Science.gov

Sample records for 1h spin-lattice relaxation

  1. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  2. ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals - Joint analysis

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-12-01

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d16 containing 15N and 14N isotopes. The NMRD experiments refer to 1H spin-lattice relaxation measurements in a broad frequency range (10 kHz-20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the 1H relaxation of the solvent. The 1H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin-nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  3. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    SciTech Connect

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Moscicki, J.; Kowalewski, J.; Rössler, E. A.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  4. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  5. Inhomogeneous 1H NMR spin-lattice relaxation in the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    NASA Astrophysics Data System (ADS)

    Gezo, Joseph Christopher

    The two-dimensional superconductors based on the organic molecule "ET" have been an active area of research since their discovery over two decades ago. The member of this family with the highest critical temperature, kappa-(ET)2Cu[N(CN)2]Br ( Tc=11.7 K), has seen renewed interest since the observation of an anomalous Nernst signal by Nam et al in 2007 [51]. A similar effect was seen earlier by Ong's group in some of the high-temperature cuprate superconductors by [78,84]. This is interpreted to be evidence of a picture of superconductivity in which the resistive transition is driven by thermal fluctuations in the phase of the superconducting order parameter. Below Tc, these fluctuations take the form of bound vortex-antivortex pairs that have no long-range effect on the phase. At Tc, they undergo a Kosterlitz-Thouless unbinding transition; the unbound vortices destroy long-range phase coherence. Previously reported proton NMR measurements on this material have shown a high sensitivity to vortex motion, but reported no interesting behavior above the phase transition [15,25,42]. In this thesis, we revisit the 1H NMR properties of kappa-(ET)2Cu[N(CN)2]Br, paying specific attention to the spin-lattice relaxation, to look for some fingerprint of the phenomenon observed by Nam et al.

  6. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components. PMID:27389221

  7. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    SciTech Connect

    Wang, Xianlong E-mail: pbeckman@brynmawr.edu; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A. E-mail: pbeckman@brynmawr.edu

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  8. Solid state 1H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    NASA Astrophysics Data System (ADS)

    Wang, Xianlong; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A.

    2014-05-01

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state 1H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the 1H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  9. Is spin lattice relaxation time independent of species?

    PubMed

    Akber, S F

    1996-08-01

    It has been suggested that the spin lattice relaxation time is independent of species. It was further stated that, from a nuclear magnetic resonance standpoint, the human muscle is similar to rat muscle and to pig muscle, etc. However, it is observed that, in normal liver and kidney of human, rat, dog, rabbit and hamster, spin lattice relaxation time varies in different species as a function of percentage of body-weight of the organ. The result shows that spin lattice relaxation time is different in different species because of the organ weight which in turn dictates the metabolism in an individual species. PMID:8869924

  10. Nuclear-spin-lattice relaxation in rhenium metal

    SciTech Connect

    Dimitropoulos, C.; Bucher, J.P.; Borsa, F.; Corti, M.

    1989-04-01

    Nuclear-spin-lattice relaxation measurements are presented for /sup 187/Re in Re metal as a function of temperature. The relaxation transition probabilities were extracted from the nuclear magnetization recovery curves both in high magnetic field (H/sub 0/ = 8 T) nuclear-magnetic-resonance experiments and in nuclear-quadrupole-resonance (H/sub 0/ = 0) experiments. It is found that the dominant relaxation mechanisms is due to magnetic rather then quadrupolar hyperfine interaction with W/sub M/ = 1.32 T. The data are analyzed in terms of the electronic structure of Re metal. The analysis confirms that Re is a ''weakly enhanced'' transition metal with a nuclear relaxation rate dominated by the s-contact hyperfine interaction.

  11. Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.

    2016-07-01

    Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.

  12. Effect of surfactant and solvent on spin-lattice relaxation dynamics of magnetic nanocrystals.

    PubMed

    Maiti, Sourav; Chen, Hsiang-Yun; Chen, Tai-Yen; Hsia, Chih-Hao; Son, Dong Hee

    2013-04-25

    The effect of varying the surfactant and solvent medium on the dynamics of spin-lattice relaxation in photoexcited Fe3O4 nanocrystals has been investigated by measuring the time-dependent magnetization employing pump-probe transient Faraday rotation technique. The variation of the surfactants having surface-binding functional groups modified not only the static magnetization but also the dynamics of the recovery of the magnetization occurring via spin-lattice relaxation in the photoexcited Fe3O4 nanocrystals. The variation of the polarity and size of the solvent molecules can also influence the spin-lattice relaxation dynamics. However, the effect is limited to the nanocrystals having sufficiently permeable surfactant layer, where the small solvent molecules (e.g., water) can access the surface and dynamically modify the ligand field on the surface. PMID:23003213

  13. Application to Rat Lung of the Extended Rorschach-Hazlewood Model of Spin-Lattice Relaxation

    NASA Astrophysics Data System (ADS)

    Hackmann, Andreas; Ailion, David C.; Ganesan, Krishnamurthy; Goodrich, K. Craig; Chen, Songhua; Laicher, Gernot; Cutillo, Antonio G.

    1996-02-01

    The spin-lattice relaxation timeT1was measured in excised degassed (airless) rat lungs over the frequency range 6.7 to 80.5 MHz. The observed frequency dependence was fitted successfully to the water-biopolymer cross-relaxation theory proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson.70,79 (1986)]. The rotating frame spin-lattice relaxation timeT1ρwas also measured in rat lung fragments over the frequency range 0.56 to 5.6 kHz, and the observed frequency dependence was explained with an extension of the RH model. The agreement between the theory and the experimental data in both cases is good.

  14. Spin-lattice relaxation of laser-polarized xenon in human blood.

    PubMed

    Wolber, J; Cherubini, A; Dzik-Jurasz, A S; Leach, M O; Bifone, A

    1999-03-30

    The nuclear spin polarization of 129Xe can be enhanced by several orders of magnitude by using optical pumping techniques. The increased sensitivity of xenon NMR has allowed imaging of lungs as well as other in vivo applications. The most critical parameter for efficient delivery of laser-polarized xenon to blood and tissues is the spin-lattice relaxation time (T1) of xenon in blood. In this work, the relaxation of laser-polarized xenon in human blood is measured in vitro as a function of blood oxygenation. Interactions with dissolved oxygen and with deoxyhemoglobin are found to contribute to the spin-lattice relaxation time of 129Xe in blood, the latter interaction having greater effect. Consequently, relaxation times of 129Xe in deoxygenated blood are shorter than in oxygenated blood. In samples with oxygenation equivalent to arterial and venous blood, the 129Xe T1s at 37 degrees C and a magnetic field of 1.5 T were 6.4 s +/- 0.5 s and 4.0 s +/- 0.4 s, respectively. The 129Xe spin-lattice relaxation time in blood decreases at lower temperatures, but the ratio of T1 in oxygenated blood to that in deoxygenated blood is the same at 37 degrees C and 25 degrees C. A competing ligand has been used to show that xenon binding to albumin contributes to the 129Xe spin-lattice relaxation in blood plasma. This technique is promising for the study of xenon interactions with macromolecules. PMID:10097094

  15. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  16. High field 207Pb spin-lattice relaxation in solid lead nitrate and lead molybdate

    NASA Astrophysics Data System (ADS)

    de Castro, Peter J.; Maher, Christopher A.; Vold, Robert L.; Hoatson, Gina L.

    2008-02-01

    Spin-lattice relaxation rates of lead have been measured at 17.6T (156.9MHz) as a function of temperature in polycrystalline lead nitrate and lead molybdate. Comparing the results with relaxation rates measured at lower fields, it is found that at high fields and low temperature, chemical shift anisotropy (CSA) makes small but observable contributions to lead relaxation in both materials. At 17.6T and 200K, CSA accounts for about 15% of the observed relaxation rate. Above 300K, the dominant relaxation mechanism even at 17.6T is an indirect Raman process involving modulation of the Pb207 spin-rotation tensor, as first proposed by Grutzner et al. [J. Am. Chem. Soc. 123, 7094 (2001)] and later treated theoretically in more detail by Vega et al. [Phys. Rev. B 74, 214420 (2006)]. The improved signal to noise ratio at high fields makes it possible to quantify relaxation time anisotropy by analyzing saturation-recovery functions for individual frequencies on the powder pattern line shape. No orientation dependence is found for the spin-lattice relaxation rate of either material. It is argued from examination of the appropriate theoretical expressions, derived here for the first time, that the lack of observable relaxation time anisotropy is probably a general feature of this indirect Raman mechanism.

  17. Unexpected suppression of spin-lattice relaxation via high magnetic field in a high-spin iron(iii) complex.

    PubMed

    Zadrozny, Joseph M; Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2016-08-01

    A counterintuitive three-order of magnitude slowing of the spin-lattice relaxation rate is observed in a high spin qubit at high magnetic field via multifrequency pulsed electron paramagnetic resonance measurements. PMID:27463410

  18. Calculation of spin-lattice relaxation during pulsed spin locking in solids

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Burum, D. P.; Elleman, D. D.

    1978-01-01

    The spin-lattice relaxation time has been calculated for dipolar solids in the case where the spins are locked by an RF pulse sequence with pulses of arbitrary angle and finite width. Expressions are given for the homonuclear case in general and for the heteronuclear case in the delta-function limit. The results for the homonuclear case are experimentally confirmed using solid C6F12. The analysis shows that for small pulse angles, at which the direct spin heating effect is known to be small, the relaxation behavior will be identical to the CW irradiation case.

  19. Deuterium off-resonance rotating frame spin-lattice relaxation of macromolecular bound ligands.

    PubMed Central

    Rydzewski, J M; Schleich, T

    1996-01-01

    Deuterated 3-trimethylsilylpropionic acid binding to bovine serum albumin was used as a model system to examine the feasibility and limitations of using the deuterium off-resonance rotating frame spin-lattice relaxation experiment for the study of equilibrium ligand-binding behavior to proteins. The results of this study demonstrate that the rotational-diffusion behavior of the bound species can be monitored directly, i.e., the observed correlation time of the ligand in the presence of a protein is approximately equal to the correlation time of the ligand in the bound state, provided that the fraction of bound ligand is at least 0.20. The presence of local ligand motion and/or chemical exchange contributions to relaxation in the bound state was inferred from the observation that the correlation time of the bound ligand was somewhat smaller than the correlation time characterizing the overall tumbling of the protein. An approximate value for the fraction of bound ligand was obtained from off-resonance relaxation experiments when supplemental spin-lattice or transverse relaxation times were employed in the analysis. Incorporation of local motion effects for the bound species into the theoretical relaxation formalism enabled the evaluation of an order parameter and an effective correlation time, which in conjunction with a wobbling in a cone model, provided additional information about ligand motion in the bound state. PMID:8785304

  20. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  1. 1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion.

    PubMed

    Kruk, D; Korpała, A; Taheri, S Mehdizadeh; Kozłowski, A; Förster, S; Rössler, E A

    2014-05-01

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained. PMID:24811643

  2. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  3. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions. PMID:27187211

  4. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis.

    PubMed

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts. PMID:27055207

  5. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis

    NASA Astrophysics Data System (ADS)

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n = 4 and m = 0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.

  6. Spin-lattice relaxation of the methyl group protons in solids revisited: Damped quantum rotation approach

    NASA Astrophysics Data System (ADS)

    Szymański, S.

    2012-07-01

    Proton spin-lattice relaxation of the methyl group in solids had been one of the most thoroughly addressed theoretical problems in nuclear magnetic resonance (NMR) spectroscopy, considered at different levels of sophistication. For systems with substantial quantum tunneling effects, several quantum mechanical treatments were reported, although in practical applications the quantum models were always augmented with or replaced by the classical jump model. However, the latter has recently proved invalid in the description of NMR line shape effects in variable-temperature spectra of hindered methyl groups, while the competing theory of damped quantum rotation (DQR) was shown to be adequate. In this work, the spin-lattice relaxation issue for the methyl protons is readdressed using the latter theory. The main outcome is that, while the existing formulas for the relaxation rates remain unchanged, the crucial parameter entering them, the correlation time of the relevant random process, need to be reinterpreted. It proves to be the inverse of one of the two quantum-rate constants entering the DQR model, neither of which, when taken separately, can be related to the jump process. It can be identified with one describing the life-time broadening of the tunnel peaks in inelastic neutron scattering (INS) spectra of the methyl groups. Such a relationship between the relaxation and INS effects was reported from another laboratory long ago, but only for the low-temperature limit where thermal population of the excited torsional levels of the methyl group can be neglected. The whole spectrum of cases encountered in practical relaxation studies on protonated methyl groups is addressed for the first time. Preliminary experimental confirmation of this novel approach is reported, based on already published NMR data for a single crystal of methylmalonic acid. The once extensively debated issues of quenching of the coherent tunneling and of the classical limit in the dynamics of the

  7. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  8. The T1 ρ13C spin-lattice relaxation time of helical polyguanidines

    NASA Astrophysics Data System (ADS)

    Lim, A. R.; Stewart, J. R.; Novak, B. M.

    1999-03-01

    The solid state dynamics of three helical polyguanidines differing only in their stereochemistry was investigated by 13C CP/MAS NMR. From these studies, the structures of the polyguanidines were confirmed, and the 13C spin-lattice relaxation times in the rotating frame were measured. The relaxation times of all the polyguanidines indicated that they undergo fast motions, i.e. motions on the fast side of the T1 ρ minimum. The main chain carbon of polyguanidine I-( R/ S), with equal amounts of ( R) and ( S) chiral side chains, has higher activation energy, 10.7 kJ/mol, than the analogous polymers with enantiomerically pure side chains ( I-( R) and I-( S)), 5.1 kJ/mol.

  9. Nuclear quadrupole spin-lattice relaxation due to molecular reorientations in crystals with orientational disorder

    NASA Astrophysics Data System (ADS)

    Meriles, C. A.; Pérez, S. C.; Brunetti, A. H.

    1997-08-01

    p-chloronitrobenzene (PCNB) and p-chlorobromobenzene (PCBB) crystallize in the centrosymmetric space group P21/c with two molecules per unit cell. The space lattice will have an equal number of points with molecules facing in opposite directions. As a consequence, these compounds exhibit an orientational rigid disorder. In this work, we have measured the temperature dependence of the chlorine nuclear quadrupole spin-lattice relaxation time (T1), linewidth, and resonance frequency for both compounds for temperatures higher than 80 K. Both compounds exhibit an inhomogeneously broadened line shape and a "normal" Bayer-type temperature dependence of the resonance frequency. The analysis focuses on the identification of the dominant relaxation process at high temperatures (T>240 K in PCNB and T>260 K in PCBB). It is shown that T1(T) reflects the existence of 180° molecular reorientations through a modulation of the crystalline contribution to the electric field gradient.

  10. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates

    SciTech Connect

    Caines, G.H.; Schleich, T.; Morgan, C.F. ); Farnsworth, P.N. )

    1990-08-21

    The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of {sup 31}P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. {sup 31}P NMR spectra of calf lens homogenates were obtained at 10 and 18{degree}C at 7.05 T. Effective rotational correlation times ({tau}{sub 0,eff}) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs {omega}{sub e} data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole ({sup 1}H-{sup 31}P, {sup 31}P-{sup 31}P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole ({sup 1}H-{sup 31}P) relaxation contributions were assumed in the analyses. A fast-exchange model between free and bound forms, was employed in the analysis of the metabolite R vs {omega}{sub e} curves to yield the fraction of free (unbound) metabolite ({Theta}{sub free}). The results of this study establish the occurrence of significant temperature-dependent (above and below the cold cataract phase transition temperature) binding of ATP (cortex) and PME (nucleus) and p{sub i} (nucleus) in calf lens.

  11. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions

    NASA Astrophysics Data System (ADS)

    Elajaili, Hanan B.; Biller, Joshua R.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-10-01

    The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH-. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones.

  12. Determination of Spin-Lattice Relaxation of Time Using (Super 13)C NMR: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.; Jurkiewicz, Antoni

    2004-01-01

    An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.

  13. Mechanism of nuclear spin-lattice relaxation and its field dependence for ultraslow atomic motion

    SciTech Connect

    Mefed, A. E.

    2008-10-15

    The contribution of ultraslow self-diffusion of polycrystalline benzene molecules to the spin-lattice relaxation of protons is studied as a function of effective magnetic field H{sub 2} in a doubly rotating frame (DRF). Proton relaxation time T{sub 1{rho}}{sub {rho}} is measured by direct recording of NMR in a rotating frame (RF). The effective fields have a 'magic' orientation corresponding to angles arccos(1/{radical}3) in the RF and {pi}/2 in the DRF so that the secular part of the dipole-dipole interactions of protons is suppressed in two orders of perturbation theory, while the nonsecular part becomes predominant. It is found that the diffusion contribution of benzene molecules to proton relaxation time T{sub 1{rho}}{sub {rho}} is a linear function of the square of field H{sub 2} and exhibits all peculiarities typical of the model of strong collisions generalized to only fluctuating nonsecular dipole interactions in fields exceeding the local field. This means that the model can also be employed in the given conditions. It is shown that perfect agreement with such a dependence can also be obtained in the model of weak collisions if we take into account the concept of the locally effective quantization field, whose magnitude and direction are controlled by the vector sum of field H{sub 2}, and the nonsecular local field perpendicular to it.

  14. Spin-lattice relaxation and the calculation of gain, pump power, and noise temperature in ruby

    NASA Technical Reports Server (NTRS)

    Lyons, J. R.

    1989-01-01

    The use of a quantitative analysis of the dominant source of relaxation in ruby spin systems to make predictions of key maser amplifier parameters is described. The spin-lattice Hamiltonian which describes the interaction of the electron spins with the thermal vibrations of the surrounding lattice is obtained from the literature. Taking into account the vibrational anisotropy of ruby, Fermi's rule is used to calculate the spin transition rates between the maser energy levels. The spin population rate equations are solved for the spin transition relaxation times, and a comparison with previous calculations is made. Predictions of ruby gain, inversion ratio, and noise temperature as a function of physical temperature are made for 8.4-GHz and 32-GHz maser pumping schemes. The theory predicts that ruby oriented at 90 deg will have approximately 50 percent higher gain in dB and slightly lower noise temperature than a 54.7-deg ruby at 32 GHz (assuming pump saturation). A specific calculation relating pump power to inversion ratio is given for a single channel of the 32-GHz reflected wave maser.

  15. Spin-lattice relaxation within a dimerized Ising chain in a magnetic field

    SciTech Connect

    Erdem, Rıza E-mail: rerdem29@hotmail.com; Gülpınar, Gül; Yalçın, Orhan; Pawlak, Andrzej

    2014-07-21

    A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δΔ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant (τ) which diverges around the critical point in both dimerized (Δ≠0) and uniform (Δ=0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector (q) and shown that the critical mode corresponds to the case q=0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material Cu{sub 1−y}Mg{sub y}GeO{sub 3} where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.

  16. Extension of the Rorschach-Hazlewood Theoretical Model for Spin-Lattice Relaxation in Biological Systems to Low Frequencies

    NASA Astrophysics Data System (ADS)

    Hackmann, Andreas; Ailion, David C.; Ganesan, Krishnamurthy; Laicher, Gernot; Goodrich, K. Craig; Cutillo, Antonio G.

    1996-02-01

    The water-biopolymer cross-relaxation model, proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson.70,79 (1986)], explains the Larmor frequency dependence ofT1in many biological systems. However, the RH theory fails at low Larmor frequencies. In this paper, a more general version of the RH theory has been developed. This theory is valid at all frequencies. Use of the new expression for the spin-lattice relaxation rate (1/T1), earlier published experimental data in H2O/D2O bovine serum albumin, which had been measured over a wide frequency range (10 kHz to 100 MHz), were fitted over the entire frequency range. The agreement between theory and the experimental data is excellent. Theoretical expressions for the rotating-frame spin-lattice relaxation rate (1/T1ρ) were also obtained.

  17. Raman spin lattice relaxation time and Debye temperature studies of Cr in ammonium cobalt sulphate hexahydrate single crystal

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Subramanian, P.

    2007-08-01

    Electron paramagnetic resonance (EPR) of Cr doped in (NH4)Co(SO4)·6H2O single crystal has been studied using Q band EPR spectrometer to find spin lattice relaxation time (SLRT) (T1). The observation of resolved chromium spectra at room temperature has been interpreted in terms of random modulation of interaction between trivalent chromium and divalent cobalt ions by SLRT of cobalt ions. The relaxation time of the host is found to be 6.95×10s using Mitsuma theory and 9.85×10s using Misra et al. approach at room temperature (300 K). Debye temperature of the host lattice is evaluated using electron spin lattice relaxation processes. It is found that the Debye temperature of the host is 110 K.

  18. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 < T 1 < 10-6 s) is of great importance today for the study of relaxation processes. Recent case studies include, for example, glasses doped with paramagnetic ions (Vergnoux et al., 1996; Zinsou et al., 1996), amorphous Si (dangling bonds) and copper-chromium-tin spinel (Cr3+) (Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  19. {sup 1}H relaxation enhancement induced by nanoparticles in solutions: Influence of magnetic properties and diffusion

    SciTech Connect

    Kruk, D.; Korpała, A.; Taheri, S. Mehdizadeh; Förster, S.; Kozłowski, A.; Rössler, E. A.

    2014-05-07

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance {sup 1}H spin-lattice relaxation for decalin and toluene solutions of various Fe{sub 2}O{sub 3} nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz–20 MHz by applying Field Cycling method, and in the temperature range of 257–298 K, using nanoparticles differing in size and shape: spherical – 5 nm diameter, cubic – 6.5 nm diameter, and cubic – 9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall {sup 1}H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the {sup 1}H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.

  20. Anisotropic sup 2 H NMR spin-lattice relaxation in L sub. alpha. -phase cerebroside bilayers

    SciTech Connect

    Speyer, J.B.; Weber, R.T.; Gupta, S.K.D.; Griffin, R.G. )

    1989-12-12

    A series of {sup 2}H NMR inversion recovery experiments in the L{sub {alpha}} phase of the cerebroside N-palmitoylgalactosylsphingosine (NPGS) have been performed. In these liquid crystalline lipid bilayers the authors have observed substantial anisotropy in the spin-lattice relaxation of the CD{sub 2} groups in the acyl chains. The form and magnitude of the anisotropy varies with position in the chain, being positive in the upper region, decreasing to zero at the 4-position, and reversing sign at the lower chain positions. It is also shown that addition of cholesterol to the bilayer results in profound changes in the anisotropy. These observations are accounted for by a simple motional model of discrete hops among nine sites, which result from the coupling of two modes of motion - long-axis rotational diffusion and guache-trans isomerization. This model is employed in quantitative simulations of the spectral line shapes and permits determination of site populations and motional rates. These results, plus preliminary results in sphingomyelin and lecithin bilayers,illustrate the utility of T{sub 1} anisotropy measurements as a probe of dynamics in L{sub {alpha}}-phase bilayers.

  1. The Peculiarities of the NMR Spin-Lattice Relaxation in Proton Exchanged LINBO_{3}

    NASA Astrophysics Data System (ADS)

    Vertegel, Igor; Chesnokov, Eugeny; Ovcharenko, Alexander; Vertegel, Ivan

    2013-06-01

    The temperature dependence of the spin-lattice relaxation time T_{1} of Li^{7} nuclei in the temperature range (170-430 K) was investigated in LiNbO_{3} polycrystalline samples: the clean and annealed ones in a hydrogen environment at temperature around 1000° C. The anomaly in the temperature dependence of T_{1} was found in range 300-340 K for both pure and annealed crystals. The reduction of the time T_{1} in the annealed lithium niobate crystal is caused by the creation of point defects (F^{+} or F-centers), with the dominant F-centers contribution. An increase in the activation energy in the annealed crystal can be explained by the following. It is known for the pure lithium niobate that an oscillation of lithium occurs in a symmetrical potential consisting of three wells. Formation of the oxygen vacancies in the annealed crystals is accompanied with extrinsic protons occupation of the vacancies. It leads to the symmetry violation and causes an i ncrease of the activation barrier.

  2. New technique for single-scan T1 measurements using solid echoes. [for spin-lattice relaxation time

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W. K.

    1978-01-01

    A simple technique for single-scan T1 measurements in solids is proposed and analyzed for single exponential spin-lattice relaxation. In this technique, the direct spin heating caused by the sampling process is significantly reduced in comparison with conventional techniques by utilizing the 'solid echo' to refocus the magnetization. The applicability of this technique to both the solid and liquid phases is demonstrated.

  3. The T1 ρ13C spin-lattice relaxation time of interpenetrating networks by solid state NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Schueneman, G. T.; Novak, B. M.

    1999-02-01

    Poly (2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate) interpenetrated with 5% SiO 2 (PHEMA-IPN) were studied by 13C CP/MAS NMR. From these results, the structure of two polymers were verified by 13C NMR. Spin-lattice relaxation times for the polymer carbons in the rotating frame, T1 ρ, have been measured as a function of temperature. The T1 ρ spin-lattice relaxation times of the α-quarternary and carbonyl in the PHEMA and PHEMA-IPN undergo slow motions, i.e., motions on the slow side of the T1 ρ minimum, while those of the 1-,2-, β-methylene, and 3-methyl undergo fast motions, i.e., motions on the fast side of the T1 ρ minimum. From these T1 ρ spin-lattice relaxation times, we discuss the mobility, the correlation time, and activation energy for the PHEMA and PHEMA-IPN, respectively. The activation energies for the PHEMA-IPN were found to be generally higher than those of PHEMA. The higher activation energy for the side-chain 2-methylene in the PHEMA-IPN is attributed to bonding between the SiO 2 and the hydroxyl group of the PHEMA.

  4. Measuring nanopore size from the spin-lattice relaxation of CF4 gas

    PubMed Central

    Kuethe, Dean O.; Montaño, Rebecca; Pietraß, Tanja

    2007-01-01

    The NMR 19F spin-lattice relaxation time constant T1 for CF4 gas is dominated by spin–rotation interaction, which is mediated by the molecular collision frequency. When confined to pores of approximately the same size or smaller than the bulk gas mean free path, additional collisions of molecules with the pore walls should substantially change T1. To develop a method for measuring the surface/volume ratio S/V by measuring how T1 changes with confinement, we prepared samples of known S/V from fumed silica of known mass-specific surface area and compressed to varying degrees into cylinders of known volume. We then measured T1 for CF4 in these samples at varying pressures, and developed mathematical models for the change in T1 to fit the data. Even though CF4 has a critical temperature below room temperature, we found that its density in pores was greater than that of the bulk gas and that it was necessary to take this absorption into account. We modeled adsorption in two ways, by assuming that the gas condenses on the pore walls, and by assuming that gas in a region near the wall is denser than the bulk gas because of a simplified attractive potential. Both models suggested the same two-parameter formula, to which we added a third parameter to successfully fit the data and thus achieved a rapid, precise way to measure S/V from the increase in T1 due to confinement in pores. PMID:17400493

  5. Phase separation, clustering, and fractal characteristics in glass: A magic-angle-spinning NMR spin-lattice relaxation study

    NASA Astrophysics Data System (ADS)

    Sen, S.; Stebbins, J. F.

    1994-07-01

    A comparative study of the 29Si spin-lattice relaxation behavior (induced by trace amounts of paramagnetic dopants in the glass) in phase-separated Li2Si4O9 and monophasic Li2Si2O5 and Na2Si2O5 glasses has been made in order to understand the nature of clustering and the resulting intermediate-range ordering. Optically clear tetrasilicate and disilicate glasses were prepared with 500 to 2000 ppm of Gd2O3, a paramagnetic dopant. The constituent structural units (Q3 and Q4 species) in all tetrasilicate glasses show strong differential relaxation following a power-law behavior. This is due to preferential partitioning of Gd3+ into the lower silica (Q3-rich) regions of these glasses, indicating the presence of Q species clusters too small to produce optical opalescence (a few nm to perhaps tens of nm). Preliminary results on 6Li spin-lattice relaxation in these glasses support this hypothesis. Differential relaxation becomes more pronounced on annealing due to growth of such clusters. No such differential relaxation was observed in the monophase disilicate glasses. For spin-lattice relaxation induced by direct dipolar coupling to paramagnetic ions, the recovery of magnetization is proportional to time as M(t)~tα where α is a function of the dimensionality D of mass distribution of the constituent Q species around the Gd3+ paramagnetic centers in the glass. For tetrasilicate glasses D~=2.62+/-0.22 and the system behaves as a mass fractal up to a length scale of 2 to 3 nm. D is thus equal to, within error, the theoretical value of 2.6 for an infinite percolation cluster of one type of Q species in another. For disilicate glasses, D~=3.06+/-0.18 which indicates a three-dimensional (and thus nonfractal) mass distribution of the constituent Q species over the same length scale.

  6. Is the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers sensitive to excluded volume interactions?

    PubMed

    Shavykin, Oleg V; Neelov, Igor M; Darinskii, Anatolii A

    2016-09-21

    The effect of excluded volume (EV) interactions on the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers has been studied by using Brownian dynamics simulations. The study was motivated by the theory developed by Markelov et al., [J. Chem. Phys., 2014, 140, 244904] for a Gaussian dendrimer model without EV interactions. The theory connects the experimentally observed dependence of the spin-lattice relaxation rate 1/T(1)H on the location of NMR active groups with the restricted flexibility (semiflexibility) of dendrimers. Semiflexibility was introduced through the correlations between the orientations of different segments. However, these correlations exist even in flexible dendrimer models with EV interactions. We have simulated coarse-grained flexible and semiflexible dendrimer models with and without EV interactions. Every dendrimer segment consisted of two rigid bonds. Semiflexibility was introduced through a potential which restricts the fluctuations of angles between neighboring bonds but does not change orientational correlations in the EV model as compared to the flexible case. The frequency dependence of the reduced 1/T(1)H(ωH) for segments and bonds belonging to different dendrimer shells was calculated. It was shown that the main effect of EV interactions consists of a much stronger contribution of the overall dendrimer rotation to the dynamics of dendrimer segments as compared to phantom models. After the exclusion of this contribution the manifestation of internal dynamics in spin-lattice NMR relaxation appears to be practically insensitive to EV interactions. For the flexible models, the position ωmax of the peak of the modified 1/T(1)H(ωH) does not depend on the shell number. For semiflexible models, the maximum of 1/T(1)H(ωH) for internal segments or bonds shifts to lower frequencies as compared to outer ones. The dependence of ωmax on the number of dendrimer shells appears to be universal for segments and

  7. Capturing fast relaxing spins with SWIFT adiabatic rotating frame spin-lattice relaxation (T1ρ ) mapping.

    PubMed

    Zhang, J; Nissi, M J; Idiyatullin, D; Michaeli, S; Garwood, M; Ellermann, J

    2016-04-01

    Rotating frame spin-lattice relaxation, with the characteristic time constant T1ρ , provides a means to access motion-restricted (slow) spin dynamics in MRI. As a result of their restricted motion, these spins are sometimes characterized by a short transverse relaxation time constant T2 and thus can be difficult to detect directly with conventional image acquisition techniques. Here, we introduce an approach for three-dimensional adiabatic T1ρ mapping based on a magnetization-prepared sweep imaging with Fourier transformation (MP-SWIFT) sequence, which captures signal from almost all water spin populations, including the extremely fast relaxing pool. A semi-analytical procedure for T1ρ mapping is described. Experiments on phantoms and musculoskeletal tissue specimens (tendon, articular and epiphyseal cartilages) were performed at 9.4 T for both the MP-SWIFT and fast spin echo (FSE) read outs. In the phantom with liquids having fast molecular tumbling and a single-valued T1ρ time constant, the measured T1ρ values obtained with MP-SWIFT and FSE were similar. Conversely, in normal musculoskeletal tissues, T1ρ values measured with MP-SWIFT were much shorter than the values obtained with FSE. Studies of biological tissue specimens demonstrated that T1ρ -weighted SWIFT provides higher contrast between normal and diseased tissues relative to conventional acquisitions. Adiabatic T1ρ mapping with SWIFT readout captures contributions from the otherwise undetected fast relaxing spins, allowing more informative T1ρ measurements of normal and diseased states. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26811973

  8. Proton spin-lattice relaxation in silkworm cocoons: physisorbed water and serine side-chain motions.

    PubMed

    Geppi, Marco; Mollica, Giulia; Borsacchi, Silvia; Cappellozza, Silvia

    2010-03-01

    The molecular dynamic behavior of silkworm cocoons produced by a single Bombyx mori strain was investigated by means of high- and low-resolution solid-state NMR experiments. Cocoons with different moisture content were prepared to study the effects of physisorbed water on their molecular dynamics in the MHz regime, which was probed through the measurement of (1)H T(1) relaxation times at 25 MHz in the 25-95 degrees C temperature range. The water content of the different samples was determined from the analysis of (1)H free-induction decays. In addition to the rotation of methyl groups, mostly from alanine, and to the reorientation of physisorbed water molecules, already identified in previous works as relaxation sinks, the reorientation of serine side-chains was here found to contribute to (1)H T(1) above room temperature. The analysis of the trends of (1)H T(1) versus temperature was carried out in terms of semiempirical models describing the three main motional processes, and indicated that methyl rotation, water reorientation and serine side-chain motions are the most efficient relaxation mechanisms below 0 degrees C, between 0 and 60 degrees C, and above 60 degrees C, respectively. The activation energies were found to decrease passing from serine to water to methyl motions. PMID:20136080

  9. Electron spin-lattice relaxation of low-symmetry Ni{sup 2+} centers in LiF

    SciTech Connect

    Azamat, D. V. Dejneka, A.; Jastrabik, L.; Lančok, J.; Badalyan, A. G.

    2014-06-23

    The spin-lattice relaxation times of charge-compensated Ni{sup 2+} centers in LiF single crystals were measured using the electron spin echo technique. An analysis of the results revealed a very high relaxation rate with a linear dependence on temperature within the intermediate temperature range of 5–15 K. This acceleration of the relaxation rate was found to be due to the inhomogeneous distribution of Ni{sup 2+} ions in the LiF lattice. It seems that the effective cross-relaxation mechanism through the exchange-coupled clusters of Ni{sup 2+} ions can play a dominant role. Two-phonon Raman type relaxation dominates at higher temperatures involving the Debye phonon spectrum of the LiF lattice.

  10. Theory of nuclear spin-lattice relaxation in La2CuO4 at high temperatures

    NASA Astrophysics Data System (ADS)

    Sokol, A.; Gagliano, E.; Bacci, S.

    1993-06-01

    The nuclear-spin-lattice relaxation in La2CuO4 is reexamined in connection with the recent measurements of the NQR relaxation rate for temperatures up to 900 K [T. Imai, C. P. Slichter, K. Yoshimura, and K. Kosuge, Phys. Rev. Lett. 70, 1002 (1993)]. We use an approach based on the exact diagonalization for the Heisenberg model to calculate the short-wavelength contribution to the relaxation rate in the high-temperature region, T>~J/2. It is shown that the spin diffusion accounts for approximately 10% of the total relaxation rate at 900 K and would beome dominant for T>J. The calculated 1/T1 is in good agreement with the experiment both in terms of the absolute value and temperature dependence.

  11. Pb207 spin-lattice relaxation in solid PbMoO4 and PbCl2

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Bai, Shi; Vega, Alexander J.; Dybowski, Cecil

    2006-12-01

    We have measured the Pb207 nuclear spin-lattice relaxation rate R as a function of temperature T at two nuclear magnetic resonance frequencies ω0 in the ionic solids lead molybdate (PbMoO4) and lead chloride (PbCl2) . R is unexpectedly large, proportional to T2 , and independent of ω0 . Taken together with previous work in lead nitrate [Pb(NO3)2] , these results show that the relaxation does not depend on the nature or rotational motion of the counterion, particularly since the counterion in lead chloride is a single chlorine atom. The theory that explains the observed relaxation rate is reviewed. A second-order Raman process dominates the observed relaxation process. It involves the modulation of the spin-rotation interaction by the lattice vibrations.

  12. Staggered-spin contribution to nuclear spin-lattice relaxation in two-leg antiferromagnetic spin-12 ladders

    NASA Astrophysics Data System (ADS)

    Ivanov, D. A.; Lee, Patrick A.

    1999-02-01

    We study the nuclear spin-lattice relaxation rate 1/T1 in the two-leg antiferromagnetic spin-1/2 Heisenberg ladder. More specifically, we consider the contribution to 1/T1 from the processes with momentum transfer (π,π). In the limit of weak coupling between the two chains, this contribution is of activation type with gap 2Δ at low temperatures (Δ is the spin gap), but crosses over to a slowly decaying temperature dependence at the crossover temperature T~Δ. This crossover possibly explains the recent high-temperature NMR results on ladder-containing cuprates by Imai et al.

  13. NMR spin-lattice relaxation time T(1) of thin films obtained by magnetic resonance force microscopy.

    PubMed

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment. PMID:25828244

  14. NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.

  15. Spin-lattice relaxation study of the methyl proton dynamics in solid 9,10-dimethyltriptycene (DMT).

    PubMed

    Piślewski, N; Tritt-Goc, J; Bielejewski, M; Rachocki, A; Ratajczyk, T; Szymański, S

    2009-06-01

    Proton spin-lattice relaxation studies are performed for powder samples of 9,10-dimethyltriptycene (DMT) and its isotopomer DMT-d(12) in which all the non-methyl protons in the molecule are replaced by deuterons. The relaxation data are interpreted in terms of the conventional relaxation theory based on the random jump model in which the Pauli correlations between the relevant spin and torsional states are discarded. The Arrhenius activation energies, obtained from the relaxation data, 25.3 and 24.8 kJ mol(-1) for DMT and DMT-d(12), respectively, are very high as for the methyl groups. The validity of the jump model in the present case is considered from the perspective of Haupt theory in which the Pauli principle is explicitly invoked. To this purpose, the dynamic quantities entering the Haupt model are reinterpreted in the spirit of the damped quantum rotation (DQR) approach introduced recently for the purpose of NMR lineshape studies of hindered molecular rotators. Theoretical modelling of the relevant methyl group dynamics, based on the DQR theory, was performed. From these calculations it is inferred that direct assessments of the torsional barrier heights, based on the Arrhenius activation energies extracted from relaxation data, should be treated with caution. PMID:19181490

  16. {sup 1}H NMR electron-nuclear cross relaxation in thin films of hydrogenated amorphous silicon

    SciTech Connect

    Su Tining; Taylor, P. C.; Ganguly, G.; Carlson, D. E.; Bobela, D. C.; Hari, P.

    2007-12-15

    We investigate the spin-lattice relaxation of the dipolar order in {sup 1}H NMR in hydrogenated amorphous silicon (a-Si:H). We find that the relaxation is dominated by the cross relaxation between the hydrogen nuclei and the paramagnetic states. The relaxation is inhomogeneous, and can be described as a stretched exponential function. We proposed a possible mechanism for this relaxation. This mechanism applies to a rather broad range of paramagnetic states, including the deep neutral defects (dangling bonds), the light-induced metastable defects, the defects created by doping, and the singly occupied, localized band-tail states populated by light at low temperatures. The cross relaxation is only sensitive to the bulk spin density, and the surface spins have a negligible effect on the relaxation.

  17. Nuclear spin-lattice relaxation at field-induced level crossings in a Cr8F8 pivalate single crystal

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2016-01-01

    We construct a microscopic theory for the proton spin-lattice relaxation-rate 1 / T1 measurements around field-induced level crossings in a single crystal of the trivalent chromium ion wheel complex [Cr8F8(OOCtBu)16] at sufficiently low temperatures [E. Micotti et al., Phys. Rev. B 72 (2005) 020405(R)]. Exactly diagonalizing a well-equipped spin Hamiltonian for the individual clusters and giving further consideration to their possible interactions, we reveal the mechanism of 1 / T1 being single-peaked normally at the first level crossing but double-peaked intriguingly around the second level crossing. We wipe out the doubt about poor crystallization and find out a solution-intramolecular alternating Dzyaloshinsky-Moriya interaction combined with intermolecular coupling of antiferromagnetic character, each of which is so weak as several tens of mK in magnitude.

  18. Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids.

    PubMed

    Sato, Hideo; Bottle, Steven E; Blinco, James P; Micallef, Aaron S; Eaton, Gareth R; Eaton, Sandra S

    2008-03-01

    Electron spin-lattice relaxation rates, 1/T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution (2H and 15N) were used to distinguish the contributions of various processes. Below about 100K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of molecular tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/T1 on tumbling correlation times fits better with the Cole-Davidson spectral density function than with the Bloembergen-Purcell-Pound model. PMID:18166493

  19. Rotation of Lipids in Membranes: Molecular Dynamics Simulation, 31P Spin-Lattice Relaxation, and Rigid-Body Dynamics

    PubMed Central

    Klauda, Jeffery B.; Roberts, Mary F.; Redfield, Alfred G.; Brooks, Bernard R.; Pastor, Richard W.

    2008-01-01

    Molecular dynamics simulations and 31P-NMR spin-lattice (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{1}\\end{equation*}\\end{document}) relaxation rates from 0.022 to 21.1 T of fluid phase dipalmitoylphosphatidylcholine bilayers are compared. Agreement between experiment and direct prediction from simulation indicates that the dominant slow relaxation (correlation) times of the dipolar and chemical shift anisotropy spin-lattice relaxation are ∼10 ns and 3 ns, respectively. Overall reorientation of the lipid body, consisting of the phosphorus, glycerol, and acyl chains, is well described within a rigid-body model. Wobble, with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\bot}}=\\end{equation*}\\end{document} 1–2 × 108 s−1, is the primary component of the 10 ns relaxation; this timescale is consistent with the tumbling of a lipid-sized cylinder in a medium with the viscosity of liquid hexadecane. The value for \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\Vert}},\\end{equation*}\\end{document} the diffusion constant for rotation about the long axis of the lipid body, is difficult to determine precisely because of averaging by fast motions and wobble; it is tentatively estimated to be 1 × 107 s−1. The resulting D‖/D⊥

  20. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    NASA Astrophysics Data System (ADS)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  1. Measurement of electron spin-lattice relaxation times in radical doped butanol samples at 1 K using the NEDOR method

    NASA Astrophysics Data System (ADS)

    Hess, C.; Herick, J.; Berlin, A.; Meyer, W.; Reicherz, G.

    2012-12-01

    The electron spin-lattice relaxation time (T1e) of TEMPO- and trityl-doped butanol samples at 2.5 T and temperatures between 0.95 K and 2.17 K was studied by pulsed nuclear magnetic resonance (NMR) using the nuclear-electron double resonance (NEDOR) method. This method is based on the idea to measure the NMR lineshift produced by the local field of paramagnetic impurities, whose polarization can be manipulated. This is of technical advantage as measurements can be performed under conditions typically used for the dynamic nuclear polarization (DNP) process - in our case 2.5 T and temperatures around 1 K - where a direct measurement on the electronic spins would be far more complicated to perform. As T1e is a crucial parameter determining the overall efficiency of DNP, the effect of the radical type, its spin concentration, the temperature and the oxygen content on T1e has been investigated. For radical concentrations as used in DNP (several 1019 spins/cm3) the relaxation rate (T1e-1) has shown a linear dependence on the paramagnetic electron concentration for both radicals investigated. Experiments with perdeuterated and ordinary butanol have given no indication for any influence of the host materials isotopes. The measured temperature dependence has shown an exponential characteristic. It is further observed that the oxygen content in the butanol samples has a considerable effect on the electron relaxation time and thus influences the nuclear relaxation time and polarization rate during the DNP. The experiments also show a variation in the NMR linewidth, leading to comparable time constants as determined by the lineshift. NEDOR measurements were also performed on irradiated, crystal grains of 6LiD. These samples exhibited a linewidth behavior similar to that of the cylindrically shaped butanol samples.

  2. Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.

    PubMed

    Szuminska, K; Gutsze, A; Kowalczyk, A

    2001-01-01

    Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse interval (tauCPMG) as well as 1H NMR spectral measurements in a wide range of concentrations of bovine serum albumin (BSA) solutions. The anomalous relaxation behaviour of the water protons, similar to that observed in mammalian lenses, was found in the two most concentrated solutions (44% and 46%). The functional dependence of the spin-spin relaxation time vs. tauCPMG pulse interval and the values of the motional activation parameters obtained from the temperature dependencies of spin-lattice relaxation times suggest that the water molecule mobility is reduced in these systems. The slow exchange process on the T2 time scale is proposed to explain the obtained data. The proton spectral measurements support the hypothesis of a slow exchange mechanism in the highest concentrated solutions. From the analysis of the shape of the proton spectra the mean exchange times between bound and bulk water proton groups (tauex) have been estimated for the range of the highest concentrations (30%-46%). The obtained values are of the order of milliseconds assuring that the slow exchange condition is fulfilled in the most concentrated samples. PMID:11837660

  3. Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex.

    PubMed

    Zadrozny, Joseph M; Freedman, Danna E

    2015-12-21

    High-spin transition metal complexes are of interest as candidates for quantum information processing owing to the tunability of the pairs of MS levels for use as quantum bits (qubits). Thus, the design of high-spin systems that afford qubits with stable superposition states is of primary importance. Nuclear spins are a potent instigator of superposition instability; thus, we probed the Ph4P(+) salt of the nuclear spin-free complex [Fe(C5O5)3](3-) (1) to see if long-lived superpositions were possible in such a system. Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic measurements reveal a strong EPR transition at X-band that can be utilized as a qubit. However, at 5 K the coherent lifetime, T2, for this resonance is 721(3) ns and decreases rapidly with increasing temperature. Simultaneously, the spin-lattice relaxation time is extremely short, 11.33(1) μs, at 5 K, and also rapidly decreases with increasing temperature. The coincidence of these two temperature-dependent data sets suggests that T2 in 1 is strongly limited by the short T1. Importantly, these results highlight the need for new design parameters in pursuit of high-spin species with appreciable coherence times. PMID:26650962

  4. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  5. An NMR thermometer for cryogenic magic-angle spinning NMR: The spin-lattice relaxation of 127I in cesium iodide

    NASA Astrophysics Data System (ADS)

    Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G.; Beckett, Peter; Denning, Mark; Carravetta, Marina; al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H.

    2011-10-01

    The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.

  6. Observation of the vortex lattice melting by NMR spin-lattice relaxation in the mixed state

    SciTech Connect

    Bulaevskii, L.N.; Hammel, P.C.; Vinokur, V.M.

    1994-01-01

    For anisotropic layered superconductors the effect of moving vortices on the nuclear spin magnetization is calculated. Current is supposed to flow along layers, and applied magnetic field is tilted with respect to c-axis. In the solid phase the motion of the vortex lattice produces an alternating magnetic field perpendicular to the applied field which causes the decay of the spin-echo amplitude. This decay rate will display an array of peaks as a function of frequency. In the liquid phase this alternating field contribute to the longitudinal relaxation rate W{sub 1} which has a single peak.

  7. Electron spin-lattice relaxation of the (4Fe-4S) ferredoxin from B. stearothermophilus. Comparison with other iron proteins

    NASA Astrophysics Data System (ADS)

    Bertrand, Patrick; Gayda, Jean-Pierre; Rao, K. Krishna

    1982-05-01

    The temperature dependence of the electron spin-lattice relaxation time T1 of the (4Fe-4S) ferredoxin from Bacillus stearothermophilus is studied in the range 1.2 to 40 K. This dependence is similar to that observed for the (2Fe-2S) ferredoxin from Spirulina maxima and can be interpreted with the same relaxation processes [J.P. Gayda, P. Bertrand, A. Deville, C. More, G. Roger, J.F. Gibson, and R. Cammack, Biochim. Biophys. Acta 581, 15 (1979)]. In particular, between 4 and 15 K, the data are well fitted by a second-order Raman process involving three-dimensional phonons, with a Debye temperature of about 60 K (45 cm-1). This would give an estimation of the highest frequency of the vibrations which can propagate through the three-dimensional proteinic medium. In the highest temperature range (T≳30 K) the results are interpreted with an Orbach process involving an excited level of energy 120 cm-1. This process could be induced by the localized vibrations of the active site. Finally, these results are compared to those recently reported for some hemoproteins [H.J. Stapleton, J.P. Allen, C.P. Flynn, D.G. Stinson, and S.R. Kurtz, Phys. Rev. Lett. 45, 1456 (1980)]. Below 15 K, the temperature dependence of T1 for these samples is similar to that observed for the iron-sulfur proteins and may be interpreted in the same way. Our interpretation is compared to the fractal model proposed by Stapleton et al.

  8. Impact of Chlorine Substitution on Spin Lattice Relaxation of Triarylmethyl and 1,4-Benzosemiquinone Radicals in Glass-forming Solvents between 25 and 295 K

    PubMed Central

    Kathirvelu, Velavan; Eaton, Gareth R.; Eaton, Sandra S.

    2009-01-01

    Spin-lattice relaxation rates measured by long-pulse saturation recovery in glassy solvents for chlorinated aromatic radicals: perchlorotriphenylmethyl radical, 2,5-dichloro-3,6-dihydroxy-1,4-benzosemiquinone, and tetrachloro-1,4-benzosemiquinone, were compared with relaxation rates for non-chlorinated analogs. The impact of the quadrupolar chlorines is small, and less than the effects of changing the rigidity of the glass. The temperature dependence of relaxation rates below the glass transition temperature could be modeled as the sum of contributions from the direct, Raman, and local mode processes. PMID:20126423

  9. Spin-lattice and spin-spin relaxation in porous media: A generalized two site relaxation model

    SciTech Connect

    Su, M.Y.; Nalcioglu, O. . Dept. of Radiological Sciences)

    1993-10-15

    The T[sub 1] and T[sub 2] relaxation times in porous media have been greatly used in the field of petrophysics and biology. The relaxation behavior can be used as a fingerprint of a system, or can provide information on some other parameters which cannot be easily measured. In this paper, the authors investigate the behavior of the T[sub 1] and T[sub 2] relaxation in two types of media, (1) an object consisting of closely packed glass beads and (2) a column of gel beads. They assume a generalized two site relaxation process for both of the objects. This model assumes that the spins in the medium are under two different relaxation modes and the two modes are in fast exchange with each other. The results confirm that the generalized two site relaxation model is applicable for both types of porous media. A possible explanation for the relaxation mechanism is also discussed.

  10. Effects of diffusion in magnetically inhomogeneous media on rotating frame spin-lattice relaxation

    NASA Astrophysics Data System (ADS)

    Spear, John T.; Gore, John C.

    2014-12-01

    In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues.

  11. Membrane fluidity profiles as deduced by saturation-recovery EPR measurements of spin-lattice relaxation times of spin labels

    PubMed Central

    Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.

    2011-01-01

    There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T−11) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T−11 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T−11 profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T−11 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz). PMID:21868272

  12. Finding the true spin-lattice relaxation time for half-integral nuclei with non-zero quadrupole couplings

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.

    2015-03-01

    Measuring true spin-lattice relaxation times T1 of half-integral quadrupolar nuclei having non-zero nuclear quadrupole coupling constants (NQCCs) presents challenges due to the presence of satellite-transitions (STs) that may lie outside the excitation bandwidth of the central transition (CT). This leads to complications in establishing well-defined initial conditions for the population differences in these multi-level systems. In addition, experiments involving magic-angle spinning (MAS) can introduce spin exchange due to zero-crossings of the ST and CT (or possibly rotational resonance recoupling in the case of multiple sites) and greatly altered initial conditions as well. An extensive comparison of pulse sequences that have been previously used to measure T1 in such systems is reported, using the 71Ga (I = 3/2) NMR of a Ge-doped h-GaN n-type semiconductor sample as the test case. The T1 values were measured at the peak maximum of the Knight shift distribution. Analytical expressions for magnetization-recovery of the CT appropriate to the pulse sequences tested were used, involving contributions from both a magnetic relaxation mechanism (rate constant W) and a quadrupolar one (rate constants W1 and W2, approximately equal in this case). An asynchronous train of high-power saturating pulses under MAS that is able to completely saturate both CT and STs is found to be the most reliable and accurate method for obtaining the "true T1", defined here as (2W + 2W1,2)-1. All other methods studied yielded poor agreement with this "true T1" value or even resulted in gross errors, for reasons that are analyzed in detail. These methods involved a synchronous train of saturating pulses under MAS, an inversion-recovery sequence under MAS or static conditions, and a saturating comb of pulses on a static sample. Although the present results were obtained on a sample where the magnetic relaxation mechanism dominated the quadrupolar one, the asynchronous saturating pulse train

  13. Spin-lattice relaxation of heavy spin-1/2 nuclei in diamagnetic solids: A Raman process mediated by spin-rotation interaction

    NASA Astrophysics Data System (ADS)

    Vega, Alexander J.; Beckmann, Peter A.; Bai, Shi; Dybowski, Cecil

    2006-12-01

    We present a theory for the nuclear spin-lattice relaxation of heavy spin-1/2 nuclei in solids, which explains within an order of magnitude the unexpectedly effective lead and thallium nuclear spin-lattice relaxation rates observed in the ionic solids lead molybdate, lead chloride, lead nitrate, thallium nitrate, thallium nitrite, and thallium perchlorate. The observed rates are proportional to the square of the temperature and are independent of magnetic field. This rules out all known mechanisms usually employed to model nuclear spin relaxation in lighter spin-1/2 nuclei. The relaxation is caused by a Raman process involving the interactions between nuclear spins and lattice vibrations via a fluctuating spin-rotation magnetic field. The model places an emphasis on the time dependence of the angular velocity of pairs of adjacent atoms rather than on their angular momentum. Thus the spin-rotation interaction is characterized not in the traditional manner by a spin-rotation constant but by a related physical parameter, the magnetorotation constant, which relates the local magnetic field generated by spin rotation to an angular velocity. Our semiclassical relaxation model involves a frequency-mode description of the spectral density that can directly be related to the mean-square amplitudes and mode densities of lattice vibrations in the Debye model.

  14. (19)F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1T).

    PubMed

    Kadayakkara, Deepak K; Damodaran, Krishnan; Hitchens, T Kevin; Bulte, Jeff W M; Ahrens, Eric T

    2014-05-01

    Fluorine ((19)F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for (19)F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of (19)F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc<1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new (19)F MRI agents and methods is discussed. PMID:24594752

  15. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    PubMed Central

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  16. 19F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1 T)

    NASA Astrophysics Data System (ADS)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W. M.; Ahrens, Eric T.

    2014-05-01

    Fluorine (19F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323 K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed.

  17. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.

    PubMed

    Lijewski, S; Goslar, J; Hoffmann, S K

    2006-07-01

    The electron spin-lattice relaxation of Cu(2+) has been studied by the electron spin echo technique in the temperature range 4.2-115 K in triglycine sulfate (TGS) family crystals. Assuming that the relaxation is due to Raman relaxation processes the Debye temperature Θ(D) was determined as 190 K for TGS, 168 K for triglycine selenate (TGSe) and 179 K for triglycine fluoroberyllate (TGFB). We also calculated the Θ(D) values from the sound velocities derived from available elastic constants. The elastic Debye temperatures were found as 348 K for TGS, 288 K for TGSe and 372 K for TGFB. The results shown good agreement with specific heat data for TGS. The elastic Θ(D) are considerably larger than those determined from the Raman spin-lattice relaxation. The possible reasons for this discrepancy are discussed. We propose to use a modified expression describing two-phonon Raman relaxation with a single variable only (Θ(D)) after elimination of the sound velocity. Moreover, we show that the relaxation data can be fitted using the elastic Debye temperature value as a constant with an additional relaxation process contributing at low temperatures. This mechanism can be related to a local mode of the Cu(2+) defect in the host lattice. Electron paramagnetic resonance g-factors and hyperfine splitting were analysed in terms of the molecular orbital theory and the d-orbital energies and covalency factors of the Cu(gly)(2) complexes were found. Using the structural data and calculated orbital energies the spin-phonon coupling matrix element of the second-order Raman process was calculated as 553 cm(-1) for TGS, 742 cm(-1) for TGSe and 569 cm(-1) for TGFB. PMID:21690828

  18. Lattice sites, charge states and spin-lattice relaxation of Fe ions in 57Mn+ implanted GaN and AlN

    NASA Astrophysics Data System (ADS)

    Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Mølholt, T. E.; Ncube, M.; Shayestehaminzadeh, S.; Gíslason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    2016-03-01

    The lattice sites, valence states, resulting magnetic behaviour and spin-lattice relaxation of Fe ions in GaN and AlN were investigated by emission Mössbauer spectroscopy following the implantation of radioactive 57Mn+ ions at ISOLDE/CERN. Angle dependent measurements performed at room temperature on the 14.4 keV γ-rays from the 57Fe Mössbauer state (populated from the 57Mn β- decay) reveal that the majority of the Fe ions are in the 2+ valence state nearly substituting the Ga and Al cations, and/or associated with vacancy type defects. Emission Mössbauer spectroscopy experiments conducted over a temperature range of 100-800 K show the presence of magnetically split sextets in the "wings" of the spectra for both materials. The temperature dependence of the sextets relates these spectral features to paramagnetic Fe3+ with rather slow spin-lattice relaxation rates which follow a T2 temperature dependence characteristic of a two-phonon Raman process.

  19. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    PubMed

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  20. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  1. Rotating-frame spin-lattice relaxation time imaging by radio-frequency field gradients: visualization of strained crosslinked natural rubbers

    NASA Astrophysics Data System (ADS)

    Chaumette, H.; Grandclaude, D.; Canet, D.

    2003-08-01

    NMR imaging by radio-frequency field gradients ( B1 gradients) is especially convenient for heterogeneous samples and/or in the case of relatively short transverse relaxation times. The method has been combined with the application of two spin-lock periods of different duration so as to produce rotating-frame spin-lattice relaxation time ( T1 ρ) images. In the case of natural rubber samples with different crosslink densities, such images are not only characteristic of the crosslink density but also reveal the way in which the material has been stressed. The strained parts can be visualized either directly or through histograms showing the T1 ρ distribution over the whole sample.

  2. (77)Se nuclear spin-lattice relaxation in binary Ge-Se glasses: insights into floppy versus rigid behavior of structural units.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Hung, Ivan; Gan, Zhehong

    2015-04-30

    The mechanism of (77)Se nuclear spin-lattice relaxation is investigated in binary Ge-Se glasses. The (77)Se nuclides in Se-Se-Se chain sites relax faster via dipolar coupling fluctuation compared to those in Ge-Se-Ge sites shared by GeSe4 tetrahedra that relax slower via the fluctuation of the chemical shift anisotropy. The relaxation rate for the Se-Se-Se sites decreases markedly with increasing magnetic field, whereas that for the Ge-Se-Ge sites displays no appreciable dependence on the magnetic field such that the extent of differential relaxation between the two Se environments becomes small at high fields on the order of 19.6 T. The corresponding dynamical correlation time is three orders of magnitude shorter (∼10(-9) s) for the Se-Se-Se sites, compared to that for the Ge-Se-Ge sites (∼10(-6) s). The large decoupling in the time scale between these Se environments provides direct experimental support to the commonly made assumption that the selenium chains are mechanically floppy, and the interconnected GeSe4 tetrahedra form the rigid elements in the selenide glass structure. PMID:25848959

  3. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    DOE PAGESBeta

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for largemore » fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  4. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Utz, Y.; Hücker, M.; Gu, G. D.; Büchner, B.; Grafe, H.-J.

    2015-10-01

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal→low-temperature orthorhombic→low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T1-1 sharply upturns at the charge-ordering temperature TCO=54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T1-1 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥[001 ] , which are completely suppressed for large fields along the CuO2 planes. Our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.

  5. Dynamics of [C3H5N2]6[Bi4Br18] by means of (1)H NMR relaxometry and quadrupole relaxation enhancement.

    PubMed

    Masierak, W; Florek-Wojciechowska, M; Oglodek, I; Jakubas, R; Privalov, A F; Kresse, B; Fujara, F; Kruk, D

    2015-05-28

    (1)H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C3H5N2]6[Bi4Br18] are presented. Two motional processes have been identified from the (1)H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10(-8) s-10(-9) s and of about 10(-5) s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating (1)H-(14)N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the (14)N nuclei in [C3H5N2]6[Bi4Br18] have been determined. The (1)H-(14)N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as "quadrupole peaks") has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters. PMID:26026454

  6. Dynamics of [C3H5N2]6[Bi4Br18] by means of 1H NMR relaxometry and quadrupole relaxation enhancement

    NASA Astrophysics Data System (ADS)

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-01

    1H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C3H5N2]6[Bi4Br18] are presented. Two motional processes have been identified from the 1H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10-8 s-10-9 s and of about 10-5 s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating 1H-14N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the 14N nuclei in [C3H5N2]6[Bi4Br18] have been determined. The 1H-14N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as "quadrupole peaks") has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  7. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems

    NASA Astrophysics Data System (ADS)

    Furman, Gregory B.; Goren, Shaul D.; Meerovich, Victor M.; Sokolovsky, Vladimir L.

    2016-02-01

    Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.

  8. Anisotropy of spin-spin and spin-lattice relaxation times in liquids entrapped in nanocavities: Application to MRI study of biological systems.

    PubMed

    Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L

    2016-02-01

    Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample. PMID:26773529

  9. {sup 13}C spin-lattice relaxation and molecular dynamics of C{sub 60} in 1,2-dichlorobenzene-d{sub 4}

    SciTech Connect

    Shang, X.; Fisher, L.A.; Rodriguez, A.A.

    1996-03-14

    We have measured the {sup 13}C spin-lattice relaxation rate of C{sub 60} in 1,2-dichlorobenzene-d{sub 4} and have found that the spin rotation (SR) mechanism contributes significantly to the overall relaxation process. The magnitude of SR was found to be smaller than in the solid phase but consistent with quantities projected for C{sub 60} in toluene-d{sub 8}. These observations indicate that solvent effects play a critical role in determining the magnitude of the spin rotation contribution. Reorientational correlation times were also obtained experimentally and show that C{sub 60} is undergoing rapid rotational motion in this solvent. The activation energy for this mode of motion was found to be 7.71 kJ/mol. Several theoretical models were employed in an attempt at characterizing the rotational behavior of the title molecule. Of these theories, the Gierer-Wirtz model proved superior in duplicating our experimental findings. The close agreement suggests that 1,2-dichlorobenzene-d{sub 4} provides a discrete environment rather than a continuous one. Our study further indicates that C{sub 60} reorients in the `slip` limit where solute-solvent interactions are at a minimum. 21 refs., 3 figs., 3 tabs.

  10. 35Cl NQR frequency and spin lattice relaxation time in 3,4-dichlorophenol as a function of pressure and temperature.

    PubMed

    Ramu, L; Ramesh, K P; Chandramani, R

    2013-01-01

    The pressure dependences of (35)Cl nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T(1)) were investigated in 3,4-dichlorophenol. T(1) was measured in the temperature range 77-300 K. Furthermore, the NQR frequency and T(1) for these compounds were measured as a function of pressure up to 5 kbar at 300 K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W(1) and W(2) for the Δm = ±1 and Δm = ±2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state. PMID:23161529

  11. Electron Spin-Lattice Relaxation in Two Heme Iron and Two Blue-Copper Proteins at Liquid Helium Temperatures

    NASA Astrophysics Data System (ADS)

    Thayer, Bradley Denton

    1990-01-01

    The relaxation rates in frozen aqueous solutions of whale ferri-myoglobin azide, bovine ferri-hemoglobin azide, cupric azurin (P. aeruginosa) and cupric spinach plastocyanin were measured at 9.5 GHz using the pulse-saturation recovery method. Measurements covered a temperature range of 1.4 K to as high as 22 K, with corresponding relaxation rates up to 10^5/sec. Improvements in the equipment and the methods of analysis have enabled more stringent tests of the temperature dependence of the rates. In particular, several models proposed in the literature to explain the anomalous temperature dependence of the Raman rates in proteins are shown to be insufficient, including two fractal models. In addition, it is shown that any model based exclusively on the protein structure fails due to the diversity of the data under various solvent conditions. A general functional form consistent with a crossover in the vibrational properties is proposed instead, similar to the localization crossover in amorphous materials. The effect on the relaxation rate of several cosolvents and solutes is also examined. The effect on the direct process is much more pronounced than on the Raman region. The differences are shown to be consistent with changes in the velocity of sound at room temperature caused by the addition of cosolvents and solutes. Finally, the EPR recovery form is analyzed. We propose that the deviations in the recovery from an exponential form are due to a distribution of relaxation rates. The source of the distribution is most likely sample heating in the lower temperatures and a distribution of conformations frozen in near the paramagnetic site in the higher temperatures. It is not likely that it is caused by spin-spin interactions. The exact form of the distribution is unclear, but the most successful functional form for the recoveries is a stretched exponential with an exponent ranging from 0.5 to 1.0. However, a simple exponential fit to a limited portion of the recovery

  12. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    SciTech Connect

    Benjamin Michael Meyer

    2003-05-31

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution

  13. Spin-lattice relaxation of {sup 113}Cd and {sup 19}F nuclear spins in the crystal lattice of CdF{sub 2} semiconductor crystals with DX centers

    SciTech Connect

    Kazanskii, S. A.; Warren, W. W.; Ryskin, A. I.

    2009-08-15

    Temperature dependences of spin-lattice relaxation rates of the {sup 113}Cd and {sup 19}F lattice nuclei in the CdF{sub 2} semiconductor crystals containing bistable In and Ga impurity centers show that the relaxation mechanisms in the CdF{sub 2}:In and CdF{sub 2}:Ga crystals are different. The basic mechanism of spin-lattice relaxation of the {sup 113}Cd nuclei in the CdF{sub 2}:In crystal is the scalar contact's interaction of nuclear spins with spins of mobile charge carriers of the conduction band. In the CdF{sub 2}:Ga crystal, relaxation of the {sup 113}Cd nuclei is controlled by the contact interaction with electrons moving within a narrow band of impurity states. The same mechanism is apparently responsible for relaxation of the {sup 19}F nuclei in this crystal. In the CdF{sub 2}:In crystal, the {sup 19}F nuclei relax by the dipole-dipole interaction with electron spins localized at the hydrogen-like orbits of shallow donors.

  14. Spin-lattice relaxation of coupled metal-radical spin-dimers in proteins: application to Fe(2+)-cofactor (Q(A)(-.), Q(B)(-.), phi(-.)) dimers in reaction centers from photosynthetic bacteria.

    PubMed Central

    Calvo, Rafael; Isaacson, Roger A; Abresch, Edward C; Okamura, Melvin Y; Feher, George

    2002-01-01

    The spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.), were measured in native photosynthetic reaction centers (RC) containing a high spin Fe(2+) (S = 2) and in RCs in which Fe(2+) was replaced by diamagnetic Zn(2+). From these data, the contribution of the Fe(2+) to the spin-lattice relaxation of the cofactors was determined. To relate the spin-lattice relaxation rate to the spin-spin interaction between the Fe(2+) and the cofactors, we developed a spin-dimer model that takes into account the zero field splitting and the rhombicity of the Fe(2+) ion. The relaxation mechanism of the spin-dimer involves a two-phonon process that couples the fast relaxing Fe(2+) spin to the cofactor spin. The process is analogous to the one proposed by R. Orbach (Proc. R. Soc. A. (Lond.). 264:458-484) for rare earth ions. The spin-spin interactions are, in general, composed of exchange and dipolar contributions. For the spin dimers studied in this work the exchange interaction, J(o), is predominant. The values of J(o) for Q(A)(-.)Fe(2+), Q(B)(-.)Fe(2+), and phi(-.)Fe(2+) were determined to be (in kelvin) -0.58, -0.92, and -1.3 x 10(-3), respectively. The |J(o)| of the various cofactors (obtained in this work and those of others) could be fitted with the relation exp(-beta(J)d), where d is the distance between cofactor spins and beta(J) had a value of (0.66-0.86) A(-1). The relation between J(o) and the matrix element |V(ij)|(2) involved in electron transfer rates is discussed. PMID:12414679

  15. Spin-lattice relaxation of coupled metal-radical spin-dimers in proteins: application to Fe(2+)-cofactor (Q(A)(-.), Q(B)(-.), phi(-.)) dimers in reaction centers from photosynthetic bacteria.

    PubMed

    Calvo, Rafael; Isaacson, Roger A; Abresch, Edward C; Okamura, Melvin Y; Feher, George

    2002-11-01

    The spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.), were measured in native photosynthetic reaction centers (RC) containing a high spin Fe(2+) (S = 2) and in RCs in which Fe(2+) was replaced by diamagnetic Zn(2+). From these data, the contribution of the Fe(2+) to the spin-lattice relaxation of the cofactors was determined. To relate the spin-lattice relaxation rate to the spin-spin interaction between the Fe(2+) and the cofactors, we developed a spin-dimer model that takes into account the zero field splitting and the rhombicity of the Fe(2+) ion. The relaxation mechanism of the spin-dimer involves a two-phonon process that couples the fast relaxing Fe(2+) spin to the cofactor spin. The process is analogous to the one proposed by R. Orbach (Proc. R. Soc. A. (Lond.). 264:458-484) for rare earth ions. The spin-spin interactions are, in general, composed of exchange and dipolar contributions. For the spin dimers studied in this work the exchange interaction, J(o), is predominant. The values of J(o) for Q(A)(-.)Fe(2+), Q(B)(-.)Fe(2+), and phi(-.)Fe(2+) were determined to be (in kelvin) -0.58, -0.92, and -1.3 x 10(-3), respectively. The |J(o)| of the various cofactors (obtained in this work and those of others) could be fitted with the relation exp(-beta(J)d), where d is the distance between cofactor spins and beta(J) had a value of (0.66-0.86) A(-1). The relation between J(o) and the matrix element |V(ij)|(2) involved in electron transfer rates is discussed. PMID:12414679

  16. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  17. Effects of Off-Resonance Irradiation, Cross-Relaxation, and Chemical Exchange on Steady-State Magnetization and Effective Spin-Lattice Relaxation Times

    NASA Astrophysics Data System (ADS)

    Kingsley, Peter B.; Monahan, W. Gordon

    2000-04-01

    In the presence of an off-resonance radiofrequency field, recovery of longitudinal magnetization to a steady state is not purely monoexponential. Under reasonable conditions with zero initial magnetization, recovery is nearly exponential and an effective relaxation rate constant R1eff = 1/T1eff can be obtained. Exact and approximate formulas for R1eff and steady-state magnetization are derived from the Bloch equations for spins undergoing cross-relaxation and chemical exchange between two sites in the presence of an off-resonance radiofrequency field. The relaxation formulas require that the magnetization of one spin is constant, but not necessarily zero, while the other spin relaxes. Extension to three sites with one radiofrequency field is explained. The special cases of off-resonance effects alone and with cross-relaxation or chemical exchange, cross-relaxation alone, and chemical exchange alone are compared. The inaccuracy in saturation transfer measurements of exchange rate constants by published formulas is discussed for the creatine kinase reaction.

  18. Resonance local phonon mode and electron spin-lattice relaxation of formate-type free radicals studied by electron spin echo in Cd(HCOO)2·2H2O crystal

    NASA Astrophysics Data System (ADS)

    Hoffmann, S. K.; Goslar, J.

    2015-07-01

    The results of X-band electron spin resonance (ESR) and electron spin echo (ESE) measurements for free radicals generated in Cd(HCOO)2·2H2O single crystal are presented. From ESR spectra analysis the radicals were identified as \\text{CO}2- after x-ray irradiation and as HOCO after γ-ray irradiation. The room temperature g-factors are: g|| = 1.9969 and g⊥ = 2.0024 for \\text{CO}2- and g1 = 2.0087, g2 = 2.0029 and g3 = 1.9960 for HOCO. Axial g-tensor symmetry for \\text{CO}2- is due to fast reorientation of the radical molecule around the g||-axis. Assignment of HOCO is confirmed by hyperfine splitting (Amax = 0.4 mT) from a single distant proton. Spin lattice relaxation rate was determined from ESE measurements in temperature range 4-250 K. Both radicals relax via local resonance mode lying within acoustic phonon branch. The existing theories of electron spin-lattice relaxation via local resonance mode are critically reviewed and compared with experimental data. A new approximation is proposed giving local mode energy \\hbar {ωR} = 56 cm-1 for \\text{CO}2- and \\hbar {ωR} = 44 cm-1 for the HOCO-radical.

  19. A study of the aging of silicone breast implants using 29Si, 1H relaxation and DSC measurements.

    PubMed

    Birkefeld, Anja Britta; Eckert, Hellmut; Pfleiderer, Bettina

    2004-08-01

    In this study 26 previously implanted silicone breast implants from the same manufacturer (Dow Corning) were investigated with two different analytical methods to characterize potential aging processes such as migration of monomer material from the gel and shell to local and distant sites, chemical alterations of the polymer, and infiltration of body compounds such as lipids. (1)H and (29)Si NMR relaxation measurements (spin-lattice, T1, and spin-spin, T2, relaxation times) were used to study the molecular dynamics of polysiloxane chains, both in gels and in shells. In addition, changes in physical properties were monitored by differential scanning calorimetry (DSC). The results of these measurements indicate that NMR relaxation times are influenced by implant generation, implantation time, shell texture and implant status. (1)H T2 values of shells and gels show a tendency to increase with increasing implantation time, indicating higher mobility and possible disintegration of the polymer network of older implants. Furthermore, the data suggest that aging also involves the migration of low cyclic molecular weight (LMW) silicone and linear chain polymer material from the gels into the shells. The high "bleeding" rate of second-generation (G2) implants (implantation period around 1973-1985), exhibiting thin shells is reflected in reduced relaxation times of these devices, most likely due to a loss of low molecular weight fractions from the gels. Moreover, "gel bleeding" also influences the melting behavior observed in DSC studies. Increased shell rigidity (high Tm and Tg) tends to be correlated with longer (29)Si relaxation times of the corresponding gels, suggesting a reduced transfer of LMW silicones and linear chain polymer from the gel to the shell and to the outside. Remarkably, textured implants seem to be less susceptible to degradation processes than implants with thin shells. PMID:15046931

  20. Dynamics of [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] by means of {sup 1}H NMR relaxometry and quadrupole relaxation enhancement

    SciTech Connect

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-28

    {sup 1}H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] are presented. Two motional processes have been identified from the {sup 1}H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10{sup −8} s-10{sup −9} s and of about 10{sup −5} s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating {sup 1}H-{sup 14}N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the {sup 14}N nuclei in [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] have been determined. The {sup 1}H-{sup 14}N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as “quadrupole peaks”) has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  1. Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu3-xZnx(btc)2

    NASA Astrophysics Data System (ADS)

    Gul-E-Noor, Farhana; Michel, Dieter; Krautscheid, Harald; Haase, Jürgen; Bertmer, Marko

    2013-07-01

    The 13C nuclear spin-lattice relaxation time of 13CO and 13CO2 molecules adsorbed in the metal-organic frameworks (MOFs) Cu2.97Zn0.03(btc)2 and Cu3(btc)2 is investigated over a wide range of temperatures at resonance frequencies of 75.468 and 188.62 MHz. In all cases a mono-exponential relaxation is observed, and the 13C spin-lattice relaxation times (T1) reveal minima within the temperature range of the measurements and both frequencies. This allows us to carry out a more detailed analysis of the 13C spin relaxation data and to consider the influence due to the spectral functions of the thermal motion. In a model-free discussion of the temperature dependence of the ratios T1 (T)/T1,min we observe a motional mechanism that can be described by a single correlation time. In relation to the discussion of the relaxation mechanisms this can be understood in terms of dominating translational motion with mean jump distance being larger than the minimum distances between neighboring adsorption sites in the MOFs. A more detailed discussion of the jump-like motion observed here might be carried out on the basis of self-diffusion coefficients. From the present spin relaxation measurements activation energies for the local motion of the adsorbed molecules in the MOFs can be estimated to be 3.3 kJ/mol and 2.2 kJ/mol, for CO and CO2 molecules, respectively. Finally, our findings are compared with our recent results derived from the 13C line shape analysis.

  2. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  3. Modified Jeener solid-echo pulse sequences for the measurement of the proton dipolar spin-lattice relaxation time (T1D) of tissue solid-like macromolecular components.

    PubMed

    Yang, H; Schleich, T

    1994-11-01

    Modified Jeener solid-echo pulse sequences are proposed for the measurement of the proton dipolar spin-lattice relaxation time, T1D, of motionally restricted (solid-like) components in the presence of mobile molecular species, such as encountered in biological tissue. A phase-cycled composite-pulse sequence was used for detection of the dipolar signal and cancellation of the Zeeman signal. A homospoil gradient pulse was added to the Jeener echo pulse sequence to enhance dephasing of the transverse magnetization components of mobile species, thereby aiding in elimination of the Zeeman signal during dipolar signal acquisition. A modified Jeener echo sequence incorporating water suppression is also proposed as a means to further depress the Zeeman signal arising from mobile components. The modified Jeener echo sequences were successfully used for the measurement of proton T1D values of solid 2,6-dimethylphenol and Sephadex gels of differing degrees of cross linking and hydration. PMID:7531583

  4. Nuclear spin-lattice relaxation rate in electron-doped Pr 0.91 LaCe 0.09 CuO 4 - y : Constraint on the gap symmetry

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-meng

    2011-09-01

    We present numerical calculations of the nuclear spin-lattice relaxation (R) rate in the superconducting state of pure indium and slightly underdoped n-type cuprate Pr 0.91LaCe 0.09CuO 4 - y. By properly taking into account electron-phonon coupling, our calculated R for the conventional s-wave superconductor, indium, is in quantitative agreement the experimental data with a clear Hebel-Slichter peak. In contrast, the absence of the Hebel-Slichter peak in the R data of Pr 0.91LaCe 0.09CuO 4 - y can be explained by either d-wave or highly anisotropic s-wave gap symmetry. Thus, the absence of the Hebel-Slichter peak does not necessarily argue against an s-wave gap symmetry in this electron-doped cuprate.

  5. Interaction study of bioactive molecules with fibrinogen and human platelets determined by 1H NMR relaxation experiments.

    PubMed

    Bonechi, Claudia; Martini, Silvia; Rossi, Claudio

    2009-02-15

    In order to investigate the interaction processes between bioactive molecules and macromolecular receptors NMR methodology based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of ligand protons was used. The contribution from the bound ligand fraction to the observed relaxation rate in relation to macromolecular target concentration allowed the calculation of the normalized affinity index[A(I)(N)](L)(T) in which the effects of motional anisotropies and different proton densities have been removed. In this paper, we applied this methodology to investigate the affinity of epinephrine and isoproterenol towards two different systems: fibrinogen and platelets. PMID:19157885

  6. One-Shot Measurement of Spin-Lattice Relaxation Times in the Off-Resonance Rotating Frame of Reference with Applications to Breast

    NASA Astrophysics Data System (ADS)

    Fairbanks, Ethan Jefferson

    1994-01-01

    Off-resonance spin locking makes use of the novel relaxation time T_{1rho} ^{rm off}, which may be useful in characterizing breast disease. Knowledge of T _{rm 1rho}^{rm off} is essential for optimization of spin -locking imaging methods. The purpose of this work was to develop an optimal imaging technique for in vivo measurement of T_{rm 1rho}^ {rm off}. Measurement of T _{1rho}^{rm off } using conventional methods requires long exam times which are not suitable for patients. Exam time may be shortened by utilizing a one-shot method developed by Look and Locker, making in vivo measurements possible. The imaging method consisted of a 180^circ inversion pulse followed by a series of small-angle alpha pulses to tip a portion of the longitudinal magnetization into the transverse plane for readout. During each relaxation interval (between alpha pulses), a spin-locking pulse was applied off-resonance to achieve T_ {1rho}^{rm off} relaxation. The value of T_{rm 1rho}^{rm off} was then determined using a three-parameter non-linear least-squares fitting procedure. Values of T_ {1rho}^{rm off} were measured for normal and pathologic breast tissues at several resonant offsets. These measurements revealed that image contrast can be manipulated by altering the resonant offset of the spin-locking pulse. Whereas T _1 relaxation times were nearly identical for normal and cancerous tissues, T_{1 rho}^{rm off} relaxation times differed significantly. These results may be useful in improving image contrast in magnetic resonance imaging.

  7. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced Li7 spin-lattice relaxation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuhn, A.; Narayanan, S.; Spencer, L.; Goward, G.; Thangadurai, V.; Wilkening, M.

    2011-03-01

    Li self-diffusion in garnet-type Li7La3Zr2O12, crystallizing with tetragonal symmetry at room temperature, is measured by temperature-variable Li7 spin-spin as well as spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) spectroscopy. The SLR NMR rates which were recorded in both the laboratory and the rotating frame of reference pass through characteristic diffusion-induced rate peaks allowing for the direct determination of Li jump rates τ-1, which can be directly converted into self-diffusion coefficients Dsd. The NMR results are compared with those obtained from electrical impedance spectroscopy measurements carried out in a large temperature and wide frequency range. Taken together, the long-range diffusion process, being mainly responsible for ionic conduction at ambient temperature, is characterized by an activation energy of approximately 0.5 eV, with τ0-1≈1×1014 s-1 being the pre-exponential factor of the underlying Arrhenius relation.

  8. Shortening spin-lattice relaxation using a copper-chelated lipid at low-temperatures - A magic angle spinning solid-state NMR study on a membrane-bound protein.

    PubMed

    Yamamoto, Kazutoshi; Caporini, Marc A; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-12-01

    Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing solid-state NMR experiments at very low and ultralow temperatures to enhance the sensitivity. However, the long spin-lattice relaxation time, T1, at very low temperatures is a major limitation. To overcome this difficulty, we demonstrate the use of a copper-chelated lipid for magic angle spinning solid-state NMR measurements on cytochrome-b5 reconstituted in multilamellar vesicles. Our results on multilamellar vesicles containing as small as 0.5mol% of a copper-chelated lipid can significantly shorten T1 of protons, which can be used to considerably reduce the data collection time or to enhance the signal-to-noise ratio. We also monitored the effect of slow cooling on the resolution and sensitivity of (13)C and (15)N signals from the protein and (13)C signals from lipids. PMID:24246881

  9. Molecular determinants for drug-receptor interactions. 8. Anisotropic and internal motions in morphine, nalorphine, oxymorphone, naloxone and naltrexone in aqueous solution by carbon-13 NMR spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Grassi, Antonio; Perly, Bruno; Pappalardo, Giuseppe C.

    1989-02-01

    Carbon-13 NMR spin-lattice relaxation times ( T1) were measured for morphine, oxymorphone, nalorphine, naloxone and naltrexone as hydrochloride salts in 2H 2O solution. The data refer to the molecules in the N-equatorial configuration. The experimental T1 values were interpreted using a model of anisotropic reorientation of a rigid body with superimposed internal motions of the flexible N-methyl, N-methyl-allyl and N-methyl-cyclopropyl fragments. The calculated internal motional rates were found to markedly decrease on passing from agonists to mixed (nalorphine) and pure (naloxone, naltrexone) antagonists. For these latter the observed trend of the internal flexibility about NC and CC bonds of the N-substituents is discussed in terms of a correlation with their relative antagonistic potencies. In fact, such an evidence of decreasing internal conformational dynamics in the order nalorphine, naloxone, naltrexone, appeared interestingly in line with the "two-state" model of opiate receptor operation mode proposed by Snyder.

  10. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    SciTech Connect

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for large fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.

  11. Shortening Spin-lattice Relaxation Using a Copper-Chelated lipid at Low-Temperatures – A Magic Angle Spinning Solid-State NMR Study on a Membrane-Bound Protein

    PubMed Central

    Yamamoto, Kazutoshi; Caporini, Marc; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2013-01-01

    Inherent low sensitivity of NMR spectroscopy has been a major disadvantage, especially to study biomolecules like membrane proteins. Recent studies have successfully demonstrated the advantages of performing solid-state NMR experiments at very low and ultralow temperatures to enhance the sensitivity. However, the long spin-lattice relaxation time, T1, at very low temperatures is a major limitation. To overcome this difficulty, we demonstrate the use of a copper-chelated lipid for magic angle spinning solid-state NMR measurements on cytochrome-b5 reconstituted in multilamellar vesicles. Our results on multilamellar vesicles containing as small as 0.5 mole % of a copper-chelated lipid can significantly shorten T1 of protons, which can be used to considerably reduce the data collection time or to enhance the signal-to-noise ratio. We also monitored the effect of slow cooling on the resolution and sensitivity of 13C and 15N signals from the protein and 13C signals from lipids. PMID:24246881

  12. 57Fe-labeled octamethylferrocenium tetrafluoroborate. X-ray crystal structures of conformational isomers, hyperfine interactions, and spin-lattice relaxation by Moessbauer spectroscopy.

    PubMed

    Schottenberger, Herwig; Wurst, Klaus; Griesser, Ulrich J; Jetti, Ram K R; Laus, Gerhard; Herber, Rolfe H; Nowik, Israel

    2005-05-11

    X-ray structure determinations of two different single crystals of octamethylferrocenium tetrafluoroborate (OMFc(+)BF(4)(-)) revealed conformational polymorphism with ligand twist angles of 180 degrees and 108 degrees , respectively. Their concomitant occurrence could be explained by the small lattice energy difference of 3.2 kJ mol(-1). Temperature-dependent Moessbauer spectroscopy of (57)Fe-labeled OMFc(+)BF(4)(-) over the range 90 < T < 370 K did not show the anomalous sudden increase in the motion of the metal atom as observed in neutral OMFc. Broadened absorption curves characteristic of relaxation spectra were obtained with an isomer shift of 0.466(6) mm s(-1) at 90 K. The temperature dependence of the isomer shift corresponded to an effective vibrating mass of 79 +/- 10 Da and, in conjunction with the temperature dependence of the recoil-free fraction, to a Moessbauer lattice temperature of 89 K. The spin relaxation rate could be better described by an Orbach rather than a Raman process. At 400 K, a reversible solid-solid transition to a plastic crystalline mesophase was noted. PMID:15869302

  13. Complex dynamics of 1.3.5-trimethylbenzene-2.4.6-D3 studied by proton spin-lattice NMR relaxation and second moment of NMR line

    NASA Astrophysics Data System (ADS)

    Hołderna-Natkaniec, K.; Latanowicz, L.; Medycki, W.; Świergiel, J.; Natkaniec, I.

    2015-02-01

    Molecular dynamics of a solid 1.3.5-trimethylbenzene-2.4.6-D3 in phase I is studied on the basis of the proton T1 (24.7 MHz and 15 MHz) relaxation time measurements and the proton second moment of NMR line, M2. The measurements of the T1 were performed for temperatures from 20 to 167 K, while those of the second moment M2 from 23 to 220 K. The phase I was accurately prepared. The obtained second moment, M2 values were correlated with those based on T1 relaxation time measurements. The proton spin pairs of the methyl groups perform a complex motion being a resultant of two components characterized by the correlation times τ3T and τ3H, referring to the tunneling and over the barrier jumps in a triple potential. For τ3H the Arrhenius temperature dependence was assumed, while for τ3T - the Schrödinger one. The jumps over the barrier causes a minimum in T1 (24.7 MHz) at temperature about 35 K. The high temperatures slope of this minimum permits evaluation of the activation energy as EH=2.0 kJ/mol. The relaxation time T1 is temperature independent in the lowest temperature regime. This indicates that tunnelling correlation time assumes a constant value of about 1.3·10-10 s according to the Schrödinger equation (τ3T ≈ τ03T e B√{EH } at lowest temperatures). The tunneling jumps of methyl protons reduce M2 from the rigid lattice value 22.6 G2 to the value 5.7 G2 at zero Kelvin temperature. The second reduction to the value 1.41 G2 at 4.5-7 K is due to C3 jumps over the barrier. According to the Schrödinger equation the tunnelling jumps ceases above Ttun temperature where the thermal energy is equal to the activation energy. The Ttun equals 43.8 K (from T1 data fit, EH=2.0 kJ/mol) or 35 K (from M2 data fit, EH=1.47 kJ/mol). The second moment assumes again the value 5.7 G2 above Ttun temperature. The tunneling splitting, ωT, was estimated equal 2.47 GHz as best fit parameter from the T1 fit. The symmetrical T1 minimum indicates the same value of ωT for the all

  14. Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the [2Fe-2S](2+) Rieske cluster in cytochrome bc(1).

    PubMed

    Sarewicz, Marcin; Dutka, Małgorzata; Pietras, Rafał; Borek, Arkadiusz; Osyczka, Artur

    2015-10-14

    Here, comparative electron spin-lattice relaxation studies of the 2Fe-2S iron-sulphur (Fe-S) cluster embedded in a large membrane protein complex - cytochrome bc1 - are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe-S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe-S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1(-1)) for the Fe-S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1(-1) (T) over the range 5-120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin-orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin-orbit coupling but was also influenced by other factors - possibly the modification of protein rigidity and therefore the vibrational modes around the Fe-S cluster that change upon the movement of the iron-sulphur head domain. PMID:26355649

  15. Molecular organization of cytochrome c2 near the binding domain of cytochrome bc1 studied by electron spin-lattice relaxation enhancement.

    PubMed

    Pietras, Rafał; Sarewicz, Marcin; Osyczka, Artur

    2014-06-19

    Measurements of specific interactions between proteins are challenging. In redox systems, interactions involve surfaces near the attachment sites of cofactors engaged in interprotein electron transfer (ET). Here we analyzed binding of cytochrome c2 to cytochrome bc1 by measuring paramagnetic relaxation enhancement (PRE) of spin label (SL) attached to cytochrome c2. PRE was exclusively induced by the iron atom of heme c1 of cytochrome bc1, which guaranteed that only the configurations with SL to heme c1 distances up to ∼30 Å were detected. Changes in PRE were used to qualitatively and quantitatively characterize the binding. Our data suggest that at low ionic strength and under an excess of cytochrome c2 over cytochrome bc1, several cytochrome c2 molecules gather near the binding domain forming a "cloud" of molecules. When the cytochrome bc1 concentration increases, the cloud disperses to populate additional available binding domains. An increase in ionic strength weakens the attractive forces and the average distance between cytochrome c2 and cytochrome bc1 increases. The spatial arrangement of the protein complex at various ionic strengths is different. Above 150 mM NaCl the lifetime of the complexes becomes so short that they are undetectable. All together the results indicate that cytochrome c2 molecules, over the range of salt concentration encompassing physiological ionic strength, do not form stable, long-lived complexes but rather constantly collide with the surface of cytochrome bc1 and ET takes place coincidentally with one of these collisions. PMID:24845964

  16. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  17. Protein conformational exchange measured by 1H R1ρ relaxation dispersion of methyl groups.

    PubMed

    Weininger, Ulrich; Blissing, Annica T; Hennig, Janosch; Ahlner, Alexandra; Liu, Zhihong; Vogel, Hans J; Akke, Mikael; Lundström, Patrik

    2013-09-01

    Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for (1)H spins in methyl (13)CHD2 groups, which improves the characterization of fast exchange processes. The influence of (1)H-(1)H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different (1)H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any (1)H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by (1)H and (13)C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results. PMID:23904100

  18. Molecular reorientations of 1-bromo- and 1-iodo-adamantanes 1H N.M.R. relaxation study

    NASA Astrophysics Data System (ADS)

    Virlet, J.; Quiroga, L.; Boucher, B.; Amoureux, J. P.; Castelain, M.

    Second moments and spin-lattice relaxation times, T1 and T1ρ, have been measured from 100 K to 400 K for the protons in powdered 1-bromo and 1-iodo-adamantanes. Analysis of these data have shown that the reorientations are uniaxial in the low temperature phases. In the high temperature disordered phase of bromo-adamantane, the reorientation is endospherical and a slow molecular translational motion also exists. In the high temperature disordered phase of iodo-adamantane the reorientation is 12-fold uniaxial, in agreement with the Incoherent Quasi-elastic Neutron Scattering (I.Q.N.S.) experiments. All the results correspond to the crystallographic structures deduced from X-ray scattering.

  19. Dynamic 1H NMR Studies of Schiff Base Derivatives

    NASA Astrophysics Data System (ADS)

    Köylü, M. Z.; Ekinci, A.; Böyükata, M.; Temel, H.

    2016-01-01

    The spin-lattice relaxation time T 1 and the spin-spin relaxation time T 2 of two Schiff base derivatives, N,N'-ethylenebis(salicylidene)-1,2-diaminoethane (H2L1) and N,N'-ethylenebis (salicylidene)-1,3-diaminopropane (H2L2), in DMSO-d6 solvent were studied as a function of temperature in the range of 20-50°C using a Bruker Avance 400.132 MHz 1H NMR spectrometer. Based on the activation energy ( E a) and correlation time (τc), we believe that the Schiff base derivatives perform a molecular tumbling motion.

  20. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. PMID:23147444

  1. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  2. Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals

    NASA Astrophysics Data System (ADS)

    Castañar, Laura; Nolis, Pau; Virgili, Albert; Parella, Teodor

    2014-07-01

    The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods.

  3. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-01

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach. PMID:20681586

  4. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    NASA Astrophysics Data System (ADS)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  5. Spin-lattice coupling in iron jarosite

    SciTech Connect

    Buurma, A.J.C.; Handayani, I.P.; Mufti, N.; Blake, G.R.; Loosdrecht, P.H.M. van; Palstra, T.T.M.

    2012-11-15

    We have studied the magnetoelectric coupling of the frustrated triangular antiferromagnet iron jarosite using Raman spectroscopy, dielectric measurements and specific heat. Temperature dependent capacitance measurements show an anomaly in the dielectric constant at T{sub N}. Specific heat data indicate the presence of a low frequency Einstein mode at low temperature. Raman spectroscopy confirms the presence of a new mode below T{sub N} that can be attributed to folding of the Brillouin zone. This mode shifts and sharpens below T{sub N}. We evaluate the strength of the magnetoelectric coupling using the symmetry unrestricted biquadratic magnetoelectric terms in the free energy. - Graphical abstract: Sketch of two connected triangles formed by Fe{sup 3+} spins (red arrows) in the hexagonal basal plane of potassium iron jarosite. An applied magnetic field (H) below the antiferromagnetic ordering temperature induces shifts of the hydroxy ligands, giving rise to local electrical dipole moments (blue arrows). These electric displacements cancel out in pairwise fashion by symmetry. Ligand shifts are confined to the plane and shown by shadowing. Highlights: Black-Right-Pointing-Pointer Evidence has been found for spin-lattice coupling in iron jarosite. Black-Right-Pointing-Pointer A new optical Raman mode appears below T{sub N} and shifts with temperature. Black-Right-Pointing-Pointer The magnetodielectric coupling is mediated by superexchange. Black-Right-Pointing-Pointer Symmetry of Kagome magnetic lattice causes local electrical dipole moments to cancel.

  6. 7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zeghib, Nadir; Grucker, Daniel

    2001-09-01

    Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.

  7. (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin.

    PubMed Central

    Damberg, Peter; Jarvet, Jüri; Allard, Peter; Mets, Ulo; Rigler, Rudolf; Gräslund, Astrid

    2002-01-01

    Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio. PMID:12414713

  8. Relationships between 1H NMR Relaxation Data and Some Technological Parameters of Meat: A Chemometric Approach

    NASA Astrophysics Data System (ADS)

    Brown, Robert J. S.; Capozzi, Francesco; Cavani, Claudio; Cremonini, Mauro A.; Petracci, Massimiliano; Placucci, Giuseppe

    2000-11-01

    In this paper chemometrics (ANOVA and PCR) is used to measure unbiased correlations between NMR spin-echo decays of pork M. Longissimus dorsi obtained through Carr-Purcell-Meiboom-Gill (CPMG) experiments at low frequency (20 MHz) and the values of 14 technological parameters commonly used to assess pork meat quality. On the basis of the ANOVA results, it is also found that the CPMG decays of meat cannot be best interpreted with a "discrete" model (i.e., by expanding the decays in a series of a discrete number of exponential components, each with a different transverse relaxation time), but rather with a "continuous" model, by which a continuous distribution of T2's is allowed. The latter model also agrees with literature histological results.

  9. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15–20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  10. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.

    PubMed

    Ruggiero, Maria R; Crich, Simonetta Geninatti; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-15

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications. PMID:27265726

  11. Water 1H relaxation dispersion analysis on a nitroxide radical provides information on the maximal signal enhancement in Overhauser dynamic nuclear polarization experiments.

    PubMed

    Bennati, Marina; Luchinat, Claudio; Parigi, Giacomo; Türke, Maria-Teresa

    2010-06-14

    Water (1)H relaxation rate measurements of (15)N-(2)H-TEMPONE solutions at temperatures ranging from 298 to 328 K have been performed as a function of magnetic field from 0.00023 to 9.4 T, corresponding to (1)H Larmor frequencies of 0.01 to 400 MHz. The relaxation profiles were analyzed according to the full theory for dipolar and contact relaxation, and used to estimate the coupling factor responsible for observed solution DNP effects. The experimental DNP enhancement at (1)H Larmor frequency of 15 MHz obtained by saturating one of the lines of the (15)N doublet is only ca. 20% lower than the limiting value predicted from the relaxation data, indicating that the experimental DNP setup is nearly optimal, the residual discrepancy arising from incomplete saturation of the other line. PMID:20458388

  12. Hydration effect on solid DNA-didecyldimethylammonium chloride complexes measured using 1H-nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nizioł, J.; Harańczyk, H.; Kobierski, J.; Hebda, E.; Pielichowski, J.; Ostachowicz, B.

    2013-10-01

    Complexes like the studied DNA and didecyldimethylammonium chloride are promising materials for organic electronics and photonics. Water content in this material as the solid state is a key factor for its electronics properties and microstructure. DNA complex was subjected to controlled hydration from gaseous phase and next studied by 1H-nuclear magnetic resonance spectroscopy. Variations of spin-spin and spin-lattice relaxation times as a function of hydration level are reported. Formation of tightly and loosely bound water fractions at rehydration process is discussed.

  13. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    DOE PAGESBeta

    Egami, T.; Fine, B. V.; Parshall, D.; Subedi, A.; Singh, D. J.

    2010-01-01

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for themore » onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.« less

  14. The search for negative amplitude components in quasi-continuous distributions of relaxation times: the example of 1H magnetization exchange in articular cartilage and hydrated collagen

    NASA Astrophysics Data System (ADS)

    Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco

    2011-06-01

    When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal

  15. Correlation between 1H FID and T1rho components in heterogeneous polymer systems: an application to SBS.

    PubMed

    Ferrini, V; Forte, C; Geppi, M; Pizzanelli, S; Veracini, C A

    2005-06-01

    Wideline 1H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene-butadiene-styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two spin lattice relaxation time in the rotating frame (T1rho) components found at each temperature have been correlated by means of a two-dimensional approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton T1 and T1rho data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution 1H T1rho-selective 13C Cross Polarization experiments. PMID:15799878

  16. Phase transition in triglycine sulfate crystals by 1H and 13C nuclear magnetic resonance in the rotating frame

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Jeong, Se-Young

    2013-09-01

    The ferroelectric phase transition in triglycine sulfate ((NH2CH2COOH)3·H2SO4, TGS)) crystals, occurring at TC of 322 K, was studied using 1H and 13C CP/MAS NMR. From the spin-lattice relaxation time in the rotating frame, T1ρ, of 1H and 13C, we found that the slopes of the T1ρ versus temperature curve changed near TC. In addition, the change of intensities for the protons and carbons NMR signals in the ferroelectric and the paraelectric phases led to the noticeable changes in the environments of proton and carbon in the carboxyl groups. The carboxyl ordering was the dominant factor driving the phase transition. Our study of the 1H and 13C spectra showed that the ferroelectric phase transition of TGS is of the order-disorder type due to ordering of the carboxyl groups.

  17. Paramagnetic NMR relaxation in polymeric matrixes: sensitivity enhancement and selective suppression of embedded species (1H and 13C PSR filter).

    PubMed

    Fernandez-Megia, Eduardo; Correa, Juan; Novoa-Carballal, Ramon; Riguera, Ricardo

    2007-12-12

    A study of the practical applications of the addition of paramagnetic spin relaxation (PSR) ions to a variety of polymers (PLL, PAA, PGA, PVP, and polysaccharides such as hyaluronic acid, chitosan, mannan, and dextran) in solution (D2O and DMSO-d6) is described. Use of Gd(III), Cu(II), and Mn(II) allows a reduction of up to 500% in the 1H longitudinal relaxation times (T1), and so in the time necessary for recording quantitative NMR spectra (sensitivity enhancement) neither an increase of the spectral line width nor chemical shift changes resulted from addition of any of the PSR agents tested. Selective suppression of the 1H and 13C NMR signals of certain components (low MW molecules and polymers) in the spectrum of a mixture was attained thanks to their different sensitivity [transverse relaxation times (T2)] to Gd(III) (PSR filter). Illustration of this strategy with block copolymers (PGA-g-PEG) and mixtures of polymers and low MW molecules (i.e., lactose-hyaluronic acid, dextran-PAA, PVP-glutamic acid) in 1D and 2D NMR experiments (COSY and HMQC) is presented. In those mixtures where PSR and CPMG filters alone failed in the suppression of certain components (i.e., PVP-mannan-hyaluronic acid) due to their similarity of 1H T2 values and sensitivities to Gd(III), use of the PSR filter in combination with CPMG sequences (PSR-CPMG filter) successfully resulted in the sequential suppression of the components (hyaluronic acid first and then mannan). PMID:18004845

  18. (1)H NMR z-spectra of acetate methyl in stretched hydrogels: quantum-mechanical description and Markov chain Monte Carlo relaxation-parameter estimation.

    PubMed

    Shishmarev, Dmitry; Chapman, Bogdan E; Naumann, Christoph; Mamone, Salvatore; Kuchel, Philip W

    2015-01-01

    The (1)H NMR signal of the methyl group of sodium acetate is shown to be a triplet in the anisotropic environment of stretched gelatin gel. The multiplet structure of the signal is due to the intra-methyl residual dipolar couplings. The relaxation properties of the spin system were probed by recording steady-state irradiation envelopes ('z-spectra'). A quantum-mechanical model based on irreducible spherical tensors formed by the three magnetically equivalent spins of the methyl group was used to simulate and fit experimental z-spectra. The multiple parameter values of the relaxation model were estimated by using a Bayesian-based Markov chain Monte Carlo algorithm. PMID:25486634

  19. Interaction of Daunomycin with Dipalmitoylphosphatidylcholine Model Membranes. A 1H NMR Study

    NASA Astrophysics Data System (ADS)

    Calzolai, Luigi; Gaggelli, Elena; Maccotta, Antonella; Valensin, Gianni

    1996-09-01

    1H NMR parameters were obtained for daunomycin in water solution in the free state as well as in the presence of dipalmitoylphosphatidylcholine model membranes. Spin-lattice relaxation rates were measured under nonselective, single-selective, and double-selective irradiation modes, and 2D NOESY spectra were obtained at several values of the mixing time. Proton-proton distances were calculated and the motional correlation time was evaluated in both the free and bound states. NMR parameters were used to show that ring A and the glucosamine moiety of daunomycin strongly interact with the external surface of the bilayer, while the rest of the molecule penetrates the membrane without crossing it. The structures of both free and bound daunomycin were obtained and compared by using molecular modeling.

  20. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    NASA Astrophysics Data System (ADS)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  1. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  2. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stephan; Wolf, Martin; Skrabal, Peter; Bangerter, Felix; Heusser, Peter; Thurneysen, André; Wolf, Ursula

    2009-09-01

    Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10 c-30 c, n = 21, corresponding to iterative dilutions of 100-10-100-30), sulfur (13 x-30 x, n = 18, 10-13-10-30), and copper sulfate (11 c-30 c, n = 20, 100-11-100-30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations

  3. Conformational distribution of baclofen analogues by 1H and 13C NMR analysis and ab initio HF MO STO-3G or STO-3G* calculations

    NASA Astrophysics Data System (ADS)

    Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François

    1993-12-01

    The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.

  4. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    SciTech Connect

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. )

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  5. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets.

    PubMed

    Bonetti, S; Hoffmann, M C; Sher, M-J; Chen, Z; Yang, S-H; Samant, M G; Parkin, S S P; Dürr, H A

    2016-08-19

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (∼30  fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering. PMID:27588880

  6. Quantification of cross polarization with relaxation compensated reciprocity relation in NMR

    NASA Astrophysics Data System (ADS)

    Shu, Jie; Chen, Qun; Zhang, Shanmin

    2008-09-01

    The reciprocity relation in solid state NMR has been extended to include the effects of spin-lattice relaxation in the rotating frame. This method was successfully applied to the experiments of Hartmann-Hahn cross polarization, making the originally non-quantified NMR spectra quantitative. In addition, it provides detailed dynamics of cross polarization that is often obscured by spin-lattice relaxation in the rotating frame and by some other effects.

  7. Molecular Level Insights on Collagen-Polyphenols Interaction Using Spin-Relaxation and Saturation Transfer Difference NMR.

    PubMed

    Reddy, R Ravikanth; Phani Kumar, Bandaru V N; Shanmugam, Ganesh; Madhan, Balaraman; Mandal, Asit B

    2015-11-01

    Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected polyphenols, viz., gallic acid (GA), pyrogallol (PG), catechin (CA), and epigallocatechin gallate (EGCG), has been investigated by various solution NMR measurements, viz., (1)H and (13)C chemical shifts (δH and δC), (1)H nonselective spin-lattice relaxation times (T1NS) and selective spin-lattice relaxation times (T1SEL), as well as spin-spin relaxation times (T2). Furthermore, we have employed saturation transfer difference (STD) NMR method to monitor the site of GA, CA, PG, and EGCG which are in close proximity to collagen. It is found that -COOH group of GA provides an important contribution for the interaction of GA with collagen, as evidenced from (13)C analysis, while PG, which is devoid of -COOH group in comparison to GA, does not show any significant interaction with collagen. STD NMR data indicates that the resonances of A-ring (H2', H5' and H6') and C-ring (H6 and H8) protons of CA, and A-ring (H2' and H6'), C-ring (H6 and H8), and D-ring (H2″and H6″) protons of EGCG persist in the spectra, demonstrating that these protons are in spatial proximity to collagen, which is further validated by independent proton spin-relaxation measurement and analysis. The selective (1)H T1 measurements of polyphenols in the presence of protein at various concentrations have enabled us to determine their binding affinities with collagen. EGCG exhibits high binding affinity with collagen followed by CA, GA, and PG. Further, NMR results propose that presence of gallic acid moiety in a small molecule increases its affinity with collagen. Our experimental findings provide molecular insights on the binding of collagen and plant polyphenols. PMID:26447653

  8. Nuclear Spin Symmetry Conservation and Relaxation in Water (1H216O) Studied by Cavity Ring-Down (CRD) Spectroscopy of Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Manca Tanner, Carine; Quack, Martin; Schmidiger, David

    2013-10-01

    We report high resolution near-infrared laser spectra of water seeded in a supersonic jet expansion of argon probed by cavity ring-down spectroscopy (CRDS) in the R branch of the 2-3 band (above 7500 cm-1) at several effective temperatures T < 30 K. Our goal is to study nuclear spin symmetry conservation and relaxation. For low mole fractions of water in the gas mixture, we obtained the lowest rotational temperatures and observed nuclear spin symmetry conservation, in agreement with theoretical expectation for inelastic collisions of isolated H2O molecules with Ar and similar to a previous series of experiments with other small molecules in supersonic jet expansions. However, for the highest mole fractions of water, which we used (xH2O < 1.6%), we obtained slightly higher rotational temperatures and observed nuclear spin symmetry relaxation, which cannot be explained by the intramolecular quantum relaxation mechanism in the monomer H2O. The nuclear spin symmetry relaxation observed is, indeed, seen to be related to the formation of water clusters at the early stage of the supersonic jet expansion. Under these conditions, two mechanisms can contribute to nuclear spin symmetry relaxation. The results are discussed in relation to claims of the stability of nuclear spin isomers of H2O in the condensed phase and briefly also to astrophysical spectroscopy.

  9. Theoretical reason for the lack of influence of 1H-14N cross-relaxation on the water proton T 1 NMRD profile in slow tumbling proteins

    NASA Astrophysics Data System (ADS)

    Westlund, P.-O.

    2012-09-01

    For immobilized protein the water proton T 1-NMRD profile displays three enhanced relaxation peaks (QP). For slow tumbling proteins these relaxation peaks are not experimentally observed. However, the theoretically determined QP effect on the amide proton T 1-NMRD profile displays a distorted Lorentzian dispersion profile. The question arises as to whether there is also a distortion of the water-proton T 1-NMRD profile due to QP. The model of Sunde and Halle [J. Magn. Reson. 203, 257 (2010)] predicts a decreasing QP relaxation contribution and, with the aid of a model for tumbling proteins [P.-O. Westlund, Phys. Chem. Chem. Phys, 12, 3136 (2010)], it is shown that the QP effect is absent in water-proton T 1-NMRD profiles for slow tumbling proteins with τR < 1 µs, τI.

  10. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Yoshida, H.; Isobe, M.; de La Cruz, C.; Fishman, R. S.

    2012-02-01

    Ag2CrO2 consists of triangular lattice planes of CrO2, which are well separated by the metallic Ag2 layers. [1] This compound is an S=3/2 frustrated triangular lattice antiferromagnet without orbital degree of freedom. We performed neutron diffraction experiments on a powder sample of Ag2CrO2 on a neutron powder diffractometer HB-2A and a triple-axis neutron spectrometer HB-1, installed at HFIR in Oak Ridge National Laboratory. With decreasing temperature, a short-range 4-sublatice spin state develops. However, a long-range partially disordered state with 5 sublattices abruptly appears at TN=24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic. [4pt] [1] H. Yoshida et al., to appear in J. Phys. Soc. Jpn.

  11. Solid state 1H NMR studies of cell wall materials of potatoes

    NASA Astrophysics Data System (ADS)

    Tang, Huiru; Belton, Peter S.; Ng, Annie; Waldron, Keith W.; Ryden, Peter

    1999-04-01

    Cell wall materials from potatoes ( Solanum tuberosum) prepared by two different methods have been studied using NMR proton relaxation times. Spin lattice relaxation in both the rotating and laboratory frames as well as transverse relaxation have been measured over a range of temperatures and hydration levels. It was observed that the sample prepared using a DMSO extraction showed anomalous behaviour of spin lattice relaxation in the laboratory frame probably due to residual solvent in the sample. Spin lattice relaxation in the laboratory frame is the result of hydroxymethyl rotation and another unidentified high frequency motion. In the rotating frame relaxation is adequately explained by hydroxymethyl rotation alone. In neither experiment is methyl group rotation observed, calculation suggests that this is due to the low density of methyl groups in the sample. Non-freezing water in potato cell walls, α-cellulose and pectin was found about 0.2, 0.04 and 0.18 g per gram dry matter, indicating preferable hydration of pectin compared to cellulose. The effects of hydration are most noticeable in the measurements that reflect low frequency motions, particularly transverse relaxation, where both second moments and the relative intensity of signals arising from immobile material are reduced by hydration.

  12. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems. PMID:10070755

  13. Difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.

    1993-04-01

    Tatsumisago, Angell, and Martin [J. Chem. Phys. 97, 6968 (1992)] have compared conductivity relaxation data and 7Li nuclear spin lattice relaxation (SLR) data measured on a lithium chloroborate glass and found pronounced differences in the most probable relaxation times. The electrical conductivity relaxation (ECR) time, τ*σ, at some temperature occurs on a time scale shorter by some two orders of magnitude than the 7Li spin lattice relaxation correlation time, τ*s, and has a significantly lower activation energy. SLR and ECR monitor the motions of ions through different dynamic variables and correlation functions. Using this fact and the coupling model, I am able to explain quantitatively all aspects of the difference between SLR and ECR, and to establish relations between their different relaxation characteristics. The large difference between the observed activation energies of SLR and ECR alone should have implications on the validity of any proposed theory of the dynamics of ionic transport.

  14. New approach for characterization of gelatin biopolymer films using proton behavior determined by low field 1H NMR spectrometry.

    PubMed

    Kim, Young-Teck; Hong, Young-Shick; Kimmel, Robert M; Rho, Jeong-Hae; Lee, Cherl-Ho

    2007-12-26

    The behavior of protons in biopolymer films (BFs) formed with gelatin, water, and glycerol was investigated at various relative humidities (RHs) and concentrations of glycerol using a low field 1H NMR spectrometer. At a RH of approximately 0%, the distributed spin-spin relaxation times (T2) of protons in BFs showed two components: a rapidly relaxing proton with the shortest T2 derived from protons in the rigid backbone of the gelatin polymer such as CH1-, CH2-, and CH3-, and a slowly relaxing component with longer T2 from protons of the functional groups in amino acid residues in gelatin such as -OH, -COOH, and -NH3. These two components are referred to as nonexchangeable (T2N) and exchangeable protons (T2E), respectively, indicating the different mobility of the protons. The T2E increased as RH increased indicating the increase in relative mobility of protons due to the larger free volume in the BF matrix. Above a RH of 33%, the slowest relaxing component was found in all BFs and referred to as hydration-water protons (T2W) with the highest relative mobility of all protons in the films. It suggests that the free volume in BFs can be formed above a RH of 33% in the absence of glycerol. The behaviors of T2N, T2E, and T2W reveal the formation of free volume in the BF matrix associated with the presence of plasticizers (water and glycerol). The T2 behavior in BFs is consistent with the behavior of spin-lattice relaxation (T1). Our result is the first attempt to characterize using low field 1H NMR technology how all protons in a film matrix behave and to develop correlations between proton mobility and free volume in protein-based BFs plasticized with water and glycerol. PMID:18052122

  15. (1)H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids--[C(NH2)3]3Bi2I9 as an example.

    PubMed

    Florek-Wojciechowska, M; Wojciechowski, M; Jakubas, R; Brym, Sz; Kruk, D

    2016-02-01

    (1)H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ((14)N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10(-6) s which has turned out to be (almost) temperature independent, and a fast process in the range of 10(-9) s. From the (1)H-(14)N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions. PMID:26851925

  16. Osmotic and aging effects in caviar oocytes throughout water and lipid changes assessed by 1H NMR T1 and T2 relaxation and MRI.

    PubMed

    Gussoni, Maristella; Greco, Fulvia; Vezzoli, Alessandra; Paleari, Maria Antonietta; Moretti, Vittorio Maria; Lanza, Barbara; Zetta, Lucia

    2007-01-01

    By combining NMR relaxation spectroscopy and magnetic resonance imaging techniques, unsalted (us) and salted (s) caviar (Acipenser transmontanus) oocytes were characterized over a storage period of up to 90 days. The aging and the salting effects on the two major cell constituents, water and lipids, were separately assessed. T1 and T2 decays were interpreted by assuming a two-site exchange model. At Day 0, two water compartments that were not in fast exchange were identified by the T1 relaxation measurements on the us oocytes. In the s samples, T1 decay was monoexponential. During the time of storage, an increment of the free water amount was found for the us oocytes, ascribed to an increased metabolism. T1 and T2 of the s oocytes shortened as a consequence of the osmotic stress produced by salting. Selective images showed the presence of water endowed with different regional mobility that severely changed during the storage. Lipid T1 relaxation decays collected on us and s samples were found to be biexponential, and the T1 values lengthened during storage. In us and s oocytes, the increased lipid mobility with the storage was ascribed to lipolysis. Selective images of us samples showed lipids that were confined to the cytoplasm for up to 60 days of storage. PMID:17222723

  17. YTTRIUM-89 NMR: A POSSIBLE SPIN RELAXATION PROBE FOR STUDYING METAL ION INTERACTIONS WITH ORGANIC LIGANDS

    EPA Science Inventory

    The spin-lattice relaxation mechanisms for aqueous and dimethyl sulfoxide solutions of Y(NO3)3 have been found to be mainly spin-rotation and dipolar relaxation with solvent protons, unlike most heavy spin=1/2 metal ions which are relaxed mainly by spin-rotation and chemical shif...

  18. Change of translational-rotational coupling in liquids revealed by field-cycling 1H NMR

    NASA Astrophysics Data System (ADS)

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-01

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the 1H spin-lattice relaxation rate, R 1 ω = T1 - 1 ω , is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz-20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R 1 ω , x (x denotes mole fraction PG) allow to extract the rotational time constant τrot(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τrot(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τrot(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  19. Pressure-induced superconductivity in the antiferromagnet κ - (ET) 2C F3S O3 with quasi-one-dimensional triangular spin lattice

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Asai, Takayuki; Shimizu, Yasuhiro; Hayama, Hiromi; Yoshida, Yukihiro; Saito, Gunzi

    2016-07-01

    We report an antiferromagnetic (AF) ordering at ambient pressure and a superconducting transition under pressure for κ - (ET) 2C F3S O3 [ ET =bis (ethylenedithio)tetrathiafulvalene], which has a two-dimensional electronic system with quasi-one-dimensional triangular spin lattice. At ambient pressure, AF ordering was detected at TN=2.5 K by 1H NMR, subsequent to two structural phase transitions at 230 and 190 K. Under hydrostatic pressures, metallic behavior appeared above ˜1.1 GPa, and a superconducting transition (maximum onset Tc=4.8 K at ˜1.3 GPa) was observed up to 2.2 GPa. Superconductivity was also found under c -axis strain, which reduced t'/t , but was absent under b -axis strain which increased t'/t .

  20. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  1. (1)H relaxivity of water in aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material: the influence of Si/Al ratio and pore size.

    PubMed

    Norek, Małgorzata; Neves, Isabel C; Peters, Joop A

    2007-07-23

    The results of a (1)H nuclear magnetic relaxation dispersion (NMRD) and EPR study on aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material are described. Upon increase of the Si/Al ratio from 1.7 to 4.0 in the Gd(3+)-loaded zeolites, the relaxation rate per mM Gd(3+) (r1) at 40 MHz and 25 degrees C increases from 14 to 27 s(-)1 mM(-1). The NMRD and EPR data were fitted with a previously developed two-step model that considers the system as a concentrated aqueous solution of Gd(3+) in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results show that the observed increase in relaxivity can mainly be attributed to the residence lifetime of the water protons in the interior of the material, which decreased from 0.3 to 0.2 micros, upon the increase of the Si/Al ratio. This can be explained by the decreased interaction of water with the zeolite walls as a result of the increased hydrophobicity. The importance of the exchange rate of water between the inside and the outside of the material was further demonstrated by the relatively high relaxivity (33 s(-1) mM(-1) at 40 MHz, 25 degrees C) observed for a suspension of the Gd(3+)-loaded mesoporous material AlTUD-1. Unfortunately, Gd(3+) leaches rather easily from that material, but not from the Gd(3+)-loaded NaY zeolites, which may have potential as contrast agents for magnetic resonance imaging. PMID:17589991

  2. Strong spin-lattice coupling in CrSiTe{sub 3}

    SciTech Connect

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M.-W.; Xiao, K.; Hennig, R. G.; Sales, B. C.; Yan, J.-Q.; Mandrus, D.

    2015-04-01

    CrSiTe{sub 3} has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe{sub 3} is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. The Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Spin-lattice coupling constants are also extracted.

  3. Strong spin-lattice coupling in CrSiTe3

    SciTech Connect

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M. -W.; Xiao, K.; Hennig, R. G.; Sales, B. C.; Yan, J. -Q.; Mandrus, D.

    2015-03-19

    CrSiTe3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.

  4. Strong spin-lattice coupling in CrSiTe3

    DOE PAGESBeta

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M. -W.; Xiao, K.; Hennig, R. G.; Sales, B. C.; et al

    2015-03-19

    CrSiTe3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons acrossmore » the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. In conclusion, the Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Lastly, spin-lattice coupling constants are also extracted.« less

  5. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  6. Dynamics of ferroelectric bis(imidazolium) pentachloroantimonate(III) by means of nuclear magnetic resonance 1H relaxometry and dielectric spectroscopy.

    PubMed

    Piecha-Bisiorek, A; Jakubas, R; Medycki, W; Florek-Wojciechowska, M; Wojciechowski, M; Kruk, D

    2014-05-22

    Some of haloantimonates(III) and halobismuthates(III) are ferroelectric. Bis(imidazolium) pentachloroantimonate(III), (C3N2H5)2SbCl5 (abbreviation: ICA) is the first example of such compounds with a one-dimensional anionic chain which exhibits ferroelectric properties. The relation between the ionic dynamics and network structure and the ferroelectric features is not clear. Here Nuclear Magnetic Resonance (NMR) (1)H spin-lattice relaxation experiments at 25 MHz are reported for ICA in the temperature range of 80 K-360 K, covering ferroelectric-paraelectric and structural phase transitions of the compound occurring at 180 and 342 K, respectively. The relaxation process is biexponential in the whole temperature range indicating two dynamically nonequivalent types of imidazolium cations. Temperature dependences of both relaxation contributions allow for identifying three motional processes. Two of them are cation-specific - i.e. they are attributed to the two types of imidazolium cations, respectively. The third process involves both types of cations, and it is characterized by much lower activation energy. Moreover, the relaxation data (combined with (1)H second moment measurements) show that the ferroelectric-paraelectric phase transition mechanism is governed, to a large extent, by the anionic network arrangement. The NMR studies are complemented by dielectric spectroscopy experiments performed in the vicinity of the Curie temperature, TC = 180 K, to get insight into the mechanism of the ferroelectric-paraelectric phase transition. The dielectric dispersion data show critical slowing down of the macroscopic relaxation time, τ, in ICA when approaching TC from the paraelectric side, indicating an order-disorder type of ferroelectrics. PMID:24804840

  7. Thermotropic ionic liquid crystals. II. 1H and 23Na NMR study of the smectic mesophase of molten sodium n-butyrate and sodium isovalerate

    NASA Astrophysics Data System (ADS)

    Bonekamp, J. E.; Eguchi, T.; Plesko, S.; Jonas, J.

    1983-08-01

    The 1H and 23Na NMR studies of smectic ionic mesophases of molten sodium n-butyrate and sodium isovalerate are reported over the temperature range of the stability of the liquid crystalline phases. The 1H spin-lattice relaxation times T1 at ν0=9.2, 24.3, and 60 MHz for the anions of both the systems are interpreted in terms of diffusion intermolecular relaxation mechanism. The predicted anion diffusion coefficients are in agreement with those measured directly by spin-echo technique and indicate that the anion diffuses rapidly. In contrast to the T1 relaxation mechanism the results obtained for the proton relaxation times in the rotating coordinate frame T1ρ indicate that the order-fluctuation relaxation mechanism determines the frequency dispersion of T1ρ. The analysis of the T1ρ data provides an approximate measure of the order parameter S as a function of temperature. Fourier transform spectra of the 23Na transitions show that the electric field gradient (EFG) at the Na+ ion is nonaveraged and of such a strength as to produce a second order quadrupole effect in the spectra of the central transition. From the first-order splitting, the quadrupole coupling constant (QCC) is obtained as a function of temperature. The gradual temperature change of QCC demonstrates that only a single liquid crystalline phase exists over the temperature interval of the stability of the smectic mesophase. Using approximate analysis the correlation time τc for the EFG fluctuation is obtained from the 23Na T1 data for the melts of both sodium n-butyrate and sodium isovalerate.

  8. Anisotropic collective motion contributes to nuclear spin relaxation in crystalline proteins.

    PubMed

    Lewandowski, Józef R; Sein, Julien; Blackledge, Martin; Emsley, Lyndon

    2010-02-01

    A model for calculating the influence of anisotropic collective motions on NMR relaxation rates in crystalline proteins is presented. We show that small-amplitude (<10 degrees ) fluctuations may lead to substantial contributions to the (15)N spin-lattice relaxation rates and propose that the effect of domain motions should be included in solid-state NMR analyses of protein dynamics. PMID:19916496

  9. Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR

    SciTech Connect

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-21

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the {sup 1}H spin-lattice relaxation rate, R{sub 1}(ω)=T{sub 1}{sup −1}(ω), is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz–20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R{sub 1}(ω,x) (x denotes mole fraction PG) allow to extract the rotational time constant τ{sub rot}(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τ{sub rot}(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τ{sub rot}(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  10. Nonuniversal scaling of the magnetocaloric effect as an insight into spin-lattice interactions in manganites

    NASA Astrophysics Data System (ADS)

    Smith, Anders; Nielsen, Kaspar K.; Bez, Henrique N.; Bahl, Christian R. H.

    2016-08-01

    We measure the magnetocaloric effect of the manganite series La0.67Ca0.33 -xSrxMnO3 by determining the isothermal entropy change upon magnetization, using variable-field calorimetry. The results demonstrate that the field dependence of the magnetocaloric effect close to the critical temperature is not given uniquely by the critical exponents of the ferromagnetic-paramagnetic phase transition, i.e., the scaling is nonuniversal. A theoretical description based on the Bean-Rodbell model and taking into account compositional inhomogeneities is shown to be able to account for the observed field dependence. In this way the determination of the nonuniversal field dependence of the magnetocaloric effect close to a phase transition can be used as a method to gain insight into the strength of the spin-lattice interactions of magnetic materials. The approach is shown also to be applicable to first-order transitions.

  11. Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect.

    PubMed

    Schecter, Michael; Rudner, Mark S; Flensberg, Karsten

    2015-06-19

    We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase. PMID:26197005

  12. Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect

    NASA Astrophysics Data System (ADS)

    Schecter, Michael; Rudner, Mark S.; Flensberg, Karsten

    2015-06-01

    We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.

  13. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-03-15

    Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD) simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  14. Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Parasuraman, E.; Gopi, D.; Prabhu, A.; Vicencio, Rodrigo A.

    2016-03-01

    We investigate the propagation dynamics of highly localized discrete breather modes in a weak ferromagnetic spin lattice with on-site easy axis anisotropy due to crystal field effect. We derive the discrete nonlinear equation of motion by employing boson mappings and p-representation. We explore the onset of modulational instability both analytically in the framework of linear stability analysis and numerically by means of molecular dynamics (MD) simulations, and a perfect agreement was demonstrated. It is also explored that how the antisymmetric nature of the canted ferromagnetic lattice supports highly localized discrete breather (DBs) modes as shown in the stability/instability windows. The energy exchange between low amplitude discrete breathers favours the growth of higher amplitude DBs, resulting eventually in the formation of few long-lived high amplitude DBs.

  15. A resonance enhancement of the phase relaxation in the electron spin echo of nitroxide covalently attached to cytochrome c

    NASA Astrophysics Data System (ADS)

    Hilczer, W.; Goslar, J.; Gramza, M.; Hoffmann, S. K.; Blicharski, W.; Osyczka, A.; Turyna, B.; Froncisz, W.

    1995-12-01

    The spin lattice T1 and phase memory TM relaxation times were measured by an electron spin echo technique for the nitroxide spin label attached covalently to horse heart cytochrome c below 80 K for oxidized (Fe 3+) and reduced (Fe 2+) samples. T1 decreases on heating and below 10 K is governed by the direct relaxation process for the reduced sample. The spin-lattice relaxation is enhanced by a cross-relaxation to Fe 3+ in an oxidized sample. In the TM temperature dependence an unusual deep minimum appears at about 25 K. This resonance type effect which vanishes completely for the reduced sample is due to a coupling to the Fe 3+ spins. The spin-lattice relaxation rate of Fe 3+ is comparable to the TM of nitroxide at low temperature producing a minimum in TM when the Ti value corresponds to the spin packet width of excited spins.

  16. Use of /sup 1/H NMR to study molecular motion in cellulose, pectin, and bean cell walls

    SciTech Connect

    Taylor, I.E.P.; Tepfer, M.; Callaghan, P.T.; MacKay, A.L.; Bloom, M.

    1983-01-01

    Growing plant cells are enclosed in a framework, the cell wall, whose rigidity must be overcome for cell enlargement to occur. It has been shown that one of the primary modes of action of plant growth substances is to induce cell wall loosening. The mechansim of cell wall loosening is very poorly understood and may involve large-scale changes in the molecular mobility of the cell wall polysaccharides. Proton magnetic resonance (/sup 1/H NMR) was used to study molecular motion in bean stem cell walls as well as in cellulose, sodium pectate solutions, and calcium pectate gels. All samples were prepared in K/sub 2/O to minimize the contribution of water to the observed signals. The different NMR properties that have been measured are sensitive to molecular motions over a wide range of frequencies (10 kHz-90 MHz). For each sample, a free induction decay was obtained and the second moment as well as spin-lattice (longitudinal), spin-spin (transverse), and dipolar relaxations were measured. As expected, the different samples studied had strikingly different NMR properties. These results have been extended to look for pH-sensitive changes in the NMR properties of calcium pectate gels and bean cell walls, since both show marked pH-sensitive changes in their rheological behavior. Pulsed field gradient NMR studies of very mobile components of polysaccharide systems are discussed.

  17. Investigation of Proton Dynamics in a (CH3)4 NCdCl3 Single Crystal by using 1H Nuclear Magnetic Resonance Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Moohee; Sim, Jung Seok; Kang, Kihyeok; Hyoun Kim, Ho; Kim, Ae Ran

    2013-03-01

    (CH3)4 NCdCl3(TMCC) is reported to exhibit two first-order structural phase transitions. The crystal has a hexagonal structure in phase I at room temperature and then changes to a monoclinic one in phase II below 118 K. Finally a ferro-elastic monoclinic phase III appears below 104 K. The a- and c-axes of TMMC were found by using X-ray diffraction at room temperature. 1H NMR measurements of spectrum, spin-lattice relaxation time T1 and rotating-frame relaxation time T1ρ were performed at 4.8 T parallel or perpendicular to the c-axis from 300 K down to 65 K. The spectrum shows no significant changes at both transition temperatures. T1 and T1ρ monotonically decrease at low temperature and then show an abrupt decrease around 110 K. As the temperature decreases further, T1 shows a minimum at 100 K and becomes longer whereas T1ρ continuously decreases. From these data, the proton dynamical behavior is analyzed and identified.

  18. Ionic Dynamics in [C4mim]NTf2 in the Glassy and Liquid States: Results from 13C and 1H NMR Spectroscopy.

    PubMed

    Endo, Takatsugu; Sen, Sabyasachi

    2014-12-26

    The ionic dynamics of the room temperature ionic liquid 1-butyl-3-methylimdiazolium bis((trifluoromethyl)sulfonyl)amide ([C(4)mim]NTf(2)) is studied using (13)C and (1)H nuclear magnetic resonance (NMR) spectroscopy over a wide temperature range encompassing the glassy and liquid states. The temperature dependence of the (13)C spin-lattice relaxation time is analyzed with four different models to derive the rotational dynamics of the RTIL in the nano to picosecond range. It was found that the extended model-free approach bridges the data obtained from the BPP and DC models, and describes ion dynamics of the RTIL well. Three different motions are observed based on the approach: an overall ion rotation, a slow and a fast local rotational motion. The time scale of the slow local rotational motion, particularly of the imidazolium ring carbons, is strongly coupled to the time scale of the overall ion rotation, above the melting point. Below the melting point these two time scales show strong decoupling and the local rotation displays nanosecond dynamics in the glassy state. The analyses of the second moment (M(2)) of the (1)H and (13)C nuclides indicate that, in addition to the axial rotations of the two methyl groups (cation) and the CF(3) group (anion), all (13)C sites including the imidazolium ring carbon and CF(3) show evidence of mobility, even in the glassy state. PMID:25458921

  19. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR.

    PubMed

    Kawamura, Izuru; Ohmine, Masato; Tanabe, Junko; Tuzi, Satoru; Saitô, Hazime; Naito, Akira

    2007-12-01

    Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T1 rho) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid beta-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T1 rho and cross relaxation times. In addition, breakage of the beta-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal. PMID:18036552

  20. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    SciTech Connect

    Chui, C. P.; Zhou, Yan

    2014-08-15

    The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  1. High Frequency Dynamics in Hemoglobin Measured by Magnetic Relaxation Dispersion

    PubMed Central

    Victor, Ken; Van-Quynh, Alexandra; Bryant, Robert G.

    2005-01-01

    The magnetic relaxation dispersion profiles for formate, acetate, and water protons are reported for aqueous solutions of hemoglobin singly and doubly labeled with a nitroxide and mercury(II) ion at cysteines at β-93. Using two spin labels, one nuclear and one electron spin, a long intramolecular vector is defined between the two β-93 positions in the protein. The paramagnetic contributions to the observed 1H spin-lattice relaxation rate constant are isolated from the magnetic relaxation dispersion profiles obtained on a dual-magnet apparatus that provides spectral density functions characterizing fluctuations sensed by intermoment dipolar interactions in the time range from the tens of microseconds to ∼1 ps. Both formate and acetate ions are found to bind specifically within 5 Å of the β-93 spin-label position and the relaxation dispersion has inflection points corresponding to correlation times of 30 ps and 4 ns for both ions. The 4-ns motion is identified with exchange of the anions from the site, whereas the 30-ps correlation time is identified with relative motions of the spin label and the bound anion in the protein environment close to β-93. The magnetic field dependence of the paramagnetic contributions in both cases is well described by a simple Lorentzian spectral density function; no peaks in the spectral density function are observed. Therefore, the high frequency motions of the protein monitored by the intramolecular vector defined by the electron and nuclear spin are well characterized by a stationary random function of time. Attempts to examine long vector fluctuations by employing electron spin and nuclear spin double-labeling techniques did not yield unambiguous characterization of the high frequency motions of the vector between β-93 positions on different chains. PMID:15475581

  2. BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties.

    PubMed

    Tertyshnikova, Svetlana; Knox, Ronald J; Plym, Mary Jane; Thalody, George; Griffin, Corinne; Neelands, Torben; Harden, David G; Signor, Laura; Weaver, David; Myers, Robert A; Lodge, Nicholas J

    2005-04-01

    BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] produced a concentration-dependent membrane hyperpolarization of cultured human bladder myocytes, assessed as either a reduction in fluorescence of the voltage-sensitive dye bis-(1,2-dibutylbarbituric acid)trimethine oxonol (EC50 = 1.26 +/- 0.6 microM) or by direct electrophysiological measurement (EC50 = 1.49 +/- 0.08 microM). BL-1249 also produced a membrane hyperpolarization of acutely dissociated rat bladder myocytes. Voltage-clamp studies in human bladder cells revealed that BL-1249 activated an instantaneous, noninactivating current that reversed near E(K). The BL-1249-evoked outward K+ current was insensitive to blockade by glyburide, tetraethylammonium, iberiotoxin, 4-aminopyridine, apamin, or Mg2+. However, the current was inhibited by extracellular Ba2+ (10 mM). In in vitro organ bath experiments, BL-1249 produced a concentration-dependent relaxation of 30 mM KCl-induced contractions in rat bladder strips (EC50 = 1.12 +/- 0.37 microM), yet had no effect on aortic strips up to the highest concentration tested (10 microM). The bladder relaxation produced by BL-1249 was partially blocked by Ba2+ (1 and 10 mM) but not by apamin, iberiotoxin, 4-aminopyridine, glyburide, or tetraethylammonium. In an anesthetized rat model, BL-1249 (1 mg/kg i.v.) decreased the number of isovolumic contractions, without significantly affecting blood pressure. Thus, BL-1249 behaves as a potassium channel activator that exhibits bladder versus vascular selectivity both in vitro and in vivo. A survey of potassium channels exhibiting sensitivity to extracellular Ba2+ at millimolar concentration revealed that the expression of the K2P2.1 (TREK-1) channel was relatively high in human bladder cells versus human aortic cells, suggesting this channel as a possible candidate target for BL-1249. PMID:15608074

  3. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  4. Tumbling motions of NH2(CH3)2 ions in [NH2(CH3)2]2ZnCl4 studied using 1H MAS NMR and 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Kim, Nam Hee; Choi, Jae Hun; Lim, Ae Ran

    2014-12-01

    The structure and the phase transition temperatures of [NH2(CH3)2]2ZnCl4 were determined using X-ray diffraction and DSC, respectively. The temperature dependence of chemical shifts and the spin-lattice relaxation time T1ρ in the rotating frame were measured for the 1H and 13C nuclei in [NH2(CH3)2]2ZnCl4. From these results, it was observed that the structural change by chemical shifts does not occur with temperature. However, T1ρ for 1H and 13C in [NH2(CH3)2]2ZnCl4 showed a minimum, and it is apparent that both T1ρ values are governed by the same tumbling motions. The activation energies of tumbling motions for 1H and 13C are nearly the same owing to the connection between CH3 and NH2 ions in the [NH2(CH3)2]+ group.

  5. 79Br Nuclear Quadrupole Relaxation in the High Temperature Modification of Niobium Pentabromide

    NASA Astrophysics Data System (ADS)

    Okubo, Noriaki; Sekiya, Harutaka; Ishikawa, Chiaki; Abe, Yoshihito

    1992-06-01

    The spin-lattice relaxation time of 79Br NQR has been measured between 4.2 K and room temperature. The result is compared with that of 35Cl NQR in NbCl5. The origin of the relaxation is attributed to the quadrupolar interaction and the temperature dependence is explained by the Raman process. The Debye temperature is determined to be 94 K and the relaxation time is related with the NQR frequency through the covalency.

  6. Effect of manganese on human placental spin-lattice (T1) and spin-spin (T2) relaxation times

    SciTech Connect

    Angtuaco, T.L.; Mattison, D.R.; Thomford, P.J.; Jordan, J.

    1986-01-01

    Human placentas were obtained immediately following delivery and incubated with manganese chloride (MnCl/sub 2/) in concentrations ranging from 0.002 to 2.0 mM. Proton density, T1 and T2 were measured at times ranging from 5-200 minutes. There was rapid uptake of manganese by the placenta producing a dose-dependent decrease in placental T1 and T2. The major effect of manganese uptake was shortening of T1 suggesting that the contrast between placenta and myometrium will be enhanced predominantly for T1-dependent imaging pulse sequences.

  7. A strong ferroelectric ferromagnet created by means of spin-lattice coupling.

    SciTech Connect

    Lee, J. H.; Fang, L.; Vlahos, E.; Ke, X.; Jung, Y.W.; Fitting Kourkaoutis, L.; Kim, J. W.; Ryan, P.; Heeg, T.; Roeckerath, M.; Goian, V.; Bernhagen, M.; Uecker, R.; Hammel, P.C.; Rabe, K. M.; Kamba, S.; Schubert, J.; Freeland, J.W.; Muller, D.A.; Fennie, C.J.; Schiffer, P.; Gopalan, V.; Johnston-Halperin, E.; Schlom, D. G.

    2010-08-19

    -temperature manifestations of this spin-lattice coupling mechanism. Our work demonstrates that a single experimental parameter, strain, simultaneously controls multiple order parameters and is a viable alternative tuning parameter to composition for creating multiferroics.

  8. 1H and 19F NMR studies on molecular motions and phase transitions in solid triethylammonium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Seki, Riki; Ikeda, Ryuichi; Ishida, Hiroyuki

    1995-02-01

    Measurements by differential thermal analysis and differential scanning calorimetry and of the spin-lattice relaxation time ( T1), the spin-spin relaxation time ( T2), and the second moment ( M2) of 1H and 19F NMR were carried out in the three solid phases of (CH 3CH 2) 3NHBF 4. X-ray powder patterns were taken in the highest-temperature phase (Phase I) existing above 367 K and the room-temperature phase (Phase II) stable between 220 and 367 K. Phase I formed a NaCl-type cubic structure with a = 11.65(3) Å, Z = 4, V = 1581(13) Å3, and Dx = 0.794 g cm -3, and was expected to be an ionic plastic phase. In this phase, the self-diffusion of anions and the isotropic reorientation of cations were observed. Phase II formed a tetragonal structure with a = 12.47(1) and c = 9.47(3) Å, Z = 4, V = 1473(6) Å3, and Dx = 0.852 g cm -3. From the present DSC and NMR results in this phase, the cations and/or anions were considered to be dynamically disordered states. The C3 reorientation of the cation about the NH bond axis was detected and, in addition, the onset of nutation of the cations and local diffusion of the anions was suggested. In the low-temperature phase (Phase III) stable below 219 K, the C3 reorientations of the three methyl groups of cations and the isotropic reorientation of anions were observed. The motional parameters for these modes were evaluated.

  9. Hydrogen motion and local structure of metals in β-Ti1-yVyHx as studied by 1H NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-09-01

    Hydrogen motion in β-Ti1-yVyHx (y=0.2, 0.4, 0.6, and 0.8; x~1) alloys was studied by 1H NMR, with which the temperature and frequency dependences of proton spin-lattice relaxation times (T1) were measured over the temperature range 105-400 K and at frequencies 9, 22.5, 52, and 90 MHz. The temperature dependences of T1 change systematically with the metal composition; with a decrease in the concentration of V, the minimum value of T1 increases and the temperature at which T1 is minimized shifts to the higher-temperature side. These results are analyzed with two-site jumps of a proton between unequal potential wells, in which Brouwer's model is assumed to describe local structure of the alloys. Good agreement between the experimental and calculated T1 values is given by this treatment, unlike the isotropic diffusion model. The following three parameters are used for the calculation: activation energies for Ti and V are ETi=16 and EV=9.5 kJ/mol, respectively, and the frequency prefactor is τ0=1.5×10-11 s for 0.4<=y<=0.8. The obtained ETi and EV values agree with those of pure metal hydrides such as TiHx and VHx, respectively.

  10. Nuclear relaxation measurements in organic semiconducting polymers for application to organic spintronics

    NASA Astrophysics Data System (ADS)

    Thenell, E. F.; Limes, M. E.; Sorte, E. G.; Vardeny, Z. V.; Saam, B.

    2015-01-01

    NMR measurements of spin-lattice relaxation of hydrogen nuclei in two prototype organic semiconducting solids, MEH-PPV and DOO-PPV, were carried out for temperatures between 4.2 K and room temperature, and for applied magnetic fields between 1.25 and 4.7 T. These π -conjugated polymers are of interest for use as the active semiconducting layer in spintronic devices. They typically exhibit weak spin-orbit coupling, and the interaction with inhomogeneous hyperfine fields generated by the nuclear spins plays a significant, if not dominant, role in the spin coherence and spin relaxation of electronic charge carriers. Our studies were conducted on unbiased bulk material with no photo-illumination. The characteristic 1H longitudinal relaxation times in these materials ranges from hundreds of milliseconds to >1000 s, and are predominantly nonmonoexponential. We present the data both in terms of a recovery time, T1 /2, corresponding to 50% recovery of thermal magnetization from saturation and in terms of a "T1 spectrum" produced via a numerical Laplace transform of the time-domain data. The evidence best supports relaxation to paramagnetic centers (radicals) mediated by nuclear spin diffusion as the primary mechanism: the observed relaxation is predominantly nonmonoexponential, and a characteristic T1 minimum as a function of temperature is apparent for both materials somewhere between 77 K and room temperature. The paramagnetic centers may be somewhat-delocalized charge-carrier pairs (i.e., polarons) along the polymer backbone, although the concentration in an unbiased sample (no carrier injection) should be very low. Alternatively, the centers may be localized defects, vacancies, or impurities. Our results may also be used to judge the feasibility of Overhauser-type dynamic nuclear polarization from polarized charge carriers or optically pumped exciton states.

  11. Proton magnetic relaxation in aromatic polyamides during water vapor sorption

    NASA Astrophysics Data System (ADS)

    Smotrina, T. V.; Chulkova, Yu. S.; Karasev, D. V.; Lebedeva, N. P.; Perepelkin, K. E.; Grebennikov, S. F.

    2009-07-01

    The state of the components in the aromatic polyamide-water system was studied by NMR and sorption. A comparative analysis of spin-lattice and spin-spin relaxation in aromatic para-polyamide ( para-aramid) technical fibers Rusar, Kevlar, and Technora was performed depending on the sorption value. The NMR results correlated with the supramolecular structure of polymers and quasi-chemical equation parameters for water vapor sorption.

  12. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  13. β -detected NMR spin relaxation in a thin film heterostructure of ferromagnetic EuO

    NASA Astrophysics Data System (ADS)

    MacFarlane, W. A.; Song, Q.; Ingle, N. J. C.; Chow, K. H.; Egilmez, M.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Levy, C. D. P.; Morris, G. D.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Salman, Z.; Wang, D.

    2015-08-01

    We present β -detected NMR measurements of the spin-lattice relaxation of +8Li implanted into an epitaxial heterostructure based on a 100 nm thick film of ferromagnetic (FM) EuO as a function of temperature through its FM transition. In the FM state, the spin-lattice relaxation rate follows the same temperature dependence, determined by magnon scattering mechanisms, observed in the bulk by 153Eu NMR, but above 40 K, the signal is wiped out. We also find that +8Li stopped in material adjacent to the magnetic layer exhibits spin relaxation related to the critical slowing of the Eu spins. A particularly strong relaxation in the Au overlayer suggests an unusual strong nonlocal coupling mechanism to 8Li in the metal.

  14. Spin-lattice coupling and novel magnetic properties in the triangular lattice antiferromagnet Ag2CrO2

    NASA Astrophysics Data System (ADS)

    Matsuda, Masaaki

    2013-03-01

    Spin-lattice coupling plays an important role in selecting the ground state in the geometrically frustrated magnets, since a small amount of structural distortion is sufficient to lift the ground state degeneracy and stabilize a long-range magnetic order. Ag2CrO2 consists of insulating triangular lattice planes of CrO2 (Cr3+ ion with S=3/2), which are separated by the metallic Ag2 layers. Interestingly, the electric transport in the Ag2 layer is strongly affected by the magnetism in the CrO2 layer. We performed neutron diffraction experiments on this material and found that a partially disordered state with 5 sublattices abruptly appears at TN=24 K, accompanied by a structural distortion. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. The nonnegligible further-neighbor interactions suggest the existence of the RKKY interaction mediated by the conduction electrons. We have recently performed inelastic neutron scattering experiments and found anomalous magnetic excitations, which cannot be explained simply by the linear spin-wave theory.

  15. Coupled nuclear spin relaxation and internal rotations in magnesium fluosilicate hexahydrate.

    NASA Technical Reports Server (NTRS)

    Utton, D. B.; Tsang, T.

    1972-01-01

    Both proton and fluorine nuclear spin-lattice relaxations have been studied by the 180- to 90-deg pulse method in magnesium fluosilicate hexahydrate at 25 and 13 MHz over the temperature range from 170 to 350 K. Observed nonexponential behavior of the nuclear magnetic relaxation is explained by internal rotations of the doubly charged negative fluosilicate ions and doubly charged positive magnesium hexahydrate ions.

  16. The cooperative binding of phenylalanine to phenylalanine 4-monooxygenase studied by 1H-NMR paramagnetic relaxation. Changes in water accessibility to the iron at the active site upon substrate binding.

    PubMed

    Martínez, A; Olafsdottir, S; Flatmark, T

    1993-01-15

    The effect of the paramagnetic high-spin Fe(III) ion in phenylalanine 4-monooxygenase (phenylalanine hydroxylase, EC 1.14.16.1) on the water proton longitudinal relaxation rate has been used to study the environment of the iron center. The relaxation rate was measured as a function of the concentration of enzyme, substrate (phenylalanine), inhibitor (noradrenaline) and activator (lysolecithin), as well as of the temperature (18-40 degrees C) and the external magnetic field strength (100-600 MHz). From the frequency dependence of the relaxation rate, an effective correlation time (tau c) of 4.2(+/- 0.5) x 10(-10) s was calculated for the enzyme-substrate complex, which most likely represents the electron spin relaxation rate (tau s) for Fe(III) (S = 5/2) in this complex. The relaxation rate was proportional to the concentration of enzyme (0.04-1 mM) both in the absence and presence of phenylalanine, but the paramagnetic molar relaxivity at 400 MHz and 22 degrees C decreased from 2.2(+/- 0.05) x 10(3) s-1.M-1 in the enzyme as isolated to 1.2(+/- 0.06) x 10(3) s-1.M-1 in the presence of saturating concentrations of the substrate. The activation energy of the relaxation rate also decreased from 11.3 +/- 0.8 kJ/mol to -1.5 +/- 0.2 kJ/mol upon incubation of the enzyme with 5 mM phenylalanine. The results obtained can be interpreted in terms of a slowly exchanging water molecule coordinated to the catalytic paramagnetic Fe(III) in the native and resting enzyme, and that this water molecule seems to be displaced from coordination on the binding of substrate or inhibitor. Moreover, the effect of increasing concentrations of phenylalanine and noradrenaline on the water proton relaxation rate and on the hydrophobic surface properties of the enzyme indicate that substrate and inhibitor induce a similar cooperative conformational change upon binding at the active site. By contrast, the activator lysolecithin does not seem to affect the interaction of water with the catalytic Fe

  17. 129Xe spin relaxation in frozen xenon

    NASA Astrophysics Data System (ADS)

    Fitzgerald, R. J.; Gatzke, M.; Fox, David C.; Cates, G. D.; Happer, W.

    1999-04-01

    We discuss the longitudinal spin relaxation of 129Xe nuclei in frozen xenon. Over a large range of temperatures and magnetic fields, the dominant spin-lattice relaxation mechanism is shown to be nuclear spin-flip Raman scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the spins of 129Xe nuclei: (1) the nuclear spin-rotation interaction between nearest-neighbor atoms, and (2) the paramagnetic antishielding of the externally applied field at the site of 129Xe nuclei by the electrons of neighboring Xe atoms. We show that relaxation rates can be predicted by using measured chemical shifts of gaseous and condensed xenon. The predicted relaxation rates are in good agreement with measurements. We outline a simple way to estimate the spin-rotation coupling and paramagnetic antishielding in terms of the small perturbations of the outermost electron orbitals of one xenon atom due to a neighboring atom.

  18. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  19. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  20. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  1. A 300 MHz and 600 MHz proton NMR study of a 12 base pair restriction fragment: investigation of structure by relaxation measurements.

    PubMed Central

    Early, T A; Kearns, D R; Hillen, W; Wells, R D

    1980-01-01

    The 1H NMR spectrum of a 12 base pair DNA restriction fragment has been measured at 300 and 600 MHz and resonances from over 70 protons are individually resolved. Relaxation rate measurements have been carried out at 300 MHz and compared with the theoretical predictions obtained using an isotropic rigid rotor model with coordinates derived from a Dreiding model of DNA. The model gives results that are in excellent agreement with experiment for most protons when a 7 nsec rotational correlation time is used, although agreement is improved for certain base protons by using a shorter correlation time for the sugar group, or by increasing the sugar-base interproton distances. A comparison of non-selective and selective spin-lattice relaxation rates for carbon bound protons indicates that there is extensive spin diffusion even in this short DNA fragment. Examination of the spin-spin relaxation rates for the same type of proton on different base pairs reveals little sequence effect on conformation. PMID:6258152

  2. High-pressure nuclear-magnetic-resonance study of carbon-13 relaxation in 2-ethylhexyl benzoate and 2-ethylhexyl cyclohexanecarboxylate

    NASA Astrophysics Data System (ADS)

    Adamy, S. T.; Grandinetti, P. J.; Masuda, Y.; Campbell, D.; Jonas, J.

    1991-03-01

    Natural abundance carbon-13 spin-lattice relaxation times and 13G-1H nuclear Overhauser enhancement (NOE) times of 2-ethyl hexylbenzoate (EHB) and 2-ethyl hexylcyclohexanecarboxylate (EHC) have been measured along isotherms of -20, 0, 20, 40, and 80 °C at pressures of 1-5000 bars using high-pressure, high-resolution NMR techniques. The ability to use pressure as an experimental variable has allowed us to study a wide range of molecular motions from extreme narrowing into the slow motional regime. In addition, the high-resolution capability even at high pressure permits the measurement of 13C and NOE for each individual carbon in the molecules studied. Relaxation in both molecules is successfully analyzed in terms of a model assuming a Cole-Davidson distribution of correlation times. The comparison of parameters used in the model demonstrates the increased flexibility of the EHC ring over the EHB ring and also shows how the presence of the flexible ring contributes to the increased over-all mobility of the EHC molecule. The analysis of molecular reorientations in terms of activation volumes also indicates that EHB motion is highly restricted at low temperature.

  3. The structure of polycaprolactone-clay nanocomposites investigated by 1H NMR relaxometry.

    PubMed

    Monteiro, Mariana S S B; Rodrigues, Claudia Lopes; Neto, Roberto P C; Tavares, Maria Inês Bruno

    2012-09-01

    Nanocomposites based on polycaprolactone (PCL), containing concentrations of 1, 3 and 5 wt% of sodium montmorillonite (NT-25) and organo-modified montmorillonite clay, with three different salts (Viscogel B7, Viscogel S4 and Viscogel B8), were prepared employing the solution intercalation method using chloroform. The PCL nanocomposites were characterized by relaxometry, through determination of the hydrogen spin-lattice relaxation times using low-field nuclear magnetic resonance (NMR). Conventional X-ray diffraction (XDR) was also used to measure the basal space of the nanoclay. The proton spin-lattice relaxation parameters showed that hybrid nanocomposites were formed, containing different parts of intercalated and exfoliated organoclay. The proton T1rhoH also indicated changes in the microstructure, organization and the molecular mobility of the hybrid materials. NMR relaxometry is a good way to evaluate nanomaterials because it provides complementary information, since it is measured in a different time scale. Furthermore, differential scanning calorimetry and thermogravimetric analysis were also used to investigate the crystallization and thermal behavior of the nanocomposites, respectively. All materials had low crystallization temperature (Tc) and the melting temperature (Tm) were very close to that of the PCL matrix, but the degree of crystallinity of the nanocomposites decreased. TGA analysis demonstrated that montmorillonite accelerates PCL's decomposition while unmodified montmorillonite has the opposite effect. PMID:23035469

  4. 1H-NMR, dielectric and calorimetric studies of molecular motions in m-nitroaniline crystal

    NASA Astrophysics Data System (ADS)

    Szostak, M. Magdalena; Wójcik, Grażyna; Gallier, Jean; Bertault, Marcel; Freundlich, Piotr; Kołodziej, Hubert A.

    1998-04-01

    Spin-lattice relaxation time, T1, spin-lattice relaxation time in the rotating frame, T1 ρ, and the second moment of the resonance line measurements at 80 MHz and over the 190-380 K temperature range are reported for protons in the optically nonlinear material m-nitroaniline ( m-NA). T1 has also been measured for samples irradiated by low energy and low intensity radiation. The real and imaginary parts of electric permittivity as well as tan  δ have been recorded in the 80-380 K temperature range at frequencies ranging from 100 Hz to 1.0 MHz. DSC measurements have been performed in the 110-387 K temperature range. Two phase transitions have been found: A glassy to rotative transition at 160 K and a plastic to plastic transformation at 365 K. The main feature of the m-NA crystal is that its plasticity continues to grow as the temperature increases. The reorientations of phenyl rings, the -NH 2 group proton 180° jumps, the lattice distortions caused by anisotropic thermal expansion and the cooperative reorientations of big molecular aggregates are thought to be the reasons for phase transitions and for the subsequent intermolecular charge transfer. The results are discussed with respect to optical second harmonic generation and near-IR photochemical reaction found in the m-NA crystal.

  5. NMR relaxation rate and the libron energy of solid hydrogen

    NASA Technical Reports Server (NTRS)

    Sugawara, K.; Woollam, J. A.

    1978-01-01

    By taking the rotational relaxation of orthohydrogen (o-H2) in solid hydrogen into account, the authors have theoretically investigated the longitudinal NMR spin lattice relaxation rate of o-H2. The rate is characterized by an anomalous maximum, as a function of temperature, at temperatures close to the mean libron energy of o-H2. Application of the theory for o-H2 concentrations between 42% and 75% reveals a nearly concentration-independent mean libron energy equivalent to about 1 K. This qualitatively and quantitatively contradicts the conclusions of other theories, but agrees with recent experiments.

  6. 27Al and 1H Solid State NMR Studies Show Evidence of TiAl3 and TiH2 in Ti-doped NaAlH4

    SciTech Connect

    Herberg, J; Maxwell, R; Majzoub, E

    2005-05-26

    Previous X-ray Diffraction (XRD) and Nuclear Magnetic Resonance (NMR) studies on Ti-doped NaAlH{sub 4} revealed the reaction products of two heavily doped (33.3 at.%) samples that were solvent-mixed and mechanically-milled. This investigation revealed that nano-crystalline or amorphous Al{sub 2}O{sub 3} forms from the possible coordination of aluminum with oxygen atom of the furan ring system from added tetrahydrofuran (THF) in the solvent-mixed sample, and that TiAl{sub 3} forms in mechanically-milled samples. The present paper provides a more sophisticated NMR investigation of the these materials. On heavily doped (33.3 at.%) solvent-mixed samples, {sup 27}Al Magic Angle Spinning (MAS) NMR {sup 27}Al multiple quantum MAS (MQMAS) indicates the presence of an oxide layer of Al{sub 2}O{sub 3} on the surfaces of potentially bulk nanocrystalline Ti, nanocrystalline TiAl{sub 3}, and/or metallic aluminum. The {sup 1}H MAS NMR data also indicate the possible coordination of aluminum with the oxygen atom in the THF. On heavily doped samples that were mechanically milled, {sup 27}Al MAS NMR and static NMR confirms the presence of TiAl{sub 3}. In addition, the {sup 1}H MAS NMR and {sup 1}H spin-lattice relaxation (T{sub 1}) measurements are consistent with the presence of TiH{sub 2}. These results are in agreement with recent XAFS measurements indicating both Al and H within the first few coordination shells of Ti in the doped alanate.

  7. Relaxation times estimation in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.

  8. Phase transitions and molecular motions in [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} studied by DSC, {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, E. . E-mail: mikuli@chemia.uj.edu.pl; Grad, B.; Medycki, W.; Holderna-Natkaniec, K.

    2004-10-01

    Two solid phase transitions of [Cd(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} occurring on heating at T{sub C2}=183.3K and T{sub C1}=325.3K, with 2K and 5K hysteresis, respectively, were detected by differential scanning calorimetry (DSC). High value of entropy changes indicated large orientational disorder of the high temperature and intermediate phase. Nuclear magnetic resonance ({sup 1}H NMR and {sup 19}F NMR) relaxation measurements revealed that the phase transitions at T{sub C1} and T{sub C2} were associated with a drastic and small change, respectively, of the both spin-lattice relaxation times: T{sub 1}({sup 1}H) and T{sub 1}({sup 19}F). These relaxation processes were connected with the 'tumbling' motions of the [Cd(H{sub 2}O){sub 6}]{sup 2+}, reorientational motions of the H{sub 2}O ligands, and with the iso- and anisotropic reorientation of the BF{sub 4}{sup -} anions. The cross-relaxation effect was observed in phase III. The line width and the second moment of the {sup 1}H and {sup 19}F NMR line measurements revealed that the H{sub 2}O reorientate in all three phases of the title compound. On heating the onset of the reorientation of 3 H{sub 2}O in the [Cd(H{sub 2}O){sub 6}]{sup +2}, around the three-fold symmetry axis of these octahedron, causes the isotropic reorientation of the whole cation. The BF{sub 4}{sup -} reorientate isotropically in the phases I and II, but in the phase III they perform slow reorientation only about three- or two-fold axes. A small distortion in the structure of BF{sub 4}{sup -} as well as of [Cd(H{sub 2}O){sub 6}]{sup 2+} is postulated. The temperature dependence of the bandwidth of the O-H stretching mode measured by Fourier transform middle infrared spectroscopy (FT-MIR) indicated that the activation energy for the reorientation of the H{sub 2}O did not change much at the T{sub C2} phase transition.

  9. Probing α-relaxation with nuclear magnetic resonance echo decay and relaxation: a study on nitrile butadiene rubber.

    PubMed

    Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio

    2013-01-01

    One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. PMID:23379979

  10. Magnetic susceptibility and spin-lattice interactions in U1-xPuxO2 single crystals

    NASA Astrophysics Data System (ADS)

    Kolberg, D.; Wastin, F.; Rebizant, J.; Boulet, P.; Lander, G. H.; Schoenes, J.

    2002-12-01

    Single crystals of mixed uranium-plutonium dioxides have been grown by means of a chemical vapor transport reaction and characterized by x-ray diffraction on bulk and powdered single crystals. Magnetization and susceptibility data were taken using a commercial superconducting quantum interference device. Characteristic ordering temperatures have been determined as well as paramagnetic Curie temperatures and effective magnetic moments. Departures of the reciprocal susceptibility as a function of temperature from linearity have been treated in detail based on a model of vibronic interactions introduced to explain the gross features of susceptibility measurements on thorium-diluted UO2 [Sasaki and Obata, J. Phys. Soc. Jpn. 28, 1157 (1970)]. The influence of spin-lattice interactions causes a certain shape of the observed 1/χ vs T curves from which we are able to suggest different mechanisms for the interactions as a function of the constituent’s concentrations. From our susceptibility measurements characteristic parameters have been calculated using a model of tetragonal vibrational modes of the oxygen cage surrounding each uranium ion. These include specific coupling parameters G, mode characteristic temperatures Tω, and molecular-field constants λ.

  11. Ferroic ordering and charge-spin-lattice order coupling in Gd doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Abdelhamid, Ehab; Palihawadana Arachchige, Maheshika; Dixit, Ambesh; Lawes, Gavin; Naik, Vaman; Naik, Ratna

    Rare earth doped spinels have been extensively studied for their potential applications in magneto-optical recording and as MRI contrast agents. In the present study, we have investigated the effect of gadolinium doping (1-5 at.%) on the magnetic and dielectric properties of Fe3O4nanoparticles synthesized by the chemical co-precipitation method. The structure and morphology of the as-synthesized gadolinium doped Fe3O4(Gd-Fe3O4) nanoparticles were characterized by XRD, SEM and TEM, and the magnetic properties were measured by a Quantum Design physical property measurement system. We find that the penetration of excess Gd3+ ions into Fe3O4 spinel matrix significantly influences the average crystallite size and saturation magnetization in Gd-Fe3O4. The average crystallite size, estimated from XRD using Scherrer equation, increases with increasing Gd doping percentage and the saturation magnetization drops monotonically with excess Gd3+ ions. Interestingly, Gd- Fe3O4develops enhanced ferroelectric ordering at low temperatures. The details of the temperature dependent dielectric, ferroelectric and magnetocapacitance measurements to understand the onset of charge-spin-lattice coupling in Gd-Fe3O4 system will be presented.

  12. Partially disordered state and spin-lattice coupling in an S=3/2 triangular lattice antiferromagnet Ag2CrO2

    SciTech Connect

    Matsuda, Masaaki; Yoshida, H.; Isobe, M.; De la cruz, Clarina; Fishman, Randy Scott

    2012-01-01

    Ag{sub 2}CrO{sub 2} is an S = 3/2 frustrated triangular lattice antiferromagnet without an orbital degree of freedom. With decreasing temperature, a four-sublattice spin state develops. However, a long-range partially disordered state with five sublattices abruptly appears at T{sub N} = 24 K, accompanied by a structural distortion, and persists at least down to 2 K. The spin-lattice coupling stabilizes the anomalous state, which is expected to appear only in limited ranges of further-neighbor interactions and temperature. It was found that the spin-lattice coupling is a common feature in triangular lattice antiferromagnets with multiple-sublattice spin states, since the triangular lattice is elastic.

  13. A study of molecular dynamics and freezing phase transition in tissues by proton spin relaxation.

    PubMed Central

    Rustgi, S N; Peemoeller, H; Thompson, R T; Kydon, D W; Pintar, M M

    1978-01-01

    Muscle, spleen, and kidney tissues from 4-wk-old C57 black mice were studied by proton magnetic resonance. Spin-lattice relaxation times at high fields and in the rotating frame, as well as the spin-spin relaxation times, are reported as a function of temperature in the liquid and frozen phase. Motions of large molecules and of water molecules and their changes at the freezing phase transition are studied. The shortcomings of the two-state fast-exchange relaxation model are discussed. PMID:667294

  14. Analysis of microporosity and setting of reactive powder concrete by proton nuclear relaxation.

    PubMed

    Philippot, S; Korb, J P; Petit, D; Zanni, H

    1998-01-01

    The proton spin-lattice relaxation measured at several frequencies leads to a resolved distribution of four Tli for reactive powder concrete (RPC). The typical Tli frequency dependences are quantitatively interpreted by a biphasic fast exchange model and a proton nuclear relaxation of hydrated paramagnetic ions at the surface of the pores. This leads to an estimation of the pore sizes. We present the first application of this nuclear relaxation method to follow in situ the kinetics of the hydration and setting of such material. PMID:9803900

  15. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  16. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  17. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.

    PubMed

    Livshits, V A; Páli, T; Marsh, D

    1998-09-01

    The dependence on spin-lattice (T1) relaxation of the first-harmonic absorption EPR signal (V'1) detected in phase quadrature with the Zeeman modulation has been investigated both theoretically and experimentally for nitroxide spin labels. Spectral simulations were performed by iterative solution of the Bloch equations that contained explicitly both the modulation and microwave magnetic fields (T. Páli, V. A. Livshits, and D. Marsh, 1996, J. Magn. Reson. B 113, 151-159). It was found that, of the various non-linear EPR displays, the first-harmonic out-of-phase V'1-signal, recorded under conditions of partial saturation of the microwave absorption, is particularly favorable for determining spin-lattice relaxation enhancements because of its superior signal intensity and relative insensitivity to spin-spin (T2) relaxation. By varying the Zeeman modulation frequency it is also possible to tune the optimum sensitivity of the V'1-signal to different ranges of the T1-relaxation time. A Zeeman modulation frequency of 25 kHz appears to be particularly suited to spin label applications. Calibrations are given for the dependence on T1-relaxation time of both the amplitude and the second integral of the V'1-signal recorded under standard conditions. Experiments on different spin labels in solution and in membranes demonstrate the practical usable sensitivity of the V'1-signal, even at modulation frequencies of 25 kHz, and these are used to investigate the dependence on microwave field intensity, in comparison with theoretical predictions. The practicable sensitivity to spin-lattice relaxation enhancements is demonstrated experimentally for a spin-labeled membrane system in the presence of paramagnetic ions. The first-harmonic out-of-phase V'1-signal appears to be the non-linear CW EPR method of choice for determining T1-relaxation enhancements in spin-labeled systems. PMID:9740736

  18. Enhancement of Paramagnetic Relaxation by Photoexcited Gold Nanorods

    PubMed Central

    Wen, Tao; Wamer, Wayne G.; Subczynski, Witold K.; Hou, Shuai; Wu, Xiaochun; Yin, Jun-Jie

    2016-01-01

    Electron spin resonance (ESR) spectroscopy was used to investigate the switchable, light-dependent effects of gold nanorods (GNRs) on paramagnetic properties of nitroxide spin probes. The photoexcited GNRs enhanced the spin-spin and spin-lattice relaxations of nitroxide spin probes. It was shown that molecular oxygen plays the key role in this process. Our results demonstrate that ESR is a powerful tool for investigating the events following photoexcitation of GNRs. The novel light-controlled effects observed for GNRs on paramagnetic properties and activities of surrounding molecules have a number of significant applications where oxygen sensing and oxygen activity is important. PMID:27071507

  19. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    PubMed

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J

    2013-07-01

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR. PMID:23929983

  20. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals: rotational motion effects.

    PubMed

    Livshits, V A; Marsh, D

    2000-07-01

    A recent survey of nonlinear continuous-wave (CW) EPR methods revealed that the first-harmonic absorption EPR signal, detected 90 degrees out of phase with respect to the Zeeman modulation (V(1)(')-EPR), is the most appropriate for determining spin-lattice relaxation enhancements of spin labels (V. A. Livshits, T. Páli, and D. Marsh, 1998, J. Magn. Reson. 134, 113-123). The sensitivity of such V(1)(')-EPR spectra to molecular rotational motion is investigated here by spectral simulations for nitroxyl spin labels, over the entire range of rotational correlation times. Determination of the effective spin-lattice relaxation times is less dependent on rotational mobility than for other nonlinear CW EPR methods, especially at a Zeeman modulation frequency of 25 kHz which is particularly appropriate for spin labels. This relative insensitivity to molecular motion further enhances the usefulness of the V(1)(')-EPR method. Calibrations of the out-of-phase to in-phase spectral intensity (and amplitude) ratios are given as a function of spin-lattice relaxation time, for the full range of spin-label rotational correlation times. Experimental measurements on spin labels in the slow, intermediate, and fast motional regimes of molecular rotation are used to test and validate the method. PMID:10873499

  1. Formation of p-cresol:piperazine complex in solution monitored by spin-lattice relaxation times and pulsed field gradient NMR diffusion measurements

    NASA Astrophysics Data System (ADS)

    de Carvalho, Erika Martins; Velloso, Marcia Helena Rodrigues; Tinoco, Luzineide Wanderley; Figueroa-Villar, José Daniel

    2003-10-01

    A study of the nature of the anthelmintic p-cresol:piperazine complex in chloroform solution has been conducted using different NMR techniques: self-diffusion coefficients using DOSY; NOE, NULL, and double-selective T1 measurements to determine inter-molecular distances; and selective and non-selective T1 measurements to determine correlation times. The experimental results in solution and CP-MAS were compared to literature X-ray diffraction data using molecular modeling. It was shown that the p-cresol:piperazine complex exists in solution in a very similar manner as it does in the solid state, with one p-cresol molecule hydrogen bonded through the hydroxyl hydrogen to each nitrogen atom of piperazine. The close correspondence between the X-ray diffraction data and the inter-proton distances obtained by NULL and double selective excitation techniques indicate that those methodologies can be used to determine inter-molecular distances in solution.

  2. High resolution 1H solid state NMR studies of polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Cheung, T. T. P.; Gerstein, B. C.; Ryan, L. M.; Taylor, R. E.; Dybowski, D. R.

    1980-12-01

    Molecular motions and spatial properties of the solid polymer polyethyleneterephthalate have been investigated using high resolution 1H solid state NMR techniques. The longitudinal spin relaxation time T1ρ of protons (1H) in the rotating frame was measured for a spin locking field ranging from 5 to 20 G. The decay of the 1H magnetization indicated the existence of two distinct T1ρ's and their field dependence shows that they are associated with two mobile phases of the polymer. The 1H magnetization also relaxes under the dipolar narrowed Carr-Purcell (DNCP) multipulse sequence with two dintinct T1y relaxation times. The ratios T1y's and T1ρ's deviate significantly from the expected theoretical values. The combined experiment with magic angle spinning and the DNCP sequence followed by homonuclear dipolar decoupling reveals the individual T1y relaxation of the resolved methylene and aromatic protons. These two species of protons were found to relax with the same T1y's, thus implying that spin diffusion must have taken place under the homonuclear dipolar decoupling multipulse. The qualitative description of spin diffusion under homonuclear decoupling is given. The combined experiment with spin locking and the DNCP sequence yields the correspondence between the two T1ρ's and the two T1y's. The long T1ρ corresponds to the short T1y whereas the short T1ρ corresponds to the long T1y. Communication between the two spatial phases via spin diffusion was also observed in this experiment by monitoring the recovery of the 1H magnitization associated with the short T1ρ after it has been eliminated during the spin locking. The total 1H magnetization is allowed to equilibrate in the laboratory frame for a variable time much shorter than T1 after the spin locking field has been turned off. The spatial relationship between the two phases is discussed.

  3. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. PMID

  4. Electron Spin Relaxation of Hole and Electron Polarons in π-Conjugated Porphyrin Arrays: Spintronic Implications.

    PubMed

    Rawson, Jeff; Angiolillo, Paul J; Frail, Paul R; Goodenough, Isabella; Therien, Michael J

    2015-06-18

    Electron spin resonance (ESR) spectroscopic line shape analysis and continuous-wave (CW) progressive microwave power saturation experiments are used to probe the relaxation behavior and the relaxation times of charged excitations (hole and electron polarons) in meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers (PZnn compounds), which can serve as models for the relevant states generated upon spin injection. The observed ESR line shapes for the PZnn hole polaron ([PZnn](+•)) and electron polaron ([PZnn](-•)) states evolve from Gaussian to more Lorentzian as the oligomer length increases from 1.9 to 7.5 nm, with solution-phase [PZnn](+•) and [PZnn](-•) spin-spin (T2) and spin-lattice (T1) relaxation times at 298 K ranging, respectively, from 40 to 230 ns and 0.2 to 2.3 μs. Notably, these very long relaxation times are preserved in thick films of these species. Because the magnitudes of spin-spin and spin-lattice relaxation times are vital metrics for spin dephasing in quantum computing or for spin-polarized transport in magnetoresistive structures, these results, coupled with the established wire-like transport behavior across metal-dithiol-PZnn-metal junctions, present meso-to-meso ethyne-bridged multiporphyrin systems as leading candidates for ambient-temperature organic spintronic applications. PMID:25697578

  5. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: Application to 1H NMR of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Segnorile, Héctor H.; Zamar, Ricardo C.

    2011-12-01

    Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance (1H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by

  6. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.

    PubMed

    Segnorile, Héctor H; Zamar, Ricardo C

    2011-12-28

    Explanation of decoherence and quasi-equilibrium in systems with few degrees of freedom demands a deep theoretical analysis that considers the observed system as an open quantum system. In this work, we study the problem of decoherence of an observed system of quantum interacting particles, coupled to a quantum lattice. Our strategy is based on treating the environment and the system-environment Hamiltonians fully quantum mechanically, which yields a representation of the time evolution operator useful for disentangling the different time scales underlying in the observed system dynamics. To describe the possible different stages of the dynamics of the observed system, we introduce quantum mechanical definitions of essentially isolated, essentially adiabatic, and thermal-contact system-environment interactions. This general approach is then applied to the study of decoherence and quasi-equilibrium in proton nuclear magnetic resonance ((1)H NMR) of nematic liquid crystals. A summary of the original results of this work is as follows. We calculate the decoherence function and apply it to describe the evolution of a coherent spin state, induced by the coupling with the molecular environment, in absence of spin-lattice relaxation. By assuming quantum energy conserving or non-demolition interactions, we identify an intermediate time scale, between those controlled by self-interactions and thermalization, where coherence decays irreversibly. This treatment is also adequate for explaining the buildup of quasi-equilibrium of the proton spin system, via the process we called eigen-selectivity. By analyzing a hypothetical time reversal experiment, we identify two sources of coherence loss which are of a very different nature and give rise to distinct time scales of the spin dynamics: (a) reversible or adiabatic quantum decoherence and (b) irreversible or essentially adiabatic quantum decoherence. Local irreversibility arises as a consequence of the uncertainty introduced by

  7. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  8. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  9. Proton magnetic relaxation and internal rotations in tetramethylammonium cadmium chloride

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Utton, D. B.

    1976-01-01

    Nuclear magnetic resonance (NMR) and relaxation studies of the proton spin-lattice relaxation time (PSLRT) and proton second moment (PSM) are reported. Tetramethylammonium cadmium chloride (TMCC) was selected as a diamagnetic member of the isomorphic series, and hence proton data relate directly to the motion of the tetramethylammonium ion in the absence of paramagnetic ions. In the model adopted, the correlation time for hindered motion of one of the methyl groups differs from that of the other three groups in the low-temperature phase below 104 K. PSLRT and PSM values agree closely with experimental data with this model. Crystallographic phase transitions in TMCC occur at 104 K and 119 K according to the PSLRT measurements. Dipolar interactions between adjacent protons account for the PSLR rates below 104 K.

  10. Cross relaxation of the proton magnetization in ammonium compounds

    NASA Astrophysics Data System (ADS)

    Punkkinen, M.; Vuorimäki, A. H.; Ylinen, E. E.

    1990-01-01

    Expressions are derived for the time constants T1D and TSD of the NH 4 protons in tunneling ammonium compounds below the line-width transition temperature. T1D characterizes the speed of the spin-lattice relaxation of the dipolar energy and TSD the speed of the cross relaxation between the A and T symmetry species. The expressions should be valid if all the tunnel splittings between the T species levels are larger than the magnetic dipolar interaction. Predictions are compared with new experimental results on TSD in (NH 4) 2PbCl 6 and with some earlier results on TSD and T1D in (NH 4) 2 SnBr 6 and NH 4ClO 4. They support the conclusion that for T1D> TSD the T levels are nondegenerate, while the condition T1D< TSD refers to at least a partial degeneracy.

  11. Nuclear spin relaxation studies of the spin-rotation interaction of C-13 in CO in various buffer gases

    NASA Astrophysics Data System (ADS)

    Jameson, C. J.; Jameson, A. K.; Buchi, K.

    1986-07-01

    Nuclear spin-lattice relaxation times have been measured for C-13 in (C-13)(O-16) in pure CO gas and in CO in Ar, Kr, Xe, N2, O2, HCl, CH4, SF6 gases as a function of temperature. The experimental procedure is described, and typical data for C-13 in pure CO at several temperatures are shown along with the temperature dependence of C-13 in (C13)(O-16) in various gases. The relaxation is completely dominated by the spin-rotation mechanism, so that empirical values of the cross sections for the CO rotational angular momentum transfer are obtained as a function of temperature.

  12. Cross Polarization for 1H NMR Image Contrast in Solids

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; Fukunaga, Yasuhiro; Nonaka, Masayuki; Matsui, Shigeru; Inouye, Tamon

    1998-09-01

    A novel1H imaging method for solids, yielding images reflecting1H-13C dipolar interactions through cross relaxation timeTIS, is presented. Phase-alternating multiple-contact cross polarization (PAMC CP) was incorporated into the magic-echo frequency-encoding imaging scheme; the PAMC CP sequence may partly but efficiently destroy the initial1H magnetization depending on theTISvalues. A theory describing the effects of the PAMC CP sequence was developed, which was used for the assessment of the sequence as well as the analysis for the experimental results. It was demonstrated that theTIS-weighted1H image and theTISmapping for a phantom, constituted of adamantane and ferrocene, can distinguish these compounds clearly.

  13. Electron relaxation of DNP free radicals BDPA and DPPH at W-band

    NASA Astrophysics Data System (ADS)

    Khamoshi, Armin; Kaur, Pavanjeet; Song, Likai; Lumata, Lloyd

    2015-03-01

    The stable, spin-1/2 organic free radicals BDPA and DPPH are efficient polarizing agents for dissolution dynamic nuclear polarization (DNP). Despite the hydrophobic nature of these two free radicals, BDPA and DPPH can be dissolved in specialized solvents such as sulfolane or dimethyl sulfoxide. In this work, we have investigated the temperature dependence of the spin-lattice relaxation rate 1/T1 of these two DNP free radicals at W-band from 250 K down to 4 K. We have found that at high temperature above 40 K the relaxation rates of these free radicals (at optimum DNP concentration) behave closely according to the Raman process prediction. At lower temperature below 40 K, the relaxation rate slows down according to the direct process behavior. The results obtained here may elucidate the correlation between the relaxation of electrons and the efficiency of these free radicals in DNP.

  14. Molecular motions and phase transitions. NMR relaxation times studies of several lecithins.

    PubMed Central

    Bar-Adon, R; Gilboa, H

    1981-01-01

    The spin-lattice relaxation time, T1, and the dipolar energy relaxation time, TD, were measured as a function of temperature. The materials studied were samples of anhydrous L-dipalmitoyl lecithin, DL-dipalmitoyl lecithin, L-dimyristoyl lecithin, DL-dimyristoyl lecithin and their monohydrates, and of anhydrous egg yolk lecithin. It is shown that TD is a much more sensitive parameter than T1 for the determination of the Chapman phase transition. Comparison between T1 and TD provides information about new types of slow molecular motions below and above the phase transition temperature. It is suggested that the relaxation mechanisms for T1 and TD in the gel phase are governed by segmental motion in the phospholipid molecule. A new metastable phase was detected in dimyristoyl lecithin monohydrates. This phase could only be detected from the dipolar energy relaxation times. PMID:7225514

  15. U1h shaft project

    SciTech Connect

    Brian Briggs; R. G. Musick

    2000-06-30

    The U1h shaft project is a design/build subcontract to construct one 20 foot (ft) finished diameter shaft to a depth of 1,045 ft at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 1,045 ft of concrete lined shaft, development of a shaft station at a depth of 976 ft, and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper should be of interest to those involved with the construction of relatively deep shafts and underground excavations.

  16. Knight shift and spin relaxation in the single band 2D Hubbard model

    NASA Astrophysics Data System (ADS)

    Leblanc, James; Chen, Xi; Gull, Emanuel

    We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.

  17. Solid state proton spin relaxation and methyl and t-butyl reorientation

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Al-Hallaq, Hania A.; Fry, Anne M.; Plofker, Amy L.; Roe, Brian A.; Weiss, Jessica A.

    1994-01-01

    We have measured the temperature T and Larmor frequency ω/2π dependence of the proton spin-lattice relaxation rate R in solid 1-hydroxy-2,4,6-tri-butylbenzene. The data is interpreted in terms of the rotational motion of the t-butyl groups and their constituent methyl groups. Our data is much more extensive than a previous report [J. Yamauchi and C. A. McDowell, J. Chem. Phys. 75, 1051 (1981)] resulting in a revised dynamical model and considerably larger rotational barriers. Interesting thermal history effects are discussed.

  18. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  19. Spin-lattice coupling of R1 - xLuxB4 revealing anomalous weak ferromagnetism (R = Sm, Gd, Tb, Dy, Ho)

    NASA Astrophysics Data System (ADS)

    Kang, B. Y.; Lee, Seongsu; Hwang, Sang-Yun; Ji, Sungdae; Song, M. S.; Cho, B. K.

    R B4 (R = rare-earth elements) compounds exhibits antiferromagnetic ordering at low temperature and are classified as the Shastry-Sutherland lattice, which is a geometrically frustrated system. In previous study, it was reported that Y substitution in TbB4 single crystals causes anomalous WF (weak ferromagnetism) even though Y3+ is non-magnetic. The disturbance of a delicate equilibrium in a frustrated system can lead to new electronic and magnetic states. In this study, single crystals of R1-xLuxB4 (R = Sm, Gd, Tb, Dy, Ho), (x =0 ~0.8) were synthesized. WF is also observed. TbB4 went through orthorhombic distortion below Néel temperature. To investigate the existence of orthorhombic distortion in TbLuxB4 (x =0.1, 0.35), high resolution single crystal x-ray diffraction was performed at 5 K. It was confirmed that the distortion was vanished with Lu substitution. Interestingly, lattice constant a was increased with decreasing temperature below the TC. The strong correlation between spin-lattice coupling and WF will be discussed in detail.

  20. NMR relaxation studies of the interaction of thiocyanate with lactoperoxidase.

    PubMed

    Crull, G B; Goff, H M

    1993-05-15

    The interaction of lactoperoxidase, LPO, with its substrate, thiocyanate, SCN-, has been investigated by 13C and 15N NMR relaxation measurements. When 0.1 M SCN-, enriched with either 13C or 15N, was titrated with native ferric lactoperoxidase a large change in the spin-lattice relaxation time of the respective nucleus was observed. In the presence of saturating amounts of CN-, a high affinity ligand for the heme iron, a similar but much smaller change in the relaxation time for SCN- was found. Studies of the rate of carbon relaxation as a function of temperature have shown that thiocyanate is in fast exchange between a site on the enzyme and bulk solution. When LPO in either the absence or presence of CN- was titrated with SCN- a linear increase in the relaxation time was observed. Dissociation constants (Kd values) have been determined from a least-squares analysis of these data. Apparent distances between the heme iron of lactoperoxidase and either the carbon or nitrogen atoms of bound thiocyanate ion have been determined through application of the Solomon-Bloembergen equation. These distances demonstrate that the observed association does not involve iron-thiocyanate coordination, suggesting the possibility of an anion binding site. PMID:8501464

  1. Water Adsorption on Pyrogenic Silica Followed by 1H MAS NMR

    PubMed

    d'espinose de la Caillerie JB; Aimeur; Kortobi; Legrand

    1997-10-15

    On the surface of two commercial pyrogenic silicas (Degussa and Cabot), five resonances were identified on the basis of the chemical shift, homonuclear coupling (T2), and spin-lattice relaxation behavior (T1). In accordance with previous studies we observed three different types of silanol groups: (i) weakly coupled (long T2), water inaccessible, isolated "internal" silanols at 1.8 ppm; (ii) weakly coupled, external "free" silanols revealed upon dehydration at 2.5 ppm; and (iii) strongly coupled external hydrogen bound silanols with an unresolved broad resonance between 3 and 7 ppm. The resonance of water, whose position between 2.6 and 4.6 ppm depended on water content, corresponded to two unresolved species of slightly different T1. By equating this resonance to the weighted average of two distinct populations of water, we were able to distinguish the first layer of strongly hydrogen bound water at 2.7 ppm from liquid-like water at 5 ppm. The first layer is complete for water relative humidity as low as 3.6% and corresponds to a surface coverage of 4.75 H2O/nm2. If we assumed a cristobalite-based surface structure, this meant a 1:1 ratio between surface hydroxyls and the first layer of physisorbed water. This ratio was the same for the two silicas regardless of surface area. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9398426

  2. Relaxed Intensity

    ERIC Educational Resources Information Center

    Ramey, Kyle

    2004-01-01

    Relaxed intensity refers to a professional philosophy, demeanor, and way of life. It is the key to being an effective educational leader. To be successful one must be relaxed, which means managing stress efficiently, having fun, and enjoying work. Intensity allows one to get the job done and accomplish certain tasks or goals. Educational leaders…

  3. Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    SciTech Connect

    Bishop, R. F.; Li, P. H. Y.; Campbell, C. E.

    2014-10-15

    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the 'raw' LSUBm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, m → ∞, of the truncation index m, which denotes the only approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J{sub 1}{sup XXZ}−J{sub 2}{sup XXZ} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J{sub 1} > 0 and J{sub 2} ≡ κJ{sub 1} > 0, respectively, where both interactions are of the same anisotropic XXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0 ≤ κ ≤ 1 of the frustration parameter and 0 ≤ Δ ≤ 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space.

  4. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals

    NASA Astrophysics Data System (ADS)

    Hoffmann, S. K.; Goslar, J.; Lijewski, S.

    2011-08-01

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu2+ ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)2Zn(SO4)2 ṡ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu2+ ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu2+ ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)2Zn(SO4)2 ṡ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.

  5. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals.

    PubMed

    Hoffmann, S K; Goslar, J; Lijewski, S

    2011-08-31

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays. PMID:21841228

  6. Hydration of DNA by tritiated water and isotope distribution: a study by /sup 1/H, /sup 2/H, and /sup 3/H NMR spectroscopy

    SciTech Connect

    Mathur-De Vre, R.; Grimee-Declerck, R.; Lejeune, P.; Bertinchamps, A.J.

    1982-06-01

    The hydration layer of DNA (0.75%) in tritiated water represents 3.5% of solvent /sup 3/HHO. The combined effects of temperature (-6 to -40/sup 0/C) and H/sub 2/O//sup 2/H/sub 2/O solvent composition on the spin-lattice relaxation times of water protons and deuterons suggest selective distribution of isotopes in the hydration layer. The ''hydration isotope'' effect and the localization of tritiated water molecules in the hydration layer of DNA have important implications in describing the radiobiological effects of tritiated water because the initial molecular damage caused by /sup 3/HHO (internal radiation source) localizes close to /sup 3/H due to the short range and low energy of /sup 3/H ..beta.. rays.

  7. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation.

    PubMed

    Akke, M; Skelton, N J; Kördel, J; Palmer, A G; Chazin, W J

    1993-09-21

    The backbone dynamics of apo- and (Cd2+)1-calbindin D9k have been characterized by 15N nuclear magnetic resonance spectroscopy. Spin-lattice and spin-spin relaxation rate constants and steady-state [1H]-15N nuclear Overhauser effects were measured at a magnetic field strength of 11.74 T by two-dimensional, proton-detected heteronuclear NMR experiments using 15N-enriched samples. The relaxation parameters were analyzed using a model-free formalism that characterizes the dynamics of the N-H bond vectors in terms of generalized order parameters and effective correlation times. The data for the apo and (Cd2+)1 states were compared to those for the (Ca2+)2 state [Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G., & Chazin, W. J. (1992) Biochemistry 31, 4856-4866] to ascertain the effects on ion ligation on the backbone dynamics of calbindin D9k. The two binding loops respond differently to ligation by metal ions: high-frequency (10(9)-10(12) s-1) fluctuations of the N-terminal ion-binding loop are not affected by ion binding, whereas residues G57, D58, G59, and E60 in the C-terminal ion-binding loop have significantly lower order parameters in the apo state than in the metal-bound states. The dynamical responses of the four helices to binding of ions are much smaller than that for the C-terminal binding loop, with the strongest effect on helix III, which is located between the linker loop and binding site II. Significant fluctuations on slower time scales also were detected in the unoccupied N-terminal ion-binding loop of the apo and (Cd2+)1 states; the apparent rates were greater for the (Cd2+)1 state. These results on the dynamical response to ion binding in calbindin D9k provide insights into the molecular details of the binding process and qualitative evidence for entropic contributions to the cooperative phenomenon of calcium binding for the pathway in which the ion binds first in the C-terminal site. PMID:8373781

  8. Picosecond water dynamics adjacent to charged paramagnetic ions measured by magnetic relaxation dispersion

    NASA Astrophysics Data System (ADS)

    Lisitza, Natasha; Bryant, Robert G.

    2007-03-01

    Measurements of water-proton spin-lattice relaxation rate constants as a function of magnetic field strength [magnetic relaxation dispersion (MRD)] in aqueous solutions of paramagnetic solutes reveal a peak in the MRD profile. These previously unobserved peaks require that the time correlation functions describing the water-proton-electron dipolar coupling have a periodic contribution. In aqueous solutions of iron(III) ion the peak corresponds to a frequency of 8.7cm-1, which the authors ascribe to the motion of water participating in the second coordination sphere of the triply charged solute ion. Similar peaks of weaker intensity in the same time range are observed for aqueous solutions of chromium(III) chloride as well as for ion pairs formed by ammonium ion with trioxalatochromate(III) ion. The widths of the dispersion peaks are consistent with a lifetime for the periodic motion in the range of 5ps or longer.

  9. Generation of spin-polarized currents via cross-relaxation with dynamically pumped paramagnetic impurities

    SciTech Connect

    Meriles, Carlos A.; Doherty, Marcus W.

    2014-07-14

    Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a “trap-and-release” model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.

  10. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  11. Analysis of microporosity of reactive powder concrete by proton nuclear relaxation

    NASA Astrophysics Data System (ADS)

    Philippot, S.; Korb, J.-P.; Petit, D.; Counio, G.; Zanni, H.

    1998-02-01

    The proton spin-lattice relaxation leads to a resolved distribution of four Tl,i, frequency dependences are interpreted by a biphasic fast exchange model of proton and paramagnetic hydrated ions at the surface of the pores. This leads to an estimation of the pore sizes. La relaxation longitudinale des protons du béton de poudres réactives donne une distribution de quatre Tl,i. Leurs dépendances en fréquence sont interprétées par un modèle d'échange biphasique rapide et la présence d'ions paramagnétiques hydratés à la surface des pores. On estime ainsi la taille moyenne des pores.

  12. (14)N NQR, relaxation and molecular dynamics of the explosive TNT.

    PubMed

    Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie

    2015-10-01

    Multiple pulse sequences are widely used for signal enhancement in NQR detection applications. Since the various (14)N NQR relaxation times, signal decay times and frequency of each NQR line have a major influence on detection sequence performance, it is important to characterise these parameters and their temperature variation, as fully as possible. In this paper we discuss such measurements for a number of the ν+ and ν- NQR lines of monoclinic and orthorhombic TNT and relate the temperature variation results to molecular dynamics. The temperature variation of the (14)N spin-lattice relaxation times T1 is interpreted as due to hindered rotation of the NO2 group about the C-NO2 bond with an activation energy of 89 kJ mol(-1) for the ortho and para groups of monoclinic TNT and 70 kJ mol(-1) for the para group of orthorhombic TNT. PMID:26440130

  13. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  14. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  15. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates

  16. Institute of Physics, A Mickiewicz University, Ul. Umultowska 85, 61-614 Poznan, Poland: ? NMR relaxation in supercooled di-methyl phthalate

    NASA Astrophysics Data System (ADS)

    Suchanski, W.; Szczesiak, E.; Jurga, S.

    1998-07-01

    Spin-lattice relaxation times 0953-8984/10/28/006/img2 and nuclear Overhauser enhancement factors (NOE) for the individual ring carbons in di-methyl phthalate (DMF) were measured over a wide range of temperatures. The results show that the reorientational correlation function corresponding to the global dynamics in supercooled liquid can be well described by a Davidson-Cole distribution. The viscosity dependence of the reorientational correlation time 0953-8984/10/28/006/img3 derived is analysed to investigate the adequacy of the modified Debye equation to description of the microscopic behaviour of supercooled systems.

  17. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    SciTech Connect

    Mikuli, Edward Hetmańczyk, Joanna; Grad, Bartłomiej; Kozak, Asja; Wąsicki, Jan W.; Bilski, Paweł; Hołderna-Natkaniec, Krystyna; Medycki, Wojciech

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, and aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H{sub 2}O

  18. NMR Studies of Motions in Solids: 1. Motional Narrowing in Adamantane. Non-Exponential Relaxation of FLUORINE-19 in the Fast-Ionic Conductor Lead-Fluoride

    NASA Astrophysics Data System (ADS)

    Panchalingam, Kanagasabai

    The translational motion of molecules in the plastic crystal phase of adamantane is studied using the technique of motional narrowing. A systematic measurement of free induction decays (fids) was made in the moderate narrowing region of the absorption line and the motional parameters such as activation energy and jump frequency are determined from them. A general calculation for the coefficients of the power series expansion of these fids, using a technique similar to the Van Vleck method of moments, is presented. The spatial variables are treated as classical stochastic Markov variables. A relationship between one of the moment-like expansion coefficients and the spin-lattice relaxation time in the rotating frame is established. In addition, an integral equation is derived to describe the long time behavior of the narrowing process. The spin-lattice relaxation technique is used to study the ionic motion in fast-ionic conductor (beta) -PbF(,2) doped with monovalent cations. The relaxation time T(,1r) measured as a function of temperature and rotating magnetic field shows anomalous behavior. In this work, the non-exponential decay of the spin-locked magnetization is explained by proposing a nonuniform distribution of the dopant ions. A phenomenological model is used to describe the probability density distribution of a vacancy around a dopant center. The resulting expression fits the spin -locked magnetization decay data very well.

  19. 1H NMR study of proton dynamics in the inorganic solid acid Rb3 H( SO4 )2

    NASA Astrophysics Data System (ADS)

    Suzuki, Koh-Ichi; Hayashi, Shigenobu

    2006-01-01

    Proton dynamics in Rb3H(SO4)2 has been studied by means of H1 NMR. The H1 magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) at Larmor frequency of 400.13MHz . H1 static NMR spectra were measured at frequencies of 200.13MHz and 400.13MHz in the ranges of 165-513 and 300-513K , respectively. H1 spin-lattice relaxation times, T1 , were measured at 200.13 and 19.65MHz in the ranges of 260-513 and 260-470K , respectively. The H1 MAS NMR spectrum at 294K has an isotropic chemical shift of 16.3ppm from tetramethylsilane, demonstrating very strong hydrogen bonds. In RT phase, a wobbling motion of the O-H axis in one direction at the fast motional limit takes place above 400K , being supported by the H1 static NMR spectral line shapes and by the H1 T1 values. In the high temperature (HT) phase, the sharp H1 static NMR spectra indicate translational proton diffusion. From the analysis of H1 T1 , protons diffuse with the inverse of the frequency factor (τ0) of 9.5×10-13s and the activation energy (Ea) of 25kJmol-1 . These parameters can well explain the macroscopic electric conductivity in HT phase.

  20. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Raitsimring, A.; Dalaloyan, A.; Collauto, A.; Feintuch, A.; Meade, T.; Goldfarb, D.

    2014-11-01

    Distance measurements using double electron-electron resonance (DEER) and Gd3+ chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95 GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd3+ chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd3+-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.

  1. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    PubMed Central

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.

    2009-01-01

    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  2. Nuclear Spin Relaxation Characteristic of Submonolayer He Films in Nanochannels

    NASA Astrophysics Data System (ADS)

    Matsushita, Taku; Kawai, Ryosuke; Kuze, Atsushi; Hieda, Mitsunori; Wada, Nobuo

    2014-04-01

    In order to obtain information on dynamics of helium films in the nondegenerate fluid region, we have performed a pulsed-NMR experiment at 3.29 MHz on He films adsorbed in straight 2.4 nm channels of FSM silicates down to 0.54 K. In general, the spin-lattice and spin-spin relaxation times and were explained in terms of the two-dimensional Bloembergen-Purcell-Pound model for dipolar relaxation. Temperature dependences of in submonolayer He films show a minimum, indicating that the dipolar-field correlation time is about s. The temperature of the minimum monotonically lowers with increasing coverage, suggesting that He adatoms become more mobile at higher coverages. The low-dimensional property of He adatoms is observed as the separation of and above where . On the other hand, several features specific to films in the nanochannel geometry were also found. Especially, the temperature dependence of becomes very small just below and shows a shoulder at lower temperatures. This anomaly has not been observed in He adsorbed in wider pores or on flat surfaces, so that it is considered to be characteristic of He films confined in narrow channels with a diameter of a few nm.

  3. Dynamic stereochemistry of erigeroside by measurement of 1H- 1H and 13C- 1H coupling constants

    NASA Astrophysics Data System (ADS)

    Tafazzoli, Mohsen; Ghiasi, Mina; Moridi, Mahdi

    2008-07-01

    Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and 1H, 13C, 13C{ 1H}, 1H- 1H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ( 1JC-H, 2JC-H, 3JC-H and 3JH-H) values within the exocyclic hydroxymethyl group (CH 2OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of 1J, 2J and 3J involving 1H and 13C on the C 5'-C 6' ( ω), C 6'-O 6' ( θ) and C 1'-O 1' ( φ) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for 1JC1',H1', 2JC5',H6'R, 2JC5',H6'S, 2JC6',H5', 3JC4',H6'R, 3JC4',H6'S and 2JH6'R-H5'S as well as 3JH5',H6'R were obtained and used to derive Karplus equations to correlate these couplings to ω, θ and φ. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.

  4. Synthesis, characterization, and relaxivity of two linear Gd(DTPA)-polymer conjugates.

    PubMed

    Duarte, M G; Gil, M H; Peters, J A; Colet, J M; Elst, L V; Muller, R N; Geraldes, C F

    2001-01-01

    Two linear polyamide conjugates of Gd(DTPA)2- were synthesized and characterized by high-resolution nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC). DTPA was copolymerized with two different diamines, 1,6-hexanediamine and trans-1,4-cyclohexanediamine, yielding the polymers DTPA-HMD and DTPA-CHD, with low polydispersity. Their molecular flexibility in solution was studied using 13C spin-lattice relaxation time measurements, indicating that the cyclohexanediamine linking moiety of the DTPA-HMD polymer is more rigid than that of DTPA-CHD. The influence of the flexibility of the linking functionalities on the relaxivity of the Gd3+-DTPA-polymer conjugates was studied by water nuclear magnetic relaxation dispersion (NMRD). The relaxivity of the Gd(DTPA-CHD) polymer was only slightly higher than that of the Gd(DTPA-HMD) polymer, and only two times higher than the usual values for small Gd-DTPA-like chelates. The low relaxivities obtained for both polymers, much lower than expected from the polymer apparent molecular weights, result from their substantial residual flexibility, and also from a too long, nonoptimal, value of the inner-sphere water exchange rate. These polymeric compounds are also cleared very quickly from the blood of rats, indicating that they are of limited value as blood pool contrast agents for MRA. PMID:11312677

  5. Achievement of high nuclear spin polarization using lanthanides as low-temperature NMR relaxation agents.

    PubMed

    Peat, David T; Horsewill, Anthony J; Köckenberger, Walter; Perez Linde, Angel J; Gadian, David G; Owers-Bradley, John R

    2013-05-28

    Many approaches are now available for achieving high levels of nuclear spin polarization. One of these methods is based on the notion that as the temperature is reduced, the equilibrium nuclear polarization will increase, according to the Boltzmann distribution. The main problem with this approach is the length of time it may take to approach thermal equilibrium at low temperatures, since nuclear relaxation times (characterized by the spin-lattice relaxation time T1) can become very long. Here, we show, by means of relaxation time measurements of frozen solutions, that selected lanthanide ions, in the form of their chelates with DTPA, can act as effective relaxation agents at low temperatures. Differential effects are seen with the different lanthanides that were tested, holmium and dysprosium showing highest relaxivity, while gadolinium is ineffective at temperatures of 20 K and below. These observations are consistent with the known electron-spin relaxation time characteristics of these lanthanides. The maximum relaxivity occurs at around 10 K for Ho-DTPA and 20 K for Dy-DTPA. Moreover, these two agents show only modest relaxivity at room temperature, and can thus be regarded as relaxation switches. We conclude that these agents can speed up solid state NMR experiments by reducing the T1 values of the relevant nuclei, and hence increasing the rate at which data can be acquired. They could also be of value in the context of a simple low-cost method of achieving several-hundred-fold improvements in polarization for experiments in which samples are pre-polarized at low temperatures, then rewarmed and dissolved immediately prior to analysis. PMID:23588269

  6. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  7. β-detected nuclear quadrupole resonance and relaxation of 8Li+ in sapphire

    NASA Astrophysics Data System (ADS)

    Salman, Z.; Chow, K. H.; Hossain, M. D.; Kiefl, R. F.; Levy, C. D. P.; Parolin, T. J.; Pearson, M. R.; Saadaoui, H.; Wang, D.; MacFarlane, W. A.

    2014-12-01

    We report detailed behaviour of low energy 8Li implanted near the surface of α- Al2O3 single crystal, as revealed by beta-detected NQR of 8Li. We find that the implanted 8Li occupies at least two sites with non-cubic symmetry in the Al2O3 lattice. In both sites the 8Li experiences axially symmetric electric field gradient, with the main principal axis along the c-crystallographic direction. The temperature and field dependence of the spin lattice relaxation of 8Li in α-Al2O3, indicate that the 8Li diffusion is negligible on the scale of its lifetime, 1.21 s.

  8. Nuclear magnetic relaxation dispersion investigations of water retention mechanism by cellulose ethers in mortars

    SciTech Connect

    Patural, Laetitia; Korb, Jean-Pierre; Govin, Alexandre; Grosseau, Philippe; Ruot, Bertrand; Deves, Olivier

    2012-10-15

    We show how nuclear magnetic spin-lattice relaxation dispersion of proton-water (NMRD) can be used to elucidate the effect of cellulose ethers on water retention and hydration delay of freshly-mixed white cement pastes. NMRD is useful to determine the surface diffusion coefficient of water, the specific area and the hydration kinetics of the cement-based material. In spite of modifications of the solution's viscosity, we show that the cellulosic derivatives do not modify the surface diffusion coefficient of water. Thus, the mobility of water present inside the medium is not affected by the presence of polymer. However, these admixtures modify significantly the surface fraction of mobile water molecules transiently present at solid surfaces. This quantity measured, for the first time, for all admixed cement pastes is thus relevant to explain the water retention mechanism.

  9. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  10. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  11. Effects of spin-lock field direction on the quantitative measurement of spin-lattice relaxation time constant in the rotating frame (T1ρ) in a clinical MRI system

    SciTech Connect

    Yee, Seonghwan; Gao, Jia-Hong

    2014-12-15

    Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels of clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.

  12. The physical state of osmoregulatory solutes in unicellular algae. A natural-abundance carbon-13 nuclear-magnetic-resonance relaxation study.

    PubMed Central

    Norton, R S; MacKay, M A; Borowitzka, L J

    1982-01-01

    Natural-abundance 13C n.m.r. spin-lattice relaxation-time measurements have been carried out on intact cells of the unicellular blue--green alga Synechococcus sp. and the unicellular green alga Dunaliella salina, with the aim of characterizing the environments of the organic osmoregulatory solutes in these salt-tolerant organisms. In Synechococcus sp., all of the major organic osmoregulatory solute, 2-O-alpha-D-glucopyranosylglycerol, is visible in spectra of intact cells. Its rotational motion in the cell is slower by a factor of approx. 2.4 than in aqueous solution, but the molecule is still freely mobile and therefore able to contribute to the osmotic balance. In D. salina, only about 60% of the osmoregulatory solute glycerol is visible in spectra of intact cells. The rotational mobility of this observable fraction is approximately half that found in aqueous solution, but the data also indicate that there is a significant concentration of some paramagnetic species in D. salina which contributes to the overall spin-lattice relaxation of the glycerol carbon atoms. The non-observable fraction, which must correspond to glycerol molecules that have very broad 13C resonances and that are in slow exchange with bulk glycerol, has not been properly characterized as yet, but may represent glycerol in the chloroplast. The implications of these findings in relation to the physical state of the cytoplasm and the mechanism of osmoregulation in these cells are discussed. PMID:6807296

  13. Electron paramagnetic resonance and spinlattice relaxation of Cu2+ ions in ZnSeO4·6H2O

    NASA Astrophysics Data System (ADS)

    Al'-Sufi, A. R.; Bulka, G. R.; Vinokurov, V. M.; Kurkin, I. N.; Nizamutdinov, N. M.; Salikhov, I. Kh.

    1993-06-01

    In this paper, we present detailed studies of the EPR spectra of Cu2+ ions in single crystals of ZnSeO4·6H2O. We describe the spectrum with a rhombic spin Hamiltonian with the following parameters: gz=2.427; gy=2.095; gx=2.097; A{z/65}=138.4·10-4 cm-1; A{x/65}=22.3·10-4 cm-1. We studied spin-lattice relaxation in the temperature range 4 300 K at the frequency v≈9.3 GHz. The measured spin-lattice relaxation rate for the orientation H∥L4 is described well at T<5 K by a linear dependence, while at T>5 K it is described by the sum of three exponentials: T_1^{ - 1} = 0.27T + 3.3 \\cdot 10^{text{s}} exp left( {{ - 69.5}/T} right) + 2.6 \\cdot 10^7 exp left( {{ - 140}/T} right) + 1.36 \\cdot 10^{10} exp left( {{ - 735.6}/T} right){text{ sec}}^{{text{ - 1}}} .We discuss possible reasons for the exponential dependence of T{1/-1} for the Raman process.

  14. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  15. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  16. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame

    NASA Astrophysics Data System (ADS)

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10 -5 s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R1ρ = 1/ T1ρ appears over a range of easily accessible B1 values. Measurements of T1ρ at constant temperature and different B1 values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R1 = 1/ T1. The T1ρ dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme).

  17. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.

    PubMed

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme). PMID:20961779

  18. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  19. NMR relaxation study of the phase transitions and relaxation mechanisms of the alums MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb and Cs) single crystals

    SciTech Connect

    Lim, Ae Ran; Paik, Younkee; Lim, Kye-Young

    2011-06-15

    The physical properties and phase transition mechanisms of MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb and Cs) single crystals have been investigated. The phase transition temperatures, NMR spectra, and the spin-lattice relaxation times T{sub 1} of the {sup 87}Rb and {sup 133}Cs nuclei in the two crystals were determined using DSC and FT NMR spectroscopy. The resonance lines and relaxation times of the {sup 87}Rb and {sup 133}Cs nuclei undergo significant changes at the phase transition temperatures. The sudden changes in the splitting of the Rb and Cs resonance lines are attributed to changes in the local symmetry of their sites, and the changes in the temperature dependences of T{sub 1} are related to variations in the symmetry of the octahedra of water molecules surrounding Rb{sup +} and Cs{sup +}. We also compared these {sup 87}Rb and {sup 133}Cs NMR results with those obtained for the trivalent cations Cr and Al in MCr(SO{sub 4}){sub 2}.12H{sub 2}O and MAl(SO{sub 4}){sub 2}.12H{sub 2}O crystals. - Graphical Abstract: The physical properties and phase transition mechanisms of MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb, Cs, and NH{sub 4}) single crystals have been investigated. Highlights: > The physical properties and phase transition mechanisms of MCr(SO{sub 4}){sub 2}.12H{sub 2}O (M=Rb and Cs) crystals {yields} The NMR spectra and the spin-lattice relaxation times T{sub 1} of the {sup 87}Rb and {sup 133}Cs nuclei in the two crystals {yields} The variations in the symmetry of the octahedra of water molecules surrounding Rb{sup +} and Cs{sup +}.

  20. 14N quadrupole resonance and 1H T1 dispersion in the explosive RDX.

    PubMed

    Smith, John A S; Blanz, Martin; Rayner, Timothy J; Rowe, Michael D; Bedford, Simon; Althoefer, Kaspar

    2011-12-01

    The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2∗ of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels. PMID:21978662

  1. Anomalous relaxation and molecular dynamics of buckminsterfullerene in carbon disulfide

    SciTech Connect

    Shang, X.; Rodriguez, A.A.

    1997-01-09

    We have employed the Hubbard relation to acquire semiquantitative information on the {sup 13}C spin-lattice relaxation rate of buckminsterfullerene in CS{sub 2}. We found the spin rotation mechanism to be operative and its contribution to be significant at all temperatures studied here. With the exception of values at 303 K, we found very different chemical shift and spin rotation contributions in this solvent than in 1,2-dichlorobenzene-d{sub 4}. In fact, the respective contributions were reversed at 313 K. This observation indicates that solvent effects play a critical role in determining how effective these mechanisms will be in a given solvent. Three hydrodynamic-based models were applied in an attempt at theoretically describing the rotational motion of the title molecule in CS{sub 2}. The Stokes-Einstein-Debye (SED) model proved superior in duplicating our experimental findings. The agreement between the SED predictions and our experimental reorientational times suggests that C{sub 60} reorients in the `stick` limit where solute-solvent velocities are predicted to be similar. We, however, believe that the velocity coherence is not due to their separate matched velocities but rather originates from the presence of intermolecular interactions. 24 refs., 1 fig., 4 tabs.

  2. Intrinsic spin and momentum relaxation in organic single-crystalline semiconductors probed by ESR and Hall measurements

    NASA Astrophysics Data System (ADS)

    Tsurumi, Junto; Häusermann, Roger; Watanabe, Shun; Mitsui, Chikahiko; Okamoto, Toshihiro; Matsui, Hiroyuki; Takeya, Jun

    Spin and charge momentum relaxation mechanism has been argued among organic semiconductors with various methods, devices, and materials. However, little is known in organic single-crystalline semiconductors because it has been hard to obtain an ideal organic crystal with an excellent crystallinity and controllability required for accurate measurements. By using more than 1-inch sized single crystals which are fabricated via contentious edge-casting method developed by our group, we have successfully demonstrated a simultaneous determination of spin and momentum relaxation time for gate-induced charges of 3,11-didecyldinaphtho[2,3- d:2',3'- d']benzo[1,2- b:4,5- b']dithiophene, by combining electron spin resonance (ESR) and Hall effect measurements. The obtained temperature dependences of spin and momentum relaxation times are in good agreement in terms of power law with a factor of approximately -2. It is concluded that Elliott-Yafet spin relaxation mechanism can be dominant at room temperature regime (200 - 300 K). Probing characteristic time scales such as spin-lattice, spin-spin, and momentum relaxation times, demonstrated in the present work, would be a powerful tool to elucidate fundamental spin and charge transport mechanisms. We acknowledge the New Energy and Industrial Technology Developing Organization (NEDO) for financial support.

  3. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  4. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood. PMID:16485652

  5. Frequency Dependence of Electron Spin Relaxation Times in Aqueous Solution for a Nitronyl Nitroxide Radical and Per-deuterated-Tempone between 250 MHz and 34 GHz

    PubMed Central

    Biller, Joshua R.; Meyer, Virginia M.; Elajaili, Hanan; Rosen, Gerald M.; Eaton, Sandra S.; Eaton, Gareth R.

    2012-01-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T2) or 3-pulse inversion recovery (T1) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T1 measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2, T1~ T2, as expected in the fast tumbling regime. At higher frequencies T2 was shorter than T1 due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T1 is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τR are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτR (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770

  6. Frequency dependence of electron spin relaxation times in aqueous solution for a nitronyl nitroxide radical and perdeuterated-tempone between 250 MHz and 34 GHz.

    PubMed

    Biller, Joshua R; Meyer, Virginia M; Elajaili, Hanan; Rosen, Gerald M; Eaton, Sandra S; Eaton, Gareth R

    2012-12-01

    Electron spin relaxation times of perdeuterated tempone (PDT) 1 and of a nitronyl nitroxide (2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl) 2 in aqueous solution at room temperature were measured by 2-pulse electron spin echo (T(2)) or 3-pulse inversion recovery (T(1)) in the frequency range of 250 MHz to 34 GHz. At 9 GHz values of T(1) measured by long-pulse saturation recovery were in good agreement with values determined by inversion recovery. Below 9 GHz for 1 and below 1.5 GHz for 2,T(1)~T(2), as expected in the fast tumbling regime. At higher frequencies T(2) was shorter than T(1) due to incomplete motional averaging of g and A anisotropy. The frequency dependence of 1/T(1) is modeled as the sum of spin rotation, modulation of g and A-anisotropy, and a thermally-activated process that has maximum contribution at about 1.5 GHz. The spin lattice relaxation times for the nitronyl nitroxide were longer than for PDT by a factor of about 2 at 34 GHz, decreasing to about a factor of 1.5 at 250 MHz. The rotational correlation times, τ(R) are calculated to be 9 ps for 1 and about 25 ps for 2. The longer spin lattice relaxation times for 2 than for 1 at 9 and 34 GHz are due predominantly to smaller contributions from spin rotation that arise from slower tumbling. The smaller nitrogen hyperfine couplings for the nitronyl 2 than for 1 decrease the contribution to relaxation due to modulation of A anisotropy. However, at lower frequencies the slower tumbling of 2 results in a larger value of ωτ(R) (ω is the resonance frequency) and larger values of the spectral density function, which enhances the contribution from modulation of anisotropic interactions for 2 to a greater extent than for 1. PMID:23123770

  7. Relaxation of biofunctionalized magnetic nanoparticles in ultra-low magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, H. C.; Chiu, L. L.; Liao, S. H.; Chen, H. H.; Horng, H. E.; Liu, C. W.; Liu, C. I.; Chen, K. L.; Chen, M. J.; Wang, L. M.

    2013-01-01

    In this work, the spin-spin relaxation rate, 1/T2, and spin-lattice relaxation rate, 1/T1, of protons' spins induced by biofunctionalized magnetic nanoparticles and ferrofluids are investigated using a high-Tc superconducting quantum interference device-detected magnetometer in ultra-low fields. The biofunctionalized magnetic nanoparticles are the anti-human C-reactive protein (antiCRP) coated onto dextran-coated superparamagnetic iron oxides Fe3O4, which is labeled as Fe3O4-antiCRP. The ferrofluids are dextran-coated iron oxides. It was found that both 1/T2 and 1/T1 of protons in Fe3O4-antiCRP are enhanced by the presence of magnetic nanoparticles. Additionally, both the 1/T1 and 1/T2 of Fe3O4-antiCRP are close to that of ferrofluids, which are dextran-coated Fe3O4 dispersed in phosphate buffer saline. Characterizing the relaxation of Fe3O4-antiCRP can be useful for biomedical applications.

  8. Estimation of free copper ion concentrations in blood serum using T1 relaxation rates

    NASA Astrophysics Data System (ADS)

    Blicharska, Barbara; Witek, Magdalena; Fornal, Maria; MacKay, Alex L.

    2008-09-01

    The water proton relaxation rate constant R1 = 1/ T1 (at 60 MHz) of blood serum is substantially increased by the presence of free Cu 2+ ions at concentrations above normal physiological levels. Addition of chelating agents to serum containing paramagnetic Cu 2+ nulls this effect. This was demonstrated by looking at the effect of adding a chelating agent—D-penicillamine (D-PEN) to CuSO 4 and CuCl 2 aqueous solutions as well as to rabbit blood serum. We propose that the measurement of water proton spin-lattice relaxation rate constants before and after chelation may be used as an alternative approach for monitoring the presence of free copper ions in blood serum. This method may be used in the diagnosis of some diseases (leukaemia, liver diseases and particularly Wilson's disease) because, in contrast to conventional methods like spectrophotometry which records the total number of both bound and free ions, the proton relaxation technique is sensitive solely to free paramagnetic ions dissolved in blood serum. The change in R1 upon chelation was found to be less than 0.06 s -1 for serum from healthy subjects but greater than 0.06 s -1 for serum from untreated Wilson's patients.

  9. The effects of bone on proton NMR relaxation times of surrounding liquids

    NASA Technical Reports Server (NTRS)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  10. The reorientation of t-butyl groups in butylated hydroxytoluene: A deuterium nuclear magnetic resonance spectral and relaxation time study

    NASA Astrophysics Data System (ADS)

    Polson, James M.; Fyfe, J. D. Dean; Jeffrey, Kenneth R.

    1991-03-01

    Deuterium nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times were determined in order to study the dynamics of t-butyl groups in butylated hydroxytoluene. The results are consistent with a model first proposed by Beckmann et al. [J. Magn. Reson. 36, 199 (1979)], where there is an inequivalence between the methyl groups within each t-butyl group. While two methyl groups reorient rapidly relative to the whole t-butyl rotation, the remaining methyl group is more restricted in its motion, reorienting at a rate comparable to that of the t-butyl group itself. The spin-lattice relaxation data show two T1 minima, the high temperature minimum (40 °C) corresponding to the combined t-butyl and ``slow'' methyl rotations, and the low temperature minimum corresponding to ``fast'' methyl group rotation. Using an explicitly defined T1 fitting function, the T1 data yield activation energies of 2.2 and 6.0 kcal/mol for the fast methyl and t-butyl rotations, respectively, both in agreement with Beckmann's values obtained from proton T1 experiments. It was also possible to simulate the low temperature deuterium NMR spectra from T=-160 °C to T=-80 °C using the aforementioned dynamical inequivalence between the t-butyl methyl groups. While the fast methyl group rotation was in the motional narrowing region for T>-160 °C, it was possible, from the simulations, to determine the t-butyl exchange rates to within 10%. The jump rates are remarkably close to the values predicted from the T1 results. Above -80 °C, the spectra could not be simulated, implying that a third motion must be present to further alter the high temperature line shapes. The effective axial asymmetry of the T>-20° spectra indicates that the additional motion involves a two site exchange.

  11. Kinetics of the in vivo31P 1H nuclear overhauser effect of the human-calf-muscle phosphocreatine resonance

    NASA Astrophysics Data System (ADS)

    Bachert, Peter; Bellemann, Matthias E.

    In 31P 1H double-resonance experiments in a 1.5 T whole-body MR system, we observed in vivo the truncated driven, transient, and steady-state 31P- 1H nuclear Overhauser effect of the phosphocreatine resonance in 31P MR spectra of human gastrocnemius muscle. Maximum signal enhancements of 0.52 ± 0.01, 0.20 ± 0.01, and 0.79 ± 0.02 were measured, respectively. Fitting the data with theoretical functions which solve the multispin Solomon equations for N protons (S spins) dipolar coupled to a 31P nucleus (I spin) yields cross-relaxation times {2}/{[Σ i=1-N σIS(i) ] } in the order of 20 s. In vivo experiments are feasible for studying relaxation mechanisms in coupled 31P 1H spin systems in intact tissue.

  12. Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla.

    PubMed

    Grgac, Ksenija; van Zijl, Peter C M; Qin, Qin

    2013-10-01

    Knowledge of blood (1)H2O T1 is critical for perfusion-based quantification experiments such as arterial spin labeling and cerebral blood volume-weighted MRI using vascular space occupancy. The dependence of blood (1)H2O T1 on hematocrit fraction (Hct) and oxygen saturation fraction (Y) was determined at 7 T using in vitro bovine blood in a circulating system under physiological conditions. Blood (1)H2O R1 values for different conditions could be readily fitted using a two-compartment (erythrocyte and plasma) model, which are described by a monoexponential longitudinal relaxation rate constant dependence. It was found that T1 = 2171 ± 39 ms for Y = 1 (arterial blood) and 2010 ± 41 ms for Y = 0.6 (venous blood), for a typical Hct of 0.42. The blood (1)H2O T1 values in the normal physiological range (Hct from 0.35 to 0.45, and Y from 0.6 to 1.0) were determined to range from 1900 to 2300 ms. The influence of oxygen partial pressure (pO2) and the effect of plasma osmolality for different anticoagulants were also investigated. It is discussed why blood (1)H2O T1 values measured in vivo for human blood may be about 10-20% larger than found in vitro for bovine blood at the same field strength. PMID:23169066

  13. Crystalline 1H-1,2,3-triazol-5-ylidenes

    DOEpatents

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  14. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  15. Distortion-free {sup 13}C NMR spectroscopy in coal: {sup 1}H rotating-frame dynamic nuclear polarization and {sup 1}H-{sup 13}C cross-polarization

    SciTech Connect

    Wind, R.A.

    1993-12-31

    A {sup 1}H-{sup 13}C cross-polarization (CP) experiment is described in which the {sup 1}H magnetization, used in CP, is obtained via dynamic nuclear polarization (DNP) in the proton rotating frame (RF DNP). This experiment can be carried out in coal and other solids containing unpaired electrons. In this so-called RF DNP-CP experiment, interplay effects between the {sup 1}H-{sup 13}C polarization-transfer times and the {sup 1}H rotating-frame relaxation time are avoided; thus {sup 13}C spectral distortions due to these effects are prevented. Moreover, multiple-contact RF DNP-CP experiments are possible, and these experiments reduce the measuring time of a {sup 13}C spectrum. An application of the RF DNP-CP technique in a low-volatile bituminous coal is given. 25 refs., 3 figs.

  16. Manganese-deoxyribonucleic acid binding modes. Nuclear magnetic relaxation dispersion results.

    PubMed Central

    Kennedy, S D; Bryant, R G

    1986-01-01

    Ion-DNA interactions are discussed and the applied magnetic field strength dependence of water proton spin-lattice relaxation rates is used to study the Mn(II)-DNA interaction both qualitatively and quantitatively. Associations in which the manganese II (Mn(II)) ion is completely immobilized on the DNA are identified as well as a range of associations in which the ion is only partially reorientationally restricted. Quantitative analysis of the strength of the association in which manganese is immobilized is carried out both with and without a counter-ion condensation correction for electrostatic attraction of the mobile ions. From competition experiments with manganese the relative strengths of the interactions of magnesium and calcium with DNA are found to be identical but less than that of manganese with DNA and the affinity of lithium for DNA is found to be slightly higher than that of sodium. The data demonstrate that the reduced mobility of nonsite-bound ions may have a significant effect on DNA-ion binding analyses performed using magnetic resonance and relaxation methods. PMID:3779006

  17. Higher triplet state of fullerene C{sub 70} revealed by electron spin relaxation

    SciTech Connect

    Uvarov, Mikhail N.; Behrends, Jan; Kulik, Leonid V.

    2015-12-28

    Spin-lattice relaxation times T{sub 1} of photoexcited triplets {sup 3}C{sub 70} in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30–100 K, the temperature dependence of T{sub 1} was fitted by the Arrhenius law with an activation energy of 172 cm{sup −1}. This indicates that the dominant relaxation process of {sup 3}C{sub 70} is described by an Orbach-Aminov mechanism involving the higher triplet state t{sub 2} which lies 172 cm{sup −1} above the lowest triplet state t{sub 1}. Chemical modification of C{sub 70} fullerene not only decreases the intrinsic triplet lifetime by about ten times but also increases T{sub 1} by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in {sup 3}C{sub 70} and its absence in triplet C{sub 70} derivatives. The presence of the higher triplet state in C{sub 70} is in good agreement with the previous results from phosphorescence spectroscopy.

  18. Impurities and electron spin relaxations in nanodiamonds studied by multi-frequency electron spin resonance

    NASA Astrophysics Data System (ADS)

    Cho, Franklin; Takahashi, Susumu

    2014-03-01

    Nano-sized diamond or nanodiamond is a fascinating material for potential applications of fluorescence imaging and magnetic sensing of biological systems via nitrogen-vacancy defect centers in diamonds. Sensitivity of the magnetic sensing strongly depends on coupling to surrounding environmental noises, thus understanding of the environment is critical to realize the application. In the present study, we employ multi-frequency (X-band, 115 GHz and 230 GHz) continuous-wave (cw) and pulsed electron spin resonance (ESR) spectroscopy to investigate impurity contents and spin relaxation properties in various sizes of nanodiamonds. Spectra taken with our home-built 230/115 GHz cw/pulsed ESR spectrometer shows presence of two major impurity contents; single substitutional nitrogen impurities (P1) also common in bulk diamonds and paramagnetic impurities (denoted as X) unique to nanodiamonds. The ESR measurement also shows a strong dependence of the population ratio between P1 and X on particle size. Furthermore, we will discuss the nature of spin-lattice relaxation time T1 of nanodiamonds studied by pulsed ESR measurements at X-band, 115 GHz and 230 GHz.

  19. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  20. 1H nuclear magnetic resonance study of distinct interstitial hydrogen dynamics in ZnO

    NASA Astrophysics Data System (ADS)

    Kue Park, Jun; Won Lee, Kyu; Eui Lee, Cheol

    2013-07-01

    A comprehensive 1H nuclear magnetic resonance (NMR) study has been carried out for hydrogen dynamics in a sol-gel-prepared ZnO system. The temperature-dependent linewidth and chemical shift measurements sensitively reflected the proton motions and changes in the local environment. Besides, two types of interstitial proton (Hi+) motions were distinguished from the spin-spin relaxation time measurements, one of them with an activation energy of 0.16 eV and the other with that of 0.33 eV depending on the temperature ranges.

  1. Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Paaske, Berit; Oschkinat, Hartmut; Akbey, Ümit; Nielsen, Niels Chr.

    2012-01-01

    We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from 1H and 2H spins, taking advantage of their different T1 relaxation times. Different 1H- and 2H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) 1H → 13C/ 2H → 13C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly 2H, 15N, 13C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile 2H to 1H. It is demonstrated how 1D 13C CP/MAS or 2D 13C- 13C correlation spectra initialized with polarization from either 1H or 2H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D 13C- 13C correlation spectra may be recorded interleaved with 2H- 13C correlation spectra to obtain 13C- 13C correlations along with information about dynamics from 2H sideband patterns.

  2. Superparamagnetic behaviour and T 1, T 2 relaxivity of ZnFe2O4 nanoparticles for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Srivastava, C.; Venkatesha, N.; Kumar, P. S. Anil; Chattopadhyay, K.

    2013-05-01

    In the present study, ZnFe2O4 nanoparticles were synthesized by the chemical co-precipitation followed by calcinations at 473 and 673 K for 4 h. Particle sizes obtained were 4 and 6 nm for the calcination temperatures of 473 and 673 K, respectively. To study the origin of system's low temperature spin dynamic behaviour, temperature dependence of susceptibility ? was investigated as a function of particle size and frequency. Slight increase in the grain size from 4 nm at 473 K to 6 nm at 673 K has led to a peak shift of temperature dependence of susceptibility measured at a constant frequency of 400 Hz. Temperature dependence of ? at different frequencies also resulted in peak shift. Relaxation time dependence of peak temperature obeys a power law, which provides the fitting parameters within the range of superparamagnetic nature of the particles. Further, dependence of relaxation time and peak temperature obeys Vogel-Fulcher law rather than Néel-Brown equation demonstrating that the particles follow the behaviour of superparamagnetism of slightly interacting system. Spin-lattice, T 1 and spin-spin, T 2 relaxivity of proton of the water molecule in the presence of chitosan-coated superparamagnetic ZnFe2O4 nanoparticle yields the values of 0.002 and 0.360 s-1 per ppm.

  3. NMR measurement of oil shale magnetic relaxation at high magnetic field

    USGS Publications Warehouse

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  4. Electron Spin Relaxation Rates for Semiquinones between 25 and 295 K in Glass-Forming Solvents

    PubMed Central

    Kathirvelu, Velavan; Sato, Hideo; Eaton, Sandra S.; Eaton, Gareth R.

    2009-01-01

    Electron spin lattice relaxation rates for five semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,5-di-t-amyl-1,4-benzosemiquinone, 2,5-di-phenyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, tetrahydroxy-1,4-benzosemiquione) were studied by long-pulse saturation recovery EPR in 1:4 glycerol:ethanol, 1:1 glycerol:ethanol, and triethanolamine between 25 and 295 K. Although the dominant process changes with temperature, relaxation rates vary smoothly with temperature, even near the glass transition temperatures, and could be modeled as the sum of contributions that have the temperature dependence that is predicted for the direct, Raman, local mode and tumbling dependent processes. At 85 K, which is in a temperature range where the Raman process dominates, relaxation rates along the gxx (g~2.006) and gyy (g~2.005) axes are about 2.7 to 1.5 times faster than along the gzz axis (g = 2.0023). In highly viscous triethanolamine, contributions from tumbling-dependent processes are negligible. At temperatures above 100 K relaxation rates in triethanolamine are unchanged between X-band (9.5 GHz) and Q-band (34 GHz), so the process that dominates in this temperature interval was assigned as a local mode rather than a thermally-activated process. Because the largest proton hyperfine couplings are only 2.2 G, spin rotation makes a larger contribution than tumbling-dependent modulation of hyperfine anisotropy. Since g anisotropy is small, tumbling dependent modulation of g anisotropy make a smaller contribution than spin rotation at X-band. Although there was negligible impact of methyl rotation on T1, rotation of t-butyl or t-amyl methyl groups enhances spin echo dephasing between 85 and 150 K. PMID:19223213

  5. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  6. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  7. Mechanism of rotational relaxation.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    A model is presented which describes the characteristic pattern of relaxation of a nonthermal rotational distribution of hydrogen halide, peaked initially at high rotational quantum number J, to a thermal distribution without generating a peak at intermediate J. A method for correcting infrared chemiluminiscence data for modest rotational relaxation is also suggested.

  8. THE INTERACTION OF PARAMAGNETIC RELAXATION REAGENTS WITH INTRA- AND INTERMOLECULAR HYDROGEN BONDED PHENOLS

    EPA Science Inventory

    Intermolecular electron-nuclear 13-C relaxation times (T(1)sup e's) from solutions containing the paramagnetic relaxation reagent (PARR), Cr(acac)3, used in conjunction with 13-C T(1)'s in diamagnetic solutions (intramolecular 13-C - (1)H dipolar T(1)'s) provide a significant inc...

  9. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  10. Spin-echo sup 1 H NMR studies of differential mobility in gizzard myosin and its subfragments

    SciTech Connect

    Sommervile, L.E. ); Henry, G.D.; Sykes, B.D. ); Harshorne, D.J. )

    1990-12-01

    The unexpectedly narrow resonances in the {sup 1}H NMR spectra of gizzard myosin, heavy meromyosin, and subfragment 1 were examined by spin-echo NMR spectroscopy. These resonances originated predominantly in the myosin heads, or subfragment 1 units. Smooth muscle myosin undergoes a dramatic change in hydrodynamic properties and can exist either as a folded (10S) or as an extended (6S) species. Factors that influence this transition, namely, ionic strength and phosphorylation (or thiophosphorylation), were varied in the NMR experiments. T{sub 2} relaxation experiments on dephosphorylated myosin indicated several components of different relaxation times that were not influenced by changes in ionic strength. The experiments focused on the components with longer relaxation times, i.e., corresponding to nuclei with more mobility, and these were observed selectively in a spin-echo experiment. With dephosphorylated myosin and HMM, increases in ionic strength caused an increased intensity in several of the narrower resonances. The ionic strength dependence of these changes paralleled that for the 10S and 6S transition. With thiophosphorylated myosin and HMM, changes in ionic strength also influenced the intensities of the narrower resonances, and in addition changes in the {sup 1}H NMR spectrum due to thiophosphorylation were observed. These results suggest that a fraction of the {sup 1}H resonances in smooth muscle myosin and its fragments originates from both aliphatic and aromatic residues of increased mobility compared to the mobility expected from hydrodynamic properties of these proteins.

  11. A 1H NMR assay for measuring the photostationary States of photoswitchable ligands.

    PubMed

    Banghart, Matthew R; Trauner, Dirk

    2013-01-01

    Incorporation of photoisomerizable chromophores into small molecule ligands represents a general approach for reversibly controlling protein function with light. Illumination at different wavelengths produces photostationary states (PSSs) consisting of different ratios of photoisomers. Thus optimal implementation of photoswitchable ligands requires knowledge of their wavelength sensitivity. Using an azobenzene-based ion channel blocker as an example, this protocol describes a (1)H NMR assay that can be used to precisely determine the isomeric content of photostationary states (PSSs) as a function of illumination wavelength. Samples of the photoswitchable ligand are dissolved in deuterated water and analyzed by UV/VIS spectroscopy to identify the range of illumination wavelengths that produce PSSs. The PSSs produced by these wavelengths are quantified using (1)H NMR spectroscopy under continuous irradiation through a monochromator-coupled fiber-optic cable. Because aromatic protons of azobenzene trans and cis isomers exhibit sufficiently different chemical shifts, their relative abundances at each PSS can be readily determined by peak integration. Constant illumination during spectrum acquisition is essential to accurately determine PSSs from molecules that thermally relax on the timescale of minutes or faster. This general protocol can be readily applied to any photoswitch that exhibits distinct (1)H NMR signals in each photoisomeric state. PMID:23494375

  12. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  13. The Frequency-Dependence of the NMR Longitudinal Relaxation Rate, T(1)(-1), of Water in Cysts of the Brine Shrimp

    NASA Astrophysics Data System (ADS)

    Egan, Thomas F.

    The NMR spin-lattice relaxation rate, T(,1)(' -1), of water is independent of the Larmor frequency, (omega)/2(pi), in the normal rf range. However, T(,1)('-1) of intracellular water in biological systems, which accounts for as much as 80% of the cell mass, is frequency-dependent. This indicates that the NMR properties of water in the cellular environment are influenced by long-correlation time processes due to the interaction of water with proteins and other macromolecular constituents of the cell. In this research, the relaxation rate T(,1)(' -1) of water in the Artemia (brine shrimp) cyst is examined as a function of: (1) the proton NMR Larmor frequency for .01 <= (omega)/2(pi) <= 500 MHz, (2) different cyst hydration levels from 0.12 to 1.25 grams water/gram dry solid, (3) temperatures of 22C and 5C. The frequency-dependence of T(,1)('-1) is interpreted in terms of a two-phase exchange model. One water phase is similar to pure water and contributes a small constant relaxation rate. The second phase is water closely associated with the surfaces of large molecules and termed "hydration water". A polymer-dynamics relaxation mechanism, which treats fluctuations of long-chain molecules in aqueous solution, has been proposed by Rorschach and Hazlewood to explain the relaxation in this second water phase. In one limit, this mechanism predicts a frequency-dependent relaxation rate proportional to (omega)('- 1/2). This particular dependence has previously been observed in other NMR studies on biological systems and is also observed in this study for Artemia cysts between 10 and 500 MHz. At lower Larmor frequencies, below 1 MHz, the relaxation rates of water in brine shrimp cysts are influenced by additional relexation mechanisms; translational diffusion of hydration water is one possibility.

  14. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    NASA Astrophysics Data System (ADS)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  15. Phonon induced two-electron relaxation in two donor qubits in silicon

    NASA Astrophysics Data System (ADS)

    Hsueh, Yuling; Tankasala, Archana; Wang, Yu; Klimeck, Gerhard; Simmons, Michelle; Rahman, Rajib

    An atomistic method of calculating two-electron spin-lattice relaxation times (T1) is presented for two donor qubits in silicon. The singlet-triplet two-electron states are calculated from full-configuration interaction (FCI) method with one-electron basis states obtained from the tight-binding Hamiltonian including spin-orbit interaction. The FCI solution enables the investigation of various regimes of donor separations, including very closely separated donor pairs in which rearrangement of excited bonding and anti-bonding states change the wavefunction symmetries. Hyperfine mixing from the nuclear spins is included perturbatively into the two-electron states. To calculate the T1 times, the electron-phonon Hamiltonian is evaluated from the strain-dependent tight-binding Hamiltonian. The results show how the T1 times in donor qubits vary with magnetic field and donor separation for each of the three triplets. Moreover, the variation of T1 with the electric field controlled exchange coupling is also investigated.

  16. Nuclear magnetic relaxation, correlation time spectrum, and molecular dynamics in a linear polymer

    SciTech Connect

    Chernov, V. M. Krasnopol'skii, G. S.

    2008-08-15

    The pulsed nuclear magnetic resonance (NMR) method at a proton frequency of 25 MHz at temperatures of 22-160{sup o}C is used to detect the transverse magnetization decay in polyisoprene rubbers with various molecular masses, to determine the NMR damping time T{sub 2}, and to measure spin-lattice relaxation time T{sub 1} and time T{sub 2eff} of damping of solid-echo signals under the action of a sequence of MW-4 pulses modified by introducing 180{sup o} pulses. The dispersion dependences of T{sub 2eff} obtained for each temperature are combined into one using the temperature-frequency equivalence principle. On the basis of the combined dispersion dependence of T{sub 2eff} and the data on T{sub 2} and T{sub 1}, the correlation time spectrum of molecular movements is constructed. Analysis of the shape of this spectrum shows that the dynamics of polymer molecules can be described in the first approximation by the Doi-Edwards tube-reptation model.

  17. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  18. Lattice dynamics, phase transitions and spin relaxation in [Fe(C5H5)2] PF6

    NASA Astrophysics Data System (ADS)

    Herber, R. H.; Felner, I.; Nowik, I.

    2016-12-01

    The organometallic compound ferrocenium hexafluorophosphate, [Fe(C5H5)2] PF6, has been studied by Mössbauer spectroscopy in the past, mainly to determine the crystal structure at high temperatures. Here we present studies at 95 K to 305 K and analyze the spectra in terms of spin relaxation theory which yields accurately the hyperfine interaction parameters and the spin-spin and spin-lattice relaxation rates in this paramagnetic compound. The spectral area under the resonance curve yields the recoil free fraction and thus the mean square of the vibration amplitude . One observes a large discontinuity in the slope of versus T at ˜210 K, indicative of a phase transition. The analysis of the spectra proves that the quadrupole interaction is small but certainly negative, ½e2qQ = -0.12(2) mm/s, and causes the asymmetry observed in the spectra. The detailed analysis yields also, for the first time, the fluctuating effective magnetic hyperfine field, H eff = 180(50) kOe.

  19. Dielectric relaxation time spectroscopy.

    PubMed

    Paulson, K S; Jouravleva, S; McLeod, C N

    2000-11-01

    A new mathematical method is developed to recover the permittivity relaxation spectrum of living tissue from measurements of the real and imaginary parts of the impedance. Aiming to derive information about electrical properties of living tissue without the prior selection of any impedance model, the procedure calculates the relaxation time distribution. It provides new characteristic independent parameters: time constants, their distribution, and the amplitudes of the associated dispersion. As the beta-dispersion is the most important in the area of electrical impedance spectroscopy of tissue, the paper gives an estimate of the essential frequency range to cover the whole relaxation spectrum in that area. Results are presented from both simulation and known lumped--constant element circuit. PMID:11077745

  20. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  1. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  2. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry.

    PubMed

    Kruk, D; Meier, R; Rachocki, A; Korpała, A; Singh, R K; Rössler, E A

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids. PMID:24985656

  3. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Meier, R.; Rachocki, A.; Korpała, A.; Singh, R. K.; Rössler, E. A.

    2014-06-01

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of 1H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by 19F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the 1H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the 1H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the 19F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  4. Very short NMR relaxation times of anions in ionic liquids: New pulse sequence to eliminate the acoustic ringing

    NASA Astrophysics Data System (ADS)

    Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas

    2014-11-01

    NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2 ≈ 0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ⩾10-8 s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.

  5. A multinuclear NMR relaxation study of the interaction of divalent metal ions with L-aspartic acid.

    PubMed

    Khazaeli, S; Viola, R E

    1984-09-01

    Carbon-13 spin-lattice relaxation times, T1, have been measured for aqueous solutions of L-aspartic acid, L-alanine, O-phospho-L-serine, and 2-mercapto-L-succinic acid in the presence of the paramagnetic metal ions, Cu2+ and Mn2+, and Mg2+ as a diamagnetic control, at ambient temperature and neutral pH. Nitrogen-15, oxygen-17 and proton relaxation times were also obtained for L-aspartic acid and phosphorus-31 relaxation times for O-phospho-L-serine under similar conditions. The structures of these complexes in solution were determined from the various metal ion-nuclei distances calculated from the paramagnetically-induced relaxation. These results indicate that the Cu2+ interaction with L-aspartic acid is through alpha-amino and beta-carboxyl groups while Mn2+ coordinates most strongly through alpha- and beta-carboxyl groups, with the possibility of a weak interaction through the amino group. An examination of the coordination of these divalent metal ions to an analog of L-aspartic acid in which the beta-carboxyl group is replaced by a phosphate group (O-phospho-L-serine) indicated that Cu2+ coordination is now probably through the alpha-amino and phosphate groups, while this analog is a monodentate ligand for Mn2+ coordinating through the phosphate group. Removal of the beta-carboxyl group (L-alanine) also results in Cu2+ coordination through the alpha-carboxyl and alpha-amino groups, and the same ligand interactions are observed with Mn2+. Replacement of the alpha-amino group of L-aspartic acid with an -SH group (2-mercapto-L-succinate) is sufficient to eliminate any specific coordination with either Cu2+ or Mn2+. PMID:6491655

  6. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional

  7. Relaxation techniques for stress

    MedlinePlus

    ... Know. February 2013. Available at: nccih.nih.gov/health/stress/relaxation.htm . Accessed September 21, 2015. National Center ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Stress Browse the Encyclopedia A.D.A.M., Inc. ...

  8. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  9. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    PubMed

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s < T(2) < 0.06 s, and the rapid one of T(2) < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  10. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  11. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Jung, B.; Slotboom, J.; Felblinger, J.; Boesch, C.

    1999-04-01

    1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2protons of Cr/PCr to1H MR spectra of human musclein vivoreflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.

  12. Four-dimensional 1H and 23Na imaging using continuously oscillating gradients.

    PubMed

    Star-Lack, J M; Roos, M S; Wong, S T; Schepkin, V D; Budinger, T F

    1997-02-01

    A class of fast magnetic spectroscopic imaging methods using continuously oscillating gradients for four-dimensional (three spatial and one spectral) localization is introduced. Sampling may start immediately following the application of an RF excitation pulse, thus enabling measurement of spin density, chemical shift, and relaxation rates of short-T2 species. For spatial localization, steady-state sinusoidal gradient waveforms are used to sample a ball in k space. The two types of trajectories presented include: (1) continuously oscillating gradients with continuously rotating direction used for steady-state free-precession imaging and (2) continuously oscillating gradients followed by a spoiler directed along discrete projections. Design criteria are given and spatial-spectral and spatial-temporal reconstruction methods are developed. Theoretical point-spread functions and signal-to-noise ratios are derived while considering T2*, off-resonance effects, and RF excitation options. Experimental phantom, in vivo, and in vitro 1H and 23Na images collected at 2.35 T are presented. The 1H images were acquired with isotropic spatial resolution ranging from 0.03 to 0.27 cm3 and gradient-oscillation frequencies ranging from 600 to 700 Hz, thus allowing for the separation of water and lipid signals within a voxel. The 23Na images, acquired with 500 and 800 Hz gradient waveforms and 0.70 cm3 isotropic resolution, were resolved in the time domain, yielding spatially localized FIDs. PMID:9169223

  13. Methodology of 1H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields

    PubMed Central

    Tkáč, I.; Gruetter, R.

    2009-01-01

    An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine 1H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo 1H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality. PMID:20179773

  14. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    PubMed

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  15. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  16. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  17. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  18. Dielectric Relaxation of Hexadeutero Dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Betting, H.; Stockhausen, M.

    1999-11-01

    The dielectric relaxation parameters of the title substance (DMSO-d6) in its pure liquid state are determined from meas-urements up to 72 GHz at 20°C in comparison to protonated DMSO. While the relaxation strengths do not differ, the relax-ation time of DMSO-d 6 is significantly longer (21.3 ps) than that of DMSO (19.5 ps).

  19. Relaxation in Physical Education Curricula.

    ERIC Educational Resources Information Center

    Coville, Claudia A.

    1979-01-01

    A theoretical framework for incorporating relaxation instruction in the physical education curriculum is presented based on the assumption that relaxation is a muscular-skeletal skill benefitting general motor skill acquisition. Theoretical principles, a definition of relaxation, and an analysis of stages of skill development are also used in the…

  20. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  1. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  2. State of water in hybrid sulfonated poly(ether ether ketone) - silica membranes by 1H solid-state NMR

    NASA Astrophysics Data System (ADS)

    Baias, Maria; Demco, Dan E.; Blümich, Bernhard; Möller, Martin

    2009-04-01

    The state of water in fully hydrated sulfonated poly(ether ether ketone) - silica hybrid proton exchange membranes were characterized in terms of the exchange rate between bound and free water, the water dynamics in each phase, and the relative water populations by 1H ODESSA and transverse magnetization relaxation NMR. The exchange rate, the amount of bound water, and the reorientation of free water molecules increase in the presence of silica particles. The dynamics of bound water was described by the Lévy statistics with a Cauchy propagator. The proton exchange membranes performances could be improved by addition of small concentrations of silica in the range of 5-10 wt.%.

  3. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    NASA Astrophysics Data System (ADS)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  4. Dynamic nuclear polarization-enhanced 1H-13C double resonance NMR in static samples below 20 K

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-08-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H-13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H-13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H-13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C-13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils.

  5. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  6. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  7. Serial 1H-MRS in GM2 gangliosidoses.

    PubMed

    Assadi, Mitra; Baseman, Susan; Janson, Christopher; Wang, Dah-Jyuu; Bilaniuk, Larissa; Leone, Paola

    2008-03-01

    GM2 gangliosidoses are a group of neuronal storage disorders caused by deficiency in the lysosomal enzyme hexosaminidase A. Clinically, the disease is marked by a relentless encephalopathy. Proton magnetic resonance spectroscopy (1H-MRS) provides in-vivo measurement of various brain metabolites including N-acetyl aspartate+N-acetyl aspartate glutamate (NAA), myo-inositol (mI), choline (Cho) and creatine (Cr). The NAA represents neuronal integrity while elevation in the mI reflects abnormal inflammation and gliosis in the brain tissue. An elevation in the Cho levels suggest cell membrane breakdown and demyelination. We report the clinical and laboratory data in two patients with GM2 gangliosidoses. Serial 1H-MRS evaluations were performed to drive metabolite ratios of NAA/Cr, mI/Cr and Cho/Cr. We acquired the data from four regions of interest (ROI) according to a standard protocol. The results documented a progressive elevation in mI/Cr in all four ROI in patient one and only one ROI (occipital gray matter) in patient 2. We also documented a decline in the NAA/Cr ratios in both cases in most ROI. These results were compared to six age-matched controls and confirmed statistically significant elevation in the mI in our cases. In conclusion, 1H-MRS alterations were suggestive of neuronal loss and inflammation in these patients. 1H-MRS may be a valuable tool in monitoring the disease progress and response to therapy in GM2 gangliosidoses. Elevation in the mI may prove to be more sensitive than the other metabolite alterations. PMID:17387512

  8. Laundering and Deinking Applications of 1H NMR Imaging

    NASA Astrophysics Data System (ADS)

    Tutunjian, P. N.; Borchardt, J. K.; Prieto, N. E.; Raney, K. H.; Ferris, J. A.

    One-dimensional 1H NMR imaging techniques are used to visualize oil removal from fabrics and paper fibers immersed in aqueous solutions of nonionic detergents. The method provides a unique approach to the study of oil-removal kinetics in nonionic detergent systems where traditional optical techniques fail due to solution turbidity. The only requirement of the NMR experiment is the use of deuterated water in order to selectively image the hydrocarbon phase. Preliminary applications to laundering and paper deinking are discussed.

  9. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  10. PREFACE: Muon spin rotation, relaxation or resonance

    NASA Astrophysics Data System (ADS)

    Heffner, Robert H.; Nagamine, Kanetada

    2004-10-01

    ), is currently being built to replace the current Japanese muSR capability at KEK. These muSR institutions provide scientists a variety of sample environments, including a range of temperatures, magnetic fields and applied pressure. In addition, very low-energy muon beams (< 1 keV) have been developed for studies of thin films and nano-materials. In 2002 this world-wide community founded the International Society of muSR Spectroscopy (http://musr.org/~isms/) in order to promote the health of this growing field of research. The 20 papers presented in this volume are intended to highlight some of the current muSR research activities of interest to condensed matter physicists. It is not an exhaustive review. In particular, the active and exciting area of muonium chemistry is left to a future volume. The group of papers in section I addresses the physics of strongly correlated electrons in solids, one of the most active fields of condensed matter research today. Strong electron correlations arise from (Coulomb) interactions which render Landau's theory of electron transport for weakly interacting systems invalid. Included in this category are unconventional heavy-fermion superconductors, high-temperature copper-oxide superconductors, non-Fermi liquid (NFL) systems and systems with strong electron-lattice-spin coupling, such as the colossal magnetoresistance manganites. Two key properties often make the muon a unique probe of these materials: (1) the muon's large magnetic moment (~3 mup) renders it extremely sensitive to the tiny magnetic fields (~1 Gauss) found, for example, in many NFL systems and in superconductors possessing time-reversal-violating order parameters, and (2) the muon's spin 1/2 creates a simple muSR lineshape (no quadrupolar coupling), ideal for measuring spin-lattice-relaxation, local susceptibilities and magnetic-field distributions in ordered magnets and superconductors. Section II contains studies which exploit the unique sensitivities of muSR just

  11. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    SciTech Connect

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and {sup 13}C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution {sup 1}H and {sup 13}C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 {angstrom}. Internal motion is estimated to be slow with a correlation time > 10{sup {minus}8} s{sup {minus}1}. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O{sub 2} and ultraviolet. A method for measuring {sup 14}N-{sup 1}H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T{sub 1} and T{sub 2} experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in {sup 13}C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  12. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  13. Hydrogen concentration dependence of 1H Knight shift in NbH x studied by 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-08-01

    Hydrogen concentration dependence of the Knight shift of protons in NbH x(0.05≤×≤1.05) has been studied by means of 1H MAS (magic angle sample spinning) NMR. In the mixed-phase samples of the α and β phases (0.05<×≤0.7), it is found that the 1H Knight shift of β-NbH x depends on the phase fraction. The shift variation in the β phase can be correlated with the unit cell volume, being explained by the variation of the density of electronic states at the Fermi level N(0) due to the compression of the crystal lattice. On the other hand, in the single β-phase samples (0.7<×≤1.05), the 1H Knight shift becomes smaller as the hydrogen concentration increases. This variation can be explained by increase in the number of electrons in the unit cell with the hydrogen concentration, resulting in the N(0) increase.

  14. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  15. Relaxing music for anxiety control.

    PubMed

    Elliott, Dave; Polman, Remco; McGregor, Richard

    2011-01-01

    The purpose of this investigation was to determine the characteristics of relaxing music for anxiety control. Undergraduate students (N=84) were instructed to imagine themselves in an anxiety producing situation while listening to a selection of 30 music compositions. For each composition, level of relaxation, the factors that either enhanced or detracted from its relaxing potential and the emotional labels attached were assessed. Participants were also asked to state which music components (e.g., tempo, melody) were most conducive to relaxation. Additional information was obtained through the use of a focus group of 6 undergraduate music students. This paper presents details on the characteristics of relaxing-music for anxiety control and emotional labels attached to the relaxing compositions. Furthermore, an importance value has been attached to each of the music components under scrutiny, thus providing an indication of which music components should receive greatest attention when selecting music for anxiety control. PMID:22097099

  16. Diffusional Properties of Methanogenic Granular Sludge: 1H NMR Characterization

    PubMed Central

    Lens, Piet N. L.; Gastesi, Rakel; Vergeldt, Frank; van Aelst, Adriaan C.; Pisabarro, Antonio G.; Van As, Henk

    2003-01-01

    The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22°C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H2O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H2O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55°C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10°C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90°C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl2 did not affect the H2O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors. PMID:14602624

  17. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  18. Renormalized reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Gorbachev, Yuriy E.

    2016-06-01

    Impact of the non-equilibrium on the reaction and relaxation rates (called as generalized relaxation rates - GRR), for the spatially inhomogeneous gas mixture is considered. Discarding the assumption that the 'chemical' part of the collisional integral is a small correction to non-reactive part, the expression for the zero-order GRR is derived. They are represented as a renormalization of the traditional reaction and relaxation rates, which means mixing of all corresponding processes. Thus all reactions and relaxation processes are entangled.

  19. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  20. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  1. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins.

    PubMed

    Yao, Lishan; Ying, Jinfa; Bax, Ad

    2009-03-01

    The presence of dipole-dipole cross-correlated relaxation as well as unresolved E.COSY effects adversely impacts the accuracy of (1)J(NH) splittings measured from gradient-enhanced IPAP-HSQC spectra. For isotropic samples, the size of the systematic errors caused by these effects depends on the values of (2)J(NHalpha), (3)J(NHbeta) and (3)J(HNHalpha). Insertion of band-selective (1)H decoupling pulses in the IPAP-HSQC experiment eliminates these systematic errors and for the protein GB3 yields (1)J(NH) splittings that agree to within a root-mean-square difference of 0.04 Hz with values measured for perdeuterated GB3. Accuracy of the method is also highlighted by a good fit to the GB3 structure of the (1)H-(15)N RDCs extracted from the minute differences in (1)J(NH) splitting measured at 500 and 750 MHz (1)H frequencies, resulting from magnetic susceptibility anisotropy. A nearly complete set of (2)J(NHalpha) couplings was measured in GB3 in order to evaluate whether the impact of cross-correlated relaxation is dominated by the (15)N-(1)H(alpha) or (15)N-(1)H(beta) dipolar interaction. As expected, we find that (2)J(NHalpha) < or = 2 Hz, with values in the alpha-helix (0.86 +/- 0.52 Hz) slightly larger than in beta-sheet (0.66 +/- 0.26 Hz). Results indicate that under isotropic conditions, N-H(N)/N-H(beta) cross-correlated relaxation often dominates. Unresolved E.COSY effects under isotropic conditions involve (3)J(HNHalpha) and J(NHalpha), but when weakly aligned any aliphatic proton proximate to both N and H(N) can contribute. PMID:19205898

  2. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  3. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  4. Nuclear magnetic resonance study of Li and H diffusion in the high-temperature solid phase of LiBH{sub 4}

    SciTech Connect

    Soloninin, A.V.; Skripov, A.V.; Buzlukov, A.L.; Stepanov, A.P.

    2009-09-15

    In order to study the atomic jump motions in the high-temperature solid phase of LiBH{sub 4}, we have measured the {sup 1}H and {sup 11}B nuclear magnetic resonance (NMR) spectra and the {sup 1}H, {sup 7}Li and {sup 11}B spin-lattice relaxation rates in this compound over the resonance frequency range of 14-34.4 MHz. In the temperature range 384-500 K, all the spin-lattice relaxation data are satisfactorily described in terms of a thermally activated jump motion of Li ions with the pre-exponential factor tau{sub 0}=1.1x10{sup -15} s and the activation energy E{sub a}=0.56 eV. The observed frequency dependences of the spin-lattice relaxation rates in this temperature range exclude a presence of any distributions of the Li jump rate or any other jump processes on the frequency scale of 10{sup 7}-10{sup 10} s{sup -1}. The strong narrowing of the {sup 1}H and {sup 11}B NMR lines above 440 K is consistent with the onset of diffusive motion of the BH{sub 4} tetrahedra. - Graphical abstract: The measured spin-lattice relaxation rates of {sup 1}H (a), {sup 7}Li (b) and {sup 11}B (c) as functions of the inverse temperature for the high-temperature solid phase of LiBH{sub 4}. The curves show the simultaneous Bloembergen-Purcell-Pound fits to the data with the fixed parameters of Li diffusion (the pre-exponential factor tau{sub 0}=1.1x10{sup -15} s and the activation energy E{sub a}=0.56 eV). This plot indicates that all the relaxation data for different nuclei and at different resonance frequencies are governed by a single Li jump process. Display Omitted

  5. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    PubMed Central

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  6. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy.

    PubMed

    Caligiani, A; Acquotti, D; Palla, G; Bocchi, V

    2007-02-28

    A detailed analysis of the proton high-field NMR spectra of vinegars (in particular of Italian balsamic vinegars) is reported. A large number of organic substances belonging to different classes, such as carbohydrates, alcohols, organic acids, volatile compounds and amino acids, were assigned. The possibility of quantification of the substances identified in the whole vinegar sample, without extraction or pre-concentration steps, was also tested. The data validity was demonstrated in terms of precision, accuracy, repeatability and inter-day reproducibility. The effects of the most critical experimental parameters (sample concentration, water suppression and relaxation time) on the analysis response were also discussed. (1)H NMR results were compared with those obtained by traditional techniques (GC-MS, titrations), and good correlations were obtained. The results showed that (1)H NMR with water suppression allows a rapid, simultaneous determination of carbohydrates (glucose and fructose), organic acids (acetic, formic, lactic, malic, citric, succinic and tartaric acids), alcohols and polyols (ethanol, acetoin, 2,3-butanediol, hydroxymethylfurfural), and volatile substances (ethyl acetate) in vinegar samples. On the contrary, the amino acid determination without sample pre-concentration was critical. The (1)H NMR method proposed was applied to different samples of vinegars, allowing, in particular, the discrimination of vinegars and balsamic vinegars. PMID:17386654

  7. Complexation of oxygen ligands with dimeric rhodium(II) tetrakistrifluoroacetate in chloroform: 1H, 13C NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Głaszczka, Rafał; Jaźwiński, Jarosław

    2013-03-01

    The complexation of dimeric rhodium(II) tetrakistrifluoroacetylate with 25 ligands containing oxygen atoms: alcohols, ethers, ketones, aldehydes, carboxylic acids and esters in chloroform solution have been investigated by 1H and 13C NMR spectroscopy and Density Functional Theory (DFT) methods. Investigated ligands form 1:1 adducts in our experimental conditions, with stability constants in the order of several hundred mol-1. The exchange of ligands in solution is fast on the NMR spectroscopic timescale. The decrease of longitudinal relaxation times T1 in ligands in the presence of rhodium salt has been tested as the means of determination of the complexation site in ligands. The influence of complexation on chemical shifts in ligands was evaluated by a parameter complexation shift Δδ (Δδ = δadd - δlig). These parameters were positive (>0 ppm) and did not exceed 1 ppm for 1H NMR; and varied from ca. -5 to +15 ppm in the case of 13C NMR. The calculation by DFT methods using the B3LYP functional (structure optimization, electronic energy) and B3PW91 functional (shielding), and combinations of the (6-31G(2d), 6-311G++(2d,p), and LANL2DZ basis sets, followed by scaling procedures reproduced satisfactorily 1H and 13C chemical shifts and, with some limitations, allowed to estimate Δδ parameters.

  8. NMR relaxation studies in doped poly-3-methylthiophene

    NASA Astrophysics Data System (ADS)

    Singh, K. Jugeshwar; Clark, W. G.; Gaidos, G.; Reyes, A. P.; Kuhns, P.; Thompson, J. D.; Menon, R.; Ramesh, K. P.

    2015-05-01

    NMR relaxation rates (1 /T1 ), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T1 is classified into three regimes: (a) For T <(g μBB /2 kB ) , the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. 1H - T1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g μBB /2 kB ) relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the P F6 reorientation. The cross relaxation among the 1H and 19F nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra- and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T1-1 on temperature shows that at low temperature [T <(g μBB /2 kB ) ] the system shows three dimensions and changes to quasi one dimension at

  9. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  10. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS.

    PubMed

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid. PMID:26065628

  11. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  12. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Spiess, Hans Wolfgang; Stapf, Siegfried; Münnemann, Kerstin

    2013-12-21

    Hyperpolarization techniques, such as Overhauser dynamic nuclear polarization (DNP), can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments and may therefore enable new applications where sensitivity is a limiting factor. In this contribution, studies of the (1)H and (19)F Overhauser dynamic nuclear polarization enhancements at 345 mT are presented for three different aromatic solvents with the TEMPO radical for a range of radical concentrations. Furthermore, nuclear magnetic relaxation dispersion measurements of the same solutions are analyzed, showing contributions from dipolar and scalar coupling modulated by translational diffusion and different coupling efficiency for different solvents and nuclei. Measurements of the electron paramagnetic resonance linewidth are included to support the analysis of the DNP saturation factor for varying radical concentration. The results of our study give an insight into the characteristics of nitroxide radicals as polarizing agents for (19)F Overhauser DNP of aromatic fluorinated solvents. Furthermore, we compare our results with the findings of the extensive research on Overhauser DNP that was conducted in the past for a large variety of other radicals. PMID:24192645

  13. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance.

    PubMed

    Sun, Yan-Jun; Zhang, Yan-Li; Wang, Yu; Wang, Jun-Min; Zhao, Xuan; Gong, Jian-Hong; Gao, Wei; Guan, Yan-Bin

    2015-01-01

    In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR) was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1), scan numbers (NS), and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS), and deuterated dimethyl sulfoxide (DMSO-d6) as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7'-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7'-O-β-d-glucopyranoside, and 6''-acetyl-podophyllotoxin-7'-O-β -d-glucopyranoside) were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC). Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans. PMID:26016553

  14. Intra- and extracellular carbohydrates in plant cell cultures investigated by (1)H-NMR.

    PubMed

    Schripsema, J; Erkelens, C; Verpoorte, R

    1991-01-01

    With the aim of quantifying intra- and extracellular carbohydrates media and cell-extracts from a Tabernaemontana divaricata plant cell-suspension culture were investigated with (1)H-NMR.For suppression of the solvent peak the Meiboom-Gill modification of the Carr-Purcell (CPMG) spin-echo sequence was used after addition of a paramagnetic relaxation agent (Mn(2+)) to the sample. Several aspects of this method were optimized (the manganese concentration, the interpulse delay and the number of spin-echo cycles) so as to obtain a rapid and easy method in which no pretreatment of media or cell-extracts was needed. Besides the speed and ease of the method, also the direct identification of carbohydrates and other main components is an advantage.The exhaustion of extracellular carbohydrates was found to coincide with the maximum amount of intracellular carbohydrates. The intracellular carbohydrates, i.e. glucose and fructose, were consumed at a low rate, during several weeks. PMID:24213796

  15. Assignment of 1H and 13C hyperfine-shifted resonances for tuna ferricytochrome c.

    PubMed Central

    Sukits, S F; Satterlee, J D

    1996-01-01

    Tuna ferricytochrome c has been used to demonstrate the potential for completely assigning 1H and 13C strongly hyperfine-shifted resonances in metalloprotein paramagnetic centers. This was done by implementation of standard two-dimensional NMR experiments adapted to take advantage of the enhanced relaxation rates of strongly hyperfine-shifted nuclei. The results show that complete proton assignments of the heme and axial ligands can be achieved, and that assignments of several strongly shifted protons from amino acids located close to the heme can also be made. Virtually all proton-bearing heme 13C resonances have been located, and additional 13C resonances from heme vicinity amino acids are also identified. These results represent an improvement over previous proton resonance assignment efforts that were predicated on the knowledge of specific assignments in the diamagnetic protein and relied on magnetization transfer experiments in heterogeneous solutions composed of mixtures of diamagnetic ferrocytochrome c and paramagnetic ferricytochrome c. Even with that more complicated procedure, complete heme proton assignments for ferricytochrome c have never been demonstrated by a single laboratory. The results presented here were achieved using a more generally applicable strategy with a solution of the uniformly oxidized protein, thereby eliminating the requirement of fast electron self-exchange, which is a condition that is frequently not met. PMID:8913622

  16. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water. PMID:24595457

  17. Isotope Effects in Collisional VT Relaxation of Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Bieniek, R. J.

    2006-01-01

    A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for rates of collisionally induced vibrational-translation (VT) energy exchange that has been shown to be accurate over variations of orders of magnitude as a function of temperature in a variety of systems. This includes excellent agreement with reported experimental and theoretical results for the fundamental self-relaxation rate of molecular hydrogen H2(v = 1) + H2 yields H2(v = 0) + H2. The analytic rate successfully follows the five-orders-of-magnitude change in experimental values for the temperature range 50-2000 K. This approach is now applied to isotope effects in the vibrational relaxation rates of excited HD and D2 in collision with H2: HD(v = 1)+H2 yields HD(v = 0)+H2 and D2(v = 1)+H2 yields D2(v = 0)+H2. The simplicity of the analytic expression for the thermal rate lends itself to convenient application in modeling the evolving vibrational populations of molecular hydrogen in shocked astrophysical environments.

  18. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.

    PubMed

    Lundström, Patrik; Akke, Mikael

    2005-09-01

    NMR spin relaxation in the rotating frame (R1rho) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond timescale. We present a rotating-frame 13C(alpha) relaxation dispersion experiment for measuring conformational dynamics in uniformly 13C-labeled proteins. The experiment was validated by using the E140Q mutant of the C-terminal fragment of calmodulin, which exhibits significant conformational exchange between two major conformations, as gauged from previous 15N and 1H relaxation studies. Consistent with previous work, the present 13C(alpha) R1rho experiment detects conformational-exchange dynamics throughout the protein. The average correlation time of =25+/-8 micros is in excellent agreement with those determined previously from 1H and 15N R1rho relaxation data: =19+/-7 and 21+/-3 micros, respectively. The extracted chemical-shift differences between the exchanging states reveal significant fluctuations in dihedral angles within single regions of Ramachandran phi-psi space, that were not identified from the 1H and 15N relaxation data. The present results underscore the advantage of using several types of nuclei to probe exchange dynamics in biomolecules. PMID:16028301

  19. Stress Relaxation of Magnetorheological Fluids

    NASA Astrophysics Data System (ADS)

    Li, W. H.; Chen, G.; Yeo, S. H.; Du, H.

    In this paper, the experimental and modeling study and analysis of the stress relaxation characteristics of magnetorheological (MR) fluids under step shear are presented. The experiments are carried out using a rheometer with parallel-plate geometry. The applied strain varies from 0.01% to 100%, covering both the pre-yield and post-yield regimes. The effects of step strain, field strength, and temperature on the stress modulus are addressed. For small step strain ranges, the stress relaxation modulus G(t,γ) is independent of step strain, where MR fluids behave as linear viscoelastic solids. For large step strain ranges, the stress relaxation modulus decreases gradually with increasing step strain. Morever, the stress relaxation modulus G(t,γ) was found to obey time-strain factorability. That is, G(t,γ) can be represented as the product of a linear stress relaxation G(t) and a strain-dependent damping function h(γ). The linear stress relaxation modulus is represented as a three-parameter solid viscoelastic model, and the damping function h(γ) has a sigmoidal form with two parameters. The comparison between the experimental results and the model-predicted values indicates that this model can accurately describe the relaxation behavior of MR fluids under step strains.

  20. Multi-probe relaxation dispersion measurements increase sensitivity to protein dynamics.

    PubMed

    Fenwick, R Bryn; Oyen, David; Wright, Peter E

    2016-02-17

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements are a valuable tool for the characterization of structural transitions on the micro-millisecond timescale. While the measurement of (15)N relaxation dispersion is now routine, the measurements with alternative nuclei remain limited. Here we report (15)N as well as (1)H R2 relaxation dispersion measurements of the N23PP/S148A "dynamic knockout" mutant of dihydrofolate reductase. The (1)H dispersion measurements are complementary to (15)N data as many additional residues are observed to have dispersive behavior for the (1)H nucleus. Simultaneous fitting of the dispersion profiles for the two nuclei increases the accuracy of exchange parameters determined for individual residues and clustered groups of residues. The different sensitivity of the two nuclei to changes in backbone torsional angles, ring currents, and hydrogen bonding effects provides important insights into the nature of the structural changes that take place during the exchange process. We observe clear evidence of direct and indirect hydrogen bond effects for the (15)N and (1)H chemical shift changes in the active-site, modulation of ring current shielding in the CD-loop and backbone torsional changes in a cluster of residues associated with the C-terminus. This work demonstrates the power of combined (1)H and (15)N probes for the study of backbone dynamics on the micro-millisecond timescale though the analysis of chemical shift changes. PMID:26426424

  1. 1H NMR metabolomics study of age profiling in children

    PubMed Central

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Hainline, Bryan E.; Shanaiah, Narasimhamurthy; Asiago, Vincent; Nagana Gowda, G. A.; Raftery, Daniel

    2014-01-01

    Metabolic profiling of urine provides a fingerprint of personalized endogenous metabolite markers that correlate to a number of factors such as gender, disease, diet, toxicity, medication, and age. It is important to study these factors individually, if possible to unravel their unique contributions. In this study, age-related metabolic changes in children of age 12 years and below were analyzed by 1H NMR spectroscopy of urine. The effect of age on the urinary metabolite profile was observed as a distinct age-dependent clustering even from the unsupervised principal component analysis. Further analysis, using partial least squares with orthogonal signal correction regression with respect to age, resulted in the identification of an age-related metabolic profile. Metabolites that correlated with age included creatinine, creatine, glycine, betaine/TMAO, citrate, succinate, and acetone. Although creatinine increased with age, all the other metabolites decreased. These results may be potentially useful in assessing the biological age (as opposed to chronological) of young humans as well as in providing a deeper understanding of the confounding factors in the application of metabolomics. PMID:19441074

  2. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  3. The Conformations and Structures of 1H-NONAFLUOROBUTANE

    NASA Astrophysics Data System (ADS)

    Fournier, Joseph A.; Bohn, Robert K.; Montgomery, John A.; , Jr.

    2012-06-01

    The all trans conformers of perfluorocarbons, unlike hydrocarbons, are helical with C-C-C-C dihedral angles about 1640. Fluorocarbons with H substitution can replace chlorofluorocarbons as propellants and compressor fluids without the disadvantage of causing ozone depletion in the upper atmosphere. 1H-perfluorobutane, CHF_2CF_2CF_2CF_3, has been studied by pulsed-jet Fourier transform microwave spectroscopy. The spectrum is very rich. Quantum chemical calculations identify five stable conformers with relative energies up to 1.1 kcal/mol. Thus far three conformers have been characterized and many lines remain unassigned. The assigned species have CCCCanti/CCCH gauche as well as the anti/anti and gauche/anti forms. Rotational constant values are 1428.9501(2) MHz, 593.323877(6) MHz, and 546.43578(6) MHz for the anti/gauche species, 1323.664(3) MHz, 617.6051(5) MHz for the ant/anti species, and 1066.9384(4) MHz, 768.4736(4) MHz, and 671.3145(4) MHz for the gauche/anti form.

  4. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  5. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  6. Fast Scanning Calorimetry study of non-equilibrium relaxation in 2-Ethyl-1-Hexanol

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; Pane, Candace

    2012-02-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick ultraviscous of 2-Ethyl-1-Hexanol (2E1H) films under high vacuum conditions. Rapid heating of 2E1H samples prepared at temperatures above approximately 145 K (standard glass transition temperature of 2E1H, Tgs), resulted in well manifested dynamic glass transitions at temperatures tens of degrees higher than Tgs. Furthermore, strong and complex dependence of dynamic glass transition temperature on the sample's initial state, i.e., the starting temperature of FSC scan was also observed. We discuss implications of these results for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids.

  7. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  8. Simulation of DNA Supercoil Relaxation.

    PubMed

    Ivenso, Ikenna D; Lillian, Todd D

    2016-05-24

    Several recent single-molecule experiments observe the response of supercoiled DNA to nicking endonucleases and topoisomerases. Typically in these experiments, indirect measurements of supercoil relaxation are obtained by observing the motion of a large micron-sized bead. The bead, which also serves to manipulate DNA, experiences significant drag and thereby obscures supercoil dynamics. Here we employ our discrete wormlike chain model to bypass experimental limitations and simulate the dynamic response of supercoiled DNA to a single strand nick. From our simulations, we make three major observations. First, extension is a poor dynamic measure of supercoil relaxation; in fact, the linking number relaxes so fast that it cannot have much impact on extension. Second, the rate of linking number relaxation depends upon its initial partitioning into twist and writhe as determined by tension. Third, the extensional response strongly depends upon the initial position of plectonemes. PMID:27224483

  9. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study

    PubMed Central

    Magat, Julie; Joudiou, Nicolas; Peeters, André P.; Jordan, Bénédicte F.; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation (‘Global T1’ combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons (‘Lipids T1’) would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48–72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001) than for Global R1 (median difference: 0.154 s-1; p = 0.027). Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects. PMID:26267901

  10. Aggregation in five-coordinate high-spin natural hemins: Determination of solution structure by sup 1 H NMR

    SciTech Connect

    Mazumdar, S.; Mitra, S. )

    1990-01-25

    {sup 1}H NMR measurements (at 500 MHz) of nuclear spin-spin relaxation time T{sub 2} (from NMR line width) at different temperatures are reported for aggregates of several five-coordinate high-spin iron(III) complexes of proto-, deutero-, and coproporphyrins in solution and are utilized to determine their solution structure. Extensive aggregation of these complexes in solution is observed, and the dominant form of the aggregates is shown to be dimers. The degree of aggregation for these iron(III) porphyrins follows the order proto- >> deutero- > copro-. The line width of the heme methyl resonances was analyzed by using a nonlinear least-squares fit program working in finite difference algorithm. The values of T{sub 2} were used to determine the structural details of the dimer.

  11. 1H-MR imaging of the lungs at 3.0 T

    PubMed Central

    Obruchkov, Sergei I.

    2016-01-01

    Background One disadvantage of magnetic resonance imaging (MRI) is the inability to adequately image the lungs. Recent advances in hyperpolarized gas technology [e.g., helium-3 (3He) and xenon-129 (129Xe)] have changed this. However, the required technology is expensive and often needing extra physics or engineering staff. Hence there is considerable interest in developing 1H (proton)-based MRI approaches that can be readily implemented on standard clinical systems. Thus, the purpose of this work was to compare a newly developed free breathing proton-based MR lung imaging method to that of a standard gadolinium (Gd) based perfusion approach. Methods Healthy volunteers [10] were scanned using a 3-T MRI with 8 parallel receivers, and a cardiac gated fast spin echo (FSE) sequence. Acquisition was cardiac triggered, with different time delays incremented to cover the entire cardiac cycle. Image k-space was filled rectilinearly. But to reduce motion artefacts k-space was retrospectively sorted using the minimal variance algorithm (MVA), based on physiologic data recorded from both the respiratory bellows and electrocardiogram (ECG). Resorted and reconstructed FSE images were compared to contrast enhanced lung images, obtained following intravenous injection of Gd-DTPA-BMA. Results Biphasic variation in FSE lung signal intensity was observed across the cardiac cycle with a maximal signal change following rapid cardiac ejection (between S and T waves), and following rapid isovolumetric relaxation. A difference image between systolic and diastolic states in the cardiac cycle resulted in images with improved lung contrast to noise ratio (CNR). FSE image intensity was uniform over lung parenchyma while Gd-based enhancement of spoiled gradient recalled echo (SPGR) images showed gravitational dependence. Conclusions Here we show how 1H-MR images of lung can be obtained during free breathing. The image contrast obtained during this approach is likely the result of flow and

  12. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  13. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  14. Improved ab initio calculation of surface second-harmonic generation from Si(111)(1 ×1 ):H

    NASA Astrophysics Data System (ADS)

    Anderson, Sean M.; Tancogne-Dejean, Nicolas; Mendoza, Bernardo S.; Véniard, Valérie

    2016-06-01

    We carry out an improved ab initio calculation of surface second-harmonic generation (SSHG) from the Si(111)(1 ×1 ):H surface. This calculation includes three new features in one formulation: (i) the scissors correction, (ii) the contribution of the nonlocal part of the pseudopotentials, and (iii) the inclusion of a cut function to extract the surface response, all within the independent particle approximation. We apply these improvements on the Si(111)(1 ×1 ):H surface and compare with various experimental spectra from several different sources. We also revisit the three-layer model for the SSHG yield and demonstrate that it provides more accurate results over several, more common, two-layer models. We demonstrate the importance of using properly relaxed coordinates for the theoretical calculations. We conclude that this approach to the calculation of the second-harmonic spectra is versatile and accurate within this level of approximation. This well-characterized surface offers an excellent platform for comparison with theory and allows us to offer this study as an efficient benchmark for this type of calculation.

  15. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  16. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  17. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  18. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  19. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  20. 1H and 13C Solid-state NMR of Gossypium barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiments pro...

  1. 1H and 13C Solid-state NMR of G. barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated with 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiment...

  2. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  3. Cross-linking and 1H n.m.r. spectroscopy of the pyruvate dehydrogenase complex of Escherichia coli

    PubMed Central

    Packman, Leonard C.; Perham, Richard N.; Roberts, Gordon C. K.

    1982-01-01

    The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy. ImagesFig. 2.Fig. 3. PMID:6753833

  4. Global relaxation of superconducting qubits

    SciTech Connect

    Ojanen, T.; Niskanen, A. O.; Nakamura, Y.; Abdumalikov, A. A. Jr.

    2007-09-01

    We consider coupled quantum two-state systems (qubits) exposed to a global relaxation process. The global relaxation refers to the assumption that qubits are coupled to the same quantum bath with approximately equal strengths, appropriate for long-wavelength environmental fluctuations. We show that interactions do not spoil the picture of Dicke's subradiant and super-radiant states where quantum interference effects lead to striking deviations from the independent relaxation picture. Remarkably, the system possess a stable entangled state and a state decaying faster than single qubit excitations. We propose a scheme for how these effects can be experimentally accessed in superconducting flux qubits and, possibly, used in constructing long-lived entangled states.

  5. Shoreline relaxation at pocket beaches

    NASA Astrophysics Data System (ADS)

    Turki, Imen; Medina, Raul; Kakeh, Nabil; González, Mauricio

    2015-09-01

    A new physical concept of relaxation time is introduced in this research as the time required for the beach to dissipate its initial perturbation. This concept is investigated using a simple beach-evolution model of shoreline rotation at pocket beaches, based on the assumption that the instantaneous change of the shoreline plan-view shape depends on the long-term equilibrium plan-view shape. The expression of relaxation time is developed function of the energy conditions and the physical characteristics of the beach; it increases at longer beaches having coarse sediments and experiencing low-energy conditions. The relaxation time, calculated by the developed model, is validated by the shoreline observations extracted from video images at two artificially embayed beaches of Barcelona (NW Mediterranean) suffering from perturbations of sand movement and a nourishment project. This finding is promising to estimate the shoreline response and useful to improve our understanding of the dynamic of pocket beaches and their stability.

  6. Multigrid Methods for Mesh Relaxation

    SciTech Connect

    O'Brien, M J

    2006-06-12

    When generating a mesh for the initial conditions for a computer simulation, you want the mesh to be as smooth as possible. A common practice is to use equipotential mesh relaxation to smooth out a distorted computational mesh. Typically a Laplace-like equation is set up for the mesh coordinates and then one or more Jacobi iterations are performed to relax the mesh. As the zone count gets really large, the Jacobi iteration becomes less and less effective and we are stuck with our original unrelaxed mesh. This type of iteration can only damp high frequency errors and the smooth errors remain. When the zone count is large, almost everything looks smooth so relaxation cannot solve the problem. In this paper we examine a multigrid technique which effectively smooths out the mesh, independent of the number of zones.

  7. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  8. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. PMID:26686485

  9. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  10. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325829

  11. Statistical mechanics of violent relaxation

    NASA Technical Reports Server (NTRS)

    Spergel, David N.; Hernquist, Lars

    1992-01-01

    We propose a functional that is extremized through violent relaxation. It is based on the Ansatz that the wave-particle scattering during violent dynamical processes can be approximated as a sequence of discrete scattering events that occur near a particle's perigalacticon. This functional has an extremum whose structure closely resembles that of spheroidal stellar systems such as elliptical galaxies. The results described here, therefore, provide a simple framework for understanding the physical nature of violent relaxation and support the view that galaxies are structured in accord with fundamental statistical principles.

  12. Relaxation dynamics of branched polymers

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnav

    The Rouse model for star polymers was successfully derived by solving the differential equations governing the net force acting on each bead in a star polymer chain. As opposed to a linear polymer, where we have N unique roots for N beads, in the case of star polymers, there are only 2 Na+1 unique roots and all odd unique roots (except the last root corresponding to the branch point) starting with the first root have a multiplicity of f-1. The relaxation time of the pth unique Rouse mode of a star polymer varies as (2Na + 1)2/p2. Since alternate Rouse modes in a star polymer have a multiplicity of f-1, they add to the terminal modulus of the star polymers and the terminal modulus, G(tau) ends up being proportional to f-1 (besides being inversely proportional to N, which is also the case with linear polymers). A self-consistent theory for the relaxation of entangled star polymers was developed based on the work done by Colby and Rubinstein on linear blends. This theory considers the duality of relaxation dynamics (direct stress relaxation and indirect relaxation by release of constraints) and models the relaxation due to constraint release R(t) based on Dean's approach in solving the vibration frequencies of glassy chains with random spring constants. In our case, the mobilities of beads were considered to be random and based on the relative weight of the prefactor of a Maxwell function, a group of which was fitted to the stress relaxation function mu(t) of a star polymer (proposed and derived by Doi). The tube dilation model for star and comb polymers was investigated in detail and predictions compared to rheological data from polypropylene, polybutadiene and polystyrene comb polymers along with PEP star polymers. The relaxation time from the Tube Dilation Model was compared with the classical Tube Model and was shown to have an extra power dependence on the fraction of the comb backbone.

  13. Noninvasive monitoring of moisture uptake in Ca(NO3)2 -polluted calcareous stones by 1H-NMR relaxometry.

    PubMed

    Casieri, Cinzia; Terenzi, Camilla; De Luca, Francesco

    2015-01-01

    NMR transverse relaxation time (T(2)) distribution of (1)H nuclei of water has been used to monitor the moisture condensation kinetics in Ca(NO(3))(2)  · (4)H(2)O-polluted Lecce stone, a calcareous stone with highly regular porous structure often utilized as basic material in Baroque buildings. Polluted samples have been exposed to water vapor adsorption at controlled relative humidity to mimic environmental conditions. In presence of pollutants, the T(2) distributions of water in stone exhibit a range of relaxation time values and amplitudes not observed in the unpolluted case. These characteristics could be exploited for in situ noninvasive detection of salt pollution in Lecce stone or as damage precursors in architectural buildings of cultural heritage interest. PMID:25354389

  14. Comparative Relaxant Effects of Ataciguat and Zaprinast on Sheep Sphincter of Oddi

    PubMed Central

    Çakmak, Erol; Yönem, Özlem; Saraç, Bülent; Parlak, Mesut; Çelik, Cumali; Ataseven, Hilmi; Bağcivan, İhsan

    2016-01-01

    Background: Relaxing the sphincter of Oddi (SO) is an important process during endoscopic retrograde cholangiopancreatography (ERCP) procedures. This issue suggests that the easier the sphincterotomy and cannulation, the more post-ERCP complications decrease. Aims: To compare the relaxant effects of ataciguat (a novel soluble guanylyl cyclase activator) and zaprinast (an inhibitor of phosphodiesterase 5) on sheep SO in vitro, thus testing whether they can be used during ERCP. Study Design: Animal experimentation. Methods: Sheep SO rings were placed in tissue baths and their isometric tension to ataciguat and zaprinast were tested. We also tested their isometric tension against ataciguat in the presence of 1H-(1,2,4) oxadiazole (4,3-a) quinoxalin-1-one (ODQ) which is a soluble guanylyl cyclase inhibitor. Results: Ataciguat and zaprinast both triggered concentration addicted relaxation on sheep SO rings (p=0.0018, p=0.0025 respectively) but the relaxation of the ataciguat was significantly greater than that of zaprinast at all concentrations (p=0.0024). It was observed that decreased relaxation responses were initiated by ataciguat in the presence of ODQ (p=0.0012). Conclusion: Ataciguat and zaprinast both have relaxing effects on sphincter of Oddi, although that of zaprinast is lower. We believe that ataciguat and zaprinast can be used in ERCP procedures in order to relax the sphincter of Oddi and thus can be used locally in order to decrease complications. PMID:27606143

  15. Characterisation and application of ultra-high spin clusters as magnetic resonance relaxation agents.

    PubMed

    Guthausen, Gisela; Machado, Julyana R; Luy, Burkhard; Baniodeh, Amer; Powell, Annie K; Krämer, Steffen; Ranzinger, Florian; Herrling, Maria P; Lackner, Susanne; Horn, Harald

    2015-03-21

    In Magnetic Resonance Tomography (MRT) image contrast can be improved by adding paramagnetic relaxation agents such as lanthanide ions. Here we report on the use of highly paramagnetic isostructural Fe(III)/4f coordination clusters with a [Fe10Ln10] core to enhance relaxation. Measurements were performed over the range of (1)H Larmor frequencies of 10 MHz to 1.4 GHz in order to determine the relevant parameters for longitudinal and transverse relaxivities. Variation of the lanthanide ion allows differentiation of relaxation contributions from electronic states and molecular dynamics. We find that the transverse relaxivities increase with field, whereas the longitudinal relaxivities depend on the nature of the lanthanide. In addition, the Gd(III) analogue was selected in particular to test the interaction with tissue observed using MRT. Studies on biofilms used in waste water treatment reveal that the behaviour of the high-spin clusters is different from what is observed for common relaxation agents with respect to the penetration into the biofilms. The Fe10Gd10 cluster adheres to the surface of the biofilm better than the commercial agent Gadovist. PMID:25670214

  16. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  17. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  18. NMR Relaxation and Petrophysical Properties

    NASA Astrophysics Data System (ADS)

    Fleury, Marc

    2011-03-01

    NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.

  19. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  20. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  1. Choosing a skeletal muscle relaxant.

    PubMed

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  2. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  3. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  4. Dielectric relaxations in aliphatic polyesters

    NASA Astrophysics Data System (ADS)

    Sen, Sudeepto

    2001-07-01

    The dielectric technique was used to study the relaxation processes of five linear aliphatic polyesters. The polyesters studied were poly (ethylene succinate/adipate) or PESA, poly (trimethylene succinate/adipate) or PTSA, poly (butylene succinate/adipate) or PBSA, poly (ethylene succinate) or PES, and poly (ethylene adipate) or PEA. Three of the polyesters were copolymers (PESA, PTSA, and PBSA), and the remaining two (PES and PEA) were homopolymers. Two of the five were amorphous (PESA and PTSA), and the remaining three (PBSA, PES, and PEA) were semicrystalline. All the five polyesters were synthesized in the laboratory using a poly-condensation reaction between a series of aliphatic diols and diesters. The succinic and adipic groups in the copolymers are in equimolar amounts. The polymers were characterized by differential scanning calorimetry and density measurements. Elemental analysis done on the polymers confirmed that their compositions matched theoretical estimates. The relaxation processes were studied dielectrically using an IMASS time domain dielectric spectrometer (TDS) and an HP 4284A LCR meter. Together they allowed a frequency range from 0.001 Hz to 1 MHz. Typically in the subglass region, good data were obtained between 0.01 Hz and 100 kHz. In the glass transition region, good data were occasionally available over the entire range. Two relaxation processes were detected in the subglass temperature region for all the polymers, and in the case of the copolymers PTSA and PBSA, they were also well resolved. Both the processes showed Arrhenius behavior with modest activation energies characteristic of subglass processes in general. They also progressively merged with increasing temperature, which implies a lower activation energy for the faster process which is consistent with the current understanding of relaxation phenomena. The glass transition region of all the polymers also showed a merging of the dominant alpha relaxation with the subglass

  5. Anomalous dielectric relaxation of water confined in graphite oxide

    SciTech Connect

    Yu, Ji; Tian, Yuchen; Gu, Min; Tang, Tong B.

    2015-09-28

    Nonmonotonic thermal dependence of dielectric relaxation of water has been observed in hydrated graphite oxide (GO). Graphite oxide prepared via Hummers method then imbued with specific water contents were characterized, with {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopies, X-ray photoelectron spectroscopy, ambient- and variable-temperature X-ray diffractometries, as well as thermogravimetric analysis. Pressed pellets provided with either conducting or blocking electrodes yielded dielectric loss, which was shown to originate from dielectric relaxation of the confined water. Three relaxation processes were observed in impedance spectroscopy. Our previous work has identified two different types of water in GO, namely, intercalated water and water in inter-grain voids. P{sub 1} expresses the reorientation of water confined inside inter-grain voids, and P{sub 2}, the rotation of intercalated water molecules confined in interlayers. The present work reveals a new process P{sub 3}, which also relates to intercalated water. It slows down with temperature, and this apparent anomaly is explained by the decrease in water content and consequent narrowing of interlayer spacing in graphite oxide, as confirmed by characterization techniques. The present study should contribute to our understanding of surface water dynamics.

  6. Metallothionein 1 h tumour suppressor activity in prostate cancer is mediated by euchromatin methyltransferase 1

    PubMed Central

    Han, Yu-Chen; Zheng, Zhong-Liang; Zuo, Ze-Hua; Yu, Yan P; Chen, Rui; Tseng, George C; Nelson, Joel B; Luo, Jian-Hua

    2014-01-01

    Metallothioneins (MTs) are a group of metal binding proteins thought to play a role in the detoxification of heavy metals. Here we showed by microarray and validation analyses that MT1h, a member of MT, is down-regulated in many human malignancies. Low expression of MT1h was associated with poor clinical outcomes in both prostate and liver cancer. We found that the promoter region of MT1h was hypermethylated in cancer and that demethylation of the MT1h promoter reversed the suppression of MT1h expression. Forced expression of MT1h induced cell growth arrest, suppressed colony formation, retarded migration, and reduced invasion. SCID mice with tumour xenografts with inducible MT1h expression had lower tumour volumes as well as fewer metastases and deaths than uninduced controls. MT1h was found to interact with euchromatin histone methyltransferase 1 (EHMT1) and enhanced its methyltransferase activity on histone 3. Knocking down of EHMT1 or a mutation in MT1h that abrogates its interaction with EHMT1 abrogated MT1h tumour suppressor activity. This demonstrates tumour suppressor activity in a heavy metal binding protein that is dependent on activation of histone methylation. PMID:23355073

  7. A study of coal extraction with electron paramagnetic resonance (EPR) and proton nuclear magnetic resonance relaxation techniques. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Doetschman, D.C.; Mehlenbacher, R.C.; Ito, O.

    1993-09-01

    An electron spin and proton magnetic relaxation study is presented on the effects of the solvent extraction of coal on the macromoleculer network of the coal and on the mobile molecular species that are initially within the coal. The eight Argonne Premium coals were extracted at room temperature with a 1:1 (v/v) N-methylpyrrolidinone (NMP)-CS2 solvent mixture under an inert atmosphere. As much solvent as possible was removed from extract and residue by treatment in a vacuum. The mobilization of molecular free radicals by the solvent and the exposure of free radicals in the macromoleculer matrix to solvent or to species dissolved in the solvent, results in a preferential survival of residue radicals of types that depend on the particular coal and results in the apparently fairly uniform loss of all types of radicals in bituminous coal extracts. The surviving extract and residue free radicals are more predominantly of the odd- alternate hydrocarbon free radical type. The spin-lattice relaxation (SLR) of these coal free radicals has previously been inferred (Doetschman and Dwyer, Energy Fuels, 1992, 6, 783) to be from the modulation of the intramolecular electron-nuclear dipole-interactions of the CH groups in a magnetic field by rocldng motions of the radical in the coal matrix. Such a modulation would depend not only on the rocking amplitude and frequency but also upon the electron spin density at the CH groups in the radical. The observed SLR rates decrease with coal rank in agreement with the smaller spin densities and the lower rocidng amplitudes that are expected for the larger polycondensed ring systems in coals of higher rank. The SLR rates are found to be generally faster in the extracts (than residues) where the molecular species would be expected to have a smaller polycondensed ring system than in the macromoleculer matrix of the residue.

  8. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  9. Enhancement of T1 and T2 relaxation by paramagnetic silica-coated nanocrystals

    SciTech Connect

    Gerion, D; Herberg, J; Gjersing, E; Ramon, E; Maxwell, R; Gray, J W; Budinger, T F; Chen, F F

    2006-08-28

    We present the first comprehensive investigation on water-soluble nanoparticles embedded into a paramagnetic shell and their properties as an MRI contrast agent. The nanoprobes are constructed with an inorganic core embedded into an ultra-thin silica shell covalently linked to chelated Gd{sup 3+} paramagnetic ions that act as an MRI contrast agent. The chelator contains the molecule DOTA and the inorganic core contains a fluorescent CdSe/ZnS qdots in Au nanoparticles. Optical properties of the cores (fluorescence emission or plasmon position) are not affected by the neither the silica shell nor the presence of the chelated paramagnetic ions. The resulting complex is a MRI/fluorescence probe with a diameter of 8 to 15 nm. This probe is highly soluble in high ionic strength buffers at pH ranging from {approx}4 to 11. In MRI experiments at clinical field strengths of 60 MHz, the QDs probes posses spin-lattice (T{sub 1}) and a spin-spin (T{sub 2}) relaxivities of 1018.6 +/- 19.4 mM{sup -1} s{sup -1} and 2438.1 +/- 46.3 mM{sup -1} s{sup -1} respectively for probes having {approx}8 nm. This increase in relaxivity has been correlated to the number of paramagnetic ions covalently linked to the silica shell, ranging from approximately 45 to over 320. We found that each bound chelated paramagnetic species contributes by over 23 mM{sup -1} s{sup -1} to the total T{sub 1} and by over 54 mM{sup -1} s{sup -1} to the total T{sub 2} relaxivity respectively. The contrast power is modulated by the number of paramagnetic moieties linked to the silica shell and is only limited by the number of chelated paramagnetic species that can be packed on the surface. So far, the sensitivity of our probes is in the 100 nM range for 8-10 nm particles and reaches 10 nM for particles with approximately 15-18 nm in diameter. The sensitivities values in solutions are equivalent of those obtained with small superparamagnetic iron oxide nanoparticles of 7 nm diameter clustered into a 100 nm polymeric

  10. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    SciTech Connect

    Kruk, D.; Meier, R.; Rössler, E. A.; Rachocki, A.; Korpała, A.; Singh, R. K.

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(ω) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  11. Plasmon-mediated energy relaxation in graphene

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-01

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  12. Plasmon-mediated energy relaxation in graphene

    SciTech Connect

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  13. Mechanisms of relaxations of bovine isolated bronchioles by the nitric oxide donor, GEA 3175

    PubMed Central

    Hernández, Medardo; Elmedal, Britt; Mulvany, Michael J; Simonsen, Ulf

    1998-01-01

    The present study was designed to investigate the effects and mechanisms of relaxation induced by the nitric oxide (NO) donor, GEA 3175 (a 3-aryl-substituted oxatriazole derivative) on bovine bronchioles (effective lumen diameter 200–800 μm) suspended in microvascular myographs for isometric tension recording. In segments of bovine bronchioles contracted to 5-hydroxytryptamine, GEA 3175 (10−8–10−4 M) induced concentration-dependent reproducible relaxations. These relaxations were slow in onset compared to other NO-donors such as 3-morpholinosydonimine-hydrochloride (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). In 5-hydroxytryptamine-contracted preparations the order of relaxant potency (pD2) was: salbutamol (7.80)>GEA 3175 (6.18)>SIN-1 (4.90)>SNAP (3.55). In segments contracted to acetylcholine, the relaxant responses were reduced and GEA 3175 relaxed the bronchioles with pD2=4.41±0.12 and relaxations of 66±10% (n=4), while SNAP and salbutamol caused relaxations of 19±6% (n=4) and 27±6% (n=8) at the highest concentration used, respectively. Oxyhaemoglobin (10−5 M), the scavenger of nitric oxide, caused rightward shifts of the concentration-relaxation curves to GEA 3175 and NO. 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 3×10−6 M) and LY 83583 (10−6 M), the inhibitors of soluble guanylate cyclase, also reduced the relaxations induced by GEA 3175 and nitric oxide. However, ODQ did not affect salbutamol-evoked relaxation in the bovine small bronchioles. GEA 3175-induced relaxations were reduced in potassium-rich (60 mmol l−1 K+) solution. Glibenclamide (10−6 M) markedly inhibited the relaxations induced by the opener of ATP-sensitive K+ channels, levcromakalim (3×10−8–10−5 M), but it did not modify the relaxations induced by GEA 3175 or salbutamol. Apamin (5×10−7 M), a blocker of the small Ca2+-activated K+-channels did not affect the relaxations to GEA 3175. In contrast, blockers of large Ca2

  14. Viscoelastic Relaxation of Lunar Basins

    NASA Astrophysics Data System (ADS)

    Mohit, P. S.; Phillips, R. J.

    2004-12-01

    The large lunar impact basins provide a unique glimpse into early lunar history. Here we investigate the possibility that the relief of the oldest lunar basins (with the exception of South-Pole Aitken) has decayed through viscous relaxation. We identify nine ancient multi-ring basins with very low relief and low-amplitude Bouguer and free-air gravity anomalies. The characteristics of these basins are consistent with either 1) relaxation of topographic relief by ductile flow (e.g. Solomon et al., 1982) or 2) obliteration of basin topography during crater collapse immediately following impact. Both scenarios require that the basins formed early in lunar history, when the Moon was hot. The latter possibility appears to be unlikely due to the great topographic relief of South Pole-Aitken basin (SPA), the largest and oldest impact basin on the Moon (with the possible exception of the putative Procellarum basin; Wilhelms, 1987). On the other hand, the thin crust beneath SPA may not have allowed ductile flow in its lower portions, even for a hot Moon, implying that a thicker crust is required beneath other ancient basins for the hypothesis of viscous relaxation to be tenable. Using a semi-analytic, self-gravitating viscoelastic model, we investigate the conditions necessary to produce viscous relaxation of lunar basins. We model topographic relaxation for a crustal thickness of 30 km, using a dry diabase flow law for the crust and dry olivine for the mantle. We find that the minimum temperature at the base of the crust (Tb) permitting nearly complete relaxation of topography by ductile flow on a timescale < 108 yrs is 1400 K, corresponding to a heat flow of 55mW/m2, into the crust. Ductile flow in the lower crust becomes increasingly difficult as the crustal thickness decreases. The crust beneath SPA, thinned by the impact, is only 15-20 km thick and would require Tb ≥ 1550 K for relaxation to occur. The fact that SPA has maintained high-amplitude relief suggests that

  15. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon). PMID:22181304

  16. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  17. Shear Relaxations of Confined Liquids.

    NASA Astrophysics Data System (ADS)

    Carson, George Amos, Jr.

    Ultrathin (<40 A) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s^{-1} were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celsius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes (~80 nm ^3) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long -time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7nm^3) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10^4 Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  18. Dynamic Relaxation of Financial Indices

    NASA Astrophysics Data System (ADS)

    Shen, J.; Zheng, B.; Lin, H.; Qiu, T.

    The dynamic relaxation of the German DAX both before and after a large price-change is investigated. The dynamic behavior is characterized by a power law. At the minutely time scale, the exponent p governing the power-law behavior takes a same value before and after the large price change, while at the daily time scale, it is different. Numerical simulations of an interacting EZ herding model are performed for comparison.

  19. Shear relaxations of confined liquids

    SciTech Connect

    Carson, G.A. Jr.

    1992-01-01

    Ultrathin (<40 [angstrom]) films of octamethylcyclotetrasiloxane (OMCTS), hexadecane, and dodecane were subjected to linear and non-linear oscillatory shear between flat plates. Shearing frequencies of 0.1 to 800 s[sup [minus]1] were applied at pressures from zero to 0.8 MPa using a surface rheometer only recently developed. In most cases the plates were atomically smooth mica surfaces; the role of surface interactions was examined by replacing these with alkyl chain monolayers. OMCTS and hexadecane were examined at a temperature about 5 Celcius degrees above their melting points and tended to solidify. Newtonian plateaus having enormous viscosities were observed at low shear rates. The onset of shear thinning implied relaxation times of about 0.1 s in the linear structure of the confined liquids. Large activation volumes ([approximately]80 nm[sup 3]) suggested that shear involved large-scale collective motion. Dodecane was studied at a much higher temperature relative to its melting point and showed no signs of impending solidification though it exhibited well-defined regions of Newtonian response and power law shear thinning. When treated with molecular sieves before use, dodecane had relaxation times which were short (0.02 s) compared to hexadecane, but still exhibited large-scale collective motion. When treated with silica gel, an unexplained long-time relaxation (10 s) was seen in the Newtonian viscosity of dodecane. The relaxation time of the linear structure, 0.005 s was very small, and the storage modulus was unresolvable. The small activation volume (7 nm[sup 3]) indicated a much lower level of collective motion. The activation volume remained small when dodecane was confined between tightly bound, low energy, alkyl monolayers. At low strains the storage and loss moduli became very large (>10[sup 4] Pa), probably due to interactions with flaws in the monolayers. Dramatic signs of wall slip were observed at large strains even at low pressures.

  20. Relaxation: A Fourth "R" for Education.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    Relaxation training helps the individual handle tension through concentrating upon efficient use of muscles. A program of progressive relaxation can be easily incorporated into elementary and secondary schools. Objectives of such a program include the following: (a) to learn to relax technically for purposes of complete rest (deep muscle…

  1. Understanding the effects of diffusion and relaxation in magnetic resonance imaging using computational modeling

    NASA Astrophysics Data System (ADS)

    Russell, Greg

    The work described in this dissertation was motivated by a desire to better understand the cellular pathology of ischemic stroke. Two of the three bodies of research presented herein address and issue directly related to the investigation of ischemic stroke through the use of diffusion weighted magnetic resonance imaging (DWMRI) methods. The first topic concerns the development of a computationally efficient finite difference method, designed to evaluate the impact of microscopic tissue properties on the formation of DWMRI signal. For the second body of work, the effect of changing the intrinsic diffusion coefficient of a restricted sample on clinical DWMRI experiments is explored. The final body of work, while motivated by the desire to understand stroke, addresses the issue of acquiring large amounts of MRI data well suited for quantitative analysis in reduced scan time. In theory, the method could be used to generate quantitative parametric maps, including those depicting information gleaned through the use of DWMRI methods. Chapter 1 provides an introduction to several topics. A description of the use of DWMRI methods in the study of ischemic stroke is covered. An introduction to the fundamental physical principles at work in MRI is also provided. In this section the means by which magnetization is created in MRI experiments, how MRI signal is induced, as well as the influence of spin-spin and spin-lattice relaxation are discussed. Attention is also given to describing how MRI measurements can be sensitized to diffusion through the use of qualitative and quantitative descriptions of the process. Finally, the reader is given a brief introduction to the use of numerical methods for solving partial differential equations. In Chapters 2, 3 and 4, three related bodies of research are presented in terms of research papers. In Chapter 2, a novel computational method is described. The method reduces the computation resources required to simulate DWMRI experiments. In

  2. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  3. Spin relaxation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Berger, L.

    2011-02-01

    The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.

  4. Cooling overall spin temperature: Protein NMR experiments optimized for longitudinal relaxation effects

    NASA Astrophysics Data System (ADS)

    Deschamps, Michaël; Campbell, Iain D.

    2006-02-01

    In experiments performed on protonated proteins at high fields, 80% of the NMR spectrometer time is spent waiting for the 1H atoms to recover their polarization after recording the free induction decay. Selective excitation of a fraction of the protons in a large molecule has previously been shown to lead to faster longitudinal relaxation for the selected protons [K. Pervushin, B. Vögeli, A. Eletsky, Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy, J. Am. Chem. Soc. 124 (2002) 12898-12902; P. Schanda, B. Brutscher, Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds, J. Am. Chem. Soc. 127 (2005) 8014-8015; H.S. Attreya, T. Szyperski, G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment, Proc. Natl. Acad. Sci. USA 101 (2004) 9642-9647]. The pool of non-selected protons acts as a "thermal bath" and spin-diffusion processes ("flip-flop" transitions) channel the excess energy from the excited pool to the non-selected protons in regions of the molecule where other relaxation processes can dissipate the excess energy. We present here a sensitivity enhanced HSQC sequence (COST-HSQC), based on one selective E-BURP pulse, which can be used on protonated 15N enriched proteins (with or without 13C isotopic enrichment). This experiment is compared to a gradient sensitivity enhanced HSQC with a water flip-back pulse (the water flip-back pulse quenches the spin diffusion between 1H N and 1H α spins). This experiment is shown to have significant advantages in some circumstances. Some observed limitations, namely sample overheating with short recovery delays and complex longitudinal relaxation behaviour are discussed and analysed.

  5. Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects.

    PubMed

    Deschamps, Michaël; Campbell, Iain D

    2006-02-01

    In experiments performed on protonated proteins at high fields, 80% of the NMR spectrometer time is spent waiting for the (1)H atoms to recover their polarization after recording the free induction decay. Selective excitation of a fraction of the protons in a large molecule has previously been shown to lead to faster longitudinal relaxation for the selected protons [K. Pervushin, B. Vögeli, A. Eletsky, Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy, J. Am. Chem. Soc. 124 (2002) 12898-12902; P. Schanda, B. Brutscher, Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds, J. Am. Chem. Soc. 127 (2005) 8014-8015; H.S. Attreya, T. Szyperski, G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment, Proc. Natl. Acad. Sci. USA 101 (2004) 9642-9647]. The pool of non-selected protons acts as a "thermal bath" and spin-diffusion processes ("flip-flop" transitions) channel the excess energy from the excited pool to the non-selected protons in regions of the molecule where other relaxation processes can dissipate the excess energy. We present here a sensitivity enhanced HSQC sequence (COST-HSQC), based on one selective E-BURP pulse, which can be used on protonated (15)N enriched proteins (with or without (13)C isotopic enrichment). This experiment is compared to a gradient sensitivity enhanced HSQC with a water flip-back pulse (the water flip-back pulse quenches the spin diffusion between (1)H(N) and (1)H(alpha) spins). This experiment is shown to have significant advantages in some circumstances. Some observed limitations, namely sample overheating with short recovery delays and complex longitudinal relaxation behaviour are discussed and analysed. PMID:16249110

  6. Effects of time and temperature of firing on Fe-rich ceramics studied by Moessbauer spectroscopy and two-dimensional {sup 1}H-nuclear magnetic resonance relaxometry

    SciTech Connect

    Casieri, Cinzia; De Luca, Francesco; Nodari, Luca; Russo, Umberto; Terenzi, Camilla; Tudisca, Valentina

    2012-10-15

    The combined effects of firing temperature and soaking time on the microstructure of iron-rich porous ceramics have been studied by {sup 57}Fe-Moessbauer spectroscopy and 2D {sup 1}H nuclear magnetic resonance (NMR) relaxometry using a single-sided probe. Examining water-saturated ceramics using the relaxation correlation method, where longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times are measured concurrently, provides information about firing-induced changes in both porosity (related to T{sub 1}) and magnetic properties (related to T{sub 2}). Comparing the information obtained from {sup 1}H-NMR analyses with that obtained from Moessbauer spectroscopy (which characterizes changes in iron-bearing species) shows that the T{sub 1}-T{sub 2} NMR correlation technique is very sensitive to even subtle modifications in the magnetic behavior of Fe-bearing species. Moreover, the single-sided NMR approach allows us to perform millimeter-scale depth-resolved measurements, which can be used to non-invasively study the microstructural heterogeneities associated with non-uniform firing effects inside ceramics. This is in contrast to Moessbauer spectroscopy, which requires that the ceramic samples be ground.

  7. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    PubMed Central

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  8. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  9. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  10. Effects of Progressive Relaxation versus Biofeedback-Assisted Relaxation with College Students.

    ERIC Educational Resources Information Center

    See, John D.; Czerlinsky, Thomas

    1990-01-01

    Examined use of biofeedback, relaxation training, or both in a college relaxation class with an enrollment of 33 students. Results indicated students receiving relaxation training plus biofeedback improved significantly more on psychological variables than did students receiving only relaxation training. (Author/ABL)

  11. H-1 Relaxation Times of Metabolites in Biological Samples Obtained with Nondestructive Ex-vivo Slow-MAS NMR

    SciTech Connect

    Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.

    2006-03-01

    Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.

  12. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids

    NASA Astrophysics Data System (ADS)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.

  13. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy.

    PubMed

    Juen, Michael Andreas; Wunderlich, Christoph Hermann; Nußbaumer, Felix; Tollinger, Martin; Kontaxis, Georg; Konrat, Robert; Hansen, D Flemming; Kreutz, Christoph

    2016-09-19

    In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for (1) H RD experiments of nucleic acids. PMID:27533469

  14. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  15. Time of relaxation in dusty plasma model

    NASA Astrophysics Data System (ADS)

    Timofeev, A. V.

    2015-11-01

    Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.

  16. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. PMID:22615146

  17. CHHC and 1H-1H Magnetization Exchange: Analysis by Experimental Solid-State NMR and 11-Spin Density-Matrix Simulations

    PubMed Central

    Aluas, Mihaela; Tripon, Carmen; Griffin, John M.; Filip, Xenia; Ladizhansky, Vladimir; Griffin, Robert G.; Brown, Steven P.; Filip, Claudiu

    2009-01-01

    A protocol is presented for correcting the effect of non-specific cross polarization in CHHC solid-state MAS NMR experiments, thus allowing the recovery of the 1H-1H magnetization exchange functions from the mixing-time dependent buildup of experimental CHHC peak intensity. The presented protocol also incorporates a scaling procedure to take into account the effect of multiplicity of a CH2 or CH3 moiety. Experimental CHHC buildup curves are presented for L-Tyrosine.HCl samples where either all or only one in ten molecules are U-13C labeled. Good agreement between experiment and 11-spin SPINEVOLUTION simulation (including only isotropic 1H chemical shifts) is demonstrated for the initial buildup (tmix < 100 μs) of CHHC peak intensity corresponding to an intramolecular close (2.5 Å) H-H proximity. Differences in the initial CHHC buildup are observed between the 1 in 10 dilute and 100 % samples for cases where there is a close intermolecular H-H proximity in addition to a close intramolecular H-H proximity. For the dilute sample, CHHC cross peak intensities tended to significantly lower values for long mixing times (500 μs) as compared to the 100 % sample. This difference is explained as being due to the dependence of the limiting total magnetization on the ratio Nobs/Ntot between the number of protons that are directly attached to a 13C nucleus and hence contribute significantly to the observed 13C CHHC NMR signal, and the total number of 1H spins into the system. 1H-1H magnetization exchange curves extracted from CHHC spectra for the 100 % L-Tyrosine.HCl sample exhibit a clear sensitivity to the root sum squared dipolar coupling, with fast build-up being observed for the shortest intramolecular distances (2.5 Å) and slower, yet observable build-up for the longer intermolecular distances (up to 5 Å). PMID:19467890

  18. The complete genome sequence of the Arcobacter butzleri cattle isolate 7h1h

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arcobacter butzleri strain 7h1h was isolated in the UK from a clinically healthy dairy cow. The genome of this isolate was sequenced to completion. Here we present the annotation and analysis of the completed 7h1h genome, as well as comparison of this genome to the existing A. butzleri RM4018 and ED...

  19. A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model

    SciTech Connect

    Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S.

    2012-06-06

    Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

  20. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  1. Transcriptional regulation of α1H T-type calcium channel under hypoxia.

    PubMed

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M; Wu, Songwei

    2014-10-01

    The low-voltage-activated T-type Ca(2+) channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5'-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site -1,173cacgc-1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  2. Transcriptional regulation of α1H T-type calcium channel under hypoxia

    PubMed Central

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.

    2014-01-01

    The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  3. The guest ordering and dynamics in urea inclusion compounds studied by solid-state 1H and 13C MAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaorong; Müller, Klaus

    2011-12-01

    Urea inclusion compounds with different guest species were studied by 13C CP MAS and 1H MAS NMR spectroscopy. It is possible to arrange the asymmetric guest species in three different ways: head-head, head-tail and tail-tail. 13C CP MAS NMR studies indicate that the preference arrangement is determined by the interaction strength of the end functional groups. 13C relaxation experiments are used to study the dynamic properties of urea inclusion compounds. 13C relaxation studies on urea inclusion compounds with n-alkane or decanoic acid show that the 13C T1 and 13C T1ρ values exhibit the position dependence towards the center of the chain, indicating internal chain mobility. The analysis of variable-temperature 13C T1ρ experiments on urea inclusion compounds with hexadecane and pentadecane, for the first time, suggests that chain fluctuations and lateral motion of n-alkane guests may contribute to the 13C T1ρ relaxation.

  4. Spin-spin coupling in the HD molecule determined from 1H and 2H NMR experiments in the gas-phase

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2014-10-01

    The indirect spin-spin coupling of hydrogen deuteride, J(D, H), was determined from a series of 1H and 2H NMR spectra acquired at various densities of gaseous solvents (He, Ar, CO2, and N2O). The analysis of these spectra shows that accurate determination of J(D, H) from this experimental data requires careful examination of the effects of nuclear relaxation and of HD-solvent gas interactions on hydrogen deuteride line shapes. Particularly, it was found that the first-order corrections of the peak-to-peak separations between HD multiplet peaks due to weak van der Waals interactions are proportional to solvent gas density, while these corrections for nuclear relaxation of the proton and the deuteron are proportional to the second power of the inverse of the gas density. Analysis of the data indicates that J(D, H), obtained by correcting for the effects of nuclear relaxation and intermolecular interactions, is 43.136(7) Hz at 300 K.

  5. Relaxation phenomenon in composite materials

    NASA Astrophysics Data System (ADS)

    Moznine, R. El.; Blanc, F.; Lieutier, M.; Lefort, A.

    1998-08-01

    Dielectric measurement characteristics such as the dissipation factor, relative permittivity and conductivity as a function of temperature and frequency have been achieved on composite materials based on different epoxy resins filled with alumina inclusions. The analysis of the results show the presence of porosity and inhomogeneity in these materials. The study of the dissipation factor, as a function of temperature at high frequencies, has shown an unexpected absorption phenomenon in materials designed to be utilized as electrical insulators. The identification of the entities responsible for this relaxation shows that the entities result from one of the components of the material. These results can also confirm the inhomogeneity of the materials.

  6. Image compression using constrained relaxation

    NASA Astrophysics Data System (ADS)

    He, Zhihai

    2007-01-01

    In this work, we develop a new data representation framework, called constrained relaxation for image compression. Our basic observation is that an image is not a random 2-D array of pixels. They have to satisfy a set of imaging constraints so as to form a natural image. Therefore, one of the major tasks in image representation and coding is to efficiently encode these imaging constraints. The proposed data representation and image compression method not only achieves more efficient data compression than the state-of-the-art H.264 Intra frame coding, but also provides much more resilience to wireless transmission errors with an internal error-correction capability.

  7. Application of diffusion-edited and solvent suppression (1) H-NMR to the direct analysis of markers in valerian-hop liquid herbal products.

    PubMed

    Prieto, Jose M; Mellinas-Gomez, Maria; Zloh, Mire

    2016-03-01

    Introduction - The rising trend to consume herbal products for the treatment and/or prevention of minor ailments together with their chemical and pharmacological complexity means there is an urgent need to develop new approaches to their quality and stability. Objectives - This work looks at the application of one-dimensional diffusion-edited (1) H-NMR spectroscopy (1D DOSY) and (1) H-NMR with suppression of the ethanol and water signals to the characterisation of quality and stability markers in multi-component herbal medicines/food supplements. Material and Methods - The experiments were performed with commercial tinctures of Valeriana officinalis L. (valerian), expired and non-expired, as well as its combination with Hummulus lupulus L. (hops), which is one of the most popular blends of relaxant herbs. These techniques did not require purification or evaporation of components for the qualitative analysis of the mixture, but only the addition of D2 O and TSP. Results - The best diagnostic signals were found at δ 7 ppm (H-11, valerenic acid), δ 4.2 ppm (H-1, hydroxyvalerenic acid) and δ 1.5-1.8 ppm (methyl groups in prenylated moieties, α-acids/prenylated flavones). Conclusion - This work concludes on the potential value of 1D DOSY (1) H-NMR to provide additional assurance of quality in complex natural mixtures. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26763752

  8. Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Tjandra, Nico

    2011-12-01

    Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.

  9. Magnetic resonance imaging of 1H long lived states derived from parahydrogen induced polarization in a clinical system

    NASA Astrophysics Data System (ADS)

    Graafen, Dirk; Franzoni, María Belén; Schreiber, Laura M.; Spiess, Hans W.; Münnemann, Kerstin

    2016-01-01

    Hyperpolarization is a powerful tool to overcome the low sensitivity of nuclear magnetic resonance (NMR). However, applications are limited due to the short lifetime of this non equilibrium spin state caused by relaxation processes. This issue can be addressed by storing hyperpolarization in slowly decaying singlet spin states which was so far mostly demonstrated for non-proton spin pairs, e.g. 13C-13C. Protons hyperpolarized by parahydrogen induced polarization (PHIP) in symmetrical molecules, are very well suited for this strategy because they naturally exhibit a long-lived singlet state. The conversion of the NMR silent singlet spin state to observable magnetization can be achieved by making use of singlet-triplet level anticrossings. In this study, a low-power radiofrequency pulse sequence is used for this purpose, which allows multiple successive singlet-triplet conversions. The generated magnetization is used to record proton images in a clinical magnetic resonance imaging (MRI) system, after 3 min waiting time. Our results may open unprecedented opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.

  10. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  11. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  12. Relaxation damping in oscillating contacts

    NASA Astrophysics Data System (ADS)

    Popov, M.; Popov, V. L.; Pohrt, R.

    2015-11-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.

  13. Molecular dynamics of poly(ethylene terephthalate)/poly(phenylene sulfide) nanocomposites with barium titanate

    NASA Astrophysics Data System (ADS)

    Konieczna, Monika; Woźniak-Braszak, Aneta; Hołderna-Natkaniec, Krystyna; Jurga, Jan

    2011-04-01

    The relaxation processes and the properties of polymer/ceramic nanocomposites have been studied by the 1H nuclear magnetic resonance methods. Nanocomposites of poly(ethylene terephthalate) PET and poly(phenylene sulfide) PPS with 0.25, 2.5 and 5% wt. barium titanate BT were prepared using a twin screw extruder and injection moulding machine. The spin-lattice relaxation time T1, second moment M2 and the motional parameters as e.g. the activation energies in the nanocomposites were investigated.

  14. Intermolecular Interactions between Eosin Y and Caffeine Using (1)H-NMR Spectroscopy.

    PubMed

    Okuom, Macduff O; Wilson, Mark V; Jackson, Abby; Holmes, Andrea E

    2013-12-31

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using (1)H-NMR, (1)H-COSY, and (1)H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  15. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    PubMed Central

    Okuom, Macduff O.; Wilson, Mark V.; Jackson, Abby; Holmes, Andrea E.

    2014-01-01

    DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC) from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB), and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1) and the analyte (caffeine) that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed. PMID:25018772

  16. Evaluation of short-TE 1H MRSI for quantification of metabolites in the prostate

    PubMed Central

    Basharat, Meer; Jafar, Maysam; deSouza, Nandita M; Payne, Geoffrey S

    2014-01-01

    Back-to-back 1H MRSI scans, using an endorectal and phased-array coil combination, were performed on 18 low-risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer-volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved with the quantitation using quantum estimation (QUEST) routine. Metabolite nulling experiments in an additional five patients found that there were negligible macromolecule background signals in prostate spectra at TE = 32 ms. Metabolite visibility was judged using the criterion Cramér–Rao lower bound (CRLB)/amplitude < 20%, and metabolite concentrations were corrected for relaxation effects and referenced to the data acquired in corresponding water-unsuppressed MRSI scans. For the first time, the prostate metabolites spermine and myo-inositol were quantified individually in vivo, together with citrate, choline and creatine. All five metabolite visibilities were higher in TE = 32 ms MRSI than in TE = 100 ms MRSI. At TE = 32 ms, citrate was visible in 99.0% of lipid-free spectra, whereas, at TE = 100 ms, no metabolite simulation of citrate matched the in vivo peaks. Spermine, choline and creatine were visualised separately in 30.4% more spectra at TE = 32 ms than at TE = 100 ms, and myo-inositol in 72.5% more spectra. T2 values were calculated for spermine (53 ± 16 ms), choline (62 ± 17 ms) and myo-inositol (90 ± 48 ms). Data from the TE = 32 ms spectra showed that the concentrations of citrate and spermine secretions were positively correlated in both the peripheral zone and central gland (R2 = 0.73 and R2 = 0.43, respectively), and that the citrate content was significantly higher in the former at 64 ± 22 mm than in the latter at 32 ± 16 mm (p = 0.01). However, lipid

  17. Conservation of magnetic helicity during plasma relaxation

    SciTech Connect

    Ji, H.; Prager, S.C.; Sarff, J.S.

    1994-07-01

    Decay of the total magnetic helicity during the sawtooth relaxation in the MST Reversed-Field Pinch is much larger than the MHD prediction. However, the helicity decay (3--4%) is smaller than the magnetic energy decay (7--9%), modestly supportive of the helicity conservation hypothesis in Taylor`s relaxation theory. Enhanced fluctuation-induced helicity transport during the relaxation is observed.

  18. Dielectric polarization evolution equations and relaxation times

    SciTech Connect

    Baker-Jarvis, James; Riddle, Bill; Janezic, Michael D.

    2007-05-15

    In this paper we develop dielectric polarization evolution equations, and the resulting frequency-domain expressions, and relationships for the resulting frequency dependent relaxation times. The model is based on a previously developed equation that was derived using statistical-mechanical theory. We extract relaxation times from dielectric data and give illustrative examples for the harmonic oscillator and derive expressions for the frequency-dependent relaxation times and a time-domain integrodifferential equation for the Cole-Davidson model.

  19. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  20. Characterisation of the 1H and 13C NMR spectra of methylcitric acid

    NASA Astrophysics Data System (ADS)

    Krawczyk, Hanna; Martyniuk, Tomasz

    2007-06-01

    Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2 RS, 3 RS stereoisomers) and in the nucleophilic addition (2 RS, 3 SR stereoisomers). The stereoselectivity of these reactions was analysed. 1H and 13C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of 1H chemical shifts and 1H- 1H coupling constants were analysed. Proton-decoupled high-resolution 13C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.

  1. Regioselectively Controlled Synthesis of N-Substituted (Trifluoromethyl)pyrimidin-2(1H)-ones.

    PubMed

    da Silva, Andreia M P W; da Silva, Fabio M; Bonacorso, Helio G; Frizzo, Clarissa P; Martins, Marcos A P; Zanatta, Nilo

    2016-05-01

    A simple and regioselectively controlled method for the preparation of both 1,4- and 1,6-regioisomers of 1-substituted 4(6)-trifluoromethyl-pyrimidin-2(1H)-ones is described. Both regioisomers were synthesized from the cyclocondensation reaction of 4-substituted 1,1,1-trifluoro-4-methoxybut-3-en-2-ones: with nonsymmetric ureas for the 1-substituted 4-(trifluoromethyl)pyrimidin-2(1H)-ones (1,4-isomer) and with nonsymmetric 1-substituted 2-methylisothiourea sulfates for the synthesis of 1-substituted 6-(trifluoromethyl)pyrimidin-2(1H)-ones (1,6-isomer). Each method furnished only the respective isomer in very good yields. The structure of the products was assigned based on the (1)H and (13)C NMR as well as 2D HMBC spectral analysis. PMID:27070191

  2. Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting.

    PubMed

    Aliferis, Konstantinos A; Materzok, Sylwia; Paziotou, Georgia N; Chrysayi-Tokousbalides, Maria

    2009-08-01

    A validated method applying (1)H NMR fingerprinting for the study of metabolic changes caused in Lemna minor L. by various phytotoxic substances is presented. (1)H NMR spectra of crude extracts from untreated and treated colonies with the herbicides glyphosate, mesotrione, norflurazon, paraquat and the phytotoxin pyrenophorol were subjected to multivariate analyses for detecting differences between groups of treatments. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were carried out in order to discriminate and classify treatments according to the observed changes in the metabolome of the plant. Although the compounds at the concentrations used did not cause macroscopically observable symptoms of phytotoxicity, characteristic metabolic changes were detectable by analyzing (1)H NMR spectra. Analyses results revealed that metabonomics applying (1)H NMR fingerprinting is a potential method for the investigation of toxicological effects of xenobiotics on L. minor, and possibly on other duckweed species, helping in the understanding of such interactions. PMID:19443011

  3. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  4. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  5. Baryogenesis via elementary Goldstone Higgs relaxation

    NASA Astrophysics Data System (ADS)

    Gertov, Helene; Pearce, Lauren; Sannino, Francesco; Yang, Louis

    2016-06-01

    We extend the relaxation mechanism to the elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory, we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very flat scalar potential directions along which the relaxation mechanism can be implemented. This fact translates into wider regions of applicability of the relaxation mechanism when compared to the Standard Model Higgs case. Our results show that if the electroweak scale is not fundamental but radiatively generated it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism.

  6. The time correlation function perspective of NMR relaxation in proteins

    NASA Astrophysics Data System (ADS)

    Shapiro, Yury E.; Meirovitch, Eva

    2013-08-01

    We applied over a decade ago the two-body coupled-rotator slowly relaxing local structure (SRLS) approach to NMR relaxation in proteins. One rotator is the globally moving protein and the other rotator is the locally moving probe (spin-bearing moiety, typically the 15N-1H bond). So far we applied SRLS to 15N-H relaxation from seven different proteins within the scope of the commonly used data-fitting paradigm. Here, we solve the SRLS Smoluchowski equation using typical best-fit parameters as input, to obtain the corresponding generic time correlation functions (TCFs). The following new information is obtained. For actual rhombic local ordering and main ordering axis pointing along C_{i - 1}^α - C_i^α, the measurable TCF is dominated by the (K,K') = (-2,2), (2,2), and (0,2) components (K is the order of the rank 2 local ordering tensor), determined largely by the local motion. Global diffusion axiality affects the analysis significantly when the ratio between the parallel and perpendicular components exceeds approximately 1.5. Local diffusion axiality has a large and intricate effect on the analysis. Mode-coupling becomes important when the ratio between the global and local motional rates falls below 0.01. The traditional method of analysis - model-free (MF) - represents a simple limit of SRLS. The conditions under which the MF and SRLS TCFs are the same are specified. The validity ranges of wobble-in-a-cone and rotation on the surface of a cone as local motions are determined. The evolution of the intricate Smoluchowski operator from the simple diffusion operator for a sphere reorienting in isotropic medium is delineated. This highlights the fact that SRLS is an extension of the established stochastic theories for treating restricted motions. This study lays the groundwork for TCF-based comparison between mesoscopic SRLS and atomistic molecular dynamics.

  7. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling.

    PubMed

    Schmidt-Rohr, K; Rawal, A; Fang, X-W

    2007-02-01

    A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical

  8. One-Pot Synthesis of Substituted Trifluoromethylated 2,3-Dihydro-1H-imidazoles.

    PubMed

    Deutsch, Amrei; Jessen, Christoph; Deutsch, Carl; Karaghiosoff, Konstantin; Hoffmann-Röder, Anja

    2016-07-15

    An operationally simple one-pot reaction for the preparation of a novel class of racemic trifluoromethylated 2,3-dihydro-1H-imidazoles derived from electron-poor N,O-acetals and aryl Grignard reagents is described. In addition, access to highly functionalized 2-trifluoromethyl-2,3-dihydro-1H-imidazoles was accomplished by reaction of N-aryl hemiaminal ethers and N-aryl trifluoroethylamines in the presence of an excess of n-butyllithium. PMID:27359260

  9. The multigrid method: Fast relaxation

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr.; Brandt, A.

    1976-01-01

    A multi-level grid method was studied as a possible means of accelerating convergence in relaxation calculations for transonic flows. The method employs a hierarchy of grids, ranging from very coarse (e.g. 4 x 2 mesh cells) to fine (e.g. 64 x 32); the coarser grids are used to diminish the magnitude of the smooth part of the residuals, hopefully with far less total work than would be required with optimal iterations on the finest grid. To date the method was applied quite successfully to the solution of the transonic small-disturbance equation for the velocity potential in conservation form. Nonlifting transonic flow past a parabolic arc airfoil is the example studied, with meshes of both constant and variable step size.

  10. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  11. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2. PMID:26878852

  12. [(1)H] magnetic resonance spectroscopy of urine: diagnosis of a guanidinoacetate methyl transferase deficiency case.

    PubMed

    Tassini, Maria; Zannolli, Raffaella; Buoni, Sabrina; Engelke, Udo; Vivi, Antonio; Valensin, Gianni; Salomons, Gajja S; De Nicola, Anna; Strambi, Mirella; Monti, Lucia; Morava, Eva; Wevers, Ron A; Hayek, Joseph

    2010-01-01

    For the first time, the use of urine [(1)H] magnetic resonance spectroscopy has allowed the detection of 1 case of guanidinoacetate methyl transferase in a database sample of 1500 pediatric patients with a diagnosis of central nervous system impairment of unknown origin. The urine [(1)H] magnetic resonance spectroscopy of a 9-year-old child, having severe epilepsy and nonprogressive mental and motor retardation with no apparent cause, revealed a possible guanidinoacetic acid increase. The definitive assignment of guanidinoacetic acid was checked by addition of pure substance to the urine sample and by measuring [(1)H]-[(1)H] correlation spectroscopy. Diagnosis of guanidinoacetate methyl transferase deficiency was further confirmed by liquid chromatography-mass spectrometry, brain [(1)H] magnetic resonance spectroscopy, and mutational analysis of the guanidinoacetate methyl transferase gene. The replacement therapy was promptly started and, after 1 year, the child was seizure free. We conclude that for this case, urine [(1)H] magnetic resonance spectroscopy screening was able to diagnose guanidinoacetate methyl transferase deficiency. PMID:19461121

  13. Higher energy electronic transitions of HC(2n+1)H+ (n=2-7) and HC(2n+1)H (n=4-7) in neon matrices.

    PubMed

    Fulara, Jan; Nagy, Adam; Garkusha, Iryna; Maier, John P

    2010-07-14

    Electronic absorption spectra of linear HC(2n+1)H(+) (n=2-7) were recorded in 6 K neon matrices following their mass-selective deposition. Four new electronic band systems are identified; the strongest E (2)Pi(g/u)<--X (2)Pi(u/g) lies in the UV and the second most intense C (2)Pi(g/u)<--X (2)Pi(u/g) is located in the visible range. The known A (2)Pi(g/u)<--X (2)Pi(u/g) absorption is an order of magnitude weaker than C (2)Pi(g/u)<--X (2)Pi(u/g). Transitions to the B and D states are also discussed. The wavelengths of the HC(2n+1)H(+) (n=2-7) electronic systems obey a linear relation as a function of the size of the cations, similar to other carbon chains. The B (3)Sigma(u)(-)<--X (3)Sigma(g)(-) transition in the UV of neutral HC(2n+1)H (n=4-7) has also been identified upon photobleaching of the cations trapped in the matrices. PMID:20632752

  14. sup 1 H and sup 31 P nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF sub 1 ATP synthase

    SciTech Connect

    Devlin, C.C.; Grisham, C.M. )

    1990-07-03

    The interaction of nucleotides and nucleotide analogues and their complexes with Mn{sup 2+} bound to both the latent and dithiothreitol-activated CF{sub 1} ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and {sup 1}H and {sup 31}P nuclear relaxation measurements. Titration of both the latent and activated Mn{sup 2+}-CF{sub 1} complexes with ATP, ADP, P{sub i}, Co(NH{sub 3}){sub 4}ATP, Co(NH{sub 3}){sub 4}ADP, and Co(NH{sub 3}){sub 4}AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF{sub 1} by Co(NH{sub 3}){sub 4}AMPPCP with respect to CaATP. {sup 1}H and {sup 31}P nuclear relaxation measurements in solutions of CF{sub 1} and Co(NH{sub 3}){sub 4}AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity sites for Mn{sup 2+}. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn{sup 2+} site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the {beta}-P and {gamma}-P of the substrate. The distances from Mn{sup 2+} to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.

  15. Predictability of 1-h postload plasma glucose concentration: A 10-year retrospective cohort study

    PubMed Central

    Kuang, Lifen; Huang, Zhimin; Hong, Zhenzhen; Chen, Ailing; Li, Yanbing

    2015-01-01

    Aims/Introduction Elevated 1-h postload plasma glucose concentration (1hPG) during oral glucose tolerance test has been linked to an increased risk of type 2 diabetes and a poorer cardiometabolic risk profile. The present study analyzed the predictability and cut-off point of 1hPG in predicting type 2 diabetes in normal glucose regulation (NGR) subjects, and evaluated the long-term prognosis of NGR subjects with elevated 1hPG in glucose metabolism, kidney function, metabolic states and atherosclerosis. Materials and Methods A total of 116 Han Chinese classified as NGR in 2002 at the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China, were investigated. Follow-up was carried out in 2012 to evaluate the progression of glucose metabolism, kidney function, metabolic syndrome and carotid atherosclerosis. Results The areas under receiver operating characteristic curves were higher for 1hPG than FPG or 2hPG (0.858 vs 0.806 vs 0.746). The cut-off value of 1hPG with the maximal sum of sensitivity and specificity in predicting type 2 diabetes in NGR subjects was 8.85 mmol/L. The accumulative incidence of type 2 diabetes in subjects with 1hPG ≥8.85 mmol/L was higher than those <8.85 mmol/L (46.2% vs 3.3%, P = 0.000; relative risk 13.846, 95% confidence interval 4.223–45.400). On follow up, the prevalence of metabolic syndrome and abnormal carotid intima-media thickness in the subjects with 1hPG ≥8.85 mmol/L tended to be higher compared with those <8.85 mmol/L. Conclusions 1hPG is a good predictor of type 2 diabetes in NGR subjects, and the best cut-off point is 8.85 mmol/L. Some tendency indicates that NGR subjects with 1hPG ≥8.85 mmol/L are more prone to metabolic syndrome and carotid atherosclerosis. PMID:26543538

  16. Nitric Oxide-mediated Relaxation by High K in Human Gastric Longitudinal Smooth Muscle.

    PubMed

    Kim, Young Chul; Choi, Woong; Yun, Hyo-Young; Sung, Rohyun; Yoo, Ra Young; Park, Seon-Mee; Yun, Sei Jin; Kim, Mi-Jung; Song, Young-Jin; Xu, Wen-Xie; Lee, Sang Jin

    2011-12-01

    This study was designed to elucidate high-K(+)induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high K(+) (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high K(+) (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high K(+)-induced relaxation. K(+) channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium (Ba(2+)) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent K(+) channel (K(V)) blocker, inhibited high K(+)-induced relaxation, hence reversing to tonic contraction. High K(+)-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and K(V) channel blocker sensitive high K(+)-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high K(+)-induced relaxation which was activated by NO/sGC pathway and by K(V) channel dependent mechanism. PMID:22359479

  17. Upper esophageal sphincter during transient lower esophageal sphincter relaxation: effects of reflux content and posture.

    PubMed

    Babaei, Arash; Bhargava, Valmik; Mittal, Ravinder K

    2010-05-01

    Although some studies show that the upper esophageal sphincter (UES) contracts during transient lower esophageal sphincter relaxation (TLESR), others show that it relaxes. We hypothesized that the posture of the subject and constituents of gastroesophageal reflux (GER) may determine the type of UES response during the TLESR. High-resolution manometry and esophageal pH/impedance recording were performed in 10 healthy volunteers in the right recumbent (1 h) and upright (1 h) positions following the ingestion of a 1,000-Kcal meal. The UES pressure response during TLESR and constituents of GER (liquid, air, and pH) were determined. 109 TLESRs (58 upright and 51 recumbent) were analyzed. The majority of TLESRs were associated with GER (91% upright and 88% recumbent) events. UES relaxation was the predominant response during upright position (81% of TLESRs), and it was characteristically associated with presence of air in the reflux (92%). On the other hand, UES contraction was the predominant response during recumbent position (82% of TLESRs), and it was mainly associated with liquid reflux (71%). The rate of esophageal pressure increase (dP/dt) during the GER, but not the pH, had major influence on the type of UES response during TLESR. The dP/dt during air reflux (127 +/- 39 mmHg/s) was significantly higher than liquid reflux (31 +/- 6 mmHg/s, P < 0.0001). We concluded that the nature of UES response during TLESR, relaxation or contraction, is related to the posture and the constituents of GER. We propose that the rapid rate of esophageal pressure increase associated with air reflux determines the UES relaxation response to GER. PMID:20167874

  18. Dielectric secondary relaxations in polypropylene glycols.

    PubMed

    Grzybowska, K; Grzybowski, A; Zioło, J; Paluch, M; Capaccioli, S

    2006-07-28

    Broadband dielectric measurements of polypropylene glycol of molecular weight M(w)=400 g / mol (PPG 400) were carried out at ambient pressure over the wide temperature range from 123 to 353 K. Three relaxation processes were observed. Besides the structural alpha relaxation, two secondary relaxations, beta and gamma, were found. The beta process was identified as the true Johari-Goldstein relaxation by using a criterion based on the coupling model prediction. The faster gamma relaxation, well separated from the primary process, undoubtedly exhibits the anomalous behavior near the glass transition temperature (T(g)) which is reflected in the presence of a minimum of the temperature dependence of the gamma-relaxation time. We successfully applied the minimal model [Dyre and Olsen, Phys. Rev. Lett. 91, 155703 (2003)] to describe the entire temperature dependence of the gamma-relaxation time. The asymmetric double-well potential parameters obtained by Dyre and Olsen for the secondary relaxation of tripropylene glycol at ambient pressure were modified by fitting to the minimal model at lower temperatures. Moreover, we showed that the effect of the molecular weight of polypropylene glycol on the minimal model parameters is significantly larger than that of the high pressure. Such results can be explained by the smaller degree of hydrogen bonds formed by longer chain molecules of PPG at ambient pressure than that created by shorter chains of PPG at high pressure. PMID:16942189

  19. Analysis of sawtooth relaxation oscillations in tokamaks

    SciTech Connect

    Yamazaki, K.; McGuire, K.; Okabayashi, M.

    1982-07-01

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated.

  20. AQUEOUS RELAXATION REAGENTS IN NITROGEN-15 NMR

    EPA Science Inventory

    Electron-nuclear relaxation times T(1)supe's for 15N and 13C in natural abundance are measured for a series of amines in aqueous solution using Gd(III) complexes of a series of polyaminocarboxylate ligands as paramagnetic relaxation reagents (PARRs). The PARRs are classified by t...