest regime, causing a decrease of 1,5-anhydroglucitol, sucrose, unsaturated fatty acids, porphyrins, isoprenoids, and a flavonoid.

  13. Metabolomics and protozoan parasites.

    PubMed

    Paget, Timothy; Haroune, Nicolas; Bagchi, Sushmita; Jarroll, Edward

    2013-06-01

    In this review, we examine the state-of-the-art technologies (gas and liquid chromatography, mass spectroscopy and nuclear magnetic resonance, etc.) in the well-established area of metabolomics especially as they relate to protozoan parasites.

  14. The human serum metabolome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically i...

  15. Quality assurance of metabolomics.

    PubMed

    Bouhifd, Mounir; Beger, Richard; Flynn, Thomas; Guo, Lining; Harris, Georgina; Hogberg, Helena; Kaddurah-Daouk, Rima; Kamp, Hennicke; Kleensang, Andre; Maertens, Alexandra; Odwin-DaCosta, Shelly; Pamies, David; Robertson, Donald; Smirnova, Lena; Sun, Jinchun; Zhao, Liang; Hartung, Thomas

    2015-01-01

    Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

  16. COnsortium of METabolomics Studies (COMETS)

    Cancer.gov

    The COnsortium of METabolomics Studies (COMETS) is an extramural-intramural partnership that promotes collaboration among prospective cohort studies that follow participants for a range of outcomes and perform metabolomic profiling of individuals.

  17. Metabolomics of temperature stress.

    PubMed

    Guy, Charles; Kaplan, Fatma; Kopka, Joachim; Selbig, Joachim; Hincha, Dirk K

    2008-02-01

    Plants possess inducible tolerance mechanisms that extend the temperature range for survival during acute temperature stress. The inducible mechanisms of cold acclimation and acquired thermotolerance involve highly complex processes. These include perception and signal transduction of non-optimal temperatures or their physical consequences on cellular components that program extensive modification of the transcriptome, proteome, metabolome and composition and physical structure of the cytoplasm, membranes and cell walls. Therefore, a systems biology approach will be necessary to advance the understanding of plant stress responses and tolerance mechanisms. One promise of systems biology is that it will greatly enhance our understanding of individual and collective functions and thereby provide a more holistic view of plant stress responses. Past studies have found that several metabolites that could functionally contribute to induced stress tolerance have been associated with stress responses. Recent metabolite-profiling studies have refocused attention on these and other potentially important components found in the 'temperature-stress metabolome'. These metabolomic studies have demonstrated that active reconfiguration of the metabolome is regulated in part by changes in gene expression initiated by temperature-stress-activated signaling and stress-related transcription factors. One aspect of metabolism that is consistent across all of the temperature-stress metabolomic studies to date is the prominent role of central carbohydrate metabolism, which seems to be a major feature of the reprogramming of the metabolome during temperature stress. Future metabolomic studies of plant temperature-stress responses should reveal additional metabolic pathways that have important functions in temperature-stress tolerance mechanisms.

  18. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    SciTech Connect

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-11-01

    A metabonomic approach using {sup 1}H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. {sup 1}H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary {sup 1}H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  19. NMR based investigations of the effects of aging on the motional properties of cellular silicone foams

    SciTech Connect

    Maxwell, R S; Balazs, B

    2000-10-04

    The aging of polymeric composite materials, such as filled polydimethylsiloxane foams, through factors such as thermal and mechanical stresses, environment, radiation, and chemical attack can affect the length of time for which a given material can maintain its engineering performance. Iterative interactions and cumulative reactions may result in the material or device reaching a critical age where its properties fail unexpectedly and catastrophically. The mechanical property changes associated with multi-mechanism aging may be subtle, and may not necessarily change linearly as a function of time in service. Since such linear relationships are often used in lifetime predictions, there is a fundamental need to develop and employ spectroscopic methods to investigate the structural and motional changes that occur in these organic-inorganic materials as a result of aging in chemically, thermally, or radioactively harsh environments. We have used multinuclear nuclear magnetic resonance (NMR) spectroscopy to characterize aging signatures in a series of PDMS based composite materials. Unfortunately, {sup 13}C, {sup 29}Si, and {sup 1}H magic angle spinning NMR spectra remain unchanged with gamma radiation exposure up to 50Mrad. This suggests that the speciation related changes are small and occur at a frequency of less than approximately 1% of the monomer units. As a result, we have shifted focus and have employed relaxation studies to monitor changes in motional properties of the copolymer foams caused by irradiation. We have measured spin-lattice, spin-spin, and rotating frame spin-lattice relaxation times for PDMS model rubbers with variable cross link density and filler content, for M9760 foams irradiated from 0 to 50Mrad, and for dehydrated M9760 foams. Spin-lattice relaxation times, in general, are sensitive to fast molecular motions in the MHz frequency range. Spin-spin and rotating frame relaxation times, on the other hand, are sensitive to changes in slower motion

  20. Single-Cell Metabolomics.

    PubMed

    Emara, Samy; Amer, Sara; Ali, Ahmed; Abouleila, Yasmine; Oga, April; Masujima, Tsutomu

    2017-01-01

    The dynamics of a cell is always changing. Cells move, divide, communicate, adapt, and are always reacting to their surroundings non-synchronously. Currently, single-cell metabolomics has become the leading field in understanding the phenotypical variations between them, but sample volumes, low analyte concentrations, and validating gentle sample techniques have proven great barriers toward achieving accurate and complete metabolomics profiling. Certainly, advanced technologies such as nanodevices and microfluidic arrays are making great progress, and analytical techniques, such as matrix-assisted laser desorption ionization (MALDI), are gaining popularity with high-throughput methodology. Nevertheless, live single-cell mass spectrometry (LCSMS) values the sample quality and precision, turning once theoretical speculation into present-day applications in a variety of fields, including those of medicine, pharmaceutical, and agricultural industries. While there is still room for much improvement, it is clear that the metabolomics field is progressing toward analysis and discoveries at the single-cell level.

  1. Metabolomics in childhood diabetes

    PubMed Central

    Frohnert, Brigitte I; Rewers, Marian J

    2015-01-01

    Recent increases in the incidence of both type 1 (T1D) and type 2 diabetes (T2D) in children and adolescents point to the importance of environmental factors in the development of these diseases. Metabolomic analysis explores the integrated response of the organism to environmental changes. Metabolic profiling can identify biomarkers that are predictive of disease incidence and development, potentially providing insight into disease pathogenesis. This review provides an overview of the role of metabolomic analysis in diabetes research and summarizes recent research relating to the development of T1D and T2D in children. PMID:26420304

  2. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures.

    PubMed

    Motta, Andrea; Paris, Debora; D'Amato, Maria; Melck, Dominique; Calabrese, Cecilia; Vitale, Carolina; Stanziola, Anna A; Corso, Gaetano; Sofia, Matteo; Maniscalco, Mauro

    2014-12-05

    Exhaled breath condensate (EBC) collection is a noninvasive method to investigate lung diseases. EBC is usually collected with commercial/custom-made condensers, but the optimal condensing temperature is often unknown. As such, the physical and chemical properties of exhaled metabolites should be considered when setting the temperature, therefore requiring validation and standardization of the collecting procedure. EBC is frequently used in nuclear magnetic resonance (NMR)-based metabolomics, which unambiguously recognizes different pulmonary pathological states. Here we applied NMR-based metabolomics to asthmatic and healthy EBC samples collected with two commercial condensers operating at -27.3 and -4.8 °C. Thirty-five mild asthmatic patients and 35 healthy subjects were included in the study, while blind validation was obtained from 20 asthmatic and 20 healthy different subjects not included in the primary analysis. We initially analyzed the samples separately and assessed the within-day, between-day, and technical repeatabilities. Next, samples were interchanged, and, finally, all samples were analyzed together, disregarding the condensing temperature. Partial least-squares discriminant analysis of NMR spectra correctly classified samples, without any influence from the temperature. Input variables were either integral bucket areas (spectral bucketing) or metabolite concentrations (targeted profiling). We always obtained strong regression models (95%), with high average-quality parameters for spectral profiling (R(2) = 0.84 and Q(2) = 0.78) and targeted profiling (R(2) = 0.91 and Q(2) = 0.87). In particular, although targeted profiling clustering is better than spectral profiling, all models reproduced the relative metabolite variations responsible for class differentiation. This warrants that cross comparisons are reliable and that NMR-based metabolomics could attenuate some specific problems linked to standardization of EBC collection.

  3. Identification of bacterial species by untargeted NMR spectroscopy of the exo-metabolome.

    PubMed

    Palama, T L; Canard, I; Rautureau, G J P; Mirande, C; Chatellier, S; Elena-Herrmann, B

    2016-08-07

    Identification of bacterial species is a crucial bottleneck for clinical diagnosis of infectious diseases. Quick and reliable identification is a key factor to provide suitable antibiotherapies and avoid the development of multiple-drug resistance. We propose a novel nuclear magnetic resonance (NMR)-based metabolomics strategy for rapid discrimination and identification of several bacterial species that relies on untargeted metabolic profiling of supernatants from bacterial culture media. We show that six bacterial species (Gram negative: Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis; Gram positive: Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus saprophyticus) can be well discriminated from multivariate statistical analysis, opening new prospects for NMR applications to microbial clinical diagnosis.

  4. 1H NMR-based lipidomics of rodent fur: species-specific lipid profiles and SCD1 inhibitor-related dermal toxicity.

    PubMed

    Khandelwal, Purnima; Stryker, Steven; Chao, Hannguang; Aranibar, Nelly; Lawrence, R Michael; Madireddi, Malavi; Zhao, Wenjun; Chen, Luping; Reily, Michael D

    2014-07-01

    A method is described that allows noninvasive identification and quantitative assessment of lipid classes present in sebaceous excretions in rodents. The method relies on direct high-field proton NMR analysis of common group lipid protons in deuterated organic solvent extracts of fur. Extracts from as little as 15 mg of fur from rat, mouse, and hamster provided acceptable results on a 600 MHz NMR equipped with a cryogenically cooled proton-observe probe. In rats, sex- and age-related differences in lipid composition are larger than differences in fur collected from various body regions within an individual and much larger than interanimal differences in age- and sex-matched specimens. The utility of this method to noninvasively monitor drug-induced sebaceous gland atrophy in rodents is demonstrated in rats dosed with a stearoyl-CoA desaturase 1 (SCD1) inhibitor. In this model, a 35% reduction in sebum lipids, extracted from fur, was observed. Finally, structural elucidation of cholesta-7,24-dien-3β-ol ester as the most prominent, previously unidentified sebum sterol ester in male Syrian hamsters is described. The utility of this method for drug and cosmetic safety and efficacy assessment is discussed.

  5. 1H NMR-based metabonomic analysis of the serum and urine of rats following subchronic exposure to dichlorvos, deltamethrin, or a combination of these two pesticides.

    PubMed

    Wang, Hui-Ping; Liang, Yu-Jie; Sun, Ying-Jian; Chen, Jia-Xiang; Hou, Wei-Yuan; Long, Ding-Xin; Wu, Yi-Jun

    2013-05-25

    Metabonomic analysis, clinical chemical analysis and histopathology were used to investigate the toxic effects of subchronic exposure to dichlorvos, deltamethrin, and a combination of these two pesticides, in rats. Weight loss, hind limb weakness and histopathological changes in kidney tissue were only observed in rats exposed to high doses of deltamethrin, or a combination of deltamethrin and dichlorvos. Urinary metabonomic analysis indicated that exposure to a mixture of dichlorvos and deltamethrin was followed by increases in urinary lactate, dimethylamine, N-glycoprotein (NAC) and glycine similar to those observed in rats treated with either dichlorvos or deltamethrin alone. Serum metabonomic analysis suggests that dichlorvos induced an increase in lactate and alanine and a decrease in dimethylglycine (DMG), NAC and very low- and low-density lipoprotein (VLDL/LDL). High levels of lactate and low levels of NAC and VLDL/LDL were observed in the deltamethrin treatment group. Treating rats with a mixture of dichlorvos and deltamethrin caused an increase in serum lactate, trimethylamine-N-oxide (TMAO), choline and alanine, with the highest levels of these metabolites observed in those that received the highest dose. Exposure to a mixture of dichlorvos and deltamethrin also resulted in a decrease in serum acetone, DMG, NAC, and VLDL/LDL. Changes in serum TMAO, alanine, choline and acetone in this treatment group were higher than in rats treated with either dichlorvos or deltamethrin. These results suggest that exposing rats to subchronic doses of dichlorvos, deltamethrin, or a combination of these pesticides, disrupted the energy metabolism of the liver and reduced kidney function.

  6. Metabolic changes in the midgut of Eri silkworm after Oral administration of 1-deoxynojirimycin: A 1H-NMR-based metabonomic study

    PubMed Central

    Wen, Chao-Wei; Dong, Min-Jian; Lin, Qiu-Ting; Zhang, Shang-Zhi

    2017-01-01

    1-deoxynojirimycin (DNJ) is a natural D-glucose analogue and has a strong physiological activity in inhibiting α-glucosidase in vivo. The antidiabetic effects of DNJ in mice or other mammals were extensively explored, but the physiological and toxic roles of DNJ in insects was seldom reported. In this study, the biological effects of DNJ were examined in midgut extracts of fourth-instar larvae of Eri silkworm (Samia cynthia ricini, Saturniidae). Based on nuclear magnetic resonance (NMR) metabonomics technology, we analyzed the alterations of glycometabolism, lipids, and energy metabolism pathways in the midgut of S. cynthia ricini caused by DNJ. Pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) showed that four groups of latex, 0.25% DNJ, 0.5% DNJ and the mixture of 0.5% DNJ and latex (1:1) were distinctly different from the control group. Moreover, several metabolic pathways of DNJ-mediated modulation in the midgut were identified. Compared with the control group, alanine, succinate, glutamate, and fumarate concentrations decreased in three groups of 0.5% DNJ, latex, and the mixture, choline levels increased in two DNJ groups, and trehalose levels increased in all experimental groups. Therefore, these results suggest that DNJ modulated lipid metabolism by limiting the hydrolysis pathways of phospholipids metabolism. Additionally, DNJ has a potent negative effect on energy metabolism by inhibiting the hydrolysis of trehalose, glycolysis and the tricarboxylic acid (TCA) cycle. Overall, DNJ, as a single-ingredient, is an efficient substance for modulating lipid metabolism and inhibiting energy metabolism. PMID:28249023

  7. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  8. Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels.

    PubMed

    Hines, Adam; Yeung, Wai Ho; Craft, John; Brown, Margaret; Kennedy, Jill; Bignell, John; Stentiford, Grant D; Viant, Mark R

    2007-10-15

    Omics technologies are increasingly being used to monitor organismal responses to environmental stressors. Previous studies have shown that species identification, an appreciation of life history traits, and organism phenotype (e.g., gender) are essential for the accurate interpretation of omics data from field samples. As marine mussels are increasingly being used in ecotoxicogenomics and monitoring, a technique to determine mussel gender throughout their annual reproductive cycle is urgently needed. This study examines four methods for sex determination in the two mussel species found in the United Kingdom, Mytilus edulis and Mytilus galloprovincialis, and their hybrid. Each of these methods-histology, a lipid-based assay, a new reverse transcriptase polymerase chain reaction (RT-PCR) assay, and nuclear magnetic resonance (NMR)-based metabolomics-initially was evaluated using sexually mature ("ripe") mussels whose gender was clearly distinguishable using histology. The methods subsequently were tested on spawned ("spent") mussels. For ripe animals, all techniques yielded high classification accuracies: histology, 100%; RT-PCR, 94.6%; lipid analysis, 90.6%; and metabolomics, 89.5%. The gender of spent animals, however, could not be determined by histology (0%) or lipid analysis (55.6%), but RT-PCR (100%) and metabolomics (88.9%) both proved to be successful. In addition, the RT-PCR, metabolomics, and lipid-based methods identified animals of mixed sex. Our findings highlight the application of a novel RT-PCR method as a robust technique for gender determination of ripe and spent mussels.

  9. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Kim, Hak-Nam; Kim, Eun-Hee; Jung, Sungheuk; Lee, Hyosang; Lee, Sang-Jun; Hong, Young-Shick

    2015-05-01

    Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.e., metabolomics, which is highly reproducible and statistically effective in analysing a diverse range of compounds, was used to better understand the metabolome of Camellia sinensis and determine the influence of environmental factors, including geography, climate, and cultural practices, on tea-making. We found a strong correlation between environmental factors and the metabolome of green, white, and oolong teas from China, Japan, and South Korea. In particular, multivariate statistical analysis revealed strong inter-country and inter-city relationships in the levels of theanine and catechin derivatives found in green and white teas. This information might be useful for assessing tea quality or producing distinct tea products across different locations, and highlights simultaneous identification of diverse tea metabolites through an NMR-based metabolomics approach.

  10. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis

    PubMed Central

    Gray, Elizabeth; Larkin, James R.; Claridge, Tim D. W.; Talbot, Kevin; Sibson, Nicola R.; Turner, Martin R.

    2015-01-01

    Neurochemical biomarkers are urgently sought in ALS. Metabolomic analysis of cerebrospinal fluid (CSF) using proton nuclear magnetic resonance (1H-NMR) spectroscopy is a highly sensitive method capable of revealing nervous system cellular pathology. The 1H-NMR CSF metabolomic signature of ALS was sought in a longitudinal cohort. Six-monthly serial collection was performed in ALS patients across a range of clinical sub-types (n = 41) for up to two years, and in healthy controls at a single time-point (n = 14). A multivariate statistical approach, partial least squares discriminant analysis, was used to determine differences between the NMR spectra from patients and controls. Significantly predictive models were found using those patients with at least one year's interval between recruitment and the second sample. Glucose, lactate, citric acid and, unexpectedly, ethanol were the discriminating metabolites elevated in ALS. It is concluded that 1H-NMR captured the CSF metabolomic signature associated with derangements in cellular energy utilization connected with ALS, and was most prominent in comparisons using patients with longer disease duration. The specific metabolites identified support the concept of a hypercatabolic state, possibly involving mitochondrial dysfunction specifically. Endogenous ethanol in the CSF may be an unrecognized novel marker of neuronal tissue injury in ALS. PMID:26121274

  11. Metabolomics in agriculture.

    PubMed

    Nadella, K D; Marla, Soma S; Kumar, P Ananda

    2012-04-01

    Metabolome refers to the complete set of metabolites synthesized through a series of multiple enzymatic steps from various biochemical pathways processing the information encrypted in the plant genome. Knowledge about synthesis and regulation of various plant metabolic substances has improved substantially with availability of Omics data originating from sequencing of plant genomes. Metabolic profiling of crops is increasingly becoming popular in assessing plant phenotypes and genetic diversity. Metabolic compositional changes vividly reflect the changes occurring during plant growth, development, and in response to stress. Hence, study of plant metabolic pathways, the interconnections between them in context of systems biology is increasingly becoming popular in identification of candidate genes. The present article reviews recent developments in analysis of plant metabolomics, available bioinformatics techniques and databases employed for comparative pathway analysis, metabolic QTLs, and their application in plants.

  12. Metabolomics and human nutrition.

    PubMed

    Primrose, Sandy; Draper, John; Elsom, Rachel; Kirkpatrick, Verity; Mathers, John C; Seal, Chris; Beckmann, Manfred; Haldar, Sumanto; Beattie, John H; Lodge, John K; Jenab, Mazda; Keun, Hector; Scalbert, Augustin

    2011-04-01

    The present report summarises a workshop convened by the UK Food Standards Agency (Agency) on 25 March 2010 to discuss the current Agency's funded research on the use of metabolomics technologies in human nutrition research. The objectives of this workshop were to review progress to date, to identify technical challenges and ways of overcoming them, and to discuss future research priorities and the application of metabolomics in public health nutrition research and surveys. Results from studies nearing completion showed that by using carefully designed dietary and sampling regimens, it is possible to identify novel biomarkers of food intake that could not have been predicted from current knowledge of food composition. These findings provide proof-of-principle that the metabolomics approach can be used to develop new putative biomarkers of dietary intake. The next steps will be to validate these putative biomarkers, to develop rapid and inexpensive assays for biomarkers of food intake of high public health relevance, and to test their utility in population cohort studies and dietary surveys.

  13. Metabolomic Fingerprint of Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Zordoky, Beshay N.; Sung, Miranda M.; Ezekowitz, Justin; Mandal, Rupasri; Han, Beomsoo; Bjorndahl, Trent C.; Bouatra, Souhaila; Anderson, Todd; Oudit, Gavin Y.; Wishart, David S.; Dyck, Jason R. B.

    2015-01-01

    Background Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint of HFpEF that will help understand its pathophysiology and assist in establishing new biomarkers for its diagnosis. Methods and Results Ambulatory patients with clinical diagnosis of HFpEF (n = 24), HFrEF (n = 20), and age-matched non-HF controls (n = 38) were selected for metabolomic analysis as part of the Alberta HEART (Heart Failure Etiology and Analysis Research Team) project. 181 serum metabolites were quantified by LC-MS/MS and 1H-NMR spectroscopy. Compared to non-HF control, HFpEF patients demonstrated higher serum concentrations of acylcarnitines, carnitine, creatinine, betaine, and amino acids; and lower levels of phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins. Medium and long-chain acylcarnitines and ketone bodies were higher in HFpEF than HFrEF patients. Using logistic regression, two panels of metabolites were identified that can separate HFpEF patients from both non-HF controls and HFrEF patients with area under the receiver operating characteristic (ROC) curves of 0.942 and 0.981, respectively. Conclusions The metabolomics approach employed in this study identified a unique metabolomic fingerprint of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been utilized to identify two novel panels of metabolites that can separate HFpEF patients from both non-HF controls and HFrEF patients. Clinical Trial Registration ClinicalTrials.gov NCT02052804 PMID:26010610

  14. Plant metabolomics: from holistic data to relevant biomarkers.

    PubMed

    Wolfender, Jean-Luc; Rudaz, Serge; Choi, Young Hae; Kim, Hye Kyong

    2013-01-01

    Metabolomics is playing an increasingly important role in plant science. It aims at the comprehensive analysis of the plant metabolome which consists both of primary and secondary metabolites. The goal of metabolomics is ultimately to identify and quantify this wide array of small molecules in biological samples. This new science is included in several systems biology approaches and is based primarily on the unbiased acquisition of mass spectrometric (MS) or nuclear magnetic resonance (NMR) data from carefully selected samples. This approach provides the most ''functional'' information of the 'omics' technologies of a given organism since metabolites are the end products of the cellular regulatory processes. The application of state-of-the-art data mining, that includes various untargeted and targeted multivariate data analysis methods, to the vast amount of data generated by this data-driven approach leads to sample classification and the identification of relevant biomarkers. The biological areas that have been successfully studied by this holistic approach include global metabolite composition assessment, mutant and phenotype characterisation, taxonomy, developmental processes, stress response, interaction with the environment, quality control assessment, lead finding and mode of action of botanicals. This review summarises the main MS- and NMR-based approaches that are used to perform these studies and discusses the potential and current limitations of the various methods. The intent is not to provide an exhaustive overview of the field, which has grown considerably over the past decade, but to summarise the main strategies that are used and to discuss the potential and limitations of the different approaches as well as future trends.

  15. The Human Urine Metabolome

    PubMed Central

    Bouatra, Souhaila; Aziat, Farid; Mandal, Rupasri; Guo, An Chi; Wilson, Michael R.; Knox, Craig; Bjorndahl, Trent C.; Krishnamurthy, Ramanarayan; Saleem, Fozia; Liu, Philip; Dame, Zerihun T.; Poelzer, Jenna; Huynh, Jessica; Yallou, Faizath S.; Psychogios, Nick; Dong, Edison; Bogumil, Ralf; Roehring, Cornelia; Wishart, David S.

    2013-01-01

    Urine has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing

  16. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  17. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  18. Metabolomics protocols for filamentous fungi.

    PubMed

    Gummer, Joel P A; Krill, Christian; Du Fall, Lauren; Waters, Ormonde D C; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S

    2012-01-01

    Proteomics and transcriptomics are established functional genomics tools commonly used to study filamentous fungi. Metabolomics has recently emerged as another option to complement existing techniques and provide detailed information on metabolic regulation and secondary metabolism. Here, we describe broad generic protocols that can be used to undertake metabolomics studies in filamentous fungi.

  19. Plasma metabolomic analysis of human hepatocellular carcinoma: Diagnostic and therapeutic study

    PubMed Central

    Li, Jinquan; Feng, Jianghua; Chen, Zhong; Wang, Xiaomin

    2016-01-01

    Many hepatocellular carcinoma (HCC) patients suffer from late stages when diagnosed, leading to dismal prospects for cure. Improving the diagnosis and treatment of HCC remains a challenge. In this work, NMR-based metabolomic techniques were used to investigate the metabolic alterations of HCC patients from different pathological backgrounds. Metabolic improvement of clinical surgical treatments or transcatheter arterial chemoembolization (TACE) for recurrent or metastatic HCC was also evaluated. HCC was characterized by enhanced lipid metabolism and high consumption in response to liver injury. Expectedly, higher consumption of glucose and lactate production in TACE group confirmed that recurrent or metastatic HCC is more active in citric acid cycle and oxidative phosphorylation. However, TACE or surgical treatments did not immediately improve the metabolic profiles of HCC patients. Combining multivariate statistical analyses with univariate t-test, a series of characteristic metabolites were identified and served as biomarkers for discrimination of HCC patients in different pathological backgrounds. The relative metabolic pathway analyses help to get insight into the underlying biochemical mechanism and extend clinical relevance. Furthermore, algorithm of support vector classification was used to identify HCC and control subjects, and diagnostic sensitivity and specificity reached to 100% and 81.08% respectively by receiver operating characteristic analysis. It is concluded that NMR-based metabolomic analysis of plasma can provide a powerful approach to discover diagnostic and therapeutic biomarkers, and subsequently contribute to clinical disease management. PMID:27322079

  20. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  1. Metabolomics for salinity research.

    PubMed

    Roessner, Ute; Beckles, Diane M

    2012-01-01

    Soil salinity devastates agriculture. It reduces crop yields and makes arable land unsuitable for later use. Many species have evolved highly efficient strategies to sense, transduce, and build up tolerance to high salinity and even sensitive species have endogenous mechanism for coping with this stress. These underlying physiological and metabolic mechanisms can be unraveled using metabolomics. Here we describe detailed protocols of how to extract polar metabolites for analysis using GC-MS and LC-MS. We also touch briefly on considerations that should be taken into account when designing the experiment and how the resulting data may be analyzed and visualized in a biological context.

  2. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  3. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  4. ¹³C NMR metabolomics: applications at natural abundance.

    PubMed

    Clendinen, Chaevien S; Lee-McMullen, Brittany; Williams, Caroline M; Stupp, Gregory S; Vandenborne, Krista; Hahn, Daniel A; Walter, Glenn A; Edison, Arthur S

    2014-09-16

    (13)C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality (13)C NMR spectra obtained using a custom (13)C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D (13)C and (1)H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful (13)C-(13)C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of (13)C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The (13)C and (1)H data together led to 15 matches in the database compared to just 7 using (1)H alone, and the (13)C correlated peak lists had far fewer false positives than the (1)H generated lists. In addition, the (13)C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum.

  5. 13C NMR Metabolomics: Applications at Natural Abundance

    PubMed Central

    2015-01-01

    13C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality 13C NMR spectra obtained using a custom 13C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D 13C and 1H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful 13C–13C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of 13C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The 13C and 1H data together led to 15 matches in the database compared to just 7 using 1H alone, and the 13C correlated peak lists had far fewer false positives than the 1H generated lists. In addition, the 13C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum. PMID:25140385

  6. Metabolomics in diabetic complications.

    PubMed

    Filla, Laura A; Edwards, James L

    2016-04-01

    With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy. Current clinical analyses like glycated hemoglobin and plasma glucose measurements hold some value as prognostic indicators of the severity of complications, but investigations into the underlying pathophysiology are still lacking. Advancements in biotechnology hold the key to uncovering new pathways and establishing therapeutic targets. Metabolomics, the study of small endogenous molecules, is a powerful toolset for studying pathophysiological processes and has been used to elucidate metabolic signatures of diabetes in various biological systems. Current challenges in the field involve correlating these biomarkers to specific complications to provide a better prediction of future risk and disease progression. This review will highlight the progress that has been made in the field of metabolomics including technological advancements, the identification of potential biomarkers, and metabolic pathways relevant to macro- and microvascular diabetic complications.

  7. Computer-Aided Design of Fragment Mixtures for NMR-Based Screening

    PubMed Central

    Arroyo, Xavier; Goldflam, Michael; Feliz, Miguel; Belda, Ignasi; Giralt, Ernest

    2013-01-01

    Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low rate of false positives and negatives. However, NMR is intrinsically slower than other screening techniques; thus, to increase throughput in NMR-based screening, researchers often assay mixtures of fragments, rather than single fragments. Herein we present a fast and straightforward computer-aided method to design mixtures of fragments taken from a library that have minimized NMR signal overlap. This approach enables direct identification of one or several active fragments without the need for deconvolution. Our approach entails encoding of NMR spectra into a computer-readable format that we call a fingerprint, and minimizing the global signal overlap through a Monte Carlo algorithm. The scoring function used favors a homogenous distribution of the global signal overlap. The method does not require additional experimental work: the only data required are NMR spectra, which are generally recorded for each compound as a quality control measure before its insertion into the library. PMID:23516512

  8. The application of micro-coil NMR probe technology to metabolomics of urine and serum.

    PubMed

    Grimes, John H; O'Connell, Thomas M

    2011-04-01

    Increasing the sensitivity and throughput of NMR-based metabolomics is critical for the continued growth of this field. In this paper the application of micro-coil NMR probe technology was evaluated for this purpose. The most commonly used biofluids in metabolomics are urine and serum. In this study we examine different sample limited conditions and compare the detection sensitivity of the micro-coil with a standard 5 mm NMR probe. Sample concentration is evaluated as a means to leverage the greatly improved mass sensitivity of the micro-coil probes. With very small sample volumes, the sensitivity of the micro-coil probe does indeed provide a significant advantage over the standard probe. Concentrating the samples does improve the signal detection, but the benefits do not follow the expected linear increase and are both matrix and metabolite specific. Absolute quantitation will be affected by concentration, but an analysis of relative concentrations is still possible. The choice of the micro-coil probe over a standard tube based probe will depend upon a number of factors including number of samples and initial volume but this study demonstrates the feasibility of high-throughput metabolomics with the micro-probe platform.

  9. [A novel metabolomic data scaling method based on K-L divergence].

    PubMed

    Deng, Ling-Li; Cheng, Kian-Kai; Shen, Gui-Ping; Zhou, Ling; Liu, Xin-Zhuo; Dong, Ji-Yang; Chen, Zhong

    2014-10-01

    A new scaling method in the current study based on Kullback-Leibler (K-L) divergence is proposed for NMR metabolomic data. The proposed method (called K-L scaling) is a supervised scaling method as group information is incorporated in the scaling procedure. Notably, K-L divergence measures the difference between two different datasets by their probability distributions, it can be used for the analysis of data that either follows Gaussian or non-Gaussian distributions. In K-L scaling, all variables were first standardized to unit variance, then their variance was adjusted using Kullback-Leibler divergence to highlight the significant variables. K-L scaling can tell effectively the difference in spectral data points between two experimental groups, and then enhances the weights of biological-relevant variables, and at the same time reduces the weight of noise and uninformative variables. The developed method was applied to a H-NMR metabolomic dataset acquired from human urine. Analysis results of the dataset showed that this new scaling method is efficient in suppressing the contribution of noise in the resulting multivariate model In addition, it can increase the weights of important variables, and improve the interpretability and predictability of subsequent principal component regression (PCR) and partial least squares discriminant analysis (PLS-DA). Furthermore, the scaling method facilitated the identification of metabolic signatures. The current result suggested that the developed K-L scaling method may become a useful alternative for the preprocessing of NMR-based metabolomic data.

  10. Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by (1)H NMR.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Tarantilis, Petros A; Polissiou, Moschos G; Consonni, Roberto

    2017-02-15

    Saffron, the dried red stigmas of Crocus sativus L., is considered as one of the most expensive spices worldwide, and as such, it is prone to adulteration. This study introduces an NMR-based approach to identify and determine the adulteration of saffron with Sudan I-IV dyes. A complete (1)H and (13)C resonance assignment for Sudan I-IV, achieved by two-dimensional homonuclear and heteronuclear NMR experiments, is reported for the first time. Specific different proton signals for the identification of each Sudan dye in adulterated saffron can be utilised for quantitative (1)H NMR (qHNMR), a well-established method for quantitative analysis. The quantification of Sudan III, as a paradigm, was performed in varying levels (0.14-7.1g/kg) by considering the NMR signal occurring at 8.064ppm. The high linearity, accuracy and rapidity of investigation enable high resolution (1)H NMR spectroscopy to be used for evaluation of saffron adulteration with Sudan dyes.

  11. (1)H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool.

    PubMed

    Zira, Athina N; Theocharis, Stamatios E; Mitropoulos, Dionisios; Migdalis, Vasilios; Mikros, Emmanuel

    2010-08-06

    (1)H NMR based metabonomic approach was applied in order to monitor the alterations of plasma metabolic profile in Renal Cell Carcinoma (RCC) patients and controls. (1)H NMR spectra of plasma samples from 32 RCC patients and 13 controls (patients exhibiting benign urologic disease) were recorded and analyzed using multivariate statistical techniques. Alterations in the levels of LDL/VLDL, NAC, lactate, and choline were observed between RCC patients and controls discriminating these groups in Principal Component Analysis (PCA) plots. Post OSC PLS-DA presented a satisfactory clustering between T1 with T3 RCC patients. Decrease in plasma lipid concentrations in RCC patients was verified using conventional clinical chemistry analysis. The results suggest that combination of (1)H NMR spectroscopy with PCA has potential in cancer diagnosis; however, a limitation of the method to monitor RCC is that major biomarkers revealed (lipoproteins and choline) in this metabolic profile are not unique to RCC but may be the result of the presence of any malignancy.

  12. Distinguishing Benign from Malignant Pancreatic and Periampullary Lesions Using Combined Use of 1H-NMR Spectroscopy and Gas Chromatography–Mass Spectrometry

    PubMed Central

    McConnell, Yarrow J.; Farshidfar, Farshad; Weljie, Aalim M.; Kopciuk, Karen A.; Dixon, Elijah; Ball, Chad G.; Sutherland, Francis R.; Vogel, Hans J.; Bathe, Oliver F.

    2017-01-01

    Previous work demonstrated that serum metabolomics can distinguish pancreatic cancer from benign disease. However, in the clinic, non-pancreatic periampullary cancers are difficult to distinguish from pancreatic cancer. Therefore, to test the clinical utility of this technology, we determined whether any pancreatic and periampullary adenocarcinoma could be distinguished from benign masses and biliary strictures. Sera from 157 patients with malignant and benign pancreatic and periampullary lesions were analyzed using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). Multivariate projection modeling using SIMCA-P+ software in training datasets (n = 80) was used to generate the best models to differentiate disease states. Models were validated in test datasets (n = 77). The final 1H-NMR spectroscopy and GC-MS metabolomic profiles consisted of 14 and 18 compounds, with AUROC values of 0.74 (SE 0.06) and 0.62 (SE 0.08), respectively. The combination of 1H-NMR spectroscopy and GC-MS metabolites did not substantially improve this performance (AUROC 0.66, SE 0.08). In patients with adenocarcinoma, glutamate levels were consistently higher, while glutamine and alanine levels were consistently lower. Pancreatic and periampullary adenocarcinomas can be distinguished from benign lesions. To further enhance the discriminatory power of metabolomics in this setting, it will be important to identify the metabolomic changes that characterize each of the subclasses of this heterogeneous group of cancers. PMID:28098776

  13. NMR-Based Multi Parametric Quality Control of Fruit Juices: SGF Profiling

    PubMed Central

    Spraul, Manfred; Schütz, Birk; Rinke, Peter; Koswig, Susanne; Humpfer, Eberhard; Schäfer, Hartmut; Mörtter, Monika; Fang, Fang; Marx, Ute C.; Minoja, Anna

    2009-01-01

    With SGF Profiling™ we introduce an NMR-based screening method for the quality control of fruit juices. This method has been developed in a joint effort by Bruker BioSpin GmbH and SGF International e.V. The system is fully automated with respect to sample transfer, measurement, data analysis and reporting and is set up on an Avance 400 MHz flow-injection NMR spectrometer. For each fruit juice a multitude of parameters related to quality and authenticity are evaluated simultaneously from a single data set acquired within a few minutes. This multimarker/multi-aspect NMR screening approach features low cost-per-sample and is highly competitive with conventional and targeted fruit juice quality control methods. PMID:22253974

  14. 1H-detected 1H- 1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroki; Kainosho, Masatsune; Akutsu, Hideo; Fujiwara, Toshimichi

    2010-04-01

    The combined use of selective deuteration, stereo-array isotope labeling (SAIL), and fast magic-angle spinning effectively suppresses the 1H-1H dipolar couplings in organic solids. This method provided the high-field 1H NMR linewidths comparable to those achieved by combined rotation and multiple-pulse spectroscopy. This technique was applied to two-dimensional 1H-detected 1H-1H polarization transfer CHH experiments of valine. The signal sensitivity for the 1H-detected CHH experiments was greater than that for the 13C-detected 1H-1H polarization transfer experiments by a factor of 2-4. We obtained the 1H-1H distances in SAIL valine by CHH experiments with an accuracy of about 0.2 Å by using a theory developed for 1H-1H polarization transfer in 13C-labeled organic compounds.

  15. Integrated sampling procedure for metabolome analysis.

    PubMed

    Schaub, Jochen; Schiesling, Carola; Reuss, Matthias; Dauner, Michael

    2006-01-01

    through consistent results from steady-state metabolite analysis of Escherichia coli cultivated in a chemostat at D = 0.1 h(-)(1).

  16. Recent advances and new strategies in the NMR-based identification of natural products.

    PubMed

    Halabalaki, Maria; Vougogiannopoulou, Konstantina; Mikros, Emmanuel; Skaltsounis, Alexios Leandros

    2014-02-01

    Nature comprises an untapped pool of unique compounds with high structural uniqueness and exceptional properties. At the core of natural products (NPs) discovery is the identification procedure and NMR remains the most efficient method. Technical improvements such as miniaturized and crycogenic NMR probes along with hyphenation capabilities and computational support are at the center of evolution. Concepts such as dereplication and metabolomics are increasingly adopted in NPs using the power of databases, currently fragmented. The introduction and utilization of these technical and computational implements could lead NPs research to more comprehensive structure identification and new holistic perspectives.

  17. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  18. Food metabolomics: from farm to human.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Yun, Eun Ju; Kim, Kyoung Heon

    2016-02-01

    Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans.

  19. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  20. Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout.

    PubMed

    Shao, Tiejuan; Shao, Li; Li, Haichang; Xie, Zhijun; He, Zhixing; Wen, Chengping

    2017-01-01

    This study employed microbiome and metabolome analysis to explore the fecal signatures of gout patients. Fecal samples from 52 male individuals (26 healthy controls and 26 gout patients) were analyzed by (1)H NMR spectroscopy and Illumina Miseq sequencing. The signatures of microbiome showed being up-regulation of opportunistic pathogens, such as Bacteroides, Porphyromonadaceae Rhodococcus, Erysipelatoclostridium and Anaerolineaceae. The signatures of metabolome were some altered metabolites which may involve uric acid excretion, purine metabolism, and inflammatory responses. Meanwhile, the correlation between discrepant metabolites and microbial taxa indicated that they could be the combined signatures of gout. This study suggests that the combined analysis of the fecal microbiome and metabolome may effectively characterize diseases.

  1. Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout

    PubMed Central

    Shao, Tiejuan; Shao, Li; Li, Haichang; Xie, Zhijun; He, Zhixing; Wen, Chengping

    2017-01-01

    This study employed microbiome and metabolome analysis to explore the fecal signatures of gout patients. Fecal samples from 52 male individuals (26 healthy controls and 26 gout patients) were analyzed by 1H NMR spectroscopy and Illumina Miseq sequencing. The signatures of microbiome showed being up-regulation of opportunistic pathogens, such as Bacteroides, Porphyromonadaceae Rhodococcus, Erysipelatoclostridium and Anaerolineaceae. The signatures of metabolome were some altered metabolites which may involve uric acid excretion, purine metabolism, and inflammatory responses. Meanwhile, the correlation between discrepant metabolites and microbial taxa indicated that they could be the combined signatures of gout. This study suggests that the combined analysis of the fecal microbiome and metabolome may effectively characterize diseases. PMID:28270806

  2. A metabolomic study on the biological effects of metal pollutions in oysters Crassostrea sikamea.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-01-15

    Metal pollution has become a great threat to organisms in the estuaries in South China. In the present study, the oysters Crassostrea sikamea were collected from one clean (Jiuzhen) and five metal polluted sites (Baijiao, Fugong, Gongqian, Jinshan and Songyu). The tissue metal concentrations in oysters indicated that the five metal sites were polluted by several metals, including Cr, Ni, Co, Cu, Zn, Ag, Cd and Pb with different patterns. Especially, Cu and Zn were the major contaminants in Baijiao, Fugong and Jinshan sites. The metabolic responses in oysters C. sikamea indicated that the metal pollutions in BJ, FG, JS and SY sites induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. However, the metal pollution in GQ site mainly influenced the osmotic regulation in the oysters C. sikamea. This study demonstrates that NMR-based metabolomics is useful to characterize metabolic responses induced by metal pollution.

  3. A NMR-based, non-targeted multistep metabolic profiling revealed L-rhamnitol as a metabolite that characterised apples from different geographic origins.

    PubMed

    Tomita, Satoru; Nemoto, Tadashi; Matsuo, Yosuke; Shoji, Toshihiko; Tanaka, Fukuyo; Nakagawa, Hiroyuki; Ono, Hiroshi; Kikuchi, Jun; Ohnishi-Kameyama, Mayumi; Sekiyama, Yasuyo

    2015-05-01

    This study utilises (1)H NMR-based metabolic profiling to characterise apples of five cultivars grown either in Japan (Fuji, Orin, and Jonagold) or New Zealand (Fuji, Jazz, and Envy). Principal component analysis (PCA) showed a clear separation between the Fuji-Orin-Jonagold class and the Jazz-Envy class, primarily corresponding to the differences in sugar signals, such as sucrose, glucose, and fructose. Multistep PCA removed the influence of dominant sugars and highlighted minor metabolites such as aspartic acid, 2-methylmalate, and an unidentified compound. These minor metabolites separated the apples into two classes according to different geographical areas. Subsequent partial least squares discriminant analysis (PLS-DA) indicated the importance of the unidentified metabolite. This metabolite was isolated using charcoal chromatography, and was identified as L-rhamnitol by 2D NMR and LC/MS analyses. The remarkable contribution of L-rhamnitol to geographic discrimination suggests that apples may be characterised according to various factors, including storage duration, cultivation method, and climate.

  4. Prospective evaluation of potential toxicity of repeated doses of Thymus vulgaris L. extracts in rats by means of clinical chemistry, histopathology and NMR-based metabonomic approach.

    PubMed

    Benourad, Fouzia; Kahvecioglu, Zehra; Youcef-Benkada, Mokhtar; Colet, Jean-Marie

    2014-10-01

    In the field of natural extracts, research generally focuses on the study of their biological activities for food, cosmetic, or pharmacological purposes. The evaluation of their adverse effects is often overlooked. In this study, the extracts of Thymus vulgaris L. were obtained by two different extraction methods. Intraperitoneal injections of both extracts were given daily for four days to male Wistar Han rats, at two different doses for each extract. The evaluation of the potential toxic effects included histopathological examination of liver, kidney, and lung tissues, as well as serum biochemistry of liver and kidney parameters, and (1)H-NMR-based metabonomic profiles of urine. The results showed that no histopathological changes were observed in the liver and kidney in rats treated with both extracts of thyme. Serum biochemical investigations revealed significant increases in blood urea nitrogen, creatinine, and uric acid in animals treated with polyphenolic extract at both doses. In these latter groups, metabonomic analysis revealed alterations in a number of urine metabolites involved in the energy metabolism in liver mitochondria. Indeed, the results showed alterations of glycolysis, Krebs cycle, and β-oxidative pathways as evidenced by increases in lactate and ketone bodies, and decreases in citrate, α-ketoglutarate, creatinine, hippurate, dimethylglycine, and dimethyalanine. In conclusion, this work showed that i.p. injection of repeated doses of thyme extracts causes some disturbances of intermediary metabolism in rats. The metabonomic study revealed interesting data which could be further used to determine the cellular pathways affected by such treatments.

  5. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access.

    PubMed

    Salek, Reza M; Neumann, Steffen; Schober, Daniel; Hummel, Jan; Billiau, Kenny; Kopka, Joachim; Correa, Elon; Reijmers, Theo; Rosato, Antonio; Tenori, Leonardo; Turano, Paola; Marin, Silvia; Deborde, Catherine; Jacob, Daniel; Rolin, Dominique; Dartigues, Benjamin; Conesa, Pablo; Haug, Kenneth; Rocca-Serra, Philippe; O'Hagan, Steve; Hao, Jie; van Vliet, Michael; Sysi-Aho, Marko; Ludwig, Christian; Bouwman, Jildau; Cascante, Marta; Ebbels, Timothy; Griffin, Julian L; Moing, Annick; Nikolski, Macha; Oresic, Matej; Sansone, Susanna-Assunta; Viant, Mark R; Goodacre, Royston; Günther, Ulrich L; Hankemeier, Thomas; Luchinat, Claudio; Walther, Dirk; Steinbeck, Christoph

    Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative 'coordination of standards in metabolomics' (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities' participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards.

  6. Metabolomic Profiling of Autoimmune Hepatitis: The Diagnostic Utility of Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Wang, Jia-Bo; Pu, Shi-Biao; Sun, Ying; Li, Zhong-Feng; Niu, Ming; Yan, Xian-Zhong; Zhao, Yan-Ling; Wang, Li-Feng; Qin, Xue-Mei; Ma, Zhi-Jie; Zhang, Ya-Ming; Li, Bao-Sen; Luo, Sheng-Qiang; Gong, Man; Sun, Yong-Qiang; Zou, Zheng-Sheng; Xiao, Xiao-He

    2014-06-30

    Autoimmune hepatitis (AIH) is often confused with other liver diseases because of their shared nonspecific symptoms and serological and histological overlap. This study compared the plasma metabolomic profiles of patients with AIH, primary biliary cirrhosis (PBC), PBC/AIH overlap syndrome (OS), and drug-induced liver injury (DILI) with those of healthy subjects to identify potential biomarkers of AIH. Metabolomic profiling and biomarker screening were performed using proton nuclear magnetic resonance spectroscopy ((1)H NMR) coupled with a partial least-squares discriminant analysis. Compared with the levels in healthy volunteers and other liver disease patients, AIH patients exhibited relatively high levels of plasma pyruvate, lactate, acetate, acetoacetate, and glucose. Such metabolites are typically related to energy metabolism alterations and may be a sign of metabolic conversion to the aerobic glycolysis phenotype of excessive immune activation. Increased aromatic amino acids and decreased branched-chain amino acids were found in the plasma of AIH patients. The whole NMR profiles were stepwise-reduced, and nine metabolomic biomarkers having the greatest significance in the discriminant analysis were obtained. The diagnostic utility of the selected metabolites was assessed, and these biomarkers achieved good sensitivity, specificity, and accuracy (all above 93%) in distinguishing AIH from PBC, DILI, and OS. This report is the first to present the metabolic phenotype of AIH and the potential utility of (1)H NMR metabolomics in the diagnosis of AIH.

  7. YMDB: the Yeast Metabolome Database

    PubMed Central

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  8. Using 1-D 1H and 2-D 1H J-resolved NMR metabolomics to understand the effects of anemia in channel catfish (Ictalurus punctatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anemia is a widespread hematological disorder in vertebrates. In channel catfish (Ictalurus punctatus), anemia is a persistent problem in culture environments, however, its causes and physiological impacts are not well understood. To better understand the symptoms and characterize associated biomark...

  9. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Recent advances of metabolomics in plant biotechnology.

    PubMed

    Okazaki, Yozo; Saito, Kazuki

    2012-01-01

    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants.

  11. Nuclear magnetic resonance-based metabolomics enable detection of the effects of a whole grain rye and rye bran diet on the metabolic profile of plasma in prostate cancer patients.

    PubMed

    Moazzami, Ali A; Zhang, Jie-Xian; Kamal-Eldin, Afaf; Aman, Per; Hallmans, Göran; Johansson, Jan-Erik; Andersson, Sven-Olof

    2011-12-01

    Prostate cancer (PC) is the most common cancer in the Western world and the second most important cancer causing male deaths, after lung cancer, in the United States and Britain. Lifestyle and dietary changes are recommended for men diagnosed with early-stage PC. It has been shown that a diet rich in whole grain (WG) rye reduces the progression of early-stage PC, but the underlying mechanism is not clear. This study sought to identify changes in the metabolic signature of plasma in patients with early-stage PC following intervention with a diet rich in WG rye and rye bran product (RP) compared with refined white wheat product (WP) as a tool for mechanistic investigation of the beneficial health effects of RP on PC progression. Seventeen PC patients received 485 g RP or WP in a randomized, controlled, crossover design during a period of 6 wk with a 2-wk washout period. At the end of each intervention period, plasma was collected after fasting and used for (1)H NMR-based metabolomics. Multilevel partial least squares discriminant analysis was used for paired comparisons of multivariate data. A metabolomics analysis of plasma showed an increase in 5 metabolites, including 3-hydroxybutyric acid, acetone, betaine, N,N-dimethylglycine, and dimethyl sulfone, after RP. To understand these metabolic changes, fasting plasma homocysteine, leptin, adiponectin, and glucagon were measured separately. The plasma homocysteine concentration was lower (P = 0.017) and that of leptin tended to be lower (P = 0.07) after RP intake compared to WP intake. The increase in plasma 3-hydroxybutyric acid and acetone after RP suggests a shift in energy metabolism from anabolic to catabolic status, which could explain some of the beneficial health effects of WG rye, i.e., reduction in prostate-specific antigen and reduced 24-h insulin secretion. In addition, the increase in betaine and N,N-dimethylglycine and the decrease in homocysteine show a favorable shift in homocysteine metabolism after RP

  12. Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps

    PubMed Central

    Zheng, Hong; Ji, Jiansong; Zhao, Liangcai; Chen, Minjiang; Shi, An; Pan, Linlin; Huang, Yiran; Zhang, Huajie; Dong, Baijun; Gao, Hongchang

    2016-01-01

    Diagnosis of renal cell carcinoma (RCC) at an early stage is challenging, but it provides the best chance for cure. We aimed to develop a predictive diagnostic method for early-stage RCC based on a biomarker cluster using nuclear magnetic resonance (NMR)-based serum metabolomics and self-organizing maps (SOMs). We trained and validated the SOM model using serum metabolome data from 104 participants, including healthy individuals and early-stage RCC patients. To assess the predictive capability of the model, we analyzed an independent cohort of 22 subjects. We then used our method to evaluate changes in the metabolic patterns of 23 RCC patients before and after nephrectomy. A biomarker cluster of 7 metabolites (alanine, creatine, choline, isoleucine, lactate, leucine, and valine) was identified for the early diagnosis of RCC. The trained SOM model using a biomarker cluster was able to classify 22 test subjects into the appropriate categories. Following nephrectomy, all RCC patients were classified as healthy, which was indicative of metabolic recovery. But using a diagnostic criterion of 0.80, only 3 of the 23 subjects could not be confidently assessed as metabolically recovered after nephrectomy. We successfully followed-up 17 RCC patients for 8 years post-nephrectomy. Eleven of these patients who diagnosed as metabolic recovery remained healthy after 8 years. Our data suggest that a SOM model using a biomarker cluster from serum metabolome can accurately predict early RCC diagnosis and can be used to evaluate postoperative metabolic recovery. PMID:27463020

  13. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    PubMed

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  14. Essential Parameters for Structural Analysis and Dereplication by 1H NMR Spectroscopy

    PubMed Central

    2015-01-01

    The present study demonstrates the importance of adequate precision when reporting the δ and J parameters of frequency domain 1H NMR (HNMR) data. Using a variety of structural classes (terpenoids, phenolics, alkaloids) from different taxa (plants, cyanobacteria), this study develops rationales that explain the importance of enhanced precision in NMR spectroscopic analysis and rationalizes the need for reporting Δδ and ΔJ values at the 0.1–1 ppb and 10 mHz level, respectively. Spectral simulations paired with iteration are shown to be essential tools for complete spectral interpretation, adequate precision, and unambiguous HNMR-driven dereplication and metabolomic analysis. The broader applicability of the recommendation relates to the physicochemical properties of hydrogen (1H) and its ubiquity in organic molecules, making HNMR spectra an integral component of structure elucidation and verification. Regardless of origin or molecular weight, the HNMR spectrum of a compound can be very complex and encode a wealth of structural information that is often obscured by limited spectral dispersion and the occurrence of higher order effects. This altogether limits spectral interpretation, confines decoding of the underlying spin parameters, and explains the major challenge associated with the translation of HNMR spectra into tabulated information. On the other hand, the reproducibility of the spectral data set of any (new) chemical entity is essential for its structure elucidation and subsequent dereplication. Handling and documenting HNMR data with adequate precision is critical for establishing unequivocal links between chemical structure, analytical data, metabolomes, and biological activity. Using the full potential of HNMR spectra will facilitate the general reproducibility for future studies of bioactive chemicals, especially of compounds obtained from the diversity of terrestrial and marine organisms. PMID:24895010

  15. Progress toward single cell metabolomics

    PubMed Central

    Rubakhin, Stanislav S.; Lanni, Eric J.; Sweedler, Jonathan V.

    2012-01-01

    The metabolome refers to the entire set of small molecules, or metabolites, within a biological sample. These molecules are involved in many fundamental intracellular functions and reflect the cell’s physiological condition. The ability to detect and identify metabolites and determine and monitor their amounts at the single cell level enables an exciting range of studies of biological variation and functional heterogeneity between cells, even within a presumably homogenous cell population. Significant progress has been made in the development and application of bioanalytical tools for single cell metabolomics based on mass spectrometry, microfluidics, and capillary separations. Remarkable improvements in the sensitivity, specificity, and throughput of these approaches enable investigation of multiple metabolites simultaneously in a range of individual cell samples. PMID:23246232

  16. Metabolomics for plant stress response.

    PubMed

    Shulaev, Vladimir; Cortes, Diego; Miller, Gad; Mittler, Ron

    2008-02-01

    Stress in plants could be defined as any change in growth condition(s) that disrupts metabolic homeostasis and requires an adjustment of metabolic pathways in a process that is usually referred to as acclimation. Metabolomics could contribute significantly to the study of stress biology in plants and other organisms by identifying different compounds, such as by-products of stress metabolism, stress signal transduction molecules or molecules that are part of the acclimation response of plants. These could be further tested by direct measurements, correlated with changes in transcriptome and proteome expression and confirmed by mutant analysis. In this review, we will discuss recent application of metabolomics and system biology to the area of plant stress response. We will describe approaches such as metabolic profiling and metabolic fingerprinting as well as combination of different 'omics' platforms to achieve a holistic view of the plant response stress and conduct detailed pathway analysis.

  17. Applications of metabolomics in agriculture.

    PubMed

    Dixon, Richard A; Gang, David R; Charlton, Adrian J; Fiehn, Oliver; Kuiper, Harry A; Reynolds, Tracey L; Tjeerdema, Ronald S; Jeffery, Elizabeth H; German, J Bruce; Ridley, William P; Seiber, James N

    2006-11-29

    Biological systems are exceedingly complex. The unraveling of the genome in plants and humans revealed fewer than the anticipated number of genes. Therefore, other processes such as the regulation of gene expression, the action of gene products, and the metabolic networks resulting from catalytic proteins must make fundamental contributions to the remarkable diversity inherent in living systems. Metabolomics is a relatively new approach aimed at improved understanding of these metabolic networks and the subsequent biochemical composition of plants and other biological organisms. Analytical tools within metabolomics including mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy can profile the impact of time, stress, nutritional status, and environmental perturbation on hundreds of metabolites simultaneously resulting in massive, complex data sets. This information, in combination with transcriptomics and proteomics, has the potential to generate a more complete picture of the composition of food and feed products, to optimize crop trait development, and to enhance diet and health. Selected presentations from an American Chemical Society symposium held in March 2005 have been assembled to highlight the emerging application of metabolomics in agriculture.

  18. Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors

    PubMed Central

    Marrachelli, Vannina G.; Rentero, Pilar; Mansego, María L.; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel

    2016-01-01

    Background To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. Methods and Findings One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: <2; Group 2: 2; Group 3: 3 or more CMRFs). Using SNPlex, 1251 SNPs potentially associated to clustering of three or more CMRFs were analyzed. Serum metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. Conclusions The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors

  19. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    SciTech Connect

    Bag, Swarnendu; Banerjee, Deb Ranjan; Basak, Amit; Das, Amit Kumar; Pal, Mousumi; Banerjee, Rita; Paul, Ranjan Rashmi; Chatterjee, Jyotirmoy

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  20. Disease monitoring of hepatocellular carcinoma through metabolomics

    PubMed Central

    Fitian, Asem I; Cabrera, Roniel

    2017-01-01

    We elucidate major pathways of hepatocarcinogenesis and accurate diagnostic metabolomic biomarkers of hepatocellular carcinoma (HCC) identified by contemporary HCC metabolomics studies, and delineate a model HCC metabolomics study design. A literature search was carried out on Pubmed for HCC metabolomics articles published in English. All relevant articles were accessed in full text. Major search terms included “HCC”, “metabolomics”, “metabolomics”, “metabonomic” and “biomarkers”. We extracted clinical and demographic data on all patients and consolidated the lead candidate biomarkers, pathways, and diagnostic performance of metabolomic expression patterns reported by all studies in tables. Where reported, we also extracted and summarized the metabolites and pathways most highly associated with the development of cirrhosis in table format. Pathways of lysophospholipid, sphingolipid, bile acid, amino acid, and reactive oxygen species metabolism were most consistently associated with HCC in the cited works. Several studies also elucidate metabolic alterations strongly associated with cirrhosis, with γ-glutamyl peptides, bile acids, and dicarboxylic acids exhibiting the highest capacity for stratifying cirrhosis patients from appropriately matched controls. Collectively, global metabolomic profiles of the referenced works exhibit a promising diagnostic capacity for HCC at a capacity greater than that of conventional diagnostic biomarker alpha-fetoprotein. Metabolomics is a powerful strategy for identifying global metabolic signatures that exhibit potential to be leveraged toward the screening, diagnosis, and management of HCC. A streamlined study design and patient matching methodology may improve concordance among metabolomic datasets in future works. PMID:28105254

  1. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  2. NMR Metabolomics Analysis of Parkinson's Disease

    PubMed Central

    Lei, Shulei; Powers, Robert

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disease, which is characterized by progressive death of dopaminergic neurons in the substantia nigra pars compacta. Although mitochondrial dysfunction and oxidative stress are linked to PD pathogenesis, its etiology and pathology remain to be elucidated. Metabolomics investigates metabolite changes in biofluids, cell lysates, tissues and tumors in order to correlate these metabolomic changes to a disease state. Thus, the application of metabolomics to investigate PD provides a systematic approach to understand the pathology of PD, to identify disease biomarkers, and to complement genomics, transcriptomics and proteomics studies. This review will examine current research into PD mechanisms with a focus on mitochondrial dysfunction and oxidative stress. Neurotoxin-based PD animal models and the rationale for metabolomics studies in PD will also be discussed. The review will also explore the potential of NMR metabolomics to address important issues related to PD treatment and diagnosis. PMID:26078917

  3. A Metabolomic Perspective on Coeliac Disease

    PubMed Central

    Calabrò, Antonio

    2014-01-01

    Metabolomics is an “omic” science that is now emerging with the purpose of elaborating a comprehensive analysis of the metabolome, which is the complete set of metabolites (i.e., small molecules intermediates) in an organism, tissue, cell, or biofluid. In the past decade, metabolomics has already proved to be useful for the characterization of several pathological conditions and offers promises as a clinical tool. A metabolomics investigation of coeliac disease (CD) revealed that a metabolic fingerprint for CD can be defined, which accounts for three different but complementary components: malabsorption, energy metabolism, and alterations in gut microflora and/or intestinal permeability. In this review, we will discuss the major advancements in metabolomics of CD, in particular with respect to the role of gut microbiome and energy metabolism. PMID:24665364

  4. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation.

    PubMed

    Wu, Junfang; Domellöf, Magnus; Zivkovic, Angela M; Larsson, Göran; Öhman, Anders; Nording, Malin L

    2016-01-15

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H2O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H2O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9-24 days after delivery) and late (31-87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant.

  5. NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease

    PubMed Central

    Sekiyama, Yasuyo; Okazaki, Kazuyuki; Kikuchi, Jun; Ikeda, Seishi

    2017-01-01

    Cercospora leaf spot (CLS) is one of the most serious leaf diseases for sugar beet (Beta vulgaris L.) worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR)-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. 1H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D2O)-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA) of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS) or orthogonal PLS (OPLS) analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs) of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance) from resistant genotypes (genotypes with resistance greater than a moderate level) before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort. PMID:28134762

  6. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  7. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.

    PubMed

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-06-05

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  8. Biomarkers of whale shark health: a metabolomic approach.

    PubMed

    Dove, Alistair D M; Leisen, Johannes; Zhou, Manshui; Byrne, Jonathan J; Lim-Hing, Krista; Webb, Harry D; Gelbaum, Leslie; Viant, Mark R; Kubanek, Julia; Fernández, Facundo M

    2012-01-01

    In a search for biomarkers of health in whale sharks and as exploration of metabolomics as a modern tool for understanding animal physiology, the metabolite composition of serum in six whale sharks (Rhincodon typus) from an aquarium collection was explored using (1)H nuclear magnetic resonance (NMR) spectroscopy and direct analysis in real time (DART) mass spectrometry (MS). Principal components analysis (PCA) of spectral data showed that individual animals could be resolved based on the metabolite composition of their serum and that two unhealthy individuals could be discriminated from the remaining healthy animals. The major difference between healthy and unhealthy individuals was the concentration of homarine, here reported for the first time in an elasmobranch, which was present at substantially lower concentrations in unhealthy whale sharks, suggesting that this metabolite may be a useful biomarker of health status in this species. The function(s) of homarine in sharks remain uncertain but it likely plays a significant role as an osmolyte. The presence of trimethylamine oxide (TMAO), another well-known protective osmolyte of elasmobranchs, at 0.1-0.3 mol L(-1) was also confirmed using both NMR and MS. Twenty-three additional potential biomarkers were identified based on significant differences in the frequency of their occurrence between samples from healthy and unhealthy animals, as detected by DART MS. Overall, NMR and MS provided complementary data that showed that metabolomics is a useful approach for biomarker prospecting in poorly studied species like elasmobranchs.

  9. Biomarkers of Whale Shark Health: A Metabolomic Approach

    PubMed Central

    Dove, Alistair D. M.; Leisen, Johannes; Zhou, Manshui; Byrne, Jonathan J.; Lim-Hing, Krista; Webb, Harry D.; Gelbaum, Leslie; Viant, Mark R.; Kubanek, Julia; Fernández, Facundo M.

    2012-01-01

    In a search for biomarkers of health in whale sharks and as exploration of metabolomics as a modern tool for understanding animal physiology, the metabolite composition of serum in six whale sharks (Rhincodon typus) from an aquarium collection was explored using 1H nuclear magnetic resonance (NMR) spectroscopy and direct analysis in real time (DART) mass spectrometry (MS). Principal components analysis (PCA) of spectral data showed that individual animals could be resolved based on the metabolite composition of their serum and that two unhealthy individuals could be discriminated from the remaining healthy animals. The major difference between healthy and unhealthy individuals was the concentration of homarine, here reported for the first time in an elasmobranch, which was present at substantially lower concentrations in unhealthy whale sharks, suggesting that this metabolite may be a useful biomarker of health status in this species. The function(s) of homarine in sharks remain uncertain but it likely plays a significant role as an osmolyte. The presence of trimethylamine oxide (TMAO), another well-known protective osmolyte of elasmobranchs, at 0.1–0.3 mol L−1 was also confirmed using both NMR and MS. Twenty-three additional potential biomarkers were identified based on significant differences in the frequency of their occurrence between samples from healthy and unhealthy animals, as detected by DART MS. Overall, NMR and MS provided complementary data that showed that metabolomics is a useful approach for biomarker prospecting in poorly studied species like elasmobranchs. PMID:23166652

  10. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts

    PubMed Central

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Juarez Martinez, Ignacio; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadan; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-01-01

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening. PMID:24905482

  11. High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.

    PubMed

    Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane

    2017-02-03

    Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ((1)H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.

  12. New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE).

    PubMed

    Sanchon-Lopez, Beatriz; Everett, Jeremy R

    2016-09-02

    A new, simple-to-implement and quantitative approach to assessing the confidence in NMR-based identification of known metabolites is introduced. The approach is based on a topological analysis of metabolite identification information available from NMR spectroscopy studies and is a development of the metabolite identification carbon efficiency (MICE) method. New topological metabolite identification indices are introduced, analyzed, and proposed for general use, including topological metabolite identification carbon efficiency (tMICE). Because known metabolite identification is one of the key bottlenecks in either NMR-spectroscopy- or mass spectrometry-based metabonomics/metabolomics studies, and given the fact that there is no current consensus on how to assess metabolite identification confidence, it is hoped that these new approaches and the topological indices will find utility.

  13. Crystalline 1H-1,2,3-triazol-5-ylidenes

    SciTech Connect

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  14. Emerging New Strategies for Successful Metabolite Identification in Metabolomics

    SciTech Connect

    Bingol, Ahmet K.; Bruschweiler-Li, Lei; Li, Dawei; Zhang, Bo; Xie, Mouzhe; Bruschweiler, Rafael

    2016-02-26

    NMR is a very powerful tool for the identification of known and unknown (or unnamed) metabolites in complex mixtures as encountered in metabolomics. Known compounds can be reliably identified using 2D NMR methods, such as 13C-1H HSQC, for which powerful web servers with databases are available for semi-automated analysis. For the identification of unknown compounds, new combinations of NMR with MS have been developed recently that make synergistic use of the mutual strengths of the two techniques. The use of chemical additives to the NMR tube, such as reactive agents, paramagnetic ions, or charged silica nanoparticles, permit the identification of metabolites with specific physical chemical properties. In the following sections, we give an overview of some of the recent advances in metabolite identification and discuss remaining challenges.

  15. Environmental metabolomics: Biological markers for metal toxicity.

    PubMed

    García-Sevillano, Miguel Ángel; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2015-07-14

    Environmental metabolomics is an emerging field referred to the application of metabolomics to characterize the interactions of living organisms with their environment. In this sense, the importance of monitoring the effects of toxic metals on living organisms has increased as a consequence of natural changes and anthropogenic activities that have led to an increase of toxic metals levels in terrestrial and aquatic ecosystems. For this purpose, the use of metabolomics based on mass spectrometry to study metal toxicity is gaining importance in recent years. Environmental metabolomics can be used to: discover the mode of action (MOA) of toxic metals through controlled laboratory experiments; evaluate toxicity (biological adverse response to a substance), that may be useful in risk assessment; and develop new biomarkers (based in metabolome shifts discovered through controlled laboratory experiments) that may be applied in environmental biomonitoring (environmental realistic scenario). In this review, it is discussed how metabolomics based on mass spectrometry can be applied to study metal toxicity, considering the most important hallmarks related to metabolomic experiments. This article is protected by copyright. All rights reserved.

  16. Metabolomics in neonatology: fact or fiction?

    PubMed

    Fanos, V; Van den Anker, J; Noto, A; Mussap, M; Atzori, L

    2013-02-01

    The newest 'omics' science is metabolomics, the latest offspring of genomics, considered the most innovative of the 'omics' sciences. Metabolomics, also called the 'new clinical biochemistry', is an approach based on the systematic study of the complete set of metabolites in a biological sample. The metabolome is considered the most predictive phenotype and is capable of considering epigenetic differences. It is so close to the phenotype that it can be considered the phenotype itself. In the last three years about 5000 papers have been listed in PubMed on this topic, but few data are available in the newborn. The aim of this review, after a description of background and technical procedures, is to analyse the clinical applications of metabolomics in neonatology, covering the following points: gestational age, postnatal age, type of delivery, zygosity, perinatal asphyxia, intrauterine growth restriction, prenatal inflammation and brain injury, respiratory, cardiovascular renal, metabolic diseases; sepsis, necrotizing enterocolitis and antibiotic treatment; nutritional studies on maternal milk and formula, pharma-metabolomics, long-term diseases. Pros and cons of metabolomics are also discussed. All this comes about with the non-invasive collection of a few drops of urine (exceptionally important for the neonate, especially those of low birth weight). Only time and large-scale studies to validate initial results will place metabolomics within neonatology. In any case, it is important for perinatologists to learn and understand this new technology to offer their patients the utmost in diagnostic and therapeutic opportunities.

  17. Establishment of Quantitative Severity Evaluation Model for Spinal Cord Injury by Metabolomic Fingerprinting

    PubMed Central

    Yang, Hao; Cohen, Mitchell Jay; Chen, Wei; Sun, Ming-Wei; Lu, Charles Damien

    2014-01-01

    Spinal cord injury (SCI) is a devastating event with a limited hope for recovery and represents an enormous public health issue. It is crucial to understand the disturbances in the metabolic network after SCI to identify injury mechanisms and opportunities for treatment intervention. Through plasma 1H-nuclear magnetic resonance (NMR) screening, we identified 15 metabolites that made up an “Eigen-metabolome” capable of distinguishing rats with severe SCI from healthy control rats. Forty enzymes regulated these 15 metabolites in the metabolic network. We also found that 16 metabolites regulated by 130 enzymes in the metabolic network impacted neurobehavioral recovery. Using the Eigen-metabolome, we established a linear discrimination model to cluster rats with severe and mild SCI and control rats into separate groups and identify the interactive relationships between metabolic biomarkers in the global metabolic network. We identified 10 clusters in the global metabolic network and defined them as distinct metabolic disturbance domains of SCI. Metabolic paths such as retinal, glycerophospholipid, arachidonic acid metabolism; NAD–NADPH conversion process, tyrosine metabolism, and cadaverine and putrescine metabolism were included. In summary, we presented a novel interdisciplinary method that integrates metabolomics and global metabolic network analysis to visualize metabolic network disturbances after SCI. Our study demonstrated the systems biological study paradigm that integration of 1H-NMR, metabolomics, and global metabolic network analysis is useful to visualize complex metabolic disturbances after severe SCI. Furthermore, our findings may provide a new quantitative injury severity evaluation model for clinical use. PMID:24727691

  18. Metabolomics applied to the pancreatic islet

    PubMed Central

    Gooding, Jessica R.; Jensen, Mette V.; Newgard, Christopher B.

    2016-01-01

    Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies. PMID:26116790

  19. A multi-analytical approach for metabolomic profiling of zebrafish (Danio rerio) livers.

    PubMed

    Ong, Eng Shi; Chor, Cui Fang; Zou, Li; Ong, Choon Nam

    2009-03-01

    A metabolomic study was performed to investigate the biochemical profiles of livers from male and female zebrafish (Danio rerio), using a multiple platform approach, incorporating 1H NMR, GC/MS and LC/MS. The reproducibility and reliability of the three methods were validated prior to the assays. Major biomolecules detected using one method were also cross examined using the other techniques. These metabolites included carbohydrates, lipids, amino acids detected using 1H NMR and GC/MS, and acetylcarnitine, choline and various phospholipids determined using 1H NMR and LC/MS. Our findings suggest that 1H NMR provided comprehensive information on glucose, amino acids, pyruvate and other smaller biochemical constituents of the zebrafish liver. On the other hand, GC/MS was able to assay cholesterol, saturated and unsaturated fatty acids, and LC/MS was ideal for the analysis of lipids/phospholipids. These techniques revealed that there are significant differences in the biochemical profiles of male and female zebrafish liver tissue extracts. Specifically, we noted that although there were no significant differences observed for the carbohydrate profile, the amino acid profile was rather different in male and female zebrafish liver. Furthermore, data from all three techniques revealed that although the saturated fatty acid profile was similar, the compositions of unsaturated fatty acids were different in the two phenotypes. The overall findings suggested that this multiplatform approach offers comprehensive coverage of a metabolome as well as provides valuable insight towards understanding the different biochemical profiles of a biosystem.

  20. Use of Nuclear Magnetic Resonance-Based Metabolomics to Characterize the Biochemical Effects of Naphthalene on Various Organs of Tolerant Mice

    PubMed Central

    Lin, Ching-Yu; Huang, Feng-Peng; Ling, Yee Soon; Liang, Hao-Jan; Lee, Sheng-Han; Hu, Mei-Yun; Tsao, Po-Nien

    2015-01-01

    Naphthalene, the most common polycyclic aromatic hydrocarbon, causes airway epithelium injury in mice. Repeated exposure of mice to naphthalene induces airway epithelia that are resistant to further injury. Previous studies revealed that alterations in bioactivation enzymes and increased levels of gamma-glutamylcysteine synthase in the bronchioles protect tolerant mice from naphthalene and its reactive metabolites. In our current study, tolerance was induced in male ICR mice using a total of 7 daily intraperitoneal injections of naphthalene (200 mg/kg). Both naphthalene-tolerant and non-tolerant mice were challenged with a dose of 300 mg/kg naphthalene on day 8 to investigate metabolite differences. The lungs, liver, and kidneys were collected for histopathology 24 h after the challenge dose. Bronchial alveolar lavage fluid (BALF) and both hydrophilic and hydrophobic extracts from each organ were analyzed using nuclear magnetic resonance (NMR)-based metabolomics. The histological results showed no observable injuries to the airway epithelium of naphthalene-tolerant mice when compared with the control. In contrast, airway injuries were observed in mice given a single challenge dose (injury mice). The metabolomics analysis revealed that the energy metabolism in the lungs of tolerant and injury mice was significantly perturbed. However, antioxidant metabolites, such as glutathione and succinate, were significantly increased in the lungs of tolerant mice, suggesting a role for these compounds in the protection of organs from naphthalene-induced electrophilic metabolites and free radicals. Damage to the airway cellular membrane, as shown by histopathological results and increased acetone in the BALF and perturbation of hydrophobic lung extracts, including cholesterol, phosphorylcholine-containing lipids, and fatty acyl chains, were observed in injury mice. Consistent with our histopathological results, fewer metabolic effects were observed in the liver and kidney of

  1. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome.

  2. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  3. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.

  4. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation.

    PubMed

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain.

  5. Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry

    PubMed Central

    Nemes, Peter; Rubakhin, Stanislav S.; Aerts, Jordan T.; Sweedler, Jonathan V.

    2013-01-01

    Single-cell mass spectrometry (MS) empowers metabolomic investigations by decreasing analytical dimensions to the size of individual cells and subcellular structures. We describe a protocol for investigating and quantifying metabolites in individual isolated neurons using single-cell capillary electrophoresis hyphenated to electrospray ionization time-of-flight MS. The protocol requires ~2 h for sample preparation, neuron isolation, and metabolite extraction, and 1 h for metabolic measurement. The approach was used to detect more than 300 distinct compounds in the mass range of typical metabolites in various individual neurons (25–500-µm in diameter) isolated from the sea slug (Aplysia californica) central and rat (Rattus norvegicus) peripheral nervous systems. A subset of identified compounds was sufficient to reveal metabolic differences among freshly isolated neurons of different types and changes in the metabolite profiles of cultured neurons. The protocol can be applied to the characterization of the metabolome in a variety of smaller cells and/or subcellular domains. PMID:23538882

  6. Metabolomics in Population-Based Research

    Cancer.gov

    Metabolomics is the study of small molecules of both endogenous and exogenous origin, such as metabolic substrates and their products, lipids, small peptides, vitamins and other protein cofactors generated by metabolism, which are downstream from genes.

  7. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  8. NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda, L Gerardo

    2016-09-02

    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using (1)H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host-microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding.

  9. Extraction of alkaloids for NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection.

    PubMed

    Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W

    2012-11-01

    A museum collection of Cinchonae cortex samples (n = 117), from the period 1850-1950, was extracted with a mixture of chloroform-d1, methanol-d4, water-d2, and perchloric acid in the ratios 5 : 5 : 1 : 1. The extracts were directly analyzed using 1H NMR spectroscopy (600 MHz) and the spectra evaluated using principal component analysis (PCA) and total statistical correlation spectroscopy (STOCSY). A new method called STOCSY-CA, where CA stands for component analysis, is described, and an analysis using this method is presented. It was found that the samples had a rather homogenous content of the well-known cinchona alkaloids quinine, cinchonine, and cinchonidine without any apparent clustering. Signals from analogues were detected but not in substantial amounts. The main variation was related to the absolute amounts of extracted alkaloids, which was attributed to the evolution of the Cinchona tree cultivation during the period in which the samples were collected.

  10. Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results.

    PubMed

    Castle, Arthur L; Fiehn, Oliver; Kaddurah-Daouk, Rima; Lindon, John C

    2006-06-01

    Informatics standards and controlled vocabularies are essential for allowing information technology to help exchange, manage, interpret and compare large data collections. In a rapidly evolving field, the challenge is to work out how best to describe, but not prescribe, the use of these technologies and methods. A Metabolomics Standards Workshop was held by the US National Institutes of Health (NIH) to bring together multiple ongoing standards efforts in metabolomics with the NIH research community. The goals were to discuss metabolomics workflows (methods, technologies and data treatments) and the needs, challenges and potential approaches to developing a Metabolomics Standards Initiative that will help facilitate this rapidly growing field which has been a focus of the NIH roadmap effort. This report highlights specific aspects of what was presented and discussed at the 1st and 2nd August 2005 Metabolomics Standards Workshop.

  11. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    PubMed

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed.

  12. Metabolomics and dereplication strategies in natural products.

    PubMed

    Tawfike, Ahmed Fares; Viegelmann, Christina; Edrada-Ebel, Ruangelie

    2013-01-01

    Metabolomic methods can be utilized to screen diverse biological sources of potentially novel and sustainable sources of antibiotics and pharmacologically-active drugs. Dereplication studies by high resolution Fourier transform mass spectrometry coupled to liquid chromatography (LC-HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy can establish the chemical profile of endophytic and/or endozoic microbial extracts and their plant or animal sources. Identifying the compounds of interest at an early stage will aid in the isolation of the bioactive components. Therefore metabolite profiling is important for functional genomics and in the search for new pharmacologically active compounds. Using the tools of metabolomics through the employment of LC-HRFTMS as well as high resolution NMR will be a very efficient approach. Metabolomic profiling has found its application in screening extracts of macroorganisms as well as in the isolation and cultivation of suspected microbial producers of bioactive natural products.Metabolomics is being applied to identify and biotechnologically optimize the production of pharmacologically active secondary metabolites. The links between metabolome evolution during optimization and processing factors can be identified through metabolomics. Information obtained from a metabolomics dataset can efficiently establish cultivation and production processes at a small scale which will be finally scaled up to a fermenter system, while maintaining or enhancing synthesis of the desired compounds. MZmine (BMC Bioinformatics 11:395-399, 2010; http://mzmine.sourceforge.net/download.shtml ) and SIEVE ( http://www.vastscientific.com/resources/index.html ; Rapid Commun Mass Spectrom 22:1912-1918, 2008) softwares are utilized to perform differential analysis of sample populations to find significant expressed features of complex biomarkers between parameter variables. Metabolomes are identified with the aid of existing high resolution MS and NMR

  13. METABOLOMICS IN SMALL FISH TOXICOLOGY AND OTHER ENVIRONMENTAL APPLICATIONS

    EPA Science Inventory

    Although lagging behind applications targeted to human endpoints, metabolomics offers great potential in environmental applications, including ecotoxicology. Indeed, the advantages of metabolomics (relative to other 'omic techniques) may be more tangible in ecotoxicology because...

  14. THE METABOLOMIC WINDOW INTO HEPATOBILIARY DISEASE

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2014-01-01

    Summary The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develop. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver. PMID:23714158

  15. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  16. Detection of cerebral NAD(+) by in vivo (1)H NMR spectroscopy.

    PubMed

    de Graaf, Robin A; Behar, Kevin L

    2014-07-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays a central role in cellular metabolism both as a coenzyme for electron-transfer enzymes as well as a substrate for a wide range of metabolic pathways. In the current study NAD(+) was detected on rat brain in vivo at 11.7T by 3D localized (1)H MRS of the NAD(+) nicotinamide protons in the 8.7-9.5 ppm spectral region. Avoiding water perturbation was critical to the detection of NAD(+) as strong, possibly indirect cross-relaxation between NAD(+) and water would lead to a several-fold reduction of the NAD(+) intensity in the presence of water suppression. Water perturbation was minimized through the use of localization by adiabatic spin-echo refocusing (LASER) in combination with frequency-selective excitation. The NAD(+) concentration in the rat cerebral cortex was determined at 296 ± 28 μm, which is in good agreement with recently published (31) P NMR-based results as well as results from brain extracts in vitro (355 ± 34 μm). The T1 relaxation time constants of the NAD(+) nicotinamide protons as measured by inversion recovery were 280 ± 65 and 1136 ± 122 ms in the absence and presence of water inversion, respectively. This confirms the strong interaction between NAD(+) nicotinamide and water protons as observed during water suppression. The T2 relaxation time constants of the NAD(+) nicotinamide protons were determined at 60 ± 13 ms after confounding effects of scalar coupling evolution were taken into account. The simplicity of the MR sequence together with the robustness of NAD(+) signal detection and quantification makes the presented method a convenient choice for studies on NAD(+) metabolism and function. As the method does not critically rely on magnetic field homogeneity and spectral resolution it should find immediate applications in rodents and humans even at lower magnetic fields.

  17. An integrated analysis for determining the geographical origin of medicinal herbs using ICP-AES/ICP-MS and (1)H NMR analysis.

    PubMed

    Kwon, Yong-Kook; Bong, Yeon-Sik; Lee, Kwang-Sik; Hwang, Geum-Sook

    2014-10-15

    ICP-MS and (1)H NMR are commonly used to determine the geographical origin of food and crops. In this study, data from multielemental analysis performed by ICP-AES/ICP-MS and metabolomic data obtained from (1)H NMR were integrated to improve the reliability of determining the geographical origin of medicinal herbs. Astragalus membranaceus and Paeonia albiflora with different origins in Korea and China were analysed by (1)H NMR and ICP-AES/ICP-MS, and an integrated multivariate analysis was performed to characterise the differences between their origins. Four classification methods were applied: linear discriminant analysis (LDA), k-nearest neighbour classification (KNN), support vector machines (SVM), and partial least squares-discriminant analysis (PLS-DA). Results were compared using leave-one-out cross-validation and external validation. The integration of multielemental and metabolomic data was more suitable for determining geographical origin than the use of each individual data set alone. The integration of the two analytical techniques allowed diverse environmental factors such as climate and geology, to be considered. Our study suggests that an appropriate integration of different types of analytical data is useful for determining the geographical origin of food and crops with a high degree of reliability.

  18. Metabolomic patterns associated to QTc interval in shiftworkers: an explorative analysis

    PubMed Central

    Campagna, Marcello; Locci, Emanuela; Piras, Roberto; Noto, Antonio; Lecca, Luigi Isaia; Pilia, Ilaria; Cocco, Pierluigi; d’Aloja, Ernesto; Scano, Paola

    2016-01-01

    Abstract Objectives: 1H NMR-metabolomic approach was used to investigate QTc interval correlation with plasma metabolic profiles in shiftworkers. Methods: Socio-demographic data, electrocardiographic QTc interval and plasma metabolic profiles from 32 male shiftworkers, were correlated by multivariate regression analysis. Results: We found a positive correlation between QTc interval values, body mass index, glycemia and lactate level and a negative correlation between QTc interval and both pyroglutamate and 3-hydroxybutyrate plasma level. Conclusions: Our analysis provides evidence of the association between clinical, metabolic profiles and QTc interval values. This could be used to identify markers of early effects and/or susceptibility in shiftworkers. PMID:27121294

  19. Clinical application of metabolomics in neonatology.

    PubMed

    Fanos, Vassilios; Antonucci, Roberto; Barberini, Luigi; Noto, Antonio; Atzori, Luigi

    2012-04-01

    The youngest and more rapidly increasing "omic" discipline, called metabolomics, is the process of describing the phenotype of a cell, tissue or organism through the full complement of metabolites present. Metabolomics measure global sets of low molecular weight metabolites (including amino acids, organic acids, sugars, fatty acids, lipids, steroids, small peptides, vitamins, etc.), thus providing a "snapshot" of the metabolic status of a cell, tissue or organism in relation to genetic variations or external stimuli. The use of metabolomics appears to be a promising tool in neonatology. The management of sick newborns might improve if more information on perinatal/neonatal maturational processes and their metabolic background were available. Urine ("a window on the organism") is a biofluid particularly suitable for metabolomic analysis in neonatology because it may be collected by using simple, noninvasive techniques and because it may provide valuable diagnostic information. In this review, the authors report the few literature data on neonatal metabolomics, including their personal experience, in the following fields: intrauterine growth restriction, perinatal transition, asphyxia, brain injury and hypothermia, maternal milk evaluation, postnatal maturation, bronchiolitis, sepsis, patent ductus arteriosus, respiratory distress syndrome, nephrouropathies, metabolic diseases, antibiotic treatment, perinatal programming and long-term outcome in extremely low birth-weight infants.

  20. Applying Metabolomics to differentiate amphibian responses ...

    EPA Pesticide Factsheets

    Introduction/Objectives/Methods One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in ‘real world’ scenarios. Emerging ‘omic technologies, notably, metabolomics, provides an opportunity to address the uncertainties surrounding ecological risk assessment of multiple stressors. The objective of this study was to use a metabolomics biomarker approach to investigate the effect of multiple stressors on amphibian metamorphs. To this end, metamorphs of Rana pipiens (northern leopard frogs) were exposed to the insecticide Carbaryl (0.32 μg/L), a conspecific predator alarm call (Lithobates catesbeianus), Carbaryl and the predator alarm call, and a control with no stressor. In addition to metabolomic fingerprinting, we measured corticosterone levels in each treatment to assess general stress response. We analyzed relative abundances of endogenous metabolites collected in liver tissue with gas chromatography coupled with mass spectrometry. Support vector machine (SVM) methods with recursive feature elimination (RFE) were applied to rank the metabolomic profiles produced. Results/Conclusions SVM-RFE of the acquired metabolomic spectra demonstrated 85-96% classification accuracy among control and all treatment groups when using the top 75 ranked retention time bins. Biochemical fluxes observed in the groups exposed to carbaryl, predation threat, and the combined treatmen

  1. Metabolomics: a new era in cardiology?

    PubMed

    Mercuro, Giuseppe; Bassareo, Pier P; Deidda, Martino; Cadeddu, Christian; Barberini, Luigi; Atzori, Luigi

    2011-11-01

    The metabolome represents the collection of all metabolites in a biological cell, tissue, organ or organism, which are the end-products of cellular processes. Metabolomics is the systematic study of small-molecule metabolite profiles that specific cellular processes leave behind. RNA messenger gene expression data and proteomic analyses do not tell the whole story of what might be happening in a cell. Metabolic profiling, in turn, amplifies changes both in the proteome and the genome, and represents a more accurate approximation to the phenotype of an organism in health and disease. In this article, we have provided a description of metabolomics, in the presence of other, more familiar 'omics' disciplines, such as genomics and proteomics. In addition, we have reviewed the current rationale for metabolomics in cardiology, its basic methodology and the data actually available in human studies in this discipline. The discussed topics highlight the importance of being able to use the metabolomics information in order to understand disease mechanisms from a systems biology perspective as a noninvasive approach to diagnose, grade and treat cardiovascular diseases.

  2. Metabolomics: towards understanding traditional Chinese medicine.

    PubMed

    Zhang, Aihua; Sun, Hui; Wang, Zhigang; Sun, Wenjun; Wang, Ping; Wang, Xijun

    2010-12-01

    Metabolomics represent a global understanding of metabolite complement of integrated living systems and dynamic responses to the changes of both endogenous and exogenous factors and has many potential applications and advantages for the research of complex systems. As a systemic approach, metabolomics adopts a "top-down" strategy to reflect the function of organisms from the end products of the metabolic network and to understand metabolic changes of a complete system caused by interventions in a holistic context. This property agrees with the holistic thinking of Traditional Chinese Medicine (TCM), a complex medical science, suggesting that metabolomics has the potential to impact our understanding of the theory behind the evidence-based Chinese medicine. Consequently, the development of robust metabolomic platforms will greatly facilitate, for example, the understanding of the action mechanisms of TCM formulae and the analysis of Chinese herbal (CHM) and mineral medicine, acupuncture, and Chinese medicine syndromes. This review summarizes some of the applications of metabolomics in special TCM issues with an emphasis on metabolic biomarker discovery.

  3. Metabolomics: Developing a chemical specific fingerprint

    USGS Publications Warehouse

    Putnam, Joel G.

    2016-01-01

    We combine cell assays and metabolomics to create a powerful tool, which emerges to elevate the identification of new control chemicals. We combined the use of bigheaded carp fry cell line with metabolite profiling to describe the dose response to thiram. Thiram is a registered pesticide commonly used as a fungicide in the field or as a seed protectant and is known to be toxic to fish. Seven concentrations of thiram were used to dose bighead carp fry cells and silver carp fry cells. We identified 700 metabolomic markers and 41 of those markers exhibited a dose response to thiram in the bighead carp fry cells. We identified 1590 metabolomic markers with 205 of those markers exhibited a dose response to thiram in the silver carp fry cells. When the metabolites of both cell lines are compared using volcano plots, 16 metabolomic markers were identified as significant. A smaller subset of metabolites indicate that a thiram specific metabolomic fingerprint exists that is not species specific, but instead toxin specific. Application of toxin fingerprints (toxin specific but species independent metabolites) can be used to address the cause of ecological significant events, such as mass fish kills.

  4. Metabolomics: Applications and Promise in Mycobacterial Disease

    PubMed Central

    Banoei, Mohammad Mehdi; Winston, Brent W.; Schraufnagel, Dean E.

    2015-01-01

    Until recently, the study of mycobacterial diseases was trapped in culture-based technology that is more than a century old. The use of nucleic acid amplification is changing this, and powerful new technologies are on the horizon. Metabolomics, which is the study of sets of metabolites of both the bacteria and host, is being used to clarify mechanisms of disease, and can identify changes leading to better diagnosis, treatment, and prognostication of mycobacterial diseases. Metabolomic profiles are arrays of biochemical products of genes in their environment. These complex patterns are biomarkers that can allow a more complete understanding of cell function, dysfunction, and perturbation than genomics or proteomics. Metabolomics could herald sweeping advances in personalized medicine and clinical trial design, but the challenges in metabolomics are also great. Measured metabolite concentrations vary with the timing within a condition, the intrinsic biology, the instruments, and the sample preparation. Metabolism profoundly changes with age, sex, variations in gut microbial flora, and lifestyle. Validation of biomarkers is complicated by measurement accuracy, selectivity, linearity, reproducibility, robustness, and limits of detection. The statistical challenges include analysis, interpretation, and description of the vast amount of data generated. Despite these drawbacks, metabolomics provides great opportunity and the potential to understand and manage mycobacterial diseases. PMID:26196272

  5. Systematic Applications of Metabolomics in Metabolic Engineering

    PubMed Central

    Dromms, Robert A.; Styczynski, Mark P.

    2012-01-01

    The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules) to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering. PMID:24957776

  6. Basics of mass spectrometry based metabolomics.

    PubMed

    Courant, Frédérique; Antignac, Jean-Philippe; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2014-11-01

    The emerging field of metabolomics, aiming to characterize small molecule metabolites present in biological systems, promises immense potential for different areas such as medicine, environmental sciences, agronomy, etc. The purpose of this article is to guide the reader through the history of the field, then through the main steps of the metabolomics workflow, from study design to structure elucidation, and help the reader to understand the key phases of a metabolomics investigation and the rationale underlying the protocols and techniques used. This article is not intended to give standard operating procedures as several papers related to this topic were already provided, but is designed as a tutorial aiming to help beginners understand the concept and challenges of MS-based metabolomics. A real case example is taken from the literature to illustrate the application of the metabolomics approach in the field of doping analysis. Challenges and limitations of the approach are then discussed along with future directions in research to cope with these limitations. This tutorial is part of the International Proteomics Tutorial Programme (IPTP18).

  7. Age-Related 1H NMR Characterization of Cerebrospinal Fluid in Newborn and Young Healthy Piglets

    PubMed Central

    Barone, Francesca; Elmi, Alberto; Romagnoli, Noemi; Bacci, Maria Laura

    2016-01-01

    When it comes to neuroscience, pigs represent an important animal model due to their resemblance with humans’ brains for several patterns including anatomy and developmental stages. Cerebrospinal fluid (CSF) is a relatively easy-to-collect specimen that can provide important information about neurological health and function, proving its importance as both a diagnostic and biomedical monitoring tool. Consequently, it would be of high scientific interest and value to obtain more standard physiological information regarding its composition and dynamics for both swine pathology and the refinement of experimental protocols. Recently, proton nuclear magnetic resonance (1H NMR) spectroscopy has been applied in order to analyze the metabolomic profile of this biological fluid, and results showed the technique to be highly reproducible and reliable. The aim of the present study was to investigate in both qualitative and quantitative manner the composition of Cerebrospinal Fluid harvested form healthy newborn (5 days old-P5) and young (30-P30 and 50-P50 days old) piglets using 1H NMR Spectroscopy, and to analyze any possible difference in metabolites concentration between age groups, related to age and Blood-Brain-Barrier maturation. On each of the analyzed samples, 30 molecules could be observed above their limit of quantification, accounting for 95–98% of the total area of the spectra. The concentrations of adenine, tyrosine, leucine, valine, 3-hydroxyvalerate, 3-methyl-2-oxovalerate were found to decrease between P05 and P50, while the concentrations of glutamine, creatinine, methanol, trimethylamine and myo-inositol were found to increase. The P05-P30 comparison was also significant for glutamine, creatinine, adenine, tyrosine, leucine, valine, 3-hydroxyisovalerate, 3-methyl-2-oxovalerate, while for the P30-P50 comparison we found significant differences for glutamine, myo-inositol, leucine and trimethylamine. None of these molecules showed at P30 concentrations

  8. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum

    PubMed Central

    Teng, Rongwei; Lehane, Adele M.; Winterberg, Markus; Shafik, Sarah H.; Summers, Robert L.; Martin, Rowena E.; van Schalkwyk, Donelly A.; Junankar, Pauline R.; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  9. Tissue metabolic profiling of lymph node metastasis of colorectal cancer assessed by 1H NMR.

    PubMed

    Zhang, Hailong; Qiao, Liang; Li, Xiaopeng; Wan, Yang; Yang, Li; Wang, Huijuan

    2016-12-01

    Lymph node metastasis is a decisive prognostic and therapeutic staging factor for colorectal cancer (CRC), which is one of the most prevalent types of cancer and a malignant tumor. The metabolic profiling of tissue samples from a large cohort of lymph node non‑metastatic CRC patients (n=73), lymph node metastatic CRC patients (n=52) and normal controls (n=41) was performed using 1H nuclear magnetic resonance (NMR) together with multivariate statistical analyses. Excellent separation was obtained between CRC patients and normal controls, and CRC patients were also perfectly classified according to lymph node metastasis. Forty‑two distinguishing metabolites were identified, which revealed disturbance of glycolysis, glutaminolysis, fatty acid metabolism, choline metabolism and amino acids, suggesting that cellular functions in energy production, macromolecular synthesis, oxidative stress and immune escape of cancer cells are affected in CRC. In total, 10 tissue metabolites were significantly disturbed between non‑metastatic and metastatic CRC patients. The present study firstly staged CRC patients by lymph node metastasis by metabolomic approach. The identified metabolites may be associated with the neoplasia, invasion and metastasis of the tumor. The results suggest the promising application of these metabolites in clinical therapy, and further understanding of the related mechanism warrants further investigation.

  10. Robust algorithms for automated chemical shift calibration of 1D 1H NMR spectra of blood serum.

    PubMed

    Pearce, Jake T M; Athersuch, Toby J; Ebbels, Timothy M D; Lindon, John C; Nicholson, Jeremy K; Keun, Hector C

    2008-09-15

    In biofluid NMR spectroscopy, the frequency of each resonance is typically calibrated by addition of a reference compound such as 3-(trimethylsilyl)-propionic acid- d 4 (TSP) to the sample. However biofluids such as serum cannot be referenced to TSP, due to shifts resonance caused by binding to macromolecules in solution. In order to overcome this limitation we have developed algorithms, based on analysis of derivative spectra, to locate and calibrate (1)H NMR spectra to the alpha-glucose anomeric doublet. We successfully used these algorithms to calibrate 77 serum (1)H NMR spectra and demonstrate the greater reproducibility of the calculated chemical-shift corrections ( r = 0.97) than those generated by manual alignment ( r = 0.8-0.88). Hence we show that these algorithms provide robust and reproducible methods of calibrating (1)H NMR of serum, plasma, or any biofluid in which glucose is abundant. Precise automated calibration of complex biofluid NMR spectra is an important tool in large-scale metabonomic or metabolomic studies, where hundreds or even thousands of spectra may be analyzed in high-resolution by pattern recognition analysis.

  11. Metabolomic profiling of plant tissues.

    PubMed

    Rambla, José L; López-Gresa, M P; Bellés, J M; Granell, Antonio

    2015-01-01

    Metabolomics is a powerful discipline aimed at a comprehensive and global analysis of the metabolites present in a cell, tissue, or organism, and to which increasing attention has been paid in the last few years. Given the high diversity in physical and chemical properties of plant metabolites, not a single method is able to analyze them all.Here we describe two techniques for the profiling of two quite different groups of metabolites: polar and semi-polar secondary metabolites, including many of those involved in plant response to biotic and abiotic stress, and volatile compounds, which include those responsible of most of our perception of food flavor. According to these techniques, polar and semi-polar metabolites are extracted in methanol, separated by liquid chromatography (UPLC), and detected by a UV-VIS detector (PDA) and a time-of-flight (ToF) mass spectrometer. Volatile compounds, on the other hand, are extracted by headspace solid phase microextraction (HS-SPME), and separated and detected by gas chromatography coupled to mass spectrometry (GC-MS).

  12. The metabolomics of oxidative stress.

    PubMed

    Noctor, Graham; Lelarge-Trouverie, Caroline; Mhamdi, Amna

    2015-04-01

    Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.

  13. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    PubMed

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms.

  14. Non-targeted and targeted metabolomics approaches to diagnosing lung cancer and predicting patient prognosis

    PubMed Central

    Zhang, Xiaoli; Zhu, Xinyue; Wang, Caihong; Zhang, Haixia; Cai, Zhiming

    2016-01-01

    Lung cancer is the most common cause of cancer death in China. We characterized metabolic alterations in lung cancer using two analytical platforms: a non-targeted metabolic profiling strategy based on proton nuclear magnetic resonance (1H-NMR) spectroscopy and a targeted metabolic profiling strategy based on rapid resolution liquid chromatography (RRLC). Changes in serum metabolite levels during oncogenesis were evaluated in 25 stage I lung cancer patients and matched healthy controls. We identified 25 metabolites that were differentially regulated between the lung cancer patients and matched controls. Of those, 16 were detected using the non-targeted approach and 9 were identified using the targeted approach. Both groups of metabolites could differentiate between lung cancer patients and healthy controls with 100% sensitivity and specificity. The principal metabolic alternations in lung cancer included changes in glycolysis, lipid metabolism, choline phospholipid metabolism, one-carbon metabolism, and amino acid metabolism. The targeted metabolomics approach was more sensitive, accurate, and specific than the non-targeted metabolomics approach. However, our data suggest that both metabolomics strategies could be used to detect early-stage lung cancer and predict patient prognosis. PMID:27566571

  15. Integrated Metabolomics Study of the Milk of Heat-stressed Lactating Dairy Cows

    PubMed Central

    Tian, He; Zheng, Nan; Wang, Weiyu; Cheng, Jianbo; Li, Songli; Zhang, Yangdong; Wang, Jiaqi

    2016-01-01

    Heat stress (HS) damages the global dairy industry by reducing milk yields and quality, harming health, and damaging the reproduction of dairy cows, causing huge economic losses each year. However, an understanding of the physiological mechanism of HS lactating dairy cows remains elusive. Here, a metabolomics study using LC-MS and 1H NMR spectroscopy was performed to analyze the metabolomic differences in the milk between HS-free and HS dairy cows, and discover diagnostic biomarkers and changes in the metabolic pathway. A total of 53 discriminating metabolites were significantly up- or down-regulated in the HS group compared with the HS-free group (P < 0.05). These biomarkers were involved in pathways of carbohydrate, amino acid, lipid, and gut microbiome-derived metabolism. Comparing these potential biomarkers with previously identified HS candidate biomarkers in plasma, significant correlations between the levels of lactate, pyruvate, creatine, acetone, β-hydroxybutyrate, trimethylamine, oleic acid, linoleic acid, lysophosphatidylcholine 16:0, and phosphatidylcholine 42:2 in milk and plasma were found, indicating that the blood-milk barrier became leaky and the levels of these 10 biomarkers in milk can reflect HS-induced metabolomic alterations in blood. These novel findings can support more in-depth research to elucidate the milk-based changes in metabolic pathways in HS lactating dairy cows. PMID:27048914

  16. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    PubMed

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as (1)H, (13)C, (31)P, (19)F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  17. Proteomics and metabolomics in inflammatory bowel disease.

    PubMed

    Yau, Yunki; Leong, Rupert W; Zeng, Ming; Wasinger, Valerie C

    2013-07-01

    Genome-wide studies in inflammatory bowel disease (IBD) have allowed us to understand Crohn's disease and ulcerative colitis as forms of related autoinflammatory disorders that arise from a multitude of pathogenic origins. Proteomics and metabolomics are the offspring of genomics that possess unprecedented possibilities to characterize unknown pathogenic pathways. It has been about a decade since proteomics was first applied to IBD, and 5 years for metabolomics. These techniques have yielded novel and potentially important findings, but turning these results into beneficial patient outcomes remains challenging. This review recounts the history and context of clinical IBD developments before and after proteomics and metabolomics IBD in this field, discusses the challenges in consolidating high complexity data with physiological understanding, and provides an outlook on the emerging principles that will help interface the bioanalytical laboratory with IBD prognosis.

  18. [Metabolomics analysis of taxadiene producing yeasts].

    PubMed

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  19. Microbiome, Metabolome and Inflammatory Bowel Disease

    PubMed Central

    Ahmed, Ishfaq; Roy, Badal C.; Khan, Salman A.; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis. PMID:27681914

  20. Metabolomics to Explore Impact of Dairy Intake.

    PubMed

    Zheng, Hong; Clausen, Morten R; Dalsgaard, Trine K; Bertram, Hanne C

    2015-06-17

    Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health.

  1. Metabolomics in rheumatic diseases: desperately seeking biomarkers

    PubMed Central

    Guma, Monica; Tiziani, Stefano; Firestein, Gary S.

    2016-01-01

    Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping our understanding of cell biology, physiology and medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-mediated diseases. PMID:26935283

  2. Metabolomic change precedes apple superficial scald symptoms.

    PubMed

    Rudell, David R; Mattheis, James P; Hertog, Maarten L A T M

    2009-09-23

    Untargeted metabolic profiling was employed to characterize metabolomic changes associated with 'Granny Smith' apple superficial scald development following 1-MCP or DPA treatment. Partial least-squares discriminant analyses were used to link metabolites with scald, postharvest treatments, and storage duration. Models revealed metabolomic differentiation between untreated controls and fruit treated with DPA or 1-MCP within 1 week following storage initiation. Metabolic divergence between controls and DPA-treated fruit after 4 weeks of storage preceded scald symptom development by 2 months. alpha-Farnesene oxidation products with known associations to scald, including conjugated trienols, 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-ol, were associated with presymptomatic as well as scalded control fruit. Likewise, a large group of putative triterpenoids with mass spectral features similar to those of ursolic acid and beta-sitosterol were associated with control fruit and scald. Results demonstrate that extensive metabolomic changes associated with scald precede actual symptom development.

  3. Metabolomics, a Powerful Tool for Agricultural Research

    PubMed Central

    Tian, He; Lam, Sin Man; Shui, Guanghou

    2016-01-01

    Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity. PMID:27869667

  4. Metabolomics in rheumatic diseases: desperately seeking biomarkers.

    PubMed

    Guma, Monica; Tiziani, Stefano; Firestein, Gary S

    2016-05-01

    Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping our understanding of cell biology, physiology and medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-mediated diseases.

  5. Linking metabolomics data to underlying metabolic regulation

    PubMed Central

    Nägele, Thomas

    2014-01-01

    The comprehensive experimental analysis of a metabolic constitution plays a central role in approaches of organismal systems biology. Quantifying the impact of a changing environment on the homeostasis of cellular metabolism has been the focus of numerous studies applying various metabolomics techniques. It has been proven that approaches which integrate different analytical techniques, e.g., LC-MS, GC-MS, CE-MS and H-NMR, can provide a comprehensive picture of a certain metabolic homeostasis. Identification of metabolic compounds and quantification of metabolite levels represent the groundwork for the analysis of regulatory strategies in cellular metabolism. This significantly promotes our current understanding of the molecular organization and regulation of cells, tissues and whole organisms. Nevertheless, it is demanding to elicit the pertinent information which is contained in metabolomics data sets. Based on the central dogma of molecular biology, metabolite levels and their fluctuations are the result of a directed flux of information from gene activation over transcription to translation and posttranslational modification. Hence, metabolomics data represent the summed output of a metabolic system comprising various levels of molecular organization. As a consequence, the inverse assignment of metabolomics data to underlying regulatory processes should yield information which—if deciphered correctly—provides comprehensive insight into a metabolic system. Yet, the deduction of regulatory principles is complex not only due to the high number of metabolic compounds, but also because of a high level of cellular compartmentalization and differentiation. Motivated by the question how metabolomics approaches can provide a representative view on regulatory biochemical processes, this article intends to present and discuss current metabolomics applications, strategies of data analysis and their limitations with respect to the interpretability in context of

  6. The Karlsruhe Metabolomics and Nutrition (KarMeN) Study: Protocol and Methods of a Cross-Sectional Study to Characterize the Metabolome of Healthy Men and Women

    PubMed Central

    Kriebel, Anita; Dörr, Claudia; Bandt, Susanne; Rist, Manuela; Roth, Alexander; Hummel, Eva; Kulling, Sabine; Hoffmann, Ingrid; Watzl, Bernhard

    2016-01-01

    Background The human metabolome is influenced by various intrinsic and extrinsic factors. A precondition to identify such biomarkers is the comprehensive understanding of the composition and variability of the metabolome of healthy humans. Sample handling aspects have an important impact on the composition of the metabolome; therefore, it is crucial for any metabolomics study to standardize protocols on sample collection, preanalytical sample handling, storage, and analytics to keep the nonbiological variability as low as possible. Objective The main objective of the KarMeN study is to analyze the human metabolome in blood and urine by targeted and untargeted metabolite profiling (gas chromatography-mass spectrometry [GC-MS], GC×GC-MS, liquid chromatography-mass spectrometry [LC-MS/MS], and1H nuclear magnetic resonance [NMR] spectroscopy) and to determine the impact of sex, age, body composition, diet, and physical activity on metabolite profiles of healthy women and men. Here, we report the outline of the study protocol with special regard to all aspects that should be considered in studies applying metabolomics. Methods Healthy men and women, aged 18 years or older, were recruited. In addition to a number of anthropometric (height, weight, body mass index, waist circumference, body composition), clinical (blood pressure, electrocardiogram, blood and urine clinical chemistry) and functional parameters (lung function, arterial stiffness), resting metabolic rate, physical activity, fitness, and dietary intake were assessed, and 24-hour urine, fasting spot urine, and plasma samples were collected. Standard operating procedures were established for all steps of the study design. Using different analytical techniques (LC-MS, GC×GC-MS,1H NMR spectroscopy), metabolite profiles of urine and plasma were determined. Data will be analyzed using univariate and multivariate as well as predictive modeling methods. Results The project was funded in 2011 and enrollment was

  7. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis

    PubMed Central

    Gu, Jinping; Hu, Xiaomin; Shao, Wei; Ji, Tianhai; Yang, Wensheng; Zhuo, Huiqin; Jin, Zeyu; Huang, Huiying; Chen, Jiacheng; Huang, Caihua; Lin, Donghai

    2016-01-01

    Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. Alterations in metabolic pathways are inextricably linked to GC progression. However, the underlying molecular mechanisms remain elusive. We performed NMR-based metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, revealed significantly altered metabolic pathways correlated with the progression of gastric carcinogenesis. Rats were histologically classified into four pathological groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, HGD; GC) and the normal control group (CON). The metabolic profiles of the five groups were clearly distinguished from each other. Furthermore, significant inter-metabolite correlations were extracted and used to reconstruct perturbed metabolic networks associated with the four pathological stages compared with the normal stage. Then, significantly altered metabolic pathways were identified by pathway analysis. Our results showed that oxidative stress-related metabolic pathways, choline phosphorylation and fatty acid degradation were continually disturbed during gastric carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in gastric dysplasia and GC. The GC stage showed more changed metabolite levels and more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine and threonine metabolism) substantially contributed to the metabolic alterations in GC. These results lay the basis for addressing the molecular mechanisms underlying gastric carcinogenesis and extend our understanding of GC progression. PMID:27527852

  8. Stable Isotope Resolved Metabolomics Analysis of Ribonucleotide and RNA Metabolism in Human Lung Cancer Cells.

    PubMed

    Fan, Teresa W-M; Tan, Jinlian; McKinney, Martin M; Lane, Andrew N

    2012-06-01

    We have developed a simple NMR-based method to determine the turnover of nucleotides and incorporation into RNA by stable isotope resolved metabolomics (SIRM) in A549 lung cancer cells. This method requires no chemical degradation of the nucleotides or chromatography. During cell growth, the free ribonucleotide pool is rapidly replaced by de novo synthesized nucleotides. Using [U-(13)C]-glucose and [U-(13)C,(15)N]-glutamine as tracers, we showed that virtually all of the carbons in the nucleotide riboses were derived from glucose, whereas glutamine was preferentially utilized over glucose for pyrimidine ring biosynthesis, via the synthesis of Asp through the Krebs cycle. Incorporation of the glutamine amido nitrogen into the N3 and N9 positions of the purine rings was also demonstrated by proton-detected (15)N NMR. The incorporation of (13)C from glucose into total RNA was measured and shown to be a major sink for the nucleotides during cell proliferation. This method was applied to determine the metabolic action of an anti-cancer selenium agent (methylseleninic acid or MSA) on A549 cells. We found that MSA inhibited nucleotide turnover and incorporation into RNA, implicating an important role of nucleotide metabolism in the toxic action of MSA on cancer cells.

  9. NMR Metabolomics Show Evidence for Mitochondrial Oxidative Stress in a Mouse Model of Polycystic Ovary Syndrome.

    PubMed

    Selen, Ebru Selin; Bolandnazar, Zeinab; Tonelli, Marco; Bütz, Daniel E; Haviland, Julia A; Porter, Warren P; Assadi-Porter, Fariba M

    2015-08-07

    Polycystic ovary syndrome (PCOS) is associated with metabolic and endocrine disorders in women of reproductive age. The etiology of PCOS is still unknown. Mice prenatally treated with glucocorticoids exhibit metabolic disturbances that are similar to those seen in women with PCOS. We used an untargeted nuclear magnetic resonance (NMR)-based metabolomics approach to understand the metabolic changes occurring in the plasma and kidney over time in female glucocorticoid-treated (GC-treated) mice. There are significant changes in plasma amino acid levels (valine, tyrosine, and proline) and their intermediates (2-hydroxybutyrate, 4-aminobutyrate, and taurine), whereas in kidneys, the TCA cycle metabolism (citrate, fumarate, and succinate) and the pentose phosphate (PP) pathway products (inosine and uracil) are significantly altered (p < 0.05) from 8 to 16 weeks of age. Levels of NADH, NAD(+), NAD(+)/NADH, and NADH redox in kidneys indicate increased mitochondrial oxidative stress from 8 to 16 weeks in GC-treated mice. These results indicate that altered metabolic substrates in the plasma and kidneys of treated mice are associated with altered amino acid metabolism, increased cytoplasmic PP, and increased mitochondrial activity, leading to a more oxidized state. This study identifies biomarkers associated with metabolic dysfunction in kidney mitochondria of a prenatal gluococorticoid-treated mouse model of PCOS that may be used as early predictive biomarkers of oxidative stress in the PCOS metabolic disorder in women.

  10. The Intervention Effects of Acupuncture on Fatigue Induced by Exhaustive Physical Exercises: A Metabolomics Investigation

    PubMed Central

    Ma, Haifeng; Liu, Xia; Wu, Ying; Zhang, Naixia

    2015-01-01

    In this study, the antifatigue effects of acupuncture had been investigated at the metabolic level on the young male athletes with exhaustive physical exercises. After a series of exhaustive physical exercises and a short-term rest, the athletes either were treated with needling acupuncture on selected acupoints (TA group) or enjoyed an extended rest (TR group). NMR-based metabolomics analysis was then applied to depict the metabolic profiles of urine samples, which were collected from the athletes at three time points including the time before exercises, the time before and after the treatment of acupuncture, or taking the extended rest. The results from multivariate statistical analysis indicated that the recoveries of disturbed metabolites in the athletes treated with acupuncture were significantly faster than in those only taking rest. After the treatment with acupuncture, the levels of distinguished metabolites, 2-hydroxybutyrate, 3-hydroxyisovalerate, lactate, pyruvate, citrate, dimethylglycine, choline, glycine, hippurate, and hypoxanthine were recovered at an accelerated speed in the TA group in comparison with the TR group. The above-mentioned results indicated that the acupuncture treatment ameliorated fatigue by backregulating the perturbed energy metabolism, choline metabolism, and attenuating the ROS-induced stress at an accelerated speed, which demonstrated that acupuncture could serve as an alternative fatigue-relieving approach. PMID:26442121

  11. The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar).

    PubMed

    Kullgren, Andreas; Jutfelt, Fredrik; Fontanillas, Ramon; Sundell, Kristina; Samuelsson, Linda; Wiklander, Kerstin; Kling, Peter; Koppe, Wolfgang; Larsson, D G Joakim; Björnsson, Björn Thrandur; Jönsson, Elisabeth

    2013-01-01

    The aim was to elucidate the effects of elevated temperature on growth performance, growth- and appetite-regulating hormones and metabolism in Atlantic salmon, Salmo salar. Post-smolts in seawater (average mass 175g) that had been reared at 12°C were kept at three temperatures (8, 12 and 18°C) and sampled after one and three months. After three months, the fish kept in 18°C had decreased growth rate and condition factor, and elevated plasma levels of growth hormone (GH) and leptin, compared with fish kept at the lower temperatures. Food conversion efficiency was also decreased at 18°C, while at the same time protein uptake was improved and thus was not a limiting mechanism for growth. Redistribution of energy stores in fish at the highest temperature is evident as a preference of maintaining length growth during times of limited energy availability. NMR-based metabolomics analyses of plasma revealed that several metabolites involved in energy metabolism were negatively affected by temperature in the upper temperature range of Atlantic salmon. Specifically, the high temperature induced a decline of several amino acids (glutamine, tyrosine and phenylalanine) and a shift in lipid metabolism. It appears likely that the decreased food intake at the highest temperature is linked to an anorexigenic function of leptin, but also that the decreased food intake, feed conversion efficiency and condition factor can be linked to changes in GH endocrinology.

  12. Computational Metabolomics: A Framework for the Million Metabolome

    PubMed Central

    Uppal, Karan; Walker, Douglas I.; Liu, Ken; Li, Shuzhao; Go, Young-Mi; Jones, Dean P.

    2017-01-01

    “Sola dosis facit venenum.” These words of Paracelsus, “the dose makes the poison”, can lead to a cavalier attitude concerning potential toxicities of the vast array of low abundance environmental chemicals to which humans are exposed. Exposome research teaches that 80–85% of human disease is linked to environmental exposures. The human exposome is estimated to include >400,000 environmental chemicals, most of which are uncharacterized with regard to human health. In fact, mass spectrometry measures >200,000 m/z features (ions) in microliter volumes derived from human samples; most are unidentified. This crystallizes a grand challenge for chemical research in toxicology: to develop reliable and affordable analytical methods to understand health impacts of the extensive human chemical experience. To this end, there appears to be no choice but to abandon the limitations of measuring one chemical at a time. The present review looks at progress in computational metabolomics to provide probability based annotation linking ions to known chemicals and serve as a foundation for unambiguous designation of unidentified ions for toxicologic study. We review methods to characterize ions in terms of accurate mass m/z, chromatographic retention time, correlation of adduct, isotopic and fragment forms, association with metabolic pathways and measurement of collision-induced dissociation products, collision cross section, and chirality. Such information can support a largely unambiguous system for documenting unidentified ions in environmental surveillance and human biomonitoring. Assembly of this data would provide a resource to characterize and understand health risks of the array of low-abundance chemicals to which humans are exposed. PMID:27629808

  13. Metabolomics in bladder cancer: a systematic review

    PubMed Central

    Cheng, Yidong; Yang, Xiao; Deng, Xiaheng; Zhang, Xiaolei; Li, Pengchao; Tao, Jun; Qin, Chao; Wei, Jifu; Lu, Qiang

    2015-01-01

    Bladder cancer (BC) is the most common urological malignancy. Early diagnosis of BC is crucial to improve patient outcomes. Currently, metabolomics is a potential technique that can be used to detect BC. We reviewed current publications and synthesised the findings on BC and metabolomics, i.e. metabolite upregulation and downregulation. Fourteen metabolites (lactic acid, leucine, valine, phenylalanine, glutamate, histidine, aspartic acid, tyrosine, serine, uracil, hypoxanthine, carnitine, pyruvic acid and citric acid) were identified as potential biomarkers for BC. In conclusion, this systematic review presents new opportunities for the diagnosis of BC. PMID:26379905

  14. Metabolomic analysis of sun exposed skin.

    PubMed

    Randhawa, Manpreet; Southall, Michael; Samaras, Samantha Tucker

    2013-08-01

    It is very well known that exposure of skin to sun chronically accelerates the mechanism of aging as well as making it more susceptible toward skin cancer. This aspect of aging has been studied very well through genomics and proteomics tools. In this study we have used a metabolomic approach for the first time to determine the differences in the metabolome from full thickness skin biopsies from sun exposed and sun protected sites. We have primarily investigated the energy metabolism and the oxidative pathway in sun exposed skin. Biochemical pathway analysis revealed that energy metabolism in photoexposed skin is predominantly anaerobic. The study also validated the increased oxidative stress in skin.

  15. Multi-Platform Metabolomic Analyses of Ergosterol-Induced Dynamic Changes in Nicotiana tabacum Cells

    PubMed Central

    Tugizimana, Fidele; Steenkamp, Paul A.; Piater, Lizelle A.; Dubery, Ian A.

    2014-01-01

    Metabolomics is providing new dimensions into understanding the intracellular adaptive responses in plants to external stimuli. In this study, a multi-technology-metabolomic approach was used to investigate the effect of the fungal sterol, ergosterol, on the metabolome of cultured tobacco cells. Cell suspensions were treated with different concentrations (0–1000 nM) of ergosterol and incubated for different time periods (0–24 h). Intracellular metabolites were extracted with two methods: a selective dispersive liquid-liquid micro-extraction and a general methanol extraction. Chromatographic techniques (GC-FID, GC-MS, GC×GC-TOF-MS, UHPLC-MS) and 1H NMR spectroscopy were used for quantitative and qualitative analyses. Multivariate data analyses (PCA and OPLS-DA models) were used to extract interpretable information from the multidimensional data generated from the analytical techniques. The results showed that ergosterol triggered differential changes in the metabolome of the cells, leading to variation in the biosynthesis of secondary metabolites. PCA scores plots revealed dose- and time-dependent metabolic variations, with optimal treatment conditions being found to be 300 nM ergosterol and an 18 h incubation period. The observed ergosterol-induced metabolic changes were correlated with changes in defence-related metabolites. The ‘defensome’ involved increases in terpenoid metabolites with five antimicrobial compounds (the bicyclic sesquiterpenoid phytoalexins: phytuberin, solavetivone, capsidiol, lubimin and rishitin) and other metabolites (abscisic acid and phytosterols) putatively identified. In addition, various phenylpropanoid precursors, cinnamic acid derivatives and - conjugates, coumarins and lignin monomers were annotated. These annotated metabolites revealed a dynamic reprogramming of metabolic networks that are functionally correlated, with a high complexity in their regulation. PMID:24498209

  16. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics.

    PubMed

    McClenathan, Bruce M; Stewart, Delisha A; Spooner, Christina E; Pathmasiri, Wimal W; Burgess, Jason P; McRitchie, Susan L; Choi, Y Sammy; Sumner, Susan C J

    2017-03-01

    An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using (1)H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers.

  17. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics.

    PubMed

    Luck, Margaux M; Le Moyec, Laurence; Barrey, Eric; Triba, Mohamed N; Bouchemal, Nadia; Savarin, Philippe; Robert, Céline

    2015-01-01

    Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old) can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear Magnetic Resonance (NMR) spectrometry with supervised Orthogonal Projection on Latent Structure (OPLS) statistical analysis. (1)H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition). The spectra obtained before and after the race from the same horse (92 samples) were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y = 0.947, Q2Y = 0.856 and cros-validated ANOVA p < 0.001). For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p < 0.001). The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race.

  18. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics

    PubMed Central

    Luck, Margaux M.; Le Moyec, Laurence; Barrey, Eric; Triba, Mohamed N.; Bouchemal, Nadia; Savarin, Philippe; Robert, Céline

    2015-01-01

    Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old) can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear Magnetic Resonance (NMR) spectrometry with supervised Orthogonal Projection on Latent Structure (OPLS) statistical analysis. 1H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition). The spectra obtained before and after the race from the same horse (92 samples) were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y = 0.947, Q2Y = 0.856 and cros-validated ANOVA p < 0.001). For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p < 0.001). The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race. PMID:26347654

  19. The impact of free or standardized lifestyle and urine sampling protocol on metabolome recognition accuracy.

    PubMed

    Wallner-Liebmann, Sandra; Gralka, Ewa; Tenori, Leonardo; Konrad, Manuela; Hofmann, Peter; Dieber-Rotheneder, Martina; Turano, Paola; Luchinat, Claudio; Zatloukal, Kurt

    2015-01-01

    Urine contains a clear individual metabolic signature, although embedded within a large daily variability. Given the potential of metabolomics to monitor disease onset from deviations from the "healthy" metabolic state, we have evaluated the effectiveness of a standardized lifestyle in reducing the "metabolic" noise. Urine was collected from 24 (5 men and 19 women) healthy volunteers over a period of 10 days: phase I, days 1-7 in a real-life situation; phase II, days 8-10 in a standardized diet and day 10 plus exercise program. Data on dietary intake and physical activity have been analyzed by a nation-specific software and monitored by published protocols. Urine samples have been analyzed by (1)H NMR followed by multivariate statistics. The individual fingerprint emerged and consolidated with increasing the number of samples and reaches ~100 % cross-validated accuracy for about 40 samples. Diet standardization reduced both the intra-individual and the interindividual variability; the effect was due to a reduction in the dispersion of the concentration values of several metabolites. Under standardized diet, however, the individual phenotype was still clearly visible, indicating that the individual's signature was a strong feature of the metabolome. Consequently, cohort studies designed to investigate the relation of individual metabolic traits and nutrition require multiple samples from each participant even under highly standardized lifestyle conditions in order to exploit the analytical potential of metabolomics. We have established criteria to facilitate design of urine metabolomic studies aimed at monitoring the effects of drugs, lifestyle, dietary supplements, and for accurate determination of signatures of diseases.

  20. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data

    PubMed Central

    Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara J.; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.

    2016-01-01

    The study of metabolism has had a long history. Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. The National Institutes of Health Common Fund Metabolomics Program was established in 2012 to stimulate interest in the approaches and technologies of metabolomics. To deliver one of the program’s goals, the University of Alabama at Birmingham has hosted an annual 4-day short course in metabolomics for faculty, postdoctoral fellows and graduate students from national and international institutions. This paper is the first part of a summary of the training materials presented in the course to be used as a resource for all those embarking on metabolomics research. PMID:27434804

  1. Teaching 1H NMR Spectrometry Using Computer Modeling.

    ERIC Educational Resources Information Center

    Habata, Yoichi; Akabori, Sadatoshi

    2001-01-01

    Molecular modeling by computer is used to display stereochemistry, molecular orbitals, structure of transition states, and progress of reactions. Describes new ideas for teaching 1H NMR spectroscopy using computer modeling. (Contains 12 references.) (ASK)

  2. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  3. Automated quantum mechanical total line shape fitting model for quantitative NMR-based profiling of human serum metabolites.

    PubMed

    Mihaleva, Velitchka V; Korhonen, Samuli-Petrus; van Duynhoven, John; Niemitz, Mathias; Vervoort, Jacques; Jacobs, Doris M

    2014-05-01

    An automated quantum mechanical total line shape (QMTLS) fitting model was implemented for quantitative nuclear magnetic resonance (NMR)-based profiling of 42 metabolites in ultrafiltrated human serum samples. Each metabolite was described by a set of chemical shifts, J-couplings, and line widths. These parameters were optimized for each metabolite in each sample by iteratively minimizing the difference between the calculated and the experimental spectrum. In total, 92.0 to 98.1 % of the signal intensities in the experimental spectrum could be explained by the calculated spectrum. The model was validated by comparison to signal integration of metabolites with isolated signals and by means of standard additions. Metabolites present at average concentration higher than 50 μM were quantified with average absolute relative error less than 10 % when using different initial parameters for the fitting procedure. Furthermore, the biological applicability of the QMTLS model was demonstrated on 287 samples from an intervention study in 37 human volunteers undergoing an exercise challenge. Our automated QMTLS model was able to cope with the large dynamic range of metabolite concentrations in serum and proved to be suitable for high-throughput analysis.

  4. Metabolomic Approaches for Characterizing Aquatic Ecosystems

    EPA Science Inventory

    Metabolomics is becoming a well-established tool for studying how organisms, such as fish, respond to various stressors. For example, the literature is rich with laboratory studies involving analysis of samples from organisms exposed to individual chemical toxicants. These studie...

  5. Microbial metabolomics in open microscale platforms

    PubMed Central

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  6. Cellular Metabolomics for Exposure and Toxicity Assessment

    EPA Science Inventory

    We have developed NMR automation and cell quench methods for cell culture-based metabolomics to study chemical exposure and toxicity. Our flow automation method is robust and free of cross contamination. The direct cell quench method is rapid and effective. Cell culture-based met...

  7. Lessons learned from metabolomics in cystic fibrosis.

    PubMed

    Muhlebach, Marianne S; Sha, Wei

    2015-12-01

    Cystic fibrosis is a mono-genetic multi-system disease; however, respiratory manifestations cause the main morbidity and mortality where chronic bacterial infections lead to bronchiectasis and ultimately respiratory failure. Metabolomics allows a relatively complete snapshot of metabolic processes in a sample using different mass spectrometry methods. Sample types used for discovery of biomarkers or pathomechanisms in cystic fibrosis (CF) have included blood, respiratory secretions, and exhaled breath to date. Metabolomics has shown distinction of CF vs. non-CF for matrices of blood, exhaled breath, and respiratory epithelial cultures, each showing different pathways. Severity of lung disease has been addressed by studies in bronchoalveolar lavage and exhaled breath condensate showing separation by metabolites that the authors of each study related to inflammation; e.g., ethanol, acetone, purines. Lipidomics has been applied to blood and sputum samples showing associations with lung function and Pseudomonas aeruginosa infection status. Finally, studies of bacteria grown in vitro showed differences of bacterial metabolites to be associated with clinical parameters. Metabolomics, in the sense of global metabolomic profiling, is a powerful technique that has allowed discovery of pathways that had not previously been implicated in CF. These may include purines, mitochondrial pathways, and different aspects of glucose metabolism besides the known differences in lipid metabolism in CF. However, targeted studies to validate such potential metabolites and pathways of interest are necessary. Studies evaluating metabolites of bacterial origin are in their early stages. Thus further well-designed studies could be envisioned.

  8. Metabolomics in the study of kidney diseases.

    PubMed

    Weiss, Robert H; Kim, Kyoungmi

    2011-10-25

    Metabolomics--the nontargeted measurement of all metabolites produced by the body--is beginning to show promise in both biomarker discovery and, in the form of pharmacometabolomics, in aiding the choice of therapy for patients with specific diseases. In its two basic forms (pattern recognition and metabolite identification), this developing field has been used to discover potential biomarkers in several renal diseases, including acute kidney injury (attributable to a variety of causes), autosomal dominant polycystic kidney disease and kidney cancer. NMR and gas chromatography or liquid chromatography, together with mass spectrometry, are generally used to separate and identify metabolites. Many hurdles need to be overcome in this field, such as achieving consistency in collection of biofluid samples, controlling for batch effects during the analysis and applying the most appropriate statistical analysis to extract the maximum amount of biological information from the data obtained. Pathway and network analyses have both been applied to metabolomic analysis, which vastly extends its clinical relevance and effects. In addition, pharmacometabolomics analyses, in which a metabolomic signature can be associated with a given therapeutic effect, are beginning to appear in the literature, which will lead to personalized therapies. Thus, metabolomics holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in kidney disease.

  9. Metabolomic Change Precedes Apple Superficial Scald Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling of 621 metabolites was employed to characterize metabolomic changes associated with ‘Granny Smith’ apple superficial scald development following 1-MCP or DPA treatment. Partial least squares-discriminant analyses were used to link metabolites with scald, postharvest treatments, ...

  10. (1)H NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese).

    PubMed

    Picone, Gianfranco; Trimigno, Alessia; Tessarin, Paola; Donnini, Silvia; Rombolà, Adamo Domenico; Capozzi, Francesco

    2016-12-15

    The increasing demand for natural foods and beverages, i.e. prepared by excluding synthetic chemicals along the whole production chain, has boosted the adoption of organic and biodynamic cultivation methods which are based on protocols avoiding use of synthetic pesticides. This trend is striking in viticulture, since wine production is largely shaped by the varying drinking attitudes of environment-friendly consumers. Using (1)H NMR, the compositions of grape berries, collected at harvest in 2009 and 2011, in experimental plots cultivated either with biodynamic or organic methods, were compared. Although the analysis provides a comprehensive metabolic profile of berries, the resulting distinctive pattern consists of a few molecules. Lower content of sugars, coumaric and caffeic acids, as well as higher amount of γ-aminobutyric acid (GABA) were observed in biodynamic grapes. The (1)H NMR foodomics approach evidenced a diverse fruit metabolome that could be associated to a different physiological response of plants to the agronomic environment.

  11. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  12. Syntheses, structures, and 1H, 13C{1H} and 119Sn{1H} NMR chemical shifts of a family of trimethyltin alkoxide, amide, halide and cyclopentadienyl compounds

    DOE PAGES

    Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; ...

    2015-08-21

    The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data (1H, 13C{1H} and 119Sn{1H}), for a series of Me3SnX (X = O-2,6-tBu2C6H3 (1), (Me3Sn)N(2,6-iPr2C6H3) (3), NH-2,4,6-tBu3C6H2 (4), N(SiMe3)2 (5), NEt2, C5Me5 (6), Cl, Br, I, and SnMe3) compounds in benzene-d6, toluene-d8, dichloromethane-d2, chloroform-d1, acetonitrile-d3, and tetrahydrofuran-d8 are reported. The X-ray crystal structures of Me3Sn(O-2,6-tBu2C6H3) (1), Me3Sn(O-2,6-iPr2C6H3) (2), and (Me3Sn)(NH-2,4,6-tBu3C6H2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.

  13. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative (1)H NMR Metabonomic Study.

    PubMed

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied (1)H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  14. Combined Transcriptomic–1H NMR Metabonomic Study Reveals That Monoethylhexyl Phthalate Stimulates Adipogenesis and Glyceroneogenesis in Human Adipocytes

    PubMed Central

    2011-01-01

    Adipose tissue is a major storage site for lipophilic environmental contaminants. The environmental metabolic disruptor hypothesis postulates that some pollutants can promote obesity or metabolic disorders by activating nuclear receptors involved in the control of energetic homeostasis. In this context, monoethylhexyl phthalate (MEHP) is of particular concern since it was shown to activate the peroxisome proliferator-activated receptor γ (PPARγ) in 3T3-L1 murine preadipocytes. In the present work, we used an untargeted, combined transcriptomic-1H NMR-based metabonomic approach to describe the overall effect of MEHP on primary cultures of human subcutaneous adipocytes differentiated in vitro. MEHP stimulated rapidly and selectively the expression of genes involved in glyceroneogenesis, enhanced the expression of the cytosolic phosphoenolpyruvate carboxykinase, and reduced fatty acid release. These results demonstrate that MEHP increased glyceroneogenesis and fatty acid reesterification in human adipocytes. A longer treatment with MEHP induced the expression of genes involved in triglycerides uptake, synthesis, and storage; decreased intracellular lactate, glutamine, and other amino acids; increased aspartate and NAD, and resulted in a global increase in triglycerides. Altogether, these results indicate that MEHP promoted the differentiation of human preadipocytes to adipocytes. These mechanisms might contribute to the suspected obesogenic effect of MEHP. PMID:22017230

  15. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  16. Present and foreseeable future of metabolomics in forensic analysis.

    PubMed

    Castillo-Peinado, L S; Luque de Castro, M D

    2016-06-21

    The revulsive publications during the last years on the precariousness of forensic sciences worldwide have promoted the move of major steps towards improvement of this science. One of the steps (viz. a higher involvement of metabolomics in the new era of forensic analysis) deserves to be discussed under different angles. Thus, the characteristics of metabolomics that make it a useful tool in forensic analysis, the aspects in which this omics is so far implicit, but not mentioned in forensic analyses, and how typical forensic parameters such as the post-mortem interval or fingerprints take benefits from metabolomics are critically discussed in this review. The way in which the metabolomics-forensic binomial succeeds when either conventional or less frequent samples are used is highlighted here. Finally, the pillars that should support future developments involving metabolomics and forensic analysis, and the research required for a fruitful in-depth involvement of metabolomics in forensic analysis are critically discussed.

  17. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy.

    PubMed

    Embade, Nieves; Mariño, Zoe; Diercks, Tammo; Cano, Ainara; Lens, Sabela; Cabrera, Diana; Navasa, Miquel; Falcón-Pérez, Juan M; Caballería, Joan; Castro, Azucena; Bosch, Jaume; Mato, José M; Millet, Oscar

    2016-01-01

    Several etiologies result in chronic liver diseases including chronic hepatitis C virus infection (HCV). Despite its high incidence and the severe economic and medical consequences, liver disease is still commonly overlooked due to the lack of efficient non-invasive diagnostic methods. While several techniques have been tested for the detection of fibrosis, the available biomarkers still present severe limitations that preclude their use in clinical diagnostics. Liver diseases have also been the subject of metabolomic analysis. Here, we demonstrate the suitability of 1H NMR spectroscopy for characterizing the metabolism of liver fibrosis induced by HCV. Serum samples from HCV patients without fibrosis or with liver cirrhosis were analyzed by NMR spectroscopy and the results were submitted to multivariate and univariate statistical analysis. PLS-DA test was able to discriminate between advanced fibrotic and non-fibrotic patients and several metabolites were found to be up or downregulated in patients with cirrhosis. The suitability of the most significantly regulated metabolites was validated by ROC analysis. Our study reveals that choline, acetoacetate and low-density lipoproteins are the most informative biomarkers for predicting cirrhosis in HCV patients. Our results demonstrate that statistical analysis of 1H-NMR spectra is able to distinguish between fibrotic and non-fibrotic patients suffering from HCV, representing a novel diagnostic application for NMR spectroscopy.

  18. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves.

    PubMed

    Lima, Marta R M; Diaz, Sílvia O; Lamego, Inês; Grusak, Michael A; Vasconcelos, Marta W; Gil, Ana M

    2014-06-06

    Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.

  19. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  20. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  1. Metabolomic Assessment of Key Maize Resources: GC-MS and NMR Profiling of Grain from B73 Hybrids of the Nested Association Mapping (NAM) Founders and of Geographically Diverse Landraces.

    PubMed

    Venkatesh, Tyamagondlu V; Chassy, Alexander W; Fiehn, Oliver; Flint-Garcia, Sherry; Zeng, Qin; Skogerson, Kirsten; Harrigan, George G

    2016-03-16

    The present study expands metabolomic assessments of maize beyond commercial lines to include two sets of hybrids used extensively in the scientific community. One set included hybrids derived from the nested association mapping (NAM) founder lines, a collection of 25 inbreds selected on the basis of genetic diversity and used to investigate the genetic basis of complex plant traits. A second set included 24 hybrids derived from a collection of landraces representative of native diversity from North and South America that may serve as a source of new alleles for improving modern maize hybrids. Metabolomic analysis of grain harvested from these hybrids utilized gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) techniques. Results highlighted extensive metabolomic variation in grain from both hybrid sets, but also demonstrated that, within each hybrid set, subpopulations could be differentiated in a pattern consistent with the known genetic and compositional variation of these lines. Correlation analysis did not indicate a strong association of the metabolomic data with grain nutrient composition, although some metabolites did show moderately strong correlations with agronomic features such as plant and ear height. Overall, this study provides insights into the extensive metabolomic diversity associated with conventional maize germplasm.

  2. 1H NMR to investigate metabolism and energy supply in rhesus macaque sperm.

    PubMed

    Lin, Ching-Yu; Hung, Pei-hsuan; VandeVoort, Catherine A; Miller, Marion G

    2009-07-01

    Sperm ATP is derived primarily from either glycolysis or mitochondrial oxidative phosphorylation. In the present studies, (1)H NMR spectroscopy was used to characterize the metabolite profile in primate sperm treated either with alpha-chlorohydrin (ACH), a known inhibitor of sperm glycolysis or pentachlorophenol (PCP), an uncoupler of oxidative phosphorylation. Sperm were collected from monkeys in the fall and spring, washed and incubated with either the media control, ACH (0.5mM) or PCP (50 microM). Using principal components analysis, PC1 scores plot indicated that the greatest level of variance was found between fall and spring samples and not chemical-treated samples. However, PC4 scores plot did show a consistent effect of ACH treatment. From the PC1 loadings plot, metabolites contributing to the seasonal differences were higher levels of formate in the fall and higher levels of carnitine and acetylcarnitine in the spring as well as possible differences in lipoprotein content. The PC4 loadings plot indicated that ACH treatment decreased lactate and ATP consistent with inhibition of glycolysis. Carnitine also was decreased and acetylcarnitine increased although the latter was not statistically significant. With PCP-treated sperm, no difference between control and treated samples could be discerned suggesting either that primate sperm are insensitive to uncoupling agents or that glycolysis played the more important role in maintaining sperm ATP levels. Overall, NMR studies may prove useful in the development of metabolomic markers that signal sperm metabolic impairments and have the potential to provide useful biomarkers for reproductive health.

  3. Plant single-cell and single-cell-type metabolomics.

    PubMed

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.

  4. The hepatic and skeletal muscle ovine metabolomes as affected by weight loss: a study in three sheep breeds using NMR-metabolomics

    PubMed Central

    Palma, Mariana; Scanlon, Tim; Kilminster, Tanya; Milton, John; Oldham, Chris; Greeff, Johan; Matzapetakis, Manolis; Almeida, André M.

    2016-01-01

    Sheep are a valuable resource for meat and wool production. During the dry summer, pastures are scarce and animals face Seasonal Weight Loss (SWL), which decreases production yields. The study of breeds tolerant to SWL is important to understand the physiological mechanisms of tolerance to nutritional scarcity, and define breeding strategies. Merino, Damara and Dorper sheep breeds have been described as having different levels of tolerance to SWL. In this work, we assess their liver and muscle metabolomes, and compare the responses to feed restriction. Ram lambs from each breed were divided into growth and feed restricted groups, over 42 days. Tissue metabolomes were assessed by 1H-NMR. The Dorper restricted group showed few changes in both tissues, suggesting higher tolerance to nutritional scarcity. The Merinos exhibited more differences between treatment groups. Major differences were related to fat and protein mobilization, and antioxidant activity. Between the Damara groups, the main differences were observed in amino acid composition in muscle and in energy-related pathways in the liver. Integration of present results and previous data on the same animals support the hypothesis that, Dorper and Damara breeds are more tolerant to SWL conditions and thus, more suitable breeds for harsh environmental conditions. PMID:27966615

  5. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    PubMed

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  6. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    PubMed Central

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  7. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  8. Nuclear receptor NR1H3 in familial multiple sclerosis

    PubMed Central

    Wang, Zhe; Sadovnick, A. Dessa; Traboulsee, Anthony L.; Ross, Jay P.; Bernales, Cecily Q.; Encarnacion, Mary; Yee, Irene M.; de Lemos, Madonna; Greenwood, Talitha; Lee, Joshua D.; Wright, Galen; Ross, Colin J.; Zhang, Si; Song, Weihong; Vilariño-Güell, Carles

    2016-01-01

    SUMMARY Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss and neuronal dysfunction. Despite the aggregation observed in some families, pathogenic mutations have remained elusive. In this study we describe the identification of NR1H3 p.Arg415Gln in seven MS patients from two multi-incident families presenting severe and progressive disease, with an average age at onset of 34 years. Additionally, association analysis of common variants in NR1H3 identified rs2279238 conferring a 1.35-fold increased risk of developing progressive MS. The p.Arg415Gln position is highly conserved in orthologs and paralogs, and disrupts NR1H3 heterodimerization and transcriptional activation of target genes. Protein expression analysis revealed that mutant NR1H3 (LXRA) alters gene expression profiles, suggesting a disruption in transcriptional regulation as one of the mechanisms underlying MS pathogenesis. Our study indicates that pharmacological activation of LXRA or its targets may lead to effective treatments for the highly debilitating and currently untreatable progressive phase of MS. PMID:27253448

  9. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  10. Dissecting Bottromycin Biosynthesis Using Comparative Untargeted Metabolomics

    PubMed Central

    Crone, William J. K.; Vior, Natalia M.; Santos‐Aberturas, Javier; Schmitz, Lukas G.; Leeper, Finian J.

    2016-01-01

    Abstract Bottromycin A2 is a structurally unique ribosomally synthesized and post‐translationally modified peptide (RiPP) that possesses potent antibacterial activity towards multidrug‐resistant bacteria. The structural novelty of bottromycin stems from its unprecedented macrocyclic amidine and rare β‐methylated amino acid residues. The N‐terminus of a precursor peptide (BtmD) is converted into bottromycin A2 by tailoring enzymes encoded in the btm gene cluster. However, little was known about key transformations in this pathway, including the unprecedented macrocyclization. To understand the pathway in detail, an untargeted metabolomic approach that harnesses mass spectral networking was used to assess the metabolomes of a series of pathway mutants. This analysis has yielded key information on the function of a variety of previously uncharacterized biosynthetic enzymes, including a YcaO domain protein and a partner protein that together catalyze the macrocyclization. PMID:27374993

  11. A new exploration of licorice metabolome.

    PubMed

    Rizzato, Giovanni; Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele; Piccolo, Oreste

    2017-04-15

    The roots and rhizomes of licorice plants (genus Glycyrrhiza L.) are commercially employed, after processing, in confectionery production or as sweetening and flavouring agents in the food, tobacco and beer industries. G. glabra, G. inflata and G. uralensis are the most significant licorice species, often indistinctly used for different productions. Licorice properties are directly related to its chemical composition, which determines the commercial values and the quality of the derived products. In order to better understand the characteristics and properties of each species, a chemical characterization of three species of licorice (G. glabra, G. inflata, G. uralensis) is proposed, through an untargeted metabolomic approach and using high-resolution mass spectrometry. The statistical analysis reveals new possible markers for the analyzed species, and provides a reliable identification of a high number of metabolites, contributing to the characterization of Glycyrrhiza metabolome.

  12. Dissecting Bottromycin Biosynthesis Using Comparative Untargeted Metabolomics.

    PubMed

    Crone, William J K; Vior, Natalia M; Santos-Aberturas, Javier; Schmitz, Lukas G; Leeper, Finian J; Truman, Andrew W

    2016-08-08

    Bottromycin A2 is a structurally unique ribosomally synthesized and post-translationally modified peptide (RiPP) that possesses potent antibacterial activity towards multidrug-resistant bacteria. The structural novelty of bottromycin stems from its unprecedented macrocyclic amidine and rare β-methylated amino acid residues. The N-terminus of a precursor peptide (BtmD) is converted into bottromycin A2 by tailoring enzymes encoded in the btm gene cluster. However, little was known about key transformations in this pathway, including the unprecedented macrocyclization. To understand the pathway in detail, an untargeted metabolomic approach that harnesses mass spectral networking was used to assess the metabolomes of a series of pathway mutants. This analysis has yielded key information on the function of a variety of previously uncharacterized biosynthetic enzymes, including a YcaO domain protein and a partner protein that together catalyze the macrocyclization.

  13. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    SciTech Connect

    Walker, Lawrence R.; Hoyt, David W.; Walker, S. Michael; Ward, Joy K.; Nicora, Carrie D.; Bingol, Kerem

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  14. Blood Transcriptomics and Metabolomics for Personalized Medicine

    DTIC Science & Technology

    2015-10-31

    online 31 October 2015 Keywords: Transcriptomics Metabolomics Blood systems biology Personalized medicine Data integrationMolecular analysis of blood...samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology . Recent developments have opened new...article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Contents1. An overdue review of “blood systems biology

  15. Tracer-based Metabolomics: Concepts and Practices

    PubMed Central

    Lee, W-N. Paul; Wahjudi, Paulin N.; Xu, Jun; Go, Vay Liang

    2010-01-01

    Tracer-based metabolomics is a systems biology tool that combines advances in tracer methodology for physiological studies, high throughput “-omics” technologies and constraint based modeling of metabolic networks. It is different from the commonly known metabolomics or metabonomics in that it is a targeted approach based on a metabolic network model in cells. Because of its complexity, it is the least understood among the various “-omics”. In this review, the development of concepts and practices of tracer-based metabolomics is traced from the early application of radioactive isotopes in metabolic studies to the recent application of stable isotopes and isotopomer analysis using mass spectrometry; and from the modeling of biochemical reactions using flux analysis to the recent theoretical formulation of the constraint based modeling. How these newer experimental methods and concepts of constraint-based modeling approaches can be applied to metabolic studies is illustrated by examples of studies in determining metabolic responses of cells to pharmacological agents and nutrient environment changes. PMID:20713038

  16. Metabolomic profiles of current cigarette smokers.

    PubMed

    Hsu, Ping-Ching; Lan, Renny S; Brasky, Theodore M; Marian, Catalin; Cheema, Amrita K; Ressom, Habtom W; Loffredo, Christopher A; Pickworth, Wallace B; Shields, Peter G

    2017-02-01

    Smoking-related biomarkers for lung cancer and other diseases are needed to enhance early detection strategies and to provide a science base for tobacco product regulation. An untargeted metabolomics approach by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF MS) totaling 957 assays was used in a novel experimental design where 105 current smokers smoked two cigarettes 1 h apart. Blood was collected immediately before and after each cigarette allowing for within-subject replication. Dynamic changes of the metabolomic profiles from smokers' four blood samples were observed and biomarkers affected by cigarette smoking were identified. Thirty-one metabolites were definitively shown to be affected by acute effect of cigarette smoking, uniquely including menthol-glucuronide, the reduction of glutamate, oleamide, and 13 glycerophospholipids. This first time identification of a menthol metabolite in smokers' blood serves as proof-of-principle for using metabolomics to identify new tobacco-exposure biomarkers, and also provides new opportunities in studying menthol-containing tobacco products in humans. Gender and race differences also were observed. Network analysis revealed 12 molecules involved in cancer, notably inhibition of cAMP. These novel tobacco-related biomarkers provide new insights to the effects of smoking which may be important in carcinogenesis but not previously linked with tobacco-related diseases. © 2016 Wiley Periodicals, Inc.

  17. Metabolomics for Assessment of Nutritional Status

    PubMed Central

    Zivkovic, Angela M.; German, J. Bruce

    2010-01-01

    Purpose of review The current rise in diet-related diseases continues to be one of the most significant health problems facing both the developed and the developing world. The use of metabolomics – the accurate and comprehensive measurement of a significant fraction of important metabolites in accessible biological fluids – for the assessment of nutritional status, is a promising way forward. The basic toolset, targets, and knowledge are all being developed in the emerging field of metabolomics, yet important knowledge and technology gaps will need to be addressed in order to bring such assessment to practice. Recent findings Dysregulation within the principal metabolic organs (e.g. intestine, adipose, skeletal muscle, liver) are at the center of a diet-disease paradigm that includes metabolic syndrome, type 2 diabetes, and obesity. The assessment of both essential nutrient status, and the more comprehensive systemic metabolic response to dietary, lifestyle, and environmental influences (e.g. metabolic phenotype) are necessary for the evaluation of status in individuals that can identify the multiple targets of intervention needed to address metabolic disease. Summary The first proofs of principle building the knowledge to bring actionable metabolic diagnostics to practice through metabolomics are now appearing. PMID:19584717

  18. Innovation in Metabolomics to Improve Personalized Healthcare

    PubMed Central

    Cacciatore, Stefano; Loda, Massimo

    2016-01-01

    Metabolomics is the systemic study of all small molecules (metabolites) and their concentration as affected by pathological and physiological alterations or environmental or other factors. Metabolic alterations represent a “window” on the complex interactions between genetic expression, enzyme activity, and metabolic reactions. Techniques, including nuclear magnetic resonance spectroscopy, mass spectrometry, Fourier-transform infrared, and Raman spectroscopy, have led to significant advances in metabolomics. The field is shifting from feasibility studies to biological and clinical applications. Fields of application range from cancer biology to stem cell research and assessment of xenobiotics and drugs in tissues and single cells. Cross-validation across high-throughput platforms has allowed findings from expression profiling to be confirmed with metabolomics. Specific genetic alterations appear to drive unique metabolic programs. These, in turn, can be used as biomarkers of genetic subtypes of prostate cancer or as discovery tools for therapeutic targeting of metabolic enzymes. Thus, metabolites in blood may serve as biomarkers of tumor state, including inferring driving oncogenes. Novel applications such as these suggest that metabolic profiling may be utilized in refining personalized medicine. PMID:26014591

  19. HIST1H2AA — EDRN Public Portal

    Cancer.gov

    HIST1H2AA, a member of the histone 2A family, is a core component of the nucleosome. The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (the octamer wraps approximately 147 bp of DNA). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. The HIST1H2AA gene is intronless and encodes a member of the histone H2A family. Transcripts from this gene contain a palindromic termination element.

  20. Untargeted Metabolomics Strategies—Challenges and Emerging Directions

    NASA Astrophysics Data System (ADS)

    Schrimpe-Rutledge, Alexandra C.; Codreanu, Simona G.; Sherrod, Stacy D.; McLean, John A.

    2016-12-01

    Metabolites are building blocks of cellular function. These species are involved in enzyme-catalyzed chemical reactions and are essential for cellular function. Upstream biological disruptions result in a series of metabolomic changes and, as such, the metabolome holds a wealth of information that is thought to be most predictive of phenotype. Uncovering this knowledge is a work in progress. The field of metabolomics is still maturing; the community has leveraged proteomics experience when applicable and developed a range of sample preparation and instrument methodology along with myriad data processing and analysis approaches. Research focuses have now shifted toward a fundamental understanding of the biology responsible for metabolomic changes. There are several types of metabolomics experiments including both targeted and untargeted analyses. While untargeted, hypothesis generating workflows exhibit many valuable attributes, challenges inherent to the approach remain. This Critical Insight comments on these challenges, focusing on the identification process of LC-MS-based untargeted metabolomics studies—specifically in mammalian systems. Biological interpretation of metabolomics data hinges on the ability to accurately identify metabolites. The range of confidence associated with identifications that is often overlooked is reviewed, and opportunities for advancing the metabolomics field are described.

  1. Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-1-0493 TITLE: Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and...SUBTITLE Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress 5a. CONTRACT NUMBER Perceived Stress...relationship between stress and ovarian cancer has never been evaluated in humans. In our analysis of self-reported stress and risk of ovarian cancer , we

  2. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    ERIC Educational Resources Information Center

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  3. Tissue and Metabolomic Biomarkers of Recurrent Renal Cell Carcinoma

    DTIC Science & Technology

    2013-04-01

    project. The cumulative data is currently being analyzed with the clinical data in the partnering PIs facility. 15. SUBJECT TERMS Kidney cancer ...American Association of Cancer Research Annual Meeting, Washington, DC, April 2013. Conclusions: We have developed a combined proteomics, metabolomics ...1 AD_________________ Award Number: W81XWH-10-1-0173 TITLE: Tissue and Metabolomic Biomarkers of

  4. Quantitative produced water analysis using mobile 1H NMR

    NASA Astrophysics Data System (ADS)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  5. Ultrasonic degradation of 1-H-benzotriazole in water.

    PubMed

    Zúñiga-Benítez, Henry; Soltan, Jafar; Peñuela, Gustavo

    2014-01-01

    This paper reports on the effect of different parameters of ultrasonic power, pollutant initial concentration, pH and the presence of co-existing chemical species (oxygen, nitrogen, ozone, and radical scavengers) on the ultrasonic degradation of the endocrine disruptor 1-H-benzotriazole. Increasing the 1-H-benzotriazole initial concentration from 41.97 to 167.88 μM increased the pollutant degradation rate by 40%. Likewise, a high applied ultrasonic power enhanced the extent of 1-H-benzotriazole removal and its initial degradation rate, which was accelerated in the presence of ozone and oxygen, but inhibited by nitrogen. The most favorable pH for the ultrasonic degradation was acidic media, reaching ∼90% pollutant removal in 2 h. The hydroxyl free radical concentration in the reaction medium was proportional to the ultrasound power and the irradiation time. Kinetic models based on a Langmuir-type mechanism were used to predict the pollutant sonochemical degradation. It was concluded that degradation takes place at both the bubble-liquid interfacial region and in the bulk solution, and OH radicals were the main species responsible for the reaction. Hydroxyl free radicals were generated by water pyrolysis and then diffused into the interfacial region and the bulk solution where most of the solute molecules were present.

  6. Error Analysis and Propagation in Metabolomics Data Analysis.

    PubMed

    Moseley, Hunter N B

    2013-01-01

    Error analysis plays a fundamental role in describing the uncertainty in experimental results. It has several fundamental uses in metabolomics including experimental design, quality control of experiments, the selection of appropriate statistical methods, and the determination of uncertainty in results. Furthermore, the importance of error analysis has grown with the increasing number, complexity, and heterogeneity of measurements characteristic of 'omics research. The increase in data complexity is particularly problematic for metabolomics, which has more heterogeneity than other omics technologies due to the much wider range of molecular entities detected and measured. This review introduces the fundamental concepts of error analysis as they apply to a wide range of metabolomics experimental designs and it discusses current methodologies for determining the propagation of uncertainty in appropriate metabolomics data analysis. These methodologies include analytical derivation and approximation techniques, Monte Carlo error analysis, and error analysis in metabolic inverse problems. Current limitations of each methodology with respect to metabolomics data analysis are also discussed.

  7. Applying metabolomics to uncover novel biology in ARDS.

    PubMed

    Rogers, Angela J; Matthay, Michael A

    2014-06-01

    A better understanding of the pathogenesis and the resolution of the acute respiratory distress syndrome (ARDS) is needed. Although some progress has been made with the use of protein biomarkers and candidate gene studies in understanding the pathobiology of ARDS, we propose that new studies that measure the chemical breakdown products of cellular metabolism (metabolomics) may provide new insights into ARDS, in part because metabolomics targets a later point in the genomics cascade than is possible with studies of DNA, RNA, and protein biomarkers. Technological advances have made large-scale metabolomic profiling increasingly feasible. Metabolomic approaches have already achieved novel insights in nonpulmonary diseases such as diabetes mellitus and malignancy, as well as in sepsis, a major risk factor for developing ARDS. Metabolomic profiling is a promising approach to identify novel pathways in both patients at risk for developing ARDS as well as in the early phase of established ARDS.

  8. Data in support of enhancing metabolomics research through data mining.

    PubMed

    Martínez-Arranz, Ibon; Mayo, Rebeca; Pérez-Cormenzana, Miriam; Mincholé, Itziar; Salazar, Lorena; Alonso, Cristina; Mato, José M

    2015-06-01

    Metabolomics research has evolved considerably, particularly during the last decade. Over the course of this evolution, the interest in this 'omic' discipline is now more evident than ever. However, the future of metabolomics will depend on its capability to find biomarkers. For that reason, data mining constitutes a challenging task in metabolomics workflow. This work has been designed in support of the research article entitled "Enhancing metabolomics research through data mining", which proposed a methodological data handling guideline. An aging research in healthy population was used as a guiding thread to illustrate this process. Here we provide a further interpretation of the obtained statistical results. We also focused on the importance of graphical visualization tools as a clue to understand the most common univariate and multivariate data analyses applied in metabolomics.

  9. Evaluation of cadmium-induced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats.

    PubMed

    Lee, Yu Kyung; Park, Eun Young; Kim, Shiwon; Son, Ji Yeon; Kim, Tae Hyung; Kang, Won Gu; Jeong, Tae Chun; Kim, Kyu-Bong; Kwack, Seung Jun; Lee, Jaewon; Kim, Suhkmann; Lee, Byung-Mu; Kim, Hyung Sik

    2014-01-01

    The aim of this study was to investigate urinary metabolomic profiles associated with cadmium (Cd)-induced nephrotoxicity and their potential mechanisms. Metabolomic profiles were measured by high-resolution (1)H-nuclear magnetic resonance (NMR) spectroscopy in the urine of rats after oral exposure to CdCl2 (1, 5, or 25 mg/kg) for 6 wk. The spectral data were further analyzed by a multivariate analysis to identify specific urinary metabolites. Urinary excretion levels of protein biomarkers were also measured and CdCl2 accumulated dose-dependently in the kidney. High-dose (25 mg/kg) CdCl2 exposure significantly increased serum blood urea nitrogen (BUN), but serum creatinine (sCr) levels were unchanged. High-dose CdCl2 (25 mg/kg) exposure also significantly elevated protein-based urinary biomarkers including osteopontin, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecules-1 (Kim-1), and selenium-binding protein 1 (SBP1) in rat urine. Under these conditions, six urinary metabolites (citrate, serine, 3-hydroxyisovalerate, 4-hydroxyphenyllactate, dimethylamine, and betaine) were involved in mitochondrial energy metabolism. In addition, a few number of amino acids such as glycine, glutamate, tyrosine, proline, or phenylalanine and carbohydrate (glucose) were altered in urine after CdCl2 exposure. In particular, the metabolites involved in the glutathione biosynthesis pathway, including cysteine, serine, methionine, and glutamate, were markedly decreased compared to the control. Thus, these metabolites are potential biomarkers for detection of Cd-induced nephrotoxicity. Our results further indicate that redox metabolomics pathways may be associated with Cd-mediated chronic kidney injury. These findings provide a biochemical pathway for better understanding of cellular mechanism underlying Cd-induced renal injury in humans.

  10. Revealing Potential Biomarkers of Functional Dyspepsia by Combining 1H NMR Metabonomics Techniques and an Integrative Multi-objective Optimization Method.

    PubMed

    Wu, Qiaofeng; Zou, Meng; Yang, Mingxiao; Zhou, Siyuan; Yan, Xianzhong; Sun, Bo; Wang, Yong; Chang, Shyang; Tang, Yong; Liang, Fanrong; Yu, Shuguang

    2016-01-08

    Metabonomics methods have gradually become important auxiliary tools for screening disease biomarkers. However, recognition of metabolites or potential biomarkers closely related to either particular clinical symptoms or prognosis has been difficult. The current study aims to identify potential biomarkers of functional dyspepsia (FD) by a new strategy that combined hydrogen nuclear magnetic resonance ((1)H NMR)-based metabonomics techniques and an integrative multi-objective optimization (LPIMO) method. First, clinical symptoms of FD were evaluated using the Nepean Dyspepsia Index (NDI), and plasma metabolic profiles were measured by (1)H NMR. Correlations between the key metabolites and the NDI scores were calculated. Then, LPIMO was developed to identify a multi-biomarker panel by maximizing diagnostic ability and correlation with the NDI score. Finally, a KEGG database search elicited the metabolic pathways in which the potential biomarkers are involved. The results showed that glutamine, alanine, proline, HDL, β-glucose, α-glucose and LDL/VLDL levels were significantly altered in FD patients. Among them, phosphatidycholine (PtdCho) and leucine/isoleucine (Leu/Ile) were positively and negatively correlated with the NDI Symptom Index (NDSI) respectively. Our procedure not only significantly improved the credibility of the biomarkers, but also demonstrated the potential of further explorations and applications to diagnosis and treatment of complex disease.

  11. Revealing Potential Biomarkers of Functional Dyspepsia by Combining 1H NMR Metabonomics Techniques and an Integrative Multi-objective Optimization Method

    PubMed Central

    Wu, Qiaofeng; Zou, Meng; Yang, Mingxiao; Zhou, Siyuan; Yan, Xianzhong; Sun, Bo; Wang, Yong; Chang, Shyang; Tang, Yong; Liang, Fanrong; Yu, Shuguang

    2016-01-01

    Metabonomics methods have gradually become important auxiliary tools for screening disease biomarkers. However, recognition of metabolites or potential biomarkers closely related to either particular clinical symptoms or prognosis has been difficult. The current study aims to identify potential biomarkers of functional dyspepsia (FD) by a new strategy that combined hydrogen nuclear magnetic resonance (1H NMR)-based metabonomics techniques and an integrative multi-objective optimization (LPIMO) method. First, clinical symptoms of FD were evaluated using the Nepean Dyspepsia Index (NDI), and plasma metabolic profiles were measured by 1H NMR. Correlations between the key metabolites and the NDI scores were calculated. Then, LPIMO was developed to identify a multi-biomarker panel by maximizing diagnostic ability and correlation with the NDI score. Finally, a KEGG database search elicited the metabolic pathways in which the potential biomarkers are involved. The results showed that glutamine, alanine, proline, HDL, β-glucose, α-glucose and LDL/VLDL levels were significantly altered in FD patients. Among them, phosphatidycholine (PtdCho) and leucine/isoleucine (Leu/Ile) were positively and negatively correlated with the NDI Symptom Index (NDSI) respectively. Our procedure not only significantly improved the credibility of the biomarkers, but also demonstrated the potential of further explorations and applications to diagnosis and treatment of complex disease. PMID:26743458

  12. Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification.

    PubMed

    Fonville, Judith M; Maher, Anthony D; Coen, Muireann; Holmes, Elaine; Lindon, John C; Nicholson, Jeremy K

    2010-03-01

    Spectroscopic profiling of biological samples is an integral part of metabolically driven top-down systems biology and can be used for identifying biomarkers of toxicity and disease. However, optimal biomarker information recovery and resonance assignment still pose significant challenges in NMR-based complex mixture analysis. The reduced signal overlap as achieved when projecting two-dimensional (2D) J-resolved (JRES) NMR spectra can be exploited to mitigate this problem and, here, full-resolution (1)H JRES projections have been evaluated as a tool for metabolic screening and biomarker identification. We show that the recoverable information content in JRES projections is intrinsically different from that in the conventional one-dimensional (1D) and Carr-Purcell-Meiboom-Gill (CPMG) spectra, because of the combined result of reduction of the over-representation of highly split multiplet peaks and relaxation editing. Principal component and correlation analyses of full-resolution JRES spectral data demonstrated that peak alignment is necessary. The application of statistical total correlation spectroscopy (STOCSY) to JRES projections improved the identification of previously overlapped small molecule resonances in JRES (1)H NMR spectra, compared to conventional 1D and CPMG spectra. These approaches are demonstrated using a galactosamine-induced hepatotoxicity study in rats and show that JRES projections have a useful and complementary role to standard one-dimensional experiments in complex mixture analysis for improved biomarker identification.

  13. Quantitative analysis of four major diterpenoids in Andrographis paniculata by 1H NMR and its application for quality control of commercial preparations.

    PubMed

    Yang, Minghua; Wang, Junsong; Kong, Lingyi

    2012-11-01

    A quantitative proton nuclear magnetic resonance technique (qHNMR) has been successfully introduced to quantify andrographolide, dehydroandrographolide, deoxyandrographolide and neoandrographolide in Andrographis paniculata, a commonly used important traditional Chinese medicine. Creative use of trifluoroacetic acid-d, which satisfactorily resolved the overlapping signals of these compounds in crowded regions of δ 4.5-5.6 ppm in (1)H NMR spectrum, made their quantification possible. Optimization of other experimental conditions, including internal standard, NMR pulse sequence, and NMR relaxation delay time, finally established the (1)H NMR based quantification approach, which was validated with satisfactory accuracy, precision, repeatability, and recovery. Except for deoxyandrographolide and neoandrographolide in two compound recipes, this method was successfully applied to quantify the four major components in fourteen raw herb materials and five commercial preparations, providing quantification results in good agreement with those determined by HPLC. The inherent advantages of qHNMR, such as its rapidity and simplicity, make itself a feasible alternative to HPLC for the quality control of A. paniculata raw material and herbal preparations.

  14. Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures

    NASA Astrophysics Data System (ADS)

    MacKinnon, Neil; While, Peter T.; Korvink, Jan G.

    2016-11-01

    Complex mixture analysis is routinely encountered in NMR-based investigations. With the aim of component identification, spectral complexity may be addressed chromatographically or spectroscopically, the latter being favored to reduce sample handling requirements. An attractive experiment is selective total correlation spectroscopy (sel-TOCSY), which is capable of providing tremendous spectral simplification and thereby enhancing assignment capability. Unfortunately, isolating a well resolved resonance is increasingly difficult as the complexity of the mixture increases and the assumption of single spin system excitation is no longer robust. We present TOCSY optimized mixture elucidation (TOOMIXED), a technique capable of performing spectral assignment particularly in the case where the assumption of single spin system excitation is relaxed. Key to the technique is the collection of a series of 1D sel-TOCSY experiments as a function of the isotropic mixing time (τm), resulting in a series of resonance intensities indicative of the underlying molecular structure. By comparing these τm -dependent intensity patterns with a library of pre-determined component spectra, one is able to regain assignment capability. After consideration of the technique's robustness, we tested TOOMIXED firstly on a model mixture. As a benchmark we were able to assign a molecule with high confidence in the case of selectively exciting an isolated resonance. Assignment confidence was not compromised when performing TOOMIXED on a resonance known to contain multiple overlapping signals, and in the worst case the method suggested a follow-up sel-TOCSY experiment to confirm an ambiguous assignment. TOOMIXED was then demonstrated on two realistic samples (whisky and urine), where under our conditions an approximate limit of detection of 0.6 mM was determined. Taking into account literature reports for the sel-TOCSY limit of detection, the technique should reach on the order of 10 μ M

  15. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  16. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  17. 1H NMR metabolomics study of spleen from C57BL/6 mice exposed to gamma radiation

    SciTech Connect

    Xiao, Xiongjie; Hu, M.; Liu, M.; Hu, Jianzhi Z.

    2016-01-27

    Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize to constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. As a result, these significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation.

  18. Toxicological evaluation of two pedigrees of clam Ruditapes philippinarum as bioindicators of heavy metal contaminants using metabolomics.

    PubMed

    Ji, Chenglong; Cao, Lulu; Li, Fei

    2015-03-01

    Heavy metal pollution has been of great concern in the Bohai marine environment. Manila clam Ruditapes philippinarum has been used as a bioindicator in marine toxicology. In this study, NMR-based metabolomics was used to ascertain whether there were significant biological differences between two dominant pedigrees (White and Zebra) of clam and evaluate the suitability of two pedigrees for marine environmental toxicology, together with antioxidant enzymatic analysis. Our results indicated that there were significant biological differences between White and Zebra clams based on the metabolic profiles and antioxidant enzyme activities. In details, the metabolic profiles showed higher levels of amino acids and succinate in Zebra clam digestive glands and higher levels of ATP in White clam digestive glands, respectively. The superoxide dismutase activities in control White and Zebra clam samples were significantly different. Additionally, White clam was more sensitive to Cd based on the significant accumulation of Cd, antioxidant enzymatic alterations and sensitive metabolic changes. Overall, we concluded that White clam could be a preferable bioindicator for marine environmental toxicology.

  19. Metabolomic analysis revealed the differential responses in two pedigrees of clam Ruditapes philippinarum towards Vibrio harveyi challenge.

    PubMed

    Liu, Xiaoli; Zhao, Jianmin; Wu, Huifeng; Wang, Qing

    2013-12-01

    Manila clam Ruditapes philippinarum is an important marine aquaculture shellfish. This species has several pedigrees including White, Zebra, Liangdao Red and Marine Red distributing in the coastal areas in North China. In this work, we studied the metabolic differences induced by Vibrio harveyi in hepatopancreas from White and Zebra clams using NMR-based metabolomics. Metabolic responses (e.g., amino acids, glucose, glycogen, ATP and succinate) and altered mRNA expression levels of related genes (ATP synthase, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear disruption in energy metabolism and immune stresses in both White and Zebra clam hepatopancreas. However, V. harveyi caused obvious osmotic stress in Zebra clam hepatopancreas, which was not observed in V. harveyi-challenged White clams samples. In addition, V. harveyi challenge induced more severe disruption in energy metabolism and immune stress in White clams than in Zebra clams. Overall, our results indicated that the biological differences between different pedigrees of R. philippinarum should be considered in immunity studies.

  20. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  1. Complete assignment of NMR data of 22 phenyl-1H-pyrazoles' derivatives.

    PubMed

    de Oliveira, Aline Lima; Alves de Oliveira, Carlos Henrique; Mairink, Laura Maia; Pazini, Francine; Menegatti, Ricardo; Lião, Luciano Morais

    2011-08-01

    Complete assignment of (1)H and (13)C NMR chemical shifts and J((1)H/(1)H and (1)H/(19)F) coupling constants for 22 1-phenyl-1H-pyrazoles' derivates were performed using the concerted application of (1)H 1D and (1)H, (13)C 2D gs-HSQC and gs-HMBC experiments. All 1-phenyl-1H-pyrazoles' derivatives were synthesized as described by Finar and co-workers. The formylated 1-phenyl-1H-pyrazoles' derivatives were performed under Duff's conditions.

  2. Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage.

    PubMed

    Geier, Florian M; Want, Elizabeth J; Leroi, Armand M; Bundy, Jacob G

    2011-05-15

    The nematode Caenorhabditis elegans is widely used as a model organism in many areas of the life sciences. Metabolite profiling (metabolomics/metabonomics) is a powerful means of assigning phenotypes to experimentally perturbed C. elegans samples (e.g., mutants, RNAi, or chemical treatments). Tissue extraction is a key step, and high-quality and reproducible extractions are essential to the success of metabolomics studies. We have performed an extensive comparison of different tissue extraction techniques with C. elegans, comparing two different solvent systems (chloroform/methanol and aqueous methanol) and six different tissue disruption techniques (including manual grinding in a cooled mortar, homogenization, and various grinding media in both reciprocating and orbital tissue mills). All twelve combinations were then compared by GC/MS, (1)H NMR spectroscopy, and UPLC-MS, and the results were evaluated by both overall multivariate clustering approaches as well as distributions over individual metabolites/metabolite features of coefficient of variation and yield. The choice of solvent had more influence than the disruption method used, although the homogenizer results were clearly outliers. Overall, we concluded that bead-beating with 80% methanol solution was a good trade-off, although it is important to note that the definition of the apparent "best" method depended on which analytical platform was used to evaluate the results.

  3. From Leaf Metabolome to In Vivo Testing: Identifying Antifeedant Compounds for Ecological Studies of Marsupial Diets.

    PubMed

    Marsh, Karen J; Yin, Baofa; Singh, Inder Pal; Saraf, Isha; Choudhary, Alka; Au, Jessie; Tucker, David J; Foley, William J

    2015-06-01

    Identifying specific plant secondary metabolites that influence feeding behavior can be challenging, but a solid understanding of animal preferences can guide efforts. Common brushtail possums (Trichosurus vulpecula) predominantly eat Eucalyptus species belonging to the subgenus Symphyomyrtus, and avoid eating those belonging to the Monocalyptus subgenus (also called subgenus Eucalyptus). Using an unbiased (1)H NMR metabolomics approach, a previous study identified unsubstituted B ring flavanones in most species of monocalypts examined, whereas these compounds were absent from symphyomyrtles. We hypothesised that unsubstituted B ring flavanones act as feeding deterrents for common brushtail possums. In the current study, we tested this hypothesis by comparing how much possums ate of a basal diet, with diets containing one of four structurally related compounds; pinocembrin, flavanone (unsubstituted B ring flavanones), chrysin (the flavone analogue of pinocembrin), and naringenin (a flavanone with B ring substitution). We found that pinocembrin and flavanone deterred feeding relative to the basal diet, but that chrysin and naringenin did not at equivalent concentrations. Thus, unsubstituted B-ring flavanones may explain why brushtail possums avoid eating monocalypt species. Furthermore, small differences in the structure of secondary compounds can have a large impact on antifeedant properties. These results demonstrate that metabolomics can be a valuable tool for ecologists seeking to understand herbivore feeding preferences.

  4. Emerging biomarkers and metabolomics for assessing toxic nephropathy and acute kidney injury (AKI) in neonatology.

    PubMed

    Mussap, M; Noto, A; Fanos, V; Van Den Anker, J N

    2014-01-01

    Identification of novel drug-induced toxic nephropathy and acute kidney injury (AKI) biomarkers has been designated as a top priority by the American Society of Nephrology. Increasing knowledge in the science of biology and medicine is leading to the discovery of still more new biomarkers and of their roles in molecular pathways triggered by physiological and pathological conditions. Concomitantly, the development of the so-called "omics" allows the progressive clinical utilization of a multitude of information, from those related to the human genome (genomics) and proteome (proteomics), including the emerging epigenomics, to those related to metabolites (metabolomics). In preterm newborns, one of the most important factors causing the pathogenesis and the progression of AKI is the interaction between the individual genetic code, the environment, the gestational age, and the disease. By analyzing a small urine sample, metabolomics allows to identify instantly any change in phenotype, including changes due to genetic modifications. The role of liquid chromatography-mass spectrometry (LC-MS), proton nuclear magnetic resonance (1H NMR), and other emerging technologies is strategic, contributing basically to the sudden development of new biochemical and molecular tests. Urine neutrophil gelatinase-associated lipocalin (uNGAL) and kidney injury molecule-1 (KIM-1) are closely correlated with the severity of kidney injury, representing noninvasive sensitive surrogate biomarkers for diagnosing, monitoring, and quantifying kidney damage. To become routine tests, uNGAL and KIM-1 should be carefully tested in multicenter clinical trials and should be measured in biological fluids by robust, standardized analytical methods.

  5. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution.

    PubMed

    Cao, Chen; Wang, Wen-Xiong

    2016-09-01

    Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using (1)H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.

  6. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees.

    PubMed

    Lopez-Sanchez, Patricia; de Vos, R C H; Jonker, H H; Mumm, R; Hall, R D; Bialek, L; Leenman, R; Strassburg, K; Vreeken, R; Hankemeier, T; Schumm, S; van Duynhoven, J

    2015-02-01

    The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC-PDA for vitamins, (1)H NMR for polar metabolites, accurate mass LC-QTOF MS for semi-polar metabolites, LC-MRM for oxylipins, and headspace GC-MS for volatile compounds. An initial exploratory experiment indicated that the order of blending and thermal treatments had the highest impact on the phytochemicals in the purees. This blending-heating order effect was investigated in more depth by performing alternate blending-heating sequences in triplicate on the same batches of broccoli, tomato and carrot. For each vegetable and particularly in broccoli, a large proportion of the metabolites detected in the purees was significantly influenced by the blending-heating order, amongst which were potential health-related phytochemicals and flavour compounds like vitamins C and E, carotenoids, flavonoids, glucosinolates and oxylipins. Our metabolomics data indicates that during processing the activity of a series of endogenous plant enzymes, such as lipoxygenases, peroxidases and glycosidases, including myrosinase in broccoli, is key to the final metabolite composition and related quality of the purees.

  7. Differentiation between cortical atrophy and hydrocephalus using 1H MRS.

    PubMed

    Bluml, S; McComb, J G; Ross, B D

    1997-03-01

    Quantitative 1H MRS to determine cerebral metabolite patterns and MRI to determine CSF flow were applied to 12 patients with ventricular dilation-Group A, cortical atrophy (N = 5); or Group B, hydrocephalus (N = 7)- and in 9 normal controls. While mean brain water (Group A = 80% +/- 6; Group B = 86% +/- 5; normal = 85% +/- 4) did not differ between the two groups of patients and controls, 1H MRS distinguished those patients with cortical atrophy (Group A) (N-acetylaspartate/ creatine (NAA/Cr) = 0.69 +/- 0.17, versus normal = 1.06 +/- 0.16; P < 0.002; [NAA] = 5.9 +/- 1.3 mmoles/kg, versus normal 8.0 +/- 1.4; P < 0.02) from those with hydrocephalus (Group B) (NAA/Cr = 1.16 +/- 0.11; [NAA] = 9.2 +/- 1.2; P > 0.13 and P > 0.07). Lactate levels were elevated in 3/5 patients with cortical atrophy, but in 0/7 of those with hydrocephalus. Mean absolute concentrations (mmoles/kg) of the five major cerebral osmolytes were 41 +/- 4 (Group A), 43 +/- 6 (Group B), and 42 +/- 4 (normal), so that despite massive brain deformation, constant osmolality was maintained. 1H MRS may directly benefit surgical planning in hydrocephalus infants by clearly identifying those with cortical atrophy who do not require CSF diversion. Thinning of the cortical mantle in hydrocephalus may result from osmotically driven reduction in individual cell volumes, (shrinkage), rather than brain-compression.

  8. Development of quantitative metabolomics for Pichia pastoris.

    PubMed

    Carnicer, Marc; Canelas, André B; Ten Pierick, Angela; Zeng, Zhen; van Dam, Jan; Albiol, Joan; Ferrer, Pau; Heijnen, Joseph J; van Gulik, Walter

    2012-04-01

    Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at -27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0308-1) contains supplementary material, which is available to authorized users.

  9. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  10. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling

    PubMed Central

    Aliferis, Konstantinos A.; Chamoun, Rony; Jabaji, Suha

    2015-01-01

    The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. PMID:26042135

  11. The same microbiota and a potentially discriminant metabolome in the saliva of omnivore, ovo-lacto-vegetarian and Vegan individuals.

    PubMed

    De Filippis, Francesca; Vannini, Lucia; La Storia, Antonietta; Laghi, Luca; Piombino, Paola; Stellato, Giuseppina; Serrazanetti, Diana I; Gozzi, Giorgia; Turroni, Silvia; Ferrocino, Ilario; Lazzi, Camilla; Di Cagno, Raffaella; Gobbetti, Marco; Ercolini, Danilo

    2014-01-01

    The salivary microbiota has been linked to both oral and non-oral diseases. Scant knowledge is available on the effect of environmental factors such as long-term dietary choices on the salivary microbiota and metabolome. This study analyzed the microbial diversity and metabolomic profiles of the saliva of 161 healthy individuals who followed an omnivore or ovo-lacto-vegetarian or vegan diet. A large core microbiota was identified, including 12 bacterial genera, found in >98% of the individuals. The subjects could be stratified into three "salivary types" that differed on the basis of the relative abundance of the core genera Prevotella, Streptococcus/Gemella and Fusobacterium/Neisseria. Statistical analysis indicated no effect of dietary habit on the salivary microbiota. Phylogenetic beta-diversity analysis consistently showed no differences between omnivore, ovo-lacto-vegetarian and vegan individuals. Metabolomic profiling of saliva using (1)H-NMR and GC-MS/SPME identified diet-related biomarkers that enabled a significant discrimination between the 3 groups of individuals on the basis of their diet. Formate, urea, uridine and 5-methyl-3-hexanone could discriminate samples from omnivores, whereas 1-propanol, hexanoic acid and proline were characteristic of non-omnivore diets. Although the salivary metabolome can be discriminating for diet, the microbiota has a remarkable inter-individual stability and did not vary with dietary habits. Microbial homeostasis might be perturbed with sub-standard oral hygiene or other environmental factors, but there is no current indication that a choice of an omnivore, ovo-lacto-vegetarian or vegan diet can lead to a specific composition of the oral microbiota with consequences on the oral homeostasis.

  12. Metabolomic analysis of Ranunculus spp. as potential agents involved in the etiology of equine grass sickness.

    PubMed

    Michl, Johanna; Modarai, Maryam; Edwards, Sarah; Heinrich, Michael

    2011-09-28

    Identification of toxic or harmful agents continues to be a key goal in agricultural chemistry. This paper reports a metabolomic analysis of Ranunculus repens and related species, which were recently postulated to be cocausative agents in the etiology of equine grass sickness (EGS). Specifically, samples collected at EGS sites were compared with those from non-EGS sites. Furthermore, interspecific and seasonal variations and the species' response to edaphic and climatic factors were investigated. (1)H NMR spectroscopy in combination with multivariate data analysis was applied to the crude methanol extracts of the Ranunculus samples, as well as their chloroform fractions. Samples from EGS sites were significantly different from control samples. The metabolite composition varied greatly between different Ranunculus species. No significant changes could be observed between samples collected in different seasons. This work provides strong evidence that Ranunculus is involved in the etiology of EGS and has implications for agricultural management of pastures.

  13. Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers.

    PubMed

    Clausen, Morten R; Bach, Vibe; Edelenbos, Merete; Bertram, Hanne C

    2012-09-19

    Metabolic changes were investigated in overwintering Jerusalem artichoke (Helianthus tuberosus L.) tubers using proton nuclear magnetic resonance ((1)H NMR) metabolomics. Three varieties were studied; as a result of overwintering, the amount of inulin was found to decrease in Jerusalem artichoke tubers. This was mainly due to its conversion to sucrose and, at the same time, formation of inulin with a lower degree of polymerization. Major effects on the concentration of citric acid, malic acid, γ-aminobutyric acid (GABA), and adenosine were also found. Intriguingly, malic acid concentration increased and citric acid concentration decreased. These changes, together with an increase in sucrose and GABA concentrations, were ascribed to mobilization of nutrients prior to sprouting, suggesting that malic acid and GABA serve as carbon and nitrogen sources during sprouting of Jerusalem artichokes.

  14. Challenges of metabolomics in human gut microbiota research.

    PubMed

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules pro