Science.gov

Sample records for 1h resonance frequency

  1. Protein-induced water 1H MR frequency shifts: Contributions from magnetic susceptibility and exchange effects

    NASA Astrophysics Data System (ADS)

    Luo, Jie; He, Xiang; d'Avignon, D. Andre'; Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Defining the biophysics underlying the remarkable MRI phase contrast reported in high field MRI studies of human brain would lead to more quantitative image analysis and more informed pulse sequence development. Toward this end, the dependence of water 1H resonance frequency on protein concentration was investigated using bovine serum albumin (BSA) as a model system. Two distinct mechanisms were found to underlie a water 1H resonance frequency shift: (i) a protein-concentration-induced change in bulk magnetic susceptibility, causing a shift to lower frequency, and (ii) exchange of water between chemical-shift distinct environments, i.e., free (bulk water) and protein-associated ("bound") water, including freely exchangeable 1H sites on proteins, causing a shift to higher frequency. At 37 °C the amplitude of the exchange effect is roughly half that of the susceptibility effect.

  2. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  3. High resolution 1H nuclear magnetic resonance of a transmembrane peptide.

    PubMed Central

    Davis, J. H.; Auger, M.; Hodges, R. S.

    1995-01-01

    Although the strong 1H-1H dipolar interaction is known to result in severe homogeneous broadening of the 1H nuclear magnetic resonance (NMR) spectra of ordered systems, in the fluid phase of biological and model membranes the rapid, axially symmetric reorientation of the molecules about the local bilayer normal projects the dipolar interaction onto the motional symmetry axis. Because the linewidth then scales as (3 cos2 theta-1)/2, where theta is the angle between the local bilayer normal and the magnetic field, the dipolar broadening has been reduced to an "inhomogeneous" broadening by the rapid axial reorientation. It is then possible to obtain high resolution 1H-NMR spectra of membrane components by using magic angle spinning (MAS). Although the rapid axial reorientation effectively eliminates the homogeneous dipolar broadening, including that due to n = 0 rotational resonances, the linewidths observed in both lipids and peptides are dominated by low frequency motions. For small peptides the most likely slow motions are either a "wobble" or reorientation of the molecular diffusion axis relative to the local bilayer normal, or the reorientation of the local bilayer normal itself through surface undulations or lateral diffusion over the curved surface. These motions render the peptide 1H-NMR lines too broad to be observed at low spinning speeds. However, the linewidths due to these slow motions are very sensitive to spinning rate, so that at higher speeds the lines become readily visible. The synthetic amphiphilic peptide K2GL20K2A-amide (peptide-20) has been incorporated into bilayers of 1,2-di-d 27-myristoyl-sn-glycero-3-phosphocholine (DMPC-d54) and studied by high speed 1H-MAS-NMR. The linewidths observed for this transbilayer peptide, although too broad to be observable at spinning rates below -5 kHz, are reduced to 68 Hz at a spinning speed of 14 kHz (at 500C). Further improvements in spinning speed and modifications in sample composition designed to reduce

  4. Finite-pulse radio frequency driven recoupling with phase cycling for 2D 1H/1H correlation at ultrafast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yusuke; Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The first-order recoupling sequence radio frequency driven dipolar recoupling (RFDR) is commonly used in single-quantum/single-quantum homonuclear correlation 2D experiments under magic angle spinning (MAS) to determine homonuclear proximities. From previously reported analysis of the use of XY-based super-cycling schemes to enhance the efficiency of the finite-pulse-RFDR (fp-RFDR) pulse sequence, XY814 phase cycling was found to provide the optimum performance for 2D correlation experiments on low-γ nuclei. In this study, we analyze the efficiency of different phase cycling schemes for proton-based fp-RFDR experiments. We demonstrate the advantages of using a short phase cycle, XY4, and its super-cycle XY414 that only recouples the zero-quantum homonuclear dipolar coupling, for the fp-RFDR sequence in 2D 1H/1H correlation experiments at ultrafast MAS frequencies. The dipolar recoupling efficiencies of XY4, XY414 and XY814 phase cycling schemes are compared based on results obtained from 2D 1H/1H correlation experiments, utilizing the fp-RFDR pulse sequence, on powder samples of U-13C,15N-L-alanine, N-acetyl-15N-L-valyl-15N-L-leucine, and glycine. Experimental results and spin dynamics simulations show that XY414 performs the best when a high RF power is used for the 180° pulse, whereas XY4 renders the best performance when a low RF power is used. The effects of RF field inhomogeneity and chemical shift offsets are also examined. Overall, our results suggest that a combination of fp-RFDR-XY414 employed in the recycle delay with a large RF-field to decrease the recycle delay, and fp-RFDR-XY4 in the mixing period with a moderate RF-field, is a robust and efficient method for 2D single-quantum/single-quantum 1H/1H correlation experiments at ultrafast MAS frequencies.

  5. Complete Assignment of (1)H-NMR Resonances of the King Cobra Neurotoxin CM-11.

    PubMed

    Pang, Yu-Xi; Liu, Wei-Dong; Liu, Ai-Zhuo; Pei, Feng-Kui

    1997-01-01

    The king cobra (Ophiophagus Hannah) neurotoxin CM-Il is long-chain peptide with 72 amino acid residues. Its complete assignment of (1)H-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.

  6. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids. PMID:26203019

  7. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  8. Selective excitation enables assignment of proton resonances and {sup 1}H-{sup 1}H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  9. Selective excitation enables assignment of proton resonances and 1H-1H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-01

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of 1H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as 13C or 15N. In this method, after the initial preparation of proton magnetization and cross-polarization to 13C nuclei, transverse magnetization of desired 13C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific 13C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of 1H-1H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  10. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  11. Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI.

    PubMed

    Waiczies, Helmar; Lepore, Stefano; Drechsler, Susanne; Qadri, Fatimunnisa; Purfürst, Bettina; Sydow, Karl; Dathe, Margitta; Kühne, André; Lindel, Tomasz; Hoffmann, Werner; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time. PMID:23412352

  12. Visualizing Brain Inflammation with a Shingled-Leg Radio-Frequency Head Probe for 19F/1H MRI

    PubMed Central

    Waiczies, Helmar; Lepore, Stefano; Drechsler, Susanne; Qadri, Fatimunnisa; Purfürst, Bettina; Sydow, Karl; Dathe, Margitta; Kühne, André; Lindel, Tomasz; Hoffmann, Werner; Pohlmann, Andreas; Niendorf, Thoralf; Waiczies, Sonia

    2013-01-01

    Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for 19F (fluorine) and 1H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged 19F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. 19F/1H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time. PMID:23412352

  13. Simple Approaches for Estimating Vicinal 1H- 1H Coupling-Constants and for Obtaining Stereospecific Resonance Assignments in Leucine Side Chains

    NASA Astrophysics Data System (ADS)

    Constantine, K. L.; Friedrichs, M. S.; Mueller, L.

    An approach for deriving stereospecific δ-methyl assignments and χ 2 dihedral angle constraints for leucine residues, based on easily recognized patterns of 1H- 1H spin-spin coupling constants and intraresidue nuclear-Overhauser-effect spectroscopy (NOESY) cross-peak intensities, is described. The approach depends on resolved H γ and/or δ-methyl resonances and on initially obtaining stereospecific assignments for H β2 and H β3. As part of the overall strategy, a method is presented for obtaining qualitative or, in favorable cases, semiquantitative estimates of vicinal 1H- 1H coupling constants from peak intensities measured in a short-mixing-time 1H- 1H total correlation spectroscopy (TOCSY) experiment. This method of estimating 1H- 1H spin-spin coupling constants is generally applicable to all side-chain types. The approach is illustrated for several leucine residues within uniformly 15N-labeled and 15N/ 13C-double-labeled isolated light-chain variable domain of the anti-digoxin antibody 26-10. Estimates of 3Jαβ and 3Jβγ coupling constants are derived from a three-dimensional (3D) 13C-edited TOCSY-heteronuclear multiple-quantum coherence (HMQC) spectrum. These data are combined with information from 3D 15N-edited NOESY and 3D 13C-edited NOESY spectra to yield stereospecific H β2, H β3, and δ-methyl assignments, as well as constraints on χ (1) and χ 2 dihedral angles. Although the overall approach is illustrated using 3D 15N-edited and 13C-edited data, it is equally applicable to analysis of two-dimensional 1H- 1H NOESY and TOCSY spectra.

  14. Dynamic nuclear polarization-enhanced 1H-13C double resonance NMR in static samples below 20 K

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-08-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H-13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H-13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H-13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C-13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils.

  15. A large volume double channel 1H-X RF probe for hyperpolarized magnetic resonance at 0.0475 T.

    PubMed

    Coffey, Aaron M; Shchepin, Roman V; Wilkens, Ken; Waddell, Kevin W; Chekmenev, Eduard Y

    2012-07-01

    In this work we describe a large volume 340 mL (1)H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. (1)H/(13)C and (1)H/(15)N probe configurations are demonstrated with the potential for extension to (1)H/(129)Xe. The primary applications of this probe are preparation and quality assurance of (13)C and (15)N hyperpolarized contrast agents using PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) and other parahydrogen-based methods of hyperpolarization. The probe is efficient and permits 62 μs (13)C excitation pulses at 5.3 W, making it suitable for portable operation. The sensitivity and detection limits of this probe, tuned to (13)C, are compared with a commercial radio frequency (RF) coil operating at 4.7 T. We demonstrate that low field MR of hyperpolarized contrast agents could be as sensitive as conventional high field detection and outline potential improvements and optimization of the probe design for preclinical in vivo MRI. PASADENA application of this low-power probe is exemplified with (13)C hyperpolarized 2-hydroxyethyl propionate-1-(13)C,2,3,3-d(3).

  16. The morphology of C–S–H: Lessons from {sup 1}H nuclear magnetic resonance relaxometry

    SciTech Connect

    Valori, A.; McDonald, P.J.; Scrivener, K.L.

    2013-07-15

    {sup 1}H nuclear magnetic resonance has been applied to cement pastes, and in particular calcium silicate hydrate (C–S–H), for the characterisation of porosity and pore water interactions for over three decades. However, there is now renewed interest in the method, given that it has been shown to be non-invasive, non-destructive and fully quantitative. It is possible to make measurements of pore size distribution, specific surface area, C–S–H density and water fraction and water dynamics over 6 orders of magnitude from nano- to milli-seconds. This information comes in easily applied experiments that are increasingly well understood, on widely available equipment. This contribution describes the basic experiments for a cement audience new to the field and reviews three decades of work. It concludes with a summary of the current state of understanding of cement pore morphology from the perspective of {sup 1}H NMR.

  17. Classification of iron-sulfur cores in ferredoxins by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Nagayama, K; Ozaki, Y; Kyogoku, Y; Hase, T; Matsubara, H

    1983-09-01

    A 1H nuclear magnetic resonance (NMR) study was carried out on various ferredoxins which possess one of three types of iron-sulfur clusters, (2Fe-2S), (3Fe-3S), or (4Fe-4S). In the isolated form, (2Fe-2S) ferredoxins from spinach (Spinacea oleracia), pokeweed (Phytolacca americana), a blue-green alga (Spirulina platensis), and a halobacterium (Halobacterium halobium) exhibited two broad resonances common in chemical shift at the region downfield of 10 ppm. In their reduced forms, seven contact-shifted resonances appeared spread over 30 ppm. Although the positions of the contact-shifted resonances in the reduced state differed among the four, a common trend in the temperature dependence of their resonance positions was recognized. Two (4Fe-4S) ferredoxins from Bacillus stearothermophilus and Bacillus thermoproteolyticus exhibited almost indistinguishable spectral patterns in both the oxidized and reduced forms. The ferricyanide-treated ferredoxins of B. stearothermophilus and B. thermoproteolyticus showed characteristic contact-shifted resonances distinct from the spectra of the original (4Fe-4S) ferredoxins. This corresponds to the recent finding of the interconversion of (4Fe-4S) and (3Fe-3S) clusters with ferricyanide in the ferredoxin. Based on our data together with reported NMR data on other ferredoxins, contact-shift resonances of three types of clusters were tabulated. The reliability of NMR classification increases when we compare the NMR spectra of a ferredoxin with the classification standards at the two redox states. Moreover, not only the absolute values of the chemical shifts of contact-shifted resonances but also their temperature dependence give distinctive information applicable to iron core identification.

  18. Acoustic resonance frequency locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  19. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  20. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  1. Characterisation of Human Embryonic Stem Cells Conditioning Media by 1H-Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    MacIntyre, David A.; Melguizo Sanchís, Darío; Jiménez, Beatriz; Moreno, Rubén; Stojkovic, Miodrag; Pineda-Lucena, Antonio

    2011-01-01

    Background Cell culture media conditioned by human foreskin fibroblasts (HFFs) provide a complex supplement of protein and metabolic factors that support in vitro proliferation of human embryonic stem cells (hESCs). However, the conditioning process is variable with different media batches often exhibiting differing capacities to maintain hESCs in culture. While recent studies have examined the protein complement of conditioned culture media, detailed information regarding the metabolic component of this media is lacking. Methodology/Principal Findings Using a 1H-Nuclear Magnetic Resonance (1H-NMR) metabonomics approach, 32 metabolites and small compounds were identified and quantified in media conditioned by passage 11 HFFs (CMp11). A number of metabolites were secreted by HFFs with significantly higher concentration of lactate, alanine, and formate detected in CMp11 compared to non-conditioned media. In contrast, levels of tryptophan, folate and niacinamide were depleted in CMp11 indicating the utilisation of these metabolites by HFFs. Multivariate statistical analysis of the 1H-NMR data revealed marked age-related differences in the metabolic profile of CMp11 collected from HFFs every 24 h over 72 h. Additionally, the metabolic profile of CMp11 was altered following freezing at −20°C for 2 weeks. CM derived from passage 18 HFFs (CMp18) was found to be ineffective at supporting hESCs in an undifferentiated state beyond 5 days culture. Multivariate statistical comparison of CMp11 and CMp18 metabolic profiles enabled rapid and clear discrimination between the two media with CMp18 containing lower concentrations of lactate and alanine as well as higher concentrations of glucose and glutamine. Conclusions/Significance 1H-NMR-based metabonomics offers a rapid and accurate method of characterising hESC conditioning media and is a valuable tool for monitoring, controlling and optimising hESC culture media preparation. PMID:21347425

  2. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  3. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  4. The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy.

    PubMed

    Cady, E B; D'Souza, P C; Penrice, J; Lorek, A

    1995-06-01

    Brain temperature may be important for investigating pathology and cerebroprotective effects of pharmaceuticals and hypothermia. Two methods for estimating temperature using 1H magnetic resonance spectroscopy are described: a partially water-suppressed binomial sequence and non-water-suppressed point-resolved spectroscopy. Relative to N-acetylaspartate (Naa), water chemical shift (delta H2O-Naa) in piglet brain depended linearly on temperature from 30 degrees to 40 degrees C: temperature was 286.9-94.0 delta H2O-Naa degrees C. Thalamic temperature in six normal infants was 38.1 degrees +/- 0.4 degree C indicating that local brain temperature could be estimated with adequate sensitivity for studying pathologic and therapeutic changes.

  5. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Jung, B.; Slotboom, J.; Felblinger, J.; Boesch, C.

    1999-04-01

    1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2protons of Cr/PCr to1H MR spectra of human musclein vivoreflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.

  6. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  7. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    USGS Publications Warehouse

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  8. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  9. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method.

  10. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method. PMID:25308635

  11. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  12. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press.

  13. Rapid measurement of multidimensional 1H solid-state NMR spectra at ultra-fast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Ye, Yue Qi; Malon, Michal; Martineau, Charlotte; Taulelle, Francis; Nishiyama, Yusuke

    2014-02-01

    A novel method to realize rapid repetition of 1H NMR experiments at ultra-fast MAS frequencies is demonstrated. The ultra-fast MAS at 110 kHz slows the 1H-1H spin diffusion, leading to variations of 1H T1 relaxation times from atom to atom within a molecule. The different relaxation behavior is averaged by applying 1H-1H recoupling during relaxation delay even at ultra-fast MAS, reducing the optimal relaxation delay to maximize the signal to noise ratio. The way to determine optimal relaxation delay for arbitrary relaxation curve is shown. The reduction of optimal relaxation delay by radio-frequency driven recoupling (RFDR) was demonstrated on powder samples of glycine and ethenzamide with one and multi-dimensional NMR measurements.

  14. Microwave Frequency Discriminator With Sapphire Resonator

    NASA Technical Reports Server (NTRS)

    Santiago, David G.; Dick, G. John

    1994-01-01

    Cooled sapphire resonator provides ultralow phase noise. Apparatus comprises microwave oscillator operating at nominal frequency of about 8.1 GHz, plus frequency-discriminator circuit measuring phase fluctuations of oscillator output. One outstanding feature of frequency discriminator is sapphire resonator serving as phase reference. Sapphire resonator is dielectric ring resonator operating in "whispering-gallery" mode. Functions at room temperature, but for better performance, typically cooled to operating temperature of about 80 K. Similar resonator described in "Sapphire Ring Resonator for Microwave Oscillator" (NPO-18082).

  15. Detection of intramyocardial hemorrhage using high-field proton (1H) nuclear magnetic resonance imaging

    SciTech Connect

    Lotan, C.S.; Miller, S.K.; Bouchard, A.; Cranney, G.B.; Reeves, R.C.; Bishop, S.P.; Elgavish, G.A.; Pohost, G.M. )

    1990-07-01

    Proton (1H) nuclear magnetic resonance (NMR) imaging has been used to define zones of myocardial infarction (MI), which appear as areas of relatively increased signal intensity (SI). However, zones of decreased SI have been observed within the areas of infarction and have been postulated to result from intramyocardial hemorrhage. To explore this phenomenon further, ex vivo spin-echo 1H NMR imaging at 1.5 Tesla was performed in 17 dogs after 24 hr (n = 9) and after 72 hr (n = 8) of coronary artery occlusion. In all dogs, a zone of increased SI (118 +/- 9% compared with normal myocardium) was observed in the distribution of the occluded coronary artery. In 12 of the 17 dogs, zones of decreased SI (92 +/- 8% compared with normal) were seen within or around the central zone of increased SI. Gross inspection and histological assessment of sliced myocardium usually disclosed hemorrhage in the regions of decreased SI. In three of the five dogs with no apparent zones of decreased SI on NMR, the infarct was small, and only minor hemorrhage was observed by gross inspection, whereas in the remaining two dogs no hemorrhage was seen. Myocardial flow in the hemorrhagic regions was significantly higher than in the necrotic core (59 +/- 29% vs. 31 +/- 24% compared with control, P less than 0.05). Image-derived calculation of T2 relaxation times in the different infarcted regions revealed a significant shortening of T2 in the infarcted hemorrhagic zones with decreased SI compared with the infarct zones with increased SI (49 +/- 8 msec vs. 66 +/- 8 msec, P less than 0.05).

  16. Selective inversion of 1H resonances in solid-state nuclear magnetic resonance: Use of double-DANTE pulse sequence

    NASA Astrophysics Data System (ADS)

    Mithu, Venus Singh; Tan, Kong Ooi; Madhu, P. K.

    2013-12-01

    We here present a method based on DANTE pulses and homonuclear dipolar decoupling scheme to invert selectively any desired resonance in a proton spin system under magic-angle spinning. Experimental results are reported on a sample of L-histidine·HCl·H2O at magic-angle spinning frequencies of 15 and 60 kHz. The results are also substantiated numerically.

  17. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  18. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance.

    PubMed

    Sun, Yan-Jun; Zhang, Yan-Li; Wang, Yu; Wang, Jun-Min; Zhao, Xuan; Gong, Jian-Hong; Gao, Wei; Guan, Yan-Bin

    2015-01-01

    In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR) was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1), scan numbers (NS), and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS), and deuterated dimethyl sulfoxide (DMSO-d6) as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7'-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7'-O-β-d-glucopyranoside, and 6''-acetyl-podophyllotoxin-7'-O-β -d-glucopyranoside) were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC). Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans. PMID:26016553

  19. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  20. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems. PMID:27469092

  1. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems.

  2. On the complex resonant frequency of open dielectric resonators

    NASA Astrophysics Data System (ADS)

    Tsuji, M.; Shigesawa, H.; Takiyama, K.

    1983-05-01

    An analytical method is presented for calculating accurately the complex resonant frequency of dielectric pillbox resonators. In this method, an approximted field of the resonator is expanded into a truncated series of solutions of the Helmholtz equation in the spherical coordinates, and the boundary condition on the resonator surface is treated in the least-squares sense. The resonant frequency and the intrinsic Q value due to radiation loss are obtained in the form of approximation converging to the exact values. Numerical results are compared with previously published calculations, which show that the present method is a relatively simple and effective one.

  3. Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Park, Sang Ho; Opella, Stanley J.

    2012-07-01

    We demonstrate 1H amide resonance line widths <300 Hz in 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in aligned phospholipid bilayers. This represents a substantial improvement over typically observed line widths of ˜1 kHz. Furthermore, in a proton detected local field (PDLF) version of the experiment that measures heteronuclear dipolar couplings, line widths <130 Hz are observed. This dramatic line narrowing of 1H amide resonances enables many more individual signals to be resolved and assigned from uniformly 15N labeled membrane proteins in phospholipid bilayers under physiological conditions of temperature and pH. Finding that the decrease in line widths occurs only for membrane proteins that undergo fast rotational diffusion around the bilayer normal, but not immobile molecules, such as peptide single crystals, identifies a potential new direction for pulse sequence development that includes overall molecular dynamics in their design.

  4. Sodium-23 magnetic resonance imaging during and after transient cerebral ischemia: multinuclear stroke protocols for double-tuned 23Na/1H resonator systems

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Ansar, Saema; Handwerker, Eva

    2012-11-01

    A double-tuned 23Na/1H resonator system was developed to record multinuclear MR image data during and after transient cerebral ischemia. 1H-diffusion-, 1H perfusion, 1H T2-, 1H arterial blood flow- and 23Na spin density-weighted images were then acquired at three time points in a rodent stroke model: (I) during 90 min artery occlusion, (II) directly after arterial reperfusion and (III) one day after arterial reperfusion. Normal 23Na was detected in hypoperfused stroke tissue which exhibited a low 1H apparent diffusion coefficient (ADC) and no changes in 1H T2 relaxation time during transient ischemia, while 23Na increased and ADC values recovered to normal values directly after arterial reperfusion. For the first time, a similar imaging protocol was set-up on a clinical 3T MRI site in conjunction with a commercial double-tuned 1H/23Na birdcage resonator avoiding a time-consuming exchange of resonators or MRI systems. Multinuclear 23Na/1H MRI data sets were obtained from one stroke patient during both the acute and non-acute stroke phases with an aquisition time of 22 min. The lesion exhibiting low ADC was found to be larger compared to the lesion with high 23Na at 9 h after symptom onset. It is hoped that the presented pilot data demonstrate that fast multinuclear 23Na/1H MRI preclinical and clinical protocols can enable a better understanding of how temporal and regional MRI parameter changes link to pathophysiological variations in ischemic stroke tissue.

  5. Pressure dependent resonant frequency of micromechanical drumhead resonators

    SciTech Connect

    Southworth, D. R.; Craighead, H. G.; Parpia, J. M.

    2009-05-25

    We examine the relationship between squeeze film effects and resonance frequency in drum-type resonators. We find that the resonance frequency increases linearly with pressure as a result of the additional restoring force contribution from compression of gas within the drum cavity. We demonstrate trapping of the gas by squeeze film effects and geometry. The pressure sensitivity is shown to scale inversely with cavity height and sound radiation is found to be the predominant loss mechanism near and above atmospheric pressure. Drum resonators exhibit linearity and sensitivity suitable to barometry from below 10 Torr up to several atmospheres.

  6. Visual confrontation naming and hippocampal function: A neural network study using quantitative (1)H magnetic resonance spectroscopy.

    PubMed

    Sawrie, S M; Martin, R C; Gilliam, F G; Faught, R E; Maton, B; Hugg, J W; Bush, N; Sinclair, K; Kuzniecky, R I

    2000-04-01

    Prior research on the relationship between visual confrontation naming and hippocampal function has been inconclusive. The present study examined this relationship using quantitative (1)H magnetic resonance spectroscopy ((1)H-MRS) to operationalize the function of the left and right hippocampi. The 60-item Boston Naming Test (BNT) was used to measure naming. Our sample included 46 patients with medically intractable, focal mesial temporal lobe epilepsy who had been screened for all pathology other than mesial temporal sclerosis. Statistics included Pearson correlations and neural network analysis (multilayer perceptron and radial basis function). Baseline BNT performance correlated significantly with left (1)H-MRS hippocampal ratios. Thirty-six per cent of the variance in baseline BNT performance was explained by a neural network model using left and right (1)H-MRS ratios(creatine/N-acetylaspartate) as input. This was elevated to 49% when input from the right hippocampus was lesioned mathematically. In a second model, left (1)H-MRS hippocampal ratios were modelled using measures of semantic and episodic memory as input (including the BNT). Explained variance in left (1)H-MRS hippocampal ratios fell from 60.8 to 3.6% when input from BNT and another semantic memory measure was degraded mathematically. These results provide evidence that the speech-dominant hippocampus is a significant component of the overall neuroanatomical network of visual confrontation naming. Clinical and theoretical implications are explored.

  7. Telegraph frequency noise in electromechanical resonators

    NASA Astrophysics Data System (ADS)

    Sun, F.; Zou, J.; Maizelis, Z. A.; Chan, H. B.

    2015-05-01

    We demonstrate experimentally the possibility of revealing fluctuations in the eigenfrequency of a resonator when the frequency noise is of the telegraph type. Using a resonantly driven micromechanical resonator, we show that the time-averaged vibration amplitude spectrum exhibits two peaks. They merge with an increasing rate of frequency switching and the spectrum displays an analog of motional narrowing. We also show that the moments of the complex amplitude depend strongly on the frequency noise characteristics. This dependence remains valid even when strong thermal noise or detector noise is present.

  8. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  9. Resonance frequency of microbubbles: effect of viscosity.

    PubMed

    Khismatullin, Damir B

    2004-09-01

    The transmitted frequency at which a gas bubble of millimeter or submillimeter size oscillates resonantly in a low-viscosity liquid is approximately equal to the undamped natural frequency (referred to as the Minnaert frequency if surface tension effects are disregarded). Based on a theoretical analysis of bubble oscillation, this paper shows that such an approximation cannot be validated for microbubbles used in contrast-enhanced ultrasound imaging. The contrast-agent microbubbles represent either encapsulated bubbles of size less than 10 microm or free (nonencapsulated) bubbles of submicron size. The resonance frequency of the microbubbles deviates significantly from the undamped natural frequency over the whole range of microbubble sizes due to the increased viscous damping coefficient. The difference between these two frequencies is shown to have a tremendous impact on the resonant backscatter by the microbubbles. In particular, the first and second harmonics of the backscattered signal from the microbubbles are characterized by their own resonance frequencies, equal to neither the microbubble resonance frequency nor the undamped natural frequency.

  10. Cavities for electron spin resonance: predicting the resonant frequency

    NASA Astrophysics Data System (ADS)

    Colton, John; Miller, Kyle; Meehan, Michael; Spencer, Ross

    Microwave cavities are used in electron spin resonance to enhance magnetic fields. Dielectric resonators (DRs), pieces of high dielectric material, can be used to tailor the resonant frequency of a cavity. However, designing cavities with DRs to obtain desired frequencies is challenging and in general can only be done numerically with expensive software packages. We present a new method for calculating the resonant frequencies and corresponding field modes for cylindrically symmetric cavities and apply it to a cavity with vertically stacked DRs. The modes of an arbitrary cavity are expressed as an expansion of empty cavity modes. The wave equation for D gives rise to an eigenvalue equation whose eigenvalues are the resonant frequencies and whose eigenvectors yield the electric and magnetic fields of the mode. A test against theory for an infinitely long dielectric cylinder inside an infinite cavity yields an accuracy better than 0.4% for nearly all modes. Calculated resonant frequencies are also compared against experiment for quasi-TE011 modes in resonant cavities with ten different configurations of DRs; experimental results agree with predicted values with an accuracy better than 1.0%. MATLAB code is provided at http://www.physics.byu.edu/research/coltonlab/cavityresonance.

  11. (1)H and (13)C magic-angle spinning nuclear magnetic resonance studies of the chicken eggshell.

    PubMed

    Pisklak, Dariusz Maciej; Szeleszczuk, Lukasz; Wawer, Iwona

    2012-12-19

    The chicken eggshell, a product of biomineralization, contains inorganic and organic substances whose content changes during the incubation process. Bloch-decay (BD) (1)H, (13)C, and cross-polarization (CP) (13)C nuclear magnetic resonance (NMR) spectra of chicken eggshells were acquired under magic-angle spinning (MAS). Variable contact time (13)C CP MAS NMR experiments revealed the signals of carbonyl groups from organic and inorganic compounds. In the (13)C BD NMR spectra, a single peak at 168.1 ppm was detected, whereas in the (1)H BD spectra, the signals from water and the bicarbonate ion were assigned. A simultaneous decrease of the water signal in the (1)H MAS NMR spectra and an increase of the carbonate ion signal in the (13)C CP MAS NMR spectra of eggshells collected during the incubation period indicate the substitution of calcium ions by hydrogen ions in the calcium carbonate crystalline phase during the incubation of an egg.

  12. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively.

  13. NMR resonance splitting of urea in stretched hydrogels: proton exchange and (1)H/(2)H isotopologues.

    PubMed

    Kuchel, Philip W; Naumann, Christoph; Chapman, Bogdan E; Shishmarev, Dmitry; Håkansson, Pär; Bacskay, George; Hush, Noel S

    2014-10-01

    Urea at ∼12 M in concentrated gelatin gel, that was stretched, gave (1)H and (2)H NMR spectral splitting patterns that varied in a predictable way with changes in the relative proportions of (1)H2O and (2)H2O in the medium. This required consideration of the combinatorics of the two amide groups in urea that have a total of four protonation/deuteration sites giving rise to 16 different isotopologues, if all the atoms were separately identifiable. The rate constant that characterized the exchange of the protons with water was estimated by back-transformation analysis of 2D-EXSY spectra. There was no (1)H NMR spectral evidence that the chiral gelatin medium had caused in-equivalence in the protons bonded to each amide nitrogen atom. The spectral splitting patterns in (1)H and (2)H NMR spectra were accounted for by intra-molecular scalar and dipolar interactions, and quadrupolar interactions with the electric field gradients of the gelatin matrix, respectively. PMID:25241007

  14. NMR study of Met-1 human Angiogenin: (1)H, (13)C, (15)N backbone and side-chain resonance assignment.

    PubMed

    Tsika, Aikaterini C; Chatzileontiadou, Demetra S M; Leonidas, Demetres D; Spyroulias, Georgios A

    2016-10-01

    Here, we report the high yield expression and preliminary structural analysis via solution hetero-nuclear NMR spectroscopy of the recombinant Met-1 human Angiogenin. The analysis reveals a well folded as well as, a monomeric polypeptide. Τhe sequence-specific assignment of its (1)H, (15)N and (13)C resonances at high percentage was obtained. Also, using TALOS+ its secondary structure elements were determined.

  15. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes.

    PubMed

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-12-01

    Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2) to anisole (1) causes only small positive changes of 1H NMR chemical shifts (Delta delta < 0.08 ppm) that decrease in the order Hortho > Hmeta > Hpara, the experimental O-methylation induced shifts in ortho-disubstituted phenols are largest for Hpara, Delta delta equals; 0.19 +/- 0.02 ppm (n = 11). The differences are due to different conformational behavior of the OH and OCH3 groups; while the ortho-disubstituted OH group remains planar in polyphenols due to hydrogen bonding and conjugative stabilization, the steric congestion in ortho-disubstituted anisoles outweighs the conjugative effects and forces the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent correlation between computed and observed 1H NMR chemical shifts, including agreement between computed and observed chemical shift changes caused by O-methylation. The observed regularities can aid structure elucidation of partly O-methylated polyphenols, including many natural products and drugs, and are useful in connection with chemical shift predictions by desktop computer programs. PMID:17137372

  16. 1H magnetic resonance spectroscopy of invasive cervical cancer: an in vivo study with ex vivo corroboration.

    PubMed

    Mahon, Marrita M; Williams, Andreanna D; Soutter, W Patrick; Cox, I Jane; McIndoe, G Angus; Coutts, Glyn A; Dina, Roberto; deSouza, Nandita M

    2004-02-01

    The objective of this study was to establish in vivo (1)H-magnetic resonance (MR) spectroscopic appearances of cervical cancer using an endovaginal receiver coil and corroborate findings with magic angle spinning (MAS) MR spectroscopy of tissue samples. Fifty-three women (14 controls and 39 with cervical cancer) underwent endovaginal coil MR imaging at 1.5 T with T(1)- and T(2)-weighted scans sagittal and transverse to the cervix. Localized (1)H MR spectra (PRESS technique, TR 1600 ms, TE 135 ms) were accumulated in all controls and 29 cancer patients whose tumour filled > 50% of a single 3.4 cm(3) voxel. Peaks from triglyceride-CH(2) and -CH(3) were defined as present and in-phase (with the choline resonance), present but out-of-phase, or not present. Peak areas of choline-containing compounds were standardized to the area of unsuppressed tissue water resonance. Comparisons in observed resonances between groups were made using Fisher's exact test (qualitative data) and a t-test (quantitative data). Biopsies from these women analysed using MAS-MR spectroscopy and normalized to the intensity of an external standard of silicone rubber were similarly compared. Adequate water suppression permitted spectral analysis in 11 controls and 27 cancer patients. In-phase triglyceride-CH(2) resonances (1.3 ppm) were observed in 74% of tumours but in no control women (p < 0.001). No differences were observed in the presence of a 2 ppm resonance, choline-containing compounds or creatine in cancer compared with control women. However, ex vivo analysis showed significant differences not only in -CH(2), but also in -CH(3), a 2 ppm resonance, choline-containing compounds and creatine between tissues from control women and cancer tissue (p < 0.001, = 0.001, = 0.036, < 0.001 and = 0.004 respectively). On in vivo (1)H-MR spectroscopy, the presence of positive triglyceride-CH(2) resonances can be used to detect and confirm the presence of cervical cancer. However, technical improvements

  17. Sequence-specific sup 1 H and sup 15 N resonance assignments for human dihydrofolate reductase in solution

    SciTech Connect

    Stockman, B.J.; Nirmala, N.R.; Wagner, G. ); Delcamp, T.J.; DeYarman, M.T.; Freisheim, J.H. )

    1992-01-14

    Dihydrofolate reductase is an intracellular target enzyme for folate antagonists, including the anticancer drug methotrexate. In order to design novel drugs with altered binding properties, a detailed description of protein-drug interactions in solution is desirable to understand the specificity of drug binding. As a first step in this process, heteronuclear three-dimensional NMR spectroscopy has been used to make sequential resonance assignments for more than 90% of the residues in human dihydrofolate reductase complexed with methotrexate. Uniform enrichment of the 21.5-kDa protein with {sup 15}N was required to obtain the resonance assignments via heteronuclear 3D NMR spectroscopy since homonuclear 2D spectra did not provide sufficient {sup 1}H resonance dispersion. Medium- and long-range NOE's have been used to characterize the secondary structure of the binary ligand-enzyme complex in solution.

  18. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry

    PubMed Central

    Yong, Wei Peng; Yeow, Chen Hua

    2016-01-01

    Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS. PMID:27611679

  19. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry.

    PubMed

    Ramachandran, Gokula Krishnan; Yong, Wei Peng; Yeow, Chen Hua

    2016-01-01

    Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS. PMID:27611679

  20. On Frequency Combs in Monolithic Resonators

    NASA Astrophysics Data System (ADS)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  1. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  2. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  3. Magnetic plasmonic Fano resonance at optical frequency.

    PubMed

    Bao, Yanjun; Hu, Zhijian; Li, Ziwei; Zhu, Xing; Fang, Zheyu

    2015-05-13

    Plasmonic Fano resonances are typically understood and investigated assuming electrical mode hybridization. Here we demonstrate that a purely magnetic plasmon Fano resonance can be realized at optical frequency with Au split ring hexamer nanostructure excited by an azimuthally polarized incident light. Collective magnetic plasmon modes induced by the circular electric field within the hexamer and each of the split ring can be controlled and effectively hybridized by designing the size and orientation of each ring unit. With simulated results reproducing the experiment, our suggested configuration with narrow line-shape magnetic Fano resonance has significant potential applications in low-loss sensing and may serves as suitable elementary building blocks for optical metamaterials.

  4. High-frequency micromechanical columnar resonators

    NASA Astrophysics Data System (ADS)

    Kehrbusch, Jenny; Ilin, Elena A.; Bozek, Peter; Radzio, Bernhard; Oesterschulze, Egbert

    2009-06-01

    High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient conditions, we observed a frequency stability δf/f of less than 10-6 during 5 h of operation at almost constant temperature. However, varying the temperature shifts the frequency by approximately -173 Hz °C- 1. In accordance with a viscous damping model of the ambient gas, we perceived that the quality factor of the first flexural mode decreased with the inverse of the square root of pressure. However, in the low-pressure regime, a linear dependence was observed. We also investigated the influence of the type of the immersing gas on the resonant frequency.

  5. 1H, 13C, and 15N resonance assignments of murine amelogenin, an enamel biomineralization protein.

    SciTech Connect

    Buchko, Garry W.; Bekhazi, Jacky G.; Cort, John R.; Valentine, Nancy B.; Snead, Malcolm L.; Shaw, Wendy J.

    2008-06-01

    Amelogenin is the predominant matrix protein in developing dental enamel. Making extensive use of residue-specific 15N-labeled amino acids samples, the majority of the main and side chain resonances for murine amelogenin were assigned in 2% aqueous acetic acid at pH 3.0. This research was performed at Pacific Northwest National Laboratory, operated by Battelle for the US-DOE. A large part of this research was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL).

  6. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    NASA Astrophysics Data System (ADS)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  7. Frequency division using a micromechanical resonance cascade

    SciTech Connect

    Qalandar, K. R. Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L.; Strachan, B. S.; Shaw, S. W.

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  8. 1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

    PubMed Central

    Xu, Chuang; Sun, Ling-wei; Xia, Cheng; Zhang, Hong-you; Zheng, Jia-san; Wang, Jun-song

    2016-01-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows. PMID:26732447

  9. (1)H, (13)C and (15)N backbone resonance assignments and dynamic properties of the PDZ tandem of Whirlin.

    PubMed

    Delhommel, Florent; Wolff, Nicolas; Cordier, Florence

    2016-10-01

    Mammals perceive sounds thanks to mechanosensory hair cells located in the inner ear. The stereocilia of these cells are tightly bound together in bundles by a network of cadherins and scaffolding proteins. Stereocilia deflection induces stretching of this network and is responsible for hair cell depolarization that triggers the neuronal message, transducing the mechanical signal into an electric signal transmissible to the brain. Nearly all proteins involved in this mechano-electrical transduction network contain short C-terminal motifs of interaction with PDZ domains (PSD-95, Discs Large, ZO-1). Interestingly only two of these proteins encompass PDZ domains: Harmonin and Whirlin. As our first step towards a comprehensive structural study of Whirlin, we have assigned the (1)H, (13)C and (15)N backbone resonances of a tandem formed by the first two PDZ domains of Whirlin, reported the secondary structure elements of this tandem as predicted by the TALOS+ server and evaluated its dynamics from (15)N relaxation measurements.

  10. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm

    NASA Astrophysics Data System (ADS)

    Harańczyk, H.; Kobierski, J.; Nizioł, J.; Hebda, E.; Pielichowski, J.; Zalitacz, D.; Marzec, M.; El-Ghayoury, A.

    2013-01-01

    The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t1h = (0.59 ± 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t2h = (20.9 ± 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T2S∗≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1∗≈ 100 μs) and from loosely bound water fraction (T2L2∗≈ 1000 μs).

  11. (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver.

    PubMed

    Xu, Chuang; Sun, Ling-Wei; Xia, Cheng; Zhang, Hong-You; Zheng, Jia-San; Wang, Jun-Song

    2016-02-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using (1)H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

  12. 1H nuclear magnetic resonance-based extracellular metabolomic analysis of multidrug resistant Tca8113 oral squamous carcinoma cells

    PubMed Central

    WANG, HUI; CHEN, JIAO; FENG, YUN; ZHOU, WENJIE; ZHANG, JIHUA; YU, YU; WANG, XIAOQIAN; ZHANG, PING

    2015-01-01

    A major obstacle of successful chemotherapy is the development of multidrug resistance (MDR) in the cancer cells, which is difficult to reverse. Metabolomic analysis, an emerging approach that has been increasingly applied in various fields, is able to reflect the unique chemical fingerprints of specific cellular processes in an organism. The assessment of such metabolite changes can be used to identify novel therapeutic biomarkers. In the present study, 1H nuclear magnetic resonance (NMR) spectroscopy was used to analyze the extracellular metabolomic spectrum of the Tca8113 oral squamous carcinoma cell line, in which MDR was induced using the carboplatin (CBP) and pingyangmycin (PYM) chemotherapy drugs in vitro. The data were analyzed using the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) methods. The results demonstrated that the extracellular metabolomic spectrum of metabolites such as glutamate, glycerophosphoethanol amine, α-Glucose and β-Glucose for the drug-induced Tca8113 cells was significantly different from the parental Tca8113 cell line. A number of biochemicals were also significantly different between the groups based on their NMR spectra, with drug-resistant cells presenting relatively higher levels of acetate and lower levels of lactate. In addition, a significantly higher peak was observed at δ 3.35 ppm in the spectrum of the PYM-induced Tca8113 cells. Therefore, 1H NMR-based metabolomic analysis has a high potential for monitoring the formation of MDR during clinical tumor chemotherapy in the future. PMID:26137105

  13. Hippocampal Neurometabolite Changes in Hypothyroidism: An In Vivo (1) H Magnetic Resonance Spectroscopy Study Before and After Thyroxine Treatment.

    PubMed

    Singh, S; Rana, P; Kumar, P; Shankar, L R; Khushu, S

    2016-09-01

    The hippocampus is a thyroid hormone receptor-rich region of the brain. A change in thyroid hormone levels may be responsible for an alteration in hippocampal-associated function, such as learning, memory and attention. Neuroimaging studies have shown functional and structural changes in the hippocampus as a result of hypothyroidism. However, the underlying process responsible for this dysfunction remains unclear. Therefore, the present study aimed to investigate the metabolic changes in the brain of adult hypothyroid patients during pre- and post-thyroxine treatment using in vivo proton magnetic resonance spectroscopy ((1) H MRS). (1) H MRS was performed in both healthy control subjects (n = 15) and hypothyroid patients (n = 15) (before and after thyroxine treatment). The relative ratios of the neurometabolites were calculated using the linear combination model (LCModel). Our results revealed a significant decrease of glutamate (Glu) (P = 0.045) and myo-inositol (mI) (P = 0.002) levels in the hippocampus of hypothyroid patients compared to controls. No significant changes in metabolite ratios were observed in the hypothyroid patients after thyroxine treatment. The findings of the present study reveal decreased Glu/tCr and mI/tCr ratios in the hippocampus of hypothyroid patients and these metabolite alterations persisted even after the patients became clinically euthyroid subsequent to thyroxine treatment. PMID:27203419

  14. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    PubMed

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms.

  15. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: 1H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies

    PubMed Central

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-01-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using 1H-magnetic resonance spectroscopy (1H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was used for data acquisition. An echo planar imaging sequence was used for resting-state fMRI, whereas a point resolved spectroscopy sequence was used for 1H-MRS. Regional Saturation Technique, Data Processing Assistant for Resting-State fMRI, and Statistical Parameter Mapping 8 were used to analyze the fMRI data. The 1H-MRS data were analyzed using LCModel software. At 1 h after oral administration of codeine phosphate (1.0 mg/kg), the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity were altered in different brain areas. The choline content was significantly increased in the right and left frontal lobes following codeine phosphate administration (P=0.02 and P=0.03, respectively), whereas the inositol content was significantly decreased in the left frontal lobe (P=0.02). There was no change in the glutamic acid content in the frontal lobes. In conclusion, the functions of different brain regions can be affected by a single, low-dose administration of codeine phosphate. The alterations in metabolite content in the two frontal lobes may be associated with changes in brain function, whereas the ALFF in the globus pallidus may have an effect on codeine phosphate addiction. Finally, glutamic acid may be useful in the estimation of codeine dependence. PMID:27446252

  16. Microdiaphragm resonating biosensors in higher frequency modes.

    PubMed

    Olfatnia, M; Xu, T; Miao, J M; Ong, L S

    2011-12-01

    Influences of different vibration modes of microdiaphragm resonating biosensors on their detecting capability are investigated in this paper. In order to study the mass sensing capability of the sensor, gold layers with different thicknesses are deposited on the sensor's surface. The frequency shift due to this mass deposition in different frequency modes is measured. An increase in the sensitivity and the quality factor (Q-factor) is found with the increase in the vibration mode number of the sensor. The experimental results demonstrate that the mass sensitivity and quality factor of the device are 4.08 Hz/ng and 241.80 at the ninth mode. These are 2.76 and 10.26 times higher than the mass sensitivity and the Q-factor of the device at the first mode. The observations lead to this conclusion that the sensitivity of microdiaphragm resonating biosensors can be increased by working in higher modes without changing their physical parameters.

  17. Resonant Plasma Heating Below the Cyclotron Frequency

    SciTech Connect

    Roscoe White; Liu Chen; Zhihong Lin

    2001-11-26

    Resonant heating of a magnetized plasma by low-frequency waves of large amplitude is considered. It is shown that the magnetic moment can be changed nonadiabatically by a single large amplitude wave, even at frequencies normally considered nonresonant. Two examples clearly demonstrate the existence of the resonances leading to chaos and the generic nature of heating below the cyclotron frequency. First, the classical case of an electrostatic wave of large amplitude propagating across a confining uniform magnetic field, and second, a large amplitude Alfvén wave, propagating obliquely across the magnetic field. Waves with frequencies a small fraction of the cyclotron frequency are shown to produce significant heating; bringing, in the case of Alfvén waves, particles to speeds comparable to the Alfvén velocity in a few hundred cyclotron periods. Stochastic threshold for heating occurs at significantly lower amplitude with a perturbation spectrum consisting of a number of modes. This phenomenon may have relevance for the heating of ions in the solar corona as well as for ion heating in some toroidal confinement fusion devices.

  18. Frequency shifts in gravitational resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; Protasov, K. V.; Rebreyend, D.; Kupriyanova, E. A.; Voronin, A. Yu.

    2015-02-01

    Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts—which we call the Stern-Gerlach shift, interference shift, and spectator-state shift—appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

  19. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    NASA Astrophysics Data System (ADS)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  20. Quantitative analysis of D-(+)-glucose in fruit juices using diffusion ordered-1H nuclear magnetic resonance spectroscopy.

    PubMed

    Cao, Ruge; Komura, Fusae; Nonaka, Airi; Kato, Takeshi; Fukumashi, Junji; Matsui, Toshiro

    2014-01-01

    This study works on D-(+)-glucose quantitative analysis using diffusion ordered-quantitative (1)H nuclear magnetic resonance spectroscopy (DOSY-qNMR), by which an analyte could be distinguished from interferences based upon a characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of D-(+)-glucose in deuterium oxide at 30°C was 5.6 × 10(-10) m(2)/s at a field gradient pulse of between 5.0 × 10(-2) and 3.0 × 10(-1) T/m, distinguished from fructose, sucrose and starch. Good linearity (r(2) = 0.9998) was obtained between D-(+)-glucose (0.5-20.0 g/L) and the ratio of the resonance area of α-C1 proton (5.21 ppm) in D-(+)-glucose to that of the β-C1 proton (5.25 ppm) in D-glucuronic acid (50.0 g/L) as an internal standard. The DOSY-qNMR method was successfully applied to quantify D-(+)-glucose in orange juice (18.3 ± 1.0 g/L), apple juice (26.3 ± 0.4 g/L) and grape juice (45.6 ± 0.6 g/L); the values agreed well with a conventional F-kit glucose method.

  1. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  2. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  3. Neuronal damage in the interval form of CO poisoning determined by serial diffusion weighted magnetic resonance imaging plus 1H-magnetic resonance spectroscopy

    PubMed Central

    Murata, T; Kimura, H; Kado, H; Omori, M; Onizuka, J; Takahashi, T; Itoh, H; Wada, Y

    2001-01-01

    In a patient with the interval form of carbon monoxide (CO) poisoning diffusion weighted MRI and proton magnetic resonance spectroscopy (1H-MRS) were serially performed immediately after the appearance of delayed sequelae (the 23rd day after exposure). During the period in which few clear findings were evident on MRI T2 weighted images, a high signal area in the cerebral white matter and relative decrease in the apparent diffusion coefficient (ADCav) were already apparent on diffusion weighted images, with these findings thought to sensitively reflect the tissue injury associated with the onset of sequelae. The decrease in relative ADCav persisted until the 38th day after exposure. Subsequently, ADCav gradually increased, and in the cerebral white matter showed higher values in the 118th day after exposure than immediately after the onset of sequelae. During this period, on 1H-MRS choline containing compounds showed persistently high values throughout the course, with N-acetylaspartate depletion and the appearance of a lactate peak later in the course. These findings, with regional specificity in the cerebral white matter, reflect the developmental process of the white matter lesions in the interval form of CO poisoning in which demyelination progresses leading to neuronal necrosis. Serial diffusion weighted imaging plus 1H-MRS measurements are useful in determining the tissue damage and long term outcome of delayed sequelae associated with the interval form of CO poisoning.

 PMID:11459905

  4. Quantitative 1H nuclear magnetic resonance metabolite profiling as a functional genomics platform to investigate alkaloid biosynthesis in opium poppy.

    PubMed

    Hagel, Jillian M; Weljie, Aalim M; Vogel, Hans J; Facchini, Peter J

    2008-08-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The plant is widely cultivated as the only commercial source of the narcotic analgesics morphine and codeine. Variations in plant secondary metabolism as a result of genetic diversity are often associated with perturbations in other metabolic pathways. As part of a functional genomics platform, we used (1)H nuclear magnetic resonance (NMR) metabolite profiling for the analysis of primary and secondary metabolism in opium poppy. Aqueous and chloroform extracts of six different opium poppy cultivars were subjected to chemometric analysis. Principle component analysis of the (1)H NMR spectra for latex extracts clearly distinguished two varieties, including a low-alkaloid variety and a high-thebaine, low-morphine cultivar. Distinction was also made between pharmaceutical-grade opium poppy cultivars and a condiment variety. Such phenotypic differences were not observed in root extracts. Loading plots confirmed that morphinan alkaloids contributed predominantly to the variance in latex extracts. Quantification of 34 root and 21 latex metabolites, performed using Chenomx NMR Suite version 4.6, showed major differences in the accumulation of specific alkaloids in the latex of the low-alkaloid and high-thebaine, low-morphine varieties. Relatively few differences were found in the levels of other metabolites, indicating that the variation was specific for alkaloid metabolism. Exceptions in the low-alkaloid cultivar included an increased accumulation of the alkaloid precursor tyramine and reduced levels of sucrose, some amino acids, and malate. Real-time polymerase chain reaction analysis of 42 genes involved in primary and secondary metabolism showed differential gene expression mainly associated with alkaloid biosynthesis. Reduced alkaloid levels in the condiment variety were associated with the

  5. A phytochemical comparison of saw palmetto products using gas chromatography and 1H nuclear magnetic resonance spectroscopy metabolomic profiling

    PubMed Central

    Booker, Anthony; Suter, Andy; Krnjic, Ana; Strassel, Brigitte; Zloh, Mire; Said, Mazlina; Heinrich, Michael

    2014-01-01

    Objectives Preparations containing saw palmetto berries are used in the treatment of benign prostatic hyperplasia (BPH). There are many products on the market, and relatively little is known about their chemical variability and specifically the composition and quality of different saw palmetto products notwithstanding that in 2000, an international consultation paper from the major urological associations from the five continents on treatments for BPH demanded further research on this topic. Here, we compare two analytical approaches and characterise 57 different saw palmetto products. Methods An established method – gas chromatography – was used for the quantification of nine fatty acids, while a novel approach of metabolomic profiling using 1H nuclear magnetic resonance (NMR) spectroscopy was used as a fingerprinting tool to assess the overall composition of the extracts. Key findings The phytochemical analysis determining the fatty acids showed a high level of heterogeneity of the different products in the total amount and of nine single fatty acids. A robust and reproducible 1H NMR spectroscopy method was established, and the results showed that it was possible to statistically differentiate between saw palmetto products that had been extracted under different conditions but not between products that used a similar extraction method. Principal component analysis was able to determine those products that had significantly different metabolites. Conclusions The metabolomic approach developed offers novel opportunities for quality control along the value chain of saw palmetto and needs to be followed further, as with this method, the complexity of a herbal extract can be better assessed than with the analysis of a single group of constituents. PMID:24417505

  6. Characterisation of in vivo ovarian cancer models by quantitative 1H magnetic resonance spectroscopy and diffusion-weighted imaging.

    PubMed

    Canese, Rossella; Pisanu, Maria Elena; Mezzanzanica, Delia; Ricci, Alessandro; Paris, Luisa; Bagnoli, Marina; Valeri, Barbara; Spada, Massimo; Venditti, Massimo; Cesolini, Albino; Rodomonte, Andrea; Giannini, Massimo; Canevari, Silvana; Podo, Franca; Iorio, Egidio

    2012-04-01

    Magnetic resonance imaging (MRI) and spectroscopy (MRS) offer powerful approaches for detecting physiological and metabolic alterations in malignancies and help investigate underlying molecular mechanisms. Research on epithelial ovarian carcinoma (EOC), the gynaecological malignancy with the highest death rate characterised by frequent relapse and onset of drug resistance, could benefit from application of these molecular imaging approaches. In this study, MRI/MRS were used to characterise solid tumour models obtained by subcutaneous (s.c.) or intraperitoneal (i.p.) implantation of human SKOV3.ip cells in severe combined immunodeficiency (SCID) mice. In vivo MRI/MRS, ex vivo magic-angle-spinning (MAS), and in vitro (1)H-NMR measurements were carried out at 4.7 T, 9.4 T, and 9.4/16.5 T, respectively. MRI evaluation was performed by T1-, T2-, and diffusion-weighted (DW) multislice spin-echo imaging. The in vivo (1)H spectra of all tumour models showed a prominent resonance of total choline-containing metabolites (tCho). Quantitative in vivo MRS of both i.p. and s.c. SKOV3.ip xenografts showed that the mean tCho content was in the 2.9-4.5 mM range, with a mean PCho/tCho ratio of 0.99 ± 0.01 [23 examinations, 14-34 days post injection (dpi)], in good agreement with ex vivo and in vitro analyses. Myo-inositol ranged between 11.7 and 17.0 mM, with a trend towards higher values in i.p. xenografts at 14-16 dpi. The average apparent diffusion coefficient (ADC) values of SKOV3.ip xenografts [1.64 ± 0.11 (n = 9, i.p.) and 1.58 ± 0.03 x10(-3) mm(2)/s (n = 7, s.c.)] were in agreement with values reported for tumours from patients with EOC, while the mean vascular signal fraction (VSF) was lower (≤ 4%), probably due to the more rapid growth of preclinical models. Both s.c. and i.p. xenografts are valuable preclinical models for monitoring biochemical and physiopathological changes associated with in vivo EOC tumour growth and response to therapy, which may serve as the

  7. 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; Nakamura, Shinji; Terao, Takehiko

    2003-02-01

    Two recently proposed 13C-13C recoupling methods under magic angle spinning (MAS), resonant interference recoupling (RIR), and 13C-1H dipolar-assisted rotational resonance (DARR), are examined on a common theoretical foundation using the average Hamiltonian theory. In both methods, a rf field is applied on not 13C but 1H to recouple the 13C-1H dipolar interactions, and spectral overlap necessary to conserve energy for 13C-13C polarization transfer is achieved by the 13C-1H dipolar line broadening. While DARR employs time-independent 13C-1H interactions recoupled by suitable rf irradiation to 1H spins, RIR uses time-dependent 13C-1H interactions modulated appropriately by 1H rf irradiation. There are two distinct cases where 13C-1H line broadening realizes 13C-13C spectral overlap. For a pair of a carbonyl or aromatic carbon and an aliphatic carbon, spectral overlap can be achieved between one of the spinning sidebands of the former 13C resonance and the 13C-1H dipolar powder pattern of the latter. On the other hand for a pair of spins with a small chemical shift difference, the two center bands are overlapped with each other due to 13C-1H dipolar broadening. For the former, we show that both RIR and DARR occur in the first order, while for the latter, DARR recoupling is appreciable for time-independent 13C-1H interactions. We refer to the former DARR as the first-order DARR recoupling and the latter as the second-order DARR. Experimentally, we examined the following 13C-1H recoupling methods for DARR: 1H CW irradiation fulfilling a rotary-resonance condition or a modulatory-resonance condition, and 1H π pulses applied synchronously to MAS. For RIR, the FSLG-m2m¯m sequence is applied to 1H. Several one-dimensional DARR and RIR experiments were done for N-acetyl[1,2-13C, 15N] DL-valine, and [2,3-13C] L-alanine. It was found that the polarization transfer rate for RIR is larger than that for DARR except for fast spinning, while the rate for DARR is less sensitive to

  8. Comparative study of normal and osteoarthritic canine synovial fluid using 500 MHz 1H magnetic resonance spectroscopy.

    PubMed

    Damyanovich, A Z; Staples, J R; Chan, A D; Marshall, K W

    1999-03-01

    High resolution 1H nuclear magnetic resonance spectroscopy has been used to investigate and compare the metabolic profiles of normal and osteoarthritic synovial fluids in a canine model of osteoarthritis. The spectra of osteoarthritic synovial fluid showed (a) increased concentrations of lactate, pyruvate, lipoprotein-associated fatty acids, and glycerol as well as the ketones hydroxybutyrate and hydroxyisobutyrate, (b) reduced levels of glucose, and (c) elevated levels of N-acetylglycoproteins, acetate, and acetamide compared with healthy normal canine synovial fluid. An increase was also observed in the concentrations of the amino acids alanine and isoleucine. These results suggest that (a) the intraarticular environment in canine osteoarthritis is more hypoxic and acidotic than in a normal joint, (b) lipolysis may play an increasingly important role as a source of energy in osteoarthritis, and (c) the N-acetylglycoprotein polymer component of synovial fluid (mostly hyaluronan) seems to be increasingly fragmented and degraded into acetate by way of an acetamide intermediate with progressive osteoarthritis. The observed changes in the biochemical profile of canine osteoarthritic synovial fluid may be useful in understanding alterations in joint metabolism consequent to arthritic diseases and helpful in identifying potential markers of osteoarthritis. PMID:10221839

  9. Chemical purity using quantitative 1H-nuclear magnetic resonance: a hierarchical Bayesian approach for traceable calibrations

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Nelson, Michael A.; Lippa, Katrice A.

    2016-10-01

    Chemical purity assessment using quantitative 1H-nuclear magnetic resonance spectroscopy is a method based on ratio references of mass and signal intensity of the analyte species to that of chemical standards of known purity. As such, it is an example of a calculation using a known measurement equation with multiple inputs. Though multiple samples are often analyzed during purity evaluations in order to assess measurement repeatability, the uncertainty evaluation must also account for contributions from inputs to the measurement equation. Furthermore, there may be other uncertainty components inherent in the experimental design, such as independent implementation of multiple calibration standards. As such, the uncertainty evaluation is not purely bottom up (based on the measurement equation) or top down (based on the experimental design), but inherently contains elements of both. This hybrid form of uncertainty analysis is readily implemented with Bayesian statistical analysis. In this article we describe this type of analysis in detail and illustrate it using data from an evaluation of chemical purity and its uncertainty for a folic acid material.

  10. Quantitative, In Situ Visualization of Metal-Ion Dissolution and Transport Using (1) H Magnetic Resonance Imaging.

    PubMed

    Bray, Joshua M; Davenport, Alison J; Ryder, Karl S; Britton, Melanie M

    2016-08-01

    Quantitative mapping of metal ions freely diffusing in solution is important across a diverse range of disciplines and is particularly significant for dissolution processes in batteries, metal corrosion, and electroplating/polishing of manufactured components. However, most current techniques are invasive, requiring sample extraction, insertion of an electrode, application of an electric potential or the inclusion of a molecular sensor. Thus, there is a need for techniques to visualize the distribution of metal ions non-invasively, in situ, quantitatively, in three dimensions (3D) and in real time. Here we have used (1) H magnetic resonance imaging (MRI) to make quantitative 3D maps showing evolution of the distribution of Cu(2+) ions, not directly visible by MRI, during the electrodissolution of copper, with high sensitivity and spatial resolution. The images are sensitive to the speciation of copper, the depletion of dissolved O2 in the electrolyte and show the dissolution of Cu(2+) ions is not uniform across the anode. PMID:27329307

  11. Structural studies on Desulfovibrio gigas cytochrome c3 by two-dimensional 1H-nuclear-magnetic-resonance spectroscopy.

    PubMed Central

    Piçarra-Pereira, M A; Turner, D L; LeGall, J; Xavier, A V

    1993-01-01

    Several aromatic amino acid residues and haem resonances in the fully reduced form of Desulfovibrio gigas cytochrome c3 are assigned, using two-dimensional 1H n.m.r., on the basis of the interactions between the protons of the aromatic amino acids and the haem protons as well as the intrahaem distances known from the X-ray structure [Kissinger (1989) Ph.D. Thesis, Washington State University]. The interhaem interactions observed in the n.m.r. spectra are in full agreement with the D. gigas X-ray structure and also with the n.m.r. data from Desulfovibrio vulgaris (Hildenborough) [Turner, Salgueiro, LeGall and Xavier (1992) Eur. J. Biochem. 210, 931-936]. The good correlation between the calculated ring-current shifts and the observed chemical shifts strongly supports the present assignments. Observation of the two-dimensional nuclear-Overhauser-enhancement spectra of the protein in the reduced, intermediate and fully oxidized stages led to the ordering of the haems in terms of their midpoint redox potentials and their identification in the X-ray structure. The first haem to oxidize is haem I, followed by haems II, III and IV, numbered according to the Cys ligand positions in the amino acid sequences [Mathews (1985) Prog. Biophys. Mol. Biol. 54, 1-56]. Although the haem core architecture is the same for the different Desulfovibrio cytochromes c3, the order of redox potentials is different. PMID:8397514

  12. Metabolic profiles using (1)H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity.

    PubMed

    Xu, Chuchu; Xia, Cheng; Sun, Yuhang; Xiao, Xinhuan; Wang, Gang; Fan, Ziling; Shu, Shi; Zhang, Hongyou; Xu, Chuang; Yang, Wei

    2016-10-01

    To understand the differences in metabolic changes between cows with ovarian inactivity and estrus cows, we selected cows at 60-90 days postpartum from an intensive dairy farm. According to clinical manifestations, B-ultrasound scan, rectal examination, 10 cows were assigned to the estrus group (A) and 10 to the ovarian inactivity group (B). All plasma samples were analyzed by (1)H-nuclear magnetic resonance spectroscopy to compare plasma metabolomic profiles between the groups. We used multivariate pattern recognition to screen for different metabolites in plasma of anestrus cows. Compared with normal estrous cows, there were abnormalities in 12 kinds of metabolites in postpartum cows with ovarian inactivity (|r|> 0.602), including an increase in acetic acid (r = -0.817), citric acid (r = -0.767), and tyrosine (r = -0.714), and a decrease in low-density lipoprotein (r = 0.820), very low-density lipoprotein (r = 0.828), lipids (r = 0.769), alanine (r = 0.816), pyruvate (r = 0.721), creatine (r = 0.801), choline (r = 0.639), phosphorylcholine (r = 0.741), and glycerophosphorylcholine (r = 0.881). These metabolites were closely related to abnormality of glucose, amino acid, lipoprotein and choline metabolism, which may disturb the normal estrus. The decrease in plasma creatine and the increase in tyrosine were new changes for ovarian inactivity of postpartum cows. The decrease in plasma creatine and choline and the increase in tyrosine and p-hydroxyphenylalanine in cows with ovarian inactivity provide new directions for research on the mechanism of ovarian inactivity in cows.

  13. 13C and 1H Nuclear Magnetic Resonance Study of Glycogen Futile Cycling in Strains of the Genus Fibrobacter

    PubMed Central

    Matheron, Christelle; Delort, Anne-Marie; Gaudet, Geneviève; Forano, Evelyne; Liptaj, Tibor

    1998-01-01

    We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics. PMID:12033219

  14. Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) project

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1993-01-01

    The West Virginia State College Community College Division NASA Magnetic Earth Ionosphere Resonant Frequencies (MEIRF) study is described. During this contract period, the two most significant and professionally rewarding events were the presentation of the research activity at the Sir Isaac Newton Conference in St. Petersburg, Russia, and the second Day of Discovery Conference, focusing on economic recovery in West Virginia. An active antenna concept utilizing a signal feedback principle similar to regenerative receivers used in early radio was studied. The device has potential for ELF research and other commercial applications for improved signal reception. Finally, work continues to progress on the development of a prototype monitoring station. Signal monitoring, data display, and data storage are major areas of activity. In addition, we plan to continue our dissemination of research activity through presentations at seminars and other universities.

  15. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B. T.; Hsieh, Chung-Kao

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  16. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  17. RCCS operation with a resonant frequency error in the KOMAC

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hyuk

    2015-10-01

    The resonance control cooling systems (RCCSs) of the Korea Multi-purpose Accelerator Complex have been operated for cooling the drift tubes (DT) and controlling the resonant frequency of the drift tube linac (DTL). The DTL should maintain a resonant frequency of 350 MHz during operation. A RCCS can control the temperature of the cooling water to within ±0.1 °C by using a 3-way valve opening and has a constant-cooling-water-temperature control mode and resonant-frequency-control mode. In the case of the resonant-frequency control, the error in the frequency is measured by using the low-level radio-frequency control system, and the RCCS uses a proportional-integral-derivative control algorithm to compensate for the error by controlling the temperature of the cooling water to the DT.

  18. Magnetodielectric effect of Mn-Zn ferrite at resonant frequency

    NASA Astrophysics Data System (ADS)

    Pengfei, Pan; Ning, Zhang

    2016-10-01

    The dielectric properties and the magnetodielectric effect in Mn-Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn-Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect.

  19. Ultraviolet single-frequency coupled optofluidic ring resonator dye laser.

    PubMed

    Tu, Xin; Wu, Xiang; Li, Ming; Liu, Liying; Xu, Lei

    2012-08-27

    Ultraviolet single-frequency lasing is realized in a coupled optofluidic ring resonator (COFRR) dye laser that consists of a thin-walled capillary microfluidic ring resonator and a cylindrical resonator. The whispering gallery modes (WGMs) in each resonator couple to each other and generate single-frequency laser emission. Single-frequency lasing occurs at 386.75 nm with a pump threshold of 5.9 μJ/mm. The side-mode-suppression ratio (SMSR) is about 20 dB. Moreover, the laser emits mainly in two directions, and each of them has a divergence of only 10.5°.

  20. A bounds on the resonant frequency of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1980-01-01

    The calculation of currents induced by a transverse electric plane wave normally incident upon an infinite strip embedded in a grounded dielectric slab is used to infer a lower bound on the resonant frequency (or resonant-E-plane dimension) for rectangular microstrip antennas. An upper bound is provided by the frequency for which the E-plane dimension is a half-wavelength.

  1. Coupled whispering gallery mode resonators in the Terahertz frequency range.

    PubMed

    Preu, S; Schwefel, H G L; Malzer, S; Döhler, G H; Wang, L J; Hanson, M; Zimmerman, J D; Gossard, A C

    2008-05-12

    We report on coupling of two whispering gallery mode resonators in the Terahertz frequency range. Due to the long wavelength in the millimeter to submillimeter range, the resonators can be macroscopic allowing for accurate size and shape control. This is necessary to couple specific modes of two or more resonators. Sets of polyethylene (PE) and quartz disk resonators are demonstrated, with medium (loaded) quality (Q)-factors of 40-800. Both exhibit coinciding resonance frequency spectra over more than ten times the free spectral range. Loading effects of single resonators are investigated which provide strong Q-factor degradation and red-shifts of the resonances in the 0.2% range. By coupling two resonators of the same size, we observe mode splitting, in very good agreement with our numerical calculations.

  2. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  3. 1H and 15N nuclear magnetic resonance assignment and secondary structure of the cytotoxic ribonuclease alpha-Sarcin.

    PubMed Central

    Campos-Olivas, R.; Bruix, M.; Santoro, J.; Martínez del Pozo, A.; Lacadena, J.; Gavilanes, J. G.; Rico, M.

    1996-01-01

    The ribosome-inactivating protein alpha-Sarcin (alpha S) is a 150-residue fungal ribonuclease that, after entering sensitive cells, selectively cleaves a single phosphodiester bond in an universally conserved sequence of the major rRNA to inactivate the ribosome and thus exert its cytotoxic action. As a first step toward establishing the structure-dynamics-function relationships in this system, we have carried out the assignment of the 1H and 15N NMR spectrum of alpha S on the basis of homonuclear (1H-1H) and heteronuclear (1H-15N) two-dimensional correlation spectra of a uniformly 15N-labeled sample, and two selectively 15N-labeled (Tyr and Phe) samples, as well as a single three-dimensional experiment. The secondary structure of alpha S, as derived from the characteristic patterns of dipolar connectivities between backbone protons, conformational chemical shifts, and the protection of backbone amide protons against exchange, consists of a long N-terminal beta-hairpin, a short alpha-helical segment, and a C-terminal beta-sheet of five short strands arranged in a + 1, + 1, + 1, + 1 topology, connected by long loops in which the 13 Pro residues are located. PMID:8732769

  4. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  5. Variable frequency iteration MPPT for resonant power converters

    DOEpatents

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  6. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  7. 1H magnetic resonance spectroscopy and diffusion weighted imaging findings of medulloblastoma in 3.0T MRI: A retrospective analysis of 17 cases☆

    PubMed Central

    Wu, Guangyao; Pang, Haopeng; Ghimire, Prasanna; Liu, Guobing

    2012-01-01

    1H magnetic resonance spectroscopy and diffusion weighted imaging features of the cerebellar vermis in 17 medulloblastoma patients were retrospectively analyzed, and 17 healthy volunteers were selected as controls. 1H magnetic resonance spectroscopy showed that in all 17 medulloblastoma patients, N-acetyl aspartate and creatine peaks were significantly decreased, the choline peak was significantly increased, and there was evidence of a myo-inositol peak. Further, 11 patients showed a low taurine peak at 3.4 ppm, five patients showed a lipid peak at 0.9–1.3 ppm, and three patients showed a negative lactic acid peak at 1.33 ppm. Compared with the control group, the ratios of N-acetyl aspartate/choline and N-acetyl aspartate/creatine were significantly decreased, and the ratio of choline/creatine was increased, in medulloblastoma patients. Diffusion weighted imaging displayed hyperintensity and decreased apparent diffusion coefficient in medulloblastoma patients. These findings indicate that 1H magnetic resonance spectroscopy and diffusion weighted imaging are useful for qualitative diagnosis of medulloblastoma. PMID:25337109

  8. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Ping; Wen, Yu-Mei; Zhu, Yong

    2013-07-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the ΔE effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz <= fr <= 33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.

  9. Ultrasonic plastic welding using fundamental and higher resonance frequencies.

    PubMed

    Tsujino, Jiromaru; Hongoh, Misugi; Tanaka, Ryoko; Onoguchi, Rie; Ueoka, Tetsugi

    2002-05-01

    Ultrasonic plastic welding using fundamental and higher resonance frequency vibrations simultaneously was studied. Using higher frequency, welding characteristics is improved due to the larger vibration loss of plastic materials. The 26 kHz welding tip vibrates in maximum velocity of over 4.5 m/s (peak-to-zero value) under a fundamental resonance frequency and there are several higher resonance frequencies up to 95 kHz whose vibration velocities are over one-third that of the fundamental frequency. Welding characteristics of 1.0-mm-thick polypropylene sheets are measured in the cases the vibration system are driven under combined driving voltages of fundamental and higher resonance frequencies. Welded area increases as number of driven higher frequencies increases. The welded area by three frequencies is about three to four times that of the case where only the fundamental frequency is driven. The welding characteristics of ultrasonic plastic welding are improved significantly by driving higher resonance frequencies simultaneously.

  10. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra.

    PubMed

    Rae, Caroline D

    2014-01-01

    The current knowledge of the normal biochemistry of compounds that give rise to resonances in human brain proton magnetic resonance spectra measureable at readily available field strengths (i.e. ≤3 T) is reviewed. Molecules covered include myo- and scyllo-inositol, glycerophospho- and phospho-choline and choline, creatine and phosphocreatine, N-acetylaspartate, N-acetylaspartylglutamate, glutamate, glutamine, γ-aminobutyrate, glucose, glutathione and lactate. The factors which influence changes in the levels of these compounds are discussed. As most proton resonances in the brain at low field are derived from a combination of moieties whose biochemistry is complex and interrelated, an understanding of the mechanisms underlying why these species change is crucial to meaningful interpretation of human brain spectra.

  11. Toxicometabolomics approach to urinary biomarkers for mercuric chloride (HgCl{sub 2})-induced nephrotoxicity using proton nuclear magnetic resonance ({sup 1}H NMR) in rats

    SciTech Connect

    Kim, Kyu-Bong; Um, So Young; Chung, Myeon Woo; Jung, Seung Chul; Oh, Ji Seon; Kim, Seon Hwa; Na, Han Sung; Lee, Byung Mu; Choi, Ki Hwan

    2010-12-01

    The primary objective of this study was to determine and characterize surrogate biomarkers that can predict nephrotoxicity induced by mercuric chloride (HgCl{sub 2}) using urinary proton nuclear magnetic resonance ({sup 1}H NMR) spectral data. A procedure for {sup 1}H NMR urinalysis using pattern recognition was proposed to evaluate nephrotoxicity induced by HgCl{sub 2} in Sprague-Dawley rats. HgCl{sub 2} at 0.1 or 0.75 mg/kg was administered intraperitoneally (i.p.), and urine was collected every 24 h for 6 days. Animals (n = 6 per group) were sacrificed 3 or 6 days post-dosing in order to perform clinical blood chemistry tests and histopathologic examinations. Urinary {sup 1}H NMR spectroscopy revealed apparent differential clustering between the control and HgCl{sub 2} treatment groups as evidenced by principal component analysis (PCA) and partial least square (PLS)-discriminant analysis (DA). Time- and dose-dependent separation of HgCl{sub 2}-treated animals from controls was observed by PCA of {sup 1}H NMR spectral data. In HgCl{sub 2}-treated rats, the concentrations of endogenous urinary metabolites of glucose, acetate, alanine, lactate, succinate, and ethanol were significantly increased, whereas the concentrations of 2-oxoglutarate, allantoin, citrate, formate, taurine, and hippurate were significantly decreased. These endogenous metabolites were selected as putative biomarkers for HgCl{sub 2}-induced nephrotoxicity. A dose response was observed in concentrations of lactate, acetate, succinate, and ethanol, where severe disruption of the concentrations of 2-oxoglutarate, citrate, formate, glucose, and taurine was observed at the higher dose (0.75 mg/kg) of HgCl{sub 2}. Correlation of urinary {sup 1}H NMR PLS-DA data with renal histopathologic changes suggests that {sup 1}H NMR urinalysis can be used to predict or screen for HgCl{sub 2}-induced nephrotoxicity{sub .}

  12. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome.

  13. Stochastic resonance in two-frequency signal systems

    NASA Astrophysics Data System (ADS)

    Song, Hui; Huang, Shengming; Liu, Xuemei

    2016-04-01

    Signal-to-noise ratio (SNR) in two-frequency signal systems is investigated in the presence of the correlated multiplicative and white additive noises. From the Wiener-Khinchin theorem, the exact expression of the SNR is obtained. It is found that stochastic resonance (SR) appears when two frequencies are almost the same, while SR gradually disappears when the frequency difference increases. We also found that there exists an optimized value of the frequency at which SNR takes its maximal value.

  14. Method and apparatus for resonant frequency waveform modulation

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  15. 13C and 1H NMR ester region resonance assignments and the composition of human infant and child meibum.

    PubMed

    Borchman, Douglas; Yappert, Marta C; Milliner, Sarah E; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul

    2013-07-01

    Recent NMR studies suggest that unsaturation may contribute to tear film instability in adults and loss of cholesteryl esters and squalene could reduce tear film stability in adults with meibomian gland dysfunction. The proton resonances were tentatively assigned in those studies. In this current investigation, meibum from seven infants and children, one adult and a pool of adult meibum have been analyzed using an NMR spectrometer with greater sensitivity and spectral resolution. The goals of this work are to confirm/correct the previous assignments and to determine possible age-related changes in composition. The initial resonance assignments were confirmed using heteronuclear single quantum correlation spectroscopy. Because there were no significant interferences in the spectral region corresponding to the resonances for cholesteryl and wax esters, the areas of these resonances were used to calculate their molar ratios. We calculated a wax ester:cholesteryl ester molar ratio of 1:0.57 ± 0.05 for all our meibum samples and there were no age-related differences. At lower film thicknesses, the rate of evaporation measured in vitro was lower for wax esters mixed with a long chain cholesteryl ester compared to wax esters alone. However, the film thicknesses tested were non-physiological. Longer chain cholesteryl esters increase the interactions between hydrocarbon chains. Hydrocarbon chains were more saturated in meibum from infants and children compared to adults. Unsaturation may contribute to tear film instability in adults. Loss of cholesteryl ester and squalene could destabilize tear film in adults with meibomian gland dysfunction.

  16. Hysteresis of the resonance frequency of magnetostrictive bending cantilevers

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Kremer, Ramona; Sutor, Alexander; Lerch, Reinhard

    2015-05-01

    Magnetostrictive bending cantilevers are applicable for wirelessly measuring physical quantities such as pressure and strain. Exploiting the ΔE-effect, the resonance frequency of the cantilevers is shifted because of a change in the magnetic biasing field. The biasing field, in turn, depends on the applied pressure or strain, respectively. With a view to the application as a reliable sensor, maximum sensitivity but minimum hysteresis in the biasing field/resonance frequency dependence is preferred. In this contribution, monomorph bending cantilevers fabricated using magnetostrictive Fe49Co49V2 and Metglas 2605SA1 are investigated regarding their applicability for future sensors. For this purpose, the biasing field-dependent polarization of the magnetostrictive materials and bending of the cantilevers are determined. Furthermore, a setup to magnetically bias the cantilevers and determine the bending resonance frequency is presented. Here, the resonance frequency is identified by measuring the impulse response employing a laser Doppler vibrometer. The measurement results reveal that cantilevers made of Fe49Co49V2 possess a distinct hysteretic behaviour at low magnetic biasing field magnitudes. This is ascribed to the polarization and bending hysteresis. Cantilevers fabricated using Metglas 2605SA1 feature a lower resonance frequency shift compared to cantilevers with Fe49Co49V2, which would result in a lower sensitivity of the sensor. However, their resonance frequency hysteresis is almost negligible.

  17. Decrease in Middle Ear Resonance Frequency During Pregnancy

    PubMed Central

    Dag, Emine Kutlu; Gulumser, Cagri; Erbek, Seyra

    2016-01-01

    Many physiological changes occur during pregnancy. The aim of the study was to reveal whether there is a change in middle ear resonance frequency during pregnancy. A prospective case-control study was designed at a tertiary referral center. The study included 46 pregnant women at the third trimester (27-40 weeks) and 43 nonpregnant voluntary women. All the study subjects underwent pure-tone audiometry and multifrequency tympanometry. Pure-tone hearing levels at frequencies of 250 to 8000 Hz and resonance frequency values were compared between pregnant and nonpregnant women. Impact of age, side of the tested ear, and weight gained in pregnancy on resonance frequency were evaluated. Air conduction threshold values at frequencies of 250 Hz and 500 Hz were significantly higher in pregnant women than in the control group (P<0.001). Middle ear resonance frequency values of both ears in pregnant women were found to be significantly lower than those in control group (P<0.001). There was no statistically significant relation of middle ear resonance frequency values to age or side of the tested ear in both groups (P>0.05). A negative correlation between weight gained in pregnancy and middle ear resonance frequency values was determined for the left ear (correlation coefficient for left ears: –0.348, P=0.018). The results of this study suggest that resonance frequency may be decreased during the pregnancy. More comprehensive studies in which many pregnant women followed regularly before and after pregnancy are needed to have more certain links. PMID:27588163

  18. Decrease in Middle Ear Resonance Frequency During Pregnancy.

    PubMed

    Dag, Emine Kutlu; Gulumser, Cagri; Erbek, Seyra

    2016-04-20

    Many physiological changes occur during pregnancy. The aim of the study was to reveal whether there is a change in middle ear resonance frequency during pregnancy. A prospective case-control study was designed at a tertiary referral center. The study included 46 pregnant women at the third trimester (27-40 weeks) and 43 nonpregnant voluntary women. All the study subjects underwent pure-tone audiometry and multifrequency tympanometry. Pure-tone hearing levels at frequencies of 250 to 8000 Hz and resonance frequency values were compared between pregnant and nonpregnant women. Impact of age, side of the tested ear, and weight gained in pregnancy on resonance frequency were evaluated. Air conduction threshold values at frequencies of 250 Hz and 500 Hz were significantly higher in pregnant women than in the control group (P<0.001). Middle ear resonance frequency values of both ears in pregnant women were found to be significantly lower than those in control group (P<0.001). There was no statistically significant relation of middle ear resonance frequency values to age or side of the tested ear in both groups (P>0.05). A negative correlation between weight gained in pregnancy and middle ear resonance frequency values was determined for the left ear (correlation coefficient for left ears: -0.348, P=0.018). The results of this study suggest that resonance frequency may be decreased during the pregnancy. More comprehensive studies in which many pregnant women followed regularly before and after pregnancy are needed to have more certain links.

  19. Decrease in Middle Ear Resonance Frequency During Pregnancy.

    PubMed

    Dag, Emine Kutlu; Gulumser, Cagri; Erbek, Seyra

    2016-04-20

    Many physiological changes occur during pregnancy. The aim of the study was to reveal whether there is a change in middle ear resonance frequency during pregnancy. A prospective case-control study was designed at a tertiary referral center. The study included 46 pregnant women at the third trimester (27-40 weeks) and 43 nonpregnant voluntary women. All the study subjects underwent pure-tone audiometry and multifrequency tympanometry. Pure-tone hearing levels at frequencies of 250 to 8000 Hz and resonance frequency values were compared between pregnant and nonpregnant women. Impact of age, side of the tested ear, and weight gained in pregnancy on resonance frequency were evaluated. Air conduction threshold values at frequencies of 250 Hz and 500 Hz were significantly higher in pregnant women than in the control group (P<0.001). Middle ear resonance frequency values of both ears in pregnant women were found to be significantly lower than those in control group (P<0.001). There was no statistically significant relation of middle ear resonance frequency values to age or side of the tested ear in both groups (P>0.05). A negative correlation between weight gained in pregnancy and middle ear resonance frequency values was determined for the left ear (correlation coefficient for left ears: -0.348, P=0.018). The results of this study suggest that resonance frequency may be decreased during the pregnancy. More comprehensive studies in which many pregnant women followed regularly before and after pregnancy are needed to have more certain links. PMID:27588163

  20. (1)H-Nuclear magnetic resonance-based metabolic profiling of nonsteroidal anti-inflammatory drug-induced adverse effects in rats.

    PubMed

    Um, So Young; Park, Jung Hyun; Chung, Myeon Woo; Choi, Ki Hwan; Lee, Hwa Jeong

    2016-09-10

    Nonsteroidal anti-inflammatory drugs (NSAIDs), which are globally prescribed, exhibit mainly anti-inflammatory and analgesic effects but also can cause adverse effects including gastrointestinal erosions, ulceration, bleeding, and perforation. The purpose of this study was to investigate surrogate biomarkers associated with the gastrointestinal (GI) damage caused by NSAID treatment using pattern recognition analysis of (1)H-nuclear magnetic resonance ((1)H NMR) spectra of rat urine. Urine was collected for 5h after oral administration of the following NSAIDs at low or high doses: acetylsalicylic acid (10 or 200mgkg(-1)), diclofenac (0.5 or 15mgkg(-1)), piroxicam (1 or 10mgkg(-1)), indomethacin (1 or 25mgkg(-1)), or ibuprofen (10, or 150mgkg(-1)) as nonselective COX inhibitors and celecoxib (10 or 100mgkg(-1)) as a COX-2 selective inhibitor. The urine was analyzed using 500MHz (1)H NMR for spectral binning and targeted profiling and the level of gastric damage was examined. The nonselective COX inhibitors caused severe gastric damage while no lesions were observed in the celecoxib-treated rats. The (1)H NMR urine spectra were divided into spectral bins (0.04ppm) for global profiling, and a total of 44 endogenous metabolites were assigned for targeted profiling. Multivariate data analyses were performed to recognize the spectral pattern of endogenous metabolites related to NSAIDs using partial least square-discrimination analysis (PLS-DA). The (1)H NMR spectra clustered differently according to gastric damage score in global profiling. In targeted profiling, the endogenous metabolites of citrate, allantoin, 2-oxoglutarate, acetate, benzoate, glycine, and trimethylamine N-oxide were selected as putative biomarkers for gastric damage caused by NSAIDs. These putative biomarkers might be useful for predicting the risk of adverse effects caused by NSAIDs in the early stage of drug development process.

  1. Sequence-specific 1H, 13C and 15N backbone resonance assignments of the plakin repeat domain of human envoplakin.

    PubMed

    Jeeves, Mark; Fogl, Claudia; Al-Jassar, Caezar; Chidgey, Martyn; Overduin, Michael

    2016-04-01

    The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments. PMID:26590577

  2. Frequency comb transferred by surface plasmon resonance.

    PubMed

    Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul

    2016-01-01

    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10(-19) in absolute position, 2.92 × 10(-19) in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits. PMID:26898307

  3. Frequency comb transferred by surface plasmon resonance

    PubMed Central

    Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul

    2016-01-01

    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10−19 in absolute position, 2.92 × 10−19 in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits. PMID:26898307

  4. Reexamination of the Energy Levels of 15F by 14O + 1H ElasticResonance Scattering with BEARS

    SciTech Connect

    Guo, F.Q.; Powell, J.; Lee, D.W.; Leitner, D.; McMahan, M.A.; Moltz, D.M.; O'Neil, J.P.; Perajarvi, K.; Phair, L.; Ramsey, C.A.; Xu,X.J.; Cerny, Joseph

    2005-05-30

    The energy levels of 15F have been measured by the p(14O,p)14O reaction. The 120 MeV 14O radioactive ion beam was produced by the BEARS coupled cyclotron system at an intensity averaging 1x104 particles/second on target. Energy calibration was obtained using resonances from the p(14N,p)14N reaction. The two lowest resonances in 15F were fitted with an R-matrix calculation. The fit to the ground state had Jp = 1/2+ at 1.23+-0.05 MeV (width 0.5-0.84 MeV), and the first excited state was Jp=5/2+ at 2.81+-0.02 MeV (width 0.30+-0.06 MeV), both relative to the mass-energy of the proton and 14O. The 15F ground state energy supports the disappearance of the Z=8 proton magic number for odd Z, Tz=-3/2 nuclei.

  5. Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue.

    PubMed

    Griffin, J L; Williams, H J; Sang, E; Clarke, K; Rae, C; Nicholson, J K

    2001-06-01

    A principal problem in understanding the functional genomics of a pathology is the wide-reaching biochemical effects that occur when the expression of a given protein is altered. To complement the information available to bioinformatics through genomic and proteomic approaches, a novel method of providing metabolite profiles for a disease is suggested, using pattern recognition coupled with (1)H NMR spectroscopy. Using this technique the mdx mouse, a model of Duchenne muscular dystrophy (DMD) was examined. Dystrophic tissue had distinct metabolic profiles not only for cardiac and other muscle tissues, but also in the cerebral cortex and cerebellum, where the role of dystrophin is still controversial. These metabolic ratios were expressed crudely as biomarker ratios to demonstrate the effectiveness of the approach at separating dystrophic from control tissue (cardiac (taurine/creatine): mdx = 2.08 +/- 0.04, control 1.55 +/- 0.04, P < 0.005; cortex (phosphocholine/taurine): mdx = 1.28 +/- 0.12, control = 0.83 +/- 0.05, P < 0.01; cerebellum (glutamate/creatine): mdx = 0.49 +/- 0.03, control = 0.34 +/- 0.03, P < 0.01). This technique produced new metabolic biomarkers for following disease progression but also demonstrated that many metabolic pathways are perturbed in dystrophic tissue.

  6. Experimental attempt to stimulate receptor site environment. A 500-MHz /sup 1/H nuclear magnetic resonance study of enkephalin amides

    SciTech Connect

    Temussi, P.A.; Tancredi, T.; Pastore, A.; Castiglione-Morelli, M.A.

    1987-12-01

    The amides of Leu/sup 5/-enkephalin, Met/sup 5/-enkephalin, and three analogues, D-Ala/sup 2/, Leu /sup 5/-enkephalin, (AcO)Tyr/sup 1/, Met/sup 5/-enkephalin, and (AcO)Tyr/sup 1/,D-Ala/sup 2/, Met/sup 5/-enkephalin, have been studied by means of /sup 1/H NMR spectroscopy in two different solvent systems: Me/sub 2/SO-d/sub 6/ and CDC1/sub 3/. In the latter solvent the peptides were dissolved as complexes with 18-crown-6-ether, a coronand that binds strongly to the NH/sub 3//sup +/ groups. The crown ether complexation and the apolar solvent were used to simulate the anionic subsite of the receptor and they hydrophobic environment of the receptor cavity, respectively. The very unusual amide proton chemical shifts and their temperature coefficients suggest the presence of folded conformations in CDCl/sub 3/ for all peptides, consistent with several models of opioid receptors and with the crystal structure of Leu/sup 5/-enkephalin. The differences among the proposed cyclic conformations of the five peptides may be correlated, in part, with their different biological activity. All peptides in Me/sub 2/SO-d/sub 6/ are characterized by complex mixtures of extended fully solvated conformations.

  7. 1H, 13C, and 15N resonance assignments for Escherichia coli ytfP, a member of the broadly conserved UPF0131 protein domain family

    SciTech Connect

    Aramini, James M.; Swapna, G.V.T.; Huang, Yuanpeng; Rajan, Paranji K.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Cort, John R.; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    Protein ytfP from Escherichia coli (Swiss-Prot ID: YTFP-ECOLI; NESG target ID: ER111; Wunderlich et al., 2004) is a 113-residue member of the UPF0131 protein family (Pfam ID: PF03674) of unknown function. This domain family is found in organisms from all three kingdoms, archaea, eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 97% of backbone and 91% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a mixed a/b topology,????????. BMRB deposit with Accession No. 6448. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  8. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    SciTech Connect

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  9. High frequency nanomechanical resonators in ultraclean suspended graphene pn junctions

    NASA Astrophysics Data System (ADS)

    Jung, Minkyung; Rickhaus, Peter; Zihmann, Simon; Makk, Peter; Eichler, Alexander; Weiss, Markus; Schönenberger, Christian; Department of Physics, University of Basel Team; Department of Physics, ETH Zurich Team

    2015-03-01

    Here, we demonstrate high frequency nanomechanical resonators in ultraclean suspended graphene pn junctions. The suspended graphene resonators are fabricated on two bottom gates (left and right) covered with lift-off resist (LOR) by using a mechanical transfer technique. After current annealing, the device exhibits a clear charge neutrality point around zero gate voltage. Depending on the left and right bottom gate voltages, the device shows four different conductance regimes: pp, nn, np and pn corresponding to two different carrier types in the two sides of the sample. At pn and np regimes, the clear Fabry-Perot interference pattern is observed, indicating ballistic transport behavior over 1 μm-long channel. Then, the mechanical resonance is measured in the same device with a frequency modulation (FM) mixing technique at 4.2 K in the vacuum chamber. The resonance frequency is about 405 MHz. By fitting resonance frequency, we deduce both the mass density and the built-in tension in the graphene sheet. In a similar device structure with different strain environment, we observe a resonance frequency as high as 1.17 GHz for the fundamental mode.

  10. Excitation of dark multipolar plasmonic resonances at terahertz frequencies

    PubMed Central

    Chen, Lin; Wei, YuMing; Zang, XiaoFei; Zhu, YiMing; Zhuang, SongLin

    2016-01-01

    We experimentally observe the excitation of dark multipolar spoof localized surface plasmon resonances in a hybrid structure consisting of a corrugated metallic disk coupled with a C-shaped dipole resonator. The uncoupled corrugated metallic disk only supports a dipolar resonance in the transmission spectrum due to perfect symmetry of the structure. However, the dark multipolar spoof localized surface plasmon resonances emerge when coupled with a bright C-shaped resonator which is placed in the vicinity of the corrugated metallic disk. These excited multipolar resonances show minimum influence on the coupling distance between the C-shaped resonator and corrugated metallic disk. The resonance frequencies of the radiative modes are controlled by varying the angle of the C-shaped resonator and the inner disk radius, both of which play dominant roles in the excitation of the spoof localized surface plasmons. Observation of such a transition from the dark to radiative nature of multipolar spoof localized plasmon resonances would find potential applications in terahertz based resonant plasmonic and metamaterial devices. PMID:26903382

  11. Theoretical investigation of resonant frequencies of unstrapped magnetron with arbitrary side resonators

    SciTech Connect

    Yue, Song; Zhang, Zhao-chuan; Gao, Dong-ping

    2015-04-15

    In this paper, a sector steps approximation method is proposed to investigate the resonant frequencies of magnetrons with arbitrary side resonators. The arbitrary side resonator is substituted with a series of sector steps, in which the spatial harmonics of electromagnetic field are also considered. By using the method of admittance matching between adjacent steps, as well as field continuity conditions between side resonators and interaction regions, the dispersion equation of magnetron with arbitrary side resonators is derived. Resonant frequencies of magnetrons with five common kinds of side resonators are calculated with sector steps approximation method and computer simulation softwares, in which the results have a good agreement. The relative error is less than 2%, which verifies the validity of sector steps approximation method.

  12. Whole-brain patterns of (1)H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies.

    PubMed

    Su, L; Blamire, A M; Watson, R; He, J; Hayes, L; O'Brien, J T

    2016-01-01

    Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB. PMID:27576166

  13. 1H Magnetic Resonance Spectroscopy Predicts Hepatocellular Carcinoma in a Subset of Patients With Liver Cirrhosis: A Randomized Trial.

    PubMed

    Wang, Dan; Li, Yuehua

    2015-07-01

    The goal of this study was to investigate the utility of H magnetic resonance spectroscopy (H-MRS) to quantify the differences in liver metabolites. Magnetic resonance spectroscopy was used as a means of predicting the probability of developing hepatocellular carcinoma (HCC) in patients with liver cirrhosis secondary to chronic hepatitis B.This study included 20 healthy volunteers, 20 patients with liver cirrhosis secondary to chronic hepatitis B (cirrhosis group), and 20 patients with small HCC secondary to cirrhosis liver parenchyma (HCC group). All patients underwent routine MRI and H-MRS scanning. LCModel software was used to quantify Cho (Choline), Lip (lipid), and Cho/Lip in the 3 groups, and a one-way ANOVA was used to compare the differences in these metabolites between groups.Choline levels were significantly different between the control and HCC group and between the cirrhosis group and the HCC group (all P < 0.001). There was also a significant difference in Lip levels between the control and cirrhosis group and the control and HCC groups (all P < 0.001). There were also differences in Cho/Lip between the control and cirrhosis groups, the control and HCC groups, and the cirrhosis and HCC groups (all P < 0.001).H-MRS followed by the analysis with LCModel can be used to measure changes in hepatic metabolite levels in patients with liver cirrhosis secondary to chronic hepatitis B and HCC. Thus, H-MRS may be helpful in monitoring HCC and liver cirrhosis development.

  14. Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies

    PubMed Central

    Su, L; Blamire, A M; Watson, R; He, J; Hayes, L; O'Brien, J T

    2016-01-01

    Magnetic resonance spectroscopy has demonstrated metabolite changes in neurodegenerative disorders such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB); however, their pattern and relationship to clinical symptoms is unclear. To determine whether the spatial patterns of brain-metabolite changes in AD and DLB are regional or diffused, and to examine whether the key metabolite levels are associated with cognitive and non-cognitive symptoms, we acquired whole-brain spatially resolved 3T magnetic resonance spectroscopic imaging (MRSI) data from subjects with AD (N=36), DLB (N=35) and similarly aged controls (N=35). Voxel-wise measurement of N-acetylaspartate to creatine (NAA/Cr), choline to Cr (Cho/Cr), myo-inositol to Cr (mI/Cr) as well as glutamate and glutamine to Cr (Glx/Cr) ratios were determined using MRSI. Compared with controls, AD and DLB groups showed a significant decrease in most brain metabolites, with NAA/Cr, Cho/Cr and mI/Cr levels being reduced in posterior cingulate, thalamus, frontotemporal areas and basal ganglia. The Glx/Cr level was more widely decreased in DLB (posterior cingulate, hippocampus, temporal regions and caudate) than in AD (only in posterior cingulate). DLB was also associated with increased levels of Cho/Cr, NAA/Cr and mI/Cr in occipital regions. Changes in metabolism in the brain were correlated with cognitive and non-cognitive symptoms in the DLB but not in the AD group. The different patterns between AD and DLB may have implications for improving diagnosis, better understanding disease-specific neurobiology and targeting therapeutics. In addition, the study raised important questions about the role of occipital neuroinflammation and glial activation as well as the glutamatergic treatment in DLB. PMID:27576166

  15. Frequency Noise in Superconducting Thin-Film Resonators

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Day, Peter; Leduc, Henry; Mazin, Benjamin; Eckart, Megan; Gao, Jiansong; Zmuidzinas, Jonas

    2006-03-01

    We present the results of low temperature (120 -- 1200 mK) noise measurements performed on thin-film superconducting niobium resonators fabricated on a silicon substrate. The devices studied use coplanar waveguide (CPW) transmission lines and have resonance frequencies of around 4 GHz and quality factors in the range of Q ˜ 10^4 to 10^6. These resonators are similar to those used to make novel photon detectors and read out charge qubits. These resonators show excess frequency noise which varies as approximately f-1/2. This excess noise limits the sensitivity of our photon detectors and likely effects the qubit performance as well. Two level systems (TLS) in amorphous thin-film dielectrics and oxide tunnel barriers have been shown to cause dissipation and decoherence in phase qubits. We suggest that noise in our resonators is also caused by TLS most likely near the surfaces of the substrate and metal films. To test this idea, we have measured the frequency shift, the quality factor and the frequency noise as a function of the device temperature and the microwave readout power. The frequency shift data agrees well with existing weak field TLS theory. We also find that the frequency noise decreases with increasing readout power and temperature and that decreased noise at higher powers is not due to simply device heating.

  16. Squeezing Alters Frequency Tuning of WGM Optical Resonator

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2010-01-01

    Mechanical squeezing has been found to alter the frequency tuning of a whispering-gallery-mode (WGM) optical resonator that has an elliptical shape and is made of lithium niobate. It may be possible to exploit this effect to design reconfigurable optical filters for optical communications and for scientific experiments involving quantum electrodynamics. Some background information is prerequisite to a meaningful description of the squeezing-induced alteration of frequency tuning: The spectrum of a WGM resonator is represented by a comblike plot of intensity versus frequency. Each peak of the comblike plot corresponds to an electromagnetic mode represented by an integer mode number, and the modes are grouped into sets represented by integer mode indices. Because lithium niobate is an electro-optically active material, the WGM resonator can be tuned (that is, the resonance frequencies can be shifted) by applying a suitable bias potential. The frequency shift of each mode is quantified by a tuning rate defined as the ratio between the frequency shift and the applied potential. In the absence of squeezing, all modes exhibit the same tuning rate. This concludes the background information. It has been demonstrated experimentally that when the resonator is squeezed along part of either of its two principal axes, tuning rates differ among the groups of modes represented by different indices (see figure). The differences in tuning rates could be utilized to configure the resonance spectrum to obtain a desired effect; for example, through a combination of squeezing and electrical biasing, two resonances represented by different mode indices could be set at a specified frequency difference something that could not be done through electrical biasing alone.

  17. Characterization of the Mobility and Reactivity of Water Molecules on TiO2 Nanoparticles by 1H Solid-State Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Zhu, Lili; Sun, Pingchuan; Zhou, Dongshan; Xue, Gi

    2015-03-01

    Understanding interfacial water behavior is essential to improving our understanding of the surface chemistry and interfacial properties of nanomaterials. Here using 1H solid-state nuclear magnetic resonance (1H SSNMR), we successfully monitored ligand exchange reaction between oleylamine (OLA) and adsorbed water on titanium dioxide nanoparticles (TiO2 NPs). Three different types of interfacial waters with different reactivities were distinguished. The mobility of the adsorbed water molecules was characterized by dipolar filtered 1H SSNMR. Our experimental results demonstrate that the adsorbed water can be categorized into three different layers: rigid water species with restricted mobility closest to the surface of TiO2 NPs; less mobile water species weakly confined on TiO2 NPs; and water molecules with high mobility. Water in the third layer could be replaced by OLA, while water in the first and second layers remained intact. The finding that the interfacial water with the highest mobility has the strongest reactivity has guiding significance for tailoring the hydrophilic and hydrophobic properties of TiO2 NPs. We gratefully acknowledge support from the National Natural Science Foundation of China (No. 21174062).

  18. Fractionation of technical octabromodiphenyl ether by countercurrent chromatography combined with gas chromatography/mass spectrometry and offline and online (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hammann, Simon; Conrad, Jürgen; Vetter, Walter

    2015-06-12

    Countercurrent chromatography (CCC) is a technique, which uses two immiscible liquid phases for a separation process in a long and hollow tube. The technique allows the separation of high amounts of sample (50mg to several grams) with a low consumption of solvents. In this study, we fractionated 50mg technical octabromodiphenyl ether (DE-79) and analyzed the fractions by gas chromatography with mass spectrometry (GC/MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. CCC separations were performed with n-hexane/acetonitrile as solvent system in tail-to-head (i.e. the upper phase is mobile) mode. Twelve CCC fractions were studied for the PBDE composition. CCC elution of PBDE congeners was dependent both on the degree of bromination and substitution pattern. Higher brominated congeners eluted faster than lower brominated congeners and isomers with vicinal hydrogen atoms eluted last. In addition to several known PBDE congeners in DE-79, we were able to unequivocally identify BDE 195 in DE-79 and we could verify the presence of BDE 184. Finally, we also established the online hyphenation of CCC with (1)H NMR. The use of deuterated solvents could be avoided by using n-hexane/acetonitrile as two-phase system. By online CCC-(1)H NMR in stop-flow mode we were able to detect eight PBDE congeners in the mixture. PMID:25913330

  19. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique. PMID:16332107

  20. Analysis of Continuous Microseismic Recordings: Resonance Frequencies and Unconventional Events

    NASA Astrophysics Data System (ADS)

    Tary, J.; van der Baan, M.

    2012-12-01

    Hydrofracture experiments, where fluids and proppant are injected into reservoirs to create fractures and enhance oil recovery, are often monitored using microseismic recordings. The total stimulated volume is then estimated by the size of the cloud of induced micro-earthquakes. This implies that only brittle failure should occur inside reservoirs during the fracturing. Yet, this assumption may not be correct, as the total energy injected into the system is orders of magnitude larger than the total energy associated with brittle failure. Instead of using only triggered events, it has been shown recently that the frequency content of continuous recordings may also provide information on the deformations occurring inside reservoirs. Here, we use different kinds of time-frequency transforms to track the presence of resonance frequencies. We analyze different data sets using regular, long-period and broadband geophones. The resonance frequencies observed are mainly included in the frequency band of 5-60 Hz. We systematically examine first the possible causes of resonance frequencies, dividing them into source, path and receiver effects. We then conclude that some of the observed frequency bands likely result from source effects. The resonance frequencies could be produced by either interconnected fluid-filled fractures in the order of tens of meters, or by small repetitive events occurring at a characteristic periodicity. Still, other mechanisms may occur or be predominant during reservoir fracturing, depending on the lithology as well as the pressure and temperature conditions at depth. During one experiment, both regular micro-earthquakes, long-period long-duration events (LPLD) and resonance frequencies are observed. The lower part of the frequency band of these resonance frequencies (5-30 Hz) overlaps with the anticipated frequencies of observed LPLDs in other experiments (<50 Hz). The exact origin of both resonance frequencies and LPLDs is still under debate

  1. Effect of electron-beam momentum spread on cyclotron resonance maser operation at two resonant frequencies

    NASA Astrophysics Data System (ADS)

    Hunter, G. J.; McNeil, B. W. J.; Robb, G. R. M.

    2001-09-01

    We present a theoretical analysis of cyclotron resonance maser (CRM) operation at two resonant frequencies including the effects of momentum spread in the electron beam. A linear analysis of the system equations is presented in the limit of small momentum spreads. Numerical solutions to the system equations are also given and are in agreement with the linear theory. The results predict that for realistic momentum spreads, operation of the CRM at the higher of the two resonant frequencies should be possible, extending its operating frequency range. An experiment currently under development at Strathclyde University is described and modeled numerically.

  2. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  3. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    PubMed

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin. PMID:21818779

  4. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A.

    PubMed

    Holliday, Michael J; Zhang, Fengli; Isern, Nancy G; Armstrong, Geoffrey S; Eisenmesser, Elan Z

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins (Lee Archiv Pharm Res 33(2): 181-187, 2010), but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover (Eisenmesser et al. Science 295(5559): 1520-1523, 2002; Eisenmesser et al. Nature 438(7064): 117-121, 2005). Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment (Takami et al. Extremophiles 8(5): 351-356, 2004). This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  5. Correlations between Diffusion Tensor Imaging (DTI) and Magnetic Resonance Spectroscopy (1H MRS) in schizophrenic patients and normal controls

    PubMed Central

    Tang, Cheuk Y; Friedman, Joseph; Shungu, Dikoma; Chang, Linda; Ernst, Thomas; Stewart, Daniel; Hajianpour, Arash; Carpenter, David; Ng, Johnny; Mao, Xiangling; Hof, Patrick R; Buchsbaum, Monte S; Davis, Kenneth; Gorman, Jack M

    2007-01-01

    Background Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA), as measured by Magnetic Resonance Spectroscopy (MRS), is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI) allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions. Methods MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities. Results NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region. Conclusion Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia. PMID:17578565

  6. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A

    SciTech Connect

    Holliday, Michael; Zhang, Fengli; Isern, Nancy G.; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-04-01

    Cyclophilins catalyze the reversible peptidyl-prolyl isomerization of their substrates and are present across all kingdoms of life from humans to bacteria. Although numerous biological roles have now been discovered for cyclophilins, their function was initially ascribed to their chaperone-like activity in protein folding where they catalyze the often rate-limiting step of proline isomerization. This chaperone-like activity may be especially important under extreme conditions where cyclophilins are often over expressed, such as in tumors for human cyclophilins {Lee, 2010 #1167}, but also in organisms that thrive under extreme conditions, such as theromophilic bacteria. Moreover, the reversible nature of the peptidyl-prolyl isomerization reaction catalyzed by cyclophilins has allowed these enzymes to serve as model systems for probing the role of conformational changes during catalytic turnover {Eisenmesser, 2002 #20;Eisenmesser, 2005 #203}. Thus, we present here the resonance assignments of a thermophilic cyclophilin from Geobacillus kaustophilus derived from deep-sea sediment {Takami, 2004 #1384}. This thermophilic cyclophilin may now be studied at a variety of temperatures to provide insight into the comparative structure, dynamics, and catalytic mechanism of cyclophilins.

  7. Chronic Cocaine Use and Its Association with Myocardial Steatosis Evaluated by 1H Magnetic Resonance Spectroscopy in African Americans

    PubMed Central

    Lai, Shenghan; Gerstenblith, Gary; Li, Ji; Zhu, Hong; Bluemke, David A.; Liu, Chia-Ying; Zimmerman, Stefan L.; Chen, Shaoguang; Lai, Hong; Treisman, Glenn

    2014-01-01

    Objectives Cardiac steatosis is a manifestation of ectopic fat deposition and is associated with obesity. The impact of chronic cocaine use on obesity measures and on the relationship between obesity measures and cardiac steatosis is not well-characterized. The objectives of this study were to compare obesity measures in chronic cocaine users and non-users, and to explore which factors, in addition to obesity measures, are associated with myocardial triglyceride in African Americans (AAs), using noninvasive magnetic resonance spectroscopy (MRS). Methods Between June 2004 and January 2014, 180 healthy AA adults without HIV infection, hypertension and diabetes were enrolled in an observational proton MRS and imaging study investigating factors associated with cardiac steatosis. Results Among these 180 participants, 80 were chronic cocaine users, and 100 were non-users. The median age (with IQR) was 42 (34-47) years. Obesity measures trended higher in cocaine users than non-users. The median myocardial triglyceride was 0.6% (IQR:0.4-1.1%). Among the factors investigated, years of cocaine use, leptin and visceral fat were independently associated with myocardial triglyceride. BMI and visceral fat, which were significantly associated with myocardial triglyceride in non-cocaine users, were not associated with myocardial triglycerides content in cocaine users. Conclusions This study shows (1) cocaine users may have more fat than nonusers and (2) myocardial triglyceride is independently associated with duration of cocaine use, leptin, and visceral fat in all subjects, while leptin and HDL-cholesterol, but not visceral fat or BMI, in cocaine users, suggesting that chronic cocaine use may modify the relationships between obesity measures and myocardial triglyceride. PMID:25325298

  8. Modeling sickle cell vasoocculsion in the rat leg: Quantification of trapped sickle cells and correlation with sup 31 P metabolic and sup 1 H magnetic resonance imaging changes

    SciTech Connect

    Fabry, M.E.; Rajanayagam, V.; Fine, E.; Holland, S.; Gore, J.C.; Nagel, R.L.; Kaul, D.K. )

    1989-05-01

    The authors have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m ({sup 99m}Tc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative {sup 99m}Tc imaging, {sup 31}P magnetic resonance spectroscopy by surface coil at 2 teslas, and {sup 1}H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 {mu}l of SS4 cells was trapped in the microcirculation of the thigh. In contrast, fewer SS discocytes (SS2) or AA cells were trapped. After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T{sub 1} reached a broad maximum at 18-28 hr. When T{sub 1} obtained at this time was plotted against the volume of cells trapped, an increase of T{sub 1} over the control value of 411 {plus minus} 48 msec was found that was proportional to the number of cells trapped. They conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by {sup 1}H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate.

  9. Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency

    NASA Astrophysics Data System (ADS)

    Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.

    2016-12-01

    In this paper the analytical analysis of an adaptively tuned piezoelectric vibration based energy harvester is presented. A bimorph piezoelectric energy harvester is suspended between two electrodes, subjected to a same DC voltage. The resonance frequency of the system is controllable by the applied DC voltage, and the harvested power is maximized by controlling the natural frequency of the system to cope with vibration sources which have varying excitation frequencies. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and due to the softening nonlinearity of the electrostatic force, the harvester is capable of working over a broad frequency range. The steady state harmonic solution is obtained using the harmonic balance method and results are verified numerically. The results show that the harvester can be tuned to give a resonance response over a wide range of frequencies, and shows the great potential of this hybrid system.

  10. A high frequency resonance gravity gradiometer

    SciTech Connect

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  11. A high frequency resonance gravity gradiometer

    NASA Astrophysics Data System (ADS)

    Bagaev, S. N.; Bezrukov, L. B.; Kvashnin, N. L.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Rudenko, V. N.; Samoilenko, A. A.; Skvortsov, M. N.; Yudin, I. S.

    2014-06-01

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  12. Multiplexed infrared photodetection using resonant radio-frequency circuits

    NASA Astrophysics Data System (ADS)

    Liu, R.; Lu, R.; Roberts, C.; Gong, S.; Allen, J. W.; Allen, M. S.; Wenner, B. R.; Wasserman, D.

    2016-02-01

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  13. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.

  14. Tunable remanent state resonance frequency in arrays of magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Encinas, Armando; Demand, Marc; Vila, Laurent; Piraux, Luc; Huynen, Isabelle

    2002-09-01

    The zero-field microwave absorption, or natural ferromagnetic resonance, spectra in arrays of electrodeposited magnetic nanowires is studied as a function of the saturation magnetization of NiCu, NiFe, CoNiFe, and CoFe alloys of several compositions. Measurements show that due to the shape anisotropy, these systems present strong absorption peaks in the absence of an applied magnetic field in the GHz range due to the ferromagnetic resonance. Furthermore, the zero-field resonance frequency is observed to be independent of the wire diameter and density as well as the magnetic history and its value depends only on the material, through the saturation magnetization and the gyromagnetic factor. It is shown that, using different electrolytic solutions and depositing at different electrostatic potentials, the alloy composition can be varied and the remanent state resonance frequency can be tailored quasicontinuously between 4 and 31 GHz.

  15. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  16. Changes of the local pore space structure quantified in heterogeneous porous media by 1H magnetic resonance relaxation tomography

    NASA Astrophysics Data System (ADS)

    Borgia, G. C.; Bortolotti, V.; Fantazzini, P.

    2001-08-01

    Magnetic resonance imaging and relaxation analysis are combined in a spatially resolved technique (relaxation tomography), which is able to quantify the parameters connected to the local structure in the internal regions of a porous material saturated by water, giving information on the pore space structure beyond the nominal instrumental resolution. Voxel-by-voxel longitudinal (T1) and transverse (T2) relaxation curves are acquired in order to obtain T1, T2 and S(0) maps, where S(0) is the extrapolation to zero time of the total equilibrium magnetization corrected for T2 decay. The proposed method permits evaluation of the porosity (ratio of pore space to total volume), at different length scales, from the sample to the voxel, not all achievable by traditional methods. More striking is its ability to describe how porosity is shared among different classes of surface-to-volume ratios of diffusion cells (the regions that the individual water molecules, starting at their particular positions, can experience by diffusion before relaxing). This is a consequence of the fact that relaxation times of water confined in a porous material can, under favorable circumstances, distinguish regions with the same local porosity but with different pore sizes and connections. So, parameters can be introduced, such as the microporosity fraction, defined as the fraction of the "micropore" volume with respect to the total pore volume, and several voxel average porosities, defined as the average porosities of the voxels characterized by particular classes of diffusion cells. Moreover, the imaging methods enable us to get all this information in a user-defined region of interest. The method has been applied to quantify changes in the structure of carbonate cores with wide distributions of pore sizes induced by repeated cycles of freezing and heating of the sample. With freezing, the microporosity fraction decreases significantly; the voxel average porosity of voxels with T1 shorter than

  17. Resonance at the Rabi frequency in a superconducting flux qubit

    SciTech Connect

    Greenberg, Ya. S.; Il'ichev, E.; Oelsner, G.; Shevchenko, S. N.

    2014-10-15

    We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.

  18. Design of tunable GHz-frequency optomechanical crystal resonators.

    PubMed

    Pfeifer, Hannes; Paraïso, Taofiq; Zang, Leyun; Painter, Oskar

    2016-05-30

    We present a silicon optomechanical nanobeam design with a dynamically tunable acoustic mode at 10.2 GHz. The resonance frequency can be shifted by 90 kHz/V2 with an on-chip capacitor that was optimized to exert forces up to 1 µN at 10 V operation voltage. Optical resonance frequencies around 190 THz with Q-factors up to 2.2 × 106 place the structure in the well-resolved sideband regime with vacuum optomechanical coupling rates up to g0/2π = 353 kHz. Tuning can be used, for instance, to overcome variation in the device-to-device acoustic resonance frequency due to fabrication errors, paving the way for optomechanical circuits consisting of arrays of optomechanical cavities.

  19. Relationship between wingbeat frequency and resonant frequency of the wing in insects.

    PubMed

    Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol

    2013-12-01

    In this study, we experimentally studied the relationship between wingbeat frequency and resonant frequency of 30 individuals of eight insect species from five orders: Odonata (Sympetrum flaveolum), Lepidoptera (Pieris rapae, Plusia gamma and Ochlodes), Hymenoptera (Xylocopa pubescens and Bombus rupestric), Hemiptera (Tibicen linnei) and Coleoptera (Allomyrina dichotoma). The wingbeat frequency of free-flying insects was measured using a high-speed camera while the natural frequency was determined using a laser displacement sensor along with a Bruel and Kjaer fast Fourier transform analyzer based on the base excitation method. The results showed that the wingbeat frequency was related to body mass (m) and forewing area (Af), following the proportionality f ~ m(1/2)/Af, while the natural frequency was significantly correlated with area density (f0 ~ mw/Af, mw is the wing mass). In addition, from the comparison of wingbeat frequency to natural frequency, the ratio between wingbeat frequency and natural frequency was found to be, in general, between 0.13 and 0.67 for the insects flapping at a lower wingbeat frequency (less than 100 Hz) and higher than 1.22 for the insects flapping at a higher wingbeat frequency (higher than 100 Hz). These results suggest that wingbeat frequency does not have a strong relation with resonance frequency: in other words, insects have not been evolved sufficiently to flap at their wings' structural resonant frequency. This contradicts the general conclusion of other reports--that insects flap at their wings' resonant frequency to take advantage of passive deformation to save energy.

  20. Microwave-frequency electromechanical resonators incorporating phononic crystals

    NASA Astrophysics Data System (ADS)

    Satzinger, K. J.; Peairs, G.; Vainsencher, A.; Cleland, A. N.

    Piezoelectric micromechanical resonators at gigahertz frequencies have been operated in the quantum limit, with quantum control and measurement achieved using superconducting qubits. However, experiments to date have been limited by mechanical dissipation, due to a combination of internal and radiative losses. In this talk, we explore the incorporation of phononic crystals into resonator designs. In phononic crystals, periodic patterning manipulates the acoustic band structure of the material. Through appropriately chosen geometries, these periodic patterns lead to full acoustic bandgaps which can be used to greatly reduce radiation losses from resonant structures. Alternatively, the crystal geometry can be manipulated to allow isolated modes within the bandgap, giving fine control over the spatial structure of the resonator modes. In this talk, we will describe the design, fabrication, and measurement of resonators with phononic crystals.

  1. WGM Resonators for Terahertz-to-Optical Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan

    2008-01-01

    Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is

  2. Experimental study on resonant frequency of the thermoacoustic cooling system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Shin-ichi; Hirano, Hiroyuki; Fujita, Takashi; Watanabe, Yoshiaki

    2006-05-01

    The purpose of our study is to construct a new cooling system applying the thermoacoustic effect. Stainless loop-tube is employed as our thermoacoustic cooling system and temperature decrease of 40 degrees C from the room temperature has been confirmed. In this paper, it is investigated that the relation between the viscosity boundary layer and the resonant frequency of the generated sound is investigated. Also, the sound pressure and temperature variation are observed with various total lengths of the loop-tube, with the view toward improvement in the cooling effect of the thermoacoustic cooling system. It was generally considered that the sound generated in the thermoacoustic cooling system is resonated with the tube length by 1 wavelength. However, when the total length of the loop-tube is over 2600 mm and inner pressure is 0.1 MPa, the resonant wavelength is 2. This is resulted from the influence of the viscosity boundary layer. It is found that the loop-tube decides the resonant frequency so that the thickness of the viscosity boundary layer is smaller than the stack channel radius. As a result, the resonant wavelength is 2 in a certain condition. The frequency is an important parameter for the thermoacoustic cooling system. From obtained results, one of the factors to select the frequency is found.

  3. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  4. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    SciTech Connect

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J.; Chaudhuri, S.; Bockstiegel, C.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  5. Cerebral metabolic changes in a depression-like rat model of chronic forced swimming studied by ex vivo high resolution 1H magnetic resonance spectroscopy.

    PubMed

    Li, Chun-Xia; Wang, Yaqiang; Gao, Hongchang; Pan, Wen-Ju; Xiang, Yun; Huang, Mingming; Lei, Hao

    2008-11-01

    Many previous in vivo (1)H magnetic resonance spectroscopy (MRS) studies have shown that patients with major depressive disorder (MDD) are associated with perturbations of cerebral metabolism of neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA). In this study, we investigated the changes of cerebral metabolism in a depression-like rat model of chronic forced swimming stress (CFSS). The aims are to further understand the pathophysiological mechanisms underlying CFSS treatment, and to further establish the face and predictive validity of the CFSS model. The results showed that, relative to control, the CFSS rats had significantly reduced Glu, taurine and glutamate + glutamine (Glx) levels in the PFC, and significantly reduced N-acetyl aspartate (NAA) level, Glu level and Glu/GABA ratio in the hippocampus. Taking together, these results suggest that CFSS treatment can induce region-specific changes in the metabolism of Glu. The CFSS model might be used to study antidepressants specifically targeting the central glutamatergic system. PMID:18473166

  6. Influence of fat and phytosterols concentration in margarines on their degradation at high temperature. A study by (1)H Nuclear Magnetic Resonance.

    PubMed

    Sopelana, P; Ibargoitia, María L; Guillén, María D

    2016-04-15

    The objective of this work was to study the influence of several factors, especially fat and phytosterols concentration, on the behavior of margarine under thermo-oxidative conditions. For this purpose, margarines with similar compositions in acyl groups, but differing in the concentration of both fat and phytosterols, were heated at 180°C. The changes in the main components of margarine lipids and the formation of new compounds throughout the thermal treatment were monitored by (1)H Nuclear Magnetic Resonance. The results show that the presence of high concentrations of phytosterols seems to have an antioxidant effect, since it slows down the thermo-oxidation rate of margarine and, consequently, the generation rate and concentrations of secondary oxidation products such as some aldehydes, epoxides and alcohols. The oil-water ratio also seems to have an important effect on margarine behavior, in such a way that the lower the fat concentration is, the higher its thermo-oxidation rate.

  7. Analysis of brain metabolism by proton magnetic resonance spectroscopy (1H-MRS) in attention-deficit/hyperactivity disorder suggests a generalized differential ontogenic pattern from controls.

    PubMed

    Arcos-Burgos, Mauricio; Londoño, Ana C; Pineda, David A; Lopera, Francisco; Palacio, Juan David; Arbelaez, Andres; Acosta, Maria T; Vélez, Jorge I; Castellanos, Francisco Xavier; Muenke, Maximilian

    2012-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most common behavioral disorder of childhood. Preliminary studies with proton magnetic resonance spectroscopy ((1)H-MRS) of the brain have reported differences in brain metabolite concentration-to-Cr ratios between individuals with ADHD and unaffected controls in several frontal brain regions including anterior cingulate cortex. Using multivoxel (1)H-MRS, we compared 14 individuals affected with ADHD to 20 individuals without ADHD from the same genetic isolate. After controlling by sex, age, and multiple testing, we found significant differences at the right posterior cingulate of the Glx/Cr ratio density distribution function between ADHD cases and controls (P < 0.05). Furthermore, we found several interactions of metabolite concentration-to-Cr ratio, age, and ADHD status: Ins/Cr and Glx/Cr ratios at the left posterior cingulate, and NAA/Cr at the splenius, right posterior cingulate, and at the left posterior cingulate. We also found a differential metabolite ratio interaction between ADHD cases and controls for Ins/Cr and NAA/Cr at the right striatum. These results show that: (1) NAA/Cr, Glx/Cr, and Ins/Cr ratios, as reported in other studies, exhibit significant differences between ADHD cases and controls; (2) differences of these metabolite ratios between ADHD cases and controls evolve in specific and recognizable patterns throughout age, a finding that replicates previous results obtained by structural MRI, where is demonstrated that brain ontogeny follows a different program in ADHD cases and controls; (3) Ins/Cr and NAA/Cr ratios, at the right striatum, interact in a differential way between ADHD cases and controls. As a whole, these results replicate previous 1H-MRS findings and add new intriguing differential metabolic and ontogeny patterns between ADHD cases and controls that warrant further pursue. PMID:23012086

  8. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on (1) H Nuclear Magnetic Resonance.

    PubMed

    Wen, Chao-Wei; Lin, Xiao-Dong; Dong, Min-Jian; Deng, Ming-Jie

    2016-01-01

    1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, (1)H nuclear magnetic resonance ((1)H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) on the fat body glycometabolism and energy metabolism of the fourth-instar larvae of Eri silkworms, Samia cynthia ricini. Metabolic pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) of fat body extracts indicated that the groups of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) were significantly different from the control group. Further, compared to the control group, the metabolites levels of lactate, trehalose, succinate, malate, and fumarate were remarkably changed in experimental groups, which were involved in glycolysis, hydrolysis of trehalose, and tricarboxylic acid (TCA) cycle. Our results indicate that DNJ has a positive impact on the reverse energy metabolism of Eri silkworms and metabonomic analysis based on NMR can be used as a tool to identify potential biomarkers. PMID:27294120

  9. Effects of time and temperature of firing on Fe-rich ceramics studied by Moessbauer spectroscopy and two-dimensional {sup 1}H-nuclear magnetic resonance relaxometry

    SciTech Connect

    Casieri, Cinzia; De Luca, Francesco; Nodari, Luca; Russo, Umberto; Terenzi, Camilla; Tudisca, Valentina

    2012-10-15

    The combined effects of firing temperature and soaking time on the microstructure of iron-rich porous ceramics have been studied by {sup 57}Fe-Moessbauer spectroscopy and 2D {sup 1}H nuclear magnetic resonance (NMR) relaxometry using a single-sided probe. Examining water-saturated ceramics using the relaxation correlation method, where longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times are measured concurrently, provides information about firing-induced changes in both porosity (related to T{sub 1}) and magnetic properties (related to T{sub 2}). Comparing the information obtained from {sup 1}H-NMR analyses with that obtained from Moessbauer spectroscopy (which characterizes changes in iron-bearing species) shows that the T{sub 1}-T{sub 2} NMR correlation technique is very sensitive to even subtle modifications in the magnetic behavior of Fe-bearing species. Moreover, the single-sided NMR approach allows us to perform millimeter-scale depth-resolved measurements, which can be used to non-invasively study the microstructural heterogeneities associated with non-uniform firing effects inside ceramics. This is in contrast to Moessbauer spectroscopy, which requires that the ceramic samples be ground.

  10. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on 1H Nuclear Magnetic Resonance

    PubMed Central

    Wen, Chao-wei; Lin, Xiao-dong; Dong, Min-jian; Deng, Ming-jie

    2016-01-01

    1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, 1H nuclear magnetic resonance (1H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) on the fat body glycometabolism and energy metabolism of the fourth-instar larvae of Eri silkworms, Samia cynthia ricini. Metabolic pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) of fat body extracts indicated that the groups of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) were significantly different from the control group. Further, compared to the control group, the metabolites levels of lactate, trehalose, succinate, malate, and fumarate were remarkably changed in experimental groups, which were involved in glycolysis, hydrolysis of trehalose, and tricarboxylic acid (TCA) cycle. Our results indicate that DNJ has a positive impact on the reverse energy metabolism of Eri silkworms and metabonomic analysis based on NMR can be used as a tool to identify potential biomarkers. PMID:27294120

  11. A Spectrometer for Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at High Frequencies

    NASA Astrophysics Data System (ADS)

    Becerra, L. R.; Gerfen, G. J.; Bellew, B. F.; Bryant, J. A.; Hall, D. A.; Inati, S. J.; Weber, R. T.; Un, S.; Prisner, T. F.; McDermott, A. E.; Fishbein, K. W.; Kreischer, K. E.; Temkin, R. J.; Singel, D. J.; Griffin, R. G.

    A high-frequency dynamic nuclear polarization (DNP)/electron paramagnetic resonance spectrometer operating at 211 MHz for 1H and 140 GHz for g= 2 paramagnetic centers (5 T static field) is described. The salient feature of the instrument is a cyclotron-resonance maser (gyrotron) which generates high-frequency, high-power microwave radiation. This gyrotron, which under conventional operation produces millisecond pulses at kilowatt powers, has been adapted to operate at ˜100 W for 1 to 20 s pulses and in the continuous wave mode at the 10 W power level. Experiments combining DNP with magic-angle spinning (MAS) nuclear magnetic resonance were performed on samples consisting of 2% by weight of the free radical BDPA doped into polystyrene. Room-temperature DNP enhancement factors of 10 for 1H and 40 for 13C were obtained in the NMR-MAS spectra. Static DNP NMR has also been performed on samples containing nitroxides dissolved in water:glycerol solvent mixtures. Enhancements of approximately 200 have been obtained for low-temperature (14 K) 1H NMR. A pulsed/CW EPR spectrometer operating at 140 GHz has been developed in conjunction with the DNP spectrometer. Microwave sources include Gunn-diode oscillators which provide low-power (20 mW) radiation, and the gyrotron, which has been used to deliver higher power levels in pulsed experiments. Results using this spectrometer are presented for continuous-wave and echo-detected EPR, electron spin-echo-envelope modulation (ESEEM), and Fourier-transform EPR.

  12. Resonance breakdown of dielectric resonator antennas on ground plane at visible frequencies

    NASA Astrophysics Data System (ADS)

    Zou, Chengjun; Withayachumnankul, Withawat; Zou, Longfang; Fumeaux, Christophe

    2015-12-01

    Nanoscale dielectric resonator antennas (DRAs) are promising elements for constructing the next generation of efficient and compact optical devices. Their efficient light manipulation capability underpinned by electric and magnetic resonances at visible frequencies is appealing for optical metasurfaces with various functions such as anomalous re ection, polarization conversion and surface plasmon coupling. To realize these functions, the resonance properties of the individual DRA elements are of critical importance. In this paper, we study the resonance breakdown of nanoscale cylindrical DRAs on metallic substrates. By gradually increasing the relative permittivity of DRAs on a metallic ground plane from low to high values, we observe two types of resonance breakdown and on that basis we can define a permittivity range for efficient resonance. More specifically, the resonance breakdown occuring at low DRA permittivities is a result of weak confinement and excessive radiation loss. The resonance breakdown at high DRA permittivities is a result of an elevated plasmonic loss at the metal- dielectric interface when the negative permittivity of the metal and the positive permittivity of the dielectric material have matched in their absolute values. The latter breakdown can be avoided by inserting a thin dielectric spacer with a low permittivity between the metal and dielectric. This study suggests important considerations for designing dielectric resonator metasurfaces at the visible frequencies.

  13. 1H, 15N, and 13C resonance assignments and secondary structure of the SWIRM domain of human BAF155, a chromatin remodeling complex component.

    PubMed

    Moon, Sunjin; Shin, Joon; Lee, Dongju; Seong, Rho H; Lee, Weontae

    2013-10-01

    Mammalian SWI/SNF complexes are evolutionary conserved, ATP-dependent chromatin remodeling units. BAF155 in the SWI/SNF complex contains several highly conserved domains, including SANT, SWIRM, and leucine zipper domains. The biological roles of the SWIRM domain remain unclear; however, both structural and biochemical analyses of this domain have suggested that it could mediate protein-protein or protein-DNA interactions during the chromatin remodeling process. The human BAF155 SWIRM domain was cloned into the Escherichia coli expression vector pMAL-c2X and purified using affinity chromatography for structural analysis. We report the backbone (1)H, (15)N, and (13)C resonance assignments and secondary structure of this domain using nuclear magnetic resonance (NMR) spectroscopy and the TALOS+ program. The secondary structure consists of five α-helices that form a typical histone fold for DNA interactions. Our data suggest that the BAF155 SWIRM domain interacts with nucleosome DNA (Kd = 0.47 μM).

  14. In-situ analysis and quantification of swelling kinetics in glassy and rubbery networks using [sup 1]H and [sup 19]F magnetic resonance microscopies

    SciTech Connect

    Cody, G.D.; Botto, R.E. . Chemistry Div.)

    1994-04-25

    [sup 1]H and [sup 19]F magnetic resonance microscopies are used to determine the characteristics of diffusion in four different network-solvent systems. Transport of methanol in poly(ethyl methacrylate) (PEMA) and pyridine in coal is explored and compared with Fickian transport of toluene in polybutadiene rubber (PBD) and hexafluorobenzene in poly(methyl silicone) (PMS). These former two systems are characterized by sharp solvent fronts which propagate into the cores of the samples at a constant velocity. The swelling kinetics are quantified by applying a simple model which couples the kinetics of solvent diffusion to a second-order phase transition which induces network relaxation. Parameterization is accomplished with two kinetic terms and one thermodynamic parameter. These are a mass-fixed glassy diffusion coefficient, a network relaxation constant, and a critical concentration corresponding to the concentration of solvent necessary to induce a glass to rubber transition. Solvent from velocities, obtained through magnetic resonance microscopy, are used with independently derived critical concentrations to calculate the glassy diffusion coefficient and network relaxation rate constant. Kinetic swelling data are then fit with theoretical uptake curves computed using these parameters. A high-quality fit demonstrates that the proposed model successfully quantifies non-Fickian transport using a small number of physical based dynamic parameters.

  15. 15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant.

    PubMed

    Gobeil, Sophie M C; Gagné, Donald; Doucet, Nicolas; Pelletier, Joelle N

    2016-04-01

    The widespread use of β-lactam antibiotics has given rise to a dramatic increase in clinically-relevant β-lactamases. Understanding the structure/function relation in these variants is essential to better address the ever-growing incidence of antibiotic resistance. We previously reported the backbone resonance assignments of a chimeric protein constituted of segments of the class A β-lactamases TEM-1 and PSE-4 (Morin et al. in Biomol NMR Assign 4:127-130, 2010. doi: 10.1007/s12104-010-9227-8 ). That chimera, cTEM17m, held 17 amino acid substitutions relative to TEM-1 β-lactamase, resulting in a well-folded and fully functional protein with increased dynamics. Here we report the (1)H, (13)C and (15)N backbone resonance assignments of chimera cTEM-19m, which includes 19 substitutions and exhibits increased active-site perturbation, as well as one of its deconvoluted variants, as the first step in the analysis of their dynamic behaviours.

  16. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-01

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo. PMID:25948257

  17. Nonlinear electron resonance heating in dual frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Ziegler, D.; Mussenbrock, T.; Brinkmann, R. P.

    2006-10-01

    Capacitively coupled plasmas (CCP's) play a major role in material processing. The drawback of conventional single frequency CCP's is that the ion bombardment energy and the ion flux to the substrate itself cannot be controlled independently. The problem can be remedied by the use of dual frequency CCP's. In such sources, the ratio of the applied frequencies is obviously an important control parameter. Rauf^1 found that at large ratios (e.g., 100,kHz/13.56,MHz) the spectrum of the discharge current was just the superposition of two single-frequency spectra. For more comparable frequencies (e.g.,6.78,MHz/13.56,MHz), however, quite surprising nonlinear effects were observed. It is exactly this nonlinear behavior and its influence on the total energy budget that is discussed in this contribution - we present and analyze a nonlinear global model for a dual frequency CCP. Based on an exact analytical solution of the underlying equations we discuss the behavior of the model for various voltage ratios, frequency ratios, and gas pressures. We investigate in particular the heating at the plasma series resonance, either by direct excitation or via the nonlinear electron resonance heating mechanism^2. ^1 S. Rauf and M.J. Kushner, IEEE Trans Plasma Sci. 27, 1329 (1999)^2 T. Mussenbrock and R.P. Brinkmann, Appl. Phys. Lett. 88, 151503 (2006)

  18. A double-tuned (1)H/(23)Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI.

    PubMed

    Wetterling, Friedrich; Tabbert, Martin; Junge, Sven; Gallagher, Lindsay; Macrae, I Mhairi; Fagan, Andrew J

    2010-12-21

    A method for quantifying the tissue sodium concentration (TSC) in the rat brain from ²³Na-MR images was developed. TSC is known to change in a variety of common human diseases and holds considerable potential to contribute to their study; however, its accurate measurement in small laboratory animals has been hindered by the extremely low signal to noise ratio (SNR) in ²³Na images. To address this, the design, construction and characterization of a double-tuned ¹H/²³Na dual resonator system for ¹H-guided quantitative ²³Na-MRI are described. This system comprises an SNR-optimized surface detector coil for ²³Na image acquisition, and a volume resonator producing a highly homogeneous B₁ field (<5% inhomogeneity) for the Na channel across the rat head. The resonators incorporated channel-independent balanced matching and tuning capabilities with active decoupling circuitry at the ²³Na resonance frequency. A quantification accuracy of TSC of <10 mM was achieved in Na-images with 1.2 µl voxel resolution acquired in 10 min. The potential of the quantification technique was demonstrated in an in vivo experiment of a rat model of cerebral stroke, where the evolution of the TSC was successfully monitored for 8 h after the stroke was induced. PMID:21113090

  19. Analytical investigation into the resonance frequencies of a curling probe

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2016-08-01

    The term ‘active plasma resonance spectroscopy’ (APRS) denotes a class of closely related plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency {ω\\text{pe}} ; an electrical radio frequency signal (in the GHz range) is coupled into the plasma via an antenna or a probe, the spectral response is recorded and a mathematical model is employed to determine plasma parameters such as the plasma density and the electron temperature. The curling probe, recently invented by Liang et al (2011 Appl. Phys. Express 4 066101), is a novel realization of the APRS concept which has many practical advantages. In particular, it can be miniaturized and flatly embedded into the chamber wall, thus allowing the monitoring of plasma processes without contamination nor disturbance. Physically, the curling probe can be understood as a ‘coiled’ form of the hairpin probe (Stenzel 1976 Rev. Sci. Instrum. 47 603). Assuming that the spiralization of the probe has little electrical effect, this paper investigates the characteristcs of a ‘straightened’ curling probe by modeling it as an infinite slot-type resonator that is in direct contact with the plasma. The diffraction of an incident plane wave at the slot is calculated by solving the cold plasma model and Maxwell’s equations simultaneously. The resonance frequencies of the probe are derived and are found to be in good agreement with the numerical results of the probe inventors.

  20. Increasing ferromagnetic resonance frequency using lamination and shape

    NASA Astrophysics Data System (ADS)

    El-Ghazaly, A.; White, R. M.; Wang, S. X.

    2015-05-01

    The magnetic permeability frequency spectrum is one of the most critical properties for the operation of high frequency magnetic devices in the gigahertz regime. Permeability is fairly constant up to the ferromagnetic resonance (FMR) frequency, at which point the relative permeability drops to unity. Extending FMR to higher frequencies is thus imperative for developing GHz-range magnetic devices. The simulation and experimental investigations presented in this paper demonstrate how stacking layers to form a laminated film increases the FMR frequency by allowing flux closure between layers along the induced easy-axis direction. This flux closure reduces the demagnetization factor along the easy-axis direction by two orders of magnitude. This effect, however, is only observable in patterned films where the shape anisotropy is enough to result in variation of the FMR frequency. Experiments using patterned magnetic cores were performed to illustrate this effect. Through detailed investigation of the permeability spectra of both single layer and laminated CoTaZr magnetic films patterned into 500 μm × L films (where L ranged from 200 μm to 1000 μm), the FMR frequency was extracted and proven to increase as a result of lamination. The degree to which the frequency is boosted by lamination increases exponentially as the length of the film is decreased. Through a combination of lamination and shape demagnetization, the effective anisotropy, which directly relates to FMR frequency, was shown to increase by about 100%.

  1. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-11-07

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  2. Dynamics of ferroelectric bis(imidazolium) pentachloroantimonate(III) by means of nuclear magnetic resonance 1H relaxometry and dielectric spectroscopy.

    PubMed

    Piecha-Bisiorek, A; Jakubas, R; Medycki, W; Florek-Wojciechowska, M; Wojciechowski, M; Kruk, D

    2014-05-22

    Some of haloantimonates(III) and halobismuthates(III) are ferroelectric. Bis(imidazolium) pentachloroantimonate(III), (C3N2H5)2SbCl5 (abbreviation: ICA) is the first example of such compounds with a one-dimensional anionic chain which exhibits ferroelectric properties. The relation between the ionic dynamics and network structure and the ferroelectric features is not clear. Here Nuclear Magnetic Resonance (NMR) (1)H spin-lattice relaxation experiments at 25 MHz are reported for ICA in the temperature range of 80 K-360 K, covering ferroelectric-paraelectric and structural phase transitions of the compound occurring at 180 and 342 K, respectively. The relaxation process is biexponential in the whole temperature range indicating two dynamically nonequivalent types of imidazolium cations. Temperature dependences of both relaxation contributions allow for identifying three motional processes. Two of them are cation-specific - i.e. they are attributed to the two types of imidazolium cations, respectively. The third process involves both types of cations, and it is characterized by much lower activation energy. Moreover, the relaxation data (combined with (1)H second moment measurements) show that the ferroelectric-paraelectric phase transition mechanism is governed, to a large extent, by the anionic network arrangement. The NMR studies are complemented by dielectric spectroscopy experiments performed in the vicinity of the Curie temperature, TC = 180 K, to get insight into the mechanism of the ferroelectric-paraelectric phase transition. The dielectric dispersion data show critical slowing down of the macroscopic relaxation time, τ, in ICA when approaching TC from the paraelectric side, indicating an order-disorder type of ferroelectrics.

  3. Reduced glutamate in white matter of male neonates exposed to alcohol in utero: a (1)H-magnetic resonance spectroscopy study.

    PubMed

    Howells, F M; Donald, K A; Roos, A; Woods, R P; Zar, H J; Narr, K L; Stein, D J

    2016-10-01

    In utero exposure to alcohol leads to a spectrum of fetal alcohol related disorders (FASD). However, few studies used have used proton magnetic resonance spectroscopy ((1)H-MRS) to understand how neurochemical disturbances relate to the pathophysiology of FASD. Further, no studies to date have assessed brain metabolites in infants exposed to alcohol in utero. We hypothesize that neonates exposed to alcohol in utero will show decreased glutamatergic activity, pre-emptive of their clinical diagnosis or behavioural phenotype. Single voxel (1)H-MRS data, sampled in parietal white and gray matter, were acquired from 36 neonates exposed to alcohol in utero, and 31 control unexposed healthy neonates, in their 2nd-4th week of life. Metabolites relative to creatine with phosophocreatine and metabolites absolute concentrations using a water reference are reported. Male infants exposed to alcohol in utero were found to have reduced concentration of glutamate with glutamine (Glx) in their parietal white matter (PWM), compared to healthy male infants (p = 0.02). Further, male infants exposed to alcohol in utero had reduced concentration and ratio for glutamate (Glu) in their PWM (p = 0.02), compared to healthy male infants and female infants exposed to alcohol in utero. Female infants showed higher relative Glx and Glu ratios for parietal gray matter (PGM, p < 0.01), compared to male infants. We speculate that the decreased Glx and Glu concentrations in PWM are a result of delayed oligodendrocyte maturation, which may be a result of dysfunctional thyroid hormone activity in males exposed to alcohol in utero. Further study is required to elucidate the relationship between Glx and Glu, thyroid hormone activity, and oligodendrocyte maturation in infants exposure to alcohol in utero. PMID:27311608

  4. Reduced glutamate in white matter of male neonates exposed to alcohol in utero: a (1)H-magnetic resonance spectroscopy study.

    PubMed

    Howells, F M; Donald, K A; Roos, A; Woods, R P; Zar, H J; Narr, K L; Stein, D J

    2016-10-01

    In utero exposure to alcohol leads to a spectrum of fetal alcohol related disorders (FASD). However, few studies used have used proton magnetic resonance spectroscopy ((1)H-MRS) to understand how neurochemical disturbances relate to the pathophysiology of FASD. Further, no studies to date have assessed brain metabolites in infants exposed to alcohol in utero. We hypothesize that neonates exposed to alcohol in utero will show decreased glutamatergic activity, pre-emptive of their clinical diagnosis or behavioural phenotype. Single voxel (1)H-MRS data, sampled in parietal white and gray matter, were acquired from 36 neonates exposed to alcohol in utero, and 31 control unexposed healthy neonates, in their 2nd-4th week of life. Metabolites relative to creatine with phosophocreatine and metabolites absolute concentrations using a water reference are reported. Male infants exposed to alcohol in utero were found to have reduced concentration of glutamate with glutamine (Glx) in their parietal white matter (PWM), compared to healthy male infants (p = 0.02). Further, male infants exposed to alcohol in utero had reduced concentration and ratio for glutamate (Glu) in their PWM (p = 0.02), compared to healthy male infants and female infants exposed to alcohol in utero. Female infants showed higher relative Glx and Glu ratios for parietal gray matter (PGM, p < 0.01), compared to male infants. We speculate that the decreased Glx and Glu concentrations in PWM are a result of delayed oligodendrocyte maturation, which may be a result of dysfunctional thyroid hormone activity in males exposed to alcohol in utero. Further study is required to elucidate the relationship between Glx and Glu, thyroid hormone activity, and oligodendrocyte maturation in infants exposure to alcohol in utero.

  5. Tuning the resonant frequency of resonators using molecular surface self-assembly approach.

    PubMed

    Liu, Wenpeng; Wang, Jingwei; Yu, Yifei; Chang, Ye; Tang, Ning; Qu, Hemi; Wang, Yanyan; Pang, Wei; Zhang, Hao; Zhang, Daihua; Xu, Huaping; Duan, Xuexin

    2015-01-14

    In this work, a new method to tune the resonant frequency of microfabricated resonator using molecular layer-by-layer (LbL) self-assembly approach is demonstrated. By simply controlling the polymer concentration and the number of layers deposited, precisely tuning the frequency of microfabricated resonators is realized. Due to its selective deposition through specific molecular recognitions, such technique avoids the high-cost and complex steps of conventional semiconductor fabrications and is able to tune individual diced device. Briefly, film bulk acoustic resonator (FBAR) is used to demonstrate the tuning process and two types of LbL deposition methods are compared. The film thickness and morphology have been characterized by UV-vis reflection spectra, ellipsometer and AFM. As a result, the maximum resonant frequency shift of FBAR reaches more than 20 MHz, meaning 1.4% tunability at least. The minimum frequency shift is nearly 10 kHZ per bilayer, indicating 7 ppm tuning resolution. Pressure cooker test (PCT) is performed to evaluate the reliability of LbL coated FBAR. Furthermore, applications for wireless broadband communication and chemical sensors of LbL coated FBAR have been demonstrated. PMID:25487349

  6. In Vivo{sup 1}H Magnetic Resonance Spectroscopy of Lactate in Patients With Stage IV Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Le, Quynh-Thu Koong, Albert; Lieskovsky, Yee Yie; Narasimhan, Balasubramanian; Graves, Edward; Pinto, Harlan; Brown, J. Martin; Spielman, Daniel

    2008-07-15

    Purpose: To investigate in vivo{sup 1}H magnetic resonance spectroscopy imaging of lactate for assessing tumor hypoxia in head and neck cancers and to determine its utility in predicting the response and outcomes. Methods and Materials: Volume-localized lactate-edited {sup 1}H magnetic resonance spectroscopy at 1.5 T was performed in vivo on involved neck nodes and control subcutaneous tissues in 36 patients with Stage IV head and neck cancer. The signal intensities (SIs) of lactate, choline, and creatine and the choline/creatine ratio were measured. The tumor partial pressure of oxygen (pO{sub 2}) was obtained in the same lymph node before MRS. Patients were treated with either two cycles of induction chemotherapy (tirapazamine, cisplatin, 5-fluorouracil) followed by simultaneous chemoradiotherapy or the same regimen without tirapazamine. The lactate SI and the choline/creatine ratio correlated with the tumor pO{sub 2}, nodal response, and locoregional control. Results: The lactate SI was greater for the involved nodes (median, 0.25) than for the subcutaneous tissue (median, 0.04; p = 0.07). No significant correlation was found between the lactate SI and tumor pO{sub 2} (mean, 0.46 {+-} 0.10 for hypoxic nodes [pO{sub 2} {<=}10 mm Hg, n = 15] vs. 0.36 {+-} 0.07 for nonhypoxic nodes [pO{sub 2} >10 mm Hg, n = 21], p = 0.44). A significant correlation was found between the choline/creatine ratios and tumor pO{sub 2} (mean, 2.74 {+-} 0.34 for hypoxic nodes vs. 1.78 {+-} 0.31 for nonhypoxic nodes, p = 0.02). No correlation was found between the lactate SI and the complete nodal response (p = 0.52) or locoregional control rates. Conclusions: The lactate SI did not correlate with tumor pO{sub 2}, treatment response, or locoregional control. Additional research is needed to refine this technique.

  7. Effect of geometry in frequency response modeling of nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.; Hattel, J. H.; Alaca, B. Erdem

    2016-06-01

    The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The results provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.

  8. Modeling multiple-frequency electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Spencer, J. Andrew; Kim, Charlson; Kim, Jin-Soo; Evstatiev, Evstati G.; Svidzinski, Vladimir; Cluggish, Brian

    2014-02-01

    Electron cyclotron resonance (ECR) heating influences two of the main parameters (electron temperature and, indirectly, density) that determine the charge state of the ions produced in an ECR ion source (ECRIS). Therefore, various schemes to optimize ECR heating in the ECRIS have been pursued such as multiple-frequency heating, the radio-frequency tuning effect, volume heating, or wide-band heating. We investigate two-frequency ECR heating of electrons in a simple magnetic mirror field by right handed circularly polarized waves with infinite phase velocity. The study shows a heating barrier different from the well-know adiabatic barrier. Study also revealed a mechanism whereby multiple frequencies give improved heating. A preliminary interpretation of the study is presented.

  9. Charge Transfer Plasmons: Optical Frequency Conductances and Tunable Infrared Resonances.

    PubMed

    Wen, Fangfang; Zhang, Yue; Gottheim, Samuel; King, Nicholas S; Zhang, Yu; Nordlander, Peter; Halas, Naomi J

    2015-06-23

    A charge transfer plasmon (CTP) appears when an optical-frequency conductive pathway between two metallic nanoparticles is established, enabling the transfer of charge between nanoparticles when the plasmon is excited. Here we investigate the properties of the CTP in a nanowire-bridged dimer geometry. Varying the junction geometry controls its conductance, which modifies the resonance energies and scattering intensities of the CTP while also altering the other plasmon modes of the nanostructure. Reducing the junction conductance shifts this resonance to substantially lower energies in the near- and mid-infrared regions of the spectrum. The CTP offers both a high-information probe of optical frequency conductances in nanoscale junctions and a new, unique approach to controllably engineering tunable plasmon modes at infrared wavelengths.

  10. Resonant interactions between cometary ions and low frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  11. Optimizations of ozone generator at low resonance frequency

    NASA Astrophysics Data System (ADS)

    Garamoon, A. A.; Elakshar, F. F.; Elsawah, M.

    2009-11-01

    The effect of the frequency on the different parameters of ozone generation in the dielectric barrier discharge (DBD) has been investigated. It is found that at low frequency, (f0 = 325 Hz), an electric resonance can be obtained in the electric circuit. The onset voltage, at which the ozone starts to build up, was reduced from 3.25 kV at 50 Hz to 1.57 kV at 325 Hz. The efficiency has been increased from nearly zero at 50 Hz to 232.94 g/kW h at 200 Hz under applied voltage of 2.025 kV. in here

  12. Optical frequency comb generation from aluminum nitride microring resonator.

    PubMed

    Jung, Hojoong; Xiong, Chi; Fong, King Y; Zhang, Xufeng; Tang, Hong X

    2013-08-01

    Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the phase matching for four-wave mixing, frequency combs are generated with a single-wavelength continuous-wave pump laser. Further, the Kerr coefficient (n₂) of AlN is extracted from our experimental results.

  13. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study.

    PubMed

    Hattingen, Elke; Jurcoane, Alina; Bähr, Oliver; Rieger, Johannes; Magerkurth, Jörg; Anti, Sandra; Steinbach, Joachim P; Pilatus, Ulrich

    2011-12-01

    Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. (31)P and (1)H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2' mapping (indirect marker of oxygen extraction) were investigated in 16 patients with recurrent GBM at 3 Tesla before and 1.5-2 months after initiation of therapy with bevacizumab. Changes of metabolite concentrations and of the quantitative values in the tumor and normal appearing brain tissue were calculated. The Wilcoxon signed-ranks test was used to evaluate differences for tumor/edema versus control as well as changes before versus after commencement of therapy. Survival analyses were performed for significant parameters. Tumor T2', pH, ADC, and T2 decreased significantly in patients responding to bevacizumab therapy (n = 10). Patients with at least 25% T2' decrease during treatment showed longer progression-free and overall survival durations. Levels of high-energy metabolites were lower at baseline; these persisted under therapy. Glycerophosphoethanolamine as catabolic phospholipid metabolite increased in responders. The MRSI data support the hypothesis that bevacizumab induces relative tumor hypoxia (T2' decrease) and affects energy homeostasis in recurrent GBM, suggesting that bevacizumab impairs vascular function. The antiangiogenic effect of bevacizumab is predictive of better outcome and seems to induce antitumoral activity in the responding GBMs. PMID:21890539

  14. Observations of High Frequency Harmonics of the Ionospheric Alfven Resonator

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Bortnik, Jacob; Milling, David; Kale, Andy; Shao, Leo; Miles, David; Rae, I. Jonathan

    We present observations of high frequency harmonics of the ionospheric Alfven Resonator (IAR). These are seen in the form of spectral resonance structures (SRS) recorded by a ground-based search coil magnetometer sampling at 100 samples/s at the Ministik Lake station at L=4.2 within the expanded CARISMA magnetometer array. Previous observational studies have indicated that such SRS are typically confined to frequencies <~5 Hz with only several SRS harmonics being observed. We report the first observations of clear and discrete SRS, which we believe are harmonics of the IAR, and which extend to around 20 Hz in at least 10-12 clear SRS harmonics. We additionally demonstrate the utility of the Bortnik et al. (2007) auto-detection algorithm, designed for Pc1 wavepackets, for characterising the properties of the IAR. Our results also indicate that the cavity supporting SRS in the IAR at this time must be structured to support and trap much higher frequency IAR harmonics than previously assumed. This impacts the potential importance of the IAR for magnetosphere-ionosphere coupling, especially in relation to the impacts of incident Alfven waves on the ionosphere including Alfvenic aurora. Our observations also highlight the potential value of IAR observations for diagnosing the structure of the topside ionosphere, not least using the observed structure of the SRS. These are the first mid-latitude observations demonstrating that the IAR can extend to frequencies beyond those of the lowest few harmonics of the Schumann resonances - significantly suggesting the possibility that the Schumann resonance modes and the IAR may be coupled. The in-situ structure of the IAR is also examined by combining satellite data with conjugate measurements from the ground, and the impacts of the IAR for magnetosphere-ionosphere-thermosphere coupling examined.

  15. High frequency MoS2 nanomechanical resonators.

    PubMed

    Lee, Jaesung; Wang, Zenghui; He, Keliang; Shan, Jie; Feng, Philip X-L

    2013-07-23

    Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.

  16. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  17. In vivo brain macromolecule signals in healthy and glioblastoma mouse models: 1H magnetic resonance spectroscopy, post-processing and metabolite quantification at 14.1 T.

    PubMed

    Craveiro, Mélanie; Clément-Schatlo, Virginie; Marino, Denis; Gruetter, Rolf; Cudalbu, Cristina

    2014-06-01

    In (1)H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.

  18. (1)H, (15)N and (13)C resonance assignments of the conserved region in the middle domain of S. pombe Sin1 protein.

    PubMed

    Kataoka, Saori; Furuita, Kyoko; Hattori, Yoshikazu; Kobayashi, Naohiro; Ikegami, Takahisa; Shiozaki, Kazuhiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2015-04-01

    SAPK-interacting protein 1 (Sin1) is an important component of the target of rapamycin (TOR) complex 2 (TORC2). TOR is a serine/threonine-specific protein kinase and forms functionally distinct protein complexes referred to as TORC1 and TORC2. TORC2, conserved from yeast to humans, phosphorylates AGC-family protein kinases and has many cellular functions including the regulation of actin cytoskeleton. The Sin1 subunit of TORC2 is required for the binding of TORC2 to substrates, and the conserved region in the middle (CRIM) domain of Sin1 is important in the substrate recognition of TORC2. Here, we report on the (1)H, (13)C and (15)N resonance assignments of fission yeast Schizosaccharomyces pombe Sin1 (amino acids 247-400) (Sin1CRIM), which possesses the CRIM domain. These data contribute toward the structure determination of Sin1CRIM and an understanding of the interactions of Sin1CRIM with substrates of TORC2.

  19. Slow magic angle sample spinning: a non- or minimally invasive method for high-resolution 1H nuclear magnetic resonance (NMR) metabolic profiling.

    PubMed

    Hu, Jian Zhi

    2011-01-01

    High-resolution (1)H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kilohertz or more (i.e., high-resolution magic angle spinning (hr-MAS)), is a well-established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow MAS, using the concept of two-dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimally invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow sample spinning used. Although slow MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in-depth evaluation of the principles associated with slow MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H(2)O, where an unusually large magnetic susceptibility field gradient is obtained.

  20. Slow Magic Angle Sample Spinning: A Non- or Minimally Invasive Method for High- Resolution 1H Nuclear Magnetic Resonance (NMR) Metabolic Profiling

    SciTech Connect

    Hu, Jian Z.

    2011-05-01

    High resolution 1H magic angle spinning nuclear magnetic resonance (NMR), using a sample spinning rate of several kHz or more (i.e., high resolution-magic angle spinning (hr-MAS)), is a well established method for metabolic profiling in intact tissues without the need for sample extraction. The only shortcoming with hr-MAS is that it is invasive and is thus unusable for non-destructive detections. Recently, a method called slow-MAS, using the concept of two dimensional NMR spectroscopy, has emerged as an alternative method for non- or minimal invasive metabolomics in intact tissues, including live animals, due to the slow or ultra-slow-sample spinning used. Although slow-MAS is a powerful method, its applications are hindered by experimental challenges. Correctly designing the experiment and choosing the appropriate slow-MAS method both require a fundamental understanding of the operation principles, in particular the details of line narrowing due to the presence of molecular diffusion. However, these fundamental principles have not yet been fully disclosed in previous publications. The goal of this chapter is to provide an in depth evaluation of the principles associated with slow-MAS techniques by emphasizing the challenges associated with a phantom sample consisting of glass beads and H2O, where an unusually large magnetic susceptibility field gradient is obtained.

  1. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study.

    PubMed

    Husarova, Veronika; Bittsansky, Michal; Ondrejka, Igor; Dobrota, Dusan

    2014-04-30

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral childhood disorder. Dysfunction of prefrontal neural circuits which are responsible for executive and attentional functions has been previously shown in ADHD. We investigated the neurometablite changes in areas included in dorsolateral prefrontal neural circuits after 2 months of long-acting methylphenidate or atomoxetine medication in children with ADHD who were responders to treatment. Twenty-one ADHD children were examined by single voxel (1)H-magnetic resonance spectroscopy (MRS) before and after 2 months of medication with OROS methylphenidate (n=10) or atomoxetine (n=11). The spectra were taken from the dorsolateral prefrontal cortex (DLPFC, 8ml) and white matter behind the DLPFC (anterior semioval center, 7.5ml), bilaterally. NAA and NAA/Cr (N-acetylaspartate/creatine) decreased in the left DLPFC and Cho/Cr (choline/creatine) increased in the right DLPFC after atomoxetine medication. Glu+Gln and Glu+Gln/Cr (glutamate/glutamine) increased in the left white matter after methylphenidate medication. We hypothesize that atomoxetine could decrease hyperactivation of DLPFC neurons and methylphenidate could lead to increased activation of cortical glutamatergic projections with the consequences of increased tonic dopamine release in the mesocortical system. PMID:24679996

  2. Prefrontal grey and white matter neurometabolite changes after atomoxetine and methylphenidate in children with attention deficit/hyperactivity disorder: a (1)H magnetic resonance spectroscopy study.

    PubMed

    Husarova, Veronika; Bittsansky, Michal; Ondrejka, Igor; Dobrota, Dusan

    2014-04-30

    Attention deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral childhood disorder. Dysfunction of prefrontal neural circuits which are responsible for executive and attentional functions has been previously shown in ADHD. We investigated the neurometablite changes in areas included in dorsolateral prefrontal neural circuits after 2 months of long-acting methylphenidate or atomoxetine medication in children with ADHD who were responders to treatment. Twenty-one ADHD children were examined by single voxel (1)H-magnetic resonance spectroscopy (MRS) before and after 2 months of medication with OROS methylphenidate (n=10) or atomoxetine (n=11). The spectra were taken from the dorsolateral prefrontal cortex (DLPFC, 8ml) and white matter behind the DLPFC (anterior semioval center, 7.5ml), bilaterally. NAA and NAA/Cr (N-acetylaspartate/creatine) decreased in the left DLPFC and Cho/Cr (choline/creatine) increased in the right DLPFC after atomoxetine medication. Glu+Gln and Glu+Gln/Cr (glutamate/glutamine) increased in the left white matter after methylphenidate medication. We hypothesize that atomoxetine could decrease hyperactivation of DLPFC neurons and methylphenidate could lead to increased activation of cortical glutamatergic projections with the consequences of increased tonic dopamine release in the mesocortical system.

  3. Two 1H-nuclear magnetic resonance methods to measure internal porosity of bone trabeculae: By solid-liquid signal separation and by longitudinal relaxation

    NASA Astrophysics Data System (ADS)

    Fantazzini, Paola; Bortolotti, Villiam; Brown, Robert J. S.; Camaiti, Mara; Garavaglia, Carla; Viola, Rossella; Giavaresi, Gianluca

    2004-01-01

    Parameters related to pore-space structure of the trabeculae in cancellous bone are difficult to determine quantitatively, but they can be important to characterize changes induced in bone by diseases such as osteoporosis. We present two nuclear magnetic resonance (NMR) methods to measure the internal porosity φtrab of the trabeculae, based on two different measurements of the fraction of intratrabecular and intertrabecular pore-space in animal femur samples. These procedures have been developed within the more general framework of the NMR studies for fluids in porous media. In the first method we use the ratio between the amount of collagen (solid-like) 1H and that of the fluids in the samples. In the second, which can be applied only on defatted and water saturated samples, we use the distributions of longitudinal relaxation times. The φtrab values obtained are constant for porosity φ of the samples over the range 40%-70%, with each method giving φtrab=(29±4)%, which is consistent with the only data available, the porosity of related cortical bone. The traditional parameter bone volume fraction is simply given by (1-φ)/(1-φtrab).

  4. Study of Proton Resonances in 2626Si and 27P by the Elastic Scattering of 1H(25Al, p) 25Al, 1H(26Si, p)26Si

    NASA Astrophysics Data System (ADS)

    Moon, J. Y.; Lee, C. S.; Lee, J. H.; Yun, C. C.; Kim, J. C.; Youn, M.; Kubono, S.; Teranishi, T.; He, J. J.; Notani, M.; Nishimura, S.; Nishimura, M.; Guimarães, V.; Lihitenthaler, R. F.; Kato, S.

    2005-12-01

    The observational space map of 1.809-MeV gamma rays - coming from the decay of 26Al - taken by COMPTEL requires the sources and their nucleosynthetic activity to be unveiled. One suggestion for the observation is the explosive hydrogen burning process which occurs in novae or X-ray bursts. Two capture reactions such as 25 Al(p,γ)26Si and 26Si(p,γ)27P are of great importance in the production of 1.809-MeV gamma rays. Resonance states within the Gamow window should be precisely known to determine their reaction rates. As for the latter reaction, only a few levels in 27P have been known above the proton threshold in comparison with many levels known in its mirror nucleus 27Mg. We studied proton resonances in 26Si and 27P by the elastic scattering at low energies, respectively using low-energy 25Al and 26Si radioactive ion beams available from the CRIB facility at CNS, University of Tokyo. We carried out an experiment to investigate proton resonances in 26Si up to EC.M. = 3.016 MeV, especially to determine the resonance parameters of the states at Ex = 7.019 and 8.120 MeV. We also measured the elastic scattering of p + 26Si up to EC.M. = 3.290 MeV.

  5. Investigation of the resonance frequency shift in parts with cracks

    NASA Astrophysics Data System (ADS)

    Zahariev, Krasimir; Kin, Yulian; Sutin, Alexander

    2005-09-01

    It is known that development of crack in various parts leads to resonance frequency variation and that phenomena can be used for crack detection and remaining lifetime prediction. We have investigated this effect on a steel specimen (25×150×6 mm). The crack was initiated at the root of preliminary machined notch and propagated under cycling loading on fatigue machine. The finite-element analysis was applied for calculation of frequency shift for three flexural modes of vibration and it was observed that the frequency shift increases with the increase of crack size. The maximum detected frequency shift was 3.8% for the crack size 23% of a sample width. The experimental measurements were conducted by measurements of sound produced by free vibration of the sample after impact excitation (impact resonance acoustic spectroscopy). The relative difference between acoustical measurements and FEA results did not exceed 1%. The conducted research provides a good basis for development of the remaining life prediction methods, for example, by Paris formulation. Parameters of the formulation for our case were determined experimentally. [Research supported by 21 Century Fund of Indiana.

  6. Sucrose octabenzoate: assignment of 13C and 1H resonances of the sucrose moiety and the 13C resonances of the carbonyl carbons. Use of 13C-n.m.r. spectroscopy for the study of selective deacylation.

    PubMed

    Colquhoun, I J; Haines, A H; Konowicz, P A; Jones, H F

    1990-09-19

    Assignment of the 1H and 13C signals arising from the carbohydrate portion of sucrose octabenzoate has been achieved using homonuclear shift correlation experiments (COSY) and one-bond 1H-13C heteronuclear shift correlation measurements, respectively. The 13C resonances of the carbonyl carbon atoms of the eight benzoyl groups are readily distinguished for solutions in benzene-d6-pyridine-d5 (1:1), and have been assigned by means of three-bond 1H-13C shift correlation studies coupled with measurement of the 13C-n.m.r. spectrum of a sucrose octabenzoate specifically labelled with 13C in some of the carbonyl groups. With this assignment, products of partial deacylation of the octabenzoate may readily be identified by treatment with excess of benzoyl-carbonyl-13C chloride followed by measurement of the 13C-n.m.r. spectrum of the labelled sucrose octabenzoate, so prepared, in the carbonyl region. PMID:2276151

  7. A Resonator for Low-Threshold Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2004-01-01

    A proposed toroidal or disklike dielectric optical resonator (dielectric optical cavity) would be made of an optically nonlinear material and would be optimized for use in parametric frequency conversion by imposition of a spatially periodic permanent electric polarization. The poling (see figure) would suppress dispersions caused by both the material and the geometry of the optical cavity, thereby effecting quasi-matching of the phases of high-resonance-quality (high-Q) whispering-gallery electromagnetic modes. The quasi-phase-matching of the modes would serve to maximize the interactions among them. Such a resonator might be a prototype of a family of compact, efficient nonlinear devices for operation over a broad range of optical wavelengths. A little background information is prerequisite to a meaningful description of this proposal: (1) Described in several prior NASA Tech Briefs articles, the whispering-gallery modes in a component of spheroidal, disklike, or toroidal shape are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. (2) For the sake of completeness, it must be stated that even though optical resonators of the type considered here are solid dielectric objects and light is confined within them by total internal reflection at dielectric interfaces without need for mirrors, such components are sometimes traditionally called cavities because their effects upon the light propagating within them are similar to those of true cavities bounded by mirrors. (3) For a given set of electromagnetic modes interacting with each other in an optically nonlinear material (e.g., modes associated with the frequencies involved in a frequency-conversion scheme), the threshold power for oscillation depends on the mode volumes and the mode-overlap integral. (4) Whispering-gallery modes are attractive in nonlinear optics because they maximize the effects of

  8. A study of trapped mode resonances in asymmetric X-shape resonator for frequency selective surface

    NASA Astrophysics Data System (ADS)

    Chen, Kejian; Liu, Hong; Wang, Yiqi; Zhu, Yiming

    2013-08-01

    FSS is a two-dimensional periodic array of resonating metallic-dielectric structures, When FSS device steps into Terahertz range from microwave range, it is studied as THz functional components (such as Terahertz filter, Terahertz biochemical sensor, etc.) to promote the functionality of the THz spectroscopy/imaging system. When the device requires a narrow band transmission window for frequency selecting or a high electric field concentration in certain area to improve its sensitivity for sensing, normally, a high quality (Q) resonant structure can give helps. Recently, high-Q resonance induced by trapped mode resonance i studied widely in FSS research areas. To induce trapped mode resonance, one can simply break the symmetric of the unit structure of FSS. In this paper, several asymmetric X-shaped resonators for FSS working in terahertz range have been studied numerically. To compare the behaviour of X-shape resonator under different conditions (with additional part: Heart lines, Shoulder lines, Wrap or Shoes squares), a common platform (θ=60, θis angle of X shape) which is suitable for most of cases was used to make the study more meaningful. As the field enhancement behaviour is related to the trapped mode introduced by the asymmetric structure, we propose such kind of device to be used as a high quality filter or as a sensing element for biochemical samples.

  9. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.

    PubMed

    Pisarchik, A N; Jaimes-Reátegui, R

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively.

  10. Resonant Frequency Monitoring at Mesa Arch, Canyonlands National Park

    NASA Astrophysics Data System (ADS)

    Dorsey, A.; Moore, J. R.; Thorne, M. S.; Culp, J.

    2014-12-01

    The national parks of southern Utah are home to a number of spectacular landmarks that draw visitors from across the world. However, there is currently no methodology in place to evaluate the structural health of these structures as they change through time or in the wake of a damaging event. Our study combines in-situ ambient vibration measurements with 3D numerical modeling to monitor the resonance characteristics of Mesa Arch, a prominent arch in Canyonlands National Park. We measure spectral and polarization attributes of ambient vibrations using two broadband seismometers: one placed on the arch and the other located at a distance of ~100 m for reference. Repeat measurements, ranging in duration from 1 hour to 3 days, are aimed at assessing short- and long-term changes in resonance characteristics, which in turn provide evidence of internal mechanical change. Numerical modal analysis, executed by inputting geometric and representative material properties of the arch into 3D modeling software, allows us to match the measured fundamental frequency as well as higher-order modes. Preliminary results suggest minor variations in resonant frequencies are predominantly controlled by thermal effects, i.e. changes in bulk material stiffness as the rock expands and contracts.

  11. Comparative Survey of Rumen Microbial Communities and Metabolites across One Caprine and Three Bovine Groups, Using Bar-Coded Pyrosequencing and 1H Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Lee, Hyo Jung; Jung, Ji Young; Oh, Young Kyoon; Lee, Sang-Suk; Madsen, Eugene L.

    2012-01-01

    Pyrosequencing of 16S rRNA genes (targeting Bacteria and Archaea) and 1H nuclear magnetic resonance were applied to investigate the rumen microbiota and metabolites of Hanwoo steers in the growth stage (HGS), Hanwoo steers in the late fattening stage (HFS), Holstein-Friesian dairy cattle (HDC), and Korean native goats (KNG) in the late fattening stage. This was a two-part investigation. We began by comparing metabolites and microbiota of Hanwoo steers at two stages of husbandry. Statistical comparisons of metabolites and microbial communities showed no significant differences between HFS and HGS (differing by a dietary shift at 24 months and age [67 months versus 12 months]). We then augmented the study by extending the investigation to HDC and KNG. Overall, pyrosequencing of 16S rRNA genes showed that the rumens had highly diverse microbial communities containing many previously undescribed microorganisms. Bioinformatic analysis revealed that the bacterial sequences were predominantly affiliated with four phyla—Bacteroidetes, Firmicutes, Fibrobacteres, and Proteobacteria—in all ruminants. However, interestingly, the bacterial reads belonging to Fibrobacteres were present at a very low abundance (<0.1%) in KNG. Archaeal community analysis showed that almost all of these reads fell into a clade related to, but distinct from, known cultivated methanogens. Statistical analyses showed that the microbial communities and metabolites of KNG were clearly distinct from those of other ruminants. In addition, bacterial communities and metabolite profiles of HGS and HDC, fed similar diets, were distinctive. Our data indicate that bovine host breeds override diet as the key factor that determines bacterial community and metabolite profiles in the rumen. PMID:22706048

  12. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  13. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    PubMed Central

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  14. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations.

    PubMed

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  15. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations.

    PubMed

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-08-31

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  16. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  17. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators.

    PubMed

    Gyüre, B; Márkus, B G; Bernáth, B; Murányi, F; Simon, F

    2015-09-01

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation. PMID:26429462

  18. {sup 13}C, {sup 1}H, {sup 6}Li magic-angle spinning nuclear magnetic resonance, electron paramagnetic resonance, and Fourier transform infrared study of intercalation electrodes based in ultrasoft carbons obtained below 3100 K

    SciTech Connect

    Alcantara, R.; Madrigal, F.J.F.; Lavela, P.; Tirado, J.L.; Mateos, J.M.J.; Stoyanova, R.; Zhecheva, E.

    1999-01-01

    The past decade has seen an important development of materials for high-performance energy storage systems. Particularly, the field of electrode materials for advanced lithium batteries has attracted the interest of numerous researchers. Petroleum coke samples of different origins and heat treated at different temperatures below 3100 K have been studied by spectroscopic and electrochemical procedures. According to {sup 13}C and {sup 1}H magic-angle spinning (MAS) nuclear magnetic resonance (NMR), infrared (IR), and electron paramagnetic resonance (EPR) data, aromatic compounds and surface OH groups are present in green coke samples. The preparation of CMB (combustible) sample from 1673 K leads to a low-temperature graphitization process, as shown by the occurrence of multiphase products containing both turbostatic and graphitized solid. This process is accompanied by the loss of aromatic compounds and surface hydroxyls. The optimization of the lithium intercalation electrodes based in the green coke materials was carried out by thermal treatment at 1023 K under dynamic vacuum conditions. Such pretreatment of the electrode material leads to marked enhancement of reversible capacities without the higher temperatures usually required for other soft carbon materials. Finally, the results of {sup 6}Li MAS NMR and EPR have been correlated with the experimental determination of lithium diffusion coefficients and surface properties. On the basis of these results, spin resonance spectroscopies are found to be a powerful tool to discern between the different petroleum coke samples to select the active electrode material with best performance.

  19. Frequency selectivity without resonance in a fluid waveguide

    PubMed Central

    van der Heijden, Marcel

    2014-01-01

    This study analyzes a waveguide consisting of two parallel fluid-filled chambers connected by a narrow slit that is spanned by two coupled elastic beams. A stiffness gradient exists in the longitudinal direction. This simple linear system, which contains no lumped mass, is shown to act as a spectral analyzer. Fluid waves traveling in the waveguide exhibit a distinct amplitude peak at a longitudinal location that varies systematically with frequency. The peaking is not based on resonance, but entirely on wave dispersion. When entering its peak region, the wave undergoes a sharp deceleration associated with a transition in which two propagation modes exchange roles. It is proposed that this mode shape swapping underlies the frequency analysis of the mammalian cochlea. PMID:25237137

  20. Tunable frequency combs based on dual microring resonators.

    PubMed

    Miller, Steven A; Okawachi, Yoshitomo; Ramelow, Sven; Luke, Kevin; Dutt, Avik; Farsi, Alessandro; Gaeta, Alexander L; Lipson, Michal

    2015-08-10

    In order to achieve efficient parametric frequency comb generation in microresonators, external control of coupling between the cavity and the bus waveguide is necessary. However, for passive monolithically integrated structures, the coupling gap is fixed and cannot be externally controlled, making tuning the coupling inherently challenging. We design a dual-cavity coupled microresonator structure in which tuning one ring resonance frequency induces a change in the overall cavity coupling condition. We demonstrate wide extinction tunability with high efficiency by engineering the ring coupling conditions. Additionally, we note a distinct dispersion tunability resulting from coupling two cavities of slightly different path lengths, and present a new method of modal dispersion engineering. Our fabricated devices consist of two coupled high quality factor silicon nitride microresonators, where the extinction ratio of the resonances can be controlled using integrated microheaters. Using this extinction tunability, we optimize comb generation efficiency as well as provide tunability for avoiding higher-order mode-crossings, known for degrading comb generation. The device is able to provide a 110-fold improvement in the comb generation efficiency. Finally, we demonstrate open eye diagrams using low-noise phase-locked comb lines as a wavelength-division multiplexing channel. PMID:26367998

  1. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  2. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  3. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    PubMed

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  4. Averaging, passage through resonances, and capture into resonance in two-frequency systems

    NASA Astrophysics Data System (ADS)

    Neishtadt, A. I.

    2014-10-01

    Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.

  5. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degrees of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  6. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  7. Nonlinear frequency mixing in a resonant cavity: numerical simulations in a bubbly liquid.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé; Sinha, Dipen N

    2014-12-01

    The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented. Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the difference frequency. The analysis is carried out through numerical experiments, and both linear and nonlinear regimes are compared. The results show highly efficient generation of the difference frequency at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for the strong difference-frequency resonance also induces significant enhancement of the parametric frequency mixing effect to generate second harmonic of the difference frequency. PMID:25064635

  8. Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu

    2006-01-01

    Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.

  9. Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1H-MRS): initial results.

    PubMed

    Amin, Amr; Moustafa, Hosna; Ahmed, Ebaa; El-Toukhy, Mohamed

    2012-02-01

    We compared pentavalent technetium-99m dimercaptosuccinic acid (Tc-99m (V) DMSA) brain single photon emission computed tomography (SPECT) and proton magnetic resonance spectroscopy ((1)H-MRS) for the detection of residual or recurrent gliomas after surgery and radiotherapy. A total of 24 glioma patients, previously operated upon and treated with radiotherapy, were studied. SPECT was acquired 2-3 h post-administration of 555-740 MBq of Tc-99m (V) DMSA. Lesion to normal (L/N) delayed uptake ratio was calculated as: mean counts of tumor ROI (L)/mean counts of normal mirror symmetric ROI (N). (1)H-MRS was performed using a 1.5-T scanner equipped with a spectroscopy package. SPECT and (1)H-MRS results were compared with pathology or follow-up neuroimaging studies. SPECT and (1)H-MRS showed concordant residue or recurrence in 9/24 (37.5%) patients. Both were true negative in 6/24 (25%) patients. SPECT and (1)H-MRS disagreed in 9 recurrences [7/9 (77.8%) and 2/9 (22.2%) were true positive by SPECT and (1)H-MRS, respectively]. Sensitivity of SPECT and (1)H-MRS in detecting recurrence was 88.8 and 61.1% with accuracies of 91.6 and 70.8%, respectively. A positive association between the delayed L/N ratio and tumor grade was found; the higher the grade, the higher is the L/N ratio (r = 0.62, P = 0.001). Tc-99m (V) DMSA brain SPECT is more accurate compared to (1)H-MRS for the detection of tumor residual tissues or recurrence in glioma patients with previous radiotherapy. It allows early and non-invasive differentiation of residual tumor or recurrence from irradiation necrosis.

  10. Measurement of Resonant Frequencies and Modes of Freestanding Nanoparticle Monolayers

    NASA Astrophysics Data System (ADS)

    Kanjanaboos, Pongsakorn; Lin, Xiao-Min; Jaeger, Heinrich; Guest, Jeffrey

    2012-02-01

    We recently showed that freestanding membranes of ligated nanoparticles can be assembled in a one-step drying-mediated process [1]. These 10nm thin membranes can stretch over holes up to 100 microns in diameter and are supported by a substrate only along their outer edge, thereby freely suspending of the order of 100 million close-packed particles [2]. Previous work has focused on quasi-static mechanical properties [1-3]. Here we present the first investigation of the full dynamic response of freely suspended nanoparticle membranes, utilizing a high frequency laser interferometer with picometer sensitivity. This instrument allows us to rapidly measure the dynamical properties of freestanding nanoparticle monolayers for the first time including resonant frequencies, quality factors, and images of different modes.[4pt] [1] Klara E. Mueggenburg et al., ``Elastic membranes of close-packed nanoparticle arrays,'' Nature Materials 6, 656-660 (2007). [0pt] [2] Jinbo He et al., ``Fabrication and Mechanical properties of large-scale freestanding nanoparticle membranes,'' Small 6, 1449-1456 (2010).[0pt] [3] Pongsakorn Kanjanaboos et al., ``Strain Patterning and Direct Measurement of Poisson's Ratio in Nanoparticle Monolayer Sheets,'' Nano Letters 11, 2567-2571 (2011).

  11. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  12. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  13. Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy.

    PubMed

    Kim, So-Hyun; Cho, Somi K; Hyun, Sun-Hee; Park, Hae-Eun; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.

  14. (1)H(N), (13)C, and (15)N resonance assignments of the CDTb-interacting domain (CDTaBID) from the Clostridium difficile binary toxin catalytic component (CDTa, residues 1-221).

    PubMed

    Roth, Braden M; Varney, Kristen M; Rustandi, Richard R; Weber, David J

    2016-10-01

    Once considered a relatively harmless bacterium, Clostridium difficile has become a major concern for healthcare facilities, now the most commonly reported hospital-acquired pathogen. C. difficile infection (CDI) is usually contracted when the normal gut microbiome is compromised by antibiotic therapy, allowing the opportunistic pathogen to grow and produce its toxins. The severity of infection ranges from watery diarrhea and abdominal cramping to pseudomembranous colitis, sepsis, or death. The past decade has seen a marked increase in the frequency and severity of CDI among industrialized nations owing directly to the emergence of a highly virulent C. difficile strain, NAP1. Along with the large Clostridial toxins expressed by non-epidemic strains, C. difficile NAP1 produces a binary toxin, C. difficile transferase (CDT). As the name suggests, CDT is a two-component toxin comprised of an ADP-ribosyltransferase (ART) component (CDTa) and a cell-binding/translocation component (CDTb) that function to destabilize the host cytoskeleton by covalent modification of actin monomers. Central to the mechanism of binary toxin-induced pathogenicity is the formation of CDTa/CDTb complexes at the cell surface. From the perspective of CDTa, this interaction is mediated by the N-terminal domain (residues 1-215) and is spatially and functionally independent of ART activity, which is located in the C-terminal domain (residues 216-420). Here we report the (1)H(N), (13)C, and (15)N backbone resonance assignments of a 221 amino acid, ~26 kDa N-terminal CDTb-interacting domain (CDTaBID) construct by heteronuclear NMR spectroscopy. These NMR assignments represent the first component coordination domain for a family of Clostridium or Bacillus species harboring ART activity. Our assignments lay the foundation for detailed solution state characterization of structure-function relationships, toxin complex formation, and NMR-based drug discovery efforts.

  15. Method of shifting and fixing optical frequency of an optical resonator, and optical resonator made by same

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)

    2010-01-01

    A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.

  16. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control

    NASA Astrophysics Data System (ADS)

    Lee, Jungshin; Rhim, Jaewook

    2012-09-01

    Differential vibrating accelerometer (DVA) is a resonant-type sensor which detects the change in the resonant frequency in the presence of acceleration input, i.e. inertial loading. However, the resonant frequency of micromachined silicon resonators is sensitive to the temperature change as well as the input acceleration. Therefore, to design a high-precision vibrating accelerometer, the temperature sensitivity of the resonant frequency has to be predicted and compensated accurately. In this study, a temperature compensation method for resonant frequency is proposed which controls the electrostatic stiffness of the dual-ended tuning fork (DETF) using the temperature-dependent dc voltage between the parallel plate electrodes. To do this, the electromechanical model is derived first to predict the change in the electrostatic stiffness and the resonant frequency resulting from the dc voltage between the resonator and the electrodes. Next, the temperature sensitivity of the resonant frequency is modeled, estimated and compared with the measured values. Then it is shown that the resonant frequency of the DETF can be kept constant in the operating temperature range by applying the temperature-dependent driving voltage to the parallel plate electrodes. The proposed method is validated through experiment.

  17. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  18. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  19. High-frequency nano-optomechanical disk resonators in liquids.

    PubMed

    Gil-Santos, E; Baker, C; Nguyen, D T; Hease, W; Gomez, C; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  20. High-frequency nano-optomechanical disk resonators in liquids

    NASA Astrophysics Data System (ADS)

    Gil-Santos, E.; Baker, C.; Nguyen, D. T.; Hease, W.; Gomez, C.; Lemaître, A.; Ducci, S.; Leo, G.; Favero, I.

    2015-09-01

    Nano- and micromechanical resonators are the subject of research that aims to develop ultrasensitive mass sensors for spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits generally diminish in liquids because of an increased dissipation. The development of faster and lighter miniaturized devices would enable improved performances, provided the dissipation was controlled and novel techniques were available to drive and readout their minute displacement. Here we report a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine a mechanical motion at high frequencies (gigahertz and above) with an ultralow mass (picograms) and a moderate dissipation in liquids. We show that high-sensitivity optical measurements allow their Brownian vibrations to be resolved directly, even in the most-dissipative liquids. We investigate their interaction with liquids of arbitrary properties, and analyse measurements in light of new models. Nano-optomechanical disks emerge as probes of rheological information of unprecedented sensitivity and speed, which opens up applications in sensing and fundamental science.

  1. Exploring the Frequency Stability Limits of Whispering Gallery Mode Resonators for Metrological Applications

    NASA Technical Reports Server (NTRS)

    Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan

    2012-01-01

    Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.

  2. Increased frequency shifts in high aspect ratio terahertz split ring resonators

    NASA Astrophysics Data System (ADS)

    Chiam, Sher-Yi; Singh, Ranjan; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili; Bettiol, Andrew A.

    2009-02-01

    The resonance of split ring resonators (SRRs) is known to shift upon the addition of a dielectric overlayer, a feature useful for practical applications. Here, we demonstrate that the frequency shift is enlarged by increasing the SRR height, thereby potentially enhancing sensitivity and tunability. We fabricated SRRs resonating at terahertz frequencies using a focused proton beam. This resulted in SRRs nearly 10 μm high, with smooth and vertical sidewalls. Terahertz time domain spectroscopy was used for characterization. Upon applying a dielectric overlayer (ɛ =2.7), a resonance located at 640 GHz shifted by nearly 120 GHz. Simulations also indicate a widening frequency shift as SRR height increases.

  3. New structural information on a humic acid from two-dimensional 1H-13C correlation solid-state nuclear magnetic resonance.

    PubMed

    Mao, J D; Xing, B; Schmidt-Rohr, K

    2001-05-15

    New information on the chemical structure of a peat humic acid has been obtained using a series of two-dimensional 1H-13C heteronuclear correlation solid-state NMR (HETCOR) experiments with different contact times and with spectral editing by dipolar dephasing and 13C transverse relaxation filtering. Carbon-bonded methyl groups (C-CH3) are found to be near both aliphatic and O-alkyl but not aromatic groups. The spectra prove that most OCH3 groups are connected directly with the aromatic rings, as is typical in lignin. As a result, about one-third of the aromatic C-O groups is not phenolic C-OH but C-OCH3. Both protonated and unprotonated anomeric O-C-O carbons are identified in the one- and two-dimensional spectra. COO groups are found predominantly in OCHn-COO environments, but some are also bonded to aromatic rings and aliphatic groups. All models of humic acids in the literature lack at least some of the features observed here. Compositional heterogeneity was studied by introducing 1H spin diffusion into the HETCOR experiment. Comparison with data for a synthetic polymer, polycarbonate, indicates that the separation between O-alkyl and aromatic groups in the humic acid is less than 1.5 nm. However, transverse 13C relaxation filtering under 1H decoupling reveals heterogeneity on a nanometer scale, with the slow-relaxing component being rich in lignin-like aromatic-C-O-CH3 moieties and poor in COO groups.

  4. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  5. Successive Resonances for Ion Ejection at Arbitrary Frequencies in an Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    The use of successive resonances for ion ejection is demonstrated here as a method of scanning quadrupole ion traps with improvement in both resolution and sensitivity compared with single frequency resonance ejection. The conventional single frequency resonance ejection waveform is replaced with a dual-frequency waveform. The two included frequencies are spaced very closely and their relative amplitudes are adjusted so that the first frequency that ions encounter excites them to higher amplitudes where space charge effects are less prominent, thereby giving faster and more efficient ejection when the ions come into resonance with the second frequency. The method is applicable at any arbitrary frequency, unlike double and triple resonance methods. However, like double and triple resonance ejection, ejection using successive resonances requires the rf and AC waveforms to be phase-locked in order to retain mass accuracy and mass precision. The improved performance is seen in mass spectra acquired by rf amplitude scans (resonance ejection) as well as by secular frequency scans.

  6. In vitro quantitative ((1))H and ((19))F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatin™ in Lescol® XL tablets in a USP-IV dissolution cell.

    PubMed

    Zhang, Qilei; Gladden, Lynn; Avalle, Paolo; Mantle, Michael

    2011-12-20

    Swellable polymeric matrices are key systems in the controlled drug release area. Currently, the vast majority of research is still focused on polymer swelling dynamics. This study represents the first quantitative multi-nuclear (((1))H and ((19))F) fast magnetic resonance imaging study of the complete dissolution process of a commercial (Lescol® XL) tablet, whose formulation is based on the hydroxypropyl methylcellulose (HPMC) polymer under in vitro conditions in a standard USP-IV (United States Pharmacopeia apparatus IV) flow-through cell that is incorporated into high field superconducting magnetic resonance spectrometer. Quantitative RARE ((1))H magnetic resonance imaging (MRI) and ((19))F nuclear magnetic resonance (NMR) spectroscopy and imaging methods have been used to give information on: (i) dissolution media uptake and hydrodynamics; (ii) active pharmaceutical ingredient (API) mobilisation and dissolution; (iii) matrix swelling and dissolution and (iv) media activity within the swelling matrix. In order to better reflect the in vivo conditions, the bio-relevant media Simulated Gastric Fluid (SGF) and Fasted State Simulated Intestinal Fluid (FaSSIF) were used. A newly developed quantitative ultra-fast MRI technique was applied and the results clearly show the transport dynamics of media penetration and hydrodynamics along with the polymer swelling processes. The drug dissolution and mobility inside the gel matrix was characterised, in parallel to the ((1))H measurements, by ((19))F NMR spectroscopy and MRI, and the drug release profile in the bulk solution was recorded offline by UV spectrometer. We found that NMR spectroscopy and 1D-MRI can be uniquely used to monitor the drug dissolution/mobilisation process within the gel layer, and the results from ((19))F NMR spectra indicate that in the gel layer, the physical mobility of the drug changes from "dissolved immobilised drug" to "dissolved mobilised drug".

  7. Resonant frequency does not predict high-frequency chest compression settings that maximize airflow or volume.

    PubMed

    Luthy, Sarah K; Marinkovic, Aleksandar; Weiner, Daniel J

    2011-06-01

    High-frequency chest compression (HFCC) is a therapy for cystic fibrosis (CF). We hypothesized that the resonant frequency (f(res)), as measured by impulse oscillometry, could be used to determine what HFCC vest settings produce maximal airflow or volume in pediatric CF patients. In 45 subjects, we studied: f(res), HFCC vest frequencies that subjects used (f(used)), and the HFCC vest frequencies that generated the greatest volume (f(vol)) and airflow (f(flow)) changes as measured by pneumotachometer. Median f(used) for 32 subjects was 14 Hz (range, 6-30). The rank order of the three most common f(used) was 15 Hz (28%) and 12 Hz (21%); three frequencies tied for third: 10, 11, and 14 Hz (5% each). Median f(res) for 43 subjects was 20.30 Hz (range, 7.85-33.65). Nineteen subjects underwent vest-tuning to determine f(vol) and f(flow). Median f(vol) was 8 Hz (range, 6-30). The rank order of the three most common f(vol) was: 8 Hz (42%), 6 Hz (32%), and 10 Hz (21%). Median f(flow) was 26 Hz (range, 8-30). The rank order of the three most common f(flow) was: 30 Hz (26%) and 28 Hz (21%); three frequencies tied for third: 8, 14, and 18 Hz (11% each). There was no correlation between f(used) and f(flow) (r(2)  = -0.12) or f(vol) (r(2) = 0.031). There was no correlation between f(res) and f(flow) (r(2)  = 0.19) or f(vol) (r(2) = 0.023). Multivariable analysis showed no independent variables were predictive of f(flow) or f(vol). Vest-tuning may be required to optimize clinical utility of HFCC. Multiple HFCC frequencies may need to be used to incorporate f(flow) and f(vol).

  8. FTIR and 1H MAS NMR investigations on the correlation between the frequency of stretching vibration and the chemical shift of surface OH groups of solids

    NASA Astrophysics Data System (ADS)

    Brunner, Eike; Karge, H. G.; Pfeifer, H.

    1992-03-01

    The study of surface hydroxyl groups of solids, especially of zeolites, belongs to the 'classical' topics of IR spectroscopy since physico-chemical information may be derived from the wavenumber (nu) OH of the stretching vibration of the different hydroxyls. On the other hand, the last decade has seen the development of high resolution solid-state NMR spectroscopy and through the use of the so-called magic-angle-spinning technique (MAS) the signals of different hydroxyl species can be resolved in the 1H NMR spectra of solids. The chemical shift (delta) H describing the position of these lines may be used as well as (nu) OH to characterize quantitatively the strength of acidity of surface OH groups of solids. In a first comparison of (nu) OH with (delta) H for several types of surface OH groups, a linear correlation between them could be found. The aim of this paper was to prove the validity of this correlation for a wide variety of hydroxyls. The IR measurements were carried out on a Perkin-Elmer FTIR spectrometer 1800 at the Fritz Haber Institute of the Max Planck Society, Berlin, and the 1H MAS NMR spectra were recorded on a Bruker MSL- 300 at the University of Leipzig.

  9. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies.

    PubMed

    Gutruf, Philipp; Zou, Chengjun; Withayachumnankul, Withawat; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2016-01-26

    Devices that manipulate light represent the future of information processing. Flat optics and structures with subwavelength periodic features (metasurfaces) provide compact and efficient solutions. The key bottleneck is efficiency, and replacing metallic resonators with dielectric resonators has been shown to significantly enhance performance. To extend the functionalities of dielectric metasurfaces to real-world optical applications, the ability to tune their properties becomes important. In this article, we present a mechanically tunable all-dielectric metasurface. This is composed of an array of dielectric resonators embedded in an elastomeric matrix. The optical response of the structure under a uniaxial strain is analyzed by mechanical-electromagnetic co-simulations. It is experimentally demonstrated that the metasurface exhibits remarkable resonance shifts. Analysis using a Lagrangian model reveals that strain modulates the near-field mutual interaction between resonant dielectric elements. The ability to control and alter inter-resonator coupling will position dielectric metasurfaces as functional elements of reconfigurable optical devices.

  10. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  11. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    PubMed

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups.

  12. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    PubMed

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. PMID:27638407

  13. 1H, 13C and 15N resonance assignments and secondary structure analysis of translation initiation factor 1 from Pseudomonas aeruginosa

    PubMed Central

    Bernal, Alejandra; Hu, Yanmei; Palmer, Stephanie O.; Silva, Aaron; Bullard, James; Zhang, Yonghong

    2016-01-01

    Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a primary cause of infection in humans. P. aeruginosa can acquire resistance against multiple groups of antimicrobial agents, including β-lactams, aminoglycosides and fluoroquinolones, and multidrug resistance is increasing in this organism which makes treatment of the infections difficult and expensive. This has led to the unmet need for discovery of new compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Translation initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that acts to establish the 30S initiation complex to initiate translation during protein biosynthesis, and its structure is unknown. Here we report the 1H, 13C and 15N chemical shift assignments of Pa-IF1 as the basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified five β-strands with an unusually extended β-strand at the C-terminal end of the protein and one short α-helix arranged in the sequential order β1–β2–β3–α1–β4–β5. This is further supported by 15N–{1H} hetero NOEs. These secondary structure elements suggest the Pa-IF1 adopts the typical β-barrel structure and is composed of an oligomer-binding motif. PMID:26983940

  14. A novel probe head for high-field, high-frequency electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Annino, G.; Cassettari, M.; Longo, I.; Martinelli, M.; Van Bentum, P. J. M.; Van der Horst, E.

    1999-03-01

    A probe head especially useful for electron paramagnetic resonance (EPR) spectrometers working at high field—high frequency is presented. The probe head is based on the whispering gallery mode dielectric resonators that proved very effective in the ultrahigh frequency range. The excitation network uses a properly shaped dielectric waveguide sharing its external field pattern with the field of the resonators. Very simple resonators made with polyethylene in both single and doubly stacked disk configurations are used. The experimental characterization by a submillimeter network analyzer shows for the resonances studied in a wide range of frequencies up to ≈400 GHz high loaded merit factor QL values and good coupling factors. Resonators also maintain their general characteristics when large quantities of low loss samples for EPR measurements are properly inserted. Preliminary EPR spectra of diphenylpicrylhyldrazyl at 7 and 10 T obtained with the novel apparatus are finally presented.

  15. Investigation of the neuroprotective effects of bee-venom acupuncture in a mouse model of Parkinson's disease by using immunohistochemistry and In-vivo 1H magnetic resonance spectroscopy at 9.4 T

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Lee, Do-Wan; Kim, Hyun-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2013-01-01

    Neuroprotective therapeutics slows down the degeneration process in animal models of Parkinson's disease (PD). The neuronal survival in PD animal models is often measured by using immunohistochemistry. However, dynamic changes in the pathology of the brain cannot be explored with this technique. Application of in-vivo 1H magnetic resonance spectroscopy (1H MRS) can cover this shortcoming, as these techniques are non-invasive and can be repeated over time in the same animal. Thus, the sensitivity of both techniques to measure changes in the PD pathology was explored in an experiment studying the neuroprotective effects of the vigilance enhancer bee-venom (BV) in a mouse model of PD. The mice were pre-treated with 0.02-ml BV administered to the acupuncture point GB34 (Yangneungcheon) once every 3 days for 2 weeks. Three groups were classified as control, MPTP-intoxicated PD model and BV-treated mice. Outer volume suppression combined with the ultra-short echo-time STEAM (TE = 2.2 ms, TM = 20 ms, TR = 5000 ms) was used for localized in-vivo 1H MRS. Based on the 1H MRS spectral analysis, substantial changes of the neurochemical profiles were evaluated in the three investigated groups. In particular, the glutamate complex (Glx)/creatine (Cr) ratio (7.72 ± 1.25) in the PD group was significantly increased compared to that in the control group (3.93 ± 2.21, P = 0.001). Compared to the baseline values, the Glx/Cr ratio of the BV-treated group was significantly decreased 2 weeks after MPTP intoxication (one-way ANOVA, p < 0.05). In conclusion, the present study demonstrated that neurochemical alterations occurred in the three groups and that the neuroprotective effects of the BV acupuncture in a mouse model of PD could be quantified by using immunohistochemistry and 1H MRS.

  16. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  17. An Improved Performance Frequency Estimation Algorithm for Passive Wireless SAW Resonant Sensors

    PubMed Central

    Liu, Boquan; Zhang, Chenrui; Ji, Xiaojun; Chen, Jing; Han, Tao

    2014-01-01

    Passive wireless surface acoustic wave (SAW) resonant sensors are suitable for applications in harsh environments. The traditional SAW resonant sensor system requires, however, Fourier transformation (FT) which has a resolution restriction and decreases the accuracy. In order to improve the accuracy and resolution of the measurement, the singular value decomposition (SVD)-based frequency estimation algorithm is applied for wireless SAW resonant sensor responses, which is a combination of a single tone undamped and damped sinusoid signal with the same frequency. Compared with the FT algorithm, the accuracy and the resolution of the method used in the self-developed wireless SAW resonant sensor system are validated. PMID:25429410

  18. Resonance Frequency Analysis for Surface-Coupled AFM Cantilever in Liquids

    SciTech Connect

    Mirman, B; Kalinin, Sergei V

    2008-01-01

    Shifts in the resonance frequencies of surface-coupled atomic force microscope (AFM) probes are used as the basis for the detection mechanisms in a number of scanning probe microscopy techniques including atomic force acoustic microscopy (AFAM), force modulation microscopy, and resonance enhanced piezoresponse force microscopy (PFM). Here, we analyze resonance characteristics for AFM cantilever coupled to surface in liquid environment, and derive approximate expressions for resonant frequencies as a function of vertical and lateral spring constant of the tip-surface junction. This analysis provides a simplified framework for the interpretation of AFAM and PFM data in ambient, liquid, and vacuum environments.

  19. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor. PMID:26547437

  20. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by sup 1 H nuclear magnetic resonance: Correlation between activities and membrane-bound conformations

    SciTech Connect

    Milon, Alain; Miyazawa, Tatsuo; Higashijima, Tsutomu )

    1990-01-09

    Leu-enkephalin, (D-Ala{sup 2})Leu-enkephalin, and (D-Ala{sup 2})Leu-enkephalinamide (agonists) and (L-Ala{sup 2})Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of {sup 1}H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II{prime} {beta}-turn around Gly{sup 3}-Phe and a {gamma}-turn around Gly{sup 2} (or D-Ala{sup 2}). The inactive analogue, (L-Ala{sup 2})Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala{sup 2} analogue. According to these results, (L-Ala{sup 2})Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.

  1. Investigation of Proton Dynamics in a (CH3)4 NCdCl3 Single Crystal by using 1H Nuclear Magnetic Resonance Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Moohee; Sim, Jung Seok; Kang, Kihyeok; Hyoun Kim, Ho; Kim, Ae Ran

    2013-03-01

    (CH3)4 NCdCl3(TMCC) is reported to exhibit two first-order structural phase transitions. The crystal has a hexagonal structure in phase I at room temperature and then changes to a monoclinic one in phase II below 118 K. Finally a ferro-elastic monoclinic phase III appears below 104 K. The a- and c-axes of TMMC were found by using X-ray diffraction at room temperature. 1H NMR measurements of spectrum, spin-lattice relaxation time T1 and rotating-frame relaxation time T1ρ were performed at 4.8 T parallel or perpendicular to the c-axis from 300 K down to 65 K. The spectrum shows no significant changes at both transition temperatures. T1 and T1ρ monotonically decrease at low temperature and then show an abrupt decrease around 110 K. As the temperature decreases further, T1 shows a minimum at 100 K and becomes longer whereas T1ρ continuously decreases. From these data, the proton dynamical behavior is analyzed and identified.

  2. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  3. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  4. Low-frequency tunable acoustic absorber based on split tube resonators

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxiao; Fu, Caixing; Li, Xin; Meng, Yan; Gao, Yibo; Tian, Jingxuan; Wang, Li; Huang, Yingzhou; Yang, Zhiyu; Wen, Weijia

    2016-07-01

    We demonstrate a high-efficiency tunable acoustic absorber for low frequencies (<500 Hz) with subwavelength thickness. The acoustic absorber is based on split tube resonators and could reach high-efficiency absorption at tunable resonance frequency with wavelength in air at least 30 times larger than its total thickness in simulations and experiments. The resonance frequency and high-efficiency absorption of the absorber are robust under oblique incidence even at large angles. The absorber could have potential applications for acoustic engineering due to its high structural stability, ease of fabrication, subwavelength thickness, and robust high-efficiency.

  5. Amide proton exchange in the. cap alpha. -amylase polypeptide inhibitor tendamistat studied by two-dimensional /sup 1/H nuclear magnetic resonance

    SciTech Connect

    Wang, O.; Kline, A.D.; Wuethrich, K.

    1987-10-06

    The individual amide proton exchange rates in Tendamistat at pH 3.0 and 50/sup 0/C were measured by using two-dimensional ..cap alpha..H nuclear magnetic resonance. Overall, it was found that the distribution of exchange rates along the sequence is dominated by the interstrand hydrogen bonds of the ..beta..-sheet structures. The slowly exchanging protons in the core of the two ..beta..-sheets were shown to exchange via an EX2 mechanism. Further analysis of the data indicates that different large-scale structure fluctuations are responsible for the exchange from the two ..beta..-sheets, even though the three-dimensional structure of Tendamistat appears to consist of a single structural domain.

  6. 360-MHz 1H nuclear-magnetic-resonance spectroscopy of sialyl-oligosaccharides from patients with sialidosis (mucolipidosis I and II).

    PubMed

    Dorland, L; Haverkamp, J; Viliegenthart, J F; Strecker, G; Michalski, J C; Fournet, B; Spik, G; Montreuil, J

    1978-06-15

    360-MHz proton nuclear magnetic resonance spectra were recorded of 10 sialyl-oligosaccharides isolated from urine of sialidosis patients. Their structures are related to the complex asparagine-linked glycan chains of glycoproteins. By correlation of these spectra and comparison with spectra of reference glycopeptides and sialyl-lactose isomers it was possible to assign all signals belonging to anomeric, mannose H-2, sialic acid H-3 and N-acetyl protons. The number of the consituting monosaccharide residues of the oligomers can be obtained by integration of the above-mentioned signals. The chemical shifts of the anomeric and mannose H-2 protons give information about the type of glycan structure (mono-, bi-, triantennary) and the presence of terminal sialic acid at each of the antennas. The chemical shifts of sialic acid H-3 protons are typical for sialic acid residues in 2 leads to 3 or 2 leads to 6 linkage to galactose.

  7. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    PubMed Central

    2012-01-01

    Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563

  8. Secondary structure and side-chain sup 1 H and sup 13 C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy

    SciTech Connect

    Ikura, Mitsuhiko; Spera, S.; Barbato, G.; Kay, L.E.; Bax, A. ); Krinks, M. )

    1991-09-24

    Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with {sup 15}N and {sup 13}C to a level of > 95%. Nearly complete {sup 1}H and {sup 13}C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and {sup 3}J{sub HNH{alpha}} coupling constants. A clear correlation between the {sup 13}C{alpha} chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM which consists of two pairs of a helix-loop-helix motif in each globular domain. The existence of a short antiparallel {beta}-sheet between the two loops in each domain has been confirmed. The eight {alpha}-helix segments identified from the NMR data are located at Glu-6 to Phe-19, thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long central helix from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.

  9. (1)H-(13)C-(29)Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls.

    PubMed

    Wisser, Dorothea; Brückner, Stephan I; Wisser, Florian M; Althoff-Ospelt, Gerhard; Getzschmann, Jürgen; Kaskel, Stefan; Brunner, Eike

    2015-01-01

    Triple resonance solid-state NMR experiments using the spin combination (1)H-(13)C-(29)Si are still rarely found in the literature. This is due to the low natural abundance of the two heteronuclei. Such experiments are, however, increasingly important to study hybrid materials such as biosilica and others. A suitable model substance, ideally labeled with both (13)C and (29)Si, is thus very useful to optimize the experiments before applying them to studies of more complex samples such as biosilica. Tetraphenoxysilane could be synthesized in an easy, two-step synthesis including double isotope labelling. Using tetraphenoxysilane, we established a (1)H-(13)C-(29)Si double CP-based HETCOR experiment and applied it to diatom biosilica from the diatom species Thalassiosira pseudonana. Furthermore, we carried out (1)H-(13)C{(29)Si} CP-REDOR experiments in order to estimate the distance between the organic matrix and the biosilica. Our experiments on diatom biosilica strongly indicate a close contact between polyamine-containing parts of the organic matrix and the silica. This corroborates the assumption that the organic matrix is essential for the control of the cell wall formation.

  10. (13)C-(13)c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    PubMed

    Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K

    2013-01-01

    Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  11. Resonance frequency control for the KOMAC 100-MeV drift tube linac

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2015-02-01

    A 100-MeV proton accelerator has been developed, and the operation and beam service started at the Korea Multi-purpose Accelerator Complex (KOMAC) in July 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio-frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The resonance frequencies of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), installed at every DTL tank. Until now, the RCCS has been operating in the constant temperature mode. If the system is to be stabilized better, the RCCS must be operated in the frequency control mode. For this purpose, studies, including the relation between the resonance frequency and RCCS operation temperature, were done under various conditions. In this paper, the preparations for the frequency control loop of the RCCS are described.

  12. Resonant frequencies of irregularly shaped microstrip antennas using method of moments

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Shively, David G.; Cockrell, C. R.

    1993-01-01

    This paper describes an application of the method of moments to determine resonant frequencies of irregularly shaped microstrip patches embedded in a grounded dielectric slab. For analysis, the microstrip patch is assumed to be excited by a linearly polarized plane wave that is normal to the patch. The surface-current density that is induced on the patch because of the incident field is expressed in terms of subdomain functions by dividing the patch into identical rectangular subdomains. The amplitudes of the subdomain functions, as a function of frequency, are determined using the electric-field integral equation (EFIE) approach in conjunction with the method of moments. The resonant frequencies of the patch are then obtained by selecting the frequency at which the amplitude of the surface-current density is real. The resonant frequencies of the equilateral triangular and other nonrectangular patches are computed using the present technique, and these frequencies are compared with measurements and other independent calculations.

  13. Exploiting nonlinear amplitude-frequency dependence for temperature compensation in silicon micromechanical resonators

    NASA Astrophysics Data System (ADS)

    Defoort, M.; Taheri-Tehrani, P.; Horsley, D. A.

    2016-10-01

    Resonators used in frequency-reference oscillators must maintain a stable frequency output even when subjected to temperature variations. The traditional solution is to construct the resonator from a material with a low temperature coefficient, such as AT-cut quartz, which can achieve absolute frequency stability on the order of ±25 ppm over commercial temperature ranges. In comparison, Si microresonators suffer from the disadvantage that silicon's temperature coefficient of frequency (TCF) is approximately two orders of magnitude greater than that of AT-cut quartz. In this paper, we present an in situ passive temperature compensation scheme for Si microresonators based on nonlinear amplitude-frequency coupling which reduces the TCF to a level comparable with that of an AT-quartz resonator. The implementation of this passive technique is generic to a variety of Si microresonators and can be applied to a number of frequency control and timing applications.

  14. Three-frequency parametric amplification in magneto-inductive ring resonators

    NASA Astrophysics Data System (ADS)

    Syms, R. R. A.; Solymar, L.; Young, I. R.

    2008-09-01

    Parametric amplification of magneto-inductive (MI) waves propagating in magnetically coupled chains of nonlinear L- C resonators is studied. Analysis is first presented for a three-frequency travelling wave scheme in which the signal, idler and pump all propagate as MI waves. The effect of de-coupling the idlers is then considered and it is shown that this configuration relaxes the standard phase matching condition. Confirmation of the theory is provided using low-frequency PCB unit cells containing varactor diodes. The cells are characterised individually and then arranged as a 16-element ring resonator. Frequency matching and selective amplification of the primary resonance is demonstrated. The primary resonance can be excited using the field of a rotating magnetic dipole, and an application in magnetic resonance imaging is described.

  15. MEMS switching of contour-mode aluminum nitride resonators for switchable and reconfigurable radio frequency filters

    NASA Astrophysics Data System (ADS)

    Nordquist, Christopher D.; Branch, Darren W.; Pluym, Tammy; Choi, Sukwon; Nguyen, Janet H.; Grine, Alejandro; Dyck, Christopher W.; Scott, Sean M.; Sing, Molly N.; Olsson, Roy H., III

    2016-10-01

    Switching of transducer coupling in aluminum nitride contour-mode resonators provides an enabling technology for future tunable and reconfigurable filters for multi-function RF systems. By using microelectromechanical capacitive switches to realize the transducer electrode fingers, coupling between the metal electrode finger and the piezoelectric material is modulated to change the response of the device. On/off switched width extensional resonators with an area of  <0.2 mm2 demonstrate a Q of 2000, K 2 of 0.72, and  >24 dB switching ratio at a resonator center frequency of 635 MHz. Other device examples include a 63 MHz resonator with switchable impedance and a 470 MHz resonator with 127 kHz of fine center frequency tuning accomplished by mass loading of the resonator with the MEMS switches.

  16. 1H, 13C and 15N resonance assignments and secondary structure of the human PHF6-ePHD1 domain.

    PubMed

    Bao, Yun; Liu, Zhonghua; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu

    2016-04-01

    The plant homeodomain (PHD) finger 6 (PHF6) is a multidomain protein that comprises four nuclear localization signals and two extended PHD zinc finger domains (ePHD), suggesting that the PHD domains of PHF6 may have different functions compared with other PHD domains. And the PHF6 was first identified as the gene mutated associated with Börjeson-Forssman-Lehmann syndrome, an X-linked mental retardation disorder. The mutant PHF6 is also associated with T cell acute lymphoblastic leukemia and acute myeloid leukemia. But the molecular mechanism between these diseases and PHF6 are still unclear. In addition, the first conserved ePHD (ePHD1) of PHF6 is involved in its nucleolus localization, directly interacts with upstream binding factor (UBF) and suppresses rRNA transcription. Here we show the backbone resonance and side chain assignments of the PHF6-ePHD1 domain from human by heteronuclear multidimensional NMR spectroscopy and its secondary structure as predicted by the TALOS+. These assignments of PHF6-ePHD1 domain throw a light on the further structure determination, dynamics and interaction with UBF.

  17. The Role of High-Resolution Magic Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy for Predicting the Invasive Component in Patients with Ductal Carcinoma In Situ Diagnosed on Preoperative Biopsy.

    PubMed

    Chae, Eun Young; Shin, Hee Jung; Kim, Suhkmann; Baek, Hyeon-Man; Yoon, Dahye; Kim, Siwon; Shim, Ye Eun; Kim, Hak Hee; Cha, Joo Hee; Choi, Woo Jung; Lee, Jeong Hyun; Shin, Ji Hoon; Lee, Hee Jin; Gong, Gyungyub

    2016-01-01

    The purpose of this study was to evaluate the role of high-resolution magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy in patients with ductal carcinoma in situ (DCIS) diagnosed on preoperative biopsy. We investigated whether the metabolic profiling of tissue samples using HR-MAS 1H NMR spectroscopy could be used to distinguish between DCIS lesions with or without an invasive component. Our institutional review board approved this combined retrospective and prospective study. Tissue samples were collected from 30 patients with pure DCIS and from 30 with DCIS accompanying invasive carcinoma. All patients were diagnosed with DCIS by preoperative core-needle biopsy and underwent surgical resection. The metabolic profiling of tissue samples was performed by HR-MAS 1H NMR spectroscopy. All observable metabolite signals were identified and quantified in all tissue samples. Metabolite intensity normalized by total spectral intensities was compared according to the tumor type using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). By univariate analysis, the metabolite concentrations of choline-containing compounds obtained with HR-MAS 1H NMR spectroscopy did not differ significantly between the pure DCIS and DCIS accompanying invasive carcinoma groups. However, the GPC/PC ratio was higher in the pure DCIS group than in the DCIS accompanying invasive carcinoma group (p = 0.004, Bonferroni-corrected p = 0.064), as well as the concentration of myo-inositol and succinate. By multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles could clearly discriminate between pure DCIS and DCIS accompanying invasive carcinoma. Our preliminary results suggest that HR-MAS MR metabolomics on breast tissue may be able to distinguish between DCIS lesions with or without an invasive component. PMID:27560937

  18. The Role of High-Resolution Magic Angle Spinning 1H Nuclear Magnetic Resonance Spectroscopy for Predicting the Invasive Component in Patients with Ductal Carcinoma In Situ Diagnosed on Preoperative Biopsy

    PubMed Central

    Chae, Eun Young; Kim, Suhkmann; Baek, Hyeon-Man; Yoon, Dahye; Kim, Siwon; Shim, Ye Eun; Kim, Hak Hee; Cha, Joo Hee; Choi, Woo Jung; Lee, Jeong Hyun; Shin, Ji Hoon; Lee, Hee Jin; Gong, Gyungyub

    2016-01-01

    The purpose of this study was to evaluate the role of high-resolution magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy in patients with ductal carcinoma in situ (DCIS) diagnosed on preoperative biopsy. We investigated whether the metabolic profiling of tissue samples using HR-MAS 1H NMR spectroscopy could be used to distinguish between DCIS lesions with or without an invasive component. Our institutional review board approved this combined retrospective and prospective study. Tissue samples were collected from 30 patients with pure DCIS and from 30 with DCIS accompanying invasive carcinoma. All patients were diagnosed with DCIS by preoperative core-needle biopsy and underwent surgical resection. The metabolic profiling of tissue samples was performed by HR-MAS 1H NMR spectroscopy. All observable metabolite signals were identified and quantified in all tissue samples. Metabolite intensity normalized by total spectral intensities was compared according to the tumor type using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). By univariate analysis, the metabolite concentrations of choline-containing compounds obtained with HR-MAS 1H NMR spectroscopy did not differ significantly between the pure DCIS and DCIS accompanying invasive carcinoma groups. However, the GPC/PC ratio was higher in the pure DCIS group than in the DCIS accompanying invasive carcinoma group (p = 0.004, Bonferroni-corrected p = 0.064), as well as the concentration of myo-inositol and succinate. By multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles could clearly discriminate between pure DCIS and DCIS accompanying invasive carcinoma. Our preliminary results suggest that HR-MAS MR metabolomics on breast tissue may be able to distinguish between DCIS lesions with or without an invasive component. PMID:27560937

  19. Film resonance on acoustic wave devices: the roles of frequency and contacting fluid.

    PubMed

    Lagier, C M; Efimov, I; Hillman, A R

    2005-01-01

    The dynamics of composite films of polypyrrole and sodium poly(styrenesulfonate) were studied by means of the electrochemical quartz crystal microbalance. Admittance spectra recorded after successive cycles of electrodeposition showed dramatic changes, which were interpreted in terms of acoustic resonance of the film. Reports of this phenomenon are rare and unquantified, presenting a unique opportunity for the first test of a recently reported theoretical model. The model, valid at frequencies in the vicinity of film resonance, is represented in terms of an equivalent electrical circuit with parallel LCR elements in the motional arm of the resonator. Since it was developed for viscoelastic films exposed to a vacuum, this provides an opportunity to test the importance of the fluid necessarily present in in situ electrochemical experiments. Measurements at the fundamental frequency and at higher harmonics reveal the sensitivity of film resonance effects to frequency and provide insights into film dynamics through the variation of shear moduli with time scale (frequency).

  20. Surface plasmon optical antennae in the infrared region with high resonant efficiency and frequency selectivity.

    PubMed

    Ueno, Kosei; Sun, Quan; Mino, Masahiro; Itoh, Takumi; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-08-01

    Infrared light has received attention for sensor applications, including fingerprint spectroscopy, in the bioengineering and security fields. Surface plasmon physics enables the operation of a light harvesting optical antenna. Gold nanochains exhibit localized surface plasmon resonance (LSPR) in the infrared region with high frequency selectivity. However, a feasible design for optical antennae with a higher resonant efficiency and frequency selectivity as a function of structural design and periodicity is still unknown. In the present study, we investigated the relationship between the resonant efficiency and frequency selectivity as a function of the structural design of gold nanochains and explored structural periodicity for obtaining highly frequency-selective optical antennae. An optical antenna design with higher resonant efficiency is proposed on the basis of its efficient interaction with non-polarized light. PMID:27505741

  1. Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator.

    PubMed

    My, Thu-Hien; Drag, Cyril; Bretenaker, Fabien

    2008-07-01

    A widely tunable continuous intracavity-frequency-doubled singly resonant optical parametric oscillator based on MgO-doped periodically poled stoichiometric lithium tantalate crystal is described. The idler radiation resonating in the cavity is frequency doubled by an intracavity BBO crystal. Pumped in the green, this system can provide up to 485 mW of single-frequency orange radiation. The system is continuously temperature tunable between 1170 and 1355 nm for the idler, 876 and 975 nm for the signal, and between 585 and 678 nm for the doubled idler. The free-running power and frequency stability of the system have been observed to be better than those for a single-mode dye laser.

  2. Effects of size, shape, and frequency on the antiferromagnetic resonance linewidth of MnF

    NASA Technical Reports Server (NTRS)

    Obrien, K. C.

    1973-01-01

    The research concerning the properties and application of solid state materials at submillimeter frequencies is summarized. Work reported includes: far infrared Fourier spectroscopy; studies of the antiferromagnetic resonance line in MnF2 at millimeter wavelengths; numerical solution of the equations of motion of a general two-sublattice antiferromagnet; study of antiferromagnetic resonance line in NiO powder; and resonance investigations of several indium thisospinels at millimeter wavelengths.

  3. An acoustic dual filter in the audio frequencies with two local resonant systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-qun; Zhang, Hui; Zhang, Shu-yi; Fan, Li

    2014-08-01

    We report an acoustic dual filter to realize the sound regulation in the audio frequency range, in which resonant vibrations of two membrane-air and metal-elastomer systems generate two sound transmission peaks and a sound blocking below 3000 Hz. The local vibrational profiles manifest that the transmission peak at lower frequency is mainly dependent on the resonant vibration of the membrane-air system, and the coupling vibrations of two systems generate the blocking frequency and transmission peak at higher frequency. Importantly, two transmission peaks can be controlled independently. It is feasible to realize the acoustic device in sound shield and dual filters.

  4. Magnetically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Davis, J. Kenneth; Thundat, Thomas G.; Wachter, Eric A.

    2001-01-01

    Methods and apparatus for detecting particular frequencies of vibration utilize a magnetically-tunable beam element having a stress-sensitive coating and means for providing magnetic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the magnetically-tunable beam element to the vibration to which the beam is exposed whether or not a particular frequency or frequencies of vibration are detected.

  5. Electrostatically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.; Davis, J. Kenneth

    2001-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize an electrostatically-tunable beam element having a stress-sensitive coating and means for providing electrostatic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the electrostatically-tunable beam element to the acoustical vibration to which the beam is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  6. THz-range generation frequency growth in semiconductor superlattice coupled to external high-quality resonator

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Maksimenko, Vladimir A.; Khramova, Marina V.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-03-01

    We investigate effects of a linear resonator on spatial electron dynamics in semiconductor superlattice. We have shown that coupling the external resonant system to superlattice leads to occurrence of the additional area of negative differential conductance on the current-voltage characteristic, which does not occur in autonomous system. Furthermore, this region shows great increase of generation frequency, that contains practical interest.

  7. Beta-hairpin formation in aqueous solution and in the presence of trifluoroethanol: a (1)H and (13)C nuclear magnetic resonance conformational study of designed peptides.

    PubMed

    Santiveri, Clara M; Pantoja-Uceda, David; Rico, Manuel; Jiménez, M Angeles

    2005-10-15

    In order to check our current knowledge on the principles involved in beta-hairpin formation, we have modified the sequence of a 3:5 beta-hairpin forming peptide with two different purposes, first to increase the stability of the formed 3:5 beta-hairpin, and second to convert the 3:5 beta-hairpin into a 2:2 beta-hairpin. The conformational behavior of the designed peptides was investigated in aqueous solution and in 30% trifluoroethanol (TFE) by analysis of the following nuclear magnetic resonance (NMR) parameters: nuclear Overhauser effect (NOE) data, and C(alpha)H, (13)C(alpha), and (13)C(beta) conformational shifts. From the differences in the ability to adopt beta-hairpin structures in these peptides, we have arrived to the following conclusions: (i) beta-Hairpin population increases with the statistical propensity of residues to occupy each turn position. (ii) The loop length, and in turn, the beta-hairpin type, can be modified as a function of the type of turn favored by the loop sequence. These two conclusions reinforce previous results about the importance of beta-turn sequence in beta-hairpin folding. (iii) Side-chain packing on each face of the beta-sheet may play a major role in beta-hairpin stability; hence simplified analysis in terms of isolated pair interactions and intrinsic beta-sheet propensities is insufficient. (iv) Contributions to beta-hairpin stability of turn and strand sequences are not completely independent. (v) The burial of hydrophobic surface upon beta-hairpin formation that, in turn, depends on side-chain packing also contributes to beta-hairpin stability. (vi) As previously observed, TFE stabilizes beta-hairpin structures, but the extent of the contribution of different factors to beta-hairpin formation is sometimes different in aqueous solution and in 30% TFE.

  8. A scheme to alter the resonant frequency of the microstrip patch antenna

    NASA Technical Reports Server (NTRS)

    Volakis, John L.; Jin, J. M.

    1992-01-01

    Simple schemes are presented for altering the resonant frequency of a rectangular patch antenna without the need to change its size. In particular, by placing a perturbance below the patch it is shown that as much as 20 percent increase and 30 percent decrease from the resonant frequency of the unperturbed patch can be achieved. The specific configurations considered in this letter include a cavity-backed, aperture-backed, and protrusion-backed patch, and for each case design curves are presented.

  9. Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Paglione, M.; Saarikoski, S.; Carbone, S.; Hillamo, R.; Facchini, M. C.; Finessi, E.; Giulianelli, L.; Carbone, C.; Fuzzi, S.; Moretti, F.; Tagliavini, E.; Swietlicki, E.; Eriksson Stenström, K.; Prévôt, A. S. H.; Massoli, P.; Canaragatna, M.; Worsnop, D.; Decesari, S.

    2014-05-01

    Atmospheric organic aerosols are generally classified as primary and secondary (POA and SOA) according to their formation processes. An actual separation, however, is challenging when the timescales of emission and gas-to-particle formation overlap. The presence of SOA formation in biomass burning plumes leads to scientific questions about whether the oxidized fraction of biomass burning aerosol is rather of secondary or primary origin, as some studies would suggest, and about the chemical compositions of oxidized biomass burning POA and SOA. In this study, we apply nuclear magnetic resonance (NMR) spectroscopy to investigate the functional group composition of fresh and aged biomass burning aerosols during an intensive field campaign in the Po Valley, Italy. The campaign was part of the EUCAARI project and was held at the rural station of San Pietro Capofiume in spring 2008. Factor analysis applied to the set of NMR spectra was used to apportion the wood burning contribution and other organic carbon (OC) source contributions, including aliphatic amines. Our NMR results, referred to the polar, water-soluble fraction of OC, show that fresh wood burning particles are composed of polyols and aromatic compounds, with a sharp resemblance to wood burning POA produced in wood stoves, while aged samples are clearly depleted of alcohols and are enriched in aliphatic acids with a smaller contribution of aromatic compounds. The comparison with biomass burning organic aerosols (BBOA) determined by high-resolution aerosol mass spectrometry (HR-TOF-AMS) at the site shows only a partial overlap between NMR BB-POA and AMS BBOA, which can be explained by either the inability of BBOA to capture all BB-POA composition, especially the alcohol fraction, or the fact that BBOA account for insoluble organic compounds unmeasured by the NMR. Therefore, an unambiguous composition for biomass burning POA could not be derived from this study, with NMR analysis indicating a higher O / C ratio

  10. Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation

    PubMed Central

    Song, Ning-Ning; Yang, Hai-Tao; Liu, Hao-Liang; Ren, Xiao; Ding, Hao-Feng; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2013-01-01

    Magnetic nanoparticles have attracted much research interest in the past decades due to their potential applications in microwave devices. Here, we adopted a novel technique to tune cut-off frequency exceeding the natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation. We observed that the cut-off frequency can be enhanced from 5.3 GHz for Fe3O4 to 6.9 GHz forFe3O4@SiO2 core-shell structure superparamagnetic nanoparticles, which are much higher than the natural resonance frequency of 1.3 GHz for Fe3O4 bulk material. This finding not only provides us a new approach to enhance the resonance frequency beyond the Snoek's limit, but also extend the application for superparamagnetic nanoparticles to microwave devices. PMID:24196377

  11. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  12. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  13. Architectures for evanescent frequency tuning of microring resonators in micro-opto-electro-mechanical SOI platforms

    NASA Astrophysics Data System (ADS)

    Shoman, Hossam; Dahlem, Marcus S.

    2015-02-01

    Microring resonators are important elements in a wide variety of optical systems, ranging from optical switches and tunable filterbanks to optical sensors. In these structures, the resonant frequencies are normally controlled by tuning the effective index of refraction. In optical switches and filters, this has traditionally been achieved through electro-optic or thermo-optic effects. In sensors, the effective refractive index is changed by the presence of the measurand. Adding a mechanical degree of freedom to these optical systems allows additional evanescent frequency tuning. In particular, the presence of a cantilever in the near-field of the optical mode can tune the effective refractive index. A specific cantilever displacement can therefore induce a desired resonant frequency shift. Alternatively, a measured shift in the resonant frequency can be associated with a cantilever displacement, and be used for pressure or acceleration sensing. In this paper, we explore a geometry that can be used for controlling the resonant frequency of a microring resonator through evanescent field perturbation, using a cantilever defined in the same silicon layer as the optical waveguides, in a silicon-on-insulator platform. The effects of the lateral gap size between the optical waveguide and the cantilever, and the cantilever vertical displacement, on both the resonant frequency and quality factor of the resonator, are evaluated through finite-difference timedomain computations for wavelengths centered at 1550 nm. The presence of the cantilever in the near-field of the optical mode changes the effective refractive index, resulting in frequency tuning, but also lowers the quality factor due to additional coupling into the membrane.

  14. Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators

    NASA Technical Reports Server (NTRS)

    Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)

    2016-01-01

    An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.

  15. Performance and modeling of superconducting ring resonators at millimeter-wave frequencies

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Chorey, C. M.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Kong, K. S.; Lee, H. Y.; Itoh, T.

    1990-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO thin films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performance compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  16. Creating Feshbach resonances for ultracold molecule formation with radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Owens, Daniel J.; Xie, Ting; Hutson, Jeremy M.

    2016-08-01

    We show that radio-frequency (rf) radiation may be used to create Feshbach resonances in ultracold gases of alkali-metal atoms at desired magnetic fields that are convenient for atomic cooling and degeneracy. For the case of 39K+133Cs , where there are no rf-free resonances in regions where Cs may be cooled to degeneracy, we show that a resonance may be created near 21 G with 69.2 MHz rf radiation. This resonance is almost lossless with circularly polarized rf, and the molecules created are long-lived even with plane-polarized rf.

  17. Lower Bounds on the Frequency Estimation Error in Magnetically Coupled MEMS Resonant Sensors.

    PubMed

    Paden, Brad E

    2016-02-01

    MEMS inductor-capacitor (LC) resonant pressure sensors have revolutionized the treatment of abdominal aortic aneurysms. In contrast to electrostatically driven MEMS resonators, these magnetically coupled devices are wireless so that they can be permanently implanted in the body and can communicate to an external coil via pressure-induced frequency modulation. Motivated by the importance of these sensors in this and other applications, this paper develops relationships among sensor design variables, system noise levels, and overall system performance. Specifically, new models are developed that express the Cramér-Rao lower bound for the variance of resonator frequency estimates in terms of system variables through a system of coupled algebraic equations, which can be used in design and optimization. Further, models are developed for a novel mechanical resonator in addition to the LC-type resonators.

  18. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.

    PubMed

    Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J

    2012-01-11

    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). PMID:22141577

  19. Shedding light on axial stress effect on resonance frequencies of nanocantilevers.

    PubMed

    Pini, Valerio; Tamayo, Javier; Gil-Santos, Eduardo; Ramos, Daniel; Kosaka, Priscila; Tong, Hien-Duy; van Rijn, Cees; Calleja, Montserrat

    2011-06-28

    The detection back-action phenomenon has received little attention in physical, chemical, and biological sensors based on nanomechanical systems. We show that this effect is very significant in ultrathin bimetallic cantilevers, in which the laser beam that probes the picometer scale vibration largely modifies the resonant frequencies of the system. The light back-action effect is nonlinear, and some resonant frequencies can even be reduced to a half with laser power intensities of 2 mW. We demonstrate that this effect arises from the stress and strain generated by the laser heating. The experiments are explained by two-dimensional nonlinear elasticity theory and supported by finite element simulations. The found phenomenology is intimately connected to the old unsolved problem about the effect of surface stress on the resonance frequency of singly clamped beams. The results indicate that to achieve the ultimate detection limits with nanomechanical resonators one must consider the uncertainty due to the detection back-action.

  20. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.

    PubMed

    Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je

    2015-02-01

    Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.

  1. Frequency response of piezoresistive-based MASA resonators with electrostatic vertical comb-drive actuation.

    SciTech Connect

    Stalford, Harold Lenn; Epp, David S.

    2005-01-01

    We report on experimental work that characterizes the frequency response of resonators of Microfabricated Acoustic Spectrum Analyzer (MASA) devices which were fabricated using Sandia's SUMMiT processing technology. A 1.1 micron silicon nitride layer was used in the fabrication to isolate the sense mechanism from the actuation mechanism. The devices are actuated using electrostatic vertical comb-drive actuation in a 30-50 mTorr vacuum and the frequency response is measured using a piezo-resistive readout mechanism. Two MASA devices are tested using comb-drive ac signals (e.g., 200mV) superimposed on a dc bias (e.g., 15V). In addition, dc bias voltages placed on the comb-drive are shown to tune the resonant frequency of the resonator. The frequency response of the piezo-resistive readout mechanism is measured using a 10V dc supply voltage supplied across its Wheatstone bridge. The results show that the piezo-resistive readout mechanism can detect resonant behavior and determine resonant frequency. A laser doppler vibrometer is used as an independent means to characterize the frequency response and verify the results.

  2. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators

    SciTech Connect

    Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.

    2015-09-07

    We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.

  3. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    PubMed Central

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  4. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  5. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators

    NASA Astrophysics Data System (ADS)

    Gaskell, J.; Eaves, L.; Novoselov, K. S.; Mishchenko, A.; Geim, A. K.; Fromhold, T. M.; Greenaway, M. T.

    2015-09-01

    We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.

  6. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  7. Liquid chromatography "on-flow" 1H nuclear magnetic resonance on native glycosphingolipid mixtures together with gas chromatography/mass spectrometry on the released oligosaccharides for screening and characterisation of carbohydrate-based antigens from pig lungs.

    PubMed

    Bäcker, A E; Thorbert, S; Rakotonirainy, O; Hallberg, E C; Olling, A; Gustavsson, M; Samuelsson, B E; Soussi, B

    1999-01-01

    Glycosphingolipids were prepared from pig lung and pooled into two fractions with (i) < or = 3 sugar residues, and (ii) > or = 3 sugar residues. Oligosaccharides were prepared and used for gas chromatography, gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. The glycolipid fractions i and ii were further characterised and purified using a novel method based on high performance liquid chromatography "on-flow" proton nuclear magnetic resonance. The LC "on-flow" NMR technique showed good chromatographic separation and gave NMR spectral information which could be used as guidance for pooling of the separated mixture glycolipids. Conventional 1H NMR, thin layer immunostaining, gas chromatography, gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry were used to characterise the glycolipids and to validate LC-NMR spectral data.

  8. (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments for E73 from Sulfolobus spindle-shaped virus ragged hills, a hyperthermophilic crenarchaeal virus from Yellowstone National Park.

    PubMed

    Schlenker, Casey; Menon, Smita; Lawrence, C Martin; Copié, Valérie

    2009-12-01

    Crenarchaeal viruses are commonly found in hyperthermal acidic environments such as those of Yellowstone National Park. These remarkable viruses not only exhibit unusual morphologies, but also display extreme genetic diversity. However, little is known about crenarchaeal viral life cycles, virus-host interactions, and their adaptation to hyperthermophilic environments. In an effort to better understand the functions of crenarchaeal viruses and the proteins encoded by their genomes, we have undertaken detailed structural and functional studies of gene products encoded in the open reading frames of Sulfolobus spindle-shaped virus ragged hills. Herein, we report ((15)N, (13)C, (1)H) resonance assignments of backbone and side chain atoms of a 19.1 kDa homodimeric E73 protein of SSVRH.

  9. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    PubMed

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  10. Discrimination between genetically identical peony roots from different regions of origin based on 1H-nuclear magnetic resonance spectroscopy-based metabolomics: determination of the geographical origins and estimation of the mixing proportions of blended samples.

    PubMed

    Um, Jung A; Choi, Young-Geun; Lee, Dong-Kyu; Lee, Yun Sun; Lim, Chang Ju; Youn, Young A; Lee, Hwa Dong; Cho, Hi Jae; Park, Jeong Hill; Seo, Young Bae; Kuo, Hsun-chih; Lim, Johan; Yang, Tae-Jin; Kwon, Sung Won; Lee, Jeongmi

    2013-09-01

    Sixty peony root training samples of the same age were collected from various regions in Korea and China, and their genetic diversity was investigated for 23 chloroplast intergenic space regions. All samples were genetically indistinguishable, indicating that the DNA-based techniques employed were not appropriate for determining the samples' regions of origin. In contrast, (1)H-nuclear magnetic resonance ((1)H-NMR) spectroscopy-based metabolomics coupled with multivariate statistical analysis revealed a clear difference between the metabolic profiles of the Korean and Chinese samples. Orthogonal projections on the latent structure-discrimination analysis allowed the identification of potential metabolite markers, including γ-aminobutyric acid, arginine, alanine, paeoniflorin, and albiflorin, that could be useful for classifying the samples' regions of origin. The validity of the discrimination model was tested using the response permutation test and blind prediction test for internal and external validations, respectively. Metabolomic data of 21 blended samples consisting of Korean and Chinese samples mixed at various proportions were also acquired by (1)H-NMR analysis. After data preprocessing which was designed to eliminate uncontrolled deviations in the spectral data between the testing and training sets, a new statistical procedure for estimating the mixing proportions of blended samples was established using the constrained least squares method for the first time. The predictive procedure exhibited relatively good predictability (adjusted R (2) = 0.7669), and thus has the potential to be used in the quality control of peony root by providing correct indications for a sample's geographical origins.

  11. Advanced simulation methods to detect resonant frequency stack up in focal plane design

    NASA Astrophysics Data System (ADS)

    Adams, Craig; Malone, Neil R.; Torres, Raymond; Fajardo, Armando; Vampola, John; Drechsler, William; Parlato, Russell; Cobb, Christopher; Randolph, Max; Chiourn, Surath; Swinehart, Robert

    2014-09-01

    Wire used to connect focal plane electrical connections to external electrical circuitry can be modeled using the length, diameter and loop height to determine the resonant frequency. The design of the adjacent electric board and mounting platform can also be analyzed. The combined resonant frequency analysis can then be used to decouple the different component resonant frequencies to eliminate the potential for metal fatigue in the wires. It is important to note that the nominal maximum stress values that cause metal fatigue can be much less than the ultimate tensile stress limit or the yield stress limit and are degraded further at resonant frequencies. It is critical that tests be done to qualify designs that are not easily simulated due to material property variation and complex structures. Sine wave vibration testing is a critical component of qualification vibration and provides the highest accuracy in determining the resonant frequencies which can be reduced or uncorrelated improving the structural performance of the focal plane assembly by small changes in design damping or modern space material selection. Vibration flow down from higher levels of assembly needs consideration for intermediary hardware, which may amplify or attenuate the full up system vibration profile. A simple pass through of vibration requirements may result in over test or missing amplified resonant frequencies that can cause system failure. Examples are shown of metal wire fatigue such as discoloration and microscopic cracks which are visible at the submicron level by the use of a scanning electron microscope. While it is important to model and test resonant frequencies the Focal plane must also be constrained such that Coefficient of Thermal expansion mismatches are allowed to move and not overstress the FPA.

  12. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOEpatents

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  13. Wide frequency range capacitive detection of loss in a metallic cantilever using resonance and relaxation modes.

    PubMed

    Richert, Ranko

    2007-05-01

    The impedance of a capacitor which embraces a charged cantilever is used to measure the mechanical properties of the cantilever material. The technique has been tested with an amorphous metallic specimen, but is applicable for many other solids. The material damping can be measured at the resonance frequency of the cantilever via the width of the resonance curve or by recording the ring-down behavior. Additionally, several decades in frequency are accessible below the resonance frequency, where values as low as nu=0.03 Hz are achieved easily. The data are analyzed with a single equation that captures the damping at all frequencies in terms of the material specific Young's modulus E and its loss angle tan delta=E"/E'.

  14. Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-based structures

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Yuan, Baoguo; Cheng, Ying; Liu, Xiaojun

    2016-02-01

    We have realized the acoustic rainbow trapping in the low frequency region (200-500 Hz) through micro Mie resonance-based structures. The structure has eight channels with a high refractive index obtained by coiling space, that can excite strong interactions with incident waves and support various orders of multipoles due to the Mie resonances of the microstructure. By utilizing the structure, the precise spatial modulation of the acoustic wave is demonstrated both theoretically and experimentally. The effect of trapping broadband acoustic waves and spatially separating different frequency components are ascribed to the monopolar Mie resonances of the structures. The trapping frequency is derived and the trapping positions can be tuned arbitrarily. With enhanced wave-structure interactions and tailored frequency responses, such micro structures show precise spectral-spatial control of acoustic waves and open a diverse venue for high performance acoustic wave detection, sensing, filtering, and a nondestructive test.

  15. Intense electrostatic waves near the upper hybrid resonance frequency. [beyond plasmapause

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Craven, J. D.; Frank, L. A.; Gurnett, D. A.

    1979-01-01

    Plasma wave measurements using instruments on the Imp 6 and Hawkeye satellites are utilized in a study of very intense electrostatic waves near the upper hybrid resonance frequency in the region just outside the plasmapause. Studies of these electrostatic disturbances show that the events occur at local times and at magnetic latitudes varying from the equator to 50 deg, and the polarization of these waves is such that the wave electric field vector is oriented perpendicular to the geomagnetic field. In most cases the center frequency of the intense waves corresponds to an (n + 1/2) fg(-) harmonic near the upper hybrid resonance frequency. The hot distribution on function is described for a few events showing temperature anisotropy and a loss cone distribution. A possible mechanism for producing intense waves near the upper hybrid resonance frequency is suggested, and evidence which indicates that the intense electrostatic waves may be a source of nonthermal continuum radiation is given.

  16. Structural properties of mixed (NH{sub 4}){sub 2−x}Rb{sub x}ZnCl{sub 4} (x=0, 1, and 2) crystals studied by {sup 1}H and {sup 87}Rb nuclear magnetic resonance

    SciTech Connect

    Lim, Ae Ran; Lim, Kye-Young

    2013-04-15

    The structures of mixed (NH{sub 4}){sub 2−x}Rb{sub x}ZnCl{sub 4} (x=0, 1, and 2) single crystals were determined by x-ray diffraction. In addition, the nuclear magnetic resonance (NMR) spectra and spin–lattice relaxation times of the {sup 1}H and {sup 87}Rb nuclei in the three crystals were determined using NMR spectroscopy. We analyzed the crystallographic structures of these crystals by considering the occupation probabilities (NH{sub 4} or Rb) of the two cationic sites. Our NMR results confirm that there are two crystallographically inequivalent NH{sub 4} sites, NH{sub 4}(1) and NH{sub 4}(2), in (NH{sub 4}){sub 2}ZnCl{sub 4}, and two crystallographically inequivalent Rb sites, Rb(1) and Rb(2), in Rb{sub 2}ZnCl{sub 4}. However, only one NH{sub 4} site and two Rb sites were observed in NH{sub 4}RbZnCl{sub 4}. The NH{sub 4} and Rb occupation rates of each of the two available sites, A{sub 1} and A{sub 2}, were determined from the NMR signals. - Graphical abstract: The structures of mixed (NH{sub 4}){sub 2−x}Rb{sub x}ZnCl{sub 4} (x=0, 1, and 2) single crystals were determined by x-ray diffraction. In addition, the nuclear magnetic resonance (NMR) spectra and spin–lattice relaxation times of the {sup 1}H and {sup 87}Rb nuclei in the three crystals were determined using NMR spectroscopy. Highlights: ► Mixed (NH{sub 4}){sub 2−x}Rb{sub x}ZnCl{sub 4} (x=0, 1, and 2) crystals. ► The crystallographic structures by occupation probabilities. ► The NH{sub 4} and Rb occupation rates.

  17. Diode-laser frequency stabilization based on the resonant Faraday effect

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  18. Unprecedented long-term frequency stability with a microwave resonator oscillator.

    PubMed

    Grop, Serge; Schafer, Wolfgang; Bourgeois, Pierre-Yves; Kersale, Yann; Oxborrow, Mark; Rubiola, Enrico; Giordano, Vincent

    2011-08-01

    This article reports on the long-term frequency stability characterization of a new type of cryogenic sapphire oscillator using an autonomous pulse-tube cryocooler as its cold source. This new design enables a relative frequency stability of better than 4.5 x 10(-15) over one day of integration. To the best of our knowledge, this represents the best long-term frequency stability ever obtained with a signal source based on a macroscopic resonator.

  19. Resonant and nonresonant magnetoelectric effects in multilayer composites at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Bichurin, M. I.; Kiliba, Yu. V.; Srinivasan, G.

    2002-03-01

    A phenomenological theory is presented on the effect of an external electric field on magnetic and magnetoelectric (ME) susceptibilities of ferroelectric/ferromagnetic composites, such as lithium ferrite lead zirconate titanate (PZT), at microwave frequencies. Expressions have been obtained relating the magnetic susceptibility tensor components of the composite (symmetry point group 3m and 4mm) to ME coupling constants. Estimates of linear and bilinear ME susceptibilities at high frequencies are given and are extended to include ferromagnetic resonance (FMR) conditions [1]. Both magnetic and ME susceptibilities reveal a resonance in the electric field dependence. Three methods for measurements of ME susceptibility at microwave frequencies are considered: electric dipole transitions, resonance ME effects at ferromagnetic resonance and off-resonance method. Using the theory and experimental data on ferromagnetic resonance line shift in external electric field, the ME constants for lithium ferrite-PZT multilayer composite are determined. The theory is useful for measurements of ME constants and for the design and analysis of electrically controlled high frequency magnetic devices. - work supported by a grant from the National Science Foundation (DMR-0072144) 1. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001).

  20. Ultra-Narrow Bandwidth Optical Resonators for Integrated Low Frequency Noise Lasers

    NASA Astrophysics Data System (ADS)

    Spencer, Daryl T.

    The development of narrowband resonators has far reaching applications in integrated optics. As a precise reference of wavelength, filters can be used in sensors, metrology, nonlinear optics, microwave photonics, and laser stabilization. In this work, we develop record high quality factor (Q) Si 3N4 waveguide resonators, and utilize them to stabilize a heterogeneously integrated Si/III V laser. To increase the Q factor of waveguide resonators, particular attention is given to loss mechanisms. Propagation loss of <0.1 dB/m is demonstrated on the ultra low loss waveguide platform, a low index contrast, high aspect ratio Si3N4 waveguide geometry fabricated with high quality materials and high temperature anneals. Ideality in the directional couplers used for coupling to the resonators is studied and losses are reduced such that 81 million intrinsic Q factor is achieved. Additional results include 1x16 resonant splitters, low ? narrowband gratings, and a dual layer waveguide technology for low loss and low bend radius in separate regions of the same device layer. We then combine an ultra high Q resonator and a heterogeneous Si/III V laser in a Pound Drever Hall (PDH) frequency stabilization system to yield narrow linewidth characteristics for a stable on chip laser reference. The high frequency noise filtering is performed with Si resonant mirrors in the laser cavity. A 30 million Q factor Si3N4 resonator is used with electrical feedback to reduce close in noise and frequency walk off. The laser shows high frequency noise levels of 60x103 Hz2/Hz corresponding to 160 kHz linewidth, and the low frequency noise is suppressed 33 dB to 103 Hz2/Hz with the PDH system.

  1. Designing a 25-kilowatt high frequency series resonant

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1984-01-01

    The feasibility of processing 25 kW of power with a single, transistorized, 20 kHz, series resonant converter stage has been demonstrated by the successful design, development, fabrication, and testing of such a device. It employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350-Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Circuit details of the converter are presented along with test data.

  2. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    PubMed

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains. PMID:26154586

  3. Onflow liquid chromatography at critical conditions coupled to (1)H and (2)H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition.

    PubMed

    Hehn, Mathias; Sinha, Pritish; Pasch, Harald; Hiller, Wolf

    2015-03-27

    The present work addresses a major challenge in polymer chromatography by developing a method to separate and analyze polymers with identical molar masses, chemical structures and tacticities that is solely based on differences in isotope composition. For the first time, liquid chromatography at critical conditions (LCCC) was used to separate PMMA regarding the H and D isotopes. At critical conditions of H-PMMA, D-PMMA eluted in the adsorption mode and vice versa. By online onflow LCCC-NMR, both PMMA species were clearly identified. Different from other detectors, NMR can distinguish between H and D. Onflow LCCC-H/NMR and LCCC-D/NMR measurements were carried out and the H/D-blend components were detected. (1)H and (13)C NMR provided the tacticity of protonated PMMA. Double resonance (13)C{H} and triple resonance (13)C{H,D} provided the tacticity of the deuterated samples. Samples with similar tacticities were used to ensure that separation occurs solely regarding the isotope labeling.

  4. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    NASA Astrophysics Data System (ADS)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  5. Resonant oscillation modes of sympathetically cooled ions in a radio-frequency trap

    SciTech Connect

    Hasegawa, Taro; Shimizu, Tadao

    2002-12-01

    Sympathetic cooling of Ca{sup +}, Zn{sup +}, Sr{sup +}, Ba{sup +}, and Yb{sup +} as guest ions with laser-cooled {sup 24}Mg{sup +} as host ions in a rf ion trap is carried out, and resonant frequencies of their motion in the trap potential are measured. Various oscillation modes of the sympathetically cooled ions are observed. The resonant frequency of the oscillation mode is different from the frequency of either the collective oscillation frequency of the trapped ions or the oscillation frequency of each ion without host ions. This difference is well explained by a theoretical model in which coupled equations of motion of the host ion cloud with a single guest ion are considered.

  6. Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies

    PubMed Central

    Wang, Ren; Wang, Bing-Zhong; Gong, Zhi-Shuang; Ding, Xiao

    2015-01-01

    A method for far-field subwavelength imaging at microwave frequencies using near-field resonant metalens scanning is proposed. The resonant metalens is composed of switchable split-ring resonators (SRRs). The on-SRR has a strong magnetic coupling ability and can convert evanescent waves into propagating waves using the localized resonant modes. In contrast, the off-SRR cannot achieve an effective conversion. By changing the switch status of each cell, we can obtain position information regarding the subwavelength source targets from the far field. Because the spatial response and Green’s function do not need to be measured and evaluated and only a narrow frequency band is required for the entire imaging process, this method is convenient and adaptable to various environment. This method can be used for many applications, such as subwavelength imaging, detection, and electromagnetic monitoring, in both free space and complex environments. PMID:26053074

  7. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    SciTech Connect

    Hu, M.; Bai, Y. Z. Zhou, Z. B. Li, Z. X.; Luo, J.

    2014-05-15

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  8. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge.

    PubMed

    Hu, M; Bai, Y Z; Zhou, Z B; Li, Z X; Luo, J

    2014-05-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided. PMID:24880402

  9. Nanoscale Subsurface Imaging of Nanocomposites via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.

    2007-01-01

    A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. The method employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope engages the sample top surface. The cantilever is driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave at the sample surface generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create amplitude and phase-generated images of nanoscale near-surface and subsurface features. RDF-AFUM phase images of LaRC-CP2 polyimide polymer containing embedded nanostructures are presented. A RDF-AFUM micrograph of a 12.7 micrometer thick film of LaRC-CP2 containing a monolayer of gold nanoparticles embedded 7 micrometers below the specimen surface reveals the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer and a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles. A RDF-AFUM micrograph of LaRC-CP2 film containing randomly dispersed carbon nanotubes reveals the growth of an interphase region at certain nanotube-polymer interfaces.

  10. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  11. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    NASA Astrophysics Data System (ADS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-05-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  12. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    SciTech Connect

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  13. Enhancing the low frequency THz resonances (< 1 THz) of organic molecules via electronegative atom substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2015-03-01

    Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.

  14. High-power 467-nm passively locked signal-resonant sum-frequency laser

    SciTech Connect

    Wigley, P.G.; Zhang, Q.; Miesak, E.; Dixon, G.J.

    1995-12-01

    We have generated more than 120 mW of TEM{sub 00} radiation at 467 nm by summing the resonantly enhanced output of an 845-nm GaAlAs tapered semiconductor amplifier with the intracavity field of a 1047-nm diode-pumped Nd:YLF laser, using a KTP crystal. Optical feedback was used to lock the frequency of the tapered amplifier to a cavity resonance. {copyright} {ital 1995 Optical Society of America.}

  15. Frequency stabilization of spin-torque-driven oscillations by coupling with a magnetic nonlinear resonator

    SciTech Connect

    Kudo, Kiwamu Suto, Hirofumi; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2014-10-28

    The fundamental function of any oscillator is to produce a waveform with a stable frequency. Here, we show a method of frequency stabilization for spin-torque nano-oscillators (STNOs) that relies on coupling with an adjacent nanomagnet through the magnetic dipole–dipole interaction. It is numerically demonstrated that highly stable oscillations occur as a result of mutual feedback between an STNO and a nanomagnet. The nanomagnet acts as a nonlinear resonator for the STNO. This method is based on the nonlinear behavior of the resonator and can be considered as a magnetic analogue of an optimization scheme in nanoelectromechanical systems. The oscillation frequency is most stabilized when the nanomagnet is driven at a special feedback point at which the feedback noise between the STNO and resonator is completely eliminated.

  16. A simple formula for predicting resonant frequencies of a rectangular plate with uniformly restrained edges

    NASA Astrophysics Data System (ADS)

    Li, K. M.; Yu, Z.

    2009-10-01

    This paper provides empirical formulas for rapidly calculating the resonant frequencies of an orthotropic, rectangular plate with its edges constrained by elastic supports. In particular, the classical boundary condition with guided supports at its edges is considered. Other boundary conditions, such as the guided-free edges, guided-clamped edges and guided-free support edges have also been included in the present study. Simple and closed form empirical formulas have been derived to allow straightforward computations of the modal resonant frequencies. The empirical formulas are based on the analytical results obtained from the Rayleigh-Ritz method. However, the coefficient is determined empirically from the results obtained by other more accurate computational scheme, e.g. finite element method. The method is further generalized to predict the resonant frequencies for general boundary conditions of a square, orthotropic plate.

  17. The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators

    NASA Astrophysics Data System (ADS)

    Jin, Ke; Kou, Yong; Zheng, Xiaojing

    2012-04-01

    This paper focuses on the resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. A 3D nonlinear dynamic model to describe the magneto-thermo-elastic coupling behavior of actuators is proposed based on a nonlinear constitutive model. The coupled interactions among stress- and magnetic-field-dependent variables for actuators are solved iteratively using the finite element method. The model simulations show a good correlation with the experimental data, which demonstrates that this model can capture the coupled resonance frequency shift features for magnetostrictive actuators well. Moreover, a comprehensive description for temperature, pre-stress and bias field dependences of resonance frequency is discussed in detail. These essential and important investigations will be of significant benefit to both theoretical research and the applications of magnetostrictive materials in smart or intelligent structures and systems.

  18. Cellular-foam polypropylene ferroelectrets with increased film thickness and reduced resonance frequency

    NASA Astrophysics Data System (ADS)

    Sborikas, Martynas; Wegener, Michael

    2013-12-01

    Ferroelectrets are piezoelectric materials suitable for acoustic applications such as airborne ultrasonic transducers. Typical ferroelectrets exhibit resonance frequencies in the high kHz to low MHz range. In order to decrease the transducer resonance frequencies to the low kHz range, processes such as gas-diffusion expansion and electric charging were adjusted to cellular films which are initially twice as thick as in earlier studies. The demonstrated film expansion and electric charging lead to mechanically soft cellular structures which show high piezoelectric activities with coefficients up to 130 pC/N. Due to the simultaneously increased film thicknesses, the resonance frequencies are lowered down to about 233 kHz.

  19. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    PubMed

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  20. Magnetic Earth Ionosphere Resonant Frequencies (NASA-MEIRF Project)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During this current reporting period, the project has focused on completing Phase 1 of the field monitoring work and documenting research results. Highlights of these efforts include presentations of papers at the annual joint meeting of the American Physical Society/American Association of Physics Teachers, April 18-22, 1994, in Crystal City, Virginia, and at the International Space, Time, and Gravitation Conference and Etoiles de L'Ecole Polytechnique Symposium, May 23-28, 1994, in St. Petersburg, Russia. Field measurements of the background ultra low frequency (ULF) electromagnetic spectrum in the New Mexico and Texas regions show interesting differences. Included are papers entitled 'Triplet Solution of the Twin Paradox' and 'Classical Electron Mass and Fields, Part 3.'

  1. Long period gratings based frequency selective interrogation of micro-resonators along the same fiber

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Chiavaioli, F.; Baldini, F.; Cosi, F.; Righini, G. C.; Soria, S.; Trono, C.; Nunzi Conti, G.

    2016-03-01

    A novel optical fiber coupler to whispering gallery mode (WGM) micro-resonators, which allows frequency selective addressing of different micro-resonators along the same fiber, is proposed. The coupling unit is based on a pair of identical long period fiber gratings (LPGs) and a thick adiabatic taper (>15 μm in waist) in between, where evanescent coupling from cladding modes to WGMs takes place. This robust unit can be replicated more times along the same fiber, simply cascading LPGs with different bands. Independent addressing of two different resonators along the same fiber is demonstrated.

  2. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    PubMed Central

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  3. Experimental investigation of electric and magnetic responses in composites with dielectric resonator inclusions at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Giannakopoulou, T.; Niarchos, D.; Trapalis, C.

    2009-06-01

    Composites with ferroelectric cubic inclusions are experimentally investigated with coaxial line technique in the microwave frequency range 1-18 GHz. The composites exhibit dispersive effective magnetic and dielectric properties. Strengthening of magnetic resonances with the increase in the inclusions' number is observed. Electric resonances are damped out significantly due to material losses. The measurement results agree well with theoretical calculations based on Mie theory and Maxwell-Garnett mixing relation. Even number and symmetric arrangement of the inclusions are needed to receive true measurement image in the whole investigated range. Composites utilizing dielectric resonators are attractive in electromagnetic metamaterials fabrication.

  4. Ion Isolation in a Linear Ion Trap Using Dual Resonance Frequencies

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    Ion isolation in a linear ion trap is demonstrated using dual resonance frequencies, which are applied simultaneously. One frequency is used to eject ions of a broad m/z range higher in m/z than the target ion, and the second frequency is set to eject a range of ions lower in m/z. The combination of the two thus results in ion isolation. Despite the simplicity of the method, even ions of low intensity may be isolated since signal attenuation is less than an order of magnitude in most cases. The performance of dual frequency isolation is demonstrated by isolating individual isotopes of brominated compounds.

  5. Piezoelectrically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.

    2002-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize a piezoelectrically-tunable beam element having a piezoelectric layer and a stress sensitive layer and means for providing an electrical potential across the piezoelectric layer to controllably change the beam's stiffness and thereby change its resonance frequency. It is then determined from the response of the piezoelectrically-tunable beam element to the acoustical vibration to which the beam element is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  6. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    NASA Astrophysics Data System (ADS)

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho

    2016-08-01

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called "qPlus" configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  7. Resonance of Gaussian Electromagnetic Field to the High Frequency Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Lu; Lin, Kai; Wen, Hao

    2016-08-01

    We consider a Gaussian Beam (GB) resonant system for high frequency gravitational waves (HFGWs) detection. At present, we find the optimal signal strength in theory through setting the magnetic component of GB in a standard gaussian form. Under the synchro-resonance condition, we study the signal strength (i.e., transverse perturbative photon fluxes) from the relic HFGWs (predicted by ordinary inflationary model) and the braneworld HFGWs (from braneworld scenarios). Both of them would generate potentially detectable transverse perturbative photon fluxes (PPFs). Furthermore we find optimal system parameters and the relationship between frequency and effective width of energy fluxes accumulation.

  8. Measurements of frequency fluctuations in aluminum nitride contour-mode resonators.

    PubMed

    Miller, Nicholas; Piazza, Gianluca

    2014-06-01

    As part of the current drive to engineer miniaturized monolithic high-performance microelectromechanical-enabled oscillators, there is a need for further study of frequency fluctuations in microelectromechanical resonators. To this end, we present the measurement of frequency fluctuations for 128 aluminum nitride contour-mode resonators. The measurements show that fluctuations are sufficiently large to play an important role in oscillator performance. These results were obtained for the first time from vector network analyzer measurements and are accompanied by an analysis of the experimental setup.

  9. Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators.

    PubMed

    Jung, Hojoong; Fong, King Y; Xiong, Chi; Tang, Hong X

    2014-01-01

    Aluminum nitride (AlN) has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an AlN microring resonator. We optimize the design of gating electrodes and the underneath resonator structure to effectively apply an electric field without increasing the optical loss. The switching of the comb is monitored by measuring one of the frequency comb peaks while varying the electric field. The controlled comb electro-optic response is investigated for direct comparison with the transient thermal effect.

  10. High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB

    NASA Astrophysics Data System (ADS)

    Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

    2003-12-01

    The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C α, 13C β, 1H α, and 1H β. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H α and 1H β chemical shifts are then coded in the line shape of the cross-peaks of 13C α, 13C β along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

  11. Tissue specific resonance frequencies of water and metabolites within the human brain

    NASA Astrophysics Data System (ADS)

    Chadzynski, Grzegorz L.; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe

    2011-09-01

    Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3 T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14 ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible.

  12. Heme Orientation of Cavity Mutant Hemoglobins (His F8 → Gly) in Either α or β Subunits: Circular Dichroism, (1) H NMR, and Resonance Raman Studies.

    PubMed

    Nagai, Masako; Nagai, Yukifumi; Aki, Yayoi; Sakurai, Hiroshi; Mizusawa, Naoki; Ogura, Takashi; Kitagawa, Teizo; Yamamoto, Yasuhiko; Nagatomo, Shigenori

    2016-08-01

    Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260-nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260-nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260-nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by (1) H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe-His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual (1) H NMR technique. Chirality 28:585-592, 2016. © 2016 Wiley Periodicals, Inc. PMID:27427792

  13. Heme Orientation of Cavity Mutant Hemoglobins (His F8 → Gly) in Either α or β Subunits: Circular Dichroism, (1) H NMR, and Resonance Raman Studies.

    PubMed

    Nagai, Masako; Nagai, Yukifumi; Aki, Yayoi; Sakurai, Hiroshi; Mizusawa, Naoki; Ogura, Takashi; Kitagawa, Teizo; Yamamoto, Yasuhiko; Nagatomo, Shigenori

    2016-08-01

    Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260-nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260-nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260-nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by (1) H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe-His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual (1) H NMR technique. Chirality 28:585-592, 2016. © 2016 Wiley Periodicals, Inc.

  14. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region

    PubMed Central

    Tripathi, Saroj R.; Miyata, Eisuke; Ishai, Paul Ben; Kawase, Kodo

    2015-01-01

    It is crucial to understand the various biological effects induced by terahertz (THz) electromagnetic waves with the rapid development of electronic and photonic devices operating in the THz frequency region. The presence of sweat glands plays an important role in THz wave interactions with human skin. We investigated the morphological features of sweat ducts using optical coherence tomography (OCT) to further understand such phenomena. We observed remarkable features of the ducts, such as their clear helical structure. The intersubject and intrasubject variations in the diameter of sweat ducts were considerably smaller than the variations in other structural parameters, such as length and number of turns. Based on the sweat duct dimensions and THz dielectric properties of skin measured using terahertz time-domain spectroscopy (THz-TDS), we calculated the resonating frequency of the sweat duct under the assumption of it functioning as a helical antenna. Here, we show that the resonance frequency in the axial mode of operation lies in the THz wave region with a centre frequency of 0.44 ± 0.07 THz. We expect that these findings will further our understanding of the various health consequences of the interaction of THz waves with human beings. PMID:25766116

  15. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region

    NASA Astrophysics Data System (ADS)

    Tripathi, Saroj R.; Miyata, Eisuke; Ishai, Paul Ben; Kawase, Kodo

    2015-03-01

    It is crucial to understand the various biological effects induced by terahertz (THz) electromagnetic waves with the rapid development of electronic and photonic devices operating in the THz frequency region. The presence of sweat glands plays an important role in THz wave interactions with human skin. We investigated the morphological features of sweat ducts using optical coherence tomography (OCT) to further understand such phenomena. We observed remarkable features of the ducts, such as their clear helical structure. The intersubject and intrasubject variations in the diameter of sweat ducts were considerably smaller than the variations in other structural parameters, such as length and number of turns. Based on the sweat duct dimensions and THz dielectric properties of skin measured using terahertz time-domain spectroscopy (THz-TDS), we calculated the resonating frequency of the sweat duct under the assumption of it functioning as a helical antenna. Here, we show that the resonance frequency in the axial mode of operation lies in the THz wave region with a centre frequency of 0.44 +/- 0.07 THz. We expect that these findings will further our understanding of the various health consequences of the interaction of THz waves with human beings.

  16. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  17. Analysis of Glass-Reinforced Epoxy Material for Radio Frequency Resonator

    PubMed Central

    Islam, M. T.; Misran, N.; Yatim, Baharudin

    2014-01-01

    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than −20 dB for C band and −34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior. PMID:24977230

  18. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  19. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.

    PubMed

    Li, Xian-Fang; Tang, Guo-Jin; Shen, Zhi-Bin; Lee, Kang Yong

    2015-01-01

    Free vibration and mass detection of carbon nanotube-based sensors are studied in this paper. Since the mechanical properties of carbon nanotubes possess a size effect, the nonlocal beam model is used to characterize flexural vibration of nanosensors carrying a concentrated nanoparticle, where the size effect is reflected by a nonlocal parameter. For nanocantilever or bridged sensor, frequency equations are derived when a nanoparticle is carried at the free end or the middle, respectively. Exact resonance frequencies are numerically determined for clamped-free, simply-supported, and clamped-clamped resonators. Alternative approximations of fundamental frequency are given in closed form within the relative error less than 0.4%, 0.6%, and 1.4% for cantilever, simply-supported, and bridged sensors, respectively. Mass identification formulae are derived in terms of the frequency shift. Identified masses via the present approach coincide with those using the molecular mechanics approach and reach as low as 10(-24)kg. The obtained results indicate that the nonlocal effect decreases the resonance frequency except for the fundamental frequency of nanocantilever sensor. These results are helpful to the design of micro/nanomechanical zeptogram-scale biosensor.

  20. Resonance frequencies and Young's modulus determination of magnetorheological elastomers using the photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Daniel Macias, J.; Ordonez-Miranda, J.; Alvarado-Gil, J. J.

    2012-12-01

    A simple and reliable methodology for determining the Young's modulus of magnetorheological elastomers is proposed based on the resonance frequencies of the amplitude of the photoacoustic signal. An explicit expression for the pressure changes within a photoacoustic cell, due to the thermal expansion of the air and the elastic bending of a clamped circular elastic membrane, is derived and analyzed. It is found that the resonance behavior of the amplitude of the photoacoustic signal is due to the contribution of the axial bending of its thickness. It is also shown that the Young's modulus of the membrane is proportional to its density, the square of its resonance frequencies and the fourth power of its radius, and inversely proportional to the square of its thickness. The application of the proposed approach to membranes made up of spherical microparticles of carbonyl iron powder embedded in a matrix of silicone rubber with weight concentrations of 0%, 5.2%, and 13.7% yields accurate and reproducible results, which are in good agreement with reported data in the literature. The highest accuracy on the measurement of the resonance frequencies and therefore on the Young's modulus is found for the first resonance peak. When a magnetic field is applied to the samples to modify their stiffness, it is observed that the Young's modulus increases with the magnetic field. This novel application of the photoacoustic technique opens the possibility of performing mechanical characterization of a broad diversity of magnetorheological membranes.

  1. Low-frequency two-dimensional resonators for vibrational micro energy harvesting

    NASA Astrophysics Data System (ADS)

    Bartsch, U.; Gaspar, J.; Paul, O.

    2010-03-01

    The fabrication, characterization and theoretical analysis of a novel two-dimensional silicon resonator with threefold rotational symmetry are described. The resonator consists of a 4 mm wide disk-shaped seismic mass having the full-wafer thickness of 525 µm and suspended by a system of concentric circular springs. The device is structured using two-sided deep reactive-ion etching of silicon. With its current spring thickness and height, the device has two closely spaced resonance frequencies at 370.5 and 373.9 Hz and a quality factor of 1800 at ambient pressure. The spring height and thus the resonance frequency of the device are easily tuned by simple adjustment of a single etch duration in the entire fabrication process. The dynamic response of the structure is modeled under the two assumptions that silicon is elastically (i) isotropic and (ii) anisotropic. In comparison with the isotropic model, the elastic anisotropy leads to a predicted mode splitting by 6.2 Hz, with oscillation directions aligned with the cubic crystal axes. Even small geometrical imperfections are found to significantly rotate the eigenmodes and to further modulate their frequency splitting. Experimental and numerical results corroborate these conclusions. Overall the present resonator design has the potential for a higher energy harvesting efficiency than a combination of two separate one-dimensional oscillators.

  2. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  3. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling.

    PubMed

    Gutfreund, Y; yarom, Y; Segev, I

    1995-03-15

    1. Intracellular recordings were made from neurons in slices from guinea-pig frontal cortex. In 50% of the cells, sustained subthreshold voltage oscillations were evoked by long (> 6 s) depolarizing pulses. The peak-to-peak amplitude of these oscillations was less than 5 mV and the frequency was voltage dependent, increasing with depolarization from 4 (near rest) to 20 Hz (at 30 mV depolarization). 2. The impedance-frequency relationship of both oscillating and non-oscillating cells was studied by intracellular injection of sinusoidal current with linearly changing frequency. In most cells, a peak in the impedance magnitude (resonant behaviour) was observed at depolarized levels. The frequency of the peak impedance (peak frequency) increased with depolarization from 3 (near rest) to 15 Hz (at 30 mV depolarization). 3. Application of TTX (10(-6) M) significantly decreased the impedance magnitude near the peak frequency. The subthreshold oscillations, however, as well as the action potentials, were fully blocked by TTX. On the other hand, TEA (15 mM) and Cs+ (5 mM) abolished both the subthreshold oscillations and the resonant behaviour. Replacing Ca2+ with Co2+ (5 mM) or Ni2+ (1 mM) did not abolish the subthreshold oscillations. The peak in the frequency-response curve was only slightly reduced. 4. An isopotential membrane model, consisting of a leak current, a fast persistent sodium current, a slow non-inactivating potassium current (with the kinetics of the M-current) and membrane capacitance, is sufficient to produce both voltage oscillations and resonant behaviour. The kinetics of the K+ current by itself is sufficient to produce resonance behaviour. The Na+ current amplifies the peak impedance magnitude and is essential for the generation of subthreshold oscillation. The model correctly predicted the behaviour of the frequency response before and after TTX and TEA application, as well as the relation between the expected passive impedance and the experimental

  4. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling.

    PubMed Central

    Gutfreund, Y; yarom, Y; Segev, I

    1995-01-01

    1. Intracellular recordings were made from neurons in slices from guinea-pig frontal cortex. In 50% of the cells, sustained subthreshold voltage oscillations were evoked by long (> 6 s) depolarizing pulses. The peak-to-peak amplitude of these oscillations was less than 5 mV and the frequency was voltage dependent, increasing with depolarization from 4 (near rest) to 20 Hz (at 30 mV depolarization). 2. The impedance-frequency relationship of both oscillating and non-oscillating cells was studied by intracellular injection of sinusoidal current with linearly changing frequency. In most cells, a peak in the impedance magnitude (resonant behaviour) was observed at depolarized levels. The frequency of the peak impedance (peak frequency) increased with depolarization from 3 (near rest) to 15 Hz (at 30 mV depolarization). 3. Application of TTX (10(-6) M) significantly decreased the impedance magnitude near the peak frequency. The subthreshold oscillations, however, as well as the action potentials, were fully blocked by TTX. On the other hand, TEA (15 mM) and Cs+ (5 mM) abolished both the subthreshold oscillations and the resonant behaviour. Replacing Ca2+ with Co2+ (5 mM) or Ni2+ (1 mM) did not abolish the subthreshold oscillations. The peak in the frequency-response curve was only slightly reduced. 4. An isopotential membrane model, consisting of a leak current, a fast persistent sodium current, a slow non-inactivating potassium current (with the kinetics of the M-current) and membrane capacitance, is sufficient to produce both voltage oscillations and resonant behaviour. The kinetics of the K+ current by itself is sufficient to produce resonance behaviour. The Na+ current amplifies the peak impedance magnitude and is essential for the generation of subthreshold oscillation. The model correctly predicted the behaviour of the frequency response before and after TTX and TEA application, as well as the relation between the expected passive impedance and the experimental

  5. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning.

    PubMed Central

    Gummer, A W; Hemmert, W; Zenner, H P

    1996-01-01

    The tectorial membrane has long been postulated as playing a role in the exquisite sensitivity of the cochlea. In particular, it has been proposed that the tectorial membrane provides a second resonant system, in addition to that of the basilar membrane, which contributes to the amplification of the motion of the cochlear partition. Until now, technical difficulties had prevented vibration measurements of the tectorial membrane and, therefore, precluded direct evidence of a mechanical resonance. In the study reported here, the vibration of the tectorial membrane was measured in two orthogonal directions by using a novel method of combining laser interferometry with a photodiode technique. It is shown experimentally that the motion of the tectorial membrane is resonant at a frequency of 0.5 octave (oct) below the resonant frequency of the basilar membrane and polarized parallel to the reticular lamina. It is concluded that the resonant motion of the tectorial membrane is due to a parallel resonance between the mass of the tectorial membrane and the compliance of the stereocilia of the outer hair cells. Moreover, in combination with the contractile force of outer hair cells, it is proposed that inertial motion of the tectorial membrane provides the necessary conditions to allow positive feedback of mechanical energy into the cochlear partition, thereby amplifying and tuning the cochlear response. PMID:8710939

  6. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating

    SciTech Connect

    Maimone, F.; Tinschert, K.; Lang, R.; Maeder, J.; Rossbach, J.; Spaedtke, P.; Celona, L.

    2012-02-15

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  7. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    PubMed

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  8. [The results of resonance frequency analysis by dental implantation after bone augmentation for alveolar bone atrophy].

    PubMed

    Kulakov, A A; Braĭlovskaia, T V; Osman, B M; Bedretdinov, R M; Dzhakoniia, V D

    2014-01-01

    The report concerns dental implantation effectiveness in case of jawbone atrophy. Thirty patients were included in the study to reveal resonance frequency analysis rates of intraosseous dental implants by dental implant placement with bone augmentation using the veneer technique of cortico-cancellous blocks and guided bone regeneration (GBR) with biodegradable membranes and pins having poly (dl- lactic acid) base.

  9. Frequency, Prognosis and Surgical Treatment of Structural Abnormalities Seen with Magnetic Resonance Imaging in Childhood Epilepsy

    ERIC Educational Resources Information Center

    Berg, Anne T.; Mathern, Gary W.; Bronen, Richard A.; Fulbright, Robert K.; DiMario, Francis; Testa, Francine M.; Levy, Susan R.

    2009-01-01

    The epidemiology of lesions identified by magnetic resonance imaging (MRI), along with the use of pre-surgical evaluations and surgery in childhood-onset epilepsy patients has not previously been described. In a prospectively identified community-based cohort of children enrolled from 1993 to 1997, we examined (i) the frequency of lesions…

  10. Nanoliter liquid characterization by open whispering-gallery mode dielectric resonators at millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Shaforost, E. N.; Klein, N.; Vitusevich, S. A.; Offenhäusser, A.; Barannik, A. A.

    2008-10-01

    We present an approach for identification and concentration determination of liquids of pico to nanoliter volumes at a frequency of 35 GHz based on a whispering-gallery mode (WGM) dielectric resonator technique. A quasioptical coupling scheme based on dielectric image waveguides was employed to excite high-Q running wave WGMs with uniform azimuthal field distribution in cylindrical sapphire disks with quality factors up to 4×105 at room temperature. Measurement of the liquid induced changes in the resonator quality factor and resonance frequency has been performed for droplets down to 90 pl volume spotted at different positions on the surface of the sapphire disk. We have employed our method for concentration determination of ethanol, glucose, and albumin dissolved in water. Solutions with concentration values well below 10% could be clearly separated from pure water. Our method is promising for the characterization of biological liquids.

  11. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500–2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  12. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  13. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    SciTech Connect

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-06-20

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  14. Influence of the colloidal structure of dairy gels on milk fat fusion behavior: quantification of the liquid fat content by in situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR).

    PubMed

    Bouteille, Romain; Perez, Jeanne; Khifer, Farid; Jouan-Rimbaud-Bouveresse, Delphine; Lecanu, Bruno; This, Hervé

    2013-04-01

    Dairy gels (DG), such as yoghurts, contain both solid and liquid fats at the time of consumption, as their temperature rises to anything between 10 and 24 °C after being introduced into the mouth at 4 °C. The mass ratio between solid and liquid fats, which depends on the temperature, impacts the organoleptic properties of DG. As the ordinary methods for determining this ratio can only be applied to samples consisting mainly in fat materials, a fat extraction step needs to be added into the analytical process when applied to DG, which prevents the study of the potential impact of their colloidal structure on milk fat fusion behavior. In situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR) was investigated as a method for direct measurements in DG: at temperatures between 20.0 and 70.0 °C, the liquid fat content and the composition of triacylglycerols of the liquid phase (in terms of alkyl chains length) were determined. Spectra of isolated milk fat also enable the quantification of the double bonds of triacylglycerols. Statistical tests showed no significant difference between isolated milk fat and milk fat inside a DG in terms of melting behavior: the fat globule membrane does not seem to have a significant influence on the fat melting behavior.

  15. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. PMID:23147444

  16. Influence of the colloidal structure of dairy gels on milk fat fusion behavior: quantification of the liquid fat content by in situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR).

    PubMed

    Bouteille, Romain; Perez, Jeanne; Khifer, Farid; Jouan-Rimbaud-Bouveresse, Delphine; Lecanu, Bruno; This, Hervé

    2013-04-01

    Dairy gels (DG), such as yoghurts, contain both solid and liquid fats at the time of consumption, as their temperature rises to anything between 10 and 24 °C after being introduced into the mouth at 4 °C. The mass ratio between solid and liquid fats, which depends on the temperature, impacts the organoleptic properties of DG. As the ordinary methods for determining this ratio can only be applied to samples consisting mainly in fat materials, a fat extraction step needs to be added into the analytical process when applied to DG, which prevents the study of the potential impact of their colloidal structure on milk fat fusion behavior. In situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR) was investigated as a method for direct measurements in DG: at temperatures between 20.0 and 70.0 °C, the liquid fat content and the composition of triacylglycerols of the liquid phase (in terms of alkyl chains length) were determined. Spectra of isolated milk fat also enable the quantification of the double bonds of triacylglycerols. Statistical tests showed no significant difference between isolated milk fat and milk fat inside a DG in terms of melting behavior: the fat globule membrane does not seem to have a significant influence on the fat melting behavior. PMID:23464867

  17. Temperature coefficient of frequency modeling for CMOS-MEMS bulk mode composite resonators.

    PubMed

    Wang, Siping; Chen, Wen-Chien; Bahr, Bichoy; Fang, Weileun; Li, Sheng-Shian; Weinstein, Dana

    2015-06-01

    CMOS-MEMS resonators, which are promising building blocks for achieving monolithic integration of MEMS structure, can be used for timing and filtering applications, and control circuitry. SiO2 has been used to make MEMS resonators with quality factor Q > 10(4), but temperature instability remains a major challenge. In this paper, a design that uses an embedded metal block for temperature compensation is proposed and shows sub-ppm temperature stability (-0.21 ppm/K). A comprehensive analytical model is derived and applied to analyze and optimize the temperature coefficient of frequency (TCF) of the CMOS-MEMS composite material resonator. Comparison with finite element method simulation demonstrates good accuracy. The model can also be applied to predict and analyze the TCF of MEMS resonators with arbitrary mode shape, and its integration with simulation packages enables interactive and efficient design process.

  18. Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials.

    PubMed

    Shelton, D J; Peters, D W; Sinclair, M B; Brener, I; Warne, L K; Basilio, L I; Coffey, K R; Boreman, G D

    2010-01-18

    Infrared metamaterials fabricated on semiconductor substrates exhibit a high degree of sensitivity to very thin (as small as 2 nm) layers of low permittivity materials between the metallic elements and the underlying substrate. We have measured the resonant frequencies of split ring resonators and square loops fabricated on Si wafers with silicon dioxide thicknesses ranging from 0 to 10 nm. Resonance features blue shift with increasing silicon dioxide thickness. These effects are explained by the silicon dioxide layer forming a series capacitance to the fringing field across the elements. Resonance coupling to the Si-O vibrational absorption has been observed. Native oxide layers which are normally ignored in numerical simulations of metamaterials must be accounted for to produce accurate predictions.

  19. Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies

    SciTech Connect

    Zou, Longfang; López-García, Martin; Oulton, Ruth; Klemm, Maciej; Withayachumnankul, Withawat; Fumeaux, Christophe; Shah, Charan M.; Mitchell, Arnan; Bhaskaran, Madhu; Sriram, Sharath

    2014-11-10

    The capability of manipulating light at subwavelength scale has fostered the applications of flat metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high conductive losses of metals at optical frequencies. This letter investigates the spectral and angular characteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a linearly varying phase response. The far-field response of the metasurface can be decomposed into the response of a single grating element (sub-array) and the grating arrangement response. The analysis also reveals that coupling between resonators has a non-negligible impact on the angular response. Over a wide wavelength range, the simulated and measured angular characteristics of the metasurface provide a definite illustration of how different grating diffraction orders can be selectively suppressed or enhanced through antenna sub-array design.

  20. A Experimental Determination of the Resonant Frequency of Atoms Moving in a Medium

    NASA Astrophysics Data System (ADS)

    Beary, Daniel Andrew

    The theory of the Doppler-Recoil effect is described. In contrast to previous theories, the theory proposed by Haugan and Kowalski suggests that the frequency of the electromagnetic wave that excites a transition in an atom is a function of the velocity of that atom and the index of refraction of the medium. Following the path of Haugan and Kowalski, the Doppler Recoil equation is derived under the conditions of a rarefied gas acting as a continuous medium. Next, the theory of saturation spectroscopy is revised. This method of spectroscopy uses a pump and probe beam traveling collinearly in opposite directions. Beams of equal frequency in the lab frame interact with the zero axial velocity population within the gas when the beams are on resonance. For pump and probe beams of different frequencies, the atoms that they interact with will have an axial velocity component such that the Doppler shift leads to resonance with both beams. The purpose of this work is to verify the Doppler -Recoil formula proposed by Haugan and Kowalski. In the experiment performed, the resonant frequency of the stationary and moving velocity groups is determined using saturation spectroscopy. The theory predicts an average frequency shift of 307 Hz/^circC. The data show a shift of 94 kHz/^circ C. Because of the unexpected result, possible sources of errors such as pressure broadening, power broadening, and potential for systematic errors were examined. No explanation was found for these shifts.

  1. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  2. High-frequency current oscillations in graphene-boron nitride resonant tunnel diodes

    NASA Astrophysics Data System (ADS)

    Greenaway, Mark; Gaskell, Jenn; Eaves, Laurence; Novoselov, Kostya; Mishchenko, Artem; Geim, Andre; Fromhold, Mark

    The successful realisation of multilayer graphene-hBN-graphene resonant tunnelling diodes (graphene- RTDs) with negative differential conductance (NDC) and MHz current oscillations offers the exciting possibility of exploiting them as high-frequency oscillators and mixers. In this paper, we examine their potential for generating higher frequencies by simulating the oscillations in the tunnel current and charge that arise when the device is biased in the NDC region and placed in a resonant circuit. Using the Bardeen transfer Hamiltonian method, we examine the effect on the device characteristics of the twist angle, θ, between the two graphene electrodes, the hBN barrier thickness and of the carrier density in the graphene electrodes, which can be adjusted by chemical doping or by an applied bias voltage. The simulations accurately reproduce our recently-reported measurements on these RTDs (Fig. 4,). The results of simulations show that frequencies of tens of GHz are achievable by optimising the device parameters. Leverhulme Trust, UK.

  3. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Isić, Goran; Gajić, Radoš

    2013-01-01

    High confinement of surface plasmon polaritons in graphene at infrared frequencies enhances the light-matter interaction and can be used for the sensing of the environment. The considered sensing platform consists of parallel graphene ribbons which enables efficient coupling of an electromagnetic field into localized surface plasmons. Changes in the environment are then detected by measuring the resulting frequency shifts of the plasmonic resonances. It is shown that the graphene ribbons have the sensitivity comparable to the sensitivity of noble metal nanoparticles at visible frequencies, which enable sensing of only several nanometers thick films at wavelengths around ten microns. At the same time, the tunability of graphene plasmons enables a design of broadband substrates for surface enhanced infrared absorption of thin films. By changing the Fermi level in graphene, the plasmonic resonance of graphene ribbons can be adjusted to desired vibrational mode which facilitates detection of multiple absorption bands.

  4. Estimation of body resonances from a time-frequency analysis of violin vibrato

    NASA Astrophysics Data System (ADS)

    Mellody, Maureen; Wakefield, Gregory H.

    1999-11-01

    We present a signal-based technique for evaluating a pole-zero representation of the resonant response of a violin instrument. This technique combines time-frequency signal analysis with system identification techniques to determine the pole-zero function that would account for amplitude modulation observed on the partials of violin notes performed with vibrato. Violin vibrato signals are analyzed with the modal distribution to obtain values of instantaneous amplitude and frequency for each partial. From these, input and output functions are synthesized and used to estimate the violin body's impulse response using an infinite impulse response (IIR) system identification procedure. In each case, the input and output functions share the same instantaneous frequency of the measured partial. However, the rapid amplitude variations are present only on the output function. We report on the location and spacing of these estimated resonances and discuss their relationship to those obtained from theoretical predictions and other measurement procedures.

  5. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  6. Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation

    SciTech Connect

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Phelps, A. D. R.; Robertson, C. W.; Whyte, C. G.; He, W.; Gillespie, K. M.; Cross, A. W.; Bingham, R.

    2008-05-15

    Auroral Kilometric Radiation is emitted from regions of depleted plasma density in the Earth's polar magnetosphere. The radiation frequency is close to the local electron cyclotron frequency, polarized in the X-mode with an efficiency of {approx}1%, with power up to 1 GW. Kinetic analysis of the instability in the descending auroral flux indicated that the phenomena scaled with the cyclotron frequency. Therefore, an experimental reproduction of the auroral geometry has been created scaled to laboratory dimensions by raising the radiation frequency to the microwave range. The experiment transports a 75-85 keV electron beam through a region of increasing magnetic flux density, with a mirror ratio of up to 30. The experiments measured the mode, spectrum, power, and conversion efficiency of the emitted radiation as a function of the mirror ratio in two resonance regimes, with frequencies of 4.42 and 11.7 GHz. The microwave diagnostics and measurements will be presented in this paper.

  7. Monte Carlo orbit/full wave simulation of ion cyclotron resonance frequency wave damping on resonant ions in tokamaks

    SciTech Connect

    Choi, M.; Chan, V.S.; Pinsker, R.I.; Chiu, S.C.; Heidbrink, W.W.

    2005-07-15

    To investigate the experimentally observed interaction between beam ion species and fast Alfven wave (FW), a Monte Carlo code, ORBIT-RF [V. S. Chan, S. C. Chiu, and Y. A. Omelchenko, Phys. Plasmas 9, 501 (2002)], which solves the time-dependent Hamiltonian guiding center drift equations, has been upgraded to incorporate a steady-state neutral beam ion slowing-down distribution, a quasilinear high harmonic radio frequency diffusion operator and the wave fields from the two-dimensional ion cyclotron resonance frequency full wave code (TORIC4) [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)]. Comparison of ORBIT-RF simulation of power absorption with fixed amplitudes of FW fields from TORIC4 power absorption calculation, which assumes Maxwellian plasma distributions, attains agreement within a factor of two. The experimentally measured enhanced neutron rate is reproduced to within 30% from ORBIT-RF simulation using a single dominant toroidal and poloidal wave number.

  8. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Hanham, S. M.; Watts, C.; Otter, W. J.; Lucyszyn, S.; Klein, N.

    2015-07-01

    We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ˜4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ˜5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

  9. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    SciTech Connect

    Hanham, S. M. Watts, C.; Klein, N.; Otter, W. J.; Lucyszyn, S.

    2015-07-20

    We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ∼4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ∼5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

  10. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-09-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  11. Reentrant radio-frequency resonator for automated phase-equilibria and dielectric measurements in fluids

    SciTech Connect

    Goodwin, A.R.; Mehl, J.B.; Moldover, M.R.

    1996-12-01

    A reentrant rf cavity resonator has been developed for automated detection of phase separation of fluid mixtures contained within the cavity. Successful operation was demonstrated by redetermining the phase boundaries of a CO{sub 2}+C{sub 2}H{sub 6} mixture in the vicinity of its critical point. We developed an accurate electrical model for the resonator and used helium to determine the deformation of the resonator under pressure. With the model and pressure compensation, the resonator was capable of very accurate dielectric measurements. We confirmed this by remeasuring the molar dielectric polarizability {ital A}{sub {epsilon}} of argon and obtained the result {ital A}{sub {epsilon}}=(4.140{plus_minus}0.006) cm{sup 3}/mol (standard uncertainty) in excellent agreement with published values. We exploited the capability for accurate dielectric measurements to determine the densities of the CO{sub 2}+C{sub 2}H{sub 6} mixture at the phase boundaries and to determine the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant. Near the operating frequency of 375 MHz the capacitor in the resonator has an impedance near 14 {Omega}. This low impedance is more tolerant of electrical conductivity within the test fluid and in parallel paths in the support structures than comparable capacitors operating at audio frequencies. This will be an advantage for operation at high temperatures where some conductivity must be expected in all fluids. Of further value for high-temperature applications, the present rf resonator has only two metal{endash}insulator joints. These joints seal coaxial cables; neither joint is subjected to large mechanical stresses and neither joint is required to maintain precise dimensional tolerances. The resonator is rugged and may be operated with inexpensive electronics.

  12. Quasipatterns in a Model for Chemical Oscillations Forced at Multiple Resonance Frequencies

    SciTech Connect

    Conway, Jessica M.; Riecke, Hermann

    2007-11-23

    Multifrequency forcing of systems undergoing a Hopf bifurcation to spatially homogeneous oscillations is investigated. For weak forcing composed of frequencies near the 1 ratio 1, 1 ratio 2, and 1 ratio 3 resonances, such systems can be described systematically by a suitably extended complex Ginzburg-Landau equation. Weakly nonlinear analysis shows that, generically, the forcing function can be tuned such that resonant triad interactions with weakly damped modes stabilize subharmonic 4- and 5-mode quasipatterns. In simulations starting from random initial conditions, domains of these quasipatterns compete and yield complex, slowly ordering patterns.

  13. Finite size effect on spread of resonance frequencies in arrays of coupled vortices

    SciTech Connect

    Vogel, Andreas; Drews, André; Im, Mi-Young; Fischer, Peter; Meier, Guido

    2011-01-25

    Dynamical properties of magnetic vortices in arrays of magnetostatically coupled ferromagnetic disks are studied by means of a broadband ferromagnetic-resonance (FMR) setup. Magnetic force microscopy and magnetic transmission soft X-ray microscopy are used to image the core polarizations and the chiralities which are both found to be randomly distributed. The resonance frequency of vortex-core motion strongly depends on the magnetostatic coupling between the disks. The parameter describing the relative broadening of the absorption peak observed in the FMR transmission spectra for a given normalized center-to-center distance between the elements is shown to depend on the size of the array.

  14. Effect of Alfvén resonance on low-frequency fast wave current drive

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Stallings, D. C.

    1995-08-01

    The Alfvén resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 31, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss.

  15. Two novel measurements for the drive-mode resonant frequency of a micromachined vibratory gyroscope.

    PubMed

    Wang, Ancheng; Hu, Xiaoping; Luo, Bing; Jiang, Mingming; He, Xiaofeng; Tang, Kanghua

    2013-01-01

    To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG), one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA) and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  16. Self-Oscillation-Based Frequency Tracking for the Drive and Detection of Resonance Magnetometers

    PubMed Central

    Tian, Zheng; Ren, Dahai; You, Zheng

    2016-01-01

    This paper reports a drive and detection method for Micro-Electro-Mechanical System (MEMS)-based Lorentz-force resonance magnetometers. Based on the proposed MEMS magnetometer, a drive and detection method was developed by using self-oscillation to adjust the mismatch between the mechanical resonance frequency and the coil drive frequency as affected by temperature fluctuations and vibration amplitude changes. Not only was the signal-to-noise ratio enhanced by the proposed method compared to the traditional method, but the test system automatically reached resonance frequency very rapidly when powered on. Moreover, the linearity and the measurement range were improved by the magnetic feedback generated by the coil. Test results indicated that the sensitivity of the proposed magnetometer is 59.6 mV/μT and its noise level is 0.25 μT. When operating in ±65 μT, its nonlinearity is 2.5‰—only one-tenth of the former prototype. Its power consumption is only about 250 mW and its size is only 28 mm × 28 mm × 10 mm, or about one-eighth of the original sensor; further, unlike the former device, it can distinguish both positive and negative magnetic fields. The proposed method can also be applied in other MEMS sensors such as gyroscopes and micromirrors to enhance their frequency tracking ability. PMID:27213401

  17. Resonance properties of Ag-ZnO nanostructures at terahertz frequencies

    PubMed Central

    Sanchez, John E.; Díaz de León, Ramón; Mendoza-Santoyo, Fernando; González, Gabriel; José-Yacaman, Miguel; Ponce, Arturo; González, Francisco Javier

    2015-01-01

    Nanoantennas have been fabricated by scaling down traditional antenna designs using nanolithographic techniques and testing them at different optical wavelengths, these particular nanoantennas have shown responses in a broad range of frequencies going from visible wavelengths to the range of the terahertz. Some self-assembled nanostructures exist that exhibit similar shapes and properties to those of traditional antenna structures. In this work the emission and absorption properties of self-assembled nanostructures made of zinc oxide nanorods on silver nanowires, which resemble traditional dipole antennas, were measured and simulated in order to test their antenna performance. These structures show resonant properties in the 10-120 THz range, with the main resonance at 60 THz. The radiation pattern of these nanostructures was also obtained by numerical simulations, and it is shown that it can be tailored to increase or decrease its directivity as a function of the location of the energy source of excitation. Experimental measurements were performed by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) in order to show existing vibrational frequencies at the resonant frequencies of the nanostructures, measurements were made from ~9 to 103 THz and the results were in agreement with the simulations. These characteristics make these metal-semiconductor Ag/ZnO nanostructures useful as self-assembled nanoantennas in applications such as terahertz spectroscopy and sensing at terahertz frequencies. PMID:26406710

  18. HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS

    SciTech Connect

    Leishear, R.

    2010-05-02

    The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.

  19. Displacement sensing based on resonant frequency monitoring of electrostatically actuated curved micro beams

    NASA Astrophysics Data System (ADS)

    Krakover, Naftaly; Ilic, B. Robert; Krylov, Slava

    2016-11-01

    The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to  ≈560 Hz V‑1 and results with a movable electrode allow motion sensitivity up to  ≈1.5 Hz nm‑1. Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains.

  20. Self-Oscillation-Based Frequency Tracking for the Drive and Detection of Resonance Magnetometers.

    PubMed

    Tian, Zheng; Ren, Dahai; You, Zheng

    2016-01-01

    This paper reports a drive and detection method for Micro-Electro-Mechanical System (MEMS)-based Lorentz-force resonance magnetometers. Based on the proposed MEMS magnetometer, a drive and detection method was developed by using self-oscillation to adjust the mismatch between the mechanical resonance frequency and the coil drive frequency as affected by temperature fluctuations and vibration amplitude changes. Not only was the signal-to-noise ratio enhanced by the proposed method compared to the traditional method, but the test system automatically reached resonance frequency very rapidly when powered on. Moreover, the linearity and the measurement range were improved by the magnetic feedback generated by the coil. Test results indicated that the sensitivity of the proposed magnetometer is 59.6 mV/μT and its noise level is 0.25 μT. When operating in ±65 μT, its nonlinearity is 2.5‰-only one-tenth of the former prototype. Its power consumption is only about 250 mW and its size is only 28 mm × 28 mm × 10 mm, or about one-eighth of the original sensor; further, unlike the former device, it can distinguish both positive and negative magnetic fields. The proposed method can also be applied in other MEMS sensors such as gyroscopes and micromirrors to enhance their frequency tracking ability. PMID:27213401

  1. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Gao, Nansha

    2014-09-01

    In this paper, low-frequency band gaps in two-dimensional Helmholtz resonant phononic crystals (PCs) composed of multilayer-split-tube resonators are investigated. The band structures, transmission spectra, and pressure field of the acoustic modes of these PCs are calculated by using a finite element method (FEM). The numerical results show that the first band gap of the structure is from 88 to 140 Hz. The transmission spectra are in accordance with those of the dispersion relation calculations. The acoustic modes of the bands are analyzed to reveal the nature of this phenomenon. It is found that the interaction between the local resonance and the traveling wave modes in proposed structure is responsible for the formation of the first band gap. The influences of the structural parameters on the band gaps are investigated by using FEM and the electrical circuit analogy. Numerical results show that the band gaps can be modulated in an even wider frequency range by changing the structural parameters, such as the rotation angle, the number of tubes, and the radius of the outer tube. The structural design results provide an effective way for phononic crystals to obtain the low-frequency band gaps, which have potential application in the low-frequency noise reduction.

  2. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency

    NASA Technical Reports Server (NTRS)

    Dean, L. W.

    1975-01-01

    An analytical and test program was conducted to evaluate means for increasing the effectiveness of low frequency sound absorbing liners for aircraft turbine engines. Three schemes for coupling low frequency absorber elements were considered. These schemes were analytically modeled and their impedance was predicted over a frequency range of 50 to 1,000 Hz. An optimum and two off-optimum designs of the most promising, a parallel coupled scheme, were fabricated and tested in a flow duct facility. Impedance measurements were in good agreement with predicted values and validated the procedure used to transform modeled parameters to hardware designs. Measurements of attenuation for panels of coupled resonators were consistent with predictions based on measured impedance. All coupled resonator panels tested showed an increase in peak attenuation of about 50% and an increase in attenuation bandwidth of one one-third octave band over that measured for an uncoupled panel. These attenuation characteristics equate to about 35% greater reduction in source perceived noise level (PNL), relative to the uncoupled panel, or a reduction in treatment length of about 24% for constant PNL reduction. The increased effectiveness of the coupled resonator concept for attenuation of low frequency broad spectrum noise is demonstrated.

  3. Self-Oscillation-Based Frequency Tracking for the Drive and Detection of Resonance Magnetometers.

    PubMed

    Tian, Zheng; Ren, Dahai; You, Zheng

    2016-05-21

    This paper reports a drive and detection method for Micro-Electro-Mechanical System (MEMS)-based Lorentz-force resonance magnetometers. Based on the proposed MEMS magnetometer, a drive and detection method was developed by using self-oscillation to adjust the mismatch between the mechanical resonance frequency and the coil drive frequency as affected by temperature fluctuations and vibration amplitude changes. Not only was the signal-to-noise ratio enhanced by the proposed method compared to the traditional method, but the test system automatically reached resonance frequency very rapidly when powered on. Moreover, the linearity and the measurement range were improved by the magnetic feedback generated by the coil. Test results indicated that the sensitivity of the proposed magnetometer is 59.6 mV/μT and its noise level is 0.25 μT. When operating in ±65 μT, its nonlinearity is 2.5‰-only one-tenth of the former prototype. Its power consumption is only about 250 mW and its size is only 28 mm × 28 mm × 10 mm, or about one-eighth of the original sensor; further, unlike the former device, it can distinguish both positive and negative magnetic fields. The proposed method can also be applied in other MEMS sensors such as gyroscopes and micromirrors to enhance their frequency tracking ability.

  4. Resonance properties of Ag-ZnO nanostructures at terahertz frequencies.

    PubMed

    Sanchez, John E; Díaz de León, Ramón; Mendoza-Santoyo, Fernando; González, Gabriel; José-Yacaman, Miguel; Ponce, Arturo; González, Francisco Javier

    2015-09-21

    Nanoantennas have been fabricated by scaling down traditional antenna designs using nanolithographic techniques and testing them at different optical wavelengths, these particular nanoantennas have shown responses in a broad range of frequencies going from visible wavelengths to the range of the terahertz. Some self-assembled nanostructures exist that exhibit similar shapes and properties to those of traditional antenna structures. In this work the emission and absorption properties of self-assembled nanostructures made of zinc oxide nanorods on silver nanowires, which resemble traditional dipole antennas, were measured and simulated in order to test their antenna performance. These structures show resonant properties in the 10-120 THz range, with the main resonance at 60 THz. The radiation pattern of these nanostructures was also obtained by numerical simulations, and it is shown that it can be tailored to increase or decrease its directivity as a function of the location of the energy source of excitation. Experimental measurements were performed by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) in order to show existing vibrational frequencies at the resonant frequencies of the nanostructures, measurements were made from ~9 to 103 THz and the results were in agreement with the simulations. These characteristics make these metal-semiconductor Ag/ZnO nanostructures useful as self-assembled nanoantennas in applications such as terahertz spectroscopy and sensing at terahertz frequencies. PMID:26406710

  5. Nonresonant corrections for the optical resonance frequency measurements in the hydrogen atom

    SciTech Connect

    Labzowsky, Leonti; Schedrin, Gavriil; Solovyev, Dmitrii; Chernovskaya, Evgenia; Plunien, Guenter; Karshenboim, Savely

    2009-05-15

    The deviation of the natural spectral line profile from the Lorentz shape for the optical resonant frequency measurements is considered. This deviation leads to an asymmetry, which is mainly due to nonresonant correction to the resonant Lorentz profile. The nonresonant corrections are studied for the different types of the atomic resonant experiments. The most accurate recent optical resonance experiments are analyzed, i.e., the two-photon 1s-2s resonance excitation of the hydrogen atom with the delayed decay in the external electric field. The description of the nonresonant correction in the latter case requires the employment of QED with different in and out Hamiltonians. The nonresonant corrections for this experiment are investigated and found to be about 10{sup -5} Hz, while the recent experimental uncertainty is 34 Hz and in the near feature is expected to be a few hertz. The projected 1s-2s resonance excitation experiment with the three-photon ionization detection (which is now in progress) is also considered.

  6. Two-dimensional sup 1 H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain

    SciTech Connect

    Darbon, H. ); Weber, C.; Braun, W. )

    1991-02-19

    Sequence-specific nuclear magnetic resonance assignments for the polypeptide backbone and for most of the amino acid side-chain protons, as well as the general folding of AaH IT, are described. AaH IT is a neurotoxin purified from the venom of the scorpion Androctonus australis Hector and is specifically active on the insect nervous system. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The backbone folding is determined by distance geometry calculations with the DISMAN program. The regular secondary structure includes two and a half turns of {alpha}-helix running from residues 21 to 30 and a three-stranded antiparallel {beta}-sheet including peptides 3-5, 34-38, and 41-46. Two tight turns are present, one connecting the end of the {alpha}-helix to an external strand of the {beta}-sheet, i.e., turn 31-34, and another connecting this same strand to the central one, i.e., turn 38-41. The differences in the specificity of these related proteins, which are able to discriminate between mammalian and insect voltage-dependent sodium channels of excitable tissues, are most probably brought about by the position of the C-terminal peptide with regard to a hydrophobic surface common to all scorpion toxins examined thus far. Thus, the interaction of a given scorpion toxin with its receptor might well be governed by the presence of this solvent-exposed hydrophobic surface, whereas adjacent areas modulate the specificity of the interaction.

  7. Two-dimensional 1H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain.

    PubMed

    Darbon, H; Weber, C; Braun, W

    1991-02-19

    Sequence-specific nuclear magnetic resonance assignments for the polypeptide backbone and for most of the amino acid side-chain protons, as well as the general folding of AaH IT, are described. AaH IT is a neurotoxin purified from the venom of the scorpion Androctonus australis Hector and is specifically active on the insect nervous system. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The backbone folding is determined by distance geometry calculations with the DISMAN program. The regular secondary structure includes two and a half turns of alpha-helix running from residues 21 to 30 and a three-stranded antiparallel beta-sheet including peptides 3-5, 34-38, and 41-46. Two tight turns are present, one connecting the end of the alpha-helix to an external strand of the beta-sheet, i.e., turn 31-34, and another connecting this same strand to the central one, i.e., turn 38-41. These structure elements are very similar to the secondary structure reported in single crystals for either variant 3 from the scorpion Centruroides sculpturatus Ewing (CsE V3) or toxin II from the scorpion A. australis Hector (AaH II). The differences in the specificity of these related proteins, which are able to discriminate between mammalian and insect voltage-dependent sodium channels of excitable tissues, are most probably brought about by the position of the C-terminal peptide with regard to a hydrophobic surface common to all scorpion toxins examined thus far. This surface is made of an aromatic cluster that is surrounded by long hydrophobic side-chain residues, as well as the loops protruding out of it. Thus, the interaction of a given scorpion toxin with its receptor might well be governed by the presence of this solvent-exposed hydrophobic surface, whereas adjacent areas modulate the specificity of the interaction.

  8. Spin evolution in a radio frequency field studied through muon spin resonance.

    PubMed

    Clayden, Nigel J; Cottrell, Stephen P; McKenzie, Iain

    2012-01-01

    The application of composite inversion pulses to a novel area of magnetic resonance, namely muon spin resonance, is demonstrated. Results confirm that efficient spin inversion can readily be achieved using this technique, despite the challenging experimental setup required for beamline measurements and the short lifetime (≈2.2μs) associated with the positive muon probe. Intriguingly, because the muon spin polarisation is detected by positron emission, the muon magnetisation can be monitored during the radio-frequency (RF) pulse to provide a unique insight into the effect of the RF field on the spin polarisation. This technique is used to explore the application of RF inversion sequences under the non-ideal conditions typically encountered when setting up pulsed muon resonance experiments.

  9. Broadening the Frequency Bandwidth of Piezoelectric Energy Harvesters Using Coupled Linear Resonators

    NASA Astrophysics Data System (ADS)

    Sadeqi, Soheil

    The desire to reduce power consumption of current integrated circuits has led design engineers to focus on harvesting energy from free ambient sources such as vibrations. The energy harvested this way can eliminate the need for battery replacement, particularly, in low-energy remote sensing and wireless devices. Currently, most vibration-based energy harvesters are designed as linear resonators, therefore, they have a narrow resonance frequency. The optimal performance of such harvesters is achieved only when their resonance frequency is matched with the ambient excitation. In practice, however, a slight shift of the excitation frequency will cause a dramatic reduction in their performance. In the majority of cases, the ambient vibrations are totally random with their energy distributed over a wide frequency spectrum. Thus, developing techniques to extend the bandwidth of vibration-based energy harvesters has become an important field of research in energy harvesting systems. This thesis first reviews the broadband vibration-based energy harvesting techniques currently known in some detail with regard to their merits and applicability under different circumstances. After that, the design, fabrication, modeling and characterization of three new piezoelectric-based energy harvesting mechanism, built typically for rotary motion applications, is discussed. A step-by-step procedure is followed in order to broaden the bandwidth of such energy harvesters by introducing a coupled spring-mass system attached to a PZT beam undergoing rotary motion. It is shown that the new strategies can indeed give rise to a wide-band frequency response making it possible to fine-tune their dynamical response. The numerical results are shown to be in good agreement with the experimental data as far as the frequency response is concerned.

  10. Low-distortion detection system for frequency-swept ion cyclotron resonance spectrometry

    SciTech Connect

    Wise, M.B.; Freiser, B.S.

    1986-07-01

    A high-performance frequency-swept capacitance bridge detector for ion cyclotron resonance (ICR) spectrometry has been constructed in our laboratory. Although the basic design of the system is similar to that of previously reported bridge circuits, careful design, layout, construction, and component selection have resulted in excellent frequency-swept performance over a bandwidth of 15 kHz to 1 MHz. At a magnetic field strength of 1.0 T, this corresponds to a mass range of 15--1000 Daltons. Problems with base-line drift and frequency-dependent signal distortion common to many other designs have been significantly reduced. Circuit diagrams are included for all parts of the detector and frequency response curves have been included where appropriate. In addition, several simple circuit diagrams for support devices have also been included.

  11. Inverse Bloch-oscillator: Strong Thz-photocurrent resonances at the Bloch frequency

    SciTech Connect

    Unterrainer, K.; Keay, B.J.; Wanke, M.C.

    1995-12-31

    We have observed resonant changes in the current-voltage characteristics of miniband semiconductor superlattices when the Bloch frequency is resonant with a terahertz field and its harmonics: the inverse Bloch oscillator effect. The resonant feature consists of a peak in the current which grows with increasing laser intensity accompanied by a decrease of the current at the low bias side. The peak position moves linearly with the laser frequency. When the intensity is increased further the first peak starts to decrease and a second peak at about twice the voltage of the first peak is observed due to a two photon resonance. At the highest intensities we observe up to a four photon resonance. A superlattice is expected to show negative differential conductance due to the strong nonparabolicity of the miniband. In this situation the carriers should undergo Bloch oscillations with a frequency {omega}{sub B} = eEd/h. Transient Bloch oscillations of photo excited carriers have been observed in time resolved Thz emission measurements. However, the possibility of Thz generation form a DC voltage biased superlattice is still under discussion. We have approached this problem by exploring the inverse Bloch oscillator effect in a superlattice excited by the Thz radiation form the UCSB FEL. The superlattice consists of 40 periods of 80{angstrom} GaAs wells and 20{angstrom} Al{sub 0.3}Ga{sub 0.7}As barriers. To couple the electric field of the Terahertz radiation parallel to the growth direction a coplanar bowtie antenna has been employed. Our results show clearly that the external radiation couples to Bloch oscillations in contrary to theoretical suggestions that Thz radiation would not couple to a uniform Wannier Stark ladder. We conclude that this result is intimately related to dissipation and line broadening of the otherwise identical states in the ladder: absorption appears above the Wannier Stark splitting ({omega}{sub B}<{omega}) and gain below ({omega}{sub B}>{omega}).

  12. Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging.

    PubMed

    Maxwell, Adam; Huang, Sheng-Wen; Ling, Tao; Kim, Jin-Sung; Ashkenazi, Shai; Guo, L Jay

    2008-01-01

    Polymer microring resonators fabricated by nanoimprinting are presented as a means of ultrasound detection. Acoustic waves impinging on a ring-shaped optical resonator cause strain in the ring dimensions, modulating optical output. Basic acoustic and optical characteristics of the microring sensor are presented. Measurements at several frequencies show a high sensitivity and low noise-equivalent pressure. The angular response is determined by sensing the optoacoustic excitation of a 49 μm polyester microsphere and shows wide-angle sensitivity. A 1-D array consisting of 4 microrings is demonstrated using wavelength multiplexing for addressing each element. The high sensitivity, bandwidth, and angular response make it a potentially useful sensor platform for many applications including high-frequency ultrasonic and photoacoustic imaging.

  13. Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging

    PubMed Central

    Maxwell, Adam; Huang, Sheng-Wen; Ling, Tao; Kim, Jin-Sung; Ashkenazi, Shai; Guo, L. Jay

    2009-01-01

    Polymer microring resonators fabricated by nanoimprinting are presented as a means of ultrasound detection. Acoustic waves impinging on a ring-shaped optical resonator cause strain in the ring dimensions, modulating optical output. Basic acoustic and optical characteristics of the microring sensor are presented. Measurements at several frequencies show a high sensitivity and low noise-equivalent pressure. The angular response is determined by sensing the optoacoustic excitation of a 49 μm polyester microsphere and shows wide-angle sensitivity. A 1-D array consisting of 4 microrings is demonstrated using wavelength multiplexing for addressing each element. The high sensitivity, bandwidth, and angular response make it a potentially useful sensor platform for many applications including high-frequency ultrasonic and photoacoustic imaging. PMID:20700482

  14. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; De Salvo Souza, L.; Pierini, P.; Scharlemann, E. T.

    1990-10-01

    FEL operation at short wavelengths is limited by electron-beam quality, by the availability of mirrors for oscillators and by the availability of input sources for FEL amplifiers. It is possible to use an FEL amplifier as a resonant-frequency tripling device, generating light and strong bunching at the third harmonic of a conventional input source in an initial wiggler section, then using a second wiggler section resonant at the tripled frequency to amplify the short-wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of the electron-beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of the electron-beam power conversion to 80 nm light of nearly 10-4 was obtained.

  15. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    NASA Astrophysics Data System (ADS)

    Bonifacio, R.; Desalvosouza, L.; Pierini, P.; Scharlemann, E. T.

    FEL operation at short wavelength is limited by electron beam quality, by the availability of mirrors for oscillators, and by the availability of input sources for FEL amplifiers. It is possible to use and FEL amplifier as a resonant frequency tripling device, generating light and strong bunching at the 3rd harmonic of a conventional input source in an initial section of wiggler, then using a second section of wiggler resonant at the tripled frequency to amplify the short wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of electron beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of conversion of electron beam power to 80 nm light of nearly 10(exp -4) was obtained.

  16. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier

    SciTech Connect

    Bonifacio, R.; de Salvo Souza, L.; Pierini, P. . Dipt. di Fisica Istituto Nazionale di Fisica Nucleare, Milan ); Scharlemann, E.T. )

    1989-01-01

    FEL operation at short wavelength is limited by electron beam quality, by the availability of mirrors for oscillators, and by the availability of input sources for FEL amplifiers. It is possible to use and FEL amplifier as a resonant frequency tripling device, generating light and strong bunching at the 3rd harmonic of a conventional input source in an initial section of wiggler, then using a second section of wiggler resonant at the tripled frequency to amplify the short wavelength light. Neither mirrors nor a short-wavelength input source are required, and some relaxation of electron beam quality appears to be possible. We illustrate the scheme with a one-dimensional model and then with NUTMEG simulations of an 80 nm FEL amplifier initiated by a 240 nm input signal, in which an efficiency of conversion of electron beam power to 80 nm light of nearly 10{sup -4} was obtained. 3 refs., 6 figs., 1 tab.

  17. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators.

    PubMed

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-10-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. PMID:24008430

  18. Frequency stabilization and transverse mode discrimination in injection-seeded unstable resonator TEA CO2 lasers

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.

    1987-01-01

    Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.

  19. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    NASA Astrophysics Data System (ADS)

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  20. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    SciTech Connect

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-08-15

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities.

  1. Time-of-flight detection of ultra-cold atoms using resonant frequency modulation imaging.

    PubMed

    Hardman, K S; Wigley, P B; Everitt, P J; Manju, P; Kuhn, C C N; Robins, N P

    2016-06-01

    Resonant frequency modulation imaging is used to detect free falling ultra-cold atoms. A theoretical comparison of fluorescence imaging (FI) and frequency modulation imaging (FMI) is made, indicating that for low optical depth clouds, FMI accomplished a higher signal-to-noise ratio under conditions necessary for a 200 μm spatially resolved atom interferometer. A 750 ms time-of-flight measurement reveals near atom shot-noise limited number measurements of 2×106 Bose-condensed Rb87 atoms. The detection system is applied to high precision spinor BEC based atom interferometer.

  2. Fractal frequency spectrum in laser resonators and three-dimensional geometric topology of optical coherent waves

    NASA Astrophysics Data System (ADS)

    Tung, J. C.; Tuan, P. H.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2016-08-01

    We theoretically verify that the symmetry breaking in spherical resonators can result in a fractal frequency spectrum that is full of numerous new accidental degeneracies to cluster around the unperturbed degenerate cavity. We further experimentally discover that the fractal frequency spectrum excellently reflects the intimate connection between the emission power and the degenerate mode numbers. It is observed that the wave distributions of lasing modes at the accidental degeneracies are strongly concentrated on three-dimensional (3D) geometric topology. Considering the overlapping effect, the wave representation of the coherent states is analytically derived to manifest the observed 3D geometric surfaces.

  3. Time-of-flight detection of ultra-cold atoms using resonant frequency modulation imaging.

    PubMed

    Hardman, K S; Wigley, P B; Everitt, P J; Manju, P; Kuhn, C C N; Robins, N P

    2016-06-01

    Resonant frequency modulation imaging is used to detect free falling ultra-cold atoms. A theoretical comparison of fluorescence imaging (FI) and frequency modulation imaging (FMI) is made, indicating that for low optical depth clouds, FMI accomplished a higher signal-to-noise ratio under conditions necessary for a 200 μm spatially resolved atom interferometer. A 750 ms time-of-flight measurement reveals near atom shot-noise limited number measurements of 2×106 Bose-condensed Rb87 atoms. The detection system is applied to high precision spinor BEC based atom interferometer. PMID:27244400

  4. Resonant instability near the two-ion crossover frequency in the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Thorne, R. M.; Moses, J. J.

    1985-07-01

    Thorne and Scarf (1984) have presented evidence for the existence of intense low-frequency fluctuating electric fields in the Io plasma torus. Two distinct mechanisms have been proposed for this phenomenon, namely, ion cyclotron instability which occurs at intermediate latitude, and whistler instability near the equator. The present investigation is concerned with a quantitative appraisal of each of these mechanisms, taking into account an evaluation of the net convective growth rate of waves along ray paths which traverse the Io torus. Aspects of wave propagation near the crossover frequency are considered along with questions regarding the resonant interaction with energetic particles.

  5. Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere

    SciTech Connect

    Kuo, Spencer P.

    2013-09-15

    Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

  6. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  7. Stationary and high-frequency pulsed electron paramagnetic resonance of a calcified atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Abdul'Yanov, V. A.; Galiullina, L. F.; Galyavich, A. S.; Izotov, V. G.; Mamin, G. V.; Orlinskii, S. B.; Rodionov, A. A.; Salakhov, M. Kh.; Silkin, N. I.; Sitdikova, L. M.; Khairullin, R. N.; Chelyshev, Yu. A.

    2008-09-01

    New possibilities of applying high-frequency electron paramagnetic resonance in medicine are demonstrated on an example of the investigation of a calcified atherosclerotic plaque. After the irradiation of the atherosclerotic plaque by x rays, a new type of paramagnetic centers—organomineral radicals—is detected. The spectral and relaxation characteristics of these radicals depend on the calcification degree of the atherosclerotic plaque and can be used for diagnostics.

  8. Power conversion distribution system using a resonant high-frequency AC link

    NASA Technical Reports Server (NTRS)

    Sood, P. K.; Lipo, T. A.

    1986-01-01

    Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

  9. Effective side length formula for resonant frequency of equilateral triangular microstrip antenna

    NASA Astrophysics Data System (ADS)

    Guney, Kerim; Kurt, Erhan

    2016-02-01

    A novel and accurate expression is obtained by employing the differential evolution algorithm for the effective side length (ESL) of the equilateral triangular microstrip antenna (ETMA). This useful formula allows the antenna engineers to accurately calculate the ESL of the ETMA. The computed resonant frequencies (RFs) show very good agreement with the experimental RFs when this accurate ESL formula is utilised for the computation of the RFs for the first five modes.

  10. Resonance in the Mouse Tibia as a Predictor of Frequencies and Locations of Loading-Induced Bone Formation

    PubMed Central

    Zhao, Liming; Dodge, Todd; Nemani, Arun; Yokota, Hiroki

    2013-01-01

    To enhance new bone formation for the treating of patients with osteopenia and osteoporosis, various mechanical loading regimens have been developed. Although a wide spectrum of loading frequencies is proposed in those regimens, a potential linkage between loading frequencies and locations of loading-induced bone formation is not well understood. In this study, we addressed a question: Does mechanical resonance play a role in frequency dependent bone formation? If so, can the locations of enhanced bone formation be predicted through the modes of vibration? Our hypothesis is that mechanical loads applied at a frequency near the resonant frequencies enhance bone formation, specifically in areas that experience high principal strains. To test the hypothesis, we conducted axial tibia loading using low, medium, or high frequency to the mouse tibia, as well as finite element analysis. The experimental data demonstrated dependence of the maximum bone formation on location and frequency of loading. Samples loaded with the low frequency waveform exhibited peak enhancement of bone formation in the proximal tibia, while the high frequency waveform offered the greatest enhancement in the midshaft and distal sections. Furthermore, the observed dependence on loading frequencies was correlated to the principal strains in the first five resonance modes at 8.0 to 42.9 Hz. Collectively, the results suggest that resonance is a contributor to the frequencies and locations of maximum bone formation. Further investigation of the observed effects of resonance may lead to the prescribing of personalized mechanical loading treatments. PMID:23575747

  11. Analytical Modeling for the Bending Resonant Frequency of Multilayered Microresonators with Variable Cross-Section

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; Plascencia-Mora, Hector; Rodríguez-Morales, Ángel L.; Lu, Jian

    2011-01-01

    Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode) through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs) and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator’s layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application. PMID:22164071

  12. A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications

    NASA Astrophysics Data System (ADS)

    Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.

    2009-03-01

    Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.

  13. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  14. Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Wilczek, Sebastian; Trieschmann, Jan; Eremin, Denis; Brinkmann, Ralf Peter; Schulze, Julian; Schuengel, Edmund; Derzsi, Aranka; Korolov, Ihor; Hartmann, Peter; Donkó, Zoltán; Mussenbrock, Thomas

    2016-06-01

    Low pressure capacitive radio frequency (RF) plasmas are often described by equivalent circuit models based on fluid approaches that predict the self-excitation of resonances, e.g., high frequency oscillations of the total current in asymmetric discharges, but do not provide a kinetic interpretation of these effects. In fact, they leave important questions open: How is current continuity ensured in the presence of energetic electron beams generated by the expanding sheaths that lead to a local enhancement of the conduction current propagating through the bulk? How do the beam electrons interact with cold bulk electrons? What is the kinetic origin of resonance phenomena? Based on kinetic simulations, we find that the energetic beam electrons interact with cold bulk electrons (modulated on a timescale of the inverse local electron plasma frequency) via a time dependent electric field outside the sheaths. This electric field is caused by the electron beam itself, which leaves behind a positive space charge, that attracts cold bulk electrons towards the expanding sheath. The resulting displacement current ensures current continuity by locally compensating the enhancement of the conduction current. The backflow of cold electrons and their interaction with the nonlinear plasma sheath cause the generation of multiple electron beams during one phase of sheath expansion and contribute to a strongly non-sinusoidal RF current. These kinetic mechanisms are the basis for a fundamental understanding of the electron power absorption dynamics and resonance phenomena in such plasmas, which are found to occur in discharges of different symmetries including perfectly symmetric plasmas.

  15. A simple method for extracting material parameters of multilayered MEMS structures using resonance frequency measurements

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Zhou, Zai-Fa; Li, Wei-Hua; Huang, Qing-An

    2014-07-01

    Multilayered structures are increasingly used in MEMS. Based on the resonant frequency of the doubly-clamped multilayered beam, the Young’s modulus and residual stress for an individual layer have been measured by designing beam test structures for each layer with different widths. Taking into account the buckling or no buckling problem of the multilayered beam, this paper introduces a model for the resonant frequency of the beam. An approach to extract the Young’s modulus and residual stress for the individual layer is developed. The validity of this approach has been studied using finite element modeling. As a multilayered example, test structures for a gold/polysilicon bilayer beam were fabricated. A scanning laser Doppler vibrometer system was used to measure the resonant frequency of the beam. The extracted parameters are that the average value of Young’s modulus of polysilicon and gold are 133.7 GPa and 78.6 GPa with standard deviation being 4.2 GPa and 11.5 GPa, respectively; the average value of residual stress of polysilicon and gold are 13.9 MPa (compressive) and 19.7 MPa (tensile) with standard deviation being 0.47 MPa and 4.4 MPa, respectively.

  16. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  17. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.

    PubMed

    Boudot, R; Li, M D; Giordano, V; Rolland, N; Rolland, P A; Vincent, P

    2011-03-01

    This paper describes a 4.596 GHz frequency synthesis based on a 2.1 GHz solid mounted resonator (SMR) voltage-controlled oscillator (VCO). The SMR oscillator presents a chip size lower than 2 mm(2), a power consumption of 18.2 mW, and exhibits a phase noise of -89 dBc/Hz and -131 dBc/Hz at 2 kHz and 100 kHz offset frequencies, respectively. The VCO temperature-frequency dependence is measured to be -14 ppm∕°C over a range of -20°C to 60°C. From this source, a low noise frequency synthesizer is developed to generate a 4.596 GHz signal (half of the Cs atom hyperfine transition frequency) with a phase noise of -81 dBc/Hz and -120 dBc/Hz at 2 kHz and 100 kHz from the carrier. The frequency synthesis output is used as a local oscillator in a Cs vapor microcell-based compact atomic clock. Preliminary results are reported and discussed. To the authors knowledge, this is the first development of a SMR-oscillator-based frequency synthesizer for miniature atomic clocks applications.

  18. Experimental measurements of lung resonant frequencies in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas)

    NASA Astrophysics Data System (ADS)

    Finneran, James J.

    2003-04-01

    An acoustic backscatter technique was used to estimate in vivo whole-lung resonant frequencies in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas). Subjects were trained to submerge and position themselves near an underwater sound projector and a receiving hydrophone. Acoustic pressure measurements were made near the subjects' lungs while insonified with pure tones at frequencies from 16 to 100 Hz. Whole-lung resonant frequencies were estimated by comparing pressures measured near the subjects' lungs to those measured from the same location without the subject present. Experimentally measured resonant frequencies and damping ratios were much higher than those predicted using equivalent volume spherical air bubble models. The experimental technique, data analysis method, and discrepancy between the observed and predicted values will be discussed. The potential effects of depth on the resonance frequencies will also be discussed.

  19. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system

    NASA Astrophysics Data System (ADS)

    Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang

    2016-01-01

    In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.

  20. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  1. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  2. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  3. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  4. Dynamic field-frequency lock for tracking magnetic field fluctuations in electron spin resonance experiments

    NASA Astrophysics Data System (ADS)

    Asfaw, Abraham; Tyryshkin, Alexei; Lyon, Stephen

    Global magnetic field fluctuations present significant challenges to pulsed electron spin resonance experiments on systems with long spin coherence times. We will discuss results from experiments in which we follow instantaneous changes in magnetic field by locking to the free induction decay of a proton NMR signal using a phase-locked loop. We extend conventional field-frequency locking techniques used in NMR to follow slow magnetic field drifts by using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence in which the phase of the pi-pulses follows the phase of the proton spins at all times. Hence, we retain the ability of the CPMG pulse sequence to refocus local magnetic field inhomogeneities without refocusing global magnetic field fluctuations. In contrast with conventional field-frequency locking techniques, our experiments demonstrate the potential of this method to dynamically track global magnetic field fluctuations on timescales of about 2 seconds and with rates faster than a kHz. This frequency range covers the dominant noise frequencies in our electron spin resonance experiments as previously reported.

  5. A new resonance-frequency based electrical impedance spectroscopy and its application in biomedical engineering

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Zheng, Bin

    2014-03-01

    Electrical Impedance Spectroscopy (EIS) has shown promising results for differentiating between malignant and benign tumors, which exhibit different dielectric properties. However, the performance of current EIS systems has been inadequate and unacceptable in clinical practice. In the last several years, we have been developing and testing a new EIS approach using resonance frequencies for detection and classification of suspicious tumors. From this experience, we identified several limitations of current technologies and designed a new EIS system with a number of new characteristics that include (1) an increased A/D (analog-to-digital) sampling frequency, 24 bits, and a frequency resolution of 100 Hz, to increase detection sensitivity (2) automated calibration to monitor and correct variations in electronic components within the system, (3) temperature sensing and compensation algorithms to minimize impact of environmental change during testing, and (4) multiple inductor-switching to select optimum resonance frequencies. We performed a theoretical simulation to analyze the impact of adding these new functions for improving performance of the system. This system was also tested using phantoms filled with variety of liquids. The theoretical and experimental test results are consistent with each other. The experimental results demonstrated that this new EIS device possesses the improved sensitivity and/or signal detection resolution for detecting small impedance or capacitance variations. This provides the potential of applying this new EIS technology to different cancer detection and diagnosis tasks in the future.

  6. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.

    PubMed

    Yamagata, S; Kawashima, H

    1999-01-01

    We previously reported that the dynamic photo-elastic method was a very effective measuring technique for the stress distribution of vibrating quartz crystal resonators. The existence of a twisted asymmetrical vibration mode has been verified experimentally when the NS-GT cut quartz crystal resonator was vibrating in the main resonant frequency (MRF). A MRF and a sub-resonant frequency (SRF) of the NS-GT cut quartz resonator were defined as follows. If a mechanical standing wave was in the x' or y' direction of the resonator, the former was MRF vibration and the latter was SRF vibration, respectively. In this paper, stress distributions of two samples of the NS-GT cut quartz crystal resonator, one of which had a thickness of 80 mum and the other 150 mum, were measured by the dynamic photo-elastic method when the resonators were vibrating in each SRF. Thereafter, vibration modes of those resonators were estimated by the experimental data of stress distributions. We find that the vibration mode of the 80-mum resonator had a simple mechanical standing wave on the y' direction and the vibration mode of the 150-mum resonator was combined with a shearing mode in the SRF vibration. From the experiment, we decided that vibration modes of the NS-GT cut quartz crystal resonator were composed of the longitudinal stress T(3)' belonging to the z' direction of the plate and of the shearing stress T(5)' when the plate thickness was thickened and the resonator was oscillating in the SRF. PMID:18244311

  7. Frequency Split Elimination Method for a Solid-State Vibratory Angular Rate Gyro with an Imperfect Axisymmetric-Shell Resonator

    PubMed Central

    Lin, Zhen; Fu, Mengyin; Deng, Zhihong; Liu, Ning; Liu, Hong

    2015-01-01

    The resonator of a solid-state vibratory gyro is responsible for sensing angular motion. Frequency splitting of an axisymmetric-shell resonator is a common problem caused by manufacturing defects. The defect causes a frequency difference between two working modes which consist of two nodes and two antinodes. The difference leads to the loss of gyroscopic effect, and thus the resonator cannot sense angular motion. In this paper, the resonator based on an axisymmetric multi-curved surface shell structure is investigated and an approach to eliminate frequency splits is proposed. Since axisymmetric multi-curved surface shell resonators are too complex to be modeled, this paper proposes a simplified model by focusing on a common property of the axisymmetric shell. The resonator with stochastic imperfections is made equivalent to a perfect shell with an imperfect mass point. Rayleigh's energy method is used in the theoretical analysis. Finite element modeling is used to demonstrate the effectiveness of the elimination approach. In real cases, a resonator's frequency split is eliminated by the proposed approach. In this paper, errors in the theoretical analysis are discussed and steps to be taken when the deviation between assumptions and the real situation is large are figured out. The resonator has good performance after processing. The elimination approach can be applied to any kind of solid-state vibratory gyro resonators with an axisymmetric shell structure. PMID:25648707

  8. Magic angle Lee-Goldburg frequency offset irradiation improves the efficiency and selectivity of SPECIFIC-CP in triple-resonance MAS solid-state NMR.

    PubMed

    Wu, Chin H; De Angelis, Anna A; Opella, Stanley J

    2014-09-01

    The efficiency and selectivity of SPECIFIC-CP, a widely used method for selective double cross-polarization in triple-resonance magic angle spinning solid-state NMR, is improved by performing the tangential-shaped (13)C irradiation at an offset frequency that meets the Lee-Goldburg condition (LG-SPECIFIC-CP). This is demonstrated on polycrystalline samples of uniformly (13)C, (15)N labeled N-acetyl-leucine and N-formyl-Met-Leu-Phe-OH (MLF) at 700MHz and 900MHz (1)H resonance frequencies, respectively. For the single (13)Cα of N-acetyl-leucine, relative to conventional broad band cross-polarization, the SPECIFIC-CP signal has 47% of the intensity. Notably, the LG-SPECIFIC-CP signal has 72% of the intensity, essentially the theoretical maximum. There were no other changes in the experimental parameters. The three (13)Cα signals in MLF show some variation in intensities, reflecting the relatively narrow bandwidth of a frequency-offset procedure, and pointing to future developments for this class of experiment.

  9. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process

    PubMed Central

    Zheng, Jian; Katsuragawa, Masayuki

    2015-01-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm. PMID:25748023

  10. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets.

    PubMed

    Girard, Adrien; Saviot, Lucien; Pedetti, Silvia; Tessier, Mickaël D; Margueritat, Jérémie; Gehan, Hélène; Mahler, Benoit; Dubertret, Benoit; Mermet, Alain

    2016-07-01

    Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances. PMID:27334524

  11. Freely designable optical frequency conversion in Raman-resonant four-wave-mixing process

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Katsuragawa, Masayuki

    2015-03-01

    Nonlinear optical processes are governed by the relative-phase relationships among the relevant electromagnetic fields in these processes. In this Report, we describe the physics of arbitrary manipulation of Raman-resonant four-wave-mixing process by artificial control of relative phases. As a typical example, we show freely designable optical-frequency conversions to extreme spectral regions, mid-infrared and vacuum-ultraviolet, with near-unity quantum efficiencies. Furthermore, we show that such optical-frequency conversions can be realized by using a surprisingly simple technology where transparent plates are placed in a nonlinear optical medium and their positions and thicknesses are adjusted precisely. In a numerical simulation assuming practically applicable parameters in detail, we demonstrate a single-frequency tunable laser that covers the whole vacuum-ultraviolet spectral range of 120 to 200 nm.

  12. High-frequency resonant tunnelling diode oscillator with high-output power

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Alharbi, Khalid; Ofiare, Afesomeh; Khalid, Ata; Cumming, David; Wasige, Edward

    2015-10-01

    In this paper, a prototype G-band (140 GHz-220 GHz) monolithic microwave integrated circuit (MMIC) resonant tunneling diode (RTD) oscillator is reported. The oscillator employs two In0.53Ga0.47As/AlAs RTD devices in the circuit to increase the output power. The measured output power was about 0.34 mW (-4.7 dBm) at 165.7 GHz, which is the highest power reported for RTD oscillator in G-band frequency range. This result demonstrates the validity of the high frequency/high power RTD oscillator design. It indicates that RTD devices, as one of the terahertz (THz) source candidates, have promising future for room-temperature THz applications in such as imaging, wireless communication and spectroscopy analysis, etc. By optimizing RTD oscillator design, it is expected that considerably higher power (>1 mW) at THz frequencies (>300 GHz) will be obtained.

  13. Observation of a 100-MHz frequency variation across the output of a frequency-doubled injection-seeded unstable-resonator Q-switched Nd:YAG laser.

    PubMed

    Forkey, J N; Lempert, W R; Miles, R B

    1997-02-15

    We report high-resolution measurements of the spatial variation of the optical frequency of an injection-seeded unstable-resonator Q-switched Nd:YAG laser. Images of the second harmonic taken through a molecular-iodine notch filter show frequency variations of as much as 100 MHz (second harmonic) between the center and the edge of the beam. PMID:18183159

  14. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets

    NASA Astrophysics Data System (ADS)

    Girard, Adrien; Saviot, Lucien; Pedetti, Silvia; Tessier, Mickaël D.; Margueritat, Jérémie; Gehan, Hélène; Mahler, Benoit; Dubertret, Benoit; Mermet, Alain

    2016-07-01

    Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances.Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR07383A

  15. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  16. Estimation and veering analysis of nonlinear resonant frequencies of cracked plates

    NASA Astrophysics Data System (ADS)

    Saito, A.; Castanier, M. P.; Pierre, C.

    2009-10-01

    In this paper, veering phenomena in the nonlinear vibration frequencies of a cantilevered cracked plate are investigated, and an efficient method for estimating these frequencies is proposed. Of particular interest is the vibration response in parameter regions where the natural frequency loci show veerings. For a representative finite element model, it is shown that the veerings due to crack length variation involve the switching of mode shapes and modal interactions. The nonlinearity caused by the crack closing effect is then introduced, and its effect on the vibration response near the veerings is discussed. The nonlinear forced response analysis is carried out using a hybrid frequency/time domain method, which is based on the method of harmonic balance. The nonlinear vibration response near loci veerings and crossings due to the variation of crack length is investigated in detail. Finally, a novel method for estimating the nonlinear resonant frequency is introduced by generalizing the concept of bilinear frequency approximation, and the method is validated with the results of nonlinear forced response analysis for several veering regions.

  17. Theoretical analysis of resonance conditions in magnetized plasmas when the plasma/gyro frequency ratio is close to an integer

    NASA Astrophysics Data System (ADS)

    Osherovich, V. A.; Fainberg, J.; Benson, R. F.; Stone, R. G.

    1997-12-01

    We study cylindrical oscillations of electrons in a plasma where the background magnetic field is parallel to the axis of a cylinder and the ion background is taken to have a constant positive density. Assuming self-similarity, we reduce the problem to two second order nonlinear differential equations, relating fluctuations of electron density and fluctuations of magnetic field. The system studied is shown to have two fundamental frequencies. In the linear domain, these frequencies correspond to the Z and X cold plasma wave cutoff frequencies (R = 0 and L = 0 conditions in the notation of Stix (1992), respectively). Thus they differ by the gyrofrequency. In the nonlinear domain, these frequencies change and resonances at harmonics and at the sum and difference frequencies appear. When the plasma/gyro frequency ratio is close to an integer, our results indicate special resonance conditions which are characterized by an increase of the amplitude and a narrowing of the fundamental resonances.

  18. Polymer waveguide Fabry-Perot resonator for high-frequency ultrasound detection.

    PubMed

    Tadayon, Mohammad Amin; Baylor, Martha-Elizabeth; Ashkenazi, Shai

    2014-12-01

    Piezoelectric technology is the backbone of most medical ultrasound imaging arrays; however, signal transduction efficiency severely deteriorates in scaling the technology to element size smaller than 0.1 mm, often required for high-frequency operation (>20 MHz). Optical sensing and generation of ultrasound has been proposed and studied as an alternative technology for implementing sub-millimeter size arrays with element size down to 10 μm. The application of thin polymer film Fabry-Perot resonators has been demonstrated for high-frequency ultrasound detection; however, their sensitivity is limited by light diffraction loss. Here, we introduce a new method to increase the sensitivity of an optical ultrasound receiver by utilizing a waveguide between the mirrors of the Fabry-Perot resonator. This approach eliminates diffraction loss from the cavity, and therefore the finesse is only limited by mirror loss and absorption. By applying this method, we have achieved noise equivalent pressure of 178 Pa over a bandwidth of 30 MHz or 0.03 Pa/Hz1/2, which is about 20-fold better than a similar device without a waveguide. The finesse of the tested Fabry-Perot resonator was around 200. This result is 5 times higher than the finesse measured in the same device outside the waveguide region.

  19. All-dielectric frequency selective surface design based on dielectric resonator

    NASA Astrophysics Data System (ADS)

    Zheng-Bin, Wang; Chao, Gao; Bo, Li; Zhi-Hang, Wu; Hua-Mei, Zhang; Ye-Rong, Zhang

    2016-06-01

    In this work, we propose an all-dielectric frequency selective surface (FSS) composed of periodically placed high-permittivity dielectric resonators and a three-dimensional (3D) printed supporter. Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles, quadrupoles, and higher order terms. The re-radiated electric and magnetic fields by these multipoles interact with the incident fields, which leads to total reflection or total transmission in some special frequency bands. The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth (FBW) of 22.2%, which is consistent with the simulated result. Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 61372045, 61472045, and 61401229), the Science and Technology Project of Jiangsu Province, China (Grant No. BE2015002), the Open Research Program of the State Key Laboratory of Millimeter Waves, China (Grant Nos. K201616 and K201622), and the Nanjing University of Posts and Telecommunications Scientific Foundation, China (Grant No. NY214148).

  20. Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform

    PubMed Central

    Lederer, Thomas; Stehrer, Brigitte P.; Bauer, Siegfried; Jakoby, Bernhard; Hilber, Wolfgang

    2011-01-01

    We demonstrate the operation of a digital microfluidic lab-on-a-chip system utilizing Electro Wetting on Dielectrics (EWOD) as the actuation principle and a High Fundamental Frequency (HFF; 50 MHz) quartz crystal microbalance (QCM) resonator as a mass-sensitive sensor. In a first experiment we have tested the reversible formation of a phosphor-lipid monolayer of phospholipid vesicles out of an aqueous buffer suspension onto a bio-functionalized integrated QCM sensor. A binding of bio-molecules results in an altered mass load of the resonant sensor and a shift of the resonance frequency can be measured. In the second part of the experiment, the formation of a protein multilayer composed of the biomolecule streptavidin and biotinylated immunoglobulin G was monitored. Additionally, the macroscopic contact angle was optically measured in order to verify the bio-specific binding and to test the implications onto the balance of the surface tensions. Using these sample applications, we were able to demonstrate and to verify the feasibility of integrating a mass-sensitive QCM sensor into a digital microfluidic chip. PMID:22241942

  1. The super-low frequency resonances at magnetospheric boundaries versus geostationary and ionospheric data

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Surjalal Sharma, A.; Pilipenko, Viacheslav; Marcucci, Maria Federica; Nemecek, Zdenek; Safrankova, Jana; Consolini, Giuseppe; Belakhovsky, Vladimir; Kozak, Ludmila; Blecki, Jan; Kronberg, Elena

    2016-07-01

    We do a multi-point study of the influence of the lowest frequency resonances (0.02-10 mHz) at the outer magnetospheric boundaries on the fluctuations inside the magnetosphere and ionosphere presented. The correlations of the dynamic pressure data from CLUSTER, DOUBLE STAR, GEOTAIL, ACE/ WIND, particle data from LANL, GOES with the magnetic data from polar ionospheric stations on March 27, 2005, show that: i) the waves generated by boundary resonances and their harmonics penetrate inside the magnetosphere and reach the ionosphere; ii) correlations between the dynamic pressure fluctuations at the magnetospheric boundaries and magnetospheric/ ionospheric disturbances, including indices such as AE and SYM-H, can exceed 80%; iii) the new resonance frequencies are lower by an order of magnitude compared with our previous studies, which are as low as 0.02 mHz. Furthermore, such resonances are characteristic also for the night-side geostationary/ionospheric data and for the middle tail, i.e., they are global magnetospheric features. Analysis of different types of correlations yields the unexpected result that in ~48% of the cases with pronounced maximum in the correlation function the geostationary/ ionospheric response is seen before the magnetosheath (MSH) response. We propose that some global magnetospheric resonances (e.g. membrane bow shock surface (0.2-0.5 mHz) and/or magnetopause (0.5-0.9 mHz) modes along with the cavity MHS/ cusp (3-10 mHz) and magnetospheric global modes (0.02-0.09mHz)) can account for the data presented. The multiple jets at the sampled MSH locations can be a consequence of the resonances, while an initial disturbance (e.g. through the interplanetary shocks, Hot Flow Anomalies, foreshock irregularities etc., were not observed by particular spacecraft in MSH because they were localized in the plane perpendicular to the Sun-Earth line. So, in the explorations of the solar wind - magnetosphere interactions one should take into account these

  2. An oscillator circuit for dual-harmonic tracking of frequency and resistance in quartz resonator sensors

    NASA Astrophysics Data System (ADS)

    Ferrari, Marco; Ferrari, Vittorio

    2009-12-01

    An oscillator circuit is proposed that simultaneously excites and tracks two harmonic resonances in a quartz crystal resonator sensor. The oscillator outputs two pairs of signals, related to the sensor series resonant frequency and motional resistance for the fundamental and the third harmonic, respectively. The circuit also provides compensation of the sensor parallel capacitance for increased accuracy. By probing the resonator with the superposition of two harmonic modes simultaneously, enhanced sensing capabilities can be advantageously achieved because a larger set of parameters can be measured with a single sensor and its response is tracked in real time. Experimental tests were first run with the developed oscillator connected to 5 MHz AT-cut crystals exposed to different liquid solutions, obtaining results in good agreement with the theory. Evidence of different dynamic responses at the fundamental and the third harmonic was obtained, possibly related to differences in acoustic penetration depth into the liquid. The oscillator was then tested with the sensor loaded by microdroplets of liquid solutions deposited by a piezoelectric microdispenser. The oscillator could detect and track the resulting time response of the sensor, outperforming measurement methods based on impedance analysis in terms of speed and resolution, and evidencing a complex combination of effects in the sensor transient response.

  3. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  4. 1H homonuclear editing of rat brain using semiselective pulses

    SciTech Connect

    Hetherington, H.P.; Avison, M.J.; Shulman, R.G.

    1985-05-01

    The authors have used a semiselective Hahn spin-echo sequence of the form (1331)-tau-(2662)-tau-AQ, delivered by a surface coil to obtain high-resolution 1H NMR spectra from the brains of intact dead rats. This sequence gave suppression of the tissue water resonance by a factor of 80,000 when tau = 68 ms. Delivery of a frequency-selective Dante pulse train to the alpha-CH resonance of lactate at 4.11 ppm, simultaneously with the 2662 refocusing pulse, altered the j-modulation in the spin-coupled beta-CH3 protons. Subtraction of this spectrum from one in which the Dante was ineffective gave an edited spectrum containing only the beta-CH3 resonance of lactate at 1.31 ppm. When the position of the Dante was shifted to 3.78 ppm to selectively invert the alpha-CH protons of alanine, an edited spectrum of alanine was obtained.

  5. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency

    PubMed Central

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-01-01

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers. PMID:26861343

  6. Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing.

    PubMed

    Yang, Jianji; Giessen, Harald; Lalanne, Philippe

    2015-05-13

    We derive a closed-form expression that accurately predicts the peak frequency shift and broadening induced by tiny perturbations of plasmonic nanoresonators without critically relying on repeated electrodynamic simulations of the spectral response of nanoresonator for various locations, sizes, or shapes of the perturbing objects. In comparison with other approaches of the same kind, the force of the present approach is that the derivation is supported by a mathematical formalism based on a rigorous normalization of the resonance modes of nanoresonators consisting of lossy and dispersive materials. Accordingly, accurate predictions are obtained for a large range of nanoparticle shapes and sizes used in various plasmonic nanosensors even beyond the quasistatic limit. The expression gives quantitative insight and, combined with an open-source code, provides accurate and fast predictions that are ideally suited for preliminary designs or for interpretation of experimental data. It is also valid for photonic resonators with large mode volumes. PMID:25844813

  7. Experimental evidence of deterministic coherence resonance in coupled chaotic systems with frequency mismatch

    NASA Astrophysics Data System (ADS)

    García-Vellisca, M. A.; Pisarchik, A. N.; Jaimes-Reátegui, R.

    2016-07-01

    We present the experimental evidence of deterministic coherence resonance in unidirectionally coupled two and three Rössler electronic oscillators with mismatch between their natural frequencies. The regularity in both the amplitude and the phase of chaotic fluctuations is experimentally proven by the analyses of normalized standard deviations of the peak amplitude and interpeak interval and Lyapunov exponents. The resonant chaos suppression appears when the coupling strength is increased and the oscillators are in phase synchronization. In two coupled oscillators, the coherence enhancement is associated with negative third and fourth Lyapunov exponents, while the largest first and second exponents remain positive. Distinctly, in three oscillators coupled in a ring, all exponents become negative, giving rise to periodicity. Numerical simulations are in good agreement with the experiments.

  8. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    SciTech Connect

    Rekker, A. Mankin, R.

    2015-10-28

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  9. Near- and far-field scattering resonance frequency shift in dielectric and perfect electric conducting cylinders.

    PubMed

    Yuffa, Alex J; Gutierrez, Yael; Sanz, Juan M; Alcaraz de la Osa, Rodrigo; Saiz, José M; González, Francisco; Moreno, Fernando; Videen, Gorden

    2016-03-01

    The ability to infer near-field scattering properties from far-field measurements is of paramount importance in nano-optics. Recently we derived an approximate formula for predicting the frequency shift between near- and far-field intensity peaks in the case of a dielectric sphere. In this work we demonstrate that almost an identical formula can be used to predict the resonance shift of a dielectric cylinder and a perfectly conducting cylinder. We find the redshift of the resonance peak of the perfect electric conducting cylinder to be approximately 2 orders of magnitude greater than for the dielectric cylinder. The errors in our approximate analytic formula for predicting the redshift are approximately only twice as great. Furthermore, we apply the redshift formula to a silicon cylinder and discuss its magneto-dielectric properties, which may be of interest in design of metamaterials. PMID:26974908

  10. Radio-frequency spectroscopy of a strongly imbalanced Feshbach-resonant Fermi gas

    NASA Astrophysics Data System (ADS)

    Veillette, Martin; Moon, Eun Gook; Lamacraft, Austen; Radzihovsky, Leo; Sachdev, Subir; Sheehy, D. E.

    2008-09-01

    A sufficiently large species imbalance (polarization) in a two-component Feshbach resonant Fermi gas is known to drive the system into its normal state. We show that the resulting strongly interacting state is a conventional Fermi liquid, that is, however, strongly renormalized by pairing fluctuations. Using a controlled 1/N expansion, we calculate the properties of this state with a particular emphasis on the atomic spectral function, the momentum distribution functions displaying the Migdal discontinuity, and the radio frequency (rf) spectrum. We discuss the latter in the light of the recent experiments of [Schunck , Science 316, 867 (2007)] on such a resonant Fermi gas, and show that the observations are consistent with a conventional, but strongly renormalized Fermi-liquid picture.

  11. Correction of Proton Resonance Frequency Shift Temperature Maps for Magnetic Field Disturbances Caused by Breathing

    NASA Astrophysics Data System (ADS)

    Shmatukha, Andriy V.; Bakker, Chris J. G.

    2006-05-01

    Respiratory Induced Resonance Offset (RIRO) is a periodic disturbance of the magnetic field due to breathing. Such disturbances handicap the accuracy of the Proton Resonance Frequency Shift (PRFS) method of MRI temperature mapping in anatomies situated nearby the lungs and chest wall. In this work, we propose a method capable of minimizing errors caused by RIRO in PRFS temperature maps. In this method, a set of baseline images characterizing RIRO at a variety of respiratory cycle instants is acquired before the thermal treatment starts. During the treatment, the temperature evolution is found from two successive images. Then, the calculated temperature changes are corrected for the additional contribution caused by RIRO using the pre-treatment baseline images acquired at the identical instances of the respiratory cycle. Our method is shown to improve the accuracy and stability of PRFS temperature maps in the presence of RIRO and motion in phantom and volunteer experiments.

  12. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    NASA Astrophysics Data System (ADS)

    Rekker, A.; Mankin, R.

    2015-10-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  13. Effects of free-electron-laser field fluctuations on the frequency response of driven atomic resonances

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, G. M.; Lambropoulos, P.

    2012-09-01

    We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyze separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.

  14. Single-resonator dual-frequency AIN-on-Si MEMS oscillators.

    PubMed

    Lavasani, Hossein Miri; Abdolvand, Reza; Ayazi, Farrokh

    2015-05-01

    This paper reports on the design, implementation, and phase-noise optimization of low-power interface IC for dual-frequency oscillators that utilize two high quality factor (Q) width-extensional bulk acoustic modes of the same AlN-on-silicon resonator. Two 0.5-μm CMOS transimpedance amplifiers (TIA) have been designed, characterized, and interfaced with two dual-mode resonators operating at 35.5/105.7 MHz (first/third order modes) and 35.5/174.9 MHz (first/ fifth order modes). One TIA uses open-loop regulated cascode (RGC) topology in the first stage to enable low power operation, whereas the second one uses an inverter with shunt-shunt feedback to deliver higher gain with lower phase noise. An on-chip switching network is incorporated into each TIA to change the oscillation frequency based on the different phase shift. The effect of TIA on the phase-noise performance of oscillators is studied and compared for both topologies. The measured phase noise of low- and high-frequency modes at 1 kHz offset from carrier are -114 and -108 dBc/Hz for the 35/105 MHz oscillator, and -108 and -105 dBc/Hz for the 35/175 MHz oscillator, respectively, whereas the far-from-carrier reaches below -140 dBc/Hz in all cases. PMID:25965675

  15. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  16. Chip Scale Atomic Resonator Frequency Stabilization System With Ultra-Low Power Consumption for Optoelectronic Oscillators.

    PubMed

    Zhao, Jianye; Zhang, Yaolin; Lu, Haoyuan; Hou, Dong; Zhang, Shuangyou; Wang, Zhong

    2016-07-01

    We present a long-term chip scale stabilization scheme for optoelectronic oscillators (OEOs) based on a rubidium coherent population trapping (CPT) atomic resonator. By locking a single mode of an OEO to the (85)Rb 3.035-GHz CPT resonance utilizing an improved phase-locked loop (PLL) with a PID regulator, we achieved a chip scale frequency stabilization system for the OEO. The fractional frequency stability of the stabilized OEO by overlapping Allan deviation reaches 6.2 ×10(-11) (1 s) and  ∼ 1.45 ×10 (-11) (1000 s). This scheme avoids a decrease in the extra phase noise performance induced by the electronic connection between the OEO and the microwave reference in common injection locking schemes. The total physical package of the stabilization system is [Formula: see text] and the total power consumption is 400 mW, which provides a chip scale and portable frequency stabilization approach with ultra-low power consumption for OEOs. PMID:26529751

  17. From ultrasonic to frequency standards: Walter Cady's discovery of the sharp resonance of crystals

    NASA Astrophysics Data System (ADS)

    Katzir, Shaul

    2008-09-01

    In 1918-1919 Walter G. Cady was the first to recognize the significant electrical consequences of the fact that piezoelectric crystals resonate at very sharp, precise and stable frequencies. Cady was also the first to suggest the employment of these properties, first as frequency standards and then to control frequencies of electric circuits - an essential component in electronic technology. Cady's discovery originated in the course of research on piezoelectric ultrasonic devices for submarine detection (sonar) during World War I. However, for the discovery Cady had to change his research programme to crystal resonance. This change followed Cady's experimental findings and the scientific curiosity that they raised, and was helped by the termination of the war. Cady's transition was also a move from "applied" research, aimed at improving a specific technology, to "pure" research lacking a clear practical aim. This article examines how Cady reached the discovery and his early ideas for its use. It shows that the discovery was not an instantaneous but a gradual achievement. It further suggests that disinterested "scientific" research (rather than "engineering" research) was needed in this process, while research aimed at design was required for the subsequent development of technological devices.

  18. Laser-induced resonance states as dynamic suppressors of ionization in high-frequency short pulses

    SciTech Connect

    Barash, Danny; Orel, Ann E.; Baer, Roi

    2000-01-01

    An adiabatic-Floquet formalism is used to study the suppression of ionization in short laser pulses. In the high-frequency limit the adiabatic equations involve only the pulse envelope where transitions are purely ramp effects. For a short-ranged potential having a single-bound state we show that ionization suppression is caused by the appearance of a laser-induced resonance state, which is coupled by the pulse ramp to the ground state and acts to trap ionizing flux. (c) 1999 The American Physical Society.

  19. Visualization and analysis of modulated pulses in magnetic resonance by joint time-frequency representations.

    PubMed

    Köcher, S S; Heydenreich, T; Glaser, S J

    2014-10-17

    We study the utility of joint time-frequency representations for the analysis of shaped or composite pulses for magnetic resonance. Such spectrograms are commonly used for the visualization of shaped laser pulses in optical spectroscopy. This intuitive representation provides additional insight compared to conventional approaches, which exclusively show either temporal or spectral information. We focus on the short-time Fourier transform, which provides not only amplitude but also phase information. The approach is illustrated for broadband inversion pulses, multiple quantum excitation and broadband heteronuclear decoupling. The physical interpretation and validity of the approach is discussed.

  20. Measurement of the resonance frequency of single bubbles using a laser Doppler vibrometer.

    PubMed

    Argo, Theodore F; Wilson, Preston S; Palan, Vikrant

    2008-06-01

    The behavior of bubbles confined in tubes and channels is important in medical and industrial applications. In these small spaces, traditional means of experimentally observing bubble dynamics are often impossible or significantly perturb the system. A laser Doppler vibrometer (LDV) requires a narrow (<1 mm diameter) line-of-sight access for the beam and illumination of the bubble does not perturb its dynamics. LDV measurements of the resonance frequency of a bubble suspended in a small tank are presented to illustrate the utility of this measurement technique. The precision of the technique is similar to the precision of traditional acoustic techniques.

  1. An Empirical Expression to Predict the Resonant Frequencies of Archimedean Spirals

    PubMed Central

    Hooker, Jerris W.; Ramaswamy, Vijaykumar; Arora, Rajendra K.; Edison, Arthur S.; Withers, Richard S.; Nast, Robert E.; Brey, William W.

    2015-01-01

    This work presents an empirical formula to accurately determine the frequencies of the fundamental and higher order resonances of an Archimedean spiral in a uniform dielectric medium in the absence of a ground plane. The formula is based on method-of-moments simulations which have been experimentally validated. This empirical formula is widely applicable to a broad range of spirals from thin-ring to disk-shaped (ratio of inner to outer radii 0 to 1), with 10 or more turns. PMID:26556910

  2. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator.

    PubMed

    Shukla, Mukesh Kumar; Maji, Partha Sona; Das, Ritwick

    2016-07-01

    We present an efficient and tunable source generating multi-watt single-frequency red radiation by intra-cavity frequency doubling of the signal in a MgO-doped periodically poled LiNbO3 (MgO:PPLN)-based singly resonant optical parametric oscillator (SRO). By optimally designing the SRO cavity in a six-mirror configuration, we generate ≈276  nm tunable idler radiation in mid-infrared with a maximum power of Pi=2.05  W at a pump power of Pp=14.0  W. The resonant signal is frequency doubled using a 10 mm-long BiB3O6 (BiBO) crystal which resulted in tunability of a red beam from ≈753 to 780 nm band with maximum power Pr≈4.0  W recorded at λr≈756  nm. The deployment of a six-mirror SRO ensures single-frequency generation of red across the entire tuning range by inducing additional losses to Raman modes of LiNbO3 and, thus, inhibiting their oscillation. Using a scanning Fabry-Perot interferometer (FPI), nominal linewidth of the red beam is measured to ≈3  MHz which changes marginally over the entire tuning range. Long-term (over 1 h) peak-to-peak frequency fluctuation of the generated red beam is estimated to be about 3.3 GHz under free-running conditions at Pp=14.0  W. The generated red beam is delivered in a TEM00 mode profile with M2≤1.32 at maximum power in a red beam.

  3. Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator.

    PubMed

    Shukla, Mukesh Kumar; Maji, Partha Sona; Das, Ritwick

    2016-07-01

    We present an efficient and tunable source generating multi-watt single-frequency red radiation by intra-cavity frequency doubling of the signal in a MgO-doped periodically poled LiNbO3 (MgO:PPLN)-based singly resonant optical parametric oscillator (SRO). By optimally designing the SRO cavity in a six-mirror configuration, we generate ≈276  nm tunable idler radiation in mid-infrared with a maximum power of Pi=2.05  W at a pump power of Pp=14.0  W. The resonant signal is frequency doubled using a 10 mm-long BiB3O6 (BiBO) crystal which resulted in tunability of a red beam from ≈753 to 780 nm band with maximum power Pr≈4.0  W recorded at λr≈756  nm. The deployment of a six-mirror SRO ensures single-frequency generation of red across the entire tuning range by inducing additional losses to Raman modes of LiNbO3 and, thus, inhibiting their oscillation. Using a scanning Fabry-Perot interferometer (FPI), nominal linewidth of the red beam is measured to ≈3  MHz which changes marginally over the entire tuning range. Long-term (over 1 h) peak-to-peak frequency fluctuation of the generated red beam is estimated to be about 3.3 GHz under free-running conditions at Pp=14.0  W. The generated red beam is delivered in a TEM00 mode profile with M2≤1.32 at maximum power in a red beam. PMID:27367094

  4. Sensitivity and resonance frequency with changing the diaphragm diameter of piezoelectric micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Akai, Daisuke; Katori, Takeo; Takashima, Daisuke; Ishida, Makoto

    2016-02-01

    In this work, we investigate the sensitivity and resonance frequency of pMUTs by changing the diameter of the diaphragm in order to improve sensitivity. Five types of pMUTs which have different diaphragm diameters and three types of ultrasonic source which have differing transmitting frequencies were used in the evaluation. The pMUT with an 80-μm-diameter diaphragm showed the largest sensitivities with the 3.5-MHz ultrasonic source. The 60-μm-diameter and 90-μm-diameter pMUTs exhibited the highest sensitivities with the 1.75-MHz ultrasonic source. This is in good agreement with the analytical results and it could be expected that the sensitivities were improved by changing the diaphragm diameter of the pMUTs.

  5. Spin-torque diode radio-frequency detector with voltage tuned resonance

    NASA Astrophysics Data System (ADS)

    Skowroński, Witold; Frankowski, Marek; Wrona, Jerzy; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2014-08-01

    We report on a voltage-tunable radio-frequency (RF) detector based on a magnetic tunnel junction (MTJ). The spin-torque diode effect is used to excite and/or detect RF oscillations in the magnetic free layer of the MTJ. In order to reduce the overall in-plane magnetic anisotropy of the free layer, we take advantage of the perpendicular magnetic anisotropy at the interface between ferromagnetic and insulating layers. The applied bias voltage is shown to have a significant influence on the magnetic anisotropy, and thus on the resonance frequency of the device. This influence also depends on the voltage polarity. The obtained results are accounted for in terms of the interplay of spin-transfer-torque and voltage-controlled magnetic anisotropy effects.

  6. High-frequency performance of electric field sensors aboard the RESONANCE satellite

    NASA Astrophysics Data System (ADS)

    Sampl, M.; Macher, W.; Gruber, C.; Oswald, T.; Kapper, M.; Rucker, H. O.; Mogilevsky, M.

    2015-05-01

    We present the high-frequency properties of the eight electric field sensors as proposed to be launched on the spacecraft "RESONANCE" in the near future. Due to the close proximity of the conducting spacecraft body, the sensors (antennas) have complex receiving features and need to be well understood for an optimal mission and spacecraft design. An optimal configuration and precise understanding of the sensor and antenna characteristics is also vital for the proper performance of spaceborne scientific instrumentation and the corresponding data analysis. The provided results are particularly interesting with regard to the planned mutual impedance experiment for measuring plasma parameters. Our computational results describe the extreme dependency of the sensor system with regard to wave incident direction and frequency, and provides the full description of the sensor system as a multi-port scatterer. In particular, goniopolarimetry techniques like polarization analysis and direction finding depend crucially on the presented antenna characteristics.

  7. MRS water resonance frequency in childhood brain tumours: a novel potential biomarker of temperature and tumour environment.

    PubMed

    Babourina-Brooks, Ben; Wilson, Martin; Arvanitis, Theodoros N; Peet, Andrew C; Davies, Nigel P

    2014-10-01

    (1)H MRS thermometry has been investigated for brain trauma and hypothermia monitoring applications but has not been explored in brain tumours. The proton resonance frequency (PRF) of water is dependent on temperature but is also influenced by microenvironment factors, such as fast proton exchange with macromolecules, ionic concentration and magnetic susceptibility. (1)H MRS has been utilized for brain tumour diagnostic and prognostic purposes in children; however, the water PRF measure may provide complementary information to further improve characterization. Water PRF values were investigated from a repository of MRS data acquired from childhood brain tumours and children with apparently normal brains. The cohort consisted of histologically proven glioma (22), medulloblastoma (19) and control groups (28, MRS in both the basal ganglia and parietal white matter regions). All data were acquired at 1.5 T using a short TE (30 ms) single voxel spectroscopy (PRESS) protocol. Water PRF values were calculated using methyl creatine and total choline. Spectral peak amplitude weighted averaging was used to improve the accuracy of the measurements. Mean PRF values were significantly larger for medulloblastoma compared with glioma, with a difference in the means of 0.0147 ppm (p < 0.05), while the mean PRF for glioma was significantly lower than for the healthy cohort, with a difference in the means of 0.0061 ppm (p < 0.05). This would suggest the apparent temperature of the glioma group was ~1.5 °C higher than the medulloblastomas and ~0.7 °C higher than a healthy brain. However, the PRF shift may not reflect a change in temperature, given that alterations in protein content, microstructure and ionic concentration contribute to PRF shifts. Measurement of these effects could also be used as a supplementary biomarker, and further investigation is required. This study has shown that the water PRF value has the potential to be used for characterizing

  8. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    NASA Astrophysics Data System (ADS)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  9. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    PubMed Central

    Ali, Mohamed Sultan Mohamed; AbuZaiter, Alaa; Schlosser, Colin; Bycraft, Brad; Takahata, Kenichi

    2014-01-01

    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/μm or more for a full out-of-plane travel range of 466 μm and an average actuation velocity of up to 155 μm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device. PMID:25014100

  10. Ferromagnetic resonance of a YIG film in the low frequency regime

    NASA Astrophysics Data System (ADS)

    Lee, Seongjae; Grudichak, Scott; Sklenar, Joseph; Tsai, C. C.; Jang, Moongyu; Yang, Qinghui; Zhang, Huaiwu; Ketterson, John B.

    2016-07-01

    An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the ferromagnetic resonance (FMR) spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR is observed turns out to be quite sensitive to anisotropy constants (by more than a factor ten) in the low frequency (<2 GHz) regime, and when the orientation of the magnetic field is nearly normal to the sample plane; the restoring force on the magnetization arising from the magnetocrystalline anisotropy fields is then comparable to that from the external field, thereby allowing the anisotropy constants to be determined with greater accuracy. In this region, unusual dynamical behaviors are observed such as multiple resonances and a switching of FMR resonance with only a 1° change in field orientation at 0.7 GHz.

  11. a High Frequency Thermoacoustically-Driven Pulse Tube Cryocooler with Coaxial Resonator

    NASA Astrophysics Data System (ADS)

    Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.

    2010-04-01

    High frequency thermoacoustically-driven pulse tube cryocoolers are quite promising due to their compact size and high reliability, which can find applications in space use. With continuous effort, a lowest cold head temperature of 68.3 K has been obtained on a 300 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic heat engine with 4.0 MPa helium gas and 750 W heat input. To further reduce the size of the system, a coaxial resonator was designed and the two sub-systems, i.e., the pulse tube cryocooler and the standing-wave thermoacoustic heat engine were properly coupled through an acoustic amplifier tube, which leads to a system axial length of only about 0.7 m. The performance of the system with the coaxial resonator was tested, and shows moderate degradation compared to that with the in-line resonator, which might be attributed to the large flow loss of the 180 degree corner.

  12. A theoretical comparison of two optimization methods for radiofrequency drive schemes in high frequency MRI resonators

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Beck, Barbara L.; Fitzsimmons, Jeffrey R.; Blackband, Stephen J.; Crozier, Stuart

    2005-11-01

    In this paper, numerical simulations are used in an attempt to find optimal source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.

  13. AC Resonant charger with charge rate unrelated to primary power frequency

    DOEpatents

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  14. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.

    PubMed

    Ali, Mohamed Sultan Mohamed; AbuZaiter, Alaa; Schlosser, Colin; Bycraft, Brad; Takahata, Kenichi

    2014-01-01

    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.

  15. Heating properties of the re-entrant type cavity applicator for brain tumor with several resonant frequencies.

    PubMed

    Suzuki, M; Kato, K; Hirashima, T; Shindo, Y; Uzuka, T; Takahashi, H; Fujii, Y

    2009-01-01

    We have proposed the re-entrant resonant cavity applicator system for non-invasive brain tumor hyperthermia treatment. In this method, a human head is placed in the gap of the inner electrodes. A brain tumor is heated with the electromagnetic field stimulated in the cavity without contact between the human head and the applicator. We have already presented the effectiveness of the heating properties of this system with cylinder-type agar phantoms and by computer simulations. This paper discusses the heating properties of the developed system with the human head-type agar phantom for brain tumor hyperthermia treatment. First, in order to heat deep brain tumors, we tried to heat the human head-type agar phantom by using several electromagnetic field patterns of the resonant frequency. We found that the temperature distributions can be controlled inside the agar phantom by changing the resonant frequencies. Second, to heat local and deep areas of the agar phantom, we tried to achieve heating using the two different resonant frequencies. We found distinct heating properties by changing the electromagnetic field patterns of resonant frequencies. From these results, it was found that our developed heating system can be applied to hyperthermia treatments of deep-seated brain tumors. Further, by changing resonant frequency, treatment can very correspond to the size and the position of a tumor.

  16. High-frequency, resonance-enhanced microactuators with active structures for high-speed flow control

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip Andrew

    The need for actuators that are adaptable for use in a wide array of applications has been the motivation behind actuator development research over the past few years. Recent developments at the Advanced Aero-Propulsion Laboratory (AAPL) at Florida State University have produced a microactuator that uses the unsteadiness of a small-scale impinging jet to produce pulsed, supersonic microjets -- this is referred to as the Resonance-Enhanced Microjet (REM) actuator. Prior studies on these actuators at AAPL have been somewhat limited in that the actuator response has only been characterized through pressure/acoustic measurements and qualitative flow visualizations. Highly-magnified particle image velocimetry (PIV) measurements were performed to measure the velocity fields of both a 1 mm underexpanded jet and an REM actuator. The results demonstrate that this type of microactuator is capable of producing pulsed, supersonic microjets that have velocities of approximately 400 m/s that are sustained for significant portions of their cycles (> 60 %). These are the first direct velocity measurements of these flowfields, and they allow for a greater understanding of the flow physics associated with this microactuator. The previous studies on the REM actuators have shown that the microactuator volume is among the principal parameters in determining the actuator's maximum-amplitude frequency component. In order to use this actuator in a closed-loop, feedback control system, a modified design that incorporates smart materials is studied. The smart materials (specifically piezoelectric ceramic stack actuators) have been implemented into the microactuator to actively change its geometry, thus permitting controllable changes in the microactuator's resonant frequency. The distinct feature of this design is that the smart materials are not used to produce the primary perturbation or flow from the actuator (which has in the past limited the control authority of other designs) but to

  17. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    SciTech Connect

    Ooe, Hiroaki; Sakuishi, Tatsuya; Arai, Toyoko; Nogami, Makoto; Tomitori, Masahiko

    2014-07-28

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  18. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ooe, Hiroaki; Sakuishi, Tatsuya; Nogami, Makoto; Tomitori, Masahiko; Arai, Toyoko

    2014-07-01

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  19. A Study of the Resonance Frequency of Conductive Grains in a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuanhao; Hyde, Truell; Matthews, Lorin; Kong, Jie; Carmona Reyes, Jorge; Qiao, Ke; Schmoke, Jimmy; Cook, Mike

    2009-11-01

    Over the past decade, the dynamic behavior of insulating (melamine formaldehyde) dust particles immersed in a complex plasma have been studied extensively. Phenomena such as disordered or ordered structures, the interaction of dust particles with the wake field produced by the ion flow, and the interaction between particles have all been the subject of both experimental and numerical investigation. However, the investigation of conducting materials in dusty plasmas has not yet received the same attention. In this work, the resonance frequency of conductive grains at various pressures and powers within a standard GEC reference cell is examined and the results compared to those for insulating grains (MF). Since the resonance frequency of a dust grain is proportional to its charge-to-mass ratio, such studies are beneficial in helping determine the particle charge. Preliminary results will be presented showing that in similar plasma environments, conducting grains do not exhibit the same behavior as non-conducting grains possibly due to differences in the charging process.

  20. Control of resonant frequency by currents in graphene: Effect of Dirac field on deflection

    SciTech Connect

    Soodchomshom, Bumned E-mail: fscibns@ku.ac.th

    2014-09-21

    To construct Lagrangian based on plate theory and tight-binding model, deflection-field coupling to Dirac fermions in graphene can be investigated. As have been known, deflection-induced strain may cause an effect on motion of electron, like a pseudo gauge field. In the work, we will investigate the effect of the Dirac field on the motion of the deflection-field in graphene derived from Lagrangian density. Due to the interaction of the deflection- and Dirac-fields, the current-induced surface-tension up to about 4×10⁻³ N/m in graphene membrane is predicted. This result may lead to controllable resonant frequency by currents in graphene. The high resonant frequency is found to be perfectly linearly controlled by both charge and valley currents. Our work reveals the potential of graphene for application of nano-electro-mechanical device and the physics of interaction of electron and deflection-filed in graphene system is investigated.