Science.gov

Sample records for 1h t2 relaxation

  1. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    NASA Astrophysics Data System (ADS)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  2. Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals

    NASA Astrophysics Data System (ADS)

    Castañar, Laura; Nolis, Pau; Virgili, Albert; Parella, Teodor

    2014-07-01

    The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods.

  3. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stephan; Wolf, Martin; Skrabal, Peter; Bangerter, Felix; Heusser, Peter; Thurneysen, André; Wolf, Ursula

    2009-09-01

    Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10 c-30 c, n = 21, corresponding to iterative dilutions of 100-10-100-30), sulfur (13 x-30 x, n = 18, 10-13-10-30), and copper sulfate (11 c-30 c, n = 20, 100-11-100-30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations

  4. Osmotic and aging effects in caviar oocytes throughout water and lipid changes assessed by 1H NMR T1 and T2 relaxation and MRI.

    PubMed

    Gussoni, Maristella; Greco, Fulvia; Vezzoli, Alessandra; Paleari, Maria Antonietta; Moretti, Vittorio Maria; Lanza, Barbara; Zetta, Lucia

    2007-01-01

    By combining NMR relaxation spectroscopy and magnetic resonance imaging techniques, unsalted (us) and salted (s) caviar (Acipenser transmontanus) oocytes were characterized over a storage period of up to 90 days. The aging and the salting effects on the two major cell constituents, water and lipids, were separately assessed. T1 and T2 decays were interpreted by assuming a two-site exchange model. At Day 0, two water compartments that were not in fast exchange were identified by the T1 relaxation measurements on the us oocytes. In the s samples, T1 decay was monoexponential. During the time of storage, an increment of the free water amount was found for the us oocytes, ascribed to an increased metabolism. T1 and T2 of the s oocytes shortened as a consequence of the osmotic stress produced by salting. Selective images showed the presence of water endowed with different regional mobility that severely changed during the storage. Lipid T1 relaxation decays collected on us and s samples were found to be biexponential, and the T1 values lengthened during storage. In us and s oocytes, the increased lipid mobility with the storage was ascribed to lipolysis. Selective images of us samples showed lipids that were confined to the cytoplasm for up to 60 days of storage. PMID:17222723

  5. Multicomponent T2 relaxation analysis in cartilage

    PubMed Central

    Reiter, David A.; Lin, Ping-Chang; Fishbein, Kenneth W.; Spencer, Richard G.

    2009-01-01

    MR techniques are sensitive to the initial phases of osteoarthritis, characterized by disruption of collagen and loss of proteoglycan (PG), but are of limited specificity. Here, water compartments in normal and trypsin-degraded bovine nasal cartilage were identified using a non-negative least squares multiexponential analysis of T2 relaxation. Three components were detected: T2,1 = 2.3 ms, T2,2 = 25.2 ms, and T2,3 = 96.3 ms, with fractions w1 = 6.2%, w2 = 14.5%, and w3 = 79.3%, respectively. Trypsinization resulted in increased (p<0.01) values of T2,2 = 64.2 ms and T2,3 = 149.4 ms, supporting their assignment to water compartments that are bound and loosely associated with PG, respectively. The T2 of the rapidly-relaxing component was not altered by digestion, supporting assignment to relatively immobile collagen-bound water. Relaxation data were simulated for a range of TE, number of echoes, and SNR to guide selection of acquisition parameters and assess the accuracy and precision of experimental results. Based on this, the expected experimental accuracy of measured T2’s and associated weights was within 2% and 4% respectively, with precision within 1% and 3%. These results demonstrate the potential of multiexponential T2 analysis to increase the specificity of MR characterization of cartilage. PMID:19189393

  6. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  7. The origin of biexponential T2 relaxation in muscle water

    NASA Technical Reports Server (NTRS)

    Cole, W. C.; LeBlanc, A. D.; Jhingran, S. G.

    1993-01-01

    Two theories have been proposed to explain the multiexponential transverse relaxation of muscle water protons: "anatomical" and "chemical" compartmentation. In an attempt to obtain evidence to support one or the other of these two theories, interstitial and intracellular macromolecular preparations were studied and compared with rat muscle tissue by proton NMR transverse relaxation (T2) measurements. All macromolecule preparations displayed monoexponential T2 decay. Membrane alteration with DMSO/glycerin did not eliminate the biexponential T2 decay of muscle tissue. Maceration converted biexponential T2 decay of muscle tissue to single exponential decay. It is concluded that the observed two component exponential T2 decay of muscle represents anatomical compartmentation of tissue water, probably intracellular versus extracellular.

  8. Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.

    PubMed

    Szuminska, K; Gutsze, A; Kowalczyk, A

    2001-01-01

    Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse interval (tauCPMG) as well as 1H NMR spectral measurements in a wide range of concentrations of bovine serum albumin (BSA) solutions. The anomalous relaxation behaviour of the water protons, similar to that observed in mammalian lenses, was found in the two most concentrated solutions (44% and 46%). The functional dependence of the spin-spin relaxation time vs. tauCPMG pulse interval and the values of the motional activation parameters obtained from the temperature dependencies of spin-lattice relaxation times suggest that the water molecule mobility is reduced in these systems. The slow exchange process on the T2 time scale is proposed to explain the obtained data. The proton spectral measurements support the hypothesis of a slow exchange mechanism in the highest concentrated solutions. From the analysis of the shape of the proton spectra the mean exchange times between bound and bulk water proton groups (tauex) have been estimated for the range of the highest concentrations (30%-46%). The obtained values are of the order of milliseconds assuring that the slow exchange condition is fulfilled in the most concentrated samples. PMID:11837660

  9. T2 relaxation time is related to liver fibrosis severity

    PubMed Central

    Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter

    2016-01-01

    Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi

  10. Short-T2 Imaging for Quantifying Concentration of Sodium (23Na) of Bi-Exponential T2 Relaxation

    PubMed Central

    Qian, Yongxian; Panigrahy, Ashok; Laymon, Charles M.; Lee, Vincent K.; Drappatz, Jan; Lieberman, Frank S.; Boada, Fernando E.; Mountz, James M.

    2014-01-01

    Purpose This work intends to demonstrate a new method for quantifying concentration of sodium (23Na) of bi-exponential T2 relaxation in patients on MRI scanners at 3.0 Tesla. Theory Two single-quantum (SQ) sodium images acquired at very-short and short echo times (TE=0.5 and 5.0ms) are subtracted to produce an image of the short-T2 component of the bi-exponential (or bound) sodium. An integrated calibration on the SQ and short-T2 images quantifies both total and bound sodium concentrations. Methods Numerical models were used to evaluate signal response of the proposed method to the short-T2 components. MRI scans on agar phantoms and brain tumor patients were performed to assess accuracy and performance of the proposed method, in comparison with a conventional method of triple-quantum filtering. Results A good linear relation (R2=0.98) was attained between the short-T2 image intensity and concentration of bound sodium. A reduced total scan time of 22min was achieved under the SAR restriction for human studies in quantifying both total and bound sodium concentrations. Conclusion The proposed method is feasible for quantifying bound sodium concentration in routine clinical settings at 3.0 Tesla. PMID:25078966

  11. 1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion.

    PubMed

    Kruk, D; Korpała, A; Taheri, S Mehdizadeh; Kozłowski, A; Förster, S; Rössler, E A

    2014-05-01

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained. PMID:24811643

  12. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling.

    PubMed

    Schmidt-Rohr, K; Rawal, A; Fang, X-W

    2007-02-01

    A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical

  13. Dispersion of T1 and T2 nuclear magnetic resonance relaxation in crude oils.

    PubMed

    Chen, Joseph J; Hürlimann, Martin; Paulsen, Jeffrey; Freed, Denise; Mandal, Soumyajit; Song, Yi-Qiao

    2014-09-15

    Crude oils, which are complex mixtures of hydrocarbons, can be characterized by nuclear magnetic resonance diffusion and relaxation methods to yield physical properties and chemical compositions. In particular, the field dependence, or dispersion, of T1 relaxation can be used to investigate the presence and dynamics of asphaltenes, the large molecules primarily responsible for the high viscosity in heavy crudes. However, the T2 relaxation dispersion of crude oils, which provides additional insight when measured alongside T1, has yet to be investigated systematically. Here we present the field dependence of T1-T2 correlations of several crude oils with disparate densities. While asphaltene and resin-containing crude oils exhibit significant T1 dispersion, minimal T2 dispersion is seen in all oils. This contrasting behavior between T1 and T2 cannot result from random molecular motions, and thus, we attribute our dispersion results to highly correlated molecular dynamics in asphaltene-containing crude oils. PMID:24919743

  14. {sup 1}H NMR electron-nuclear cross relaxation in thin films of hydrogenated amorphous silicon

    SciTech Connect

    Su Tining; Taylor, P. C.; Ganguly, G.; Carlson, D. E.; Bobela, D. C.; Hari, P.

    2007-12-15

    We investigate the spin-lattice relaxation of the dipolar order in {sup 1}H NMR in hydrogenated amorphous silicon (a-Si:H). We find that the relaxation is dominated by the cross relaxation between the hydrogen nuclei and the paramagnetic states. The relaxation is inhomogeneous, and can be described as a stretched exponential function. We proposed a possible mechanism for this relaxation. This mechanism applies to a rather broad range of paramagnetic states, including the deep neutral defects (dangling bonds), the light-induced metastable defects, the defects created by doping, and the singly occupied, localized band-tail states populated by light at low temperatures. The cross relaxation is only sensitive to the bulk spin density, and the surface spins have a negligible effect on the relaxation.

  15. A study of the aging of silicone breast implants using 29Si, 1H relaxation and DSC measurements.

    PubMed

    Birkefeld, Anja Britta; Eckert, Hellmut; Pfleiderer, Bettina

    2004-08-01

    In this study 26 previously implanted silicone breast implants from the same manufacturer (Dow Corning) were investigated with two different analytical methods to characterize potential aging processes such as migration of monomer material from the gel and shell to local and distant sites, chemical alterations of the polymer, and infiltration of body compounds such as lipids. (1)H and (29)Si NMR relaxation measurements (spin-lattice, T1, and spin-spin, T2, relaxation times) were used to study the molecular dynamics of polysiloxane chains, both in gels and in shells. In addition, changes in physical properties were monitored by differential scanning calorimetry (DSC). The results of these measurements indicate that NMR relaxation times are influenced by implant generation, implantation time, shell texture and implant status. (1)H T2 values of shells and gels show a tendency to increase with increasing implantation time, indicating higher mobility and possible disintegration of the polymer network of older implants. Furthermore, the data suggest that aging also involves the migration of low cyclic molecular weight (LMW) silicone and linear chain polymer material from the gels into the shells. The high "bleeding" rate of second-generation (G2) implants (implantation period around 1973-1985), exhibiting thin shells is reflected in reduced relaxation times of these devices, most likely due to a loss of low molecular weight fractions from the gels. Moreover, "gel bleeding" also influences the melting behavior observed in DSC studies. Increased shell rigidity (high Tm and Tg) tends to be correlated with longer (29)Si relaxation times of the corresponding gels, suggesting a reduced transfer of LMW silicones and linear chain polymer from the gel to the shell and to the outside. Remarkably, textured implants seem to be less susceptible to degradation processes than implants with thin shells. PMID:15046931

  16. {sup 1}H relaxation enhancement induced by nanoparticles in solutions: Influence of magnetic properties and diffusion

    SciTech Connect

    Kruk, D.; Korpała, A.; Taheri, S. Mehdizadeh; Förster, S.; Kozłowski, A.; Rössler, E. A.

    2014-05-07

    Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance {sup 1}H spin-lattice relaxation for decalin and toluene solutions of various Fe{sub 2}O{sub 3} nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz–20 MHz by applying Field Cycling method, and in the temperature range of 257–298 K, using nanoparticles differing in size and shape: spherical – 5 nm diameter, cubic – 6.5 nm diameter, and cubic – 9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall {sup 1}H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the {sup 1}H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.

  17. Protein conformational exchange measured by 1H R1ρ relaxation dispersion of methyl groups.

    PubMed

    Weininger, Ulrich; Blissing, Annica T; Hennig, Janosch; Ahlner, Alexandra; Liu, Zhihong; Vogel, Hans J; Akke, Mikael; Lundström, Patrik

    2013-09-01

    Activated dynamics plays a central role in protein function, where transitions between distinct conformations often underlie the switching between active and inactive states. The characteristic time scales of these transitions typically fall in the microsecond to millisecond range, which is amenable to investigations by NMR relaxation dispersion experiments. Processes at the faster end of this range are more challenging to study, because higher RF field strengths are required to achieve refocusing of the exchanging magnetization. Here we describe a rotating-frame relaxation dispersion experiment for (1)H spins in methyl (13)CHD2 groups, which improves the characterization of fast exchange processes. The influence of (1)H-(1)H rotating-frame nuclear Overhauser effects (ROE) is shown to be negligible, based on a comparison of R 1ρ relaxation data acquired with tilt angles of 90° and 35°, in which the ROE is maximal and minimal, respectively, and on samples containing different (1)H densities surrounding the monitored methyl groups. The method was applied to ubiquitin and the apo form of calmodulin. We find that ubiquitin does not exhibit any (1)H relaxation dispersion of its methyl groups at 10 or 25 °C. By contrast, calmodulin shows significant conformational exchange of the methionine methyl groups in its C-terminal domain, as previously demonstrated by (1)H and (13)C CPMG experiments. The present R 1ρ experiment extends the relaxation dispersion profile towards higher refocusing frequencies, which improves the definition of the exchange correlation time, compared to previous results. PMID:23904100

  18. Postmortem MRI of Human Brain Hemispheres: T2 Relaxation Times during Formaldehyde Fixation

    PubMed Central

    Dawe, Robert J.; Bennett, David A.; Schneider, Julie A.; Vasireddi, Sunil K.; Arfanakis, Konstantinos

    2009-01-01

    Unlike in vivo imaging, postmortem MRI allows for invasive examination of the tissue specimen immediately following the MR scan. However, natural tissue decomposition and chemical fixation cause the postmortem tissue’s MRI properties to be different from those found in vivo. Moreover, these properties change as postmortem fixation time elapses. The goal of this study was to characterize the T2 relaxation changes that occur over time in cadaveric human brain hemispheres during fixation. Five hemispheres immersed in formaldehyde solution were scanned on a weekly basis for three months postmortem, and once again at six months postmortem. The T2 relaxation times were measured throughout the hemispheres. Over time, T2 values near the edges of the hemispheres decreased rapidly after death, while T2 values of deep tissue decreased more slowly. This difference is likely due to the relatively large distance from the hemisphere surface, and other barriers limiting diffusion of formaldehyde molecules to deep tissues. In addition, T2 values in deep tissue did not continuously decay to a plateau, but instead reached a minimum and then increased to a plateau. This final increase may be due to the effects of prolonged tissue decomposition, a hypothesis that is supported by numerical simulations of the fixation process. PMID:19189294

  19. 1H NMR Relaxation Investigation of Inhibitors Interacting with Torpedo californica Acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Delfini, Maurizio; Gianferri, Raffaella; Dubbini, Veronica; Manetti, Cesare; Gaggelli, Elena; Valensin, Gianni

    2000-05-01

    Two naphthyridines interacting with Torpedo californica acetylcholinesterase (AChE) were investigated. 1H NMR spectra were recorded and nonselective, selective, and double-selective spin-lattice relaxation rates were measured. The enhancement of selective relaxation rates could be titrated by different ligand concentrations at constant AChE (yielding 0.22 and 1.53 mM for the dissociation constants) and was providing evidence of a diverse mode of interaction. The double-selective relaxation rates were used to evaluate the motional correlation times of bound ligands at 34.9 and 36.5 ns at 300 K. Selective relaxation rates of bound inhibitors could be interpreted also in terms of dipole-dipole interactions with protons in the enzyme active site.

  20. Functional changes in CSF volume estimated using measurement of water T2 relaxation.

    PubMed

    Piechnik, S K; Evans, J; Bary, L H; Wise, R G; Jezzard, P

    2009-03-01

    Cerebrospinal fluid (CSF) provides hydraulic suspension for the brain. The general concept of bulk CSF production, circulation, and reabsorption is well established, but the mechanisms of momentary CSF volume variation corresponding to vasoreactive changes are far less understood. Nine individuals were studied in a 3T MR scanner with a protocol that included visual stimulation using a 10-Hz reversing checkerboard and administration of a 5% CO(2) mix in air. We acquired PRESS-localized spin-echoes (TR = 12 sec, TE = 26 ms to 1.5 sec) from an 8-mL voxel located in the visual cortex. Echo amplitudes were fitted to a two-compartmental model of relaxation to estimate the partial volume of CSF and the T(2) relaxation times of the tissues. CSF signal contributed 10.7 +/- 3% of the total, with T(2,csf) = 503.0 +/- 64.3 [ms], T(2,brain) = 61.0 +/- 2 [ms]. The relaxation time of tissue increased during physiological stimulation, while the fraction of signal contributed by CSF decreased significantly by 5-6% with visual stimulation (P < 0.03) and by 3% under CO(2) inhalation (P < 0.08). The CSF signal fraction is shown to represent well the volume changes under viable physiological scenarios. In conclusion, CSF plays a significant role in buffering the changes in cerebral blood volume, especially during rapid functional stimuli. PMID:19132756

  1. On improving the speed and reliability of T2-relaxation-under-spin-tagging (TRUST) MRI.

    PubMed

    Xu, Feng; Uh, Jinsoo; Liu, Peiying; Lu, Hanzhang

    2012-07-01

    A T(2) -relaxation-under-spin-tagging technique was recently developed to estimate cerebral blood oxygenation, providing potentials for noninvasive assessment of the brain's oxygen consumption. A limitation of the current sequence is the need for long repetition time, as shorter repetition time causes an over-estimation in blood R(2). This study proposes a postsaturation T(2)-relaxation-under-spin-tagging by placing a nonselective 90° pulse after the signal acquisition to reset magnetization in the whole brain. This scheme was found to eliminate estimation bias at a slight cost of precision. To improve the precision, echo time of the sequence was optimized and it was found that a modest echo time shortening of 3.4 ms can reduce the estimation error by 49%. We recommend the use of postsaturation T(2)-relaxation-under-spin-tagging sequence with a repetition time of 3000 ms and a echo time of 3.6 ms, which allows the determination of global venous oxygenation with scan duration of 1 min 12 s and an estimation precision of ± 1% (in units of oxygen saturation percentage). PMID:22127845

  2. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    PubMed

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. PMID:20600981

  3. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J.; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement.

  4. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model.

    PubMed

    Williamson, Nathan H; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement. PMID:27344611

  5. T2 relaxation time post febrile status epilepticus predicts cognitive outcome.

    PubMed

    Barry, Jeremy M; Choy, ManKin; Dube, Celine; Robbins, Ashlee; Obenaus, Andre; Lenck-Santini, Pierre Pascal; Scott, Rod C; Baram, Tallie Z; Holmes, Gregory L

    2015-07-01

    Evidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later. T2 relaxation times were significantly lower in FSE rats that were task learners in comparison to FSE non-learners. While T2 time in whole brain held the greatest predictive power, T2 in hippocampus and basolateral amygdala were also excellent predictors. These signal differences in response to FSE indicate that rats that fail to meet metabolic and oxygen demand are more likely to develop spatial cognition deficits. Place cells from FSE non-learners had significantly larger firing fields and higher in-field firing rate than FSE learners and control animals and imply increased excitability in the pyramidal cells of FSE non-learners. These findings suggest a mechanistic cause for the spatial memory deficits in active avoidance and are relevant to other acute neurological insults in early development where cognitive outcome is a concern. PMID:25939697

  6. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  7. Modeling T1 and T2 relaxation in bovine white matter

    NASA Astrophysics Data System (ADS)

    Barta, R.; Kalantari, S.; Laule, C.; Vavasour, I. M.; MacKay, A. L.; Michal, C. A.

    2015-10-01

    The fundamental basis of T1 and T2 contrast in brain MRI is not well understood; recent literature contains conflicting views on the nature of relaxation in white matter (WM). We investigated the effects of inversion pulse bandwidth on measurements of T1 and T2 in WM. Hybrid inversion-recovery/Carr-Purcell-Meiboom-Gill experiments with broad or narrow bandwidth inversion pulses were applied to bovine WM in vitro. Data were analysed with the commonly used 1D-non-negative least squares (NNLS) algorithm, a 2D-NNLS algorithm, and a four-pool model which was based upon microscopically distinguishable WM compartments (myelin non-aqueous protons, myelin water, non-myelin non-aqueous protons and intra/extracellular water) and incorporated magnetization exchange between adjacent compartments. 1D-NNLS showed that different T2 components had different T1 behaviours and yielded dissimilar results for the two inversion conditions. 2D-NNLS revealed significantly more complicated T1/T2 distributions for narrow bandwidth than for broad bandwidth inversion pulses. The four-pool model fits allow physical interpretation of the parameters, fit better than the NNLS techniques, and fits results from both inversion conditions using the same parameters. The results demonstrate that exchange cannot be neglected when analysing experimental inversion recovery data from WM, in part because it can introduce exponential components having negative amplitude coefficients that cannot be correctly modeled with nonnegative fitting techniques. While assignment of an individual T1 to one particular pool is not possible, the results suggest that under carefully controlled experimental conditions the amplitude of an apparent short T1 component might be used to quantify myelin water.

  8. Relationships between 1H NMR Relaxation Data and Some Technological Parameters of Meat: A Chemometric Approach

    NASA Astrophysics Data System (ADS)

    Brown, Robert J. S.; Capozzi, Francesco; Cavani, Claudio; Cremonini, Mauro A.; Petracci, Massimiliano; Placucci, Giuseppe

    2000-11-01

    In this paper chemometrics (ANOVA and PCR) is used to measure unbiased correlations between NMR spin-echo decays of pork M. Longissimus dorsi obtained through Carr-Purcell-Meiboom-Gill (CPMG) experiments at low frequency (20 MHz) and the values of 14 technological parameters commonly used to assess pork meat quality. On the basis of the ANOVA results, it is also found that the CPMG decays of meat cannot be best interpreted with a "discrete" model (i.e., by expanding the decays in a series of a discrete number of exponential components, each with a different transverse relaxation time), but rather with a "continuous" model, by which a continuous distribution of T2's is allowed. The latter model also agrees with literature histological results.

  9. Urine Metabolomics by 1H-NMR Spectroscopy Indicates Associations between Serum 3,5-T2 Concentrations and Intermediary Metabolism in Euthyroid Humans

    PubMed Central

    Pietzner, Maik; Homuth, Georg; Budde, Kathrin; Lehmphul, Ina; Völker, Uwe; Völzke, Henry; Nauck, Matthias; Köhrle, Josef; Friedrich, Nele

    2015-01-01

    Context 3,5-Diiodo-L-thyronine (3,5-T2) is a thyroid hormone metabolite which exhibited versatile effects in rodent models, including the prevention of insulin resistance or hepatic steatosis typically forced by a high-fat diet. With respect to euthyroid humans, we recently observed a putative link between serum 3,5-T2 and glucose but not lipid metabolism. Objective The aim of the present study was to widely screen the urine metabolome for associations with serum 3,5-T2 concentrations in healthy individuals. Study Design and Methods Urine metabolites of 715 euthyroid participants of the population-based Study of Health in Pomerania (SHIP-TREND) were analyzed by 1H-NMR spectroscopy. Multinomial logistic and multivariate linear regression models were used to detect associations between urine metabolites and serum 3,5-T2 concentrations. Results Serum 3,5-T2 concentrations were positively associated with urinary levels of trigonelline, pyroglutamate, acetone and hippurate. In detail, the odds for intermediate or suppressed serum 3,5-T2 concentrations doubled owing to a 1-standard deviation (SD) decrease in urine trigonelline levels, or increased by 29-50% in relation to a 1-SD decrease in urine pyroglutamate, acetone and hippurate levels. Conclusion Our findings in humans confirmed the metabolic effects of circulating 3,5-T2 on glucose and lipid metabolism, oxidative stress and enhanced drug metabolism as postulated before based on interventional pharmacological studies in rodents. Of note, 3,5-T2 exhibited a unique urinary metabolic profile distinct from previously published results for the classical thyroid hormones. PMID:26601079

  10. Paramagnetic NMR relaxation in polymeric matrixes: sensitivity enhancement and selective suppression of embedded species (1H and 13C PSR filter).

    PubMed

    Fernandez-Megia, Eduardo; Correa, Juan; Novoa-Carballal, Ramon; Riguera, Ricardo

    2007-12-12

    A study of the practical applications of the addition of paramagnetic spin relaxation (PSR) ions to a variety of polymers (PLL, PAA, PGA, PVP, and polysaccharides such as hyaluronic acid, chitosan, mannan, and dextran) in solution (D2O and DMSO-d6) is described. Use of Gd(III), Cu(II), and Mn(II) allows a reduction of up to 500% in the 1H longitudinal relaxation times (T1), and so in the time necessary for recording quantitative NMR spectra (sensitivity enhancement) neither an increase of the spectral line width nor chemical shift changes resulted from addition of any of the PSR agents tested. Selective suppression of the 1H and 13C NMR signals of certain components (low MW molecules and polymers) in the spectrum of a mixture was attained thanks to their different sensitivity [transverse relaxation times (T2)] to Gd(III) (PSR filter). Illustration of this strategy with block copolymers (PGA-g-PEG) and mixtures of polymers and low MW molecules (i.e., lactose-hyaluronic acid, dextran-PAA, PVP-glutamic acid) in 1D and 2D NMR experiments (COSY and HMQC) is presented. In those mixtures where PSR and CPMG filters alone failed in the suppression of certain components (i.e., PVP-mannan-hyaluronic acid) due to their similarity of 1H T2 values and sensitivities to Gd(III), use of the PSR filter in combination with CPMG sequences (PSR-CPMG filter) successfully resulted in the sequential suppression of the components (hyaluronic acid first and then mannan). PMID:18004845

  11. A diffusion and T2 relaxation MRI study of the ovine lumbar intervertebral disc under compression in vitro

    NASA Astrophysics Data System (ADS)

    Drew, Simon C.; Silva, Pujitha; Crozier, Stuart; Pearcy, Mark J.

    2004-08-01

    The ovine lumbar intervertebral disc is a useful model for the human lumbar disc. We present preliminary estimates of diffusion coefficients and T2 relaxation times in a pilot MRI study of the ovine lumbar intervertebral disc during uniaxial compression in vitro, and identify factors that hamper the ability to accurately monitor the temporal evolution of the effective diffusion tensor at high spatial resolution.

  12. ESR lineshape and 1H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals - Joint analysis

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Kowalewski, J.; Rössler, E. A.; Moscicki, J.

    2013-12-01

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d16 containing 15N and 14N isotopes. The NMRD experiments refer to 1H spin-lattice relaxation measurements in a broad frequency range (10 kHz-20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the 1H relaxation of the solvent. The 1H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin-nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  13. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  14. T2 relaxation effects on apparent N-acetylaspartate concentration in proton magnetic resonance studies of schizophrenia

    PubMed Central

    Bracken, Bethany K.; Rouse, Elizabeth D.; Renshaw, Perry F.; Olson, David P.

    2013-01-01

    Over the past two decades, many magnetic resonance spectroscopy (MRS) studies reported lower N-acetylaspartate (NAA) in key brain regions of patients with schizophrenia (SZ) compared to healthy subjects. A smaller number of studies report no difference in NAA. Many sources of variance may contribute to these discordant results including heterogeneity of the SZ subject populations and methodological differences such as MRS acquisition parameters, and post-acquisition analytic methods. The current study reviewed proton MRS literature reporting measurements of NAA in SZ with a focus on methodology. Studies which reported lower NAA were significantly more likely to have used longer echo times (TEs), while studies with shorter TEs reported no concentration difference. This suggests that NAA quantitation using MRS was affected by the choice of TE, and that published MRS literature reporting NAA in SZ using a long TE is confounded by apparent differential T2 relaxation effects between SZ and healthy control groups. Future MRS studies should measure T2 relaxation times. This would allow for spectral concentration measurements to be appropriately corrected for these relaxation effects. In addition, as metabolite concentration and T2 relaxation times are completely independent variables, this could offer distinct information about the metabolite of interest. PMID:23769421

  15. High-field NMR T 2 relaxation mechanism in D2O solutions of albumin

    NASA Astrophysics Data System (ADS)

    Yilmaz, A.; Zengin, B.

    2013-07-01

    400 MHz NMR T 2 in D2O solutions of albumin and pure D2O were measured at different temperatures. A relation, based on the chemical exchange between bound HDO and non-exchangeable protein protons, was derived theoretically for the contributions of bound HDO [ P b(1/ T 2b)]. A second relation was also derived theoretically by considering spin-rotation interactions between bound HDO and surrounding protein protons. The P b(1/ T 2b) values in albumin solutions were then determined by replacing experimental data into the first relation. The values of the 1/ T 2 and P b(1/ T 2b) in albumin solutions increase linearly with temperature( T), whereas the 1/ T 2 in D2O decreases with T. In addition, the spin-rotation correlation times were calculated from the second relation. The dipolar correlation time of albumin was then reproduced from the spin-rotation correlation times for confirmative purposes. In conclusion, the 1/ T 2 in albumin solutions with D2O is caused by spin-rotation interactions.

  16. T2* relaxation times of intraductal murine mammary cancer, invasive mammary cancer, and normal mammary gland

    PubMed Central

    Hipp, Elizabeth; Fan, Xiaobing; Jansen, Sanaz A.; Markiewicz, Erica J.; Vosicky, James; Newstead, Gillian M.; Conzen, Suzanne D.; Krausz, Thomas; Karczmar, Gregory S.

    2012-01-01

    Purpose: This study investigates the feasibility of T2* to be a diagnostic indicator of early breast cancer in a mouse model. T2* is sensitive to susceptibility effects due to local inhomogeneity of the magnetic field, e.g., caused by hemosiderin or deoxyhemoglobin. In these mouse models, unlike in patients, the characteristics of single mammary ducts containing pure intraductal cancer can be evaluated. Methods: The C3(1)SV40Tag mouse model of breast cancer (n = 11) and normal FVB/N mice (n = 6) were used to measure T2* of normal mammary gland tissue, intraepithelial neoplasia, invasive cancers, mammary lymph nodes, and muscle. MRI experiments were performed on a 9.4T animal scanner. High resolution (117 microns) axial 2D multislice gradient echo images with fat suppression were acquired first to identify inguinal mammary gland. Then a multislice multigradient echo pulse sequence with and without fat suppression were performed over the inguinal mammary gland. The modulus of a complex double exponential decay detected by the multigradient echo sequence was used to fit the absolute proton free induction decay averaged over a region of interest to determine the T2* of water and fat signals. Results: The measured T2* values of tumor and muscle are similar (∼15 ms), and almost twice that of lymph nodes (∼8 ms). There was a statistically significant difference (p < 0.03) between T2* in normal mammary tissue (13.7 ± 2.9 ms) and intraductal cancers (11 ± 2.0 ms) when a fat suppression pulse was applied. Conclusions: These are the first reported T2* measurements from single mammary ducts. The results demonstrated that T2* measurements may have utility for identifying early pre-invasive cancers in mouse models. This may inspire similar research for patients using T2* for diagnostic imaging of early breast cancer. PMID:22380363

  17. Redoxable heteronanocrystals functioning magnetic relaxation switch for activatable T1 and T2 dual-mode magnetic resonance imaging.

    PubMed

    Kim, Myeong-Hoon; Son, Hye-Young; Kim, Ga-Yun; Park, Kwangyeol; Huh, Yong-Min; Haam, Seungjoo

    2016-09-01

    T1/T2 dual-mode magnetic resonance (MR) contrast agents (DMCAs) have gained much attention because of their ability to improve accuracy by providing two pieces of complementary information with one instrument. However, most of these agents are "always ON" systems that emit MR contrast regardless of their interaction with target cells or biomarkers, which may result in poor target-to-background ratios. Herein, we introduce a rationally designed magnetic relaxation switch (MGRS) for an activatable T1/T2 dual MR imaging system. Redox-responsive heteronanocrystals, consisting of a superparamagnetic Fe3O4 core and a paramagnetic Mn3O4 shell, are synthesized through seed-mediated growth and subsequently surface-modified with polysorbate 80. The Mn3O4 shell acts as both a protector of Fe3O4 in aqueous environments to attenuate T2 relaxation and as a redoxable switch that can be activated in intracellular reducing environments by glutathione. This simultaneously generates large amounts of magnetically decoupled Mn(2+) ions and allows Fe3O4 to interact with the water protons. This smart nanoplatform shows an appropriate hydrodynamic size for the EPR effect (10-100 nm) and demonstrates biocompatibility. Efficient transitions of OFF/ON dual contrast effects are observed by in vitro imaging and MR relaxivity measurements. The ability to use these materials as DMCAs is demonstrated via effective passive tumor targeting for T1- and T2-weighted MR imaging in tumor-bearing mice. PMID:27281684

  18. Knee muscle strength correlates with joint cartilage T2 relaxation time in young participants with risk factors for osteoarthritis.

    PubMed

    Macías-Hernández, Salvador Israel; Miranda-Duarte, Antonio; Ramírez-Mora, Isabel; Cortés-González, Socorro; Morones-Alba, Juan Daniel; Olascoaga-Gómez, Andrea; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania Inés; Cruz-Medina, Eva

    2016-08-01

    The objective of this study is to correlate T2 relaxation time (T2RT), measured by magnetic resonance imaging (MRI) with quadriceps and hamstring strength in young participants with risk factors for knee osteoarthritis (OA). A descriptive cross-sectional study was conducted with participants between 20 and 40 years of age, without diagnosis of knee OA. Their T2 relaxation time was measured through MRI, and their muscle strength (MS) was measured with an isokinetic dynamometer. Seventy-one participants were recruited, with an average age of 28.3 ± 5.5 years; 39 (55 %) were females. Negative correlations were found between T2RT and quadriceps peak torque (QPT) in males in the femur r = -0.46 (p = 0.01), tibia r = -0.49 (p = 0.02), and patella r = -0.44 (p = 0.01). In women, correlations were found among the femur r = -0.43 (p = 0.01), tibia r = -0.61 (p = 0.01), and patella r = -0.32 (p = 0.05) and among hamstring peak torque (HPT), in the femur r = -0.46 (p = 0.01), hamstring total work (HTW) r = -0.42 (p = 0.03), and tibia r = -0.33 (p = 0.04). Linear regression models showed good capacity to predict T2RT through QPT in both genders. The present study shows that early changes in femoral, tibial, and patellar cartilage are significantly correlated with MS, mainly QPT, and that these early changes might be explained by MS, which could play an important role in pre-clinical phases of the disease. PMID:27334115

  19. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-01

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach. PMID:20681586

  20. Micro-compartment specific T2relaxation in the brain

    PubMed Central

    Sati, Pascal; van Gelderen, Peter; Silva, Afonso C.; Reich, Daniel S.; Merkle, Hellmut; de Zwart, Jacco A.; Duyn, Jeff H.

    2013-01-01

    MRI at high field can be sensitized to the magnetic properties of tissues, which introduces a signal dependence on the orientation of white matter (WM) fiber bundles relative to the magnetic field. In addition, study of the NMR relaxation properties of this signal has indicated contributions from compartmentalized water environments inside and outside the myelin sheath that may be separable. Here we further investigated the effects of water compartmentalization on the MRI signal with the goal of extracting compartment-specific information. By comparing MRI measurements of human and marmoset brain at 7 T with magnetic field modeling, we show that: (1) water between the myelin lipid bilayers, in the axonal, and in the interstitial space each experience characteristic magnetic field effects that depend on fiber orientation (2) these field effects result in characteristic relaxation properties and frequency shifts for these compartments; and (3) compartmental contributions may be separated by multi-component fitting of the MRI signal relaxation (i.e. decay) curve. We further show the potential application of these findings to the direct mapping of myelin content and assessment of WM fiber integrity with high field MRI. PMID:23528924

  1. 7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zeghib, Nadir; Grucker, Daniel

    2001-09-01

    Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.

  2. (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin.

    PubMed Central

    Damberg, Peter; Jarvet, Jüri; Allard, Peter; Mets, Ulo; Rigler, Rudolf; Gräslund, Astrid

    2002-01-01

    Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio. PMID:12414713

  3. Enhancement of T1 and T2 relaxation by paramagnetic silica-coated nanocrystals

    SciTech Connect

    Gerion, D; Herberg, J; Gjersing, E; Ramon, E; Maxwell, R; Gray, J W; Budinger, T F; Chen, F F

    2006-08-28

    We present the first comprehensive investigation on water-soluble nanoparticles embedded into a paramagnetic shell and their properties as an MRI contrast agent. The nanoprobes are constructed with an inorganic core embedded into an ultra-thin silica shell covalently linked to chelated Gd{sup 3+} paramagnetic ions that act as an MRI contrast agent. The chelator contains the molecule DOTA and the inorganic core contains a fluorescent CdSe/ZnS qdots in Au nanoparticles. Optical properties of the cores (fluorescence emission or plasmon position) are not affected by the neither the silica shell nor the presence of the chelated paramagnetic ions. The resulting complex is a MRI/fluorescence probe with a diameter of 8 to 15 nm. This probe is highly soluble in high ionic strength buffers at pH ranging from {approx}4 to 11. In MRI experiments at clinical field strengths of 60 MHz, the QDs probes posses spin-lattice (T{sub 1}) and a spin-spin (T{sub 2}) relaxivities of 1018.6 +/- 19.4 mM{sup -1} s{sup -1} and 2438.1 +/- 46.3 mM{sup -1} s{sup -1} respectively for probes having {approx}8 nm. This increase in relaxivity has been correlated to the number of paramagnetic ions covalently linked to the silica shell, ranging from approximately 45 to over 320. We found that each bound chelated paramagnetic species contributes by over 23 mM{sup -1} s{sup -1} to the total T{sub 1} and by over 54 mM{sup -1} s{sup -1} to the total T{sub 2} relaxivity respectively. The contrast power is modulated by the number of paramagnetic moieties linked to the silica shell and is only limited by the number of chelated paramagnetic species that can be packed on the surface. So far, the sensitivity of our probes is in the 100 nM range for 8-10 nm particles and reaches 10 nM for particles with approximately 15-18 nm in diameter. The sensitivities values in solutions are equivalent of those obtained with small superparamagnetic iron oxide nanoparticles of 7 nm diameter clustered into a 100 nm polymeric

  4. Evaluation of cell viability and T2 relaxivity of fluorescein conjugated SPION-PAMAM third generation nanodendrimers for bioimaging.

    PubMed

    Khosroshahi, Mohammad E; Rezvani, Hamideh Alanagh; Keshvari, Hamid; Bonakdar, Shahin; Tajabadi, Maryam

    2016-05-01

    This study has investigated the possibility of using fluorescent dendronized magnetic nanoparticles (FDMNPs) for potential applications in drug delivery and imaging. FDMNPs were first synthesized, characterized and then the effect of Polyamidoamine (PAMAM) dendrimer functionalization and fluorescein isothiocyanate (FITC) conjugation on biocompatibility of superparamagnetic iron oxide nanoparticles (SPIONs) was evaluated. The nanostructures' cytotoxicity tests were performed at different concentrations from 10 to 500μg/mL using MCF-7 and L929 cell lines. IC50 in MTT assay were 139.22 and 201.88μg/mL for DMNP incubated L929 and MCF-7 cell lines respectively, whereas the cell viability for FDMNPs did not decrease to 50%. The results showed that FITC conjugation diminishes the toxicity of dendronized magnetic nanoparticles (DMNPs) mainly due to the reduction of surface charge. DMNP appears to be cytotoxic at the concentration levels being used for both cell lines. On the contrary, FDMNPs showed more biocompatibility and cell viability of MCF-7 and L929 cell lines at all concentrations. The fluorescence microscopy of FDMNPs incubated with MCF-7 cells showed a successful localization of cells indicating their ability for applications such as a magnetic fluorescent probe in cell studies and imaging purposes. T2 relaxivity measurements demonstrated the applicability of the synthesized nanostructures as the contrast agents in tissue differential assessment by altering their relaxation times. In our case, the r2 relaxivity of FDMNPs was measured as 103.67mM(-1)S(-1). PMID:26952457

  5. Superparamagnetic behaviour and T 1, T 2 relaxivity of ZnFe2O4 nanoparticles for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Srivastava, C.; Venkatesha, N.; Kumar, P. S. Anil; Chattopadhyay, K.

    2013-05-01

    In the present study, ZnFe2O4 nanoparticles were synthesized by the chemical co-precipitation followed by calcinations at 473 and 673 K for 4 h. Particle sizes obtained were 4 and 6 nm for the calcination temperatures of 473 and 673 K, respectively. To study the origin of system's low temperature spin dynamic behaviour, temperature dependence of susceptibility ? was investigated as a function of particle size and frequency. Slight increase in the grain size from 4 nm at 473 K to 6 nm at 673 K has led to a peak shift of temperature dependence of susceptibility measured at a constant frequency of 400 Hz. Temperature dependence of ? at different frequencies also resulted in peak shift. Relaxation time dependence of peak temperature obeys a power law, which provides the fitting parameters within the range of superparamagnetic nature of the particles. Further, dependence of relaxation time and peak temperature obeys Vogel-Fulcher law rather than Néel-Brown equation demonstrating that the particles follow the behaviour of superparamagnetism of slightly interacting system. Spin-lattice, T 1 and spin-spin, T 2 relaxivity of proton of the water molecule in the presence of chitosan-coated superparamagnetic ZnFe2O4 nanoparticle yields the values of 0.002 and 0.360 s-1 per ppm.

  6. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15–20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  7. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.

    PubMed

    Ruggiero, Maria R; Crich, Simonetta Geninatti; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-15

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications. PMID:27265726

  8. Protein-polymer functionalized aqueous ferrofluids showing high T2 relaxivity.

    PubMed

    Bhattacharya, S; Sheikh, L; Tiwari, V; Ghosh, M; Patel, J N; Patel, A B; Nayar, S

    2014-05-01

    Controlled size, shape and dispersibility of superparamagnetic iron oxide nanoparticles (SPIONs), has been achieved in a protein-polymer colloidal dispersion. Stable ferrofluid (FF) is synthesized in an aqueous medium of collagen, bovine serum albumin and poly(vinyl) alcohol that equilibrates with time, at ambient conditions, into an organized matrix with iron oxide particles sterically caged at defined sites. It mimics a biomineralization system; hence the process is termed biomimetics. Though the exact mechanism is not understood at this stage, we have established, with serial dilution of the protein-polymer solution that the SPIONs are formed inside the self-contained clusters of the two proteins and the polymer, which show a tendency to self assemble. More than the interparticle dipolar attractions of magnetic particles, electrostatic interactions play a role in cluster formation and collagen is responsible for the overall stability, supported by systematic dynamic light scattering data. The basic aim of this study was to increase magnetization of a previously synthesized ferrofluid without hampering stability, by reducing the total macromolecular concentration. Thrice the magnetization was achieved and in addition, the synthesized FFs exhibited very high transverse relaxivity and showed good contrast in mice liver, in the in vivo studies. PMID:24734534

  9. Water 1H relaxation dispersion analysis on a nitroxide radical provides information on the maximal signal enhancement in Overhauser dynamic nuclear polarization experiments.

    PubMed

    Bennati, Marina; Luchinat, Claudio; Parigi, Giacomo; Türke, Maria-Teresa

    2010-06-14

    Water (1)H relaxation rate measurements of (15)N-(2)H-TEMPONE solutions at temperatures ranging from 298 to 328 K have been performed as a function of magnetic field from 0.00023 to 9.4 T, corresponding to (1)H Larmor frequencies of 0.01 to 400 MHz. The relaxation profiles were analyzed according to the full theory for dipolar and contact relaxation, and used to estimate the coupling factor responsible for observed solution DNP effects. The experimental DNP enhancement at (1)H Larmor frequency of 15 MHz obtained by saturating one of the lines of the (15)N doublet is only ca. 20% lower than the limiting value predicted from the relaxation data, indicating that the experimental DNP setup is nearly optimal, the residual discrepancy arising from incomplete saturation of the other line. PMID:20458388

  10. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    PubMed Central

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795

  11. Dynamics of [C3H5N2]6[Bi4Br18] by means of (1)H NMR relaxometry and quadrupole relaxation enhancement.

    PubMed

    Masierak, W; Florek-Wojciechowska, M; Oglodek, I; Jakubas, R; Privalov, A F; Kresse, B; Fujara, F; Kruk, D

    2015-05-28

    (1)H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C3H5N2]6[Bi4Br18] are presented. Two motional processes have been identified from the (1)H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10(-8) s-10(-9) s and of about 10(-5) s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating (1)H-(14)N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the (14)N nuclei in [C3H5N2]6[Bi4Br18] have been determined. The (1)H-(14)N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as "quadrupole peaks") has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters. PMID:26026454

  12. Dynamics of [C3H5N2]6[Bi4Br18] by means of 1H NMR relaxometry and quadrupole relaxation enhancement

    NASA Astrophysics Data System (ADS)

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-01

    1H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C3H5N2]6[Bi4Br18] are presented. Two motional processes have been identified from the 1H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10-8 s-10-9 s and of about 10-5 s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating 1H-14N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the 14N nuclei in [C3H5N2]6[Bi4Br18] have been determined. The 1H-14N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as "quadrupole peaks") has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  13. Comparison of T1ρ and T2* Relaxation Mapping in Patients with Different Grades of Disc Degeneration at 3T MR

    PubMed Central

    Zhang, Xinjuan; Yang, Li; Gao, Fei; Yuan, Zhenguo; Lin, Xiangtao; Yao, Bin; Chen, Weibo; Chan, Queenie; Wang, Guangbin

    2015-01-01

    Background T1ρ and T2* relaxation times are capable of providing information about early biochemical changes in intervertebral disk degeneration (IVDD). The purpose of this study was to assess and compare T1ρ and T2* mapping in IVDD with reference to Pfirrmann grade. Material/Methods Lumbar sagittal T2-weighted, T1ρ and T2* relaxation MRI were performed at 3.0T in 42 subjects covering discs L1–L2 to L5–S1. All the discs were morphologically assessed according to the Pfirrmann grade. Regions of interest (ROIs) were drawn over the T1ρ and T2*mappings, including nucleus pulposus (NP) and annulus fibrosus (AF). Wilcoxon signed rank test, Kruskal-Wallis test, and Spearman rank correlation were performed. Results The difference in T1ρ and T2* values between NP and AF were highly significant (P<0.001). The trends of decreasing T1ρ and T2* values of both NP and AF with increasing Pfirrmann grades was significant (P<0.01), particularly between Pfirrmann grade II and III (P<0.001), whereas T2* mapping was additionally able to detect changes in the AF between Pfirrmann grade I and II (P<0.05). Pfirrmann grades were inversely significantly correlated with both T1ρ and T2* values in the NP (r=–0.69, P<0.001; r=−0.56, P<0.001) and AF (r=−0.45, P<0.001; r=−0.26, P<0.001). Conclusions The process of IVDD can be detected by T1ρ and T2* mapping, particularly at early stage, and both methodologies displayed roughly comparable performance. PMID:26141783

  14. Changes in Regional t2 Relaxation in Compressed Cartilage: a Microscopic MRI (µMRI) Study

    NASA Astrophysics Data System (ADS)

    Alhadlaq, Hisham; Xia, Yang

    2004-10-01

    T2-anisotropy of articular cartilage in magnetic field has its origin on the proton dipolar interactions and the collagen matrix organization, which influences T2 with a dependency as (3s^2(θ)-1). Seven specimens from a beagle humeral head were compressed at 12% and 20% strain values in μMRI experiments. T2 mappings at two orientations (0r and 55r) before and during compression were conducted on a Bruker AMX 300 NMR. Under load, the 2D cartilage maps at the magic angle lost its usual homogenous appearance. T2 values were averaged at the superficial zone (SZ), the transitional zone (TZ), and the radial zone (RZ). At 0r and relative to uncompressed tissue, SZ T2 was significantly lower, and RZ T2 increased significantly at both strain rates (12% and 20%). At 55r and relative to uncompressed tissue, ``bulk'' T2 and RZ T2 were significantly lower at only 20% strain. However, SZ T2 and TZ T2 were significantly lower at both strain rates. In addition, relative to 12% strain, SZ T2 was significantly lower at 0r; and ``bulk'' T2 and TZ T2 were significantly lower at 55r. The results demonstrate the modifications in collagen fiber organization as the dipolar interaction is altered due to tissue compression.

  15. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    SciTech Connect

    Kruk, D.; Hoffmann, S. K.; Goslar, J.; Lijewski, S.; Kubica-Misztal, A.; Korpała, A.; Oglodek, I.; Moscicki, J.; Kowalewski, J.; Rössler, E. A.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recently presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.

  16. Dependencies of multi-component T 2 and T 1 ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage

    NASA Astrophysics Data System (ADS)

    Wang, Nian; Xia, Yang

    2011-09-01

    Both NMR spectroscopy and MRI were used to investigate the dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of bovine nasal cartilage (BNC). The non-negative least square (NNLS) method and the multi-exponential fitting method were used to analyze all experimental data. When the collagen fibrils in nasal cartilage were oriented at the magic angle (55°) to the magnetic field B 0, both T2 and T1ρ were single component, regardless of the spin-lock field strength or the echo spacing time in the pulse sequences. When the collagen fibrils in nasal cartilage were oriented at 0° to B 0, both T2 and T1ρ at a spin-lock field of 500 Hz had two components. When the spin-lock field was increased to 1000 Hz or higher, T1ρ relaxation in nasal cartilage became a single component, even when the specimen orientation was 0°. These results demonstrate that the specimen orientation must be considered for any multi-component analysis, even for nasal cartilage that is commonly considered homogenously structured. Since the rapidly and slowly relaxing components can be attributed to different portions of the water population in tissue, the ability to resolve different relaxation components could be used to quantitatively examine individual molecular components in connective tissues.

  17. Spatial analysis of magnetic resonance T1ρ and T2 relaxation times improves classification between subjects with and without osteoarthritis

    PubMed Central

    Carballido-Gamio, Julio; Stahl, Robert; Blumenkrantz, Gabrielle; Romero, Adan; Majumdar, Sharmila; Link, Thomas M.

    2009-01-01

    Purpose: Studies have shown that functional analysis of knee cartilage based on magnetic resonance (MR) relaxation times is a valuable tool in the understanding of osteoarthritis (OA). In this work, the regional spatial distribution of knee cartilage T1ρ and T2 relaxation times based on texture and laminar analyses was studied to investigate if they provide additional insight compared to global mean values in the study of OA. Methods: Knee cartilage of 36 subjects, 19 healthy controls and 17 with mild OA, was divided into 16 compartments. T1ρ and T2 relaxation times were studied with first order statistics, eight texture parameters with four different orientations using gray-level co-occurrence matrices and by subdividing each compartment into two different layers: Deep and superficial. Receiver operating characteristic curve analysis was performed to evaluate the potential of each technique to correctly classify the populations. Results: Although the deep and superficial cartilage layers had in general significantly different T1ρ and T2 relaxation times, they performed similarly in terms of subject discrimination. The subdivision of lateral and medial femoral compartments into weight-bearing and non-weight-bearing regions did not improve discrimination. Also it was found that the most sensitive region was the patella and that T1ρ discriminated better than T2. The most important finding was that with respect to global mean values, laminar and texture analyses improved subject discrimination. Conclusions: Results of this study suggest that spatially assessing MR images of the knee cartilage relaxation times using laminar and texture analyses could lead to better and probably earlier identification of cartilage matrix abnormalities in subjects with OA. PMID:19810478

  18. The search for negative amplitude components in quasi-continuous distributions of relaxation times: the example of 1H magnetization exchange in articular cartilage and hydrated collagen

    NASA Astrophysics Data System (ADS)

    Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco

    2011-06-01

    When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal

  19. Effects of Unloading on Knee Articular Cartilage T1rho and T2 Magnetic Resonance Imaging Relaxation Times: A Case Series

    PubMed Central

    SOUZA, RICHARD B.; BAUM, THOMAS; WU, SAMUEL; FEELEY, BRIAN T.; KADEL, NANCY; LI, XIAOJUAN; LINK, THOMAS M.; MAJUMDAR, SHARMILA

    2013-01-01

    STUDY DESIGN Case series. BACKGROUND It has been shown in rodent and canine models that cartilage composition is significantly altered in response to long-term unloading. To date, however, no in vivo human studies have investigated this topic. The objective of this case series was to determine the influence of unloading and reloading on T1rho and T2 relaxation times of articular cartilage in healthy young joints. CASE DESCRIPTION Ten patients who required 6 to 8 weeks of non–weight bearing (NWB) for injuries affecting the distal lower extremity participated in the study. Quantitative T1rho and T2 imaging of the ipsilateral knee joint was performed at 3 time points: (1) prior to surgery (baseline), (2) immediately after a period of NWB (post-NWB), and (3) after 4 weeks of full weight bearing (post-FWB). Cartilage regions of interest were segmented and overlaid on T1rho and T2 relaxation time maps for quantification. Descriptive statistics are provided for all changes. OUTCOMES Increases of 5% to 10% in T1rho times of all femoral and tibial compartments were noted post-NWB. All values returned to near-baseline levels post-FWB. Increases in medial tibia T2 times were noted post-NWB and remained elevated post-FWB. The load-bearing regions showed the most significant changes in response to unloading, with increases of up to 12%. DISCUSSION The observation of a transient shift in relaxation times confirms that cartilage composition is subject to alterations based on loading conditions. These changes appear to be mostly related to proteoglycan content and more localized to the load-bearing regions. However, following 4 weeks of full weight bearing, relaxation times of nearly all regions had returned to baseline levels, demonstrating reversibility in compositional fluctuations. LEVEL OF EVIDENCE Therapy, level 4. PMID:22402583

  20. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    NASA Astrophysics Data System (ADS)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  1. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system

    NASA Astrophysics Data System (ADS)

    Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.

    2015-09-01

    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in

  2. T2 relaxation time alterations underlying neurocognitive deficits in alcohol-use disorders (AUD) in an Indian population: A combined conventional ROI and voxel-based relaxometry analysis.

    PubMed

    Bagga, Deepika; Modi, Shilpi; Poonia, Mahesh; Kaur, Prabhjot; Bhattacharya, D; Garg, M L; Khushu, Subash; Singh, Namita

    2015-11-01

    Long-term heavy alcohol consumption has traditionally been associated with impaired cognitive abilities, such as deficits in abstract reasoning, problem solving, verbal fluency, memory, attention, and visuospatial processing. The present study aimed at exploring these neuropsychological deficits in alcohol-use disorders (AUD) in an Indian population using the Postgraduate Institute Battery of Brain Dysfunction (PGIBBD) and their possible correlation with alterations in T2 relaxation times (T2-RT), using whole-brain voxel-based relaxometry (VBR) and conventional region of interest (ROI) approach. Multi-echo T2 mapping sequence was performed on 25 subjects with AUD and 25 healthy controls matched for age, education, and socioeconomic status. Whole-brain T2-RT measurements were conducted using VBR and conventional ROI approach. The study was carried out on a 3T whole-body MR scanner. Post processing for VBR and ROI analysis was performed using SPM 8 software and vendor-provided software, respectively. A PGIBBD test battery was conducted on all subjects to assess their cognitive abilities, and the results were reported as raw scores. VBR and ROI results revealed that AUD subjects showed prolonged T2-RTs in cerebellum bilaterally, parahippocampal gyrus bilaterally, right anterior cingulate cortex, left superior temporal gyrus, left middle frontal gyrus, and left calcarine gyrus. A significant correlation was also observed between the neuropsychological test raw scores and alterations in T2-RT in AUD subjects. Our results are consistent with previous studies suggesting tissue disruption or gliosis or demyelination as a possible reason for prolonged T2-RTs. This damage to brain tissue, which is evident as prolonged T2-RT, could possibly be associated with impaired cognitive abilities noticeable in AUD subjects. PMID:26537482

  3. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 < T 1 < 10-6 s) is of great importance today for the study of relaxation processes. Recent case studies include, for example, glasses doped with paramagnetic ions (Vergnoux et al., 1996; Zinsou et al., 1996), amorphous Si (dangling bonds) and copper-chromium-tin spinel (Cr3+) (Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  4. Effect of manganese on human placental spin-lattice (T1) and spin-spin (T2) relaxation times

    SciTech Connect

    Angtuaco, T.L.; Mattison, D.R.; Thomford, P.J.; Jordan, J.

    1986-01-01

    Human placentas were obtained immediately following delivery and incubated with manganese chloride (MnCl/sub 2/) in concentrations ranging from 0.002 to 2.0 mM. Proton density, T1 and T2 were measured at times ranging from 5-200 minutes. There was rapid uptake of manganese by the placenta producing a dose-dependent decrease in placental T1 and T2. The major effect of manganese uptake was shortening of T1 suggesting that the contrast between placenta and myometrium will be enhanced predominantly for T1-dependent imaging pulse sequences.

  5. Interaction study of bioactive molecules with fibrinogen and human platelets determined by 1H NMR relaxation experiments.

    PubMed

    Bonechi, Claudia; Martini, Silvia; Rossi, Claudio

    2009-02-15

    In order to investigate the interaction processes between bioactive molecules and macromolecular receptors NMR methodology based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of ligand protons was used. The contribution from the bound ligand fraction to the observed relaxation rate in relation to macromolecular target concentration allowed the calculation of the normalized affinity index[A(I)(N)](L)(T) in which the effects of motional anisotropies and different proton densities have been removed. In this paper, we applied this methodology to investigate the affinity of epinephrine and isoproterenol towards two different systems: fibrinogen and platelets. PMID:19157885

  6. 1H and 19F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms

    NASA Astrophysics Data System (ADS)

    Beckmann, Peter A.; Rheingold, Arnold L.

    2016-04-01

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state 1H and 19F spin-lattice relaxation experiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance (NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of 19F-19F and 19F-1H spin-spin dipolar interactions on the complicated nonexponential NMR relaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually 1H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components.

  7. Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T.

    PubMed

    Gottschalk, Michael; Troprès, Irène; Lamalle, Laurent; Grand, Sylvie; Le Bas, Jean-François; Segebarth, Christoph

    2016-07-01

    Short-TE (1) H MRS has great potential for brain cancer diagnostics. A major difficulty in the analysis of the spectra is the contribution from short-T2 signal components, mainly coming from mobile lipids. This complicates the accurate estimation of the spectral parameters of the resonance lines from metabolites, so that a qualitative to semi-quantitative interpretation of the spectra dominates in practice. One solution to overcome this difficulty is to measure and estimate the short-T2 signal component and to subtract it from the total signal, thus leaving only the metabolite signals. The technique works well when applied to spectra obtained from healthy individuals, but requires some optimisation during data acquisition. In the clinical setting, time constraints hardly allow this. Here, we propose an iterative estimation of the short-T2 signal component, acquired in a single acquisition after measurement of the full spectrum. The method is based on QUEST (quantitation based on quantum estimation) and allows the refinement of the estimate of the short-T2 signal component after measurement. Thus, acquisition protocols used on healthy volunteers can also be used on patients without further optimisation. The aim is to improve metabolite detection and, ultimately, to enable the estimation of the glutamine and glutamate signals distinctly. These two metabolites are of great interest in the characterisation of brain cancer, gliomas in particular. When applied to spectra from healthy volunteers, the new algorithm yields similar results to QUEST and direct subtraction of the short-T2 signal component. With patients, up to 12 metabolites and, at least, seven can be quantified in each individual brain tumour spectrum, depending on the metabolic state of the tumour. The refinement of the short-T2 signal component significantly improves the fitting procedure and produces a separate short-T2 signal component that can be used for the analysis of mobile lipid resonances. Thus

  8. (1)H NMR z-spectra of acetate methyl in stretched hydrogels: quantum-mechanical description and Markov chain Monte Carlo relaxation-parameter estimation.

    PubMed

    Shishmarev, Dmitry; Chapman, Bogdan E; Naumann, Christoph; Mamone, Salvatore; Kuchel, Philip W

    2015-01-01

    The (1)H NMR signal of the methyl group of sodium acetate is shown to be a triplet in the anisotropic environment of stretched gelatin gel. The multiplet structure of the signal is due to the intra-methyl residual dipolar couplings. The relaxation properties of the spin system were probed by recording steady-state irradiation envelopes ('z-spectra'). A quantum-mechanical model based on irreducible spherical tensors formed by the three magnetically equivalent spins of the methyl group was used to simulate and fit experimental z-spectra. The multiple parameter values of the relaxation model were estimated by using a Bayesian-based Markov chain Monte Carlo algorithm. PMID:25486634

  9. Molecular reorientations of 1-bromo- and 1-iodo-adamantanes 1H N.M.R. relaxation study

    NASA Astrophysics Data System (ADS)

    Virlet, J.; Quiroga, L.; Boucher, B.; Amoureux, J. P.; Castelain, M.

    Second moments and spin-lattice relaxation times, T1 and T1ρ, have been measured from 100 K to 400 K for the protons in powdered 1-bromo and 1-iodo-adamantanes. Analysis of these data have shown that the reorientations are uniaxial in the low temperature phases. In the high temperature disordered phase of bromo-adamantane, the reorientation is endospherical and a slow molecular translational motion also exists. In the high temperature disordered phase of iodo-adamantane the reorientation is 12-fold uniaxial, in agreement with the Incoherent Quasi-elastic Neutron Scattering (I.Q.N.S.) experiments. All the results correspond to the crystallographic structures deduced from X-ray scattering.

  10. A spatiotemporal theory for MRI T2 relaxation time and apparent diffusion coefficient in the brain during acute ischaemia: Application and validation in a rat acute stroke model.

    PubMed

    Knight, Michael J; McGarry, Bryony L; Rogers, Harriet J; Jokivarsi, Kimmo T; Gröhn, Olli Hj; Kauppinen, Risto A

    2016-07-01

    The objective of this study is to present a mathematical model which can describe the spatiotemporal progression of cerebral ischaemia and predict magnetic resonance observables including the apparent diffusion coefficient (ADC) of water and transverse relaxation time T2 This is motivated by the sensitivity of the ADC to the location of cerebral ischaemia and T2 to its time-course, and that it has thus far proven challenging to relate observations of changes in these MR parameters to stroke timing, which is of considerable importance in making treatment choices in clinics. Our mathematical model, called the cytotoxic oedema/dissociation (CED) model, is based on the transit of water from the extra- to the intra-cellular environment (cytotoxic oedema) and concomitant degradation of supramacromolecular and macromolecular structures (such as microtubules and the cytoskeleton). It explains experimental observations of ADC and T2, as well as identifying the rate of spread of effects of ischaemia through a tissue as a dominant system parameter. The model brings the direct extraction of the timing of ischaemic stroke from quantitative MRI closer to reality, as well as providing insight on ischaemia pathology by imaging in general. We anticipate that this may improve patient access to thrombolytic treatment as a future application. PMID:26661188

  11. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  12. Inhomogeneous 1H NMR spin-lattice relaxation in the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    NASA Astrophysics Data System (ADS)

    Gezo, Joseph Christopher

    The two-dimensional superconductors based on the organic molecule "ET" have been an active area of research since their discovery over two decades ago. The member of this family with the highest critical temperature, kappa-(ET)2Cu[N(CN)2]Br ( Tc=11.7 K), has seen renewed interest since the observation of an anomalous Nernst signal by Nam et al in 2007 [51]. A similar effect was seen earlier by Ong's group in some of the high-temperature cuprate superconductors by [78,84]. This is interpreted to be evidence of a picture of superconductivity in which the resistive transition is driven by thermal fluctuations in the phase of the superconducting order parameter. Below Tc, these fluctuations take the form of bound vortex-antivortex pairs that have no long-range effect on the phase. At Tc, they undergo a Kosterlitz-Thouless unbinding transition; the unbound vortices destroy long-range phase coherence. Previously reported proton NMR measurements on this material have shown a high sensitivity to vortex motion, but reported no interesting behavior above the phase transition [15,25,42]. In this thesis, we revisit the 1H NMR properties of kappa-(ET)2Cu[N(CN)2]Br, paying specific attention to the spin-lattice relaxation, to look for some fingerprint of the phenomenon observed by Nam et al.

  13. Dynamics of [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] by means of {sup 1}H NMR relaxometry and quadrupole relaxation enhancement

    SciTech Connect

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-28

    {sup 1}H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] are presented. Two motional processes have been identified from the {sup 1}H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10{sup −8} s-10{sup −9} s and of about 10{sup −5} s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating {sup 1}H-{sup 14}N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the {sup 14}N nuclei in [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] have been determined. The {sup 1}H-{sup 14}N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as “quadrupole peaks”) has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  14. Muon-spin-relaxation and inelastic neutron scattering investigations of the caged-type Kondo semimetals: CeT2Al10 (T = Fe, Ru and Os)

    NASA Astrophysics Data System (ADS)

    Adroja, D. T.; Hillier, A. D.; Muro, Y.; Takabatake, T.; Strydom, A. M.; Bhattacharyya, A.; Daoud-Aladin, A.; Taylor, J. W.

    2013-12-01

    Recently, Ce-based caged-type compounds with the general formula CeT2Al10 (T = Fe, Ru and Os) have generated considerable interest due to the Kondo semiconducting paramagnetic ground state (down to 40 mK) observed in CeFe2Al10 and anomalously high magnetic ordering temperature with spin gap formation at low temperatures in Kondo semimetals CeRu2Al10 and CeOs2Al10. The formation of long-range magnetic ordering out of the Kondo semiconducting/semimetallic state itself is extraordinary and these are the first examples of this enigmatic coexistence of electronic ground states. These compounds also exhibit strong anisotropy in magnetic and transport properties, which has been explained on the basis of single-ion crystal electric field anisotropy in the presence of strongly anisotropic hybridization between localized 4f-electron and conduction electrons. Furthermore, they also exhibit a remarkable modification of magnetic and transport properties with doping on Ce, or T or Al sites. In this article, we briefly discuss the bulk properties of these compounds, giving a detailed discussion on our muon-spin-relaxation (μSR) investigations and inelastic neutron scattering (INS) results. We present the μSR and the INS results of Ce(Ru1-xFex)2Al10 and CeOs2Al10 as well as the μSR results of NdFe2Al10, NdOs2Al10 and YFe2Al10 for comparison. The zero-field μSR spectra clearly reveal coherent two-frequency oscillations at low temperatures in CeT2Al10 (T = Ru and Os) and Ce(Ru1-xFex)2Al10 (x = 0.3-0.5), which confirms the long-range magnetic ordering with a reduced moment of the Ce. On the other hand, the μSR spectra of Ce(Ru1-xFex)2Al10 (x = 0.8 and 1) down to 1.2 and 0.04 K, respectively, exhibit a temperature independent Kubo-Toyabe (KT) term confirming a paramagnetic ground state. INS measurements on CeT2Al10 (T = Ru and Os) exhibit sharp inelastic excitations at 8 and 11 meV at 5 K due to an opening of a gap in the spin excitation spectrum. A spin gap of 8-12 meV at 7 K

  15. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  16. The age dependence of T2 relaxation times of N-acetyl aspartate, creatine and choline in the human brain at 3 and 4T.

    PubMed

    Jiru, F; Skoch, A; Wagnerova, D; Dezortova, M; Viskova, J; Profant, O; Syka, J; Hajek, M

    2016-03-01

    Knowledge of the T2 age dependence is of importance for MRS clinical studies involving subject groups with a wide age range. A number of studies have focused on the age dependence of T2 values in the human brain, with rather conflicting results. The aim of this study was to analyze the age dependence of T2 values of N-acetyl aspartate (NAA), creatine (Cr) and choline (Cho) in the human brain using data acquired at 3T and 4T and to assess the influence of the macromolecule (MM) baseline handling on the obtained results. Two distinct groups of young and elderly controls have been measured at 3T (TE = 30-540 ms, 9 young and 11 elderly subjects) and 4T (TE = 10-180 ms, 18 young and 14 elderly subjects) using single-voxel spectroscopy. In addition, MM spectra were measured from two subjects using the inversion-recovery technique at 4T. All spectra were processed with LCModel using basis sets with different MM signals (measured or simulated) and also with MM signals included for a different TE range. Individual estimated T2 values were statistically analyzed using the R programming language for the age dependence of T2 values as well as the influence of the MM baseline handling. A significant decrease of T2 values of NAA and Cr in elderly subjects compared with young subjects was confirmed. The same trend was observed for Cho. Significantly higher T2 values calculated using the measured MM baseline for all studied metabolites at 4T were observed for both young and elderly subjects. To conclude, while the handling of MM and lipid signals may have a significant effect on estimated T2 values, we confirmed the age dependence of T2 values of NAA and Cr and the same trend for Cho in the human brain. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26752593

  17. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  18. Dynamic 1H NMR Studies of Schiff Base Derivatives

    NASA Astrophysics Data System (ADS)

    Köylü, M. Z.; Ekinci, A.; Böyükata, M.; Temel, H.

    2016-01-01

    The spin-lattice relaxation time T 1 and the spin-spin relaxation time T 2 of two Schiff base derivatives, N,N'-ethylenebis(salicylidene)-1,2-diaminoethane (H2L1) and N,N'-ethylenebis (salicylidene)-1,3-diaminopropane (H2L2), in DMSO-d6 solvent were studied as a function of temperature in the range of 20-50°C using a Bruker Avance 400.132 MHz 1H NMR spectrometer. Based on the activation energy ( E a) and correlation time (τc), we believe that the Schiff base derivatives perform a molecular tumbling motion.

  19. Nuclear Spin Symmetry Conservation and Relaxation in Water (1H216O) Studied by Cavity Ring-Down (CRD) Spectroscopy of Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Manca Tanner, Carine; Quack, Martin; Schmidiger, David

    2013-10-01

    We report high resolution near-infrared laser spectra of water seeded in a supersonic jet expansion of argon probed by cavity ring-down spectroscopy (CRDS) in the R branch of the 2-3 band (above 7500 cm-1) at several effective temperatures T < 30 K. Our goal is to study nuclear spin symmetry conservation and relaxation. For low mole fractions of water in the gas mixture, we obtained the lowest rotational temperatures and observed nuclear spin symmetry conservation, in agreement with theoretical expectation for inelastic collisions of isolated H2O molecules with Ar and similar to a previous series of experiments with other small molecules in supersonic jet expansions. However, for the highest mole fractions of water, which we used (xH2O < 1.6%), we obtained slightly higher rotational temperatures and observed nuclear spin symmetry relaxation, which cannot be explained by the intramolecular quantum relaxation mechanism in the monomer H2O. The nuclear spin symmetry relaxation observed is, indeed, seen to be related to the formation of water clusters at the early stage of the supersonic jet expansion. Under these conditions, two mechanisms can contribute to nuclear spin symmetry relaxation. The results are discussed in relation to claims of the stability of nuclear spin isomers of H2O in the condensed phase and briefly also to astrophysical spectroscopy.

  20. Theoretical reason for the lack of influence of 1H-14N cross-relaxation on the water proton T 1 NMRD profile in slow tumbling proteins

    NASA Astrophysics Data System (ADS)

    Westlund, P.-O.

    2012-09-01

    For immobilized protein the water proton T 1-NMRD profile displays three enhanced relaxation peaks (QP). For slow tumbling proteins these relaxation peaks are not experimentally observed. However, the theoretically determined QP effect on the amide proton T 1-NMRD profile displays a distorted Lorentzian dispersion profile. The question arises as to whether there is also a distortion of the water-proton T 1-NMRD profile due to QP. The model of Sunde and Halle [J. Magn. Reson. 203, 257 (2010)] predicts a decreasing QP relaxation contribution and, with the aid of a model for tumbling proteins [P.-O. Westlund, Phys. Chem. Chem. Phys, 12, 3136 (2010)], it is shown that the QP effect is absent in water-proton T 1-NMRD profiles for slow tumbling proteins with τR < 1 µs, τI.

  1. The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.

    PubMed

    Fushman, D; Cowburn, D

    1999-02-01

    Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D parallel/D perpendicular - 1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D parallel/D perpendicular > or = 1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems. PMID:10070755

  2. Apparent spin-spin relaxation times, T 2★, of some nitrogen compounds using a super-regenerative nuclear quadrupole spectrometer

    NASA Astrophysics Data System (ADS)

    Trepanier, R. J.; Whitehead, M. A.

    The T 2★ of hexainethylenetetramine, C 6H 12 N 4, and sodium nitrite, NaNO 2, at 297°K and 77°K, and of 4-methoxy analine, C 5H 9 NO, at 297°K are reported. Two different nitrogen super-regenerative N.Q.R. spectrometers were used. Two different techniques for obtaining T 2★ were used: one measured the shift in signal detection threshold quench frequency with changing sample mass; the other measured the change in signal intensity for a small change of quench frequency near threshold. The importance of quench frequency studies and spectrometer construction for signal detection are discussed.

  3. (1)H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids--[C(NH2)3]3Bi2I9 as an example.

    PubMed

    Florek-Wojciechowska, M; Wojciechowski, M; Jakubas, R; Brym, Sz; Kruk, D

    2016-02-01

    (1)H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ((14)N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10(-6) s which has turned out to be (almost) temperature independent, and a fast process in the range of 10(-9) s. From the (1)H-(14)N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions. PMID:26851925

  4. (1)H and (19)F spin-lattice relaxation and CH3 or CF3 reorientation in molecular solids containing both H and F atoms.

    PubMed

    Beckmann, Peter A; Rheingold, Arnold L

    2016-04-21

    The dynamics of methyl (CH3) and fluoromethyl (CF3) groups in organic molecular (van der Waals) solids can be exploited to survey their local environments. We report solid state (1)H and (19)F spin-lattice relaxationexperiments in polycrystalline 3-trifluoromethoxycinnamic acid, along with an X-ray diffraction determination of the molecular and crystal structure, to investigate the intramolecular and intermolecular interactions that determine the properties that characterize the CF3 reorientation. The molecule is of no particular interest; it simply provides a motionless backbone (on the nuclear magnetic resonance(NMR) time scale) to investigate CF3 reorientation occurring on the NMR time scale. The effects of (19)F-(19)F and (19)F-(1)H spin-spin dipolar interactions on the complicated nonexponential NMRrelaxation provide independent inputs into determining a model for CF3 reorientation. As such, these experiments provide much more information than when only one spin species (usually (1)H) is present. In Sec. IV, which can be read immediately after the Introduction without reading the rest of the paper, we compare the barrier to CH3 and CF3 reorientation in seven organic solids and separate this barrier into intramolecular and intermolecular components. PMID:27389221

  5. New approach for characterization of gelatin biopolymer films using proton behavior determined by low field 1H NMR spectrometry.

    PubMed

    Kim, Young-Teck; Hong, Young-Shick; Kimmel, Robert M; Rho, Jeong-Hae; Lee, Cherl-Ho

    2007-12-26

    The behavior of protons in biopolymer films (BFs) formed with gelatin, water, and glycerol was investigated at various relative humidities (RHs) and concentrations of glycerol using a low field 1H NMR spectrometer. At a RH of approximately 0%, the distributed spin-spin relaxation times (T2) of protons in BFs showed two components: a rapidly relaxing proton with the shortest T2 derived from protons in the rigid backbone of the gelatin polymer such as CH1-, CH2-, and CH3-, and a slowly relaxing component with longer T2 from protons of the functional groups in amino acid residues in gelatin such as -OH, -COOH, and -NH3. These two components are referred to as nonexchangeable (T2N) and exchangeable protons (T2E), respectively, indicating the different mobility of the protons. The T2E increased as RH increased indicating the increase in relative mobility of protons due to the larger free volume in the BF matrix. Above a RH of 33%, the slowest relaxing component was found in all BFs and referred to as hydration-water protons (T2W) with the highest relative mobility of all protons in the films. It suggests that the free volume in BFs can be formed above a RH of 33% in the absence of glycerol. The behaviors of T2N, T2E, and T2W reveal the formation of free volume in the BF matrix associated with the presence of plasticizers (water and glycerol). The T2 behavior in BFs is consistent with the behavior of spin-lattice relaxation (T1). Our result is the first attempt to characterize using low field 1H NMR technology how all protons in a film matrix behave and to develop correlations between proton mobility and free volume in protein-based BFs plasticized with water and glycerol. PMID:18052122

  6. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    SciTech Connect

    Wang, Xianlong E-mail: pbeckman@brynmawr.edu; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A. E-mail: pbeckman@brynmawr.edu

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  7. Solid state 1H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    NASA Astrophysics Data System (ADS)

    Wang, Xianlong; Mallory, Frank B.; Mallory, Clelia W.; Odhner, Hosanna R.; Beckmann, Peter A.

    2014-05-01

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state 1H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the 1H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  8. (1)H relaxivity of water in aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material: the influence of Si/Al ratio and pore size.

    PubMed

    Norek, Małgorzata; Neves, Isabel C; Peters, Joop A

    2007-07-23

    The results of a (1)H nuclear magnetic relaxation dispersion (NMRD) and EPR study on aqueous suspensions of Gd(3+)-loaded NaY nanozeolites and AlTUD-1 mesoporous material are described. Upon increase of the Si/Al ratio from 1.7 to 4.0 in the Gd(3+)-loaded zeolites, the relaxation rate per mM Gd(3+) (r1) at 40 MHz and 25 degrees C increases from 14 to 27 s(-)1 mM(-1). The NMRD and EPR data were fitted with a previously developed two-step model that considers the system as a concentrated aqueous solution of Gd(3+) in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results show that the observed increase in relaxivity can mainly be attributed to the residence lifetime of the water protons in the interior of the material, which decreased from 0.3 to 0.2 micros, upon the increase of the Si/Al ratio. This can be explained by the decreased interaction of water with the zeolite walls as a result of the increased hydrophobicity. The importance of the exchange rate of water between the inside and the outside of the material was further demonstrated by the relatively high relaxivity (33 s(-1) mM(-1) at 40 MHz, 25 degrees C) observed for a suspension of the Gd(3+)-loaded mesoporous material AlTUD-1. Unfortunately, Gd(3+) leaches rather easily from that material, but not from the Gd(3+)-loaded NaY zeolites, which may have potential as contrast agents for magnetic resonance imaging. PMID:17589991

  9. A comparison of magnetic resonance methods for spatially resolved T2 distribution measurements in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Marica, F.; Newling, B.; Balcom, B. J.

    2015-05-01

    Naturally occurring porous media are usually characterized by a distribution of pore sizes. If the material is fluid saturated, the 1H magnetic resonance (MR) signal depends on the pore size, the surface relaxivity and the fluid itself. Measurement of the transverse relaxation time T2 is a well-established technique to characterize material samples by means of MR. T2 distribution measurements, including T2 distribution mapping, are widely employed in clinical applications and in petroleum engineering. T2 distribution measurements are the most basic measurement employed to determine the fluid-matrix properties in MR core analysis. Three methods for T2 distribution mapping, namely spin-echo single point imaging (SE-SPI), DANTE-Z Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic inversion CPMG are compared in terms of spatial resolution, minimum observable T2 and sensitivity. Bulk CPMG measurement is considered to be the gold standard for T2 determination. Bulk measurement of uniform samples is compared to the three spatially resolved measurements. SE-SPI is an imaging method, which measures spatially resolved T2s in samples of interest. A variant is introduced in this work that employs pre-equalized magnetic field gradient waveforms and is therefore able to measure shorter T2s than previously reported. DANTE-Z CPMG and adiabatic inversion CPMG are faster, non-imaging, local T2 distribution measurements. The DANTE-Z pulse train and adiabatic inversion pulse are compared in terms of T1 or T2 relaxation time effects during the RF pulse application, minimum pulse duration, requisite RF pulse power, and inversion profile quality. In addition to experimental comparisons, simulation results are presented.

  10. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. PMID:23147444

  11. The differences in the T2 relaxation rates of the protons in the partially-deuteriated and fully protonated sugar residues in a large oligo-DNA ('NMR-window') gives complementary structural information.

    PubMed Central

    Agback, P; Maltseva, T V; Yamakage, S I; Nilson, F P; Földesi, A; Chattopadhyaya, J

    1994-01-01

    Selective incorporation of the stereospecifically deuteriated sugar moieties (> 97 atom % 2H enhancements at H2', H2'', H3' and H5'/5'' sites, approximately 85 atom % 2H enhancement at H4' and approximately 20 atom % 2H enhancement at H1') in DNA and RNA by the 'NMR-window' approach has been shown to solve the problem of the resonance overlap [refs. 1, 2 & 3]. Such specific deuterium labelling gives much improved resolution and sensitivity of the residual sugar proton (i.e. H1' or H4') vicinal to the deuteriated centers (ref. 3). The T2 relaxation time of the residual protons also increases considerably in the partially-deuteriated (shown by underline) sugar residues in dinucleotides [d(CpG), d(GpC), d(ApT), d(TpA)], trinucleotide r(A2'p5'A2'p5'A) and 20-mer DNA duplex 5'd(C1G2C3-G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)(2) 3'. The protons with shorter T2 can be filtered away using a number of different NMR experiments such as ROESY, MINSY or HAL. The NOE intensity of the cross-peaks in these experiments includes only straight pathway from H1' to aromatic proton (i-i and i-i + 1) without any spin-diffusion. The volumes of these NOE cross-peaks could be measured with high accuracy as their intensity is 3 to 4 times larger than the corresponding peaks in the fully protonated residues in the normal NOESY spectra. The structural informations thus obtainable from the residual protons in the partially-deuteriated part of the duplex and the fully protonated part in the 'NMR window' can indeed complement each other. PMID:8190632

  12. BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties.

    PubMed

    Tertyshnikova, Svetlana; Knox, Ronald J; Plym, Mary Jane; Thalody, George; Griffin, Corinne; Neelands, Torben; Harden, David G; Signor, Laura; Weaver, David; Myers, Robert A; Lodge, Nicholas J

    2005-04-01

    BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] produced a concentration-dependent membrane hyperpolarization of cultured human bladder myocytes, assessed as either a reduction in fluorescence of the voltage-sensitive dye bis-(1,2-dibutylbarbituric acid)trimethine oxonol (EC50 = 1.26 +/- 0.6 microM) or by direct electrophysiological measurement (EC50 = 1.49 +/- 0.08 microM). BL-1249 also produced a membrane hyperpolarization of acutely dissociated rat bladder myocytes. Voltage-clamp studies in human bladder cells revealed that BL-1249 activated an instantaneous, noninactivating current that reversed near E(K). The BL-1249-evoked outward K+ current was insensitive to blockade by glyburide, tetraethylammonium, iberiotoxin, 4-aminopyridine, apamin, or Mg2+. However, the current was inhibited by extracellular Ba2+ (10 mM). In in vitro organ bath experiments, BL-1249 produced a concentration-dependent relaxation of 30 mM KCl-induced contractions in rat bladder strips (EC50 = 1.12 +/- 0.37 microM), yet had no effect on aortic strips up to the highest concentration tested (10 microM). The bladder relaxation produced by BL-1249 was partially blocked by Ba2+ (1 and 10 mM) but not by apamin, iberiotoxin, 4-aminopyridine, glyburide, or tetraethylammonium. In an anesthetized rat model, BL-1249 (1 mg/kg i.v.) decreased the number of isovolumic contractions, without significantly affecting blood pressure. Thus, BL-1249 behaves as a potassium channel activator that exhibits bladder versus vascular selectivity both in vitro and in vivo. A survey of potassium channels exhibiting sensitivity to extracellular Ba2+ at millimolar concentration revealed that the expression of the K2P2.1 (TREK-1) channel was relatively high in human bladder cells versus human aortic cells, suggesting this channel as a possible candidate target for BL-1249. PMID:15608074

  13. Water Diffusion, T2, and Compartmentation in Frog Sciatic Nerve

    PubMed Central

    Peled, Sharon; Cory, David G.; Raymond, Stephen A.; Kirschner, Daniel A.; Jolesz, Ferenc A.

    2010-01-01

    A potential relationship between structural compartments in neural tissue and NMR parameters may increase the specificity of MRI in diagnosing diseases. Nevertheless, our understanding of MR of nerves and white matter is limited, particularly the influence of various water compartments on the MR signal is not known. In this study, components of the 1H transverse relaxation decay curve in frog peripheral nerve were correlated with the diffusion characteristics of the water in the nerve. Three T2 values were identified with nerve. Water mobility was found to be unrestricted on the timescale of 100 msec in the component of the signal with the intermediate T2 time, suggesting some contribution from the interstitial space to this T2 component. Restricted diffusion was observed in the component with the longest T2 time, supporting the assignment of at least part of the spins contributing to this component to an intracellular compartment. The observed nonexponential behavior of the diffusion attenuation curves was investigated and shown to be potentially caused by the wide range of axon sizes in the nerve. PMID:10542350

  14. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    PubMed

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s < T(2) < 0.06 s, and the rapid one of T(2) < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  15. Distributions of transverse relaxation times for soft-solids measured in strongly inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Chelcea, R. I.; Fechete, R.; Culea, E.; Demco, D. E.; Blümich, B.

    2009-02-01

    The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG 1H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/ T2,short and 1/ T2,long were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T1/ T2 ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T2/ T2,eff is derived as a function of the T1/ T2 ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T1- T2 correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T1- T2 experimental correlations maps were corrected for the T1/ T2 effect using the derived T2/ T2,eff correction factor.

  16. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  17. 14N quadrupole resonance and 1H T1 dispersion in the explosive RDX.

    PubMed

    Smith, John A S; Blanz, Martin; Rayner, Timothy J; Rowe, Michael D; Bedford, Simon; Althoefer, Kaspar

    2011-12-01

    The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2∗ of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels. PMID:21978662

  18. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  19. The cooperative binding of phenylalanine to phenylalanine 4-monooxygenase studied by 1H-NMR paramagnetic relaxation. Changes in water accessibility to the iron at the active site upon substrate binding.

    PubMed

    Martínez, A; Olafsdottir, S; Flatmark, T

    1993-01-15

    The effect of the paramagnetic high-spin Fe(III) ion in phenylalanine 4-monooxygenase (phenylalanine hydroxylase, EC 1.14.16.1) on the water proton longitudinal relaxation rate has been used to study the environment of the iron center. The relaxation rate was measured as a function of the concentration of enzyme, substrate (phenylalanine), inhibitor (noradrenaline) and activator (lysolecithin), as well as of the temperature (18-40 degrees C) and the external magnetic field strength (100-600 MHz). From the frequency dependence of the relaxation rate, an effective correlation time (tau c) of 4.2(+/- 0.5) x 10(-10) s was calculated for the enzyme-substrate complex, which most likely represents the electron spin relaxation rate (tau s) for Fe(III) (S = 5/2) in this complex. The relaxation rate was proportional to the concentration of enzyme (0.04-1 mM) both in the absence and presence of phenylalanine, but the paramagnetic molar relaxivity at 400 MHz and 22 degrees C decreased from 2.2(+/- 0.05) x 10(3) s-1.M-1 in the enzyme as isolated to 1.2(+/- 0.06) x 10(3) s-1.M-1 in the presence of saturating concentrations of the substrate. The activation energy of the relaxation rate also decreased from 11.3 +/- 0.8 kJ/mol to -1.5 +/- 0.2 kJ/mol upon incubation of the enzyme with 5 mM phenylalanine. The results obtained can be interpreted in terms of a slowly exchanging water molecule coordinated to the catalytic paramagnetic Fe(III) in the native and resting enzyme, and that this water molecule seems to be displaced from coordination on the binding of substrate or inhibitor. Moreover, the effect of increasing concentrations of phenylalanine and noradrenaline on the water proton relaxation rate and on the hydrophobic surface properties of the enzyme indicate that substrate and inhibitor induce a similar cooperative conformational change upon binding at the active site. By contrast, the activator lysolecithin does not seem to affect the interaction of water with the catalytic Fe

  20. The influences of different spatial resolutions on the characteristics of T2 relaxation times in articular cartilage: A coarse-graining study of the microscopic magnetic resonance imaging data.

    PubMed

    Zhuang, Zhiguo; Lee, Ji Hyun; Badar, Farid; Xu, Jianrong; Xia, Yang

    2016-08-01

    Microscopic magnetic resonance imaging (µMRI) T2 data from canine cartilage at different tibial locations were analyzed to investigate the influences of spatial resolution and pixel position on the T2 sensitivity to osteoarthritis (OA). Five experimental factors were investigated: inaccurate pixel position, different pixel resolutions, different specimen orientations in the magnetic field, topographical variations over the tibial surface, and different OA stages. A number of significant trends were identified in this analysis, which shows the subtle but substantial influences to our abilities of detecting OA due to T2 changes. In particular, any deviation in locating the cartilage pixels may result in erratic values near the cartilage surface. Significant differences were found in T2 values between nearly any two comparison-groups under all resolutions both in the meniscus-covered and -uncovered areas, which were also showed interaction between the OA degradation stages. This multiresolution project should help to improve the detection sensitivities of MRI toward cartilage degeneration. Microsc. Res. Tech. 79:754-765, 2016. © 2016 Wiley Periodicals, Inc. PMID:27297720

  1. The robust identification of exchange from T2-T2 time-domain features

    NASA Astrophysics Data System (ADS)

    Song, Ruobing; Song, Yi-Qiao; Vembusubramanian, Muthusamy; Paulsen, Jeffrey L.

    2016-04-01

    Two-dimensional spin-spin relaxation (T2-T2) techniques have been developed to probe coupling between different environments such as diffusive coupling between small and large pores or chemical exchange with clays. In these studies, Numerical Laplace Inversion (NLI) is used to obtain two-dimensional T2-T2 relaxation distribution spectrum from the T2-T2 signal decays, and the off-diagonal peaks characterize coupling. Often, these coupling peaks are both weak and close to the diagonal and combined with the inherently ill-conditioned nature of the inversion, their presence is difficult to differentiate from inversion related artifacts and blurring. This manuscript presents a time domain based analysis to identify the presence of coupling that avoids the ambiguities present in T2-T2 spectra. The approach utilizes the symmetric nature of the two-dimensional time domain data, where the presence of curvature along one of these symmetries gives an unambiguous indicator of coupling. Measurements on porous glass beads are used to verify the technique.

  2. The robust identification of exchange from T2-T2 time-domain features.

    PubMed

    Song, Ruobing; Song, Yi-Qiao; Vembusubramanian, Muthusamy; Paulsen, Jeffrey L

    2016-04-01

    Two-dimensional spin-spin relaxation (T2-T2) techniques have been developed to probe coupling between different environments such as diffusive coupling between small and large pores or chemical exchange with clays. In these studies, Numerical Laplace Inversion (NLI) is used to obtain two-dimensional T2-T2 relaxation distribution spectrum from the T2-T2 signal decays, and the off-diagonal peaks characterize coupling. Often, these coupling peaks are both weak and close to the diagonal and combined with the inherently ill-conditioned nature of the inversion, their presence is difficult to differentiate from inversion related artifacts and blurring. This manuscript presents a time domain based analysis to identify the presence of coupling that avoids the ambiguities present in T2-T2 spectra. The approach utilizes the symmetric nature of the two-dimensional time domain data, where the presence of curvature along one of these symmetries gives an unambiguous indicator of coupling. Measurements on porous glass beads are used to verify the technique. PMID:26905815

  3. Non-exponential T2* decay in White Matter

    PubMed Central

    van Gelderen, Peter; de Zwart, Jacco A.; Lee, Jongho; Sati, Pascal; Reich, Daniel S.; Duyn, Jeff H.

    2011-01-01

    Visualizing myelin in human brain may help the study of diseases such as multiple sclerosis. Previous studies based on T1 and T2 relaxation contrast have suggested the presence of a distinct water pool that may report directly on local myelin content. Recent work indicates that T2* contrast may offer particular advantages over T1 and T2 contrast, especially at high field. However, the complex mechanism underlying T2* relaxation may render interpretation difficult. To address this issue, T2* relaxation behavior in human brain was studied at 3 and 7 tesla. Multiple gradient echoes covering most of the decay curve were analyzed for deviations from mono-exponential behavior. The data confirm the previous finding of a distinct rapidly relaxing signal component (T2* ~ 6 ms), tentatively attributed to myelin water. However, in extension to previous findings, this rapidly relaxing component displayed a substantial resonance frequency shift, reaching 36 Hz in the corpus callosum at 7 T. The component’s fractional amplitude and frequency shift appeared to depend on both field strength and fiber orientation, consistent with a mechanism originating from magnetic susceptibility effects. The findings suggest that T2* contrast at high field may be uniquely sensitive to tissue myelin content, and that proper interpretation will require modeling of susceptibility-induced resonance frequency shifts. PMID:21630352

  4. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    SciTech Connect

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. )

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  5. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  6. Gint2D-T2 correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient G(int) can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T(2) in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of G(int)(2)D and T(2) by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between G(int) and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz (1)H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint(2)D-T(2) maps were obtained to study the sample heterogeneity. PMID:25723135

  7. H-1 Relaxation Times of Metabolites in Biological Samples Obtained with Nondestructive Ex-vivo Slow-MAS NMR

    SciTech Connect

    Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.

    2006-03-01

    Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.

  8. Quantitative Analysis of Disc Degeneration Using Axial T2 Mapping in a Percutaneous Annular Puncture Model in Rabbits

    PubMed Central

    Chai, Jee Won; Lee, Joon Woo; Kim, Su-Jin; Hong, Sung Hwan

    2016-01-01

    Objective To evaluate T2 relaxation time change using axial T2 mapping in a rabbit degenerated disc model and determine the most correlated variable with histologic score among T2 relaxation time, disc height index, and Pfirrmann grade. Materials and Methods Degenerated disc model was made in 4 lumbar discs of 11 rabbits (n = 44) by percutaneous annular puncture with various severities of an injury. Lumbar spine lateral radiograph, MR T2 sagittal scan and MR axial T2 mapping were obtained at baseline and 2 weeks and 4 weeks after the injury in 7 rabbits and at baseline and 2 weeks, 4 weeks, and 6 weeks after the injury in 4 rabbits. Generalized estimating equations were used for a longitudinal analysis of changes in T2 relaxation time in degenerated disc model. T2 relaxation time, disc height index and Pfirrmann grade were correlated with the histologic scoring of disc degeneration using Spearman's rho test. Results There was a significant difference in T2 relaxation time between uninjured and injured discs after annular puncture. Progressive decrease in T2 relaxation time was observed in injured discs throughout the study period. Lower T2 relaxation time was observed in the more severely injured discs. T2 relaxation time showed the strongest inverse correlation with the histologic score among the variables investigated (r = -0.811, p < 0.001). Conclusion T2 relaxation time measured with axial T2 mapping in degenerated discs is a potential method to assess disc degeneration. PMID:26798222

  9. New Insights on Human Skeletal Muscle Tissue Compartments Revealed by In Vivo T2 NMR Relaxometry

    PubMed Central

    Araujo, Ericky C.A.; Fromes, Yves; Carlier, Pierre G.

    2014-01-01

    The spin-spin (T2) relaxation of 1H-NMR signals in human skeletal muscle has been previously hypothesized to reveal information about myowater compartmentation. Although experimental support has been provided, no consensus has yet emerged concerning the attribution of specific anatomical compartments to the observed T2 components. Potential application of a noninvasive tool that might offer such information urges the quest for a definitive answer to this question. The purpose of this work was to obtain new information that might help elucidate the mechanism of T2 distribution in muscle. To do so, in vivo T2 relaxation data was acquired from the soleus of eight healthy volunteers using a localized Carr-Purcell-Meiboom-Gill technique. Each acquisition contained 1000 echoes with an interecho spacing of 1 ms. Data were acquired from each subject under different vascular filling preparations expected to change exclusively the extracellular water fraction. Two exponential components were systematically observed: an intermediate component (T2 ∼ 32 ms) and a long component (100 < T2 < 210 ms). The relative fraction and T2 value characterizing the long component systematically increased after progressive augmentation of extracellular water volume. Characteristic relaxation behavior for each vascular filling condition was analyzed with a two-site exchange model and a three-site two-exchange model. We show that a two-site exchange model can only predict the observations for small exchange rates, much more representative of transendothelial than transcytolemmal exchange regimes. The three-site two-exchange model representing the intracellular, interstitial, and vascular spaces was capable of precisely predicting the observations for realistic transcytolemmal and transendothelial exchange rates. The estimated intrinsic relative fractions of each of these compartments corroborate with estimations from previous works and strongly suggest that the T2 relaxation from

  10. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  11. Noninvasive monitoring of moisture uptake in Ca(NO3)2 -polluted calcareous stones by 1H-NMR relaxometry.

    PubMed

    Casieri, Cinzia; Terenzi, Camilla; De Luca, Francesco

    2015-01-01

    NMR transverse relaxation time (T(2)) distribution of (1)H nuclei of water has been used to monitor the moisture condensation kinetics in Ca(NO(3))(2)  · (4)H(2)O-polluted Lecce stone, a calcareous stone with highly regular porous structure often utilized as basic material in Baroque buildings. Polluted samples have been exposed to water vapor adsorption at controlled relative humidity to mimic environmental conditions. In presence of pollutants, the T(2) distributions of water in stone exhibit a range of relaxation time values and amplitudes not observed in the unpolluted case. These characteristics could be exploited for in situ noninvasive detection of salt pollution in Lecce stone or as damage precursors in architectural buildings of cultural heritage interest. PMID:25354389

  12. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  13. Four-dimensional 1H and 23Na imaging using continuously oscillating gradients.

    PubMed

    Star-Lack, J M; Roos, M S; Wong, S T; Schepkin, V D; Budinger, T F

    1997-02-01

    A class of fast magnetic spectroscopic imaging methods using continuously oscillating gradients for four-dimensional (three spatial and one spectral) localization is introduced. Sampling may start immediately following the application of an RF excitation pulse, thus enabling measurement of spin density, chemical shift, and relaxation rates of short-T2 species. For spatial localization, steady-state sinusoidal gradient waveforms are used to sample a ball in k space. The two types of trajectories presented include: (1) continuously oscillating gradients with continuously rotating direction used for steady-state free-precession imaging and (2) continuously oscillating gradients followed by a spoiler directed along discrete projections. Design criteria are given and spatial-spectral and spatial-temporal reconstruction methods are developed. Theoretical point-spread functions and signal-to-noise ratios are derived while considering T2*, off-resonance effects, and RF excitation options. Experimental phantom, in vivo, and in vitro 1H and 23Na images collected at 2.35 T are presented. The 1H images were acquired with isotropic spatial resolution ranging from 0.03 to 0.27 cm3 and gradient-oscillation frequencies ranging from 600 to 700 Hz, thus allowing for the separation of water and lipid signals within a voxel. The 23Na images, acquired with 500 and 800 Hz gradient waveforms and 0.70 cm3 isotropic resolution, were resolved in the time domain, yielding spatially localized FIDs. PMID:9169223

  14. Characterization of T2* Heterogeneity in Human Brain White Matter

    PubMed Central

    Li, Tie-Qiang; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Dodd, Stephen; Talagala, Lalith; Koretsky, Alan P.; Duyn, Jeff

    2012-01-01

    Recent in vivo MRI studies at 7.0 T have demonstrated extensive heterogeneity of T2* relaxation in white matter of the human brain. In order to study the origin of this heterogeneity, we performed T2* measurements at 1.5, 3.0, and 7.0 T in normal volunteers. Formalin-fixed brain tissue specimens were also studied using T2*-weighted MRI, histological staining, chemical analysis, and electron microscopy. We found that T2* relaxation rate (R2*=1/ T2*) in white matter in living human brain is linearly dependent on the main magnetic field strength and the T2* heterogeneity in white matter observed at 7.0 T can also be detected, albeit weaker, at 1.5 and 3.0 T. The T2* heterogeneity exists also in white matter of the formalin fixed brain tissue specimens, with prominent differences between the major fiber bundles such as the cingulum and the superior corona radiada. The white matter specimen with substantial difference in T2*have no significant difference in the total iron content as determined by chemical analysis. On the other hand, evidence from histological staining and electron microscopy demonstrate these tissue specimen have apparent difference in myelin content and microstructure. PMID:19859939

  15. Rapid In Vivo Multicomponent T2 Mapping of Human Knee Menisci

    PubMed Central

    Liu, Fang; Samsonov, Alexey; Wilson, John J.; Blankenbaker, Donna G.; Block, Walter F.; Kijowski, Richard

    2016-01-01

    Purpose To compare multicomponent T2 parameters of menisci measured using Multicomponent Driven Equilibrium Single Pulse Observation of T1 and T2 (mcDESPOT) in asymptomatic volunteers and osteoarthritis (OA) patients with intact and torn menisci. Materials and Methods The prospective study was performed with Institutional Review Board approval and with all subjects signing written informed consent. mcDESPOT was performed on the knee joint of 12 asymptomatic volunteers and 14 patients with knee OA. Single-component T2 relaxation time (T2Single), T2 relaxation time of the fast relaxing water component (T2F), and the slow relaxing water component (T2S), and fraction of the fast relaxing water component (FF) of the medial and lateral menisci were measured. Multivariate linear regression models were used to compare mcDESPOT parameters between normal menisci in asymptomatic volunteers, intact menisci in OA patients, and torn menisci in OA patients with adjustment for differences in age between subjects. Results The mean mcDESPOT parameters for normal menisci in asymptomatic volunteers, intact menisci in OA patients, and torn menisci in OA patients were respectively 16.1 msec, 18.8 msec, and 22.7 msec for T2Single; 9.0 msec, 10.0 msec, and 11.1 msec for T2F; 24.4 msec, 27.7 msec, and 31.4 msec for T2S; and 34%, 32%, 27% for FF. There were significant differences (P<0.05) in T2Single, T2F, T2S, and FF between the three groups of menisci. Conclusion The menisci of OA patients had significantly higher T2Single, T2F, and T2S and significantly lower FF than normal menisci in asymptomatic volunteers with greater changes in multicomponent T2 parameters noted in torn than intact menisci in OA patients. PMID:25847733

  16. Disc Degeneration Assessed by Quantitative T2* (T2 star) Correlated with Functional Lumbar Mechanics

    PubMed Central

    Ellingson, Arin M.; Mehta, Hitesh; Polly, David W.; Ellermann, Jutta; Nuckley, David J.

    2013-01-01

    Study Design Experimental correlation study design to quantify features of disc health, including signal intensity and distinction between the annulus fibrosus (AF) and nucleus pulposus (NP), with T2* magnetic resonance imaging (MRI) and correlate with the functional mechanics in corresponding motion segments. Objective Establish the relationship between disc health assessed by quantitative T2* MRI and functional lumbar mechanics. Summary of Background Data Degeneration leads to altered biochemistry in the disc, affecting the mechanical competence. Clinical routine MRI sequences are not adequate in detecting early changes in degeneration and fails to correlate with pain or improve patient stratification. Quantitative T2* relaxation time mapping probes biochemical features and may offer more sensitivity in assessing disc degeneration. Methods Cadaveric lumbar spines were imaged using quantitative T2* mapping, as well as conventional T2-weighted MRI sequences. Discs were graded by the Pfirrmann scale and features of disc health, including signal intensity (T2* Intensity Area) and distinction between the AF and NP (Transition Zone Slope), were quantified by T2*. Each motion segment was subjected to pure moment bending to determine range of motion (ROM), neutral zone (NZ), and bending stiffness. Results T2* Intensity Area and Transition Zone Slope were significantly correlated with flexion ROM (p=0.015; p=0.002), ratio of NZ/ROM (p=0.010; p=0.028), and stiffness (p=0.044; p=0.026), as well as lateral bending NZ/ROM (p=0.005; p=0.010) and stiffness (p=0.022; p=0.029). T2* Intensity Area was also correlated with LB ROM (p=0.023). Pfirrmann grade was only correlated with lateral bending NZ/ROM (p=0.001) and stiffness (p=0.007). Conclusions T2* mapping is a sensitive quantitative method capable of detecting changes associated with disc degeneration. Features of disc health quantified with T2* predicted altered functional mechanics of the lumbar spine better than

  17. High resolution 1H solid state NMR studies of polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Cheung, T. T. P.; Gerstein, B. C.; Ryan, L. M.; Taylor, R. E.; Dybowski, D. R.

    1980-12-01

    Molecular motions and spatial properties of the solid polymer polyethyleneterephthalate have been investigated using high resolution 1H solid state NMR techniques. The longitudinal spin relaxation time T1ρ of protons (1H) in the rotating frame was measured for a spin locking field ranging from 5 to 20 G. The decay of the 1H magnetization indicated the existence of two distinct T1ρ's and their field dependence shows that they are associated with two mobile phases of the polymer. The 1H magnetization also relaxes under the dipolar narrowed Carr-Purcell (DNCP) multipulse sequence with two dintinct T1y relaxation times. The ratios T1y's and T1ρ's deviate significantly from the expected theoretical values. The combined experiment with magic angle spinning and the DNCP sequence followed by homonuclear dipolar decoupling reveals the individual T1y relaxation of the resolved methylene and aromatic protons. These two species of protons were found to relax with the same T1y's, thus implying that spin diffusion must have taken place under the homonuclear dipolar decoupling multipulse. The qualitative description of spin diffusion under homonuclear decoupling is given. The combined experiment with spin locking and the DNCP sequence yields the correspondence between the two T1ρ's and the two T1y's. The long T1ρ corresponds to the short T1y whereas the short T1ρ corresponds to the long T1y. Communication between the two spatial phases via spin diffusion was also observed in this experiment by monitoring the recovery of the 1H magnitization associated with the short T1ρ after it has been eliminated during the spin locking. The total 1H magnetization is allowed to equilibrate in the laboratory frame for a variable time much shorter than T1 after the spin locking field has been turned off. The spatial relationship between the two phases is discussed.

  18. Time related changes of T1, T2, and T2(*)(2) of human blood in vitro.

    PubMed

    Petrovic, Andreas; Krauskopf, Astrid; Hassler, Eva; Stollberger, Rudolf; Scheurer, Eva

    2016-05-01

    In view of a potential future use for dating hemorrhage in forensic medicine the correlation of MR relaxation parameters with time was evaluated in blood samples. A systematic relationship could be valuable for using MRI for estimating the age of hemorrhage and soft tissue hematomas particularly in clinical forensic medicine. Relaxation times T1, T2, and T2(*) of venous blood samples from 6 volunteers were measured using 3T MRI regularly up to 30 days. The time progression of the relaxation parameters was systematically analyzed and examined for possible interrelations. T2 initially decreased to a minimum, and then increased again (range 24-97ms), while T1 started with a plateau phase followed by an almost linear decrease (range 333-2153ms). T2(*) remained relatively constant during the entire investigation period. The higher the initial T2 was, the lower was its minimum, and the greater was the decrease of the associated T1. The inter- and intra-individual variability was relatively large, one reason being very likely the metabolic differences in the blood samples. The observed characteristic changes in blood samples over time measured by quantitative MR techniques add objective information in view of an estimation of the age of hemorrhage. However, in vivo studies will be needed to verify the data with respect to influencing metabolic factors. PMID:26953500

  19. Dynamic nuclear polarization-enhanced 1H-13C double resonance NMR in static samples below 20 K

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-08-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H-13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H-13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H-13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr-Purcell experiments and numerical simulations of Carr-Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C-13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils.

  20. T2DM: Why Epigenetics?

    PubMed Central

    Fradin, Delphine; Bougnères, Pierre

    2011-01-01

    Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder influenced by interactions between genetic and environmental factors. Epigenetics conveys specific environmental influences into phenotypic traits through a variety of mechanisms that are often installed in early life, then persist in differentiated tissues with the power to modulate the expression of many genes, although undergoing time-dependent alterations. There is still no evidence that epigenetics contributes significantly to the causes or transmission of T2DM from one generation to another, thus, to the current environment-driven epidemics, but it has become so likely, as pointed out in this paper, that one can expect an efflorescence of epigenetic knowledge about T2DM in times to come. PMID:22132323

  1. Diffusion, relaxation, and chemical exchange in casein gels: A nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Gottwald, Antje; Creamer, Lawrence K.; Hubbard, Penny L.; Callaghan, Paul T.

    2005-01-01

    Water in protein/water mixtures can be described in terms of bound water and free water, by exchange between these two states, and by its exchange with appropriate sites on the protein. 1H-NMR diffusion and relaxation measurements provide insights into the mobility of these states. T2 relaxation-time dispersions (i.e., T2 relaxation times at different echo pulse spacings) reveal additional information about exchange. We present a comprehensive set of diffusion and T2 dispersion measurements on casein gels for which the protein/water ratio ranges from 0.25 to 0.5. The combination of these methods, taken in conjunction with concentration dependence, allows a good estimate of the parameters required to fit the data with Luz/Meiboom and Carver/Richards models for relaxation and chemical exchange. We compare the exchange (a) between water and protein and (b) between free water and bound water. Further, we attempt to distinguish chemical site exchange and diffusion/susceptibility exchange.

  2. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  3. Cross Polarization for 1H NMR Image Contrast in Solids

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; Fukunaga, Yasuhiro; Nonaka, Masayuki; Matsui, Shigeru; Inouye, Tamon

    1998-09-01

    A novel1H imaging method for solids, yielding images reflecting1H-13C dipolar interactions through cross relaxation timeTIS, is presented. Phase-alternating multiple-contact cross polarization (PAMC CP) was incorporated into the magic-echo frequency-encoding imaging scheme; the PAMC CP sequence may partly but efficiently destroy the initial1H magnetization depending on theTISvalues. A theory describing the effects of the PAMC CP sequence was developed, which was used for the assessment of the sequence as well as the analysis for the experimental results. It was demonstrated that theTIS-weighted1H image and theTISmapping for a phantom, constituted of adamantane and ferrocene, can distinguish these compounds clearly.

  4. Rapid assessment of quantitative T1, T2 and T2* in lower extremity muscles in response to maximal treadmill exercise.

    PubMed

    Varghese, Juliet; Scandling, Debbie; Joshi, Rohit; Aneja, Ashish; Craft, Jason; Raman, Subha V; Rajagopalan, Sanjay; Simonetti, Orlando P; Mihai, Georgeta

    2015-08-01

    MRI provides a non-invasive diagnostic platform to quantify the physical and physiological attributes of skeletal muscle at rest and in response to exercise. MR relaxation parameters (T1, T2 and T2*) are characteristic of tissue composition and metabolic properties. With the recent advent of quantitative techniques that allow rapid acquisition of T1, T2 and T2* maps, we posited that an integrated treadmill exercise-quantitative relaxometry paradigm can rapidly characterize exercise-induced changes in skeletal muscle relaxation parameters. Accordingly, we investigated the rest/recovery kinetics of T1, T2 and T2* in response to treadmill exercise in the anterior tibialis, soleus and gastrocnemius muscles of healthy volunteers, and the relationship of these parameters to age and gender. Thirty healthy volunteers (50.3 ± 16.6 years) performed the Bruce treadmill exercise protocol to maximal exhaustion. Relaxometric maps were sequentially acquired at baseline and for approximately 44 minutes post-exercise. Our results show that T1, T2 and T2* are significantly and differentially increased immediately post-exercise among the leg muscle groups, and these values recover to near baseline within 30-44 minutes. Our results demonstrate the potential to characterize the kinetics of relaxation parameters with quantitative mapping and upright exercise, providing normative values and some clarity on the impact of age and gender. PMID:26123219

  5. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  6. The T2K experiment

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Ajima, Y.; Albert, J. B.; Allan, D.; Amaudruz, P.-A.; Andreopoulos, C.; Andrieu, B.; Anerella, M. D.; Angelsen, C.; Aoki, S.; Araoka, O.; Argyriades, J.; Ariga, A.; Ariga, T.; Assylbekov, S.; de André, J. P. A. M.; Autiero, D.; Badertscher, A.; Ballester, O.; Barbi, M.; Barker, G. J.; Baron, P.; Barr, G.; Bartoszek, L.; Batkiewicz, M.; Bay, F.; Bentham, S.; Berardi, V.; Berger, B. E.; Berns, H.; Bertram, I.; Besnier, M.; Beucher, J.; Beznosko, D.; Bhadra, S.; Birney, P.; Bishop, D.; Blackmore, E.; Blaszczyk, F. d. M.; Blocki, J.; Blondel, A.; Bodek, A.; Bojechko, C.; Bouchez, J.; Boussuge, T.; Boyd, S. B.; Boyer, M.; Braam, N.; Bradford, R.; Bravar, A.; Briggs, K.; Brinson, J. D.; Bronner, C.; Brook-Roberge, D. G.; Bryant, M.; Buchanan, N.; Budd, H.; Cadabeschi, M.; Calland, R. G.; Calvet, D.; Caravaca Rodríguez, J.; Carroll, J.; Cartwright, S. L.; Carver, A.; Castillo, R.; Catanesi, M. G.; Cavata, C.; Cazes, A.; Cervera, A.; Charrier, J. P.; Chavez, C.; Choi, S.; Chollet, S.; Christodoulou, G.; Colas, P.; Coleman, J.; Coleman, W.; Collazuol, G.; Connolly, K.; Cooke, P.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davies, G. S.; Davis, S.; Day, M.; De La Broise, X.; de Perio, P.; De Rosa, G.; Dealtry, T.; Debraine, A.; Delagnes, E.; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dinh Tran, P.; Dobson, J.; Doornbos, J.; Dore, U.; Drapier, O.; Druillole, F.; Dufour, F.; Dumarchez, J.; Durkin, T.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Ellison, B.; Emery, S.; Ereditato, A.; Escallier, J. E.; Escudero, L.; Esposito, L. S.; Faszer, W.; Fechner, M.; Ferrero, A.; Finch, A.; Fisher, C.; Fitton, M.; Flight, R.; Forbush, D.; Frank, E.; Fransham, K.; Fujii, Y.; Fukuda, Y.; Gallop, M.; Galymov, V.; Ganetis, G. L.; Gannaway, F. C.; Gaudin, A.; Gaweda, J.; Gendotti, A.; George, M.; Giffin, S.; Giganti, C.; Gilje, K.; Giomataris, I.; Giraud, J.; Ghosh, A. K.; Golan, T.; Goldhaber, M.; Gomez-Cadenas, J. J.; Gomi, S.; Gonin, M.; Goyette, M.; Grant, A.; Grant, N.; Grañena, F.; Greenwood, S.; Gumplinger, P.; Guzowski, P.; Haigh, M. D.; Hamano, K.; Hansen, C.; Hara, T.; Harrison, P. F.; Hartfiel, B.; Hartz, M.; Haruyama, T.; Hasanen, R.; Hasegawa, T.; Hastings, N. C.; Hastings, S.; Hatzikoutelis, A.; Hayashi, K.; Hayato, Y.; Haycock, T. D. J.; Hearty, C.; Helmer, R. L.; Henderson, R.; Herlant, S.; Higashi, N.; Hignight, J.; Hiraide, K.; Hirose, E.; Holeczek, J.; Honkanen, N.; Horikawa, S.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Iida, M.; Ikeda, M.; Ilic, J.; Imber, J.; Ishida, T.; Ishihara, C.; Ishii, T.; Ives, S. J.; Iwasaki, M.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Joo, K. K.; Jover-Manas, G.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kaneyuki, K.; Karlen, D.; Kasami, K.; Kasey, V.; Kato, I.; Kawamuko, H.; Kearns, E.; Kellet, L.; Khabibullin, M.; Khaleeq, M.; Khan, N.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, J. Y.; Kim, S.-B.; Kimura, N.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Koike, S.; Komorowski, T.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kouzuma, Y.; Kowalik, K.; Kravtsov, V.; Kreslo, I.; Kropp, W.; Kubo, H.; Kubota, J.; Kudenko, Y.; Kulkarni, N.; Kurchaninov, L.; Kurimoto, Y.; Kurjata, R.; Kurosawa, Y.; Kutter, T.; Lagoda, J.; Laihem, K.; Langstaff, R.; Laveder, M.; Lawson, T. B.; Le, P. T.; Le Coguie, A.; Le Ross, M.; Lee, K. P.; Lenckowski, M.; Licciardi, C.; Lim, I. T.; Lindner, T.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Lu, P.; Ludovici, L.; Lux, T.; Macaire, M.; Magaletti, L.; Mahn, K.; Makida, Y.; Malafis, C. J.; Malek, M.; Manly, S.; Marchionni, A.; Mark, C.; Marino, A. D.; Marone, A. J.; Marteau, J.; Martin, J. F.; Maruyama, T.; Maryon, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Mercer, I.; Messina, M.; Metcalf, W.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Minvielle, R. E.; Mituka, G.; Miura, M.; Mizouchi, K.; Mols, J.-P.; Monfregola, L.; Monmarthe, E.; Moreau, F.; Morgan, B.; Moriyama, S.; Morris, D.; Muir, A.; Murakami, A.; Muratore, J. F.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagashima, G.; Nakadaira, T.; Nakahata, M.; Nakamoto, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Naples, D.; Nelson, B.; Nicholls, T. C.; Nishikawa, K.; Nishino, H.; Nitta, K.; Nizery, F.; Nowak, J. A.; Noy, M.; Obayashi, Y.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Okumura, K.; Okusawa, T.; Ohlmann, C.; Olchanski, K.; Openshaw, R.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Ozaki, T.; Pac, M. Y.; Palladino, V.; Paolone, V.; Paul, P.; Payne, D.; Pearce, G. F.; Pearson, C.; Perkin, J. D.; Pfleger, M.

    2011-12-01

    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, Δm232 and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.

  7. The T2K Experiment

    NASA Astrophysics Data System (ADS)

    Scully, Daniel I.

    2015-05-01

    T2K is a long-baseline neutrino oscillation experiment built to make precision measurements of θ13, θ23 and Δm232. It achieves this by utilising an off-axis, predominantly νµ, neutrino beam from J-PARC to Super-Kamiokande, and a near detector complex which constrains the beam's direction, flux, composition and energy. To date T2K has published νµ-disappearance and νe-appearance results, the latter excluding θ13 = 0 at over 3σ and therefore constituting first evidence for νe-appearance in a νµ beam. In addition to oscillation physics, the on-axis (INGRID) and off-axis (ND280) near detectors provide the capability for a broad neutrino-nucleus interaction physics programme at neutrino energies below 1GeV.

  8. U1h shaft project

    SciTech Connect

    Brian Briggs; R. G. Musick

    2000-06-30

    The U1h shaft project is a design/build subcontract to construct one 20 foot (ft) finished diameter shaft to a depth of 1,045 ft at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 1,045 ft of concrete lined shaft, development of a shaft station at a depth of 976 ft, and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper should be of interest to those involved with the construction of relatively deep shafts and underground excavations.

  9. The T2K Experiment

    SciTech Connect

    Scully, Daniel I.

    2015-05-15

    T2K is a long-baseline neutrino oscillation experiment built to make precision measurements of θ{sub 13}, θ{sub 23} and Δm{sup 2}{sub 32}. It achieves this by utilising an off-axis, predominantly ν{sub µ}, neutrino beam from J-PARC to Super-Kamiokande, and a near detector complex which constrains the beam’s direction, flux, composition and energy. To date T2K has published ν{sub µ}-disappearance and ν{sub e}-appearance results, the latter excluding θ{sub 1}3 = 0 at over 3σ and therefore constituting first evidence for ν{sub e}-appearance in a ν{sub µ} beam. In addition to oscillation physics, the on-axis (INGRID) and off-axis (ND280) near detectors provide the capability for a broad neutrino-nucleus interaction physics programme at neutrino energies below 1GeV.

  10. Relaxed Intensity

    ERIC Educational Resources Information Center

    Ramey, Kyle

    2004-01-01

    Relaxed intensity refers to a professional philosophy, demeanor, and way of life. It is the key to being an effective educational leader. To be successful one must be relaxed, which means managing stress efficiently, having fun, and enjoying work. Intensity allows one to get the job done and accomplish certain tasks or goals. Educational leaders…

  11. RF Coil Considerations for Short-T2 MRI

    PubMed Central

    Horch, R. Adam; Wilkens, Ken; Gochberg, Daniel F.; Does, Mark D.

    2010-01-01

    With continuing hardware and pulse sequence advancements, modern MRI is gaining sensitivity to signals from short-T2 1H species under practical experimental conditions. However, conventional MRI coils are typically not designed for this type of application they often contain proton-rich construction materials which may contribute confounding 1H background signal during short-T2 measurements. An example of this is shown herein. Separately, a loop-gap style coil was used to compare different coil construction materials and configurations with respect to observed 1H background signal sizes in a small animal imaging system. Background signal sources were spatially identified and quantified in a number of different coil configurations. It was found that the type and placement of structural coil materials around the loop-gap resonator, as well as the coil’s shielding configuration, are critical determinants of the coil’s background signal size. Although this study employed a loop-gap resonator design, these findings are directly relevant to standard volume coils commonly used for MRI. PMID:20665825

  12. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  13. T2 can be greater than 2T1

    NASA Astrophysics Data System (ADS)

    Sevian, H. M.; Skinner, J. L.

    1989-08-01

    We consider a quantum-mechanical two-level system under the influence of both diagonal and off-diagonal stochastic perturbations, and focus on the decay times T1 and T2, which refer to the relaxation to equilibrium of the populations and relative phase of the two levels, respectively. From both theoretical and experimental viewpoints one traditionally expects that T2≤2T1. On the other hand, from a fourth-order cumulant expansion calculation of the asymptotic time dependence of the density matrix elements, Budimir and Skinner [J. Stat. Phys. 49, 1029 (1987)] showed that, in fact, in some instances T2>2T1. In this paper we solve the stochastic model numerically, which leads to the exact time dependence of the density matrix at all times. We find that the analytic prediction that T2>2T1 is not only correct, but also meaningful, in the sense that the density matrix elements decay exponentially after only a short transient time.

  14. Towards MRI T2 contrast agents of increased efficiency

    NASA Astrophysics Data System (ADS)

    Branca, Marlène; Marciello, Marzia; Ciuculescu-Pradines, Diana; Respaud, Marc; Morales, Maria del Puerto; Serra, Raphael; Casanove, Marie-José; Amiens, Catherine

    2015-03-01

    Magnetic nanoparticles can be efficient contrast agents for T2 weighted magnetic resonance imaging (MRI) after tuning of some key parameters such as size, surface state, colloidal stability and magnetization, thus motivating the development of new synthetic pathways. In this paper we report the effects of surface coating on the efficiency of two different types of iron based nanoparticles (NPs) as MRI contrast agents. Starting from well-defined hydrophobic iron oxide nanospheres and iron nanocubes of 13 nm size, we have used three methods to increase their hydrophilicity and transfer them into water: surface ligand modification, ligand exchange or encapsulation. The NPs obtained have been characterized by dynamic light scattering and transmission electron microscopy, and the relaxivities of their stable colloidal solutions in water have been determined. Among all samples prepared, iron nanocubes coated by silica display the highest relaxivity (r2) value: 628 s-1 mM-1.

  15. Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra of complex mixtures and biofluids

    NASA Astrophysics Data System (ADS)

    Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino

    2014-05-01

    The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.

  16. Tumor segmentation of multi-echo MR T2-weighted images with morphological operators

    NASA Astrophysics Data System (ADS)

    Torres, W.; Martín-Landrove, M.; Paluszny, M.; Figueroa, G.; Padilla, G.

    2009-02-01

    In the present work an automatic brain tumor segmentation procedure based on mathematical morphology is proposed. The approach considers sequences of eight multi-echo MR T2-weighted images. The relaxation time T2 characterizes the relaxation of water protons in the brain tissue: white matter, gray matter, cerebrospinal fluid (CSF) or pathological tissue. Image data is initially regularized by the application of a log-convex filter in order to adjust its geometrical properties to those of noiseless data, which exhibits monotonously decreasing convex behavior. Finally the regularized data is analyzed by means of an 8-dimensional morphological eccentricity filter. In a first stage, the filter was used for the spatial homogenization of the tissues in the image, replacing each pixel by the most representative pixel within its structuring element, i.e. the one which exhibits the minimum total distance to all members in the structuring element. On the filtered images, the relaxation time T2 is estimated by means of least square regression algorithm and the histogram of T2 is determined. The T2 histogram was partitioned using the watershed morphological operator; relaxation time classes were established and used for tissue classification and segmentation of the image. The method was validated on 15 sets of MRI data with excellent results.

  17. Atmospheric Dispersion Capability for T2VOC

    SciTech Connect

    Oldenburg, Curtis M.

    2005-09-19

    Atmospheric transport by variable-K theory dispersion has been added to T2VOC. The new code, T2VOCA, models flow and transport in the subsurface identically to T2VOC, but includes also the capability for modeling passive multicomponent variable-K theory dispersion in an atmospheric region assumed to be flat, horizontal, and with a logarithmic wind profile. The specification of the logarithmic wind profile in the T2VOC input file is automated through the use of a build code called ATMDISPV. The new capability is demonstrated on 2-D and 3-D example problems described in this report.

  18. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  19. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  20. Cross-linking and 1H n.m.r. spectroscopy of the pyruvate dehydrogenase complex of Escherichia coli

    PubMed Central

    Packman, Leonard C.; Perham, Richard N.; Roberts, Gordon C. K.

    1982-01-01

    The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy. ImagesFig. 2.Fig. 3. PMID:6753833

  1. [T-2 toxin: occurrence and detection].

    PubMed

    Dohnal, V; Jezková, A; Kuca, K; Jun, D

    2007-07-01

    The paper is focused on the occurrence and methods for the detection of T-2 toxin, one of the most toxic trichothecene Fusarium mycotoxin. Due to its physical-chemical properties and high toxicity, T-2 toxin is classified as a potential biological warfare agent. PMID:17969315

  2. Quantitative Serial T2 Relaxometry: A Prospective Evaluation in Solitary Cerebral Cysticercosis

    PubMed Central

    Nalini, Atchayaram; de Souza, Aaron; Saini, Jitender; Thennarasu, Kandavel

    2014-01-01

    Summary We describe the evolution of quantitative T2 relaxometry values on serial MRI in patients with a solitary cerebral cysticercal lesion (SCCL), and determine whether albendazole therapy affects T2 relaxation (T2R) values. Patients with new-onset seizures and MRI-confirmed SCCL were randomized to treatment with albendazole and antiepileptics (“treatment group”) or antiepileptics only (“controls”). Serial MRI including T2 relaxometry was performed at baseline, three, six, 12, and 24 months. Of 123 patients recruited, 81 had more than three MRI scans (treatment group: 37; controls: 44; 58 patients had five scans). The lesion wall at baseline showed a mean T2R value of 152.3 ms, centre 474.9 and perilesional parenchyma 338.5 ms. These were significantly higher than those from normal parenchyma (114 ms). Over time, most sharply in the initial three months, T2R values fell but even at 24 months, they remained above those from normal parenchyma. A slight increase in T2R values from the lesion centre at six months was thought to represent the initiation of gliosis. In the treatment group, T2R values approached normal at 24 months, while controls had persistently higher T2R values. The decline in T2R values at six months was more prominent in the treatment group. T2R values at baseline and at three months differed significantly depending on the stage of the lesion, being higher in stage 2 SCCL. T2R values from SCCL declined over 24 months, being significantly higher in earlier stages of degeneration. A mild increase after six months may be due to the initiation of gliosis. T2R values appear to decline faster in patients who receive albendazole. PMID:24976202

  3. Quantitative serial T2 relaxometry: a prospective evaluation in solitary cerebral cysticercosis.

    PubMed

    Nalini, Atchayaram; de Souza, Aaron; Saini, Jitender; Thennarasu, Kandavel

    2014-06-01

    We describe the evolution of quantitative T2 relaxometry values on serial MRI in patients with a solitary cerebral cysticercal lesion (SCCL), and determine whether albendazole therapy affects T2 relaxation (T2R) values. Patients with new-onset seizures and MRI-confirmed SCCL were randomized to treatment with albendazole and antiepileptics ("treatment group") or antiepileptics only ("controls"). Serial MRI including T2 relaxometry was performed at baseline, three, six, 12, and 24 months. Of 123 patients recruited, 81 had more than three MRI scans (treatment group: 37; controls: 44; 58 patients had five scans). The lesion wall at baseline showed a mean T2R value of 152.3 ms, centre 474.9 and perilesional parenchyma 338.5 ms. These were significantly higher than those from normal parenchyma (114 ms). Over time, most sharply in the initial three months, T2R values fell but even at 24 months, they remained above those from normal parenchyma. A slight increase in T2R values from the lesion centre at six months was thought to represent the initiation of gliosis. In the treatment group, T2R values approached normal at 24 months, while controls had persistently higher T2R values. The decline in T2R values at six months was more prominent in the treatment group. T2R values at baseline and at three months differed significantly depending on the stage of the lesion, being higher in stage 2 SCCL. T2R values from SCCL declined over 24 months, being significantly higher in earlier stages of degeneration. A mild increase after six months may be due to the initiation of gliosis. T2R values appear to decline faster in patients who receive albendazole. PMID:24976202

  4. Local T2 distribution measurements with DANTE-Z slice selection

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg V.; Balcom, Bruce J.

    2012-02-01

    A CPMG pulse sequence incorporated with a DANTE-Z slice selection scheme for measuring spatially-resolved T2 distributions has been presented. The DANTE-Z pulse train with sinc-modulated pulses selects a single, quasi-rectangular slice of less than 0.8 cm wide at an arbitrary position over a 6-cm long sample. The measured T2 distributions are of almost the same quality as regular (bulk) CPMG measurements, with the lower T2 limit being as good as c.a. 0.5 ms. The sequence can be found useful as a supplement or alternative to MRI-based techniques for T2 mapping in short relaxation time samples (water-saturated rocks, building materials, wood, food products, rubbers, etc.), particularly when T2 is required to be measured at only few positions along the sample and the resolution of ˜1 cm is acceptable.

  5. Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity.

    PubMed

    Csajbók, Eva; Bányai, István; Vander Elst, Luce; Muller, Robert N; Zhou, Wuzong; Peters, Joop A

    2005-08-01

    The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. PMID:15929138

  6. T2* mapping of articular cartilage: current status of research and first clinical applications.

    PubMed

    Andreisek, Gustav; Weiger, Markus

    2014-01-01

    T2* mapping is a relatively new method for the compositional assessment of the articular cartilage. Typically, a multigradient echo or an ultrashort echo time imaging technique with a range of short and very short echo times is used. In most studies, imaging is performed at a high field strength, that is, 3 and 7 T. Postprocessing includes exponential fitting of relaxation decay and manual region-of-interest-based measurements of T2* times on T2* maps. Detailed analyses of T2* times of articular cartilage have shown distinct T2* components with shorter and longer T2* times. Moreover, there is a zonal distribution with a significant depthwise gradient of T2*, with relatively short times near the osteochondral junction and relatively long times at the cartilage's surface. T2* times of normal articular cartilage at the knee are, when averaged over the whole cartilage thickness and using monoexponential fitting, approximately 20 milliseconds. The results of recent studies have shown a good test-retest as well as interreader and intrareader reliabilities for T2* mapping. This article provides a descriptive review of the current literature, briefly discusses the technique itself, and provides an outlook on future research questions and possible clinical applications. PMID:24056113

  7. Improving the clinical efficiency of T2(*) mapping of ligament integrity.

    PubMed

    Biercevicz, A M; Walsh, E G; Murray, M M; Akelman, M R; Fleming, B C

    2014-07-18

    Current MR methods use T2(*) relaxation time as a surrogate measure of ligament strength. Currently, a multi-echo voxel-wise least squares fit is the gold standard to create T2(*) maps; however, the post-processing is time-intensive and serves as a stopgap for clinical use. The study objective was to determine if an alternative method could improve post-processing time without sacrificing fidelity of T2(*) values for eventual translational use in the clinic. Using a 6 echo FLASH sequence, three different methods were used to determine intact posterior cruciate ligament (PCL) median T2(*) Two of these methods utilized a voxel-wise method to establish T2(*) maps: (1) a current "gold standard" method using a voxel-wise 6 echo least-squares fit (6LS) and (2) a voxel-wise 2 echo point T2(*) determination (2MM). The third method used median ligament signal intensity and a single nonlinear least-squares fit (6LSROI) instead of a voxel-wise basis. The resulting median T2(*) values of the PCL and computational time were compared. The median T2(*) values were 42% higher using the 2MM compared to the 6LS method (p<0.0001). However, a strong correlation was found for the median T2(*) values between the 2MM and 6LS methods (R(2)=0.80). The median T2(*) values were not significantly different between the 6LS and 6LSROI methods (p=0.519). Using the 2MM (which provides a regional map) and the 6LSROI (which efficiently provides the median T2(*) value) methods in tandem would take only minutes of post-processing computational time compared to the 6LS method (~540 min), and hence would facilitate clinical application of T2(*) maps to predict ligament structural properties as a patient outcome measure. PMID:24792580

  8. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis

    SciTech Connect

    Mills, C.M.; Crooks, L.E.; Kaufman, L.; Brant-Zawadzki, M.

    1984-01-01

    The potential clinical importance of T1 and T2 relaxation times in distinguishing normal and pathologic tissue with magnetic resonance (MR) is discussed and clinical examples of cerebral abnormalities are given. Five patients with cerebral infarction, 15 with multiple sclerosis, two with Wilson disease, and four with tumors were imaged. Hemorrhagic and ischemic cerebrovascular accidents were distinguished using the spin echo technique. In the patients with multiple sclerosis, lesions had prolonged T1 and T2 times, but the definition of plaque was limited by spatial resolution. No abnormalities in signal intensity were seen in the patient with Wilson disease who was no longer severly disabled; abnormal increased signal intensity in the basal ganglia was found in the second patient with Wilson disease. Four tumors produced abnormal T1 and T2 relaxation times but these values alone were not sufficient for tumor characterization.

  9. T2VOC user`s guide

    SciTech Connect

    Falta, R.W.; Pruess, K.; Finsterle, S.; Battistelli, A.

    1995-03-01

    T2VOC is a numerical simulator for three-phase, three-component, non-isothermal flow of water, air, and a volatile organic compound (VOC) in multidimensional heterogeneous porous media. Developed at the Lawrence Berkeley Laboratory, T2VOC is an extension of the TOUGH2 general-purpose simulation program. This report is a self-contained guide to application of T2VOC to subsurface contamination problems involving nonaqueous phase liquids (NAPLs). It gives a technical description of the T2VOC code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Detailed instructions for preparing input data are presented along with several illustrative sample problems.

  10. T-2 mycotoxin inhibits mitochondrial protein synthesis

    SciTech Connect

    Pace, J.G.; Watts, M.R.; Canterbury, W.J.

    1988-01-01

    The authors investigated the effect of T-2 toxin on rat liver mitochondrial protein synthesis. Isolated rat liver mitochondria were supplemented with an S-100 supernatant from rat liver and an external ATP-generating system. An in-vitro assay employing cycloheximide, and inhibitor of cytoplasmic protein synthesis, and chloramphenicol, and inhibitor of mitochondrial protein synthesis, to distinguish mitochondrial protein synthesis from the cytoplasmic process. Amino acid incorporation into mitochondria was dependent on the concentration of mitochondria and was inhibited by chloramphenicol. The rate of uptake of tritium leucine into mitochondrial protein was unaffected by the addition of T-2 toxin and was not a rate-limiting step in incorporation. However, 0.02 micrograms/ml of T-2 toxin decreased the rate of protein synthesis inhibition correlated with the amount of T-2 toxin taken up by the mitochondria. While T-2 toxin is known to inhibit eukaryotic protein synthesis, this is the first time T-2 was shown to inhibit mitochondrial protein synthesis.

  11. QuantitativeT2: interactive quantitative T2 MRI witnessed in mouse glioblastoma.

    PubMed

    Ali, Tonima Sumya; Bjarnason, Thorarin Albert; Senger, Donna L; Dunn, Jeff F; Joseph, Jeffery T; Mitchell, Joseph Ross

    2015-07-01

    The aim of this study was to establish an advanced analytical platform for complex in vivo pathologies. We have developed a software program, QuantitativeT2, for voxel-based real-time quantitative T2 magnetic resonance imaging. We analyzed murine brain tumors to confirm feasibility of our method for neurological conditions. Anesthetized mice (with invasive gliomas, and controls) were imaged on a 9.4 Tesla scanner using a Carr-Purcell-Meiboom-Gill sequence. The multiecho T2 decays from axial brain slices were analyzed using QuantitativeT2. T2 distribution histograms demonstrated substantial characteristic differences between normal and pathological brain tissues. Voxel-based quantitative maps of tissue water fraction (WF) and geometric mean T2 (gmT2) revealed the heterogeneous alterations to water compartmentalization caused by pathology. The numeric distribution of WF and gmT2 indicated the extent of tumor infiltration. Relative evaluations between in vivo scans and ex vivo histology indicated that the T2s between 30 and 150 ms were related to cellular density and the integrity of the extracellular matrix. Overall, QuantitativeT2 has demonstrated significant advancements in qT2 analysis with real-time operation. It is interactive with an intuitive workflow; can analyze data from many MR manufacturers; and is released as open-source code to encourage examination, improvement, and expansion of this method. PMID:26213695

  12. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1°C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T2, since T2 increases linearly in fat during heating. T2-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T2. Calibration of T2-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T2 and temperature with a thermocouple. A positive T2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T2-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  13. Magnetization Transfer Induced Biexponential Longitudinal Relaxation

    PubMed Central

    Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.

    2009-01-01

    Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367

  14. Dynamic stereochemistry of erigeroside by measurement of 1H- 1H and 13C- 1H coupling constants

    NASA Astrophysics Data System (ADS)

    Tafazzoli, Mohsen; Ghiasi, Mina; Moridi, Mahdi

    2008-07-01

    Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and 1H, 13C, 13C{ 1H}, 1H- 1H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ( 1JC-H, 2JC-H, 3JC-H and 3JH-H) values within the exocyclic hydroxymethyl group (CH 2OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of 1J, 2J and 3J involving 1H and 13C on the C 5'-C 6' ( ω), C 6'-O 6' ( θ) and C 1'-O 1' ( φ) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for 1JC1',H1', 2JC5',H6'R, 2JC5',H6'S, 2JC6',H5', 3JC4',H6'R, 3JC4',H6'S and 2JH6'R-H5'S as well as 3JH5',H6'R were obtained and used to derive Karplus equations to correlate these couplings to ω, θ and φ. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.

  15. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  16. Multicomponent T2 Analysis of Articular Cartilage With Synovial Fluid Partial Volume Correction

    PubMed Central

    Liu, Fang; Chaudhary, Rajeev; Block, Walter F.; Samsonov, Alexey; Kijowski, Richard

    2016-01-01

    Purpose To investigate the use of a three-pool model to account for the confounding effects of synovial fluid on multicomponent T2 analysis of articular cartilage using Multicomponent Driven Equilibrium Single Shot Observation of T1 and T2 (mcDESPOT). Materials and Methods mcDESPOT was performed on the knee of eight asymptomatic volunteers and eight patients with osteoarthritis at 3.0T with multicomponent T2 maps created using the two-pool model and a three-pool model containing a nonexchanging synovial fluid water pool. The fraction of the fast-relaxing water component (FF) and the T2 relaxation times for the fast-relaxing (T2F) and slow-relaxing (T2S) water components were measured in the superficial and deep layers of patellar cartilage using the two-pool and three-pool models in asymptomatic volunteers and patients with osteoarthritis and were compared using Wilcoxon signed rank tests. Results Within the superficial layer of patellar cartilage, FF was 22.5% and 25.6% for asymptomatic volunteers and 21.3% and 22.8% for patients with osteoarthritis when using the two-pool and three-pool models, respectively, while T2S was 73.9 msec and 62.0 msec for asymptomatic volunteers and 72.0 msec and 63.1 msec for patients with osteoarthritis when using the two-pool and three-pool models, respectively. For both asymptomatic volunteers and patients with osteoarthritis, the two-pool model provided significantly (P < 0.05) lower FF and higher T2S than the three-pool model, likely due to the effects of synovial fluid partial volume averaging. Conclusion The effects of partial volume averaging between superficial cartilage and synovial fluid may result in biased multicomponent T2 measurements that can be corrected using an mcDESPOT three-pool model containing a nonexchanging synovial fluid water pool. PMID:26435385

  17. The GEM-T2 gravitational model

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F. J.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Klosko, S. M.; Patel, G. B.; Robbins, J. W.; Williamson, R. G.; Engelis, T. E.

    1989-01-01

    The GEM-T2 is the latest in a series of Goddard Earth Models of the terrestrial field. It was designed to bring modeling capabilities one step closer towards ultimately determining the TOPEX/Poseidon satellite's radial position to an accuracy of 10-cm RMS (root mean square). It also improves models of the long wavelength geoid to support many oceanographic and geophysical applications. The GEM-T2 extends the spherical harmonic field to include more than 600 coefficients above degree 36 (which was the limit for its predecessor, GEM-T1). Like GEM-T1, it was produced entirely from satellite tracking data, but it now uses nearly twice as many satellites (31 vs. 17), contains four times the number of observations (2.4 million), has twice the number of data arcs (1132), and utilizes precise laser tracking from 11 satellites. The estimation technique for the solution has been augmented to include an optimum data weighting procedure with automatic error calibration for the gravitational parameters. Results for the GEM-T2 error calibration indicate significant improvement over previous satellite-only models. The error of commission in determining the geoid has been reduced from 155 cm in GEM-T1 to 105 cm for GEM-T2 for the 36 x 36 portion of the field, and 141 cm for the entire model. The orbital accuracies achieved using GEM-T2 are likewise improved. Also, the projected radial error on the TOPEX satellite orbit indicates 9.4 cm RMS for GEM-T2, compared to 24.1 cm for GEM-T1.

  18. The GEM-T2 gravitational model

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F. J.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.

    1990-01-01

    The GEM-T2 is the latest in a series of Goddard Earth Models of the terrestrial field. It was designed to bring modeling capabilities one step closer towards ultimately determining the TOPEX/Poseidon satellite's radial position to an accuracy of 10-cm RMS (root mean square). It also improves models of the long wavelength geoid to support many oceanographic and geophysical applications. The GEM-T2 extends the spherical harmonic field to include more than 600 coefficients above degree 36 (which was the limit for its predecessor, GEM-T1). Like GEM-T1, it was produced entirely from satellite tracking data, but it now uses nearly twice as many satellites (31 vs. 17), contains four times the number of observations (2.4 million), has twice the number of data arcs (1132), and utilizes precise laser tracking from 11 satellites. The estimation technique for the solution has been augmented to include an optimum data weighting procedure with automatic error calibration for the gravitational parameters. Results for the GEM-T2 error calibration indicate significant improvement over previous satellite-only models. The error of commission in determining the geoid has been reduced from 155 cm in GEM-T1 to 105 cm for GEM-T2 for the 36 x 36 portion of the field, and 141 cm for the entire model. The orbital accuracies achieved using GEM-T2 are likewise improved. Also, the projected radial error on the TOPEX satellite orbit indicates 9.4 cm RMS for GEM-T2, compared to 24.1 cm for GEM-T1.

  19. 1H and 19F NMR studies on molecular motions and phase transitions in solid triethylammonium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Seki, Riki; Ikeda, Ryuichi; Ishida, Hiroyuki

    1995-02-01

    Measurements by differential thermal analysis and differential scanning calorimetry and of the spin-lattice relaxation time ( T1), the spin-spin relaxation time ( T2), and the second moment ( M2) of 1H and 19F NMR were carried out in the three solid phases of (CH 3CH 2) 3NHBF 4. X-ray powder patterns were taken in the highest-temperature phase (Phase I) existing above 367 K and the room-temperature phase (Phase II) stable between 220 and 367 K. Phase I formed a NaCl-type cubic structure with a = 11.65(3) Å, Z = 4, V = 1581(13) Å3, and Dx = 0.794 g cm -3, and was expected to be an ionic plastic phase. In this phase, the self-diffusion of anions and the isotropic reorientation of cations were observed. Phase II formed a tetragonal structure with a = 12.47(1) and c = 9.47(3) Å, Z = 4, V = 1473(6) Å3, and Dx = 0.852 g cm -3. From the present DSC and NMR results in this phase, the cations and/or anions were considered to be dynamically disordered states. The C3 reorientation of the cation about the NH bond axis was detected and, in addition, the onset of nutation of the cations and local diffusion of the anions was suggested. In the low-temperature phase (Phase III) stable below 219 K, the C3 reorientations of the three methyl groups of cations and the isotropic reorientation of anions were observed. The motional parameters for these modes were evaluated.

  20. Emulation of petroleum well-logging D-T2 correlations on a standard benchtop spectrometer.

    PubMed

    Mitchell, J; Fordham, E J

    2011-10-01

    An experimental protocol is described that allows two-dimensional (2D) nuclear magnetic resonance (NMR) correlations of apparent diffusion coefficient D(app) and effective transverse relaxation time T(2,eff) to be acquired on a bench-top spectrometer using pulsed field gradients (PFG) in such a manner as to emulate D(app)-T(2,eff) correlations acquired using a well-logging tool with a fixed field gradient (FFG). This technique allows laboratory-scale NMR measurements of liquid-saturated cored rock to be compared directly to logging data obtained from the well by virtue of providing a comparable acquisition protocol and data format, and hence consistent data processing. This direct comparison supports the interpretation of the well-logging data, including a quantitative determination of the oil/brine saturation. The D-T(2) pulse sequence described here uses two spin echoes (2SE) with a variable echo time to encode for diffusion. The diffusion and relaxation contributions to the signal decay are then deconvolved using a 2D numerical inversion. This measurement allows shorter relaxation time components to be probed than in conventional diffusion measurements. A brief discussion of the numerical inversion algorithms available for inverting these non-rectangular data is included. The PFG-2SE sequence described is well suited to laboratory-scale studies of porous media and short T(2) samples in general. PMID:21875819

  1. Bolus-tracking MRI with a simultaneous T1- and T2*-measurement.

    PubMed

    Sourbron, S; Heilmann, M; Biffar, A; Walczak, C; Vautier, J; Volk, A; Peller, M

    2009-09-01

    The aim of this study was to propose and evaluate a methodology to analyze simultaneously acquired T2*-weighted dynamic susceptibility contrast (DSC) MRI and T(1)-weighted dynamic contrast enhanced (DCE) MRI data. Two generalized models of T2*-relaxation are proposed to account for tracer leakage, and a two-compartment exchange model is used to separate tracer in intra- and extravascular spaces. The methods are evaluated using data extracted from ROIs in three mice with subcutaneously implanted human colorectal tumors. Comparing plasma flow values obtained from DCE-MRI and DSC-MRI data defines a practical experimental paradigm to measure T2*-relaxivities, and reveals a factor of 15 between values in tissue and blood. Comparing mean transit time values obtained from DCE-MRI and DSC-MRI without leakage correction, indicates a significant reduction of susceptibility weighting in DSC-MRI during tracer leakage. A one-parameter gradient correction model provides a good approximation for this susceptibility loss, but redundancy of the parameter limits the practical potential of this model for DSC-MRI. Susceptibility loss is modeled more accurately with a variable T2*-relaxivity, which allows to extract new parameters that cannot be derived from DSC-MRI or DCE-MRI alone. They reflect the cellular and vessel geometry, and thus may lead to a more complete characterization of tissue structure. PMID:19585599

  2. Development and Evaluation of Monoclonal Antibodies for the Glucoside of T-2 Toxin (T2-Glc)

    PubMed Central

    Maragos, Chris M.; Kurtzman, Cletus; Busman, Mark; Price, Neil; McCormick, Susan

    2013-01-01

    The interactions between fungi and plants can yield metabolites that are toxic in animal systems. Certain fungi are known to produce sesquiterpenoid trichothecenes, such as T-2 toxin, that are biotransformed by several mechanisms including glucosylation. The glucosylated forms have been found in grain and are of interest as potential reservoirs of T-2 toxin that are not detected by many analytical methods. Hence the glucosides of trichothecenes are often termed “masked” mycotoxins. The glucoside of T-2 toxin (T2-Glc) was linked to keyhole limpet hemocyanin and used to produce antibodies in mice. Ten monoclonal antibody (Mab)-producing hybridoma cell lines were developed. The Mabs were used in immunoassays to detect T2-Glc and T-2 toxin, with midpoints of inhibition curves (IC50s) in the low ng/mL range. Most of the Mabs demonstrated good cross-reactivity to T-2 toxin, with lower recognition of HT-2 toxin. One of the clones (2-13) was further characterized with in-depth cross-reactivity and solvent tolerance studies. Results suggest Mab 2-13 will be useful for the simultaneous detection of T-2 toxin and T2-Glc. PMID:23877196

  3. Pitfalls and advantages of different strategies for the absolute quantification of N-acetyl aspartate, creatine and choline in white and grey matter by 1H-MRS.

    PubMed

    Malucelli, E; Manners, D N; Testa, C; Tonon, C; Lodi, R; Barbiroli, B; Iotti, S

    2009-12-01

    This study extensively investigates different strategies for the absolute quantitation of N-acetyl aspartate, creatine and choline in white and grey matter by (1)H-MRS at 1.5 T. The main focus of this study was to reliably estimate metabolite concentrations while reducing the scan time, which remains as one of the main problems in clinical MRS. Absolute quantitation was based on the water-unsuppressed concentration as the internal standard. We compared strategies based on various experimental protocols and post-processing strategies. Data were obtained from 30 control subjects using a PRESS sequence at several TE to estimate the transverse relaxation time, T(2), of the metabolites. Quantitation was performed with the algorithm QUEST using two different metabolite signal basis sets: a whole-metabolite basis set (WhoM) and a basis set in which the singlet signals were split from the coupled signals (MSM). The basis sets were simulated in vivo for each TE used. Metabolites' T(2)s were then determined by fitting the estimated signal amplitudes of the metabolites obtained at different TEs. Then the absolute concentrations (mM) of the metabolites were assessed for each subject using the estimated signal amplitudes and either the mean estimated relaxation times of all subjects (mean protocol, MP) or the T(2) estimated from the spectra derived from the same subject (individual protocol, IP). Results showed that MP represents a less time-consuming alternative to IP in the quantitation of brain metabolites by (1)H-MRS in both grey and white matter, with a comparable accuracy when performed by MSM. It was also shown that the acquisition time might be further reduced by using a variant of MP, although with reduced accuracy. In this variant, only one water-suppressed and one water-unsuppressed spectra were acquired, drastically reducing the duration of the entire MRS examination. However, statistical analysis highlights the reduced accuracy of MP when performed using Who

  4. Molecular Level Insights on Collagen-Polyphenols Interaction Using Spin-Relaxation and Saturation Transfer Difference NMR.

    PubMed

    Reddy, R Ravikanth; Phani Kumar, Bandaru V N; Shanmugam, Ganesh; Madhan, Balaraman; Mandal, Asit B

    2015-11-01

    Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected polyphenols, viz., gallic acid (GA), pyrogallol (PG), catechin (CA), and epigallocatechin gallate (EGCG), has been investigated by various solution NMR measurements, viz., (1)H and (13)C chemical shifts (δH and δC), (1)H nonselective spin-lattice relaxation times (T1NS) and selective spin-lattice relaxation times (T1SEL), as well as spin-spin relaxation times (T2). Furthermore, we have employed saturation transfer difference (STD) NMR method to monitor the site of GA, CA, PG, and EGCG which are in close proximity to collagen. It is found that -COOH group of GA provides an important contribution for the interaction of GA with collagen, as evidenced from (13)C analysis, while PG, which is devoid of -COOH group in comparison to GA, does not show any significant interaction with collagen. STD NMR data indicates that the resonances of A-ring (H2', H5' and H6') and C-ring (H6 and H8) protons of CA, and A-ring (H2' and H6'), C-ring (H6 and H8), and D-ring (H2″and H6″) protons of EGCG persist in the spectra, demonstrating that these protons are in spatial proximity to collagen, which is further validated by independent proton spin-relaxation measurement and analysis. The selective (1)H T1 measurements of polyphenols in the presence of protein at various concentrations have enabled us to determine their binding affinities with collagen. EGCG exhibits high binding affinity with collagen followed by CA, GA, and PG. Further, NMR results propose that presence of gallic acid moiety in a small molecule increases its affinity with collagen. Our experimental findings provide molecular insights on the binding of collagen and plant polyphenols. PMID:26447653

  5. The Attentional Blink Is Not Affected by Backward Masking of T2, T2-Mask SOA, or Level of T2 Impoverishment

    ERIC Educational Resources Information Center

    Jannati, Ali; Spalek, Thomas M.; Lagroix, Hayley E. P.; Di Lollo, Vincent

    2012-01-01

    Identification of the second of two targets (T2) is impaired when presented shortly after the first (T1). This "attentional blink" (AB) is thought to arise from a delay in T2 processing during which T2 is vulnerable to masking. Conventional studies have measured T2 accuracy which is constrained by the 100% ceiling. We avoided this problem by using…

  6. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  7. Basal Ganglia MR Relaxometry in Obsessive-Compulsive Disorder: T2 Depends Upon Age of Symptom Onset

    PubMed Central

    Hubbard, Emily; Hassenstab, Jason; Yip, Agustin; Vymazal, Josef; Herynek, Vit; Giedd, Jay; Murphy, Dennis L.; Greenberg, Benjamin D.

    2010-01-01

    Dysfunction in circuits linking frontal cortex and basal ganglia (BG) is strongly implicated in obsessive-compulsive disorder (OCD). On MRI studies, neuropsychiatric disorders with known BG pathology have abnormally short T2 relaxation values (a putative biomarker of elevated iron) in this region. We asked if BG T2 values are abnormal in OCD. We measured volume and T2 and T1 relaxation rates in BG of 32 adults with OCD and 33 matched controls. There were no group differences in volume or T1 values in caudate, putamen, or globus pallidus (GP). The OCD group had lower T2 values (suggesting higher iron content) in the right GP, with a trend in the same direction for the left GP. This effect was driven by patients whose OCD symptoms began from around adolescence to early adulthood. The results suggest a possible relationship between age of OCD onset and iron deposition in the basal ganglia. PMID:20503112

  8. Correlated displacement- T2 MRI by means of a Pulsed Field Gradient-Multi Spin Echo method

    NASA Astrophysics Data System (ADS)

    Windt, Carel W.; Vergeldt, Frank J.; Van As, Henk

    2007-04-01

    A method for correlated displacement- T2 imaging is presented. A Pulsed Field Gradient-Multi Spin Echo (PFG-MSE) sequence is used to record T2 resolved propagators on a voxel-by-voxel basis, making it possible to perform single voxel correlated displacement- T2 analyses. In spatially heterogeneous media the method thus gives access to sub-voxel information about displacement and T2 relaxation. The sequence is demonstrated using a number of flow conducting model systems: a tube with flowing water of variable intrinsic T2's, mixing fluids of different T2's in an "X"-shaped connector, and an intact living plant. PFG-MSE can be applied to yield information about the relation between flow, pore size and exchange behavior, and can aid volume flow quantification by making it possible to correct for T2 relaxation during the displacement labeling period Δ in PFG displacement imaging methods. Correlated displacement- T2 imaging can be of special interest for a number of research subjects, such as the flow of liquids and mixtures of liquids or liquids and solids moving through microscopic conduits of different sizes (e.g., plants, porous media, bioreactors, biomats).

  9. Correlated displacement-T2 MRI by means of a Pulsed Field Gradient-Multi Spin Echo Method.

    PubMed

    Windt, Carel W; Vergeldt, Frank J; Van As, Henk

    2007-04-01

    A method for correlated displacement-T2 imaging is presented. A Pulsed Field Gradient-Multi Spin Echo (PFG-MSE) sequence is used to record T2 resolved propagators on a voxel-by-voxel basis, making it possible to perform single voxel correlated displacement-T2 analyses. In spatially heterogeneous media the method thus gives access to sub-voxel information about displacement and T2 relaxation. The sequence is demonstrated using a number of flow conducting model systems: a tube with flowing water of variable intrinsic T2's, mixing fluids of different T2's in an "X"-shaped connector, and an intact living plant. PFG-MSE can be applied to yield information about the relation between flow, pore size and exchange behavior, and can aid volume flow quantification by making it possible to correct for T2 relaxation during the displacement labeling period Delta in PFG displacement imaging methods. Correlated displacement-T2 imaging can be of special interest for a number of research subjects, such as the flow of liquids and mixtures of liquids or liquids and solids moving through microscopic conduits of different sizes (e.g., plants, porous media, bioreactors, biomats). PMID:17236795

  10. Relaxation times estimation in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.

  11. Quantitative Assessment of MRI T2 Response to Kainic Acid Neurotoxicity in Rats in vivo.

    PubMed

    Liachenko, Serguei; Ramu, Jaivijay; Konak, Tetyana; Paule, Merle G; Hanig, Joseph

    2015-07-01

    The aim of this study was to assess quantitative changes in T2 relaxation using magnetic resonance imaging approaches in rats exposed to kainic acid to assess the utility of such endpoints as biomarkers of neurotoxicity. Quantitative T2 mapping was performed in 21 rats before and 2, 24, and 48 h after a single ip injection of 10 mg/kg of kainic acid. Three methods of quantifying T2 changes were explored: (1) Thresholding: all voxels exhibiting T2 ≤ 72 ms were designated normal tissue, whereas voxels exhibiting T2 > 72 ms were designated as lesioned tissue; (2) Statistical mapping: T2 maps obtained after treatment were statistically compared with averaged "baseline" maps, voxel-by-voxel; (3) Within-subject difference from baseline: for each individual the baseline T2 map was subtracted from the T2 map obtained after treatment. Based on the follow-up histopathological response there were 9 responders, 7 nonresponders, and 5 animals were not classified due to early sacrifice at 2 h which was too soon after treatment to detect any morphological evidence. The "thresholding" method (1) detected differences between groups only at the later time point of 48 h, the "statistical mapping" approach (2) detected differences 24 and 48 h after treatment, and the "within-subject difference from baseline" method (3) detected statistically significant differences between groups at each time point (2, 24, and 48 h). T2 mapping provides an easily quantifiable biomarker and the quantification method employing the use of the same animal as its own control provides the most sensitive metrics. PMID:25904105

  12. T2 can be greater than 2T1 even at finite temperature

    NASA Astrophysics Data System (ADS)

    Laird, Brian B.; Skinner, James L.

    1991-03-01

    The relaxation of a nondegenerate two-level quantum system linearly and off-diagonally coupled to a thermal bath of quantum-mechanical harmonic oscillators is studied. The population and phase relaxation times, T1 and T2, are calculated to fourth order in the system/bath interaction. Focus is on a specific model of the bath spectral density that is both Ohmic (proportional to frequency at low frequency) and Lorentzian, and which has the property that, in the semiclassical or high-temperature limit, it reproduces the stochastic model studied previously by Budimir and Skinner [J. Stat. Phys. 49, 1029 (1987)]. For this fully quantum-mechanical model, it is found that under certain conditions the standard inequality, T2≤2T1, is violated, demonstrating that this unusual result, which was originally derived from the (infinite-temperature) stochastic model, is valid at finite temperature as well.

  13. An analysis of the effects of short T2 values on the hyperbolic-secant pulse

    NASA Astrophysics Data System (ADS)

    Norris, David G.; Lüdemann, Heiko; Leibfritz, Dieter

    A computer simulation of the Bloch equations which takes account of the effects of T2 relaxation is used to simulate the effects of short T2 relaxation times on the inversion profiles obtained with the hyperbolic-secant pulse. The degradation of the slice profile is demonstrated, and it is shown that under these conditions the pulse loses its normal insensitivity to variations in B1. Systematic errors in the ISIS experiment arising from these effects are examined, and it is shown that the signal originating from within the selected slice is always reduced, but that spurious signal arises from outside the slice, which may, in a heterogenous medium, lead to an increase or a decrease in the signal measured.

  14. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  15. 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1.

    PubMed

    Mendoza, A; Navarrete-Ramírez, P; Hernández-Puga, G; Villalobos, P; Holzer, G; Renaud, J P; Laudet, V; Orozco, A

    2013-08-01

    Several liganded nuclear receptors have alternative ligands acting in a tissue-specific fashion and playing important biological roles. We present evidence that 3,5-diiodothyronine (T(2)), a naturally occurring iodothyronine that results from T(3) outer-ring deiodination, is an alternative ligand for thyroid hormone receptor β1 (TRβ1). In tilapia, 2 TRβ isoforms differing by 9 amino acids in the ligand-binding domain were cloned. Binding and transactivation studies showed that T(2) activates the human and the long tilapia TRβ1 isoform, but not the short one. A chimeric human TRβ1 (hTRβ1) that contained the 9-amino-acid insert showed no response to T(2), suggesting that the conformation of the hTRβ1 naturally allows T(2) binding and that other regions of the receptor are implicated in TR activation by T(2). Indeed, further analysis showed that the N terminus is essential for T(2)-mediated transactivation but not for that by T(3) in the long and hTRβ1, suggesting a functional interaction between the N-terminal domain and the insertion in the ligand-binding domain. To establish the functional relevance of T(2)-mediated TRβ1 binding and activation, mRNA expression and its regulation by T(2) and T(3) was evaluated for both isoforms. Our data show that long TRβ1expression is 10(6)-fold higher than that of the short isoform, and T(3) and T(2) differentially regulate the expression of these 2 TRβ1 isoforms in vivo. Taken together, our results prompted a reevaluation of the role and mechanism of action of thyroid hormone metabolites previously believed to be inactive. More generally, we propose that classical liganded receptors are only partially locked to very specific ligands and that alternative ligands may play a role in the tissue-specific action of receptors. PMID:23736295

  16. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  17. {sup 1}H nuclear magnetic resonance study of hydrated water dynamics in perfluorosulfonic acid ionomer Nafion

    SciTech Connect

    Han, Jun Hee; Lee, Kyu Won; Jeon, G. W.; Lee, Cheol Eui; Park, W. K.; Choi, E. H.

    2015-01-12

    We have studied the dynamics of hydrated water molecules in the proton exchange membrane of Nafion by means of high-resolution {sup 1}H nuclear magnetic resonance (NMR) measurements. “Bound” and “free” states of hydrated water clusters as well as the exchange protons were identified from the NMR chemical shift measurements, and their activation energies were obtained from the temperature-dependent laboratory- and rotating-frame spin-lattice relaxation measurements. Besides, a peculiar motional transition in the ultralow frequency region was observed at 373 K for the “free” hydrated water from the rotating-frame NMR spin-lattice relaxation time measurements.

  18. Quantitative 1H MRI and MRS Microscopy of Individual V79 Lung Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Guo, Xiuling; Wind, Robert A.

    1998-08-01

    In this Communication1H MRI and MRS microscopy experiments of individual V79 lung tumor spheroids with diameters between 550 and 650 μm are reported. The results have been used to determine theT1,T2, andDvalues as well as the concentrations of water, total choline, creatine/phosphocreatine, and mobile lipids in the viable rims and in the necrotic centers.

  19. Hybrid Nanotrimers for Dual T1 and T2-Weighted Magnetic Resonance Imaging

    PubMed Central

    2015-01-01

    Development of multifunctional nanoparticle-based probes for dual T1- and T2-weighted magnetic resonance imaging (MRI) could allow us to image and diagnose the tumors or other abnormalities in an exceptionally accurate and reliable manner. In this study, by fusing distinct nanocrystals via solid-state interfaces, we built hybrid heteronanostructures to combine both T1 and T2- weighted contrast agents together for MRI with high accuracy and reliability. The resultant hybrid heterotrimers showed high stability in physiological conditions and could induce both simultaneous positive and negative contrast enhancements in MR images. Small animal positron emission tomography imaging study revealed that the hybrid heterostructures displayed favorable biodistribution and were suitable for in vivo imaging. Their potential as dual contrast agents for T1 and T2-weighted MRI was further demonstrated by in vitro and in vivo imaging and relaxivity measurements. PMID:25283972

  20. High resolution (13)C MRI with hyperpolarized urea: in vivo T(2) mapping and (15)N labeling effects.

    PubMed

    Reed, Galen D; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L; Van Criekinge, Mark; Smith, Kenneth J; Hong Shang; Larson, Peder E Z; Kurhanewicz, John; Vigneron, Daniel B

    2014-02-01

    (13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea. PMID:24235273

  1. Search for a T =2 dibaryon

    SciTech Connect

    Parker, B.; Seth, K.K.; Ginsburg, C.M.; O'Reilly, B.; Sarmiento, M.; Soundranayagam, R.; Trokenheim, S. )

    1989-10-09

    We have made a good-resolution, high-sensitivity search for a {ital T}=2 dibaryon in the missing-mass spectra for the reaction {ital d}({pi}{sup {minus}},{pi}{sup +}){pi}{sup {minus}}nn at 292 MeV. Our results are consistent with there being no resonance peak due to such a state in the mass region 2001--2070 MeV. 95%-confidence upper limits for the integrated cross sections for such a state are presented. It is found that a quasifree model calculation, without final-state interactions, considerably underpredicts the continuum yield in the vicinity of the threshold.

  2. On T2* Magnetic Resonance and Cardiac Iron

    PubMed Central

    Carpenter, John-Paul; He, Taigang; Kirk, Paul; Roughton, Michael; Anderson, Lisa J; de Noronha, Sofia V; Sheppard, Mary N; Porter, John B; Walker, J Malcolm; Wood, John C; Galanello, Renzo; Forni, Gianluca; Catani, Gualtiero; Matta, Gildo; Fucharoen, Suthat; Fleming, Adam; House, Michael J; Black, Greg; Firmin, David N; Pierre, Timothy G St.; Pennell, Dudley J

    2012-01-01

    Background Measurement of myocardial iron is key to the clinical management of patients at risk of siderotic cardiomyopathy. The cardiovascular magnetic resonance (CMR) relaxation parameter R2* (assessed clinically via its reciprocal T2*) measured in the ventricular septum is used to assess cardiac iron, but iron calibration and distribution data in humans is limited. Methods and Results Twelve human hearts were studied from transfusion dependent patients following either death (heart failure n=7, stroke n=1) or transplantation for end-stage heart failure (n=4). After CMR R2* measurement, tissue iron concentration was measured in multiple samples of each heart using inductively coupled plasma atomic emission spectroscopy. Iron distribution throughout the heart showed no systematic variation between segments, but epicardial iron concentration was higher than in the endocardium. The mean (±SD) global myocardial iron causing severe heart failure in 10 patients was 5.98 ±2.42mg/g dw (range 3.19–9.50), but in 1 outlier case of heart failure was 25.9mg/g dw. Myocardial ln[R2*] was strongly linearly correlated with ln[Fe] (R2=0.910, p<0.001) leading to [Fe]=45.0•(T2*)−1.22 for the clinical calibration equation with [Fe] in mg/g dw and T2* in ms. Mid-ventricular septal iron concentration and R2* were both highly representative of mean global myocardial iron. Conclusions These data detail the iron distribution throughout the heart in iron overload and provide calibration in humans for CMR R2* against myocardial iron concentration. The iron values are of considerable interest with regard to the level of cardiac iron associated with iron-related death and indicate that the heart is more sensitive to iron loading than the liver. The results also validate the current clinical practice of monitoring cardiac iron in-vivo by CMR of the mid septum. PMID:21444881

  3. Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: Effects of age and disease progression

    PubMed Central

    Willcocks, RJ; Arpan, IA; Forbes, SC; Lott, DJ; Senesac, CS; Senesac, E; Deol, J; Triplett, W; Baligand, C; Daniels, MJ; Sweeney, HL; Walter, GA; Vandenborne, K

    2014-01-01

    Duchenne muscular dystrophy (DMD) is characterized by in increased muscle damage and progressive replacement of muscle by noncontractile tissue. Both of these pathological changes can lengthen the MRI transverse proton relaxation time (T2). The current study measured longitudinal changes in T2 and its distribution in the lower leg of 16 boys with DMD (5–13 years, 15 ambulatory), 15 healthy controls (5–13 years). These muscles were chosen to allow extended longitudinal monitoring, due to their slow progression compared with proximal muscles in DMD. In the soleus muscle of boys with DMD, T2 and the percentage of pixels with an elevated T2 (≥2 SD above control mean T2) increased significantly over one year and two years, while the width of the T2 histogram increased over two years. Changes in soleus T2 variables were significantly greater in 9–13 year old compared with 5–8 year old boys with DMD. Significant correlations between the change in all soleus T2 variables over two years and the change in functional measures over two years were found. MRI measurement of muscle T2 in boys with DMD is sensitive to disease progression and shows promise as a clinical outcome measure. PMID:24491484

  4. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR.

    PubMed

    Kawamura, Izuru; Ohmine, Masato; Tanabe, Junko; Tuzi, Satoru; Saitô, Hazime; Naito, Akira

    2007-12-01

    Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T1 rho) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid beta-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T1 rho and cross relaxation times. In addition, breakage of the beta-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal. PMID:18036552

  5. Pheomelanin-coated iron oxide magnetic nanoparticles: a promising candidate for negative T2 contrast enhancement in magnetic resonance imaging.

    PubMed

    Zottis, Alexandre D A; Beltrame, Jeovandro M; Lara, Luciano R S; Costa, Thiago G; Feldhaus, Mateus J; Pedrosa, Rozangela Curi; Ourique, Fabiana; de Campos, Carlos E M; Isoppo, Eduardo de A; da Silva Miranda, Fabio; Szpoganicz, Bruno

    2015-06-30

    We describe herein a novel type of monodisperse water-soluble magnetite nanoparticle coated with pheomelanin using an environmentally-friendly approach in aqueous medium. The results indicate superparamagnetic behaviour at room temperature and show improved negative contrast in T2-weighted MRI with a transverse relaxivity of 218 mM(-1) s(-1). PMID:26073290

  6. Quantitative MRI Evaluation of Articular Cartilage Using T2 Mapping Following Hip Arthroscopy for Femoroacetabular Impingement

    PubMed Central

    Mayer, Stephanie W.; Wagner, Naomi; Fields, Kara G.; Wentzel, Catherine; Burge, Alissa; Potter, Hollis G.; Lyman, Stephen; Kelly, Bryan T.

    2016-01-01

    Objectives: Cam-type femoroacetabular impingement (FAI) causes a shearing and delamination injury to the acetabular articular cartilage due to a mismatch between the size of the femoral head and the acetabulum. This mechanism is thought to lead to early osteoarthritis in this population. Cam decompression has been advocated to eliminate impingement, with the ultimate goal of halting the progression of articular cartilage delamination. Although outcomes following this procedure in the young adult population have been favorable at short and medium term follow up, it is not known whether the articular cartilage itself is protected from further injury by changing the biomechanics of the joint with decompression of the cam morphology. The purpose of this study is to compare the pre- and post-operative integrity of the acetabular articular cartilage using T2 mapping to determine if hip arthroscopy is protective of the articular cartilage at short- to medium term follow up. Methods: Males between 18 and 35 years of age who had pre-operative T2 mapping MRIs, underwent hip arthroscopy for cam or mixed-type FAI with an alpha angle greater than 50°, and had at least 2 year follow-up were identified. Post-operative MRIs were performed and T2 relaxation times in the transition zone and weight bearing articular cartilage in the anterosuperior acetabulum at deep and superficial chondral layers were recorded at nine points on three sagittal sequences on pre and post-operative MRIs. A paired t-test was used to compare T2 relaxation values between pre-operative and post-operative scans. Results: Eleven hips were evaluated. Mean age was 26.3 years (range 21 - 35). Mean follow up time to post-operative T2 mapping MRI was 2.6 years (range 2.4 - 2.7). The change in T2 relaxation time was not significantly different between pre- and post-operative MRI scans for any of the nine regions in the deep zone of the acetabular cartilage (p=0.065 - 0.969) or the superficial zone of the

  7. Biomechanical Analysis of T2 Exercise

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.

    2010-01-01

    Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.

  8. Preliminary 1H NMR study on archaeological waterlogged wood.

    PubMed

    Maccotta, Antonella; Fantazzini, Paola; Garavaglia, Carla; Donato, Ines D; Perzia, Patrizia; Brai, Maria; Morreale, Filippa

    2005-01-01

    Magnetic Resonance Relaxation (MRR) and Magnetic Resonance Imaging (MRI) are powerful tools to obtain detailed information on the pore space structure that one is unlikely to obtain in other ways. These techniques are particularly suitable for Cultural Heritage materials, because they use water 1H nuclei as a probe. Interaction with water is one of the main causes of deterioration of materials. Porous structure in wood, for example, favours the penetration of water, which can carry polluting substances and promote mould growth. A particular case is waterlogged wood from underwater discoveries and moist sites; in fact, these finds are very fragile because of chemical, physical and biological decay from the long contact with the water. When wood artefacts are brought to the surface and directly dried in air, there is the collapse of the cellular structures, and wood loses its original form and dimensions and cannot be used for study and museum exhibits. In this work we have undertaken the study of some wood finds coming from Ercolano's harbour by MRR and MRI under different conditions, and we have obtained a characterization of pore space in wood and images of the spatial distribution of the confined water in the wood. PMID:16485652

  9. T2-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS

    PubMed Central

    Evans, Matthew C; Serres, Sébastien; Khrapitchev, Alexandre A; Stolp, Helen B; Anthony, Daniel C; Talbot, Kevin; Turner, Martin R; Sibson, Nicola R

    2014-01-01

    Neuroinflammation has been identified as a potential therapeutic target in amyotrophic lateral sclerosis (ALS), but relevant biomarkers are needed. The superoxide dismutase (SOD1)G93A transgenic mouse model of ALS offers a unique opportunity to study and potentially manipulate presymptomatic pathology. While T2-weighted magnetic resonance imaging (MRI) has been shown to be sensitive to pathologic changes at symptom onset, no earlier biomarkers were previously identified and the underlying histopathologic correlates remain uncertain. To address these issues, we used a multimodal MRI approach targeting structural (T2, T1, apparent diffusion coefficient (ADC), magnetization transfer ratio (MTR)), vascular (gadolinium diethylene triamine pentaacetic acid), and endothelial (vascular cell adhesion molecule–microparticles of iron oxide) changes, together with histopathologic analysis from presymptomatic to symptomatic stages of disease. Presymptomatic changes in brainstem nuclei were evident on T2-weighted images from as early as 60 days (P<0.05). Histologic indices of vacuolation, astro- and microglial activation all correlated with T2-weighted changes. Significant reductions in ADC (P<0.01) and MTR (P<0.05) were found at 120 days in the same brainstem nuclei. No changes in T1 relaxation, vascular permeability, or endothelial activation were found at any stage of disease. These findings suggest that T2-weighted MRI offers the strongest biomarker potential in this model, and that MRI has unique potential for noninvasive and longitudinal assessment of presymptomatically applied therapeutic and neuroprotective agents. PMID:24496176

  10. Development and evaluation of monoclonal antibodies for the glucoside of T-2 toxin (T2-Glc)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactions between fungi and plants can yield metabolites that are toxic in animal systems. Certain fungi are known to produce sesquiterpenoid trichothecenes, such as T-2 toxin, that are biotransformed by several mechanisms including glucosylation. The glucosylated forms have been found in gra...

  11. T2 * MR relaxometry and ligament volume are associated with the structural properties of the healing ACL.

    PubMed

    Biercevicz, Alison M; Murray, Martha M; Walsh, Edward G; Miranda, Danny L; Machan, Jason T; Fleming, Braden C

    2014-04-01

    Our objective was to develop a non-invasive magnetic resonance (MR) method to predict the structural properties of a healing anterior cruciate ligament (ACL) using volume and T2 * relaxation time. We also compared our T2 *-based structural property prediction model to a previous model utilizing signal intensity, an acquisition-dependent variable. Surgical ACL transection followed by no treatment (i.e., natural healing) or bio-enhanced ACL repair was performed in a porcine model. After 52 weeks of healing, high-resolution MR images of the ACL tissue were collected. From these images, ligament volumes and T2 * maps were established. The structural properties of the ligaments were determined via tensile testing. Using the T2 * histogram profile, each ligament voxel was binned based on its T2 * value into four discrete tissue sub-volumes defined by specific T2 * intervals. The linear combination of the ligament sub-volumes binned by T2 * value significantly predicted maximum load, yield load, and linear stiffness (R(2)  = 0.92, 0.82, 0.88; p < 0.001) and were similar to the previous signal intensity based method. In conclusion, the T2 * technique offers a highly predictive methodology that is a first step towards the development of a method that can be used to assess ligament healing across scanners, studies, and institutions. PMID:24338640

  12. The attentional blink is not affected by backward masking of T2, T2-mask SOA, or level of T2 impoverishment.

    PubMed

    Jannati, Ali; Spalek, Thomas M; Lagroix, Hayley E P; Di Lollo, Vincent

    2012-02-01

    Identification of the second of two targets (T2) is impaired when presented shortly after the first (T1). This attentional blink (AB) is thought to arise from a delay in T2 processing during which T2 is vulnerable to masking. Conventional studies have measured T2 accuracy which is constrained by the 100% ceiling. We avoided this problem by using a dynamic threshold-tracking procedure that is inherently free from ceiling constraints. In two experiments we examined how AB magnitude is affected by three masking-related factors: (a) presence/absence of T2 mask, (b) T2-mask stimulus onset asynchrony (SOA), and (c) level of T2 impoverishment (signal-to-noise ratio [SNR]). In Experiment 1, overall accuracy decreased with T2-mask SOA. The magnitude of the AB, however, was invariant with SOA and with mask presence/absence. Experiment 2 further showed that the AB was invariant with T2 SNR. The relationship among mask presence/absence, SOA, and T2 SNR and the AB is encompassed in a qualitative model. PMID:22060143

  13. T2 distribution mapping profiles with phase-encode MRI

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg V.; Ersland, Geir; Balcom, Bruce J.

    2011-03-01

    Two 1-D phase-encode sequences for T2 mapping, namely CPMG-prepared SPRITE and spin-echo SPI, are presented and compared in terms of image quality, accuracy of T2 measurements and the measurement time. The sequences implement two different approaches to acquiring T2-weighted images: in the CPMG-prepared SPRITE, the T2-weighting of magnetization precedes the spatial encoding, while in the spin-echo SPI, the T2-weighting follows the spatial encoding. The sequences are intended primarily for T2 mapping of fluids in porous solids, where using frequency encode techniques may be problematic either due to local gradient distortions or too short T2. Their possible applications include monitoring fluid-flow processes in rocks, cement paste hydration, curing of rubber, filtering paramagnetic impurities and other processes accomplished by changing site-specific T2.

  14. Modification of energy balance induced by the food contaminant T-2 toxin: a multimodal gut-to-brain connection.

    PubMed

    Gaigé, Stéphanie; Djelloul, Mehdi; Tardivel, Catherine; Airault, Coraline; Félix, Bernadette; Jean, André; Lebrun, Bruno; Troadec, Jean-Denis; Dallaporta, Michel

    2014-03-01

    T-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention. Through an extensive characterization of sickness-like behavior induced by T-2 toxin, we showed that its per os (p.o.) administration affects not only feeding behavior but also energy expenditure, glycaemia, body temperature and locomotor activity. Using c-Fos expression mapping, we identified the neuronal structures activated in response to T-2 toxin and observed that the pattern of neuronal populations activated by this toxin resembled that induced by inflammatory signals. Interestingly, part of neuronal pathways activated by the toxin were NUCB-2/nesfatin-1 expressing neurons. Unexpectedly, while T-2 toxin induced a strong peripheral inflammation, the brain exhibited limited inflammatory response at a time point when anorexia was ongoing. Unilateral vagotomy partly reduced T-2 toxin-induced brainstem neuronal activation. On the other hand, intracerebroventricular (icv) T-2 toxin injection resulted in a rapid (<1h) reduction in food intake. Thus, we hypothesized that T-2 toxin could signal to the brain through neuronal and/or humoral pathways. The present work provides the first demonstration that T-2 toxin modifies feeding behavior by interfering with central neuronal networks devoted to central energy balance. Our results, with a particular attention to peripheral inflammation, strongly suggest that inflammatory mediators partake in the T-2 toxin-induced anorexia and other symptoms. In view of the broad human and breeding animal exposure to T-2 toxin, this new mechanism may lead to reconsider the impact of

  15. Kinetics of the in vivo31P 1H nuclear overhauser effect of the human-calf-muscle phosphocreatine resonance

    NASA Astrophysics Data System (ADS)

    Bachert, Peter; Bellemann, Matthias E.

    In 31P 1H double-resonance experiments in a 1.5 T whole-body MR system, we observed in vivo the truncated driven, transient, and steady-state 31P- 1H nuclear Overhauser effect of the phosphocreatine resonance in 31P MR spectra of human gastrocnemius muscle. Maximum signal enhancements of 0.52 ± 0.01, 0.20 ± 0.01, and 0.79 ± 0.02 were measured, respectively. Fitting the data with theoretical functions which solve the multispin Solomon equations for N protons (S spins) dipolar coupled to a 31P nucleus (I spin) yields cross-relaxation times {2}/{[Σ i=1-N σIS(i) ] } in the order of 20 s. In vivo experiments are feasible for studying relaxation mechanisms in coupled 31P 1H spin systems in intact tissue.

  16. Evaluation of brain edema using magnetic resonance proton relaxation times

    SciTech Connect

    Fu, Y.; Tanaka, K.; Nishimura, S. )

    1990-01-01

    Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.

  17. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging

    PubMed Central

    2010-01-01

    Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps. Results ρw images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves

  18. Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla.

    PubMed

    Grgac, Ksenija; van Zijl, Peter C M; Qin, Qin

    2013-10-01

    Knowledge of blood (1)H2O T1 is critical for perfusion-based quantification experiments such as arterial spin labeling and cerebral blood volume-weighted MRI using vascular space occupancy. The dependence of blood (1)H2O T1 on hematocrit fraction (Hct) and oxygen saturation fraction (Y) was determined at 7 T using in vitro bovine blood in a circulating system under physiological conditions. Blood (1)H2O R1 values for different conditions could be readily fitted using a two-compartment (erythrocyte and plasma) model, which are described by a monoexponential longitudinal relaxation rate constant dependence. It was found that T1 = 2171 ± 39 ms for Y = 1 (arterial blood) and 2010 ± 41 ms for Y = 0.6 (venous blood), for a typical Hct of 0.42. The blood (1)H2O T1 values in the normal physiological range (Hct from 0.35 to 0.45, and Y from 0.6 to 1.0) were determined to range from 1900 to 2300 ms. The influence of oxygen partial pressure (pO2) and the effect of plasma osmolality for different anticoagulants were also investigated. It is discussed why blood (1)H2O T1 values measured in vivo for human blood may be about 10-20% larger than found in vitro for bovine blood at the same field strength. PMID:23169066

  19. MRI Contrast from Relaxation Along a Fictitious Field (RAFF)

    PubMed Central

    Liimatainen, Timo; Sorce, Dennis J.; O’Connell, Robert; Garwood, Michael; Michaeli, Shalom

    2016-01-01

    A new method to measure rotating frame relaxation and to create contrast for MRI is introduced. The technique exploits relaxation along a fictitious field (RAFF) generated by amplitude- and frequency-modulated irradiation in a sub-adiabatic condition. Here, RAFF is demonstrated using a radiofrequency pulse based on sine and cosine amplitude and frequency modulations of equal amplitudes, which gives rise to a stationary fictitious magnetic field in a doubly rotating frame. According to dipolar relaxation theory, the RAFF relaxation time constant (TRAFF) was found to differ from laboratory frame relaxation times (T1 and T2) and rotating frame relaxation times (T1ρ and T2ρ). This prediction was supported by experimental results obtained from human brain in vivo and three different solutions. Results from relaxation mapping in human brain demonstrated the ability to create MRI contrast based on RAFF. The value of TRAFF was found to be insensitive to the initial orientation of the magnetization vector. Finally, as compared with adiabatic pulse trains of equal durations, RAFF required less radiofrequency power and therefore can be more readily used for rotating frame relaxation studies in humans. PMID:20740665

  20. MRI contrast from relaxation along a fictitious field (RAFF).

    PubMed

    Liimatainen, Timo; Sorce, Dennis J; O'Connell, Robert; Garwood, Michael; Michaeli, Shalom

    2010-10-01

    A new method to measure rotating frame relaxation and to create contrast for MRI is introduced. The technique exploits relaxation along a fictitious field (RAFF) generated by amplitude- and frequency-modulated irradiation in a subadiabatic condition. Here, RAFF is demonstrated using a radiofrequency pulse based on sine and cosine amplitude and frequency modulations of equal amplitudes, which gives rise to a stationary fictitious magnetic field in a doubly rotating frame. According to dipolar relaxation theory, the RAFF relaxation time constant (T(RAFF)) was found to differ from laboratory frame relaxation times (T(1) and T(2)) and rotating frame relaxation times (T(1ρ) and T(2ρ)). This prediction was supported by experimental results obtained from human brain in vivo and three different solutions. Results from relaxation mapping in human brain demonstrated the ability to create MRI contrast based on RAFF. The value of T(RAFF) was found to be insensitive to the initial orientation of the magnetization vector. In the RAFF method, the useful bandwidth did not decrease as the train length increased. Finally, as compared with an adiabatic pulse train of equal duration, RAFF required less radiofrequency power and therefore can be more readily used for rotating frame relaxation studies in humans. PMID:20740665

  1. Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm

    NASA Astrophysics Data System (ADS)

    Harańczyk, H.; Kobierski, J.; Nizioł, J.; Hebda, E.; Pielichowski, J.; Zalitacz, D.; Marzec, M.; El-Ghayoury, A.

    2013-01-01

    The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t1h = (0.59 ± 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t2h = (20.9 ± 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T2S∗≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1∗≈ 100 μs) and from loosely bound water fraction (T2L2∗≈ 1000 μs).

  2. Crystalline 1H-1,2,3-triazol-5-ylidenes

    DOEpatents

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  3. Characterization of hepatic fatty acids in mice with reduced liver fat by ultra-short echo time (1)H-MRS at 14.1 T in vivo.

    PubMed

    Soares, Ana Francisca; Lei, Hongxia; Gruetter, Rolf

    2015-08-01

    Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders. PMID:26119835

  4. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  5. Gold-coated iron oxide nanoparticles as a T2 contrast agent in magnetic resonance imaging.

    PubMed

    Ahmad, Tanveer; Bae, Hongsub; Rhee, Ilsu; Chang, Yongmin; Jin, Seong-Uk; Hong, Sungwook

    2012-07-01

    Gold-coated iron oxide (Fe3O4) nanoparticles were synthesized for use as a T2 contrast agent in magnetic resonance imaging (MRI). The coated nanoparticles were spherical in shape with an average diameter of 20 nm. The gold shell was about 2 nm thick. The bonding status of the gold on the nanoparticle surfaces was checked using a Fourier transform infrared spectrometer (FTIR). The FTIR spectra confirmed the attachment of homocysteine, in the form of thiolates, to the Au shell of the Au-Fe3O4 nanoparticles. The relaxivity ratio, R2/R1, for the coated nanoparticles was 3-fold higher than that of a commercial contrast agent, Resovist, which showed the potential for their use as a T2 contrast agent with high efficacy. In animal experiments, the presence of the nanoparticles in rat liver resulted in a 71% decrease in signal intensity in T2-weighted MR images, indicating that our gold-coated iron oxide nanoparticles are suitable for use as a T2 contrast agent in MRI. PMID:22966533

  6. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  7. T1rho and T2rho MRI in the evaluation of Parkinson's disease.

    PubMed

    Nestrasil, I; Michaeli, S; Liimatainen, T; Rydeen, C E; Kotz, C M; Nixon, J P; Hanson, T; Tuite, Paul J

    2010-06-01

    Prior work has shown that adiabatic T(1rho) and T(2rho) relaxation time constants may have sensitivity to cellular changes and the presence of iron, respectively, in Parkinson's disease (PD). Further understanding of these magnetic resonance imaging (MRI) methods and how they relate to measures of disease severity and progression in PD is needed. Using T(1rho) and T(2rho) on a 4T MRI scanner, we assessed the substantia nigra (SN) of nine non-demented moderately affected PD and ten gender- and age-matched control participants. When compared to controls, the SN of PD subjects had increased T(1rho) and reduced T(2rho). We also found a significant correlation between asymmetric motor features and asymmetry based on T(1rho). This study provides additional validation of T(1rho) and T(2rho) as a means to separate PD from control subjects, and T(1rho) may be a useful marker of asymmetry in PD. PMID:20058018

  8. T1ρ and T2ρ MRI in the evaluation of Parkinson’s disease

    PubMed Central

    Nestrasil, I.; Michaeli, S.; Liimatainen, T.; Rydeen, C. E.; Kotz, C. M.; Nixon, J. P.; Hanson, T.

    2011-01-01

    Prior work has shown that adiabatic T1ρ and T2ρ relaxation time constants may have sensitivity to cellular changes and the presence of iron, respectively, in Parkinson’s disease (PD). Further understanding of these magnetic resonance imaging (MRI) methods and how they relate to measures of disease severity and progression in PD is needed. Using T1ρand T2ρ on a 4T MRI scanner, we assessed the substantia nigra (SN) of nine non-demented moderately affected PD and ten gender- and age-matched control participants. When compared to controls, the SN of PD subjects had increased T1ρ and reduced T2ρ We also found a significant correlation between asymmetric motor features and asymmetry based on T1ρ. This study provides additional validation of T1ρ and T2ρ as a means to separate PD from control subjects, and T1ρ may be a useful marker of asymmetry in PD. PMID:20058018

  9. Distortion-free {sup 13}C NMR spectroscopy in coal: {sup 1}H rotating-frame dynamic nuclear polarization and {sup 1}H-{sup 13}C cross-polarization

    SciTech Connect

    Wind, R.A.

    1993-12-31

    A {sup 1}H-{sup 13}C cross-polarization (CP) experiment is described in which the {sup 1}H magnetization, used in CP, is obtained via dynamic nuclear polarization (DNP) in the proton rotating frame (RF DNP). This experiment can be carried out in coal and other solids containing unpaired electrons. In this so-called RF DNP-CP experiment, interplay effects between the {sup 1}H-{sup 13}C polarization-transfer times and the {sup 1}H rotating-frame relaxation time are avoided; thus {sup 13}C spectral distortions due to these effects are prevented. Moreover, multiple-contact RF DNP-CP experiments are possible, and these experiments reduce the measuring time of a {sup 13}C spectrum. An application of the RF DNP-CP technique in a low-volatile bituminous coal is given. 25 refs., 3 figs.

  10. Relaxation-relaxation exchange experiments in porous media with portable Halbach-Magnets.

    NASA Astrophysics Data System (ADS)

    Haber, A.; Haber-Pohlmeier, S.; Casanova, F.; Blümich, B.

    2009-04-01

    Mobile NMR became a powerful tool following the development of portable NMR sensors for well logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of polymers is obtained, and new opportunities are provided for geo-physical investigations [1]. In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time tm [2]. Relaxation-relaxation exchange experiments of water in inorganic porous media were performed at low and moderately inhomogeneous magnetic field with a simple, portable Halbach-Magnet. By conducting NMR transverse relaxation exchange experiments for several mixing times and converting the results to 2D T2 distributions (joint probability densities of transverse relaxation times T2) with the help of the inverse 2D Laplace Transformation (ILT), we obtained characteristic exchange times for different pore sizes. The results of first experiments on soil samples are reported, which reveal information about the complex pore structure of soil and the moisture content. References: 1. B. Blümich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F. Casanova, Mobile NMR for Geo-Physical Analysis and Material Testing, Petroleum Science, xx (2009) xxx - xxx. 2. K. E. Washburn, P.T. Callaghan, Tracking pore to pore exchange using relaxation exchange spectroscopy, Phys. Rev. Lett. 97 (2006) 175502.

  11. Spin relaxation of iron in mixed state hemoproteins.

    PubMed Central

    Wajnberg, E; Kalinowski, H J; Bemski, G; Helman, J S

    1986-01-01

    In hemoproteins the relaxation mechanism of iron is Orbach for high spin (HS) and Raman for low spin (LS). We found that in met-hemoglobin and met-myoglobin, under conditions in which the two spin states coexist, both the HS and the LS states relax to the lattice through Orbach-like processes. Alos, very short (approximately 1 ns) and temperature independent transverse relaxation times T2 were estimated. This may result from the unusual electronic structure of mixed states hemoproteins that allows thermal equilibrium and interconversion of the spin states. PMID:3013333

  12. Relaxation Analysis of Porous Media at High Magnetic Field Strengths: The Influence of Internal Gradients

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Roberts, S. T.; Holland, D. J.; Blake, A.; Fordham, E. J.; Gladden, L. F.

    2011-03-01

    The strengths of surface interaction in catalytic materials or wettability in oil-field reservoir rocks can be assessed based on the ratio of nuclear magnetic resonance (NMR) relaxation times T1/T2. It is often desirable to measure these relaxation times at intermediate or high magnetic field strengths (B0⩾1 T) in order to retain chemical shift information and improve the signal-to-noise ratio. However, T2 relaxation is influenced by diffusion through internal magnetic field gradients. These internal gradients, caused by the magnetic susceptibility contrast between liquid and solid, scale with increasing field strength and result in the observation of an effective T2,eff relaxation time. Here, we discuss a method by which the "true" surface relaxivity dominated T2 can be recovered using the example of materials relevant to liquid-phase catalysis. This method extends the range of magnetic field strengths available for use in porous media studies. We consider the use of T2,eff—T2,eff exchange experiments as an alternative probe of pore size in high-field relaxation analysis of oil reservoir rocks. We also show prelilminary results from a NMR grain size measurement utilizing Bayesian analysis of single point imaging k-space data.

  13. Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Alipour, A.; Soran-Erdem, Z.; Aykut, Z. G.; Demir, H. V.

    2015-06-01

    We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin canting effect. As a proof-of-concept demonstration, we showed their potential as dual contrast agents for both T1- and T2-weighted MRI via phantom studies, in vivo imaging and relaxivity measurements. Therefore, these low-magnetization magnetite nanocubes, while being non-toxic and bio-compatible, hold great promise as excellent dual-mode T1 and T2 contrast agents for MRI.We report the first study of highly monodisperse and crystalline iron oxide nanocubes with sub-nm controlled size distribution (9.7 +/- 0.5 nm in size) that achieve simultaneous contrast enhancement in both T1- and T2-weighted magnetic resonance imaging (MRI). Here, we confirmed the magnetite structure of iron oxide nanocubes by X-ray diffraction (XRD), selected area electron diffraction (SAED) pattern, optical absorption and Fourier transformed infrared (FT-IR) spectra. These magnetite nanocubes exhibit superparamagnetic and paramagnetic behavior simultaneously by virtue of their finely controlled shape and size. The magnetic measurements reveal that the magnetic moment values are favorably much lower because of the small size and cubic shape of the nanoparticles, which results in an enhanced spin

  14. Improved spectral resolution and high reliability of in vivo (1) H MRS at 7 T allow the characterization of the effect of acute exercise on carnosine in skeletal muscle.

    PubMed

    Just Kukurová, Ivica; Valkovič, Ladislav; Ukropec, Jozef; de Courten, Barbora; Chmelík, Marek; Ukropcová, Barbara; Trattnig, Siegfried; Krššák, Martin

    2016-01-01

    The aims of this study were to observe the behavior of carnosine peaks in human soleus (SOL) and gastrocnemius (GM) muscles following acute exercise, to determine the relaxation times and to assess the repeatability of carnosine quantification by (1) H MRS at 7 T. Relaxation constants in GM and SOL were measured by a stimulated echo acquisition mode (STEAM) localization sequence. For T1 measurement, an inversion recovery sequence was used. The repeatability of the measurement and the absolute quantification of carnosine were determined in both muscles in five healthy volunteers. For absolute quantification, an internal water reference signal was used. The effect of acute exercise on carnosine levels and resonance lines was tested in eight recreational runners/cyclists. The defined carnosine measurement protocol was applied three times - before and twice after (approximately 20 and 40 min) a 1-h submaximal street run and additional toe-hopping. The measured T1 relaxation times for the C2-H carnosine peak at 7 T were 2002 ± 94 and 1997 ± 259 ms for GM and SOL, respectively, and the T2 times were 95.8 ± 9.4 and 81.0 ± 21.8 ms for GM and SOL, respectively. The coefficient of variation of the carnosine quantification measurement was 9.1% for GM and 6.3% for SOL, showing high repeatability, and the intraclass correlation coefficients (ICCs) of 0.93 for GM and 0.98 for SOL indicate the high reliability of the measurement. Acute exercise did not change the concentration of carnosine in the muscle, but affected the shape of the resonance lines, in terms of the shifting and splitting into doublets. Carnosine measurement by (1) H MRS at 7 T in skeletal muscle exhibits high repeatability and reliability. The observed effects of acute exercise were more prominent in GM, probably as a result of the larger portion of glycolytic fibers in this muscle and the more pronounced exercise-induced change in pH. Our results support the application of the MRS-based assessment of

  15. 1H nuclear magnetic resonance study of distinct interstitial hydrogen dynamics in ZnO

    NASA Astrophysics Data System (ADS)

    Kue Park, Jun; Won Lee, Kyu; Eui Lee, Cheol

    2013-07-01

    A comprehensive 1H nuclear magnetic resonance (NMR) study has been carried out for hydrogen dynamics in a sol-gel-prepared ZnO system. The temperature-dependent linewidth and chemical shift measurements sensitively reflected the proton motions and changes in the local environment. Besides, two types of interstitial proton (Hi+) motions were distinguished from the spin-spin relaxation time measurements, one of them with an activation energy of 0.16 eV and the other with that of 0.33 eV depending on the temperature ranges.

  16. Proton-nuclear magnetic resonance relaxation times in brain edema

    SciTech Connect

    Kamman, R.L.; Go, K.G.; Berendsen, H.J. )

    1990-01-01

    Proton relaxation times of protein solutions, bovine brain, and edematous feline brain tissue were studied as a function of water concentration, protein concentration, and temperature. In accordance with the fast proton exchange model for relaxation, a linear relation could be established between R1 and the inverse of the weight fraction of tissue water. This relation also applied to R2 of gray matter and of protein solutions. No straightforward relation with water content was found for R2 of white matter. Temperature-dependent studies indicated that in this case, the slow exchange model for relaxation had to be applied. The effect of macromolecules in physiological relevant concentrations on the total relaxation behavior of edematous tissue was weak. Total water content changes predominantly affected the relaxation rates. The linear relation may have high clinical potential for assessment of the status of cerebral edema on the basis of T1 and T2 readings from MR images.

  17. Repeatability and sensitivity of T2* measurements in patients with head and neck squamous cell carcinoma at 3T

    PubMed Central

    Panek, Rafal; Welsh, Liam; Dunlop, Alex; Wong, Kee H.; Riddell, Angela M.; Koh, Dow‐Mu; Schmidt, Maria A.; Doran, Simon; Mcquaid, Dualta; Hopkinson, Georgina; Richardson, Cheryl; Nutting, Christopher M.; Bhide, Shreerang A.; Harrington, Kevin J.; Robinson, Simon P.; Newbold, Kate L.

    2016-01-01

    Purpose To determine whether quantitation of T2* is sufficiently repeatable and sensitive to detect clinically relevant oxygenation levels in head and neck squamous cell carcinoma (HNSCC) at 3T. Materials and Methods Ten patients with newly diagnosed locally advanced HNSCC underwent two magnetic resonance imaging (MRI) scans between 24 and 168 hours apart prior to chemoradiotherapy treatment. A multiple gradient echo sequence was used to calculate T2* maps. A quadratic function was used to model the blood transverse relaxation rate as a function of blood oxygenation. A set of published coefficients measured at 3T were incorporated to account for tissue hematocrit levels and used to plot the dependence of fractional blood oxygenation (Y) on T2* values, together with the corresponding repeatability range. Repeatability of T2* using Bland–Altman analysis, and calculation of limits of agreement (LoA), was used to assess the sensitivity, defined as the minimum difference in fractional blood oxygenation that can be confidently detected. Results T2* LoA for 22 outlined tumor volumes were 13%. The T2* dependence of fractional blood oxygenation increases monotonically, resulting in increasing sensitivity of the method with increasing blood oxygenation. For fractional blood oxygenation values above 0.11, changes in T2* were sufficient to detect differences in blood oxygenation greater than 10% (Δ T2* > LoA for ΔY > 0.1). Conclusion Quantitation of T2* at 3T can detect clinically relevant changes in tumor oxygenation within a wide range of blood volumes and oxygen tensions, including levels reported in HNSCC. J. Magn. Reson. Imaging 2016;44:72–80. PMID:26800280

  18. Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Paaske, Berit; Oschkinat, Hartmut; Akbey, Ümit; Nielsen, Niels Chr.

    2012-01-01

    We present a novel sampling strategy, interleaving acquisition of multiple NMR spectra by exploiting initial polarization subsequently from 1H and 2H spins, taking advantage of their different T1 relaxation times. Different 1H- and 2H-polarization based spectra are in this way simultaneously recorded improving either information content or sensitivity by adding spectra. The so-called Relaxation-optimized Acquisition of Proton Interleaved with Deuterium (RAPID) 1H → 13C/ 2H → 13C CP/MAS multiple-acquisition method is demonstrated by 1D and 2D experiments using a uniformly 2H, 15N, 13C-labeled α-spectrin SH3 domain sample with all or 30% back-exchanged labile 2H to 1H. It is demonstrated how 1D 13C CP/MAS or 2D 13C- 13C correlation spectra initialized with polarization from either 1H or 2H may be recorded simultaneously with flexibility to be added or used individually for spectral editing. It is also shown how 2D 13C- 13C correlation spectra may be recorded interleaved with 2H- 13C correlation spectra to obtain 13C- 13C correlations along with information about dynamics from 2H sideband patterns.

  19. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  20. [Immunochromatographic Test System for the Detection of T-2 Toxin].

    PubMed

    Petrakova, A V; Urusova, A E; Voznyak, M V; Zherdeva, A V; Dzantiev, B B

    2015-01-01

    An immunochromatographic test system was developed for the detection of T-2 toxin (T2T), which is one of priority contaminants of cereals. The detection is based on the competition between T2T in the sample and the T2T-protein conjugate immobilized on the test strip for the binding to the complexes of anti-T2T antibodies with gold nanoparticles serving as the marker. The results of the competition are recorded as the coloration in the test zone of the test strip produced by the marker. The optimum dilution of the sample for the reliable high-sensitivity analysis corresponds to the final methanol concentration equal to 20%. The deceleration of the movement of reactants along the test strip due to the use of additional membranes impregnated with 10% BSA resulted in the decrease in the detection limit of T2T. The test system was examined for the detection of T2T in water-methanol extracts of maize grains. The disappearance of the color in the test zone, which attests to the presence of mycotoxin, was observed for grain samples containing T2T at a concentration of 53 μg/kg or more (the final T2T concentration in the immunochromatorgaphic assay is 3 ng/mL). The video-digital detection limit of T2T is 16 μg/kg (0.9 ng/mL). The duration of the assay is 15 min. The results of the present study suggest that the developed test system is suitable for the control of the maximum allowable T2T content. PMID:26859964

  1. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  2. Mechanism of rotational relaxation.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    A model is presented which describes the characteristic pattern of relaxation of a nonthermal rotational distribution of hydrogen halide, peaked initially at high rotational quantum number J, to a thermal distribution without generating a peak at intermediate J. A method for correcting infrared chemiluminiscence data for modest rotational relaxation is also suggested.

  3. Evaluation of short-TE 1H MRSI for quantification of metabolites in the prostate

    PubMed Central

    Basharat, Meer; Jafar, Maysam; deSouza, Nandita M; Payne, Geoffrey S

    2014-01-01

    Back-to-back 1H MRSI scans, using an endorectal and phased-array coil combination, were performed on 18 low-risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer-volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved with the quantitation using quantum estimation (QUEST) routine. Metabolite nulling experiments in an additional five patients found that there were negligible macromolecule background signals in prostate spectra at TE = 32 ms. Metabolite visibility was judged using the criterion Cramér–Rao lower bound (CRLB)/amplitude < 20%, and metabolite concentrations were corrected for relaxation effects and referenced to the data acquired in corresponding water-unsuppressed MRSI scans. For the first time, the prostate metabolites spermine and myo-inositol were quantified individually in vivo, together with citrate, choline and creatine. All five metabolite visibilities were higher in TE = 32 ms MRSI than in TE = 100 ms MRSI. At TE = 32 ms, citrate was visible in 99.0% of lipid-free spectra, whereas, at TE = 100 ms, no metabolite simulation of citrate matched the in vivo peaks. Spermine, choline and creatine were visualised separately in 30.4% more spectra at TE = 32 ms than at TE = 100 ms, and myo-inositol in 72.5% more spectra. T2 values were calculated for spermine (53 ± 16 ms), choline (62 ± 17 ms) and myo-inositol (90 ± 48 ms). Data from the TE = 32 ms spectra showed that the concentrations of citrate and spermine secretions were positively correlated in both the peripheral zone and central gland (R2 = 0.73 and R2 = 0.43, respectively), and that the citrate content was significantly higher in the former at 64 ± 22 mm than in the latter at 32 ± 16 mm (p = 0.01). However, lipid

  4. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  5. Two-dimensional T 2 distribution mapping in porous solids with phase encode MRI

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg V.; Balcom, Bruce J.

    2011-09-01

    Two pure phase encode MRI sequences, CPMG-prepared SPRITE and spin-echo SPI with compressed sensing, for two-dimensional (2-D) T2 distribution mapping have been presented. The sequences are 2-D extensions of their 1-D predecessors previously described and are intended for studying processes in porous solids and other samples with short relaxation times whenever 2-D T2 maps are preferable to simple 1-D profiling. The sequences were tested on model samples and natural water-saturated rocks, in a low field MRI instrument. 2-D spin-echo SPI and CPMG-SPRITE demonstrate a similar performance, enabling measurement of T2 down to 1-2 ms. Both experiments are time consuming (up to 2-2.5 h sample dependent). As such, they can be recommended mostly for measurement during steady state conditions or when studying relatively slow dynamic processes (e.g. enhanced oil recovery, cement paste hydration, curing rubber, infiltration of paramagnetic ions).

  6. Two-dimensional T2 distribution mapping in porous solids with phase encode MRI.

    PubMed

    Petrov, Oleg V; Balcom, Bruce J

    2011-09-01

    Two pure phase encode MRI sequences, CPMG-prepared SPRITE and spin-echo SPI with compressed sensing, for two-dimensional (2-D) T2 distribution mapping have been presented. The sequences are 2-D extensions of their 1-D predecessors previously described and are intended for studying processes in porous solids and other samples with short relaxation times whenever 2-D T2 maps are preferable to simple 1-D profiling. The sequences were tested on model samples and natural water-saturated rocks, in a low field MRI instrument. 2-D spin-echo SPI and CPMG-SPRITE demonstrate a similar performance, enabling measurement of T2 down to 1-2 ms. Both experiments are time consuming (up to 2-2.5 h sample dependent). As such, they can be recommended mostly for measurement during steady state conditions or when studying relatively slow dynamic processes (e.g. enhanced oil recovery, cement paste hydration, curing rubber, infiltration of paramagnetic ions). PMID:21757381

  7. Correlation between 1H FID and T1rho components in heterogeneous polymer systems: an application to SBS.

    PubMed

    Ferrini, V; Forte, C; Geppi, M; Pizzanelli, S; Veracini, C A

    2005-06-01

    Wideline 1H FID and relaxation measurements of a relatively simple motionally heterogeneous system, the triblock copolymer styrene-butadiene-styrene, have been performed in a temperature range between the polystyrene and polybutadiene glass transition temperatures. The two FID and the two spin lattice relaxation time in the rotating frame (T1rho) components found at each temperature have been correlated by means of a two-dimensional approach. It is shown that this approach allows dynamic information, not accessible simply by interpreting proton T1 and T1rho data, to be revealed. In the case examined, the correlation found could be confirmed by high-resolution 1H T1rho-selective 13C Cross Polarization experiments. PMID:15799878

  8. Calibration of myocardial T2 and T1 against iron concentration

    PubMed Central

    2014-01-01

    Background The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. Methods Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n = 7) or cardiac transplantation (n = 4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1 = 1/T1 and R2 = 1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. Results From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (±SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p < 0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p < 0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p < 0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p < 0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p < 0.001). Conclusion Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive

  9. Monitoring T2 and ADC at 9.4 T following fractionated external beam radiation therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Larocque, Matthew P.; Syme, Alasdair; Yahya, Atiyah; Wachowicz, Keith; Allalunis-Turner, Joan; Fallone, B. Gino

    2010-03-01

    The purpose of this study is to investigate the response of transverse relaxation time (T2) and apparent diffusion coefficient (ADC) in human glioma tumor xenografts during and after fractionated radiotherapy. Tumor-bearing mice were divided into four treatment groups (n = 6 per group) that received a total dose of 800 cGy of 200 kVp x-rays, given over two or three fractions, with a fraction spacing of either 24 or 72 h. A fifth treatment group received 800 cGy in a single fraction, and a sixth group of mice served as an untreated control. All mice were scanned pretreatment, before each fraction and at multiple points after treatment using a 9.4 T magnetic resonance imaging (MRI) system. Quantitative T2 and ADC maps were produced. All treated groups showed an increase in mean tumor ADC, though the time for this response to reach a maximum and return toward baseline was delayed in the fractionated groups. The highest ADC was measured 7 days after the final fraction of treatment for all groups. There were no significant differences in the maximum measured change in ADC between any of the treated groups, with the average measured maximum value being 20.5% above baseline. After treatment, all groups showed an increase in mean tumor T2, with the average measured maximum T2 being 4.7% above baseline. This increase was followed by a transition to mean T2 values below baseline values, with the average measured tumor T2 being 92.4% of the pretreatment value. The transition between elevated and depressed T2 values was delayed in the cases of fractionated therapies and occurred between 3.6 and 7.3 days after the last fraction of treatment. These results further the understanding of the temporal evolution of T2 and ADC during fractionated radiotherapy and support their potential use as time-sensitive biomarkers for tumor response.

  10. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  11. THE INTERACTION OF PARAMAGNETIC RELAXATION REAGENTS WITH INTRA- AND INTERMOLECULAR HYDROGEN BONDED PHENOLS

    EPA Science Inventory

    Intermolecular electron-nuclear 13-C relaxation times (T(1)sup e's) from solutions containing the paramagnetic relaxation reagent (PARR), Cr(acac)3, used in conjunction with 13-C T(1)'s in diamagnetic solutions (intramolecular 13-C - (1)H dipolar T(1)'s) provide a significant inc...

  12. T-2 toxin Analysis in Poultry and Cattle Feedstuff

    PubMed Central

    Gholampour Azizi, Issa; Azarmi, Masumeh; Danesh Pouya, Naser; Rouhi, Samaneh

    2014-01-01

    Background: T-2 toxin is a mycotoxin that is produced by the Fusarium fungi. Consumption of food and feed contaminated with T-2 toxin causes diseases in humans and animals. Objectives: In this study T-2 toxin was analyzed in poultry and cattle feedstuff in cities of Mazandaran province (Babol, Sari, Chalus), Northern Iran. Materials and Methods: In this study, 90 samples were analyzed for T-2 toxin contamination by the ELISA method. Results: Out of 60 concentrate and bagasse samples collected from various cities of Mazandaran province, 11.7% and 3.3% were contaminated with T-2 toxin at concentrations > 25 and 50 µg/kg, respectively. For mixed poultry diets, while 10% of the 30 analyzed samples were contaminated with > 25 µg/kg, none of the tested samples contained T-2 toxin at levels > 50 µg/kg. Conclusions: The results obtained from this study show that poultry and cattle feedstuff can be contaminated with different amounts of T-2 toxin in different conditions and locations. Feedstuff that are contaminated by this toxin cause different diseases in animals; thus, potential transfer of mycotoxins to edible by-products from animals fed mycotoxin-contaminated feeds drives the need to routinely monitor mycotoxins in animal feeds and their components. This is the basis on which effective management of mycotoxins and their effects can be implemented. PMID:24872939

  13. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  14. Measurement of the true transverse nuclear magnetic resonance relaxation in the presence of field gradients

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Chandrasekera, T. C.; Gladden, L. F.

    2013-08-01

    A measure of the nuclear spin transverse relaxation time T2, as determined using the nuclear magnetic resonance Carr-Purcell Meiboom-Gill (CPMG) experiment, provides unique information characterizing the microstructure of porous media which are themselves ubiquitous across fields of petrophysics, biophysics, and chemical engineering. However, the CPMG measurement is sensitive to diffusion in large magnetic field gradients. Under such conditions an effective relaxation time T_{2,eff} is observed instead, described by a combination of relaxation and diffusion exponents. The relaxation exponent always varies as nte (where n is the number, and te is the temporal separation, of spin echoes). The diffusion exponent varies as nt_e^k, where 1 < k ⩽ 3, although the exact analytic form is often unknown. Here we present a general approach to separating the influence of relaxation and diffusion by utilizing a composite diffusion exponent. Any T_{2,eff} component with a power of k > 1 is removed to provide a measure of the true T2 relaxation time distribution from CPMG data acquired in the presence of a strong background gradient. We apply the technique to discriminate between the effects of relaxation and diffusion in porous media using catalysts and rocks as examples. The method is generally applicable to any CPMG measurements conducted in the presence of a static magnetic field gradient.

  15. Spin-echo sup 1 H NMR studies of differential mobility in gizzard myosin and its subfragments

    SciTech Connect

    Sommervile, L.E. ); Henry, G.D.; Sykes, B.D. ); Harshorne, D.J. )

    1990-12-01

    The unexpectedly narrow resonances in the {sup 1}H NMR spectra of gizzard myosin, heavy meromyosin, and subfragment 1 were examined by spin-echo NMR spectroscopy. These resonances originated predominantly in the myosin heads, or subfragment 1 units. Smooth muscle myosin undergoes a dramatic change in hydrodynamic properties and can exist either as a folded (10S) or as an extended (6S) species. Factors that influence this transition, namely, ionic strength and phosphorylation (or thiophosphorylation), were varied in the NMR experiments. T{sub 2} relaxation experiments on dephosphorylated myosin indicated several components of different relaxation times that were not influenced by changes in ionic strength. The experiments focused on the components with longer relaxation times, i.e., corresponding to nuclei with more mobility, and these were observed selectively in a spin-echo experiment. With dephosphorylated myosin and HMM, increases in ionic strength caused an increased intensity in several of the narrower resonances. The ionic strength dependence of these changes paralleled that for the 10S and 6S transition. With thiophosphorylated myosin and HMM, changes in ionic strength also influenced the intensities of the narrower resonances, and in addition changes in the {sup 1}H NMR spectrum due to thiophosphorylation were observed. These results suggest that a fraction of the {sup 1}H resonances in smooth muscle myosin and its fragments originates from both aliphatic and aromatic residues of increased mobility compared to the mobility expected from hydrodynamic properties of these proteins.

  16. Clinical Relevance of Single-Voxel 1H MRS Metabolites in Discriminating Suprasellar Tumors

    PubMed Central

    Virani, Rahul A

    2016-01-01

    Introdution Spatially resolved metabolic data obtained from Proton Magnetic Resonance Spectroscopy (1H MRS) provides information which increases the diagnostic accuracy of imaging sequences in predicting the histology of suprasellar tumors. Aim To evaluate the role of 1H MRS in the diagnosis of various suprasellar tumors. Materials and Methods Sixty cases of various suprasellar, hypothalamic and third ventricular neoplasms were investigated with long-echo single voxel 1H -MRS using 1.5 Tesla clinical imager. Single-voxel spectroscopic examinations were guided by T1-weighted or T2-weighted images. Statistical analysis was carried out using IBM SPSS software version 19. Results We observed that whenever brain tissue was damaged or replaced by any process, NAA was markedly reduced. Extra-axial lesions which do not infiltrate brain or contain neuroglial tissue, didn’t demonstrate any NAA resonances. Cr was used as an internal standard for semi-quantitative evaluation of metabolic changes of other brain metabolites. Increased Cho was seen in processes with elevated cell-membrane turnover. Conclusion Spectra obtained from different tumors exhibit reproducible differences while histologically similar tumors yield characteristic spectra with only minor differences. Pituitary tumors were typically characterized by significant reduction of NAA, Cr peak and moderate elevation of Cho peak. Gliomas were typically characterized by decrease of NAA and Cr peaks and increase of Cho peak. Craniopharyngiomas were typically characterized by significant decrease of all metabolites.

  17. Direct Visualization of Short Transverse Relaxation Time Component (ViSTa)

    PubMed Central

    Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E.; Detre, John A.; Lee, Jongho

    2013-01-01

    White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2 < 40 ms; T2* < 25 ms at 3T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2* signal decay is measured to estimate myelin water fraction based on T2 or T2* differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2* signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirms that after suppression of long T1 signals, the image is dominated by short T2* in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination. PMID:23796545

  18. T-2 toxin and diacetoxyscirpenol metabolism by Baccharis spp.

    PubMed Central

    Mirocha, C J; Abbas, H K; Treeful, L; Bean, G

    1988-01-01

    Hybrids resulting from crosses between Baccharis sarothroides and B. pilularis (FS1), B. sarothroides (FS2) and B. megapotamica (FS3) were tested for their tolerance to trichothecenes as well as their ability to metabolize the toxins. B. sarothroides (desert broom) was placed in an aqueous solution containing 500 ppm of T-2 toxin and showed visible signs of toxicity on the twigs at 21 h after exposure but not at 6 h, indicating some resistance. Samples of the twigs harvested 6 and 21 h after treatment contained, respectively, T-2 (0.03 and 2.2 micrograms/g), HT-2 (0.09 and 7.6 micrograms/g), and T-2-tetraol (2.1 and 2.6 micrograms/g). The hybrid FS1 showed no signs of toxicity 6 h after treatment, and its twigs contained T-2 (0.8 micrograms/g), HT-2 (10.2 micrograms/g), and T-2-tetraol (10.8 micrograms/g). The leaves at 6 h contained 0.5 micrograms of T-2, 1.7 micrograms of HT-2, 0.01 microgram of 3'-hydroxy-HT-2, and 41 micrograms of T-2-tetraol per g. At 21 h, toxic signs were apparent and the twigs contained T-2 (39 micrograms/g), HT-2 (62 micrograms/g), 3'-hydroxy-HT-2 (0.8 microgram/g), and T-2-tetraol (22 micrograms/g).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3190227

  19. New approach to phase correction in multi-echo T2 relaxometry

    NASA Astrophysics Data System (ADS)

    Björk, Marcus; Stoica, Petre

    2014-12-01

    Estimation of the transverse relaxation time, T2 , from multi-echo spin-echo images is usually performed using the magnitude of the noisy data, and a least squares (LS) approach. The noise in these magnitude images is Rice distributed, which can lead to a considerable bias in the LS-based T2 estimates. One way to avoid this bias problem is to estimate a real-valued and Gaussian distributed dataset from the complex data, rather than using the magnitude. In this paper, we propose two algorithms for phase correction which can be used to generate real-valued data suitable for LS-based parameter estimation approaches. The first is a Weighted Linear Phase Estimation algorithm, abbreviated as WELPE. This method provides an improvement over a previously published algorithm, while simplifying the estimation procedure and extending it to support multi-coil input. The algorithm fits a linearly parameterized function to the multi-echo phase-data in each voxel and, based on this estimated phase, projects the data onto the real axis. The second method is a maximum likelihood estimator of the true decaying signal magnitude, which can be efficiently implemented when the phase variation is linear in time. The performance of the algorithms is demonstrated via Monte Carlo simulations, by comparing the accuracy of the estimates. Furthermore, it is shown that using one of the proposed algorithms enables more accurate T2 estimates; in particular, phase corrected data significantly reduces the estimation bias in multi-component T2 relaxometry example, compared to when using magnitude data. WELPE is also applied to a 32-echo in vivo brain dataset, to show its practical feasibility.

  20. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  1. A 1H NMR assay for measuring the photostationary States of photoswitchable ligands.

    PubMed

    Banghart, Matthew R; Trauner, Dirk

    2013-01-01

    Incorporation of photoisomerizable chromophores into small molecule ligands represents a general approach for reversibly controlling protein function with light. Illumination at different wavelengths produces photostationary states (PSSs) consisting of different ratios of photoisomers. Thus optimal implementation of photoswitchable ligands requires knowledge of their wavelength sensitivity. Using an azobenzene-based ion channel blocker as an example, this protocol describes a (1)H NMR assay that can be used to precisely determine the isomeric content of photostationary states (PSSs) as a function of illumination wavelength. Samples of the photoswitchable ligand are dissolved in deuterated water and analyzed by UV/VIS spectroscopy to identify the range of illumination wavelengths that produce PSSs. The PSSs produced by these wavelengths are quantified using (1)H NMR spectroscopy under continuous irradiation through a monochromator-coupled fiber-optic cable. Because aromatic protons of azobenzene trans and cis isomers exhibit sufficiently different chemical shifts, their relative abundances at each PSS can be readily determined by peak integration. Constant illumination during spectrum acquisition is essential to accurately determine PSSs from molecules that thermally relax on the timescale of minutes or faster. This general protocol can be readily applied to any photoswitch that exhibits distinct (1)H NMR signals in each photoisomeric state. PMID:23494375

  2. Phase transition in triglycine sulfate crystals by 1H and 13C nuclear magnetic resonance in the rotating frame

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Jeong, Se-Young

    2013-09-01

    The ferroelectric phase transition in triglycine sulfate ((NH2CH2COOH)3·H2SO4, TGS)) crystals, occurring at TC of 322 K, was studied using 1H and 13C CP/MAS NMR. From the spin-lattice relaxation time in the rotating frame, T1ρ, of 1H and 13C, we found that the slopes of the T1ρ versus temperature curve changed near TC. In addition, the change of intensities for the protons and carbons NMR signals in the ferroelectric and the paraelectric phases led to the noticeable changes in the environments of proton and carbon in the carboxyl groups. The carboxyl ordering was the dominant factor driving the phase transition. Our study of the 1H and 13C spectra showed that the ferroelectric phase transition of TGS is of the order-disorder type due to ordering of the carboxyl groups.

  3. (129)Xe NMR Relaxation-Based Macromolecular Sensing.

    PubMed

    Gomes, Muller D; Dao, Phuong; Jeong, Keunhong; Slack, Clancy C; Vassiliou, Christophoros C; Finbloom, Joel A; Francis, Matthew B; Wemmer, David E; Pines, Alexander

    2016-08-10

    We report a (129)Xe NMR relaxation-based sensing approach that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T2 is reduced by a factor of 4. PMID:27472048

  4. T2 black lesions on routine knee MRI: differential considerations.

    PubMed

    Wadhwa, Vibhor; Cho, Gina; Moore, Daniel; Pezeshk, Parham; Coyner, Katherine; Chhabra, Avneesh

    2016-07-01

    The majority of abnormal findings or lesions on T2-weighted fast spin-echo (FSE) magnetic resonance imaging (MRI) are hyperintense due to increased perfusion or fluid content, such as infections, tumours or synovitis. Hypointense lesions on T2-weighted images (both fat-suppressed and non-fat-suppressed) are less common and can sometimes be overlooked. Such lesions have limited differential diagnostic possibilities, and include vacuum phenomenon, loose body, tenosynovial giant cell tumour, rheumatoid arthritis, haemochromatosis, gout, amyloid, chondrocalcinosis, hydroxyapetite deposition disease, lipoma arborescens, arthrofibrosis and iatrogenic lesions. These lesions often show characteristic appearances and predilections in the knee. In this article, the authors describe the MRI features of hypointense T2 lesions on routine knee MRI and outline a systematic diagnostic approach towards their evaluation. Key Points • Hypointense lesions on T2 images (T2 Dark Lesions) encompass limited diagnostic possibilities. • T2 Dark lesions often show characteristic appearances and predilections in the knee. • A systematic diagnostic approach will help radiologists make the correct diagnosis. PMID:26420500

  5. Improved spectral resolution and high reliability of in vivo 1H MRS at 7 T allow the characterization of the effect of acute exercise on carnosine in skeletal muscle

    PubMed Central

    Just Kukurová, Ivica; Valkovič, Ladislav; Ukropec, Jozef; de Courten, Barbora; Chmelík, Marek; Ukropcová, Barbara; Trattnig, Siegfried

    2015-01-01

    The aims of this study were to observe the behavior of carnosine peaks in human soleus (SOL) and gastrocnemius (GM) muscles following acute exercise, to determine the relaxation times and to assess the repeatability of carnosine quantification by 1H MRS at 7 T. Relaxation constants in GM and SOL were measured by a stimulated echo acquisition mode (STEAM) localization sequence. For T 1 measurement, an inversion recovery sequence was used. The repeatability of the measurement and the absolute quantification of carnosine were determined in both muscles in five healthy volunteers. For absolute quantification, an internal water reference signal was used. The effect of acute exercise on carnosine levels and resonance lines was tested in eight recreational runners/cyclists. The defined carnosine measurement protocol was applied three times – before and twice after (approximately 20 and 40 min) a 1‐h submaximal street run and additional toe‐hopping. The measured T 1 relaxation times for the C2‐H carnosine peak at 7 T were 2002 ± 94 and 1997 ± 259 ms for GM and SOL, respectively, and the T 2 times were 95.8 ± 9.4 and 81.0 ± 21.8 ms for GM and SOL, respectively. The coefficient of variation of the carnosine quantification measurement was 9.1% for GM and 6.3% for SOL, showing high repeatability, and the intraclass correlation coefficients (ICCs) of 0.93 for GM and 0.98 for SOL indicate the high reliability of the measurement. Acute exercise did not change the concentration of carnosine in the muscle, but affected the shape of the resonance lines, in terms of the shifting and splitting into doublets. Carnosine measurement by 1H MRS at 7 T in skeletal muscle exhibits high repeatability and reliability. The observed effects of acute exercise were more prominent in GM, probably as a result of the larger portion of glycolytic fibers in this muscle and the more pronounced exercise‐induced change in pH. Our results support the application of the MRS‐based assessment

  6. Change of translational-rotational coupling in liquids revealed by field-cycling 1H NMR

    NASA Astrophysics Data System (ADS)

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-01

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the 1H spin-lattice relaxation rate, R 1 ω = T1 - 1 ω , is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz-20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R 1 ω , x (x denotes mole fraction PG) allow to extract the rotational time constant τrot(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τrot(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τrot(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  7. MRI rotating frame relaxation measurements for articular cartilage assessment

    PubMed Central

    Ellermann, Jutta; Ling, Wen; Nissi, Mikko J.; Arendt, Elizabeth; Carlson, Cathy S.; Garwood, Michael; Michaeli, Shalom; Mangia, Silvia

    2015-01-01

    In the present work we introduced two MRI rotating frame relaxation methods, namely adiabatic T1ρ and Relaxation Along a Fictitious Field (RAFF), along with an inversion-prepared Magnetization Transfer (MT) protocol for assessment of articular cartilage. Given the inherent sensitivity of rotating frame relaxation methods to slow molecular motions that are relevant in cartilage, we hypothesized that adiabatic T1ρ and RAFF would have higher sensitivity to articular cartilage degradation as compared to laboratory frame T2 and MT. To test this hypothesis, a proteoglycan depletion model was used. Relaxation time measurements were performed at 0 and 48 hours in ten bovine patellar specimens, 5 of which were treated with trypsin and 5 untreated controls were stored under identical conditions in isotonic saline for 48 hours. Relaxation times measured at 48 hours were longer than those measured at 0 hours in both groups. The changes in T2 and MT relaxation times after 48 hours were approximately 3 times larger in the trypsin treated specimens as compared to the untreated group, whereas increases of adiabatic T1ρ and RAFF were 4 to 5 fold larger. Overall, these findings demonstrate a higher sensitivity of adiabatic T1ρ and RAFF to the trypsin-induced changes in bovine patellar cartilage as compared to the commonly used T2 and MT. Since adiabatic T1ρ and RAFF are advantageous for human applications as compared to standard continuous-wave T1ρ methods, adiabatic T1ρ and RAFF are promising tools for assessing cartilage degradation in clinical settings. PMID:23993794

  8. Hepatic subcellular distribution of (tritium)T-2 toxin

    SciTech Connect

    Pace, J.G.; Watts, M.R.

    1989-01-01

    Hepatic subcellular distribution of ({sup 3}H)T-2 toxin. The subcellular distribution of T-2 mycotoxin and its metabolites was studied in isolated rat livers perfused with ({sup 3}H)T-2 toxin. After a 120-min perfusion, the distribution of radiolabel was to bile 53%, perfusate 38% and liver 7%. Livers were fractionated into mitochondria, endoplasmic reticulum (smooth and rough), plasma membrane and nuclei. Plasma membrane fractions contained 38% of the radiolabel within 5 min, decreasing to <1% at the end of the 120-min perfusion. Smooth endoplasmic reticulum contained 27% of the radiolabel by 5 min and increased to 43% over the 120-min perfusion. The mitochondrial fraction contained 3% of the radiolabel by 30 min and increased to 10% after 120-min perfusion. Label in the nuclear fraction remained constant at 7% from 30 to 120 min. By 15 min, only the parent toxin was detected in the mitochondrial fraction. In the other fractions, radiolabel was associated with HT-2, 4-deacetylneosolaniol, T-2 tetraol, and glucuronide conjugates. Glucuronide conjugates accounted for radiolabel eliminated via the bile. The time course for distribution of radiolabel in liver suggested an immediate association of ({sup 3}H)T-2 with plasma membranes and a subsequent association of toxin and metabolites with endoplasmic reticulum, mitochondria and nuclei, the known sites of action of this toxin.

  9. Interaction of T-2 toxin with Salmonella infections of chickens.

    PubMed

    Boonchuvit, B; Hamilton, P B; Burmeister, H R

    1975-09-01

    A significant (P less than 0.05) interaction resulting in increased mortality occurred in chickens fed T-2 toxin (16 mug./g. of diet) and infected with either Salmonella worthington, S. thompson, S. derby, or S. typhimurium var. copenhagen, all species that cause paratyphoid. No interaction on growth rate or relative size of the bursa of Fabricus occurred, although T-2 toxin alone caused a significant (P less than 0.05) regression of that organ. The spleen size relative to the body weight was decreased (P less than 0.05) by T-2 toxin and increased (P less than 0.05) by the Salmonella infections. Interactions were observed on spleen size between the toxin and S. thompson (P less than 0.05) and S. derby (P less than 0.10). Total serum proteins were not affected by T-2 toxin or Salmonella infections. Agglutinins were formed in response to the infections, but the titers were unaltered by T-2 toxin. PMID:1103111

  10. The TOTEM GEM Telescope (T2) at the LHC

    NASA Astrophysics Data System (ADS)

    Quinto, M.; Berretti, M.; David, E.; Garcia, F.; Greco, V.; Heino, J.; Hilden, T.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Oliveri, E.; Ropelewski, L.; Scribano, A.; Turini, N.; van Stenis, M.

    2011-06-01

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  11. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    PubMed Central

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  12. Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models.

    PubMed

    Magin, Richard L; Li, Weiguo; Pilar Velasco, M; Trujillo, Juan; Reiter, David A; Morgenstern, Ashley; Spencer, Richard G

    2011-06-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T(1) and T(2)). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T(1) and T(2) relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T(2) relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T(1) was observed in BNC. In the single-component gels, for T(2) measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T(2) NMR relaxation processes in biological tissues. PMID:21498095

  13. Dielectric relaxation time spectroscopy.

    PubMed

    Paulson, K S; Jouravleva, S; McLeod, C N

    2000-11-01

    A new mathematical method is developed to recover the permittivity relaxation spectrum of living tissue from measurements of the real and imaginary parts of the impedance. Aiming to derive information about electrical properties of living tissue without the prior selection of any impedance model, the procedure calculates the relaxation time distribution. It provides new characteristic independent parameters: time constants, their distribution, and the amplitudes of the associated dispersion. As the beta-dispersion is the most important in the area of electrical impedance spectroscopy of tissue, the paper gives an estimate of the essential frequency range to cover the whole relaxation spectrum in that area. Results are presented from both simulation and known lumped--constant element circuit. PMID:11077745

  14. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.

    PubMed

    Clubb, R T; Omichinski, J G; Sakaguchi, K; Appella, E; Gronenborn, A M; Clore, G M

    1995-05-01

    The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663341

  15. Water Adsorption on Pyrogenic Silica Followed by 1H MAS NMR

    PubMed

    d'espinose de la Caillerie JB; Aimeur; Kortobi; Legrand

    1997-10-15

    On the surface of two commercial pyrogenic silicas (Degussa and Cabot), five resonances were identified on the basis of the chemical shift, homonuclear coupling (T2), and spin-lattice relaxation behavior (T1). In accordance with previous studies we observed three different types of silanol groups: (i) weakly coupled (long T2), water inaccessible, isolated "internal" silanols at 1.8 ppm; (ii) weakly coupled, external "free" silanols revealed upon dehydration at 2.5 ppm; and (iii) strongly coupled external hydrogen bound silanols with an unresolved broad resonance between 3 and 7 ppm. The resonance of water, whose position between 2.6 and 4.6 ppm depended on water content, corresponded to two unresolved species of slightly different T1. By equating this resonance to the weighted average of two distinct populations of water, we were able to distinguish the first layer of strongly hydrogen bound water at 2.7 ppm from liquid-like water at 5 ppm. The first layer is complete for water relative humidity as low as 3.6% and corresponds to a surface coverage of 4.75 H2O/nm2. If we assumed a cristobalite-based surface structure, this meant a 1:1 ratio between surface hydroxyls and the first layer of physisorbed water. This ratio was the same for the two silicas regardless of surface area. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9398426

  16. Recent Status of the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Kutter, Thomas

    2010-10-01

    The T2K (Tokai to Kamioka) long baseline neutrino oscillation experiment has been constructed to search for the appearance of electron neutrinos in a pure beam of muon neutrinos, thereby measuring theta-13, the last unknown mixing angle in the lepton sector. T2K physics goals also include precision measurements of muon neutrino disappearance and the measurements of neutrino interactions at neutrino energies of ˜1GeV. The first physics data were collected from January to June 2010 and data analysis is in progress. I will review the physics reach of T2K, provide an overview of the experimental setup and present the performance of the accelerator produced neutrino beam as well as the near and far detectors. The presentation will conclude with a description of the analysis strategy and recent progress.

  17. Utah State University's T2 ODV mobility analysis

    NASA Astrophysics Data System (ADS)

    Davidson, Morgan E.; Bahl, Vikas; Wood, Carl G.

    2000-07-01

    In response to ultra-high maneuverability vehicle requirements, Utah State University (USU) has developed an autonomous vehicle with unique mobility and maneuverability capabilities. This paper describes a study of the mobility of the USU T2 Omni-Directional Vehicle (ODV). The T2 vehicle is a mid-scale (625 kg), second-generation ODV mobile robot with six independently driven and steered wheel assemblies. The six wheel, independent steering system is capable of unlimited steering rotation, presenting a unique solution to enhanced vehicle mobility requirements. This mobility study focuses on energy consumption in three basic experiments, comparing two modes of steering: Ackerman and ODV. The experiments are all performed on the same vehicle without any physical changes to the vehicle itself, providing a direct comparison these two steering methodologies. A computer simulation of the T2 mechanical and control system dynamics is described.

  18. Neutrino-nucleus interactions in the T2K experiment

    SciTech Connect

    Leitner, T.; Mosel, U.

    2010-09-15

    We present a study of neutrino-nucleus interactions at the T2K experiment based on the GiBUU transport model. The aim of T2K is to measure {nu}{sub e} appearance and {theta}{sub 13}, but it will also be able to do a precise measurement of {nu}{sub {mu}}disappearance. The former requires a good understanding of {pi}{sup 0} production, while the latter is closely connected with a good understanding of quasielastic scattering. For both processes we investigate the influence of nuclear effects and particular final-state interactions on the expected event rates, taking into account the T2K detector setup.

  19. {sup 1}H and {sup 15}N dynamic nuclear polarization studies of carbazole

    SciTech Connect

    Hu, J.Z.; Solum, M.S.; Wind, R.A.; Nilsson, B.L.; Peterson, M.A.; Pugmire, R.J.; Grant, D.M.

    2000-05-18

    {sup 15}N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that {sup 15}N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% {sup 15}N labeled carbazole with doping levels varying between 0.65 and 5.0 wt {degree} BDPA. A doping level of approximately 1 wt {degree} produced optimal results. DNP enhancement factors of 35 and 930 were obtained for {sup 1}H and {sup 15}N, respectively, making it possible to perform {sup 15}N DNP NMR experiments at the natural abundance level.

  20. 1H and 15N Dynamic Nuclear Polarization Studies of Carbazole

    SciTech Connect

    Hu, Jian Zhi; Solum, Mark S.; Wind, Robert A.; Nilsson, Brad L.; Peterson, Matt A.; Pugmire, Ronald J.; Grant, David M.

    2000-01-01

    15N NMR experiments, combined with dynamic nuclear polarization (DNP), are reported on carbazole doped with the stable free radical 1,3 bisdiphenylene-2 phenylally1 (BDPA). Doping shortens the nuclear relaxation times and provides paramagnetic centers that can be used to enhance the nuclear signal by means of DNP so that 15 N NMR experiments can be done in minutes. The factors were measured in a 1.4 T external field, using both unlabeled and 98% 15N labeled carbazole with doping levels varying between 0.65 and 5.0 wt % BDPA. A doping level of approximately 1 wt % produced optimal results. DNP enhancement factors of 35 and 930 were obtained for 1H and 15N, respectively making it possible to perform 15N DNP NMR experiments at the natural abundance level.

  1. Interaction of Daunomycin with Dipalmitoylphosphatidylcholine Model Membranes. A 1H NMR Study

    NASA Astrophysics Data System (ADS)

    Calzolai, Luigi; Gaggelli, Elena; Maccotta, Antonella; Valensin, Gianni

    1996-09-01

    1H NMR parameters were obtained for daunomycin in water solution in the free state as well as in the presence of dipalmitoylphosphatidylcholine model membranes. Spin-lattice relaxation rates were measured under nonselective, single-selective, and double-selective irradiation modes, and 2D NOESY spectra were obtained at several values of the mixing time. Proton-proton distances were calculated and the motional correlation time was evaluated in both the free and bound states. NMR parameters were used to show that ring A and the glucosamine moiety of daunomycin strongly interact with the external surface of the bilayer, while the rest of the molecule penetrates the membrane without crossing it. The structures of both free and bound daunomycin were obtained and compared by using molecular modeling.

  2. Results from T2K and accelerator oscillation experiments

    NASA Astrophysics Data System (ADS)

    Bronner, C.

    2012-08-01

    Various experiments use secondary neutrino beams produced by accelerators to study neutrino oscillations. In this article, we will review oscillation results from a number of those experiments (MINOS, OPERA), and focus more on results from T2K. This long baseline off-axis experiment uses a beam of muon neutrinos produced in J-PARC in Japan to study muon neutrino disappearance in order to measure atmospheric parameters, as well as studying electron neutrino appearance to measure the 13 mixing angle. We will present in particular very recent results of those measurements obtained by MINOS and T2K.

  3. Joint inversion of T1-T2 spectrum combining the iterative truncated singular value decomposition and the parallel particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Wang, Hua; Fan, Yiren; Cao, Yingchang; Chen, Hua; Huang, Rui

    2016-01-01

    With more information than the conventional one dimensional (1D) longitudinal relaxation time (T1) and transversal relaxation time (T2) spectrums, a two dimensional (2D) T1-T2 spectrum in a low field nuclear magnetic resonance (NMR) is developed to discriminate the relaxation components of fluids such as water, oil and gas in porous rock. However, the accuracy and efficiency of the T1-T2 spectrum are limited by the existing inversion algorithms and data acquisition schemes. We introduce a joint method to inverse the T1-T2 spectrum, which combines iterative truncated singular value decomposition (TSVD) and a parallel particle swarm optimization (PSO) algorithm to get fast computational speed and stable solutions. We reorganize the first kind Fredholm integral equation of two kernels to a nonlinear optimization problem with non-negative constraints, and then solve the ill-conditioned problem by the iterative TSVD. Truncating positions of the two diagonal matrices are obtained by the Akaike information criterion (AIC). With the initial values obtained by TSVD, we use a PSO with parallel structure to get the global optimal solutions with a high computational speed. We use the synthetic data with different signal to noise ratio (SNR) to test the performance of the proposed method. The result shows that the new inversion algorithm can achieve favorable solutions for signals with SNR larger than 10, and the inversion precision increases with the decrease of the components of the porous rock.

  4. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional

  5. Relaxation techniques for stress

    MedlinePlus

    ... Know. February 2013. Available at: nccih.nih.gov/health/stress/relaxation.htm . Accessed September 21, 2015. National Center ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Stress Browse the Encyclopedia A.D.A.M., Inc. ...

  6. Multi-contrast T2(⁎)-relaxometry upon visual stimulation at 3T and 7T.

    PubMed

    Berger, Moritz C; Bachert, Peter; Gröbner, Jens; Nagel, Armin M

    2016-09-01

    This study aims to quantify the mean change of the effective transverse relaxation time T2(⁎) in active brain regions of human volunteers at field strengths of B0=3T and 7T. Besides the mono-exponential signal decay model an extended model is tested that considers mesoscopic field gradients across imaging voxels. Both models are checked for cross-talk and correlations between the parameters. A visual checkerboard-stimulation experiment with pause and stimulation periods of 50s and six repetitions was performed on healthy volunteers. Eleven contrasts were acquired in about 1.47s/1.43s at 3T/7T using a segmented multi-contrast echo-planar imaging (EPI) sequence. Average BOLD-signal time courses were calculated in a multi-step (non-)linear least-squares process. Baseline T2(⁎) values of 37.72ms/24.99ms (47.34ms/33.71ms) with stimulus-correlated changes ∆T2(⁎)of 1.32ms/0.74ms (1.99ms/1.43ms) resulted from the mono-exponential (extended) model for 3T/7T. A dependence of those values on the initial intensity S0 was observed. Stimulus-correlated changes of S0 in the order of 1% were measured at both field strengths. The mono-exponential model was found to be less prone to instabilities in the regression of both parameters. Signal alterations due to inflow were observed. Measured relaxation times agree with values from literature using repetitive stimulation. A strong dependence of the measured relaxation times on the inflow-related model parameter was found for both models. The extended model is applicable to dynamic neurofunctional measurements, but is currently limited due to the low number of contrasts acquired. PMID:27046057

  7. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents.

    PubMed

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-07-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM(-1) s(-1) and an r2 value of 186.51 mM(-1) s(-1), which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future. PMID:27297334

  8. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  9. (T2L2) Time Transfer by Laser Link

    NASA Astrophysics Data System (ADS)

    Veillet, Christian; Fridelance, Patricia

    1995-05-01

    T2L2 (Time Transfer by Laser Link) is a new generation time transfer experiment based on the principles of LASSO (Laser Synchronization from Synchronous Orbit) and used with an operational procedure developed at OCA (Observatoire de la Cote d'Azur) during the active intercontinental phase of LASSO. The hardware improvements could lead to a precision better than 10 ps for time transfer (flying clock monitoring or ground based clock comparison). Such a package could fly on any spacecraft with a stable clock. It has been developed in France in the frame of the PHARAO project (cooled atom clock in orbit) involving CNES and different laboratories. But T2L2 could fly on any spacecraft carrying a stable oscillator. A GPS satellite would be a good candidate, as T2L2 could allow to link the flying clock directly to ground clocks using light, aiming to important accuracy checks, both for time and for geodesy. Radioastron (a flying VLBI antenna with a H-maser) is also envisioned, waiting for a PHARAO flight. The ultimate goal of T2L2 is to be part of more ambitious missions, as SORT (Solar Orbit Relativity Test), aiming to examine aspects of the gravitation in the vicinity of the Sun.

  10. Recent results from the T2K experiment

    NASA Astrophysics Data System (ADS)

    Wachala, T.

    2016-07-01

    T2K is a long-baseline experiment which has been designed to measure neutrino oscillations. A high intensity beam of muon neutrinos is produced at the J-PARC accelerator complex and sent towards the near detector station (280meters away from the neutrino source) and the far detector Super-Kamiokande (295km). The change in the measured intensity and composition of the beam is used to provide information on the oscillation parameters. The T2K experiment has discovered electron neutrino appearance with a significance of 7.3 σ , measured the associated θ_{{13}}^{} mixing angle and provided the first hint for the δ_{{CP}}^{} phase. T2K has also delivered the world's best measurement of the θ_{{23}}^{} angle by looking at the disappearance of muon neutrinos. Several useful neutrino cross section measurements have also been performed by the T2K experiment. A summary of the recent oscillation measurements as well as selected cross section results are presented.

  11. (T2L2) Time Transfer by Laser Link

    NASA Technical Reports Server (NTRS)

    Veillet, Christian; Fridelance, Patricia

    1995-01-01

    T2L2 (Time Transfer by Laser Link) is a new generation time transfer experiment based on the principles of LASSO (Laser Synchronization from Synchronous Orbit) and used with an operational procedure developed at OCA (Observatoire de la Cote d'Azur) during the active intercontinental phase of LASSO. The hardware improvements could lead to a precision better than 10 ps for time transfer (flying clock monitoring or ground based clock comparison). Such a package could fly on any spacecraft with a stable clock. It has been developed in France in the frame of the PHARAO project (cooled atom clock in orbit) involving CNES and different laboratories. But T2L2 could fly on any spacecraft carrying a stable oscillator. A GPS satellite would be a good candidate, as T2L2 could allow to link the flying clock directly to ground clocks using light, aiming to important accuracy checks, both for time and for geodesy. Radioastron (a flying VLBI antenna with a H-maser) is also envisioned, waiting for a PHARAO flight. The ultimate goal of T2L2 is to be part of more ambitious missions, as SORT (Solar Orbit Relativity Test), aiming to examine aspects of the gravitation in the vicinity of the Sun.

  12. NMR Relaxation in Systems with Magnetic Nanoparticles: A Temperature Study

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Hejasee, Rola H.; Qadri, Shahnaz; Haik, Yousef

    2013-01-01

    Purpose To measure and model NMR relaxation enhancement due to the presence of Gd substituted Zn-Mn ferrite magnetic nanoparticles at different temperatures. Materials and Methods Relaxation rates were measured at 1.5 T using FSE sequences in samples of agarose gel doped with uncoated and polyethylene glycol (PEG) coated Mn0.5Zn0.5Gd0.02Fe1.98O4 nanoparticles over the temperature range 8 to 58°C. Physical characterization of the magnetic nanoparticles synthesized using chemical co-precipitation included scanning (SEM) and transmission (TEM) electron microscopy, inductively coupled plasma (ICP), dynamic light scattering (DLS), and magnetometry. Results Relaxivity (in s−1 mM−1 Fe) for the uncoated and coated particles, respectively, increased as follows: from 2.5 to 3.2 and 0.4 to 0.7 for T1, while for T2 it increased from 162.3 to 253.7 and 59.7 to 82.2 over the temperature range 8 to 58°C. T2 data was fitted to the echo limited motional regime using one fitting parameter that reflects the degree of agglomeration of particles into a cluster. This parameter was found to increase linearly with temperature and was larger for the PEG coated particles than the uncoated ones. Conclusion The increase of 1/T2 with temperature is modeled successfully using echo limited motional regime where both diffusion of the protons and nanoparticle cluster size increase with temperature. Both transverse and longitudinal relaxation efficiencies are reduced by PEG coating at all temperatures. If prediction of relaxation rates under different particle concentrations and operating temperatures is possible then the use of MNP in temperature monitoring and hyperthermia applications may be achieved. PMID:23720101

  13. Status of the T2L2/Jason2 Experiment

    NASA Astrophysics Data System (ADS)

    Exertier, Pierre; Samain, Etienne; Bonnefond, Pascal; Guillemot, Philippe

    2010-12-01

    The T2L2 (Time Transfer by Laser Link) project, developed by CNES and OCA will permit the synchronization of remote ultra stable clocks and the determination of their performances over intercontinental distances. The principle of the experiment derives from Satellite Laser Ranging (SLR) technology with dedicated space equipment. T2L2 was accepted in 2005 to be on board the Jason2 altimetry satellite. The payload consists of both event timer and photo detection modules. The system uses the ultra-stable quartz oscillator of DORIS as on-board reference clock on one hand, and the Laser Reflector Array, making T2L2 a real two-way time transfer system on the other hand. The expected time stability of the T2L2 instrument (detection and timing), referenced by the DORIS oscillator and including all internal error sources should be at the level of 10-12 ps at 1 s and <1 ps at 1000 s. The metrological specifications of T2L2 should permit to maintain a precision of 1 to a few ps when measuring the phase of a clock during around 1000 seconds. First analysis of T2L2 data permitted to validate some important characteristics of the experiment such as the sensitivity of the instrument to laser pulse amplitude (from single to multi-photon detection mode), data noises (of different sources, SLR and T2L2), and first error budget and time stability of ground to space time transfers. The paper describes the space experiment and highlights the different steps of the data processing after a first year of operations (between July 2008 and June 2009). We show the time stability which can be reached when a laser station is equipped with an Hydrogen Maser or a Cesium clock as a time reference; thus, the first estimations give 7 ps over 30 s. We conclude by presenting the campaigns of ground to ground time transfers already planned between the Paris Observatory and different places in Europe.

  14. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation.

    PubMed

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost. PMID:26397220

  15. Probing the influential factors of NMR T1-T2 spectra in the characterization of the kerogen by numerical simulation

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Chen, Hua; Deng, Shaogui; Cao, Yingchang; Zahid, Muhammad Aleem

    2015-11-01

    The low field nuclear magnetic resonance (NMR) spectroscopy has been widely used to characterize the longitudinal and transversal relaxation (T1-T2) spectrum of unconventional resources such as shale gas and tight oil containing significant proportions of kerogen and bitumen. However, it requires exquisite design of the acquisition model and the inversion algorithm due to the fast relaxation nature of the kerogen and bitumen. A new direct two dimensional (2D) inversion algorithm combined the iterative truncated singular value decomposition (TSVD) and the Akaiake Information Criterion (AIC) is presented to perform the data inversion efficiently. The fluid component decomposition (FCD) is applied to construct the forward T1-T2 model of the kerogen, and numerical simulations are conducted to investigate factors which may influence inversion results including echo spacing, recovery time series, signal to noise ratio (SNR), and the maximal iteration time. Results show that the T2 component is heavily impaired by the echo spacing, whereas the T1 component is influenced by the recovery time series but with limited effects. The inversion precision is greatly affected by the quality of the data. The inversed spectrum deviates from the model seriously when the SNR of the artificial noise is lower than 50, and the T2 component is more sensitive to the noise than the T1 component. What's more, the maximal iteration time can also affect the inversion result, especially when the maximal iteration time is smaller than 500. Proper acquisition and inversion parameters for the characterization of the kerogen are obtained considering the precision and the computational cost.

  16. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  17. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kreis, R.; Jung, B.; Slotboom, J.; Felblinger, J.; Boesch, C.

    1999-04-01

    1H MR spectra of human muscles were recorded before, during, and after fatiguing exercise. In contrast to expectations, it was found that the spectral contributions of creatine/phosphocreatine (Cr/PCr) were subject to change as a function of exercise. In particular, the dipolar-coupled methylene protons of Cr/PCr were found to be reduced in intensity in proportion to the co-registered PCr levels. Recovery after exercise and behavior under ischemic conditions provide further evidence to suggest that the contributions of the CH2protons of Cr/PCr to1H MR spectra of human musclein vivoreflect PCr rather than Cr levels. Variation of experimental parameters showed that this effect is not due to a trivial change in relaxation times. At present it can only be speculated about why the Cr resonances have reduced NMR visibility. If temporary binding to macromolecules should be involved, the free Cr concentration-important for equilibrium calculations of the creatine kinase reaction-might be different from what was previously assumed.

  18. Methodology of 1H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields

    PubMed Central

    Tkáč, I.; Gruetter, R.

    2009-01-01

    An ultrashort-echo-time stimulated echo-acquisition mode (STEAM) pulse sequence with interleaved outer volume suppression and VAPOR (variable power and optimized relaxation delays) water suppression was redesigned and optimized for human applications at 4 and 7 T, taking into account the specific requirements for spectroscopy at high magnetic fields and limitations of currently available hardware. In combination with automatic shimming, automated parameter adjustments and data processing, this method provided a user-friendly tool for routine 1H nuclear magnetic resonance (NMR) spectroscopy of the human brain at very high magnetic fields. Effects of first- and second-order shimming, single-scan averaging, frequency and phase corrections, and eddy currents were described. LCModel analysis of an in vivo 1H NMR spectrum measured from the human brain at 7 T allowed reliable quantification of more than fifteen metabolites noninvasively, illustrating the potential of high-field NMR spectroscopy. Examples of spectroscopic studies performed at 4 and 7 T demonstrated the high reproducibility of acquired spectra quality. PMID:20179773

  19. Yoga: Managing overweight in mid-life T2DM

    PubMed Central

    Tikhe, Ashwini Sham; Pailoor, Subramanya; Metri, Kashinath; Ganpat, Tikhe Sham; Ramarao, Nagendra Hongasandra

    2015-01-01

    Background: The dramatic rise in the prevalence of obesity and type 2 diabetes mellitus (T2DM) is associated with increased mortality, morbidity as well as public health care expenses worldwide. Previous research suggests that yoga holds promise for obesity and T2DM management. Objective: The objective of the present study was to assess the effect of intensive integrated approach of yoga therapy (IAYT) on body fat and body mass index (BMI) and resting metabolism in mid-life overweight patients with T2DM (BMI, Mean ± SD, 27.05 ± 4.51). Materials and Methods: Twenty-four mid-life patients (6 females) with T2DM (Age, Mean ± SD, 55.38 ± 7.96 years) participated in the study and practiced IAYT for 7 days. The IAYT works at five layers of human existence (physical, vital, mental, intellectual and bliss) to bring positive health. The body fat and BMI and resting metabolism were recorded before and after IAYT using Karada Scan body composition monitor HBF-375 from Omron Healthcare Singapore PTE LTD. Statistical Analysis: SPSS-16 was used to analyze the data. Shapiro-Wilk test showed that the data was not normally distributed. Further, the Wilcoxon signed-ranks test was used to analyze the change in means of pre- and post-measurements. Results: Data analysis showed that there was a significant decrease in body fat and BMI and resting metabolism (in all assessments, P < 0.001). Conclusion: The present study suggests that 7 days practice of IAYT has a great promise for the management of overweight in mid-life patients with T2DM. Additional well-designed studies are needed before a strong recommendation can be made. PMID:26167059

  20. Applications of 1H-NMR to Biodiesel Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel derived from vegetable oils, animal fats, or used cooking oils. It is produced by reacting these materials with an alcohol in the presence of a catalyst to give the corresponding mono-alkyl esters. 1H-NMR is a routine analytical method that has been used for...

  1. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  2. NMR relaxation and exchange in metal-organic frameworks for surface area screening

    SciTech Connect

    Chen, JJ; Mason, JA; Bloch, ED; Gygi, D; Long, JR; Reimer, JA

    2015-03-15

    We describe a robust screening technique that correlates the surface area of metal organic frameworks to the proton T-2 relaxation behavior of imbibed solvent at low field (13 MHz). In frameworks with small pore sizes (<1 nm) or strong solvent-framework interactions, diffusional exchange between the pore-confined and inter-particle solvent populations remains slow compared to the T-2 of the pore-confined solvent, allowing for a direct porosity analysis of the T-2 spectrum obtained from Laplace inversions. Increases in framework pore-size (>1 nm) lead to corresponding increases in the rate of solvent exchange, as confirmed by T-2 relaxation exchange (REXSY) experiments; increases in the pore size also increases the T-2 of the pore-confined solvent. The combination of these two effects results in comparable rates of relaxation and exchange, which precludes the direct analysis of Laplace inversions. Thus, two- and three-site kinetics models were applied to extract porosity from relaxation decays, thereby improving the utility of the porosity screening tool. (C) 2014 Elsevier Inc. All rights reserved.

  3. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    NASA Astrophysics Data System (ADS)

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-01

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T1-T2 and diffusion-T2), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  4. Dielectric Relaxation of Hexadeutero Dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Betting, H.; Stockhausen, M.

    1999-11-01

    The dielectric relaxation parameters of the title substance (DMSO-d6) in its pure liquid state are determined from meas-urements up to 72 GHz at 20°C in comparison to protonated DMSO. While the relaxation strengths do not differ, the relax-ation time of DMSO-d 6 is significantly longer (21.3 ps) than that of DMSO (19.5 ps).

  5. Quantitative T2 Magnetic Resonance Imaging Compared to Morphological Grading of the Early Cervical Intervertebral Disc Degeneration: An Evaluation Approach in Asymptomatic Young Adults

    PubMed Central

    Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike

    2014-01-01

    Objective The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Methods Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18–25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I–V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Findings Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P<0.000). The NP, anterior AF and posterior AF values did not differ significantly between genders at the same anatomic level (P>0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60–62.03 ms), grade III (<54.60 ms). Conclusions T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults. PMID:24498384

  6. Relaxation in Physical Education Curricula.

    ERIC Educational Resources Information Center

    Coville, Claudia A.

    1979-01-01

    A theoretical framework for incorporating relaxation instruction in the physical education curriculum is presented based on the assumption that relaxation is a muscular-skeletal skill benefitting general motor skill acquisition. Theoretical principles, a definition of relaxation, and an analysis of stages of skill development are also used in the…

  7. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  8. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  9. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects

    NASA Astrophysics Data System (ADS)

    Yang, Lijiao; Zhou, Zijian; Liu, Hanyu; Wu, Changqiang; Zhang, Hui; Huang, Guoming; Ai, Hua; Gao, Jinhao

    2015-04-01

    Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM-1 s-1 with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver regions. This work may provide an insightful strategy to design MRI contrast agents with both positive and negative contrast abilities for biomedical applications.Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM-1 s-1 with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver

  10. Hydration effect on solid DNA-didecyldimethylammonium chloride complexes measured using 1H-nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nizioł, J.; Harańczyk, H.; Kobierski, J.; Hebda, E.; Pielichowski, J.; Ostachowicz, B.

    2013-10-01

    Complexes like the studied DNA and didecyldimethylammonium chloride are promising materials for organic electronics and photonics. Water content in this material as the solid state is a key factor for its electronics properties and microstructure. DNA complex was subjected to controlled hydration from gaseous phase and next studied by 1H-nuclear magnetic resonance spectroscopy. Variations of spin-spin and spin-lattice relaxation times as a function of hydration level are reported. Formation of tightly and loosely bound water fractions at rehydration process is discussed.

  11. State of water in hybrid sulfonated poly(ether ether ketone) - silica membranes by 1H solid-state NMR

    NASA Astrophysics Data System (ADS)

    Baias, Maria; Demco, Dan E.; Blümich, Bernhard; Möller, Martin

    2009-04-01

    The state of water in fully hydrated sulfonated poly(ether ether ketone) - silica hybrid proton exchange membranes were characterized in terms of the exchange rate between bound and free water, the water dynamics in each phase, and the relative water populations by 1H ODESSA and transverse magnetization relaxation NMR. The exchange rate, the amount of bound water, and the reorientation of free water molecules increase in the presence of silica particles. The dynamics of bound water was described by the Lévy statistics with a Cauchy propagator. The proton exchange membranes performances could be improved by addition of small concentrations of silica in the range of 5-10 wt.%.

  12. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    NASA Astrophysics Data System (ADS)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  13. Neutrino oscillation physics potential of the T2K experiment

    NASA Astrophysics Data System (ADS)

    T2K Collaboration; Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; de Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2015-04-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ _{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin ^22θ _{23}, the octant of θ _{23}, and the mass hierarchy, in addition to the measurements of δ _{CP}, sin ^2θ _{23}, and Δ m^2_{32}, for various combinations of ν-mode and bar {ν }-mode data-taking. With an exposure of 7.8× 10^{21} protons-on-target, T2K can achieve 1σ resolution of 0.050 (0.054) on sin ^2θ _{23} and 0.040 (0.045)× 10^{-3} {eV}^2 on Δ m^2_{32} for 100% (50%) neutrino beam mode running assuming sin ^2θ _{23}=0.5 and Δ m^2_{32} = 2.4× 10^{-3} eV^2. T2K will have sensitivity to the CP-violating phase δ _{CP} at 90% C.L. or better over a significant range. For example, if sin ^22θ _{23} is maximal (i.e. θ _{23}=45°) the range is -115° < δ _{CP}< -60° for normal hierarchy and +50° < δ _{CP}< +130° for inverted hierarchy. When T2K data is combined with data from the NOνA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δ _{CP} is substantially increased compared to if each experiment is analyzed alone.

  14. Relaxation Nuclear Magnetic Resonance Imaging Investigation of Heterogeneous Aging in a Hydroxy-Terminated Polybutadiene-Based Elastomer

    SciTech Connect

    Alam, Todd M.; Cherry, Brian R.; Minard, Kevin R.; Celina, Mat C.

    2005-12-27

    Relaxation nuclear magnetic resonance imaging (R-NMRI) was employed to investigate the effects of thermo-oxidative aging in a hydroxy-terminated polybutadiene (HTPB) based elastomer. A series of three-dimensional (3D) Hahn-echo weighted single point images (SPI) of the elastomer were utilized to generate a 3D parameter map of the aged material. NMR spin-spin relaxation times (T2) were measured for each voxel producing a 3D NMR parameter (T2) map of the aged polymer. These T2 maps reveal a dramatic reduction of local polymer mobility near the aging surface with the degree of T2 heterogeneity varying as a function of aging. Using correlations between NMR T2 and material modulus, the impact of this heterogeneous thermo-oxidative aging on the material properties is discussed.

  15. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.

    PubMed

    Mitchell, J; Chandrasekera, T C; Johns, M L; Gladden, L F; Fordham, E J

    2010-02-01

    It is known that internal magnetic field gradients in porous materials, caused by susceptibility differences at the solid-fluid interfaces, alter the observed effective Nuclear Magnetic Resonance transverse relaxation times T2,eff. The internal gradients scale with the strength of the static background magnetic field B0. Here, we acquire data at various magnitudes of B0 to observe the influence of internal gradients on T2-T2 exchange measurements; the theory discussed and observations made are applicable to any T2-T2 analysis of heterogeneous materials. At high magnetic field strengths, it is possible to observe diffusive exchange between regions of local internal gradient extrema within individual pores. Therefore, the observed exchange pathways are not associated with pore-to-pore exchange. Understanding the significance of internal gradients in transverse relaxation measurements is critical to interpreting these results. We present the example of water in porous sandstone rock and offer a guideline to determine whether an observed T2,eff relaxation time distribution reflects the pore size distribution for a given susceptibility contrast (magnetic field strength) and spin echo separation. More generally, we confirm that for porous materials T1 provides a better indication of the pore size distribution than T2,eff at high magnetic field strengths (B0>1 T), and demonstrate the data analysis necessary to validate pore size interpretations of T2,eff measurements. PMID:20365625

  16. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    NASA Astrophysics Data System (ADS)

    Baudelet, Christine; Ansiaux, Réginald; Jordan, Bénédicte F.; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-08-01

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  17. 4D prediction of protein (1)H chemical shifts.

    PubMed

    Lehtivarjo, Juuso; Hassinen, Tommi; Korhonen, Samuli-Petrus; Peräkylä, Mikael; Laatikainen, Reino

    2009-12-01

    A 4D approach for protein (1)H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6-7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Halpha and HN shifts, respectively. However, for individual proteins the RMS errors were 0.17-0.34 and 0.34-0.65 ppm for the Halpha and HN shifts, respectively. X-ray structures gave better predictions than the corresponding NMR structures, indicating that chemical shifts contain invaluable information about local structures. The (1)H chemical shift prediction tool 4DSPOT is available from http://www.uku.fi/kemia/4dspot . PMID:19876601

  18. Serial 1H-MRS in GM2 gangliosidoses.

    PubMed

    Assadi, Mitra; Baseman, Susan; Janson, Christopher; Wang, Dah-Jyuu; Bilaniuk, Larissa; Leone, Paola

    2008-03-01

    GM2 gangliosidoses are a group of neuronal storage disorders caused by deficiency in the lysosomal enzyme hexosaminidase A. Clinically, the disease is marked by a relentless encephalopathy. Proton magnetic resonance spectroscopy (1H-MRS) provides in-vivo measurement of various brain metabolites including N-acetyl aspartate+N-acetyl aspartate glutamate (NAA), myo-inositol (mI), choline (Cho) and creatine (Cr). The NAA represents neuronal integrity while elevation in the mI reflects abnormal inflammation and gliosis in the brain tissue. An elevation in the Cho levels suggest cell membrane breakdown and demyelination. We report the clinical and laboratory data in two patients with GM2 gangliosidoses. Serial 1H-MRS evaluations were performed to drive metabolite ratios of NAA/Cr, mI/Cr and Cho/Cr. We acquired the data from four regions of interest (ROI) according to a standard protocol. The results documented a progressive elevation in mI/Cr in all four ROI in patient one and only one ROI (occipital gray matter) in patient 2. We also documented a decline in the NAA/Cr ratios in both cases in most ROI. These results were compared to six age-matched controls and confirmed statistically significant elevation in the mI in our cases. In conclusion, 1H-MRS alterations were suggestive of neuronal loss and inflammation in these patients. 1H-MRS may be a valuable tool in monitoring the disease progress and response to therapy in GM2 gangliosidoses. Elevation in the mI may prove to be more sensitive than the other metabolite alterations. PMID:17387512

  19. Laundering and Deinking Applications of 1H NMR Imaging

    NASA Astrophysics Data System (ADS)

    Tutunjian, P. N.; Borchardt, J. K.; Prieto, N. E.; Raney, K. H.; Ferris, J. A.

    One-dimensional 1H NMR imaging techniques are used to visualize oil removal from fabrics and paper fibers immersed in aqueous solutions of nonionic detergents. The method provides a unique approach to the study of oil-removal kinetics in nonionic detergent systems where traditional optical techniques fail due to solution turbidity. The only requirement of the NMR experiment is the use of deuterated water in order to selectively image the hydrocarbon phase. Preliminary applications to laundering and paper deinking are discussed.

  20. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    SciTech Connect

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and {sup 13}C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution {sup 1}H and {sup 13}C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 {angstrom}. Internal motion is estimated to be slow with a correlation time > 10{sup {minus}8} s{sup {minus}1}. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O{sub 2} and ultraviolet. A method for measuring {sup 14}N-{sup 1}H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T{sub 1} and T{sub 2} experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in {sup 13}C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  1. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics.

    PubMed

    Viles, J H; Donne, D; Kroon, G; Prusiner, S B; Cohen, F E; Dyson, H J; Wright, P E

    2001-03-01

    A template-assisted conformational change of the cellular prion protein (PrP(C)) from a predominantly helical structure to an amyloid-type structure with a higher proportion of beta-sheet is thought to be the causative factor in prion diseases. Since flexibility of the polypeptide is likely to contribute to the ability of PrP(C) to undergo the conformational change that leads to the infective state, we have undertaken a comprehensive examination of the dynamics of two recombinant Syrian hamster PrP fragments, PrP(29-231) and PrP(90-231), using (15)N NMR relaxation measurements. The molecular motions of these PrP fragments have been studied in solution using (15)N longitudinal (T(1)) and transverse relaxation (T(2)) measurements as well as [(1)H]-(15)N nuclear Overhauser effects (NOE). These data have been analyzed using both reduced spectral density mapping and the Lipari-Szabo model free formalism. The relaxation properties of the common regions of PrP(29-231) and PrP(90-231) are very similar; both have a relatively inflexible globular domain (residues 128-227) with a highly flexible and largely unstructured N-terminal domain. Residues 29-89 of PrP(29-231), which include the copper-binding octarepeat sequences, are also highly flexible. Analysis of the spectral densities at each residue indicates that even within the structured core of PrP(C), a markedly diverse range of motions is observed, consistent with the inherent plasticity of the protein. The central portions of helices B and C form a relatively rigid core, which is stabilized by the presence of an interhelix disulfide bond. Of the remainder of the globular domain, the parts that are not in direct contact with the rigid region, including helix A, are more flexible. Most significantly, slow conformational fluctuations on a millisecond to microsecond time scale are observed for the small beta-sheet. These results are consistent with the hypothesis that the infectious, scrapie form of the protein Pr

  2. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water. PMID:26933908

  3. NMR relaxation induced by iron oxide particles: testing theoretical models

    NASA Astrophysics Data System (ADS)

    Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q. L.

    2016-04-01

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  4. Proton-detected 3D 1H/13C/1H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-01

    A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.

  5. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates

  6. Hydrogen concentration dependence of 1H Knight shift in NbH x studied by 1H MAS NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-08-01

    Hydrogen concentration dependence of the Knight shift of protons in NbH x(0.05≤×≤1.05) has been studied by means of 1H MAS (magic angle sample spinning) NMR. In the mixed-phase samples of the α and β phases (0.05<×≤0.7), it is found that the 1H Knight shift of β-NbH x depends on the phase fraction. The shift variation in the β phase can be correlated with the unit cell volume, being explained by the variation of the density of electronic states at the Fermi level N(0) due to the compression of the crystal lattice. On the other hand, in the single β-phase samples (0.7<×≤1.05), the 1H Knight shift becomes smaller as the hydrogen concentration increases. This variation can be explained by increase in the number of electrons in the unit cell with the hydrogen concentration, resulting in the N(0) increase.

  7. Sulfation of deoxynivalenol, its acetylated derivatives, and T2-toxin☆

    PubMed Central

    Fruhmann, Philipp; Skrinjar, Philipp; Weber, Julia; Mikula, Hannes; Warth, Benedikt; Sulyok, Michael; Krska, Rudolf; Adam, Gerhard; Rosenberg, Erwin; Hametner, Christian; Fröhlich, Johannes

    2014-01-01

    The synthesis of several sulfates of trichothecene mycotoxins is presented. Deoxynivalenol (DON) and its acetylated derivatives were synthesized from 3-acetyldeoxynivalenol (3ADON) and used as substrate for sulfation in order to reach a series of five different DON-based sulfates as well as T2-toxin-3-sulfate. These substances are suspected to be formed during phase-II metabolism in plants and humans. The sulfation was performed using a sulfuryl imidazolium salt, which was synthesized prior to use. All protected intermediates and final products were characterized via NMR and will serve as reference materials for further investigations in the fields of toxicology and bioanalytics of mycotoxins. PMID:25170180

  8. Preparation and characterization of the deepoxy trichothecenes: deepoxy HT-2, deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol.

    PubMed Central

    Swanson, S P; Rood, H D; Behrens, J C; Sanders, P E

    1987-01-01

    The production of deepoxy metabolites of the trichothecene mycotoxins T-2 toxin and diacetoxyscirpenol, including deepoxy HT-2 (DE HT-2), deepoxy T-2 triol, deepoxy T-2 tetraol, deepoxy 15-monoacetoxyscirpenol, and deepoxy scirpentriol is described. The metabolites were prepared by in vitro fermentation with bovine rumen microorganisms under anaerobic conditions and purified by normal and reverse-phase high-pressure liquid chromatography. Capillary gas chromatographic retention times and mass spectra of the derivatized metabolites were obtained. The deepoxy metabolites were significantly less toxic to brine shrimp than were the corresponding epoxy analogs. Polyclonal and monoclonal T-2 antibodies were examined for cross-reactivity to several T-2 metabolites. Both HT-2 and DE HT-2 cross-reacted with mouse immunoglobulin monoclonal antibody 15H6 to a greater extent than did T-2 toxin. Rabbit polyclonal T-2 antibodies displayed greater specificity to T-2 toxin compared with the monoclonal antibody, with relative cross-reactivities of only 17.4, 14.6, and 9.2% for HT-2, DE HT-2, and deepoxy T-2 triol, respectively. Cross-reactivity of both antibodies was weak for T-2 triol, T-2 tetraol, 3'OH T-2, and 3'OH HT-2. PMID:3435145

  9. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects.

    PubMed

    Yang, Lijiao; Zhou, Zijian; Liu, Hanyu; Wu, Changqiang; Zhang, Hui; Huang, Guoming; Ai, Hua; Gao, Jinhao

    2015-04-21

    Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM(-1) s(-1) with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver regions. This work may provide an insightful strategy to design MRI contrast agents with both positive and negative contrast abilities for biomedical applications. PMID:25806860

  10. Relaxing music for anxiety control.

    PubMed

    Elliott, Dave; Polman, Remco; McGregor, Richard

    2011-01-01

    The purpose of this investigation was to determine the characteristics of relaxing music for anxiety control. Undergraduate students (N=84) were instructed to imagine themselves in an anxiety producing situation while listening to a selection of 30 music compositions. For each composition, level of relaxation, the factors that either enhanced or detracted from its relaxing potential and the emotional labels attached were assessed. Participants were also asked to state which music components (e.g., tempo, melody) were most conducive to relaxation. Additional information was obtained through the use of a focus group of 6 undergraduate music students. This paper presents details on the characteristics of relaxing-music for anxiety control and emotional labels attached to the relaxing compositions. Furthermore, an importance value has been attached to each of the music components under scrutiny, thus providing an indication of which music components should receive greatest attention when selecting music for anxiety control. PMID:22097099

  11. Effect of Carr-Purcell refocusing pulse trains on transverse relaxation times of metabolites in rat brain at 9.4 T

    PubMed Central

    Deelchand, Dinesh Kumar; Henry, Pierre-Gilles; Marjańska, Małgorzata

    2014-01-01

    Purpose To investigate the effect of Carr-Purcell (CP) pulse trains on transverse relaxation times, T2, of tissue water and metabolites (both non-coupled and J-coupled spins) in the rat brain at 9.4 T using LASER, CP-LASER and T2ρ-LASER sequences. Methods Proton NMR spectra were measured in rat brain in vivo at 9.4 T. Spectra were acquired at multiple echo times ranging from 18 to 402 ms. All spectra were analyzed using LCModel with simulated basis sets. Signals of metabolites as a function of echo time were fitted using a mono-exponential function to determine their T2 relaxation times. Results Measured T2s for tissue water and all metabolites were significantly longer with CP-LASER and T2ρ-LASER compared to LASER. The T2 increased by a factor of ~1.3 for non-coupled and weakly coupled spins (e.g., N-acetylaspartate and total creatine) and by a factor of ~2 (e.g., glutamine and taurine) to ~4 (e.g., glutamate and myo-inositol) for strongly coupled spins. Conclusion Application of a CP pulse train results in a larger increase in T2 relaxation times for strongly coupled spins than for non-coupled (singlet) and weakly coupled spins. This needs to be taken into account when correcting for T2 relaxation in CP-like sequences such as LASER. PMID:24436256

  12. Spatiotemporal changes in blood-brain barrier permeability, cerebral blood flow, T2 and diffusion following mild traumatic brain injury.

    PubMed

    Li, Wei; Watts, Lora; Long, Justin; Zhou, Wei; Shen, Qiang; Jiang, Zhao; Li, Yunxia; Duong, Timothy Q

    2016-09-01

    The blood-brain barrier (BBB) can be impaired following traumatic brain injury (TBI), however the spatiotemporal dynamics of BBB leakage remain incompletely understood. In this study, we evaluated the spatiotemporal evolution of BBB permeability using dynamic contrast-enhanced MRI and measured the volume transfer coefficient (K(trans)), a quantitative measure of contrast agent leakage across the blood and extravascular compartment. Measurements were made in a controlled cortical impact (CCI) model of mild TBI in rats from 1h to 7 days following TBI. The results were compared with cerebral blood flow, T2 and diffusion MRI from the same animal. Spatially, K(trans) changes were localized to superficial cortical layers within a 1mm thickness, which was dramatically different from the changes in cerebral blood flow, T2 and diffusion, which were localized to not only the superficial layers but also to brain regions up to 2.2mm from the cortical surface. Temporally, K(trans) changes peaked at day 3, similar to CBF and ADC changes, but differed from T2 and FA, whose changes peaked on day 2. The pattern of superficial cortical layer localization of K(trans) was consistent with patterns revealed by Evans Blue extravasation. Collectively, these results suggest that BBB disruption, edema formation, blood flow disturbance and diffusion changes are related to different components of the mechanical impact, and may play different roles in determining injury progression and tissue fate processes following TBI. PMID:27208495

  13. How morphology influences relaxivity - comparative study of superparamagnetic iron oxide-polymer hybrid nanostructures.

    PubMed

    Ebert, Sandro; Bannwarth, Markus B; Musyanovych, Anna; Landfester, Katharina; Münnemann, Kerstin

    2015-01-01

    Superparamagnetic iron oxides (SPIOs) are widely used in MRI as T2 contrast agents, and interest is still growing. Here, the T2 relaxivity of three different SPIO-polymer hybrid morphologies, i.e. homogeneously distributed iron oxide within a polymer matrix, Janus-like nanoparticles and polymer nanocapsules containing iron oxides, is studied. Making use of calculations based on theory for agglomerated systems, the obtained T2 values could be predicted for all different morphologies, except for nanocapsules. Nanocapsules, in contrast to full spheres, allow for water exchange between encapsulated water and bulk water, and thus have two contributions to relaxivity. One originates from the capsules acting as a weakly magnetized cluster and the other stems from the individual SPIOs inside the capsule. Therefore, the relaxivities were also computed using an empirical equation found in the literature, which considers water exchange, resulting in a better T2 forecast for the nanocapsules. The presented study is the first example of a comparison between measured and calculated relaxivities of nanocapsules. PMID:26153149

  14. Diffusional Properties of Methanogenic Granular Sludge: 1H NMR Characterization

    PubMed Central

    Lens, Piet N. L.; Gastesi, Rakel; Vergeldt, Frank; van Aelst, Adriaan C.; Pisabarro, Antonio G.; Van As, Henk

    2003-01-01

    The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22°C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H2O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H2O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55°C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10°C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90°C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl2 did not affect the H2O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors. PMID:14602624

  15. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  16. Penetration of ( sup 3 H)T-2 mycotoxin through abraded and intact skin and methods to decontaminate ( sup 3 H)T-2 mycotoxin from abrasions

    SciTech Connect

    Solberg, V.B.; Broski, F.H.; Dinterman, R.E.; George, D.T.

    1990-01-01

    T-2 mycotoxin is a toxic metabolite of various fungi of the Fusarium species. T-2 is found naturally in moldy grain and concentrations as high as 2 ppm have been found in moldy corn. T-2 purportedly has been used as a biological warfare agent in Southeast Asia and Iran, causing human deaths and has been implicated in dermal diseases in grain handling workers. Radiolabeled T-2 has been shown to penetrate excised animal and human skin in liquid vehicles and while adsorbed onto corn dust. In experimental animals studies, (3H)T-2 penetration through skin caused symptoms ranging from erythema and skin lesions to death.

  17. T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI

    PubMed Central

    Kang, Kyung A; Kim, EunJu; Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae; Jung, Sin-Ho; Baek, Sun-Young

    2015-01-01

    Objective To assess the value of applying MultiVane to liver T2-weighted imaging (T2WI) compared with conventional T2WIs with emphasis on detection of focal liver lesions. Materials and Methods Seventy-eight patients (43 men and 35 women) with 86 hepatic lesions and 20 pancreatico-biliary diseases underwent MRI including T2WIs acquired using breath-hold (BH), respiratory-triggered (RT), and MultiVane technique at 3T. Two reviewers evaluated each T2WI with respect to artefacts, organ sharpness, and conspicuity of intrahepatic vessels, hilar duct, and main lesion using five-point scales, and made pairwise comparisons between T2WI sequences for these categories. Diagnostic accuracy (Az) and sensitivity for hepatic lesion detection were evaluated using alternative free-response receiver operating characteristic analysis. Results MultiVane T2WI was significantly better than BH-T2WI or RT-T2WI for organ sharpness and conspicuity of intrahepatic vessels and main lesion in both separate reviews and pairwise comparisons (p < 0.001). With regard to motion artefacts, MultiVane T2WI or BH-T2WI was better than RT-T2WI (p < 0.001). Conspicuity of hilar duct was better with BH-T2WI than with MultiVane T2WI (p = 0.030) or RT-T2WI (p < 0.001). For detection of 86 hepatic lesions, sensitivity (mean, 97.7%) of MultiVane T2WI was significantly higher than that of BH-T2WI (mean, 89.5%) (p = 0.008) or RT-T2WI (mean, 84.9%) (p = 0.001). Conclusion Applying the MultiVane technique to T2WI of the liver is a promising approach to improving image quality that results in increased detection of focal liver lesions compared with conventional T2WI. PMID:26357498

  18. Renormalized reaction and relaxation rates

    NASA Astrophysics Data System (ADS)

    Gorbachev, Yuriy E.

    2016-06-01

    Impact of the non-equilibrium on the reaction and relaxation rates (called as generalized relaxation rates - GRR), for the spatially inhomogeneous gas mixture is considered. Discarding the assumption that the 'chemical' part of the collisional integral is a small correction to non-reactive part, the expression for the zero-order GRR is derived. They are represented as a renormalization of the traditional reaction and relaxation rates, which means mixing of all corresponding processes. Thus all reactions and relaxation processes are entangled.

  19. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  20. Time-efficient interleaved human (23)Na and (1)H data acquisition at 7 T.

    PubMed

    de Bruin, Paul W; Koken, Peter; Versluis, Maarten J; Aussenhofer, Sebastian A; Meulenbelt, Ingrid; Börnert, Peter; Webb, Andrew G

    2015-10-01

    The aim of this study was to implement and evaluate a flexible and time-efficient interleaved imaging approach for the acquisition of proton and sodium images of the human knee at 7 T within a clinically relevant timescale. A flexible software framework was established which allowed the interleaving of multiple, different, fully specific absorption ratio (SAR)-validated scans. The system was able to switch between these different scans at flexible time points. The practical example presented consists of interleaved proton (Dixon imaging and T2* mapping) and sodium (mapping the sodium content and fluid-suppressed component separately) sequences with the key idea to perform proton MRI whilst the sodium nuclei relax towards thermal equilibrium, and vice versa. Comparisons were made between these four scans being acquired sequentially in the normal mode of scanner operation and those acquired in an interleaved fashion. Images acquired in the interleaved mode were very similar to those acquired in sequential scans with no image artifacts produced by the slight intra-sequence variation in steady-state magnetization. A reduction in scanning time of almost a factor of two was established using the interleaved scans, allowing such a protocol to be completed within 30 min. Phantom experiments and in vivo scans performed in healthy volunteers and in one patient proved the basic feasibility of this approach. This approach for the interleaving of multiple proton and sodium scans, each with different contrasts, is an efficient method for the design of new practical clinical protocols for sodium MRI. PMID:26269329

  1. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  2. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  3. Robust determination of surface relaxivity from nuclear magnetic resonance DT(2) measurements.

    PubMed

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature. PMID:26340435

  4. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  5. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins.

    PubMed

    Yao, Lishan; Ying, Jinfa; Bax, Ad

    2009-03-01

    The presence of dipole-dipole cross-correlated relaxation as well as unresolved E.COSY effects adversely impacts the accuracy of (1)J(NH) splittings measured from gradient-enhanced IPAP-HSQC spectra. For isotropic samples, the size of the systematic errors caused by these effects depends on the values of (2)J(NHalpha), (3)J(NHbeta) and (3)J(HNHalpha). Insertion of band-selective (1)H decoupling pulses in the IPAP-HSQC experiment eliminates these systematic errors and for the protein GB3 yields (1)J(NH) splittings that agree to within a root-mean-square difference of 0.04 Hz with values measured for perdeuterated GB3. Accuracy of the method is also highlighted by a good fit to the GB3 structure of the (1)H-(15)N RDCs extracted from the minute differences in (1)J(NH) splitting measured at 500 and 750 MHz (1)H frequencies, resulting from magnetic susceptibility anisotropy. A nearly complete set of (2)J(NHalpha) couplings was measured in GB3 in order to evaluate whether the impact of cross-correlated relaxation is dominated by the (15)N-(1)H(alpha) or (15)N-(1)H(beta) dipolar interaction. As expected, we find that (2)J(NHalpha) < or = 2 Hz, with values in the alpha-helix (0.86 +/- 0.52 Hz) slightly larger than in beta-sheet (0.66 +/- 0.26 Hz). Results indicate that under isotropic conditions, N-H(N)/N-H(beta) cross-correlated relaxation often dominates. Unresolved E.COSY effects under isotropic conditions involve (3)J(HNHalpha) and J(NHalpha), but when weakly aligned any aliphatic proton proximate to both N and H(N) can contribute. PMID:19205898

  6. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  7. New pulse sequences for T1- and T1/T2-contrast enhancing in NMR imaging.

    PubMed

    Andreev, N K; Hakimov, A M; Idiyatullin, D S

    1998-10-01

    Improved pulse sequences DIFN (abbreviation of the words: DIFferentiation by N pulses), 90 degrees - tau1 - 180 degrees tau1 - . . . 180 degrees - tau1 with optimised time intervals tau1- for T1 measurement and contrast enhancing in NMR imaging are presented. The pulse sequences DIFN have a better sensitivity to T1 than the well-known pulse sequence SR. In contrast to the IR pulse sequence, the information given by the DIFN pulse sequence is more reliable, because the NMR signal does not change its sign. For a given time interval tau0 < or = (0.1 - 0.3) T(1) the DIFN pulse sequences serve as T1-filters. They pass the signal components with relatively short T1 < T(1) and suppress the components with relatively long T1 < T(1). The effects of the radiofrequency field inhomogeneity and inaccurate adjusting of pulse lengths are also considered. It is also proposed in this work to use the joint T1T2-contrast in NMR imaging obtained as a result of applying the DIFN pulse sequences in combination with the well-known Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The region of interest, where the contrast should be especially enhanced, is specified by the two times at which measurements are performed, which allow the amplitudes of pixels to reach some defined levels by spin-lattice and spin-spin relaxation. PMID:9814781

  8. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  9. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    PubMed Central

    Martínez-González, Raquel; Estelrich, Joan; Busquets, Maria Antònia

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes) of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T) to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA. PMID:27472319

  10. Microscale simulations of NMR relaxation in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Klitzsch, N.; Clauser, C.

    2009-12-01

    In petrophysical applications of nuclear magnetic resonance (NMR), the measured relaxation signals originate from the fluid filled pore space. Hence, in rocks or sediments the water content directly corresponds to the initial amplitude of the recorded NMR relaxation signals. The relaxation rate (longitudinal/transversal decay time T1, T2) is sensitive to pore sizes and physiochemical properties of rock-fluid interfaces (surface relaxivity), as well as the concentration of paramagnetic ions in the fluid phases (bulk relaxivity). We aim at improving the basic understanding of these processes at the pore scale and thereby advancing the interpretation of NMR data by reducing the application of restrictive approximated interpretation schemes, e.g. for deriving pore size distributions, connectivity or permeability. In this respect we numerically simulate NMR relaxation data at the micro sale to study the impact of physical and hydrological parameters such as internal field gradients or pore connectivities on NMR signals. Joint numerical simulations of the NMR relaxation behavior (Bloch equations) in the presence of internal gradients (Ampere’s law) and fluid flow (Navier-Stokes) on a pore scale dimension have been implemented in a finite element (FE) model using Comsol Multiphysics. Processes governing the time and spatial behavior of the nuclear magnetization density in a porous medium are diffusion and surface interactions at the rock-fluid interface. Based on Fick's law of diffusive motion Brownstein and Tarr (1979) introduced differential equations that describe the relaxation behavior of the Spin magnetization in single isolated pores and derived analytical solutions for simple geometries, i.e. spherical, cylindrical and planar. However, by numerically solving these equations in a general way using a FE algorithm this approach can be applied to study and simulate coupled complex pore systems, e.g. derived from computer tomography (CT). In this respect substantial

  11. Microscale simulations of NMR relaxation in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, Oliver; Klitzsch, Norbert

    2010-05-01

    In petrophysical applications of nuclear magnetic resonance (NMR), the measured relaxation signals originate from the fluid filled pore space. Hence, in rocks or sediments the water content directly corresponds to the initial amplitude of the recorded NMR relaxation signals. The relaxation rate (longitudinal/transversal decay time T1, T2) is sensitive to pore sizes and physiochemical properties of rock-fluid interfaces (surface relaxivity), as well as the concentration of paramagnetic ions in the fluid phases (bulk relaxivity). In the subproject A2 of the TR32 we aim at improving the basic understanding of these processes at the pore scale and thereby advancing the interpretation of NMR data by reducing the application of restrictive approximated interpretation schemes, e.g. for deriving pore size distributions, connectivity or permeability. In this respect we numerically simulate NMR relaxation data at the micro sale to study the impact of physical and hydrological parameters such as internal field gradients or pore connectivities on NMR signals. Joint numerical simulations of the NMR relaxation behavior (Bloch equations) in the presence of internal gradients (Ampere's law) and fluid flow (Navier-Stokes) on a pore scale dimension have been implemented in a finite element (FE) model using Comsol Multiphysics. Processes governing the time and spatial behavior of the nuclear magnetization density in a porous medium are diffusion and surface interactions at the rock-fluid interface. Based on Fick's law of diffusive motion Brownstein and Tarr (1979) introduced differential equations that describe the relaxation behavior of the Spin magnetization in single isolated pores and derived analytical solutions for simple geometries, i.e. spherical, cylindrical and planar. However, by numerically solving these equations in a general way using a FE algorithm this approach can be applied to study and simulate coupled complex pore systems, e.g. derived from computer tomography (CT

  12. Comparison of myocardial T1 and T2 values in 3 T with T2* in 1.5 T in patients with iron overload and controls.

    PubMed

    Camargo, Gabriel C; Rothstein, Tamara; Junqueira, Flavia P; Fernandes, Elsa; Greiser, Andreas; Strecker, Ralph; Pessoa, Viviani; Lima, Ronaldo S L; Gottlieb, Ilan

    2016-05-01

    Myocardial iron quantification remains limited to 1.5 T systems with T2* measurement. The present study aimed at comparing myocardial T2* values at 1.5 T to T1 and T2 mapping at 3.0 T in patients with iron overload and healthy controls. A total of 17 normal volunteers and seven patients with a history of myocardial iron overload were prospectively enrolled. Mid-interventricular septum T2*, native T1 and T2 times were quantified on the same day, using a multi-echo gradient-echo sequence at 1.5 T and T1 and T2 mapping sequences at 3.0 T, respectively. Subjects with myocardial iron overload (T2* < 20 ms) in comparison with those without had significantly lower mean myocardial T1 times (868.9 ± 120.2 vs. 1170.3 ± 25.0 ms P = 0.005 respectively) and T2 times (34.9 ± 4.7 vs. 45.1 ± 2.0 ms P = 0.007 respectively). 3 T T1 and T2 times strongly correlated with 1.5 T, T2* times (Pearson's r = 0.95 and 0.91 respectively). T1 and T2 measures presented less variability than T2* in inter- and intra-observer analysis. Native myocardial T1 and T2 times at 3 T correlate closely with T2* times at 1.5 T and may be useful for myocardial iron overload quantification. PMID:26872908

  13. NMR relaxation times of trabecular bone—reproducibility, relationships to tissue structure and effects of sample freezing

    NASA Astrophysics Data System (ADS)

    Prantner, Viktória; Isaksson, Hanna; Närväinen, Johanna; Lammentausta, Eveliina; Nissi, Mikko J.; Avela, Janne; Gröhn, Olli H. J.; Jurvelin, Jukka S.

    2010-12-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a potential tool for non-invasive evaluation of the trabecular bone structure. The objective of this study was to determine the reproducibility of the NMR relaxation parameters (T2, Carr-Purcel-T2, T1ρ) for fat and water and relate those to the structural parameters obtained by micro-computed tomography (μCT). Especially, we aimed to evaluate the effect of freezing on the relaxation parameters. For storing bone samples, freezing is the standard procedure during which the biochemical and cellular organization of the bone marrow may be affected. Bovine trabecular bone samples were stored at -20 °C for 7 days and measured by NMR spectroscopy before and after freezing. The reproducibility of NMR relaxation parameters, as expressed by the coefficient of variation, ranged from 3.1% to 27.9%. In fresh samples, some correlations between NMR and structural parameters (Tb.N, Tb.Sp) were significant (e.g. the relaxation rate for T2 of fat versus Tb.Sp: r = -0.716, p < 0.01). Freezing did not significantly change the NMR relaxation times but the correlations between relaxation parameters and the μCT structural parameters were not statistically significant after freezing, suggesting some nonsystematic alterations of the marrow structure. Therefore, the use of frozen bone samples for NMR relaxation studies may provide inferior information about the trabecular bone structure.

  14. Measuring the Longitudinal NMR Relaxation Rates of Fast Relaxing Nuclei Using a Signal Eliminating Relaxation Filter

    NASA Astrophysics Data System (ADS)

    Hansen, D. Flemming; Led, Jens J.

    2001-08-01

    A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.

  15. Decoherence in Quantum Magnets: Theory and Experiment on T2

    NASA Astrophysics Data System (ADS)

    Tupitsyn, Igor; Stamp, Philip; Takahashi, Susumu; Sherwin, Mark; van Tol, Johan; Beedle, Christopher; Hendrickson, David

    2010-03-01

    The individual properties of molecular magnets are controlled by chemistry rather than nanoengineering, and are highly tunable. This makes them ideal candidates for solid-state qubits. However decoherence in many solid-state systems is anomalously high, and their advantages cannot be exploited until decoherence is understood and suppressed. In molecular magnets decoherence is caused by coupling to the nuclear spin bath, to phonons, and to each other via dipole-dipole and exchange interactions. Here we study decoherence in 2 different crystals of Fe8 nanomolecules, in several field orientations, both theoretically and experimentally. The experimental results for the decoherence time T2 agree with the existing theory (Morello et al., Phys Rev Lett 97, 207206 (2006)). To our knowledge this is the first time that experimental decoherence rates agree with theory in magnetic systems.

  16. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    PubMed Central

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  17. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy.

    PubMed

    Caligiani, A; Acquotti, D; Palla, G; Bocchi, V

    2007-02-28

    A detailed analysis of the proton high-field NMR spectra of vinegars (in particular of Italian balsamic vinegars) is reported. A large number of organic substances belonging to different classes, such as carbohydrates, alcohols, organic acids, volatile compounds and amino acids, were assigned. The possibility of quantification of the substances identified in the whole vinegar sample, without extraction or pre-concentration steps, was also tested. The data validity was demonstrated in terms of precision, accuracy, repeatability and inter-day reproducibility. The effects of the most critical experimental parameters (sample concentration, water suppression and relaxation time) on the analysis response were also discussed. (1)H NMR results were compared with those obtained by traditional techniques (GC-MS, titrations), and good correlations were obtained. The results showed that (1)H NMR with water suppression allows a rapid, simultaneous determination of carbohydrates (glucose and fructose), organic acids (acetic, formic, lactic, malic, citric, succinic and tartaric acids), alcohols and polyols (ethanol, acetoin, 2,3-butanediol, hydroxymethylfurfural), and volatile substances (ethyl acetate) in vinegar samples. On the contrary, the amino acid determination without sample pre-concentration was critical. The (1)H NMR method proposed was applied to different samples of vinegars, allowing, in particular, the discrimination of vinegars and balsamic vinegars. PMID:17386654

  18. Complexation of oxygen ligands with dimeric rhodium(II) tetrakistrifluoroacetate in chloroform: 1H, 13C NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Głaszczka, Rafał; Jaźwiński, Jarosław

    2013-03-01

    The complexation of dimeric rhodium(II) tetrakistrifluoroacetylate with 25 ligands containing oxygen atoms: alcohols, ethers, ketones, aldehydes, carboxylic acids and esters in chloroform solution have been investigated by 1H and 13C NMR spectroscopy and Density Functional Theory (DFT) methods. Investigated ligands form 1:1 adducts in our experimental conditions, with stability constants in the order of several hundred mol-1. The exchange of ligands in solution is fast on the NMR spectroscopic timescale. The decrease of longitudinal relaxation times T1 in ligands in the presence of rhodium salt has been tested as the means of determination of the complexation site in ligands. The influence of complexation on chemical shifts in ligands was evaluated by a parameter complexation shift Δδ (Δδ = δadd - δlig). These parameters were positive (>0 ppm) and did not exceed 1 ppm for 1H NMR; and varied from ca. -5 to +15 ppm in the case of 13C NMR. The calculation by DFT methods using the B3LYP functional (structure optimization, electronic energy) and B3PW91 functional (shielding), and combinations of the (6-31G(2d), 6-311G++(2d,p), and LANL2DZ basis sets, followed by scaling procedures reproduced satisfactorily 1H and 13C chemical shifts and, with some limitations, allowed to estimate Δδ parameters.

  19. NMR relaxation studies in doped poly-3-methylthiophene

    NASA Astrophysics Data System (ADS)

    Singh, K. Jugeshwar; Clark, W. G.; Gaidos, G.; Reyes, A. P.; Kuhns, P.; Thompson, J. D.; Menon, R.; Ramesh, K. P.

    2015-05-01

    NMR relaxation rates (1 /T1 ), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T1 is classified into three regimes: (a) For T <(g μBB /2 kB ) , the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. 1H - T1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g μBB /2 kB ) relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the P F6 reorientation. The cross relaxation among the 1H and 19F nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra- and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T1-1 on temperature shows that at low temperature [T <(g μBB /2 kB ) ] the system shows three dimensions and changes to quasi one dimension at

  20. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  1. NMR measurement of oil shale magnetic relaxation at high magnetic field

    USGS Publications Warehouse

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  2. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS.

    PubMed

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid. PMID:26065628

  3. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  4. A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes.

    PubMed

    Neudert, Oliver; Mattea, Carlos; Spiess, Hans Wolfgang; Stapf, Siegfried; Münnemann, Kerstin

    2013-12-21

    Hyperpolarization techniques, such as Overhauser dynamic nuclear polarization (DNP), can provide a dramatic increase in the signal obtained from nuclear magnetic resonance experiments and may therefore enable new applications where sensitivity is a limiting factor. In this contribution, studies of the (1)H and (19)F Overhauser dynamic nuclear polarization enhancements at 345 mT are presented for three different aromatic solvents with the TEMPO radical for a range of radical concentrations. Furthermore, nuclear magnetic relaxation dispersion measurements of the same solutions are analyzed, showing contributions from dipolar and scalar coupling modulated by translational diffusion and different coupling efficiency for different solvents and nuclei. Measurements of the electron paramagnetic resonance linewidth are included to support the analysis of the DNP saturation factor for varying radical concentration. The results of our study give an insight into the characteristics of nitroxide radicals as polarizing agents for (19)F Overhauser DNP of aromatic fluorinated solvents. Furthermore, we compare our results with the findings of the extensive research on Overhauser DNP that was conducted in the past for a large variety of other radicals. PMID:24192645

  5. Purity Assessment of Aryltetralin Lactone Lignans by Quantitative 1H Nuclear Magnetic Resonance.

    PubMed

    Sun, Yan-Jun; Zhang, Yan-Li; Wang, Yu; Wang, Jun-Min; Zhao, Xuan; Gong, Jian-Hong; Gao, Wei; Guan, Yan-Bin

    2015-01-01

    In the present work, a quantitative 1H Nuclear Magnetic Resonance (qHNMR) was established for purity assessment of six aryltetralin lactone lignans. The validation of the method was carried out, including specificity, selectivity, linearity, accuracy, precision, and robustness. Several experimental parameters were optimized, including relaxation delay (D1), scan numbers (NS), and pulse angle. 1,4-Dinitrobenzene was used as internal standard (IS), and deuterated dimethyl sulfoxide (DMSO-d6) as the NMR solvent. The purities were calculated by the area ratios of H-2,6 from target analytes vs. aromatic protons from IS. Six aryltetralin lactone lignans (deoxypodophyllotoxin, podophyllotoxin, 4-demethylpodophyllotoxin, podophyllotoxin-7'-O-β-d-glucopyranoside, 4-demethylpodophyllotoxin-7'-O-β-d-glucopyranoside, and 6''-acetyl-podophyllotoxin-7'-O-β -d-glucopyranoside) were analyzed. The analytic results of qHNMR were further validated by high performance liquid chromatography (HPLC). Therefore, the qHNMR method was a rapid, accurate, reliable tool for monitoring the purity of aryltetralin lactone lignans. PMID:26016553

  6. Intra- and extracellular carbohydrates in plant cell cultures investigated by (1)H-NMR.

    PubMed

    Schripsema, J; Erkelens, C; Verpoorte, R

    1991-01-01

    With the aim of quantifying intra- and extracellular carbohydrates media and cell-extracts from a Tabernaemontana divaricata plant cell-suspension culture were investigated with (1)H-NMR.For suppression of the solvent peak the Meiboom-Gill modification of the Carr-Purcell (CPMG) spin-echo sequence was used after addition of a paramagnetic relaxation agent (Mn(2+)) to the sample. Several aspects of this method were optimized (the manganese concentration, the interpulse delay and the number of spin-echo cycles) so as to obtain a rapid and easy method in which no pretreatment of media or cell-extracts was needed. Besides the speed and ease of the method, also the direct identification of carbohydrates and other main components is an advantage.The exhaustion of extracellular carbohydrates was found to coincide with the maximum amount of intracellular carbohydrates. The intracellular carbohydrates, i.e. glucose and fructose, were consumed at a low rate, during several weeks. PMID:24213796

  7. Assignment of 1H and 13C hyperfine-shifted resonances for tuna ferricytochrome c.

    PubMed Central

    Sukits, S F; Satterlee, J D

    1996-01-01

    Tuna ferricytochrome c has been used to demonstrate the potential for completely assigning 1H and 13C strongly hyperfine-shifted resonances in metalloprotein paramagnetic centers. This was done by implementation of standard two-dimensional NMR experiments adapted to take advantage of the enhanced relaxation rates of strongly hyperfine-shifted nuclei. The results show that complete proton assignments of the heme and axial ligands can be achieved, and that assignments of several strongly shifted protons from amino acids located close to the heme can also be made. Virtually all proton-bearing heme 13C resonances have been located, and additional 13C resonances from heme vicinity amino acids are also identified. These results represent an improvement over previous proton resonance assignment efforts that were predicated on the knowledge of specific assignments in the diamagnetic protein and relied on magnetization transfer experiments in heterogeneous solutions composed of mixtures of diamagnetic ferrocytochrome c and paramagnetic ferricytochrome c. Even with that more complicated procedure, complete heme proton assignments for ferricytochrome c have never been demonstrated by a single laboratory. The results presented here were achieved using a more generally applicable strategy with a solution of the uniformly oxidized protein, thereby eliminating the requirement of fast electron self-exchange, which is a condition that is frequently not met. PMID:8913622

  8. AcT-2: A Novel Myotropic and Antimicrobial Type 2 Tryptophyllin from the Skin Secretion of the Central American Red-Eyed Leaf Frog, Agalychnis callidryas

    PubMed Central

    Ge, Lilin; Lyu, Peng; Zhang, Huiling; Wan, Yuantai; Li, Bin; Li, Renjie; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2014-01-01

    Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure—GMRPPWF-NH2—was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μM). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities. PMID:24693226

  9. Nuclear magnetic resonance and proton relaxation times in experimental heterotopic heart transplantation

    SciTech Connect

    Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.

    1986-01-01

    It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.

  10. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes

  11. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water. PMID:24595457

  12. Isotope Effects in Collisional VT Relaxation of Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Bieniek, R. J.

    2006-01-01

    A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for rates of collisionally induced vibrational-translation (VT) energy exchange that has been shown to be accurate over variations of orders of magnitude as a function of temperature in a variety of systems. This includes excellent agreement with reported experimental and theoretical results for the fundamental self-relaxation rate of molecular hydrogen H2(v = 1) + H2 yields H2(v = 0) + H2. The analytic rate successfully follows the five-orders-of-magnitude change in experimental values for the temperature range 50-2000 K. This approach is now applied to isotope effects in the vibrational relaxation rates of excited HD and D2 in collision with H2: HD(v = 1)+H2 yields HD(v = 0)+H2 and D2(v = 1)+H2 yields D2(v = 0)+H2. The simplicity of the analytic expression for the thermal rate lends itself to convenient application in modeling the evolving vibrational populations of molecular hydrogen in shocked astrophysical environments.

  13. Proton Nuclear Magnetic Resonance Relaxation Measurements in Frog Muscle

    PubMed Central

    Finch, Edward D.; Homer, Louis D.

    1974-01-01

    Proton nuclear magnetic resonance (NMR) relaxation measurements are reported for frog muscle as a function of temperature and Larmor frequency. Each T1ρ, T2, and T1 measurement covered a time domain sufficient to identify the average relaxation time for most intracellular water. Using regression analysis the data were fit with a model where intracellular water molecules are exchanging between a large compartment in which mobility is similar to ordinary water and a small compartment in which motion is restricted. The regression results suggest that: the restricted compartment exhibits a distribution of motions skewed toward that of free water; the residence time of water molecules in the restricted compartment is approximately 1 ms; and, the activation entropy for some water molecules in the restricted compartment is negative. PMID:4547668

  14. Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR

    SciTech Connect

    Meier, R.; Schneider, E.; Rössler, E. A.

    2015-01-21

    Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the {sup 1}H spin-lattice relaxation rate, R{sub 1}(ω)=T{sub 1}{sup −1}(ω), is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz–20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R{sub 1}(ω,x) (x denotes mole fraction PG) allow to extract the rotational time constant τ{sub rot}(T, x) and the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τ{sub rot}(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τ{sub rot}(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.

  15. Structures of deepoxytrichothecene metabolites from 3'-hydroxy HT-2 toxin and T-2 tetraol in rats.

    PubMed Central

    Yoshizawa, T; Sakamoto, T; Kuwamura, K

    1985-01-01

    3'-Hydroxy HT-2 toxin and T-2 tetraol, in vivo metabolites of T-2 toxin, were orally administered to Wistar rats, and four metabolites having a trichothec-9,12-diene nucleus, which were termed deepoxytrichothecenes, were newly found in the excreta. Their structures were confirmed as 3'-hydroxy-deepoxy HT-2, 3'-hydroxy-deepoxy T-2 triol, 15-acetyl-deepoxy T-2 tetraol, and deepoxy T-2 tetraol on the basis of mass and nuclear magnetic resonance spectroscopy. Resolution of T-2 metabolites and corresponding deepoxytrichothecenes by gas-liquid and thin-layer chromatography was also described. PMID:4073895

  16. Myocardial T2* mapping free of distortion using susceptibility-weighted fast spin-echo imaging: a feasibility study at 1.5 T and 3.0 T.

    PubMed

    Heinrichs, Uwe; Utting, Jane F; Frauenrath, Tobias; Hezel, Fabian; Krombach, Gabriele A; Hodenius, Michael A J; Kozerke, Sebastian; Niendorf, Thoralf

    2009-09-01

    This study demonstrates the feasibility of applying free-breathing, cardiac-gated, susceptibility-weighted fast spin-echo imaging together with black blood preparation and navigator-gated respiratory motion compensation for anatomically accurate T2* mapping of the heart. First, T2* maps are presented for oil phantoms without and with respiratory motion emulation T2* = (22.1 +/- 1.7) ms at 1.5 T and T2* = (22.65 +/- 0.89) ms at 3.0 T). T2* relaxometry of a ferrofluid revealed relaxivities of R2* = (477.9 +/- 17) mM(-1)s(-1) and R2* = (449.6 +/- 13) mM(-1)s(-1) for UFLARE and multiecho gradient-echo imaging at 1.5 T. For inferoseptal myocardial regions mean T2* values of 29.9 +/- 6.6 ms (1.5 T) and 22.3 +/- 4.8 ms (3.0 T) were estimated. For posterior myocardial areas close to the vena cava T2*-values of 24.0 +/- 6.4 ms (1.5 T) and 15.4 +/- 1.8 ms (3.0 T) were observed. The merits and limitations of the proposed approach are discussed and its implications for cardiac and vascular T2*-mapping are considered. PMID:19526490

  17. Nuclear relaxation and critical fluctuations in membranes containing cholesterol

    NASA Astrophysics Data System (ADS)

    McConnell, Harden

    2009-04-01

    Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.

  18. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss.

    PubMed

    Henning, Anke; Fuchs, Alexander; Murdoch, James B; Boesiger, Peter

    2009-08-01

    In comparison to 1.5 and 3 T, MR spectroscopic imaging at 7 T benefits from signal-to-noise ratio (SNR) gain and increased spectral resolution and should enable mapping of a large number of metabolites at high spatial resolutions. However, to take full advantage of the ultra-high field strength, severe technical challenges, e.g. related to very short T(2) relaxation times and strict limitations on the maximum achievable B(1) field strength, have to be resolved. The latter results in a considerable decrease in bandwidth for conventional amplitude modulated radio frequency pulses (RF-pulses) and thus to an undesirably large chemical-shift displacement artefact. Frequency-modulated RF-pulses can overcome this problem; but to achieve a sufficient bandwidth, long pulse durations are required that lead to undesirably long echo-times in the presence of short T(2) relaxation times. In this work, a new magnetic resonance spectroscopic imaging (MRSI) localization scheme (free induction decay acquisition localized by outer volume suppression, FIDLOVS) is introduced that enables MRSI data acquisition with minimal SNR loss due to T(2) relaxation and thus for the first time mapping of an extended neurochemical profile in the human brain at 7 T. To overcome the contradictory problems of short T(2) relaxation times and long pulse durations, the free induction decay (FID) is directly acquired after slice-selective excitation. Localization in the second and third dimension and skull lipid suppression are based on a T(1)- and B(1)-insensitive outer volume suppression (OVS) sequence. Broadband frequency-modulated excitation and saturation pulses enable a minimization of the chemical-shift displacement artefact in the presence of strict limits on the maximum B(1) field strength. The variable power RF pulses with optimized relaxation delays (VAPOR) water suppression scheme, which is interleaved with OVS pulses, eliminates modulation side bands and strong baseline distortions. Third

  19. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.

    PubMed

    Lundström, Patrik; Akke, Mikael

    2005-09-01

    NMR spin relaxation in the rotating frame (R1rho) is a unique method for atomic-resolution characterization of conformational (chemical) exchange processes occurring on the microsecond timescale. We present a rotating-frame 13C(alpha) relaxation dispersion experiment for measuring conformational dynamics in uniformly 13C-labeled proteins. The experiment was validated by using the E140Q mutant of the C-terminal fragment of calmodulin, which exhibits significant conformational exchange between two major conformations, as gauged from previous 15N and 1H relaxation studies. Consistent with previous work, the present 13C(alpha) R1rho experiment detects conformational-exchange dynamics throughout the protein. The average correlation time of =25+/-8 micros is in excellent agreement with those determined previously from 1H and 15N R1rho relaxation data: =19+/-7 and 21+/-3 micros, respectively. The extracted chemical-shift differences between the exchanging states reveal significant fluctuations in dihedral angles within single regions of Ramachandran phi-psi space, that were not identified from the 1H and 15N relaxation data. The present results underscore the advantage of using several types of nuclei to probe exchange dynamics in biomolecules. PMID:16028301

  20. Stress Relaxation of Magnetorheological Fluids

    NASA Astrophysics Data System (ADS)

    Li, W. H.; Chen, G.; Yeo, S. H.; Du, H.

    In this paper, the experimental and modeling study and analysis of the stress relaxation characteristics of magnetorheological (MR) fluids under step shear are presented. The experiments are carried out using a rheometer with parallel-plate geometry. The applied strain varies from 0.01% to 100%, covering both the pre-yield and post-yield regimes. The effects of step strain, field strength, and temperature on the stress modulus are addressed. For small step strain ranges, the stress relaxation modulus G(t,γ) is independent of step strain, where MR fluids behave as linear viscoelastic solids. For large step strain ranges, the stress relaxation modulus decreases gradually with increasing step strain. Morever, the stress relaxation modulus G(t,γ) was found to obey time-strain factorability. That is, G(t,γ) can be represented as the product of a linear stress relaxation G(t) and a strain-dependent damping function h(γ). The linear stress relaxation modulus is represented as a three-parameter solid viscoelastic model, and the damping function h(γ) has a sigmoidal form with two parameters. The comparison between the experimental results and the model-predicted values indicates that this model can accurately describe the relaxation behavior of MR fluids under step strains.

  1. Multi-probe relaxation dispersion measurements increase sensitivity to protein dynamics.

    PubMed

    Fenwick, R Bryn; Oyen, David; Wright, Peter E

    2016-02-17

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements are a valuable tool for the characterization of structural transitions on the micro-millisecond timescale. While the measurement of (15)N relaxation dispersion is now routine, the measurements with alternative nuclei remain limited. Here we report (15)N as well as (1)H R2 relaxation dispersion measurements of the N23PP/S148A "dynamic knockout" mutant of dihydrofolate reductase. The (1)H dispersion measurements are complementary to (15)N data as many additional residues are observed to have dispersive behavior for the (1)H nucleus. Simultaneous fitting of the dispersion profiles for the two nuclei increases the accuracy of exchange parameters determined for individual residues and clustered groups of residues. The different sensitivity of the two nuclei to changes in backbone torsional angles, ring currents, and hydrogen bonding effects provides important insights into the nature of the structural changes that take place during the exchange process. We observe clear evidence of direct and indirect hydrogen bond effects for the (15)N and (1)H chemical shift changes in the active-site, modulation of ring current shielding in the CD-loop and backbone torsional changes in a cluster of residues associated with the C-terminus. This work demonstrates the power of combined (1)H and (15)N probes for the study of backbone dynamics on the micro-millisecond timescale though the analysis of chemical shift changes. PMID:26426424

  2. The T2K fine-grained detectors

    NASA Astrophysics Data System (ADS)

    Amaudruz, P.-A.; Barbi, M.; Bishop, D.; Braam, N.; Brook-Roberge, D. G.; Giffin, S.; Gomi, S.; Gumplinger, P.; Hamano, K.; Hastings, N. C.; Hastings, S.; Helmer, R. L.; Henderson, R.; Ieki, K.; Jamieson, B.; Kato, I.; Khan, N.; Kim, J.; Kirby, B.; Kitching, P.; Konaka, A.; Lenckowski, M.; Licciardi, C.; Lindner, T.; Mahn, K.; Mathie, E. L.; Metelko, C.; Miller, C. A.; Minamino, A.; Mizouchi, K.; Nakaya, T.; Nitta, K.; Ohlmann, C.; Olchanski, K.; Oser, S. M.; Otani, M.; Poffenberger, P.; Poutissou, R.; Poutissou, J.-M.; Qian, W.; Retiere, F.; Tacik, R.; Tanaka, H. A.; Vincent, P.; Wilking, M.; Yen, S.; Yokoyama, M.

    2012-12-01

    T2K is a long-baseline neutrino oscillation experiment searching for νe appearance in a νμ beam. The beam is produced at the J-PARC accelerator complex in Tokai, Japan, and the neutrinos are detected by the Super-Kamiokande detector located 295 km away in Kamioka. A suite of near detectors (ND280) located 280 m downstream of the production target is used to characterize the components of the beam before they have had a chance to oscillate and to better understand various neutrino interactions on several nuclei. This paper describes the design and construction of two massive fine-grained detectors (FGDs) that serve as active targets in the ND280 tracker. One FGD is composed solely of scintillator bars while the other is partly scintillator and partly water. Each element of the FGDs is described, including the wavelength shifting fiber and Multi-Pixel Photon Counter used to collect the light signals, the readout electronics, and the calibration system. Initial tests and in situ results of the FGDs' performance are also presented.

  3. Fast and accurate water content and T2* mapping in brain tumours localised with FET-PET

    NASA Astrophysics Data System (ADS)

    Oros-Peusquens, A.-M.; Keil, F.; Langen, K. J.; Herzog, H.; Stoffels, G.; Weiss, C.; Shah, N. J.

    2014-01-01

    The availability of combined MR-PET scanners opens new opportunities for the characterisation of tumour environment. In this study, water content and relaxation properties of glioblastoma were investigated in five patients using advanced MRI. The region containing metabolically active tumour tissue was defined by simultaneously measured FET-PET uptake. The mean value of water content in tumour tissue - obtained noninvasively with high precision and accuracy for the first time - amounted to 84.5%, similar to the value for normal grey matter. Constancy of water content contrasted with a large variability of T2* values in tumour tissue, qualitatively related to the magnetic inhomogeneity of tissue created by blood vessels and/or microbleeds. The quantitative MRI protocol takes 71/2 > min of measurement time and is proposed for extended clinical use.

  4. Hysteresis in the tearing mode locking/unlocking due to resonant magnetic perturbations in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Fridström, R.; Frassinetti, L.; Brunsell, P. R.

    2015-10-01

    The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)

  5. 1H NMR metabolomics study of age profiling in children

    PubMed Central

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Hainline, Bryan E.; Shanaiah, Narasimhamurthy; Asiago, Vincent; Nagana Gowda, G. A.; Raftery, Daniel

    2014-01-01

    Metabolic profiling of urine provides a fingerprint of personalized endogenous metabolite markers that correlate to a number of factors such as gender, disease, diet, toxicity, medication, and age. It is important to study these factors individually, if possible to unravel their unique contributions. In this study, age-related metabolic changes in children of age 12 years and below were analyzed by 1H NMR spectroscopy of urine. The effect of age on the urinary metabolite profile was observed as a distinct age-dependent clustering even from the unsupervised principal component analysis. Further analysis, using partial least squares with orthogonal signal correction regression with respect to age, resulted in the identification of an age-related metabolic profile. Metabolites that correlated with age included creatinine, creatine, glycine, betaine/TMAO, citrate, succinate, and acetone. Although creatinine increased with age, all the other metabolites decreased. These results may be potentially useful in assessing the biological age (as opposed to chronological) of young humans as well as in providing a deeper understanding of the confounding factors in the application of metabolomics. PMID:19441074

  6. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  7. The Conformations and Structures of 1H-NONAFLUOROBUTANE

    NASA Astrophysics Data System (ADS)

    Fournier, Joseph A.; Bohn, Robert K.; Montgomery, John A.; , Jr.

    2012-06-01

    The all trans conformers of perfluorocarbons, unlike hydrocarbons, are helical with C-C-C-C dihedral angles about 1640. Fluorocarbons with H substitution can replace chlorofluorocarbons as propellants and compressor fluids without the disadvantage of causing ozone depletion in the upper atmosphere. 1H-perfluorobutane, CHF_2CF_2CF_2CF_3, has been studied by pulsed-jet Fourier transform microwave spectroscopy. The spectrum is very rich. Quantum chemical calculations identify five stable conformers with relative energies up to 1.1 kcal/mol. Thus far three conformers have been characterized and many lines remain unassigned. The assigned species have CCCCanti/CCCH gauche as well as the anti/anti and gauche/anti forms. Rotational constant values are 1428.9501(2) MHz, 593.323877(6) MHz, and 546.43578(6) MHz for the anti/gauche species, 1323.664(3) MHz, 617.6051(5) MHz for the ant/anti species, and 1066.9384(4) MHz, 768.4736(4) MHz, and 671.3145(4) MHz for the gauche/anti form.

  8. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  9. 1H NMR Metabolomics Analysis of Glioblastoma Subtypes

    PubMed Central

    Cuperlovic-Culf, Miroslava; Ferguson, Dean; Culf, Adrian; Morin, Pier; Touaibia, Mohamed

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma, characterized by unpredictable clinical behaviors that suggest distinct molecular subtypes. With the tumor metabolic phenotype being one of the hallmarks of cancer, we have set upon to investigate whether GBMs show differences in their metabolic profiles. 1H NMR analysis was performed on metabolite extracts from a selection of nine glioblastoma cell lines. Analysis was performed directly on spectral data and on relative concentrations of metabolites obtained from spectra using a multivariate regression method developed in this work. Both qualitative and quantitative sample clustering have shown that cell lines can be divided into four groups for which the most significantly different metabolites have been determined. Analysis shows that some of the major cancer metabolic markers (such as choline, lactate, and glutamine) have significantly dissimilar concentrations in different GBM groups. The obtained lists of metabolic markers for subgroups were correlated with gene expression data for the same cell lines. Metabolic analysis generally agrees with gene expression measurements, and in several cases, we have shown in detail how the metabolic results can be correlated with the analysis of gene expression. Combined gene expression and metabolomics analysis have shown differential expression of transporters of metabolic markers in these cells as well as some of the major metabolic pathways leading to accumulation of metabolites. Obtained lists of marker metabolites can be leveraged for subtype determination in glioblastomas. PMID:22528487

  10. (39) K and (23) Na relaxation times and MRI of rat head at 21.1 T.

    PubMed

    Nagel, Armin M; Umathum, Reiner; Rösler, Manuela B; Ladd, Mark E; Litvak, Ilya; Gor'kov, Peter L; Brey, William W; Schepkin, Victor D

    2016-06-01

    At ultrahigh magnetic field strengths (B0  ≥ 7.0 T), potassium ((39) K) MRI might evolve into an interesting tool for biomedical research. However, (39) K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of (39) K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared (39) K and sodium ((23) Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. (39) K relaxation times were markedly shorter than those of (23) Na. Compared with the lower field strength, (39) K relaxation times were up to 1.9- (T1 ), 1.4- (T2S ) and 1.9-fold (T2L ) longer at 21.1 T. The increase in the (23) Na relaxation times was less pronounced (up to 1.2-fold). Mono-exponential fits of the (39) K longitudinal relaxation time at 21.1 T revealed T1  = 14.2 ± 0.1 ms for the healthy rat head. The (39) K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S ) and long (T2L ) components, respectively. (23) Na relaxation times were markedly longer (T1  = 41.6 ± 0.4 ms; T2S  = 4.9 ± 0.2 ms; T2L  = 33.2 ± 0.2 ms). (39) K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm(3) within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for (23) Na and (39) K MRI at ultrahigh magnetic field strength. Our results demonstrate that (39) K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27061712

  11. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  12. T1, T2, and relative proton density at 0. 35 T for spleen, liver, adipose tissue, and vertebral body: normal values

    SciTech Connect

    Nyman, R.; Ericsson, A.; Hemmingsson, A.; Jung, B.; Sperber, G.; Thuomas, K.A.

    1986-12-01

    An MRI installation (Magnetom, Siemens, software version B1 of NUMARIS) working at 0.35 T was used to estimate T1, T2, and relative proton density in the spleen, liver, adipose tissue, and vertebral body in 14 healthy volunteers. Two double-echo sequences were applied for all subjects: TR = 500 ms, TE1 = 35 and TE2 = 70 ms; and TR = 1600 ms, TE1 = 35 and TE2 = 70 ms. The images were sampled in regions of interest and appropriate relaxation expressions fitted to the ROI data yielding relaxation parameters and relative proton densities. Relaxation expressions, included in standard software (Siemens), were compared to more elaborate functions, developed in parallel to this study. The latter were found more appropriate, especially for high T1 values, and gave the following mean values for the four tissues (estimated uncertainty of mean in parentheses) T1 (ms) 915(36), 428(5), 261(7), and 501(11); T2 (ms) 79.7(8.8), 51.0(0.2), 59.8(1.0), and 64.7(0.8); and corresponding relative proton density (rho, arbitrary units) 2088(136), 2182(10), 2915(49), and 2136(21). The uncertainty in the values was estimated in the fitting procedure and does not include systematic errors. The relative noise in the ROIs was about 9% and the reproducibility of the ROI mean values about 8%.

  13. Fast Scanning Calorimetry study of non-equilibrium relaxation in 2-Ethyl-1-Hexanol

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; Pane, Candace

    2012-02-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick ultraviscous of 2-Ethyl-1-Hexanol (2E1H) films under high vacuum conditions. Rapid heating of 2E1H samples prepared at temperatures above approximately 145 K (standard glass transition temperature of 2E1H, Tgs), resulted in well manifested dynamic glass transitions at temperatures tens of degrees higher than Tgs. Furthermore, strong and complex dependence of dynamic glass transition temperature on the sample's initial state, i.e., the starting temperature of FSC scan was also observed. We discuss implications of these results for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids.

  14. In vitro metabolism of t-2 mycotoxin 1,2. Interim report

    SciTech Connect

    Thompson, W.L.; Pace, J.G.; O'Brien, J.C.

    1986-11-10

    In vitro metabolism of T-2 mycotoxin (T-2) was studied in Vero cells, rat spleen lymphocytes, chicken embryo heart cells, rat small intestinal segments, and rat liver hepatocytes. The method used was thin-layer chromatography (TLC) of (3H)T-2 and its metabolic products, followed by radioactive scanning of the plates. Vero cells, lymphocytes, and heart cells metabolized 5 to 35% of the T-2 to HT-2 mycotoxin (HT-2) after 24-hr exposure. No other metabolites were detected with these three cell systems. Rat intestinal segments, everted onto pipets, converted T-2 into three metabolites migrating in the range between T-2 tetraol and HT-2 on the TLC plates. Hepatocytes metabolized T-2 most rapidly, as indicated by complete disappearance of the parent compound within 4 hr. In addition to the T-2 peak, four predominant peaks appeared on the plates, one of them, increasing with time at the origin, was predominantly composed of glucuronide conjugates.

  15. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  16. Simulation of DNA Supercoil Relaxation.

    PubMed

    Ivenso, Ikenna D; Lillian, Todd D

    2016-05-24

    Several recent single-molecule experiments observe the response of supercoiled DNA to nicking endonucleases and topoisomerases. Typically in these experiments, indirect measurements of supercoil relaxation are obtained by observing the motion of a large micron-sized bead. The bead, which also serves to manipulate DNA, experiences significant drag and thereby obscures supercoil dynamics. Here we employ our discrete wormlike chain model to bypass experimental limitations and simulate the dynamic response of supercoiled DNA to a single strand nick. From our simulations, we make three major observations. First, extension is a poor dynamic measure of supercoil relaxation; in fact, the linking number relaxes so fast that it cannot have much impact on extension. Second, the rate of linking number relaxation depends upon its initial partitioning into twist and writhe as determined by tension. Third, the extensional response strongly depends upon the initial position of plectonemes. PMID:27224483

  17. Command Center Training Tool (C2T2)

    NASA Technical Reports Server (NTRS)

    Jones, Phillip; Drucker, Nich; Mathews, Reejo; Stanton, Laura; Merkle, Ed

    2012-01-01

    This abstract presents the training approach taken to create a management-centered, experiential learning solution for the Virginia Port Authority's Port Command Center. The resultant tool, called the Command Center Training Tool (C2T2), follows a holistic approach integrated across the training management cycle and within a single environment. The approach allows a single training manager to progress from training design through execution and AAR. The approach starts with modeling the training organization, identifying the organizational elements and their individual and collective performance requirements, including organizational-specific performance scoring ontologies. Next, the developer specifies conditions, the problems, and constructs that compose exercises and drive experiential learning. These conditions are defined by incidents, which denote a single, multi-media datum, and scenarios, which are stories told by incidents. To these layered, modular components, previously developed meta-data is attached, including associated performance requirements. The components are then stored in a searchable library An event developer can create a training event by searching the library based on metadata and then selecting and loading the resultant modular pieces. This loading process brings into the training event all the previously associated task and teamwork material as well as AAR preparation materials. The approach includes tools within an integrated management environment that places these materials at the fingertips of the event facilitator such that, in real time, the facilitator can track training audience performance and resultantly modify the training event. The approach also supports the concentrated knowledge management requirements for rapid preparation of an extensive AAR. This approach supports the integrated training cycle and allows a management-based perspective and advanced tools, through which a complex, thorough training event can be developed.

  18. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review focuses on the toxicity and metabolism of T-2 toxin and the analytical methods used for the determination of T-2 toxin. Among the naturally occurring trichothecenes in food and feed, T-2 toxin is a cytotoxic fungal secondary metabolite produced by various species of Fusarium. Following...

  19. T2D@ZJU: a knowledgebase integrating heterogeneous connections associated with type 2 diabetes mellitus.

    PubMed

    Yang, Zhenzhong; Yang, Jihong; Liu, Wei; Wu, Leihong; Xing, Li; Wang, Yi; Fan, Xiaohui; Cheng, Yiyu

    2013-01-01

    Type 2 diabetes mellitus (T2D), affecting >90% of the diabetic patients, is one of the major threats to human health. A comprehensive understanding of the mechanisms of T2D at molecular level is essential to facilitate the related translational research. Here, we introduce a comprehensive and up-to-date knowledgebase for T2D, i.e. T2D@ZJU. T2D@ZJU contains three levels of heterogeneous connections associated with T2D, which is retrieved from pathway databases, protein-protein interaction databases and literature, respectively. In current release, T2D@ZJU contains 1078 T2D related entities such as proteins, protein complexes, drugs and others together with their corresponding relationships, which include 3069 manually curated connections, 14,893 protein-protein interactions and 26,716 relationships identified by text-mining technology. Moreover, T2D@ZJU provides a user-friendly web interface for users to browse and search data. A Cytoscape Web-based interactive network browser is available to visualize the corresponding network relationships between T2D-related entities. The functionality of T2D@ZJU is shown by means of several case studies. Database URL: http://tcm.zju.edu.cn/t2d. PMID:23846596

  20. Anomericity of T-2 Toxin-glucoside: Masked Mycotoxin in Cereal Crops

    PubMed Central

    2015-01-01

    T-2 toxin is a trichothecene mycotoxin produced when Fusarium fungi infect grains, especially oats and wheat. Ingestion of T-2 toxin contaminated grain can cause diarrhea, hemorrhaging, and feed refusal in livestock. Cereal crops infected with mycotoxin-producing fungi form toxin glycosides, sometimes called masked mycotoxins, which are a potential food safety concern because they are not detectable by standard approaches and may be converted back to the parent toxin during digestion or food processing. The work reported here addresses four aspects of T-2 toxin-glucosides: phytotoxicity, stability after ingestion, antibody detection, and the anomericity of the naturally occurring T-2 toxin-glucoside found in cereal plants. T-2 toxin-β-glucoside was chemically synthesized and compared to T-2 toxin-α-glucoside prepared with Blastobotrys muscicola cultures and the T-2 toxin-glucoside found in naturally contaminated oats and wheat. The anomeric forms were separated chromatographically and differ in both NMR and mass spectrometry. Both anomers were significantly degraded to T-2 toxin and HT-2 toxin under conditions that mimic human digestion, but with different kinetics and metabolic end products. The naturally occurring T-2 toxin-glucoside from plants was found to be identical to T-2 toxin-α-glucoside prepared with B. muscicola. An antibody test for the detection of T-2 toxin was not effective for the detection of T-2 toxin-α-glucoside. This anomer was produced in sufficient quantity to assess its animal toxicity. PMID:25520274

  1. Relaxation of the resistive superconducting state in boron-doped diamond films

    NASA Astrophysics Data System (ADS)

    Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, Th.; Bustarret, E.

    2016-02-01

    We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5 ×1021cm-3 and a critical temperature of about 2 K . By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T-2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.

  2. A note on four-particle form factors of operators {T}_{2n}{T}_{-2n} in the sinh-Gordon model

    NASA Astrophysics Data System (ADS)

    Lashkevich, Michael; Pugai, Yaroslav

    2016-07-01

    The diagonal matrix elements < {θ }1,{θ }2| {T}2n{T}-2n| {θ }1,{θ }2> between two-particle states in the sinh-Gordon model are computed analytically for all integers n\\gt 0. This confirms the proposal [1] by Smirnov and Zamolodchikov for these matrix elements and demonstrates the effectiveness of the algebraic approach to form factors.

  3. Dynamics of ferroelectric bis(imidazolium) pentachloroantimonate(III) by means of nuclear magnetic resonance 1H relaxometry and dielectric spectroscopy.

    PubMed

    Piecha-Bisiorek, A; Jakubas, R; Medycki, W; Florek-Wojciechowska, M; Wojciechowski, M; Kruk, D

    2014-05-22

    Some of haloantimonates(III) and halobismuthates(III) are ferroelectric. Bis(imidazolium) pentachloroantimonate(III), (C3N2H5)2SbCl5 (abbreviation: ICA) is the first example of such compounds with a one-dimensional anionic chain which exhibits ferroelectric properties. The relation between the ionic dynamics and network structure and the ferroelectric features is not clear. Here Nuclear Magnetic Resonance (NMR) (1)H spin-lattice relaxation experiments at 25 MHz are reported for ICA in the temperature range of 80 K-360 K, covering ferroelectric-paraelectric and structural phase transitions of the compound occurring at 180 and 342 K, respectively. The relaxation process is biexponential in the whole temperature range indicating two dynamically nonequivalent types of imidazolium cations. Temperature dependences of both relaxation contributions allow for identifying three motional processes. Two of them are cation-specific - i.e. they are attributed to the two types of imidazolium cations, respectively. The third process involves both types of cations, and it is characterized by much lower activation energy. Moreover, the relaxation data (combined with (1)H second moment measurements) show that the ferroelectric-paraelectric phase transition mechanism is governed, to a large extent, by the anionic network arrangement. The NMR studies are complemented by dielectric spectroscopy experiments performed in the vicinity of the Curie temperature, TC = 180 K, to get insight into the mechanism of the ferroelectric-paraelectric phase transition. The dielectric dispersion data show critical slowing down of the macroscopic relaxation time, τ, in ICA when approaching TC from the paraelectric side, indicating an order-disorder type of ferroelectrics. PMID:24804840

  4. Thermotropic ionic liquid crystals. II. 1H and 23Na NMR study of the smectic mesophase of molten sodium n-butyrate and sodium isovalerate

    NASA Astrophysics Data System (ADS)

    Bonekamp, J. E.; Eguchi, T.; Plesko, S.; Jonas, J.

    1983-08-01

    The 1H and 23Na NMR studies of smectic ionic mesophases of molten sodium n-butyrate and sodium isovalerate are reported over the temperature range of the stability of the liquid crystalline phases. The 1H spin-lattice relaxation times T1 at ν0=9.2, 24.3, and 60 MHz for the anions of both the systems are interpreted in terms of diffusion intermolecular relaxation mechanism. The predicted anion diffusion coefficients are in agreement with those measured directly by spin-echo technique and indicate that the anion diffuses rapidly. In contrast to the T1 relaxation mechanism the results obtained for the proton relaxation times in the rotating coordinate frame T1ρ indicate that the order-fluctuation relaxation mechanism determines the frequency dispersion of T1ρ. The analysis of the T1ρ data provides an approximate measure of the order parameter S as a function of temperature. Fourier transform spectra of the 23Na transitions show that the electric field gradient (EFG) at the Na+ ion is nonaveraged and of such a strength as to produce a second order quadrupole effect in the spectra of the central transition. From the first-order splitting, the quadrupole coupling constant (QCC) is obtained as a function of temperature. The gradual temperature change of QCC demonstrates that only a single liquid crystalline phase exists over the temperature interval of the stability of the smectic mesophase. Using approximate analysis the correlation time τc for the EFG fluctuation is obtained from the 23Na T1 data for the melts of both sodium n-butyrate and sodium isovalerate.

  5. Determination of blood circulation times of superparamagnetic iron oxide nanoparticles by T2* relaxometry using ultrashort echo time (UTE) MRI.

    PubMed

    Scharlach, Constantin; Warmuth, Carsten; Schellenberger, Eyk

    2015-11-01

    Blood circulation is an important determinant of the biodistribution of superparamagnetic iron oxide nanoparticles. Here we present a magnetic resonance imaging (MRI) technique based on the use of ultrafast echo times (UTE) for the noninvasive determination of blood half-lives at high particle concentrations, when conventional pulse sequences fail to produce a useful MR signal. Four differently coated iron oxide nanoparticles were administered intravenously at a dose of 500 μmol Fe/kg bodyweight and UTE images of C57BL/6 mice were acquired on a 1-T ICON scanner (Bruker). T2* relaxometry was done by acquiring UTE images with echo times of 0.1, 0.8 and 1.6 ms. Blood circulation time was then determined by fitting an exponential curve to the time course of the measured relaxation rates. Circulation time was shortest for particles coated with malic acid (t1/2=23 min) and longest for particles coated with tartaric acid (t1/2=63 min). UTE-based T2* relaxometry allows noninvasive determination of blood circulation time and is especially useful when high particle concentrations are present. PMID:26119420

  6. Aggregation in five-coordinate high-spin natural hemins: Determination of solution structure by sup 1 H NMR

    SciTech Connect

    Mazumdar, S.; Mitra, S. )

    1990-01-25

    {sup 1}H NMR measurements (at 500 MHz) of nuclear spin-spin relaxation time T{sub 2} (from NMR line width) at different temperatures are reported for aggregates of several five-coordinate high-spin iron(III) complexes of proto-, deutero-, and coproporphyrins in solution and are utilized to determine their solution structure. Extensive aggregation of these complexes in solution is observed, and the dominant form of the aggregates is shown to be dimers. The degree of aggregation for these iron(III) porphyrins follows the order proto- >> deutero- > copro-. The line width of the heme methyl resonances was analyzed by using a nonlinear least-squares fit program working in finite difference algorithm. The values of T{sub 2} were used to determine the structural details of the dimer.

  7. 1H-MR imaging of the lungs at 3.0 T

    PubMed Central

    Obruchkov, Sergei I.

    2016-01-01

    Background One disadvantage of magnetic resonance imaging (MRI) is the inability to adequately image the lungs. Recent advances in hyperpolarized gas technology [e.g., helium-3 (3He) and xenon-129 (129Xe)] have changed this. However, the required technology is expensive and often needing extra physics or engineering staff. Hence there is considerable interest in developing 1H (proton)-based MRI approaches that can be readily implemented on standard clinical systems. Thus, the purpose of this work was to compare a newly developed free breathing proton-based MR lung imaging method to that of a standard gadolinium (Gd) based perfusion approach. Methods Healthy volunteers [10] were scanned using a 3-T MRI with 8 parallel receivers, and a cardiac gated fast spin echo (FSE) sequence. Acquisition was cardiac triggered, with different time delays incremented to cover the entire cardiac cycle. Image k-space was filled rectilinearly. But to reduce motion artefacts k-space was retrospectively sorted using the minimal variance algorithm (MVA), based on physiologic data recorded from both the respiratory bellows and electrocardiogram (ECG). Resorted and reconstructed FSE images were compared to contrast enhanced lung images, obtained following intravenous injection of Gd-DTPA-BMA. Results Biphasic variation in FSE lung signal intensity was observed across the cardiac cycle with a maximal signal change following rapid cardiac ejection (between S and T waves), and following rapid isovolumetric relaxation. A difference image between systolic and diastolic states in the cardiac cycle resulted in images with improved lung contrast to noise ratio (CNR). FSE image intensity was uniform over lung parenchyma while Gd-based enhancement of spoiled gradient recalled echo (SPGR) images showed gravitational dependence. Conclusions Here we show how 1H-MR images of lung can be obtained during free breathing. The image contrast obtained during this approach is likely the result of flow and

  8. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging.

    PubMed

    Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo

    2016-08-01

    Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. PMID:27110910

  9. MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy

    PubMed Central

    Nakamura, E.; Hirose, J.; Okamoto, N.; Yamabe, S.; Mizuta, H.

    2016-01-01

    Objectives The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Methods Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison. Results The cartilage-like repair tissue appeared on the cartilage surface of the medial compartment post-operatively, and the cartilage thickness showed a significant increase between the pre-operative and one-year post-operative time points (MFC; p = 0.003, MTP; p < 0.001). The T1ρ values of the cartilage-like repair tissue showed no difference over time, however, the T2 values showed a significant decrease between the pre-operative and one-year post-operative time points (MFC; p = 0.004, MTP; p = 0.040). Conclusion This study clarified that the fibrocartilage-like repair tissue appeared on the articular surface of the medial compartment after HCO as evidenced by MRI T1ρ and T2 mapping. Cite this article: H. Nishioka, E. Nakamura, J. Hirose, N. Okamoto, S. Yamabe, H. Mizuta. MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy. Bone Joint Res 2016;5:294–300. DOI: 10.1302/2046-3758.57.BJR-2016-0057.R1. PMID:27421285

  10. Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.

    PubMed

    Shushakov, O A

    1996-01-01

    A surface NMR investigation of groundwater in the geomagnetic field is under study. To detect the surface NMR a wire loop with a diameter of about 100 m, being an antenna for both an exciting field source and the NMR signal receiver, is laid out on the ground. A sinusoidal current pulse with a rectangular envelope is passed through the loop to excite the NMR signal. The carrier frequency of the oscillating current in this pulse is equal to the Larmor frequency of protons in the Earth's magnetic field. The current amplitude is changed up to 200 amps and the pulse duration is fixed and is equal to 40 ms. The exciting pulse is followed by an induction emf signal caused by the Larmor nuclear precession in geomagnetic field. The relaxation times T1, T2, and T2* were measured by the surface NMR for both groundwater in medium to coarse-grained sand at borehole and for bulk water under the ice surface of frozen lake. To determine T1, a longitudinal interference in experiments with repeated pulses was measured. A sequence with equal period between equal excitation pulses was used. The relaxation times T1, T2, measured for bulk water under the ice of the Ob reservoir were 1.0 s and 0.7 s, respectively. To estimate an influence of dissolved oxygen T1 of the same water at the same temperature was measured by lab NMR with and without pumping of oxygen. The relaxation time T1 measured for water in the medium to coarse-grained sand is 0.65 s. The relaxation time T2 estimated by spin echo sequence is found to be equal to 0.15 s. The relaxation time T2* is found to be about 80 ms. This result contradicts published earlier phenomenological correlation between relaxation time T2* and grain size of water-bearing rock. This could be as a result of unsound approach based on grain size or influence of paramagnetic impurities. PMID:8970122

  11. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements

    NASA Astrophysics Data System (ADS)

    Kausik, Ravinath; Hürlimann, Martin D.

    2016-09-01

    The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2 DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.

  12. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements

    NASA Astrophysics Data System (ADS)

    Kausik, Ravinath; Hürlimann, Martin D.

    2016-09-01

    The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.

  13. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements.

    PubMed

    Kausik, Ravinath; Hürlimann, Martin D

    2016-09-01

    The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff, that scales like T2,cutoff∝g(-2/3)D(-1/3). For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1/T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1, for high enough gradients (i.e. when γ(2)g(2)DT2(3)>10(2)), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1/T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2. In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids. PMID:27389638

  14. Cross-Relaxation Imaging of Human Patellar Cartilage In-Vivo at 3.0T

    PubMed Central

    Sritanyaratana, Nade; Samsonov, Alexey; Mossahebi, Pouria; Wilson, John J.; Block, Walter F.; Kijowski, Richard

    2014-01-01

    Objective To compare quantitative magnetization transfer (qMT) parameters of patellar cartilage measured using cross relaxation imaging (CRI) in asymptomatic volunteers and patients with osteoarthritis. Design The study was performed with Institutional Review Board approval and with all subjects signing informed consent. CRI of the knee joint was performed at 3.0T on 20 asymptomatic volunteers and 11 patients with osteoarthritis. The fraction of macromolecular bound protons (f), the exchange rate constant between macromolecular bound protons and free water protons (k), and the T2 relaxation time of macromolecular bound protons (T2B) of patellar cartilage were measured. Mann-Whitney-Wilcoxon rank-sum tests were used to compare qMT parameters between asymptomatic volunteers and patients with osteoarthritis. Results Average f, k, and T2B of patellar cartilage was 12.46%, 7.22 s−1, and 6.49 μs respectively for asymptomatic volunteers and 12.80%, 6.13 s−1, and 6.80 μs respectively for patients with osteoarthritis. There were statistically significant differences between groups of subjects for k (p<0.01) and T2B (p<0.0001) but not f (p=0.38) of patellar cartilage. Conclusion Patients with osteoarthritis had significantly lower k and significantly higher T2B of patellar cartilage than asymptomatic volunteers which suggests that qMT parameters can detect changes in the macromolecular matrix of degenerative cartilage. Key Words: Cartilage; MRI; Osteoarthritis; Magnetization Transfer PMID:25278066

  15. Serial MR imaging and 1H-MR spectroscopy in monozygotic twins with Tay-Sachs disease.

    PubMed

    Imamura, A; Miyajima, H; Ito, R; Orii, K O

    2008-10-01

    Four-year-old monozygotic female twins with early onset Tay-Sachs disease are described. The sisters showed similar slowly progressive clinical symptoms and deterioration, however the younger sister also demonstrated intractable myoclonus in the right leg. The serial MR images and (1)H-MR spectroscopy of the brain were obtained in both twins. MR images showed high intensity on T (2)-weighted image in the bilateral white matter, however there were no signal changes in the basal ganglia and thalamus during any of the phases. The ratio of N-acetylaspartate (NAA)/creatine (Cr) was decreased in the both white matter lesions and the corpus striatum, and that of myoinositol (mI)/Cr was increased in the damaged white matter on MR spectroscopy. The elevation of the lactate peak was clearly demonstrated in the left basal ganglia of the younger sister; however it was not shown in cerebral lesions of the elder sister. Changes in metabolites on MR spectroscopy were closely linked to the respective clinical features of each twin. Follow-up examination by (1)H-MR spectroscopy is useful for the evaluation of neuronal changes in children with Tay-Sachs disease. PMID:19294598

  16. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  17. Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study.

    PubMed

    Hattingen, Elke; Jurcoane, Alina; Bähr, Oliver; Rieger, Johannes; Magerkurth, Jörg; Anti, Sandra; Steinbach, Joachim P; Pilatus, Ulrich

    2011-12-01

    Bevacizumab shows unprecedented rates of response in recurrent glioblastomas (GBM), but the detailed mechanisms are still unclear. We employed in vivo magnetic resonance spectroscopic imaging (MRSI) and quantitative magnetic resonance imaging to investigate whether bevacizumab alters oxygen and energy metabolism and whether this effect has antitumoral activity in recurrent GBM. (31)P and (1)H MRSI, apparent diffusion coefficient (ADC), and high-resolution T2 and T2' mapping (indirect marker of oxygen extraction) were investigated in 16 patients with recurrent GBM at 3 Tesla before and 1.5-2 months after initiation of therapy with bevacizumab. Changes of metabolite concentrations and of the quantitative values in the tumor and normal appearing brain tissue were calculated. The Wilcoxon signed-ranks test was used to evaluate differences for tumor/edema versus control as well as changes before versus after commencement of therapy. Survival analyses were performed for significant parameters. Tumor T2', pH, ADC, and T2 decreased significantly in patients responding to bevacizumab therapy (n = 10). Patients with at least 25% T2' decrease during treatment showed longer progression-free and overall survival durations. Levels of high-energy metabolites were lower at baseline; these persisted under therapy. Glycerophosphoethanolamine as catabolic phospholipid metabolite increased in responders. The MRSI data support the hypothesis that bevacizumab induces relative tumor hypoxia (T2' decrease) and affects energy homeostasis in recurrent GBM, suggesting that bevacizumab impairs vascular function. The antiangiogenic effect of bevacizumab is predictive of better outcome and seems to induce antitumoral activity in the responding GBMs. PMID:21890539

  18. In Vivo Assessment of Neurodegeneration in Niemann-Pick Type C Mice by Quantitative T2 Mapping and Diffusion Tensor Imaging

    PubMed Central

    Totenhagen, John W.; Lope-Piedrafita, Silvia; Borbon, Ivan A.; Yoshimaru, Eriko S.; Erickson, Robert P.; Trouard, Theodore P.

    2013-01-01

    Purpose To quantitatively and non-invasively assess neurological disease progression in a mouse model of Niemann-Pick type C (NPC) disease by measuring white matter status with MRI techniques of T2 mapping and Diffusion Tensor Imaging (DTI). Materials and Methods Quantitative T2 and DTI experiments were performed in-vivo in NPC disease model and control mice at three time points to quantify differences and changes in white matter with measurements of T2 relaxation and DTI parameters. Histological staining for myelin content was also performed at two time points to compare with the MRI findings. Results The results of the T2 and DTI measurements show significant differences in white matter areas of the brain in the NPC disease model compared to control mice at several time points, and were seen to change over time in both groups. Conclusions The findings of this study suggest that quantitative MRI measurements may be suitable in-vivo biomarkers of disease status for future studies of NPC disease models. The changes in white matter measurements between time points in both control and NPC disease groups suggest that white matter structures continue to change and develop over time in the NPC model and can be tracked with MRI techniques. PMID:22045516

  19. The uncertainty of predicting intact anterior cruciate ligament degeneration in terms of structural properties using T(2)(*) relaxometry in a human cadaveric model.

    PubMed

    Biercevicz, A M; Akelman, M R; Rubin, L E; Walsh, E G; Merck, D; Fleming, B C

    2015-04-13

    The combination of healing anterior cruciate ligament (ACL) volume and the distributions of T2(*) relaxation times within it have been shown to predict the biomechanical failure properties in a porcine model. This MR-based prediction model has not yet been used to assess ligament degeneration in the aging human knee. Using a set of 15 human cadaveric knees of varying ages, we obtained in situ MR measures of volume and T2(*) of the intact ACL and then related these MR variables to biomechanical outcomes (maximum and yield loads, linear stiffness) obtained via ex vivo failure testing. Using volume in conjunction with the median T2(*) value, the multiple linear regression model did not predict maximum failure load for the intact human ACL; R(2)=0.23, p=0.200. Similar insignificant results were found for yield load and linear stiffness. Naturally restricted distributions of the intact ligament volume and T2(*) (demonstrated by the respective Z-scores) in an older cadaveric population were the likely reason for the insignificant results. These restricted distributions may negatively affect the ability to detect a correlation when one exists. Further research is necessary to understand the relationship of MRI variables and ligament degeneration. While this study failed to find a significant prediction of human biomechanical outcome using these MR variables, with further research, an MR-based approach may offer a tool to longitudinally assess changes in cruciate ligament degradation. PMID:25746575

  20. Understanding the T2 traffic in CMS during Run-1

    NASA Astrophysics Data System (ADS)

    T, Wildish

    2015-12-01

    In the run-up to Run-1 CMS was operating its facilities according to the MONARC model, where data-transfers were strictly hierarchical in nature. Direct transfers between Tier-2 nodes was excluded, being perceived as operationally intensive and risky in an era where the network was expected to be a major source of errors. By the end of Run-1 wide-area networks were more capable and stable than originally anticipated. The original data-placement model was relaxed, and traffic was allowed between Tier-2 nodes. Tier-2 to Tier-2 traffic in 2012 already exceeded the amount of Tier-2 to Tier-1 traffic, so it clearly has the potential to become important in the future. Moreover, while Tier-2 to Tier-1 traffic is mostly upload of Monte Carlo data, the Tier-2 to Tier-2 traffic represents data moved in direct response to requests from the physics analysis community. As such, problems or delays there are more likely to have a direct impact on the user community. Tier-2 to Tier-2 traffic may also traverse parts of the WAN that are at the 'edge' of our network, with limited network capacity or reliability compared to, say, the Tier-0 to Tier-1 traffic which goes the over LHCOPN network. CMS is looking to exploit technologies that allow us to interact with the network fabric so that it can manage our traffic better for us, this we hope to achieve before the end of Run-2. Tier-2 to Tier-2 traffic would be the most interesting use-case for such traffic management, precisely because it is close to the users' analysis and far from the 'core' network infrastructure. As such, a better understanding of our Tier-2 to Tier-2 traffic is important. Knowing the characteristics of our data-flows can help us place our data more intelligently. Knowing how widely the data moves can help us anticipate the requirements for network capacity, and inform the dynamic data placement algorithms we expect to have in place for Run-2. This paper presents an analysis of the CMS Tier-2 traffic during Run 1.

  1. Design of the DRAGET Study: a multicentre controlled diagnostic study to assess the detection of acute rejection in patients with heart transplant by means of T2 quantification with MRI in comparison to myocardial biopsies

    PubMed Central

    Bonnemains, Laurent; Cherifi, Aboubaker; Girerd, Nicolas; Odille, Freddy; Felblinger, Jacques

    2015-01-01

    Introduction Patients with heart transplant are screened for silent graft rejection by recurrent endomyocardial biopsies. MRI can detect the presence of oedema non-invasively by quantitatively measuring changes of the transverse relaxation time T2 in the myocardium. Several monocentric studies have shown that T2 quantification could help detect graft rejection in a less invasive way. DRAGET is a national multicentre diagnostic study designed to prove that T2 quantification by MRI can detect graft rejection. Methods and analysis 190 patients from 10 centres will undergo T2 quantification and endomyocardial biopsy, within 24 h, 4 to 6 times during the first year after transplantation. T2 will be computed by analysing a sequence of 10 images obtained from a short-axis slice. Specific phantoms will be used to calibrate the T2 quantification on each MR scanner to cope with the different equipment (different vendors, magnetic field strength, etc). Specific pads with known T2 will also be used during each examination and provide a quality check to cope with the different experimental conditions (temperature, etc). All MRI and biopsy data will be reinterpreted in our centre and reproducibility will be assessed. The primary outcome will be sensitivity and specificity of MRI. The secondary outcomes will be (1) prognostic values of T2, (2) reproducibility of each techniques, (3) number of adverse events during each procedures and (4) confidence of the physicians in T2. Ethics and dissemination Ethics approval has been obtained. The new MRI method will be disseminated at a national level and its practical usefulness will be assessed in centres not familiar with MRI T2 quantification. The ultimate aim of the DRAGET project is to replace a strategy based solely on biopsy with one based on a first-line MRI (with biopsy only when needed) for a more efficient and less invasive detection of rejection. Trial registration numbers ANSM 2014-A00848-39, NCT02261870. PMID:26515686

  2. The effects of bone on proton NMR relaxation times of surrounding liquids

    NASA Technical Reports Server (NTRS)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  3. Pattern recognition for rapid T2 mapping with Stimulate Echo Compensation

    PubMed Central

    Huang, Chuan; Altbach, Maria I; Fakhri, Georges El

    2014-01-01

    Indirect echoes (such as stimulated echoes) are a source of signal contamination in a multi-echo spin-echo T2 quantification, and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolve extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14 fold. PMID:24853466

  4. Pattern recognition for rapid T2 mapping with stimulated echo compensation.

    PubMed

    Huang, Chuan; Altbach, Maria I; El Fakhri, Georges

    2014-09-01

    Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold. PMID:24853466

  5. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  6. The investigation of placental relaxation and estimation of placental perfusion using echo-planar magnetic resonance imaging.

    PubMed

    Duncan, K R; Gowland, P; Francis, S; Moore, R; Baker, P N; Johnson, I R

    1998-09-01

    Echo-planar imaging (EPI) is a form of magnetic resonance imaging (MRI) which acquires images in milliseconds rather than minutes as with conventional MRI. The images produced using EPI are affected by the physiological environment in which the hydrogen atoms producing the signals are found, a process referred to as relaxation. Also by producing images a matter of milliseconds apart, quantification of perfusion within the tissue being imaged is feasible. The objective of this study was to investigate T1 and T2 relaxation times along with perfusion in placentae from normal pregnancies at different gestations and also to compare these to pregnancies complicated by abnormal placental function. A cross-sectional study of normal and compromised pregnancies from 20 weeks to term and a longitudinal study of normal pregnancy were performed. Placental T1, T2 relaxation times, and perfusion were measured using echo-planar magnetic resonance imaging. Placental T1 and T2 relaxation times decreased in normal pregnancy (P<0.001). Relaxation times in pregnancies associated with placental pathology appeared to be reduced for that gestation although the numbers were too small to allow any statistical validation. No differences in placental perfusion with gestation or between normal and compromised pregnancy were demonstrated using this technique. This is the first demonstration of placental magnetic resonance relaxation and perfusion measurements in normal pregnancy using echo-planar magnetic resonance imaging. In the future it may be possible to identify compromised pregnancies by differences in placental T1 and T2 relaxation times, using this novel non-invasive technique. PMID:9778128

  7. NMR relaxation study of water dynamics in superparamagnetic iron-oxide-loaded vesicles

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Wen; Hsieh, Chu-Jung; Lin, Chao-Min; Hwang, Dennis W.

    2013-02-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been introduced as contrast agents for clinical applications in magnetic resonance imaging. Recently, SPIO has been also used for tracking cells. However, NMR relaxation of water molecules behaves differently in a SPIO solution and SPIO-loaded cells. In this study, we used water-in-oil-in-water double emulsions to mimic cellular environments. The MR relaxation induced by the SPIO-loaded vesicles and SPIO solution indicates that T2* is sensitive to the iron concentration alone, and the behavior was very similar in both SPIO-loaded vesicles and SPIO solution. However, T2 relaxation of water in SPIO-loaded vesicles was faster than that in a SPIO solution. In addition, the contribution of water inside and outside the vesicles was clarified by replacing H2O with D2O, and water inside the vesicles was found to cause a nonlinear iron concentration dependency. The studied dilution revealed that vesicle aggregation undergoes a structural transition upon dilution by a certain amount of water. R2* relaxation is sensitive to this structural change and shows an obvious nonlinear iron concentration dependency when the SPIO loading is sufficiently high. Random walk simulations demonstrated that in the assumed model, the vesicles aggregate structures causing the differences between R2* and R2 relaxation of water in vesicles in the presence of SPIO particles.

  8. Quantification of ethanol methyl 1H magnetic resonance signal intensity following intravenous ethanol administration in primate brain

    PubMed Central

    Flory, Graham S.; O’Malley, Jean; Grant, Kathleen A.; Park, Byung; Kroenke, Christopher D.

    2009-01-01

    In vivo 1H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl 1H MRS signal intensity relates to tolerance to ethanol’s intoxicating effects. More recently, the ethanol 1H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T2 within these environments. The methods presented here extend ethanol MRS techniques to nonhuman primate subjects. Twelve monkeys were administered ethanol while sedated and positioned within a 3T MRI system. Chemical shift imaging (CSI) measurements were performed following intravenous infusion of 1g/kg ethanol. Magnetic resonance imaging (MRI) data were also recorded for each monkey to provide volume fractions of GM, WM, and CSF for each CSI spectrum. To estimate co-variance of ethanol MRS intensity with GM, WM, and CSF volume fractions, the relative contribution of each tissue subtype was determined following corrections for radiofrequency pulse profile non-uniformity, chemical shift artifacts, and differences between the point spread function in the CSI data and the imaging data. The ethanol MRS intensity per unit blood ethanol concentration was found to differ between GM, WM, and CSF. Individual differences in MRS intensity were larger in GM than WM. This methodology demonstrates the feasibility of ethanol MRS experiments and analysis in nonhuman primate subjects, and suggests GM may be a site of significant variation in ethanol MRS intensity between individuals. PMID:20018244

  9. Cardiovascular magnetic resonance T2 mapping can detect myocardial edema in idiopathic dilated cardiomyopathy.

    PubMed

    Nishii, Tatsuya; Kono, Atsushi K; Shigeru, Mayumi; Takamine, Sachiko; Fujiwara, Sei; Kyotani, Katsusuke; Aoyama, Nobukazu; Sugimura, Kazuro

    2014-06-01

    Myocardial edema and inflammation play an important role in dilated cardiomyopathy (DCM). This pathologic condition can be identified noninvasively using cardiovascular magnetic resonance imaging (CMR). The purpose of this study was to determine the effectiveness of T2 values obtained with T2 mapping in the detection of edema in DCM patients, compared with that of conventional T2-weighted imaging (T2WI). CMR was used for 15 normal controls (NML) and 26 DCM patients. The DCM patients were classified as having either mild dysfunction with a left ventricular ejection fraction (EF) >35% or severe dysfunction with an EF ≤35%. Myocardial edema was assessed by both T2 mapping and T2WI. The differences between the T2 values determined from T2 mapping and the T2 ratios that were calculated from the T2WI were compared among the NML, mild DCM, and severe DCM patients. The T2 values for the NML, mild DCM, and severe DCM patients were 51.2 ± 1.6, 61.2 ± 0.37, and 67.4 ± 6.8, respectively (P < 0.05 for each pair), and the corresponding T2 ratios were 1.88 ± 0.09, 2.12 ± 0.37, and 2.04 ± 0.34, respectively (P > 0.05). T2 mapping clearly showed that the myocardial water content was larger in DCM patients than in NML controls and that the myocardial water content increased as the disease progressed. Thus, T2 mapping is a useful technique for the diagnosis and quantitation of diffuse myocardial edema. PMID:24715436

  10. Improved ab initio calculation of surface second-harmonic generation from Si(111)(1 ×1 ):H

    NASA Astrophysics Data System (ADS)

    Anderson, Sean M.; Tancogne-Dejean, Nicolas; Mendoza, Bernardo S.; Véniard, Valérie

    2016-06-01

    We carry out an improved ab initio calculation of surface second-harmonic generation (SSHG) from the Si(111)(1 ×1 ):H surface. This calculation includes three new features in one formulation: (i) the scissors correction, (ii) the contribution of the nonlocal part of the pseudopotentials, and (iii) the inclusion of a cut function to extract the surface response, all within the independent particle approximation. We apply these improvements on the Si(111)(1 ×1 ):H surface and compare with various experimental spectra from several different sources. We also revisit the three-layer model for the SSHG yield and demonstrate that it provides more accurate results over several, more common, two-layer models. We demonstrate the importance of using properly relaxed coordinates for the theoretical calculations. We conclude that this approach to the calculation of the second-harmonic spectra is versatile and accurate within this level of approximation. This well-characterized surface offers an excellent platform for comparison with theory and allows us to offer this study as an efficient benchmark for this type of calculation.

  11. Phase transitions in semidefinite relaxations

    PubMed Central

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-01-01

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  12. Phase transitions in semidefinite relaxations.

    PubMed

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  13. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  14. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  15. 40 CFR 721.10373 - 1H-Imidazole, 1-(1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1H-Imidazole, 1-(1-methylethyl)-. 721... Substances § 721.10373 1H-Imidazole, 1-(1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1H-imidazole, 1-(1-methylethyl)- (PMN...

  16. 1H and 13C Solid-state NMR of Gossypium barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated by 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiments pro...

  17. 1H and 13C Solid-state NMR of G. barbadense (Pima) Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction of water with cellulose and its influence on the nuclear spin dynamics in G. barbadense (Pima) cotton were investigated with 1H and 13C solid-state NMR techniques. 1H spin diffusion results from a Goldman-Shen experiment indicate that the water is multilayered. 1H MAS experiment...

  18. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  19. Global relaxation of superconducting qubits

    SciTech Connect

    Ojanen, T.; Niskanen, A. O.; Nakamura, Y.; Abdumalikov, A. A. Jr.

    2007-09-01

    We consider coupled quantum two-state systems (qubits) exposed to a global relaxation process. The global relaxation refers to the assumption that qubits are coupled to the same quantum bath with approximately equal strengths, appropriate for long-wavelength environmental fluctuations. We show that interactions do not spoil the picture of Dicke's subradiant and super-radiant states where quantum interference effects lead to striking deviations from the independent relaxation picture. Remarkably, the system possess a stable entangled state and a state decaying faster than single qubit excitations. We propose a scheme for how these effects can be experimentally accessed in superconducting flux qubits and, possibly, used in constructing long-lived entangled states.

  20. Shoreline relaxation at pocket beaches

    NASA Astrophysics Data System (ADS)

    Turki, Imen; Medina, Raul; Kakeh, Nabil; González, Mauricio

    2015-09-01

    A new physical concept of relaxation time is introduced in this research as the time required for the beach to dissipate its initial perturbation. This concept is investigated using a simple beach-evolution model of shoreline rotation at pocket beaches, based on the assumption that the instantaneous change of the shoreline plan-view shape depends on the long-term equilibrium plan-view shape. The expression of relaxation time is developed function of the energy conditions and the physical characteristics of the beach; it increases at longer beaches having coarse sediments and experiencing low-energy conditions. The relaxation time, calculated by the developed model, is validated by the shoreline observations extracted from video images at two artificially embayed beaches of Barcelona (NW Mediterranean) suffering from perturbations of sand movement and a nourishment project. This finding is promising to estimate the shoreline response and useful to improve our understanding of the dynamic of pocket beaches and their stability.

  1. Multigrid Methods for Mesh Relaxation

    SciTech Connect

    O'Brien, M J

    2006-06-12

    When generating a mesh for the initial conditions for a computer simulation, you want the mesh to be as smooth as possible. A common practice is to use equipotential mesh relaxation to smooth out a distorted computational mesh. Typically a Laplace-like equation is set up for the mesh coordinates and then one or more Jacobi iterations are performed to relax the mesh. As the zone count gets really large, the Jacobi iteration becomes less and less effective and we are stuck with our original unrelaxed mesh. This type of iteration can only damp high frequency errors and the smooth errors remain. When the zone count is large, almost everything looks smooth so relaxation cannot solve the problem. In this paper we examine a multigrid technique which effectively smooths out the mesh, independent of the number of zones.

  2. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  3. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. PMID:26686485

  4. Proton spin-lattice relaxation in silkworm cocoons: physisorbed water and serine side-chain motions.

    PubMed

    Geppi, Marco; Mollica, Giulia; Borsacchi, Silvia; Cappellozza, Silvia

    2010-03-01

    The molecular dynamic behavior of silkworm cocoons produced by a single Bombyx mori strain was investigated by means of high- and low-resolution solid-state NMR experiments. Cocoons with different moisture content were prepared to study the effects of physisorbed water on their molecular dynamics in the MHz regime, which was probed through the measurement of (1)H T(1) relaxation times at 25 MHz in the 25-95 degrees C temperature range. The water content of the different samples was determined from the analysis of (1)H free-induction decays. In addition to the rotation of methyl groups, mostly from alanine, and to the reorientation of physisorbed water molecules, already identified in previous works as relaxation sinks, the reorientation of serine side-chains was here found to contribute to (1)H T(1) above room temperature. The analysis of the trends of (1)H T(1) versus temperature was carried out in terms of semiempirical models describing the three main motional processes, and indicated that methyl rotation, water reorientation and serine side-chain motions are the most efficient relaxation mechanisms below 0 degrees C, between 0 and 60 degrees C, and above 60 degrees C, respectively. The activation energies were found to decrease passing from serine to water to methyl motions. PMID:20136080

  5. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno

    2016-04-01

    Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.

  6. Acute pancreatitis with gradient echo T2*-weighted magnetic resonance imaging

    PubMed Central

    Tang, Meng Yue; Chen, Tian Wu; Huang, Xiao Hua; Li, Xing Hui; Wang, Si Yue; Liu, Nian

    2016-01-01

    Background To study gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) for normal pancreas and acute pancreatitis (AP). Methods Fifty-one patients without any pancreatic disorders (control group) and 117 patients with AP were recruited. T2* values derived from T2*WI of the pancreas were measured for the two groups. The severity of AP was graded by the magnetic resonance severity index (MRSI) and the Acute Physiology and Chronic Healthy Evaluation II (APACHE II) scoring system. Logistic regression was used to analyze the relationship between the T2* values and AP severity. The usefulness of the T2* value for diagnosing AP and the relationship between the T2* values and the severity of AP were analyzed. Results On GRE-T2*WI, the normal pancreas showed a well-marinated and consistently homogeneous isointensity. Edematous AP, as well as the non-necrotic area in necrotizing AP, showed ill-defined but homogeneous signal intensity. AP with pancreatic hemorrhage showed a decreased T2* value and a signal loss on the signal decay curve. The T2* value of pancreas in the AP group was higher than that of the control group (t=−8.20, P<0.05). The T2* value tended to increase along with the increase in MRSI scores but not with the APACHE II scores (P>0.05). AP was associated with a one standard deviation increment in the T2* value (OR =1.37; 95% CI: 1.216–1.532). Conclusions T2*WI demonstrates a few characteristics of the normal pancreas and AP, which could potentially be helpful for detecting hemorrhage, and contributes to diagnosing AP and its severity. PMID:27190768

  7. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  8. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325829

  9. Region of interest selection of long core plug samples by magnetic resonance imaging: profiling and local T2 measurement

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Petrov, O. V.; Balcom, B. J.; Newling, B.

    2014-03-01

    Magnetic resonance imaging (MRI) is increasingly employed as a core analysis technique by the oil and gas industry. In axial profiling of petroleum reservoir core samples and core plugs, the sample of interest may frequently be much longer than the natural field of view (FOV) defined by the radio frequency (RF) sensor and region of constant magnetic field gradient. Profiling such samples with a low field MRI will result in distorted, non-quantitative axial profiles near the edge of the FOV with data from outside the desired FOV folding back into the image, when the gradient magnetic field homogenity region is shorter than the region of RF excitation. The quality of MRI as a core analysis technique is increased if imaging can be performed on intact samples with the FOV reduced to the region of interest (ROI), either to increase the image resolution or to reduce the total time for imaging. A spatially selective adiabatic inversion pulse is applied in the presence of a slice selective magnetic field gradient to restrict the FOV to an ROI that is a small portion of a long sample. Slice selection is followed by a 1D centric-scan SPRITE measurement to yield an axial fluid density profile of the sample in the ROI. By employing adiabatic pulses, which are immune to RF field non-uniformities, it is possible to restrict the ROI to a region of homogeneous RF excitation, facilitating quantitative imaging. The method does not employ conventional selective excitation, but a subtraction based on images acquired with and without adiabatic inversion slice selection. The adiabatic slice selection lends itself to a selective T2 distribution measurement when a CPMG pulse sequence follows the slice selection. The inversion pulse selects a slice on the order of 1 cm at an arbitrary position. The local T2 distributions measured are of similar quality to bulk CPMG. This method is an alternative to MRI-based techniques for T2 mapping in short relaxation time samples in porous media when T2

  10. Statistical mechanics of violent relaxation

    NASA Technical Reports Server (NTRS)

    Spergel, David N.; Hernquist, Lars

    1992-01-01

    We propose a functional that is extremized through violent relaxation. It is based on the Ansatz that the wave-particle scattering during violent dynamical processes can be approximated as a sequence of discrete scattering events that occur near a particle's perigalacticon. This functional has an extremum whose structure closely resembles that of spheroidal stellar systems such as elliptical galaxies. The results described here, therefore, provide a simple framework for understanding the physical nature of violent relaxation and support the view that galaxies are structured in accord with fundamental statistical principles.

  11. Relaxation dynamics of branched polymers

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnav

    The Rouse model for star polymers was successfully derived by solving the differential equations governing the net force acting on each bead in a star polymer chain. As opposed to a linear polymer, where we have N unique roots for N beads, in the case of star polymers, there are only 2 Na+1 unique roots and all odd unique roots (except the last root corresponding to the branch point) starting with the first root have a multiplicity of f-1. The relaxation time of the pth unique Rouse mode of a star polymer varies as (2Na + 1)2/p2. Since alternate Rouse modes in a star polymer have a multiplicity of f-1, they add to the terminal modulus of the star polymers and the terminal modulus, G(tau) ends up being proportional to f-1 (besides being inversely proportional to N, which is also the case with linear polymers). A self-consistent theory for the relaxation of entangled star polymers was developed based on the work done by Colby and Rubinstein on linear blends. This theory considers the duality of relaxation dynamics (direct stress relaxation and indirect relaxation by release of constraints) and models the relaxation due to constraint release R(t) based on Dean's approach in solving the vibration frequencies of glassy chains with random spring constants. In our case, the mobilities of beads were considered to be random and based on the relative weight of the prefactor of a Maxwell function, a group of which was fitted to the stress relaxation function mu(t) of a star polymer (proposed and derived by Doi). The tube dilation model for star and comb polymers was investigated in detail and predictions compared to rheological data from polypropylene, polybutadiene and polystyrene comb polymers along with PEP star polymers. The relaxation time from the Tube Dilation Model was compared with the classical Tube Model and was shown to have an extra power dependence on the fraction of the comb backbone.

  12. MRI and (1)H MRS findings of hepatobilary changes and cholangiocarcinoma development in hamsters infected with Opisthorchis viverrini and treated with N-nitrosodimethylamine.

    PubMed

    Hanpanich, Petcharakorn; Pinlaor, Somchai; Charoensuk, Lakhanawan; Yongvanit, Puangrat; Chamgramol, Yaovalux; Pairojkul, Chawalit; Mairiang, Eimorn

    2015-11-01

    3 T MRI and (1)H MRS were useful for quantitative investigation of the serial development of hepatobiliary changes in Opisthorchis viverrini infection in hamsters, and the differential diagnosis of cholangiocacinoma (CCA) development from bile duct changes and normal condition is unclear. In this study, we investigated the serial development of hepatobiliary changes and CCAgenesis in O. viverrini-infected and N-nitrosodimethylamine (NDMA) treated hamsters (ON group) using 3 T MRI and (1)H MRS and the results were compared with those either in the O. viverrini-infected group (OV group) and uninfected normal controls. In the ON group, CCAs were first found at 9 weeks post-infection, with sizes of ~2 mm. The typical MR signal characteristics of CCA were hypo- and occasionally isointensity signal on T1-weighted images, and mild-moderate to hyper-intensity signal on T2-weighted images compared to the liver parenchyma. T2-weighted images with fat suppression revealed dilatation of the intra- and extrahepatic bile ducts, and often defined the anatomical level of biliary obstruction, cystic lesions, liver abscesses, and CCA which was starting seen of these noticeable abnormalities at 5 weeks onwards. The results of fibrosis grading using MR images showed a positive correlation (r=0.90, P<0.038 by Spearman's rank correlation test) with those of the histopathological grading. In addition, 3.0 T (1)H MRS showed elevated choline and decreased lipids levels in the liver tissues of the ON group. In conclusion, MRI and (1)H MRS are useful for the quantitative investigation of the serial development of hepatobilary changes and CCA in hamsters, and are potentially useful as early diagnostic tools for CCA. PMID:26117689

  13. Quantitative evaluation of the lactate signal loss and its spatial dependence in press localized (1)H NMR spectroscopy.

    PubMed

    Jung, W I; Bunse, M; Lutz, O

    2001-10-01

    Localized (1)H NMR spectroscopy using the 90 degrees -t(1)-180 degrees -t(1)+t(2)-180 degrees -t(2)-Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t(1) and t(2). The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t(1)=t(2)) at an echo time of 2/J (approximately 290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX(3) spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3,..., we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J. PMID:11567573

  14. Quantitative Evaluation of the Lactate Signal Loss and Its Spatial Dependence in PRESS Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jung, Wulf-Ingo; Bunse, Michael; Lutz, Otto

    2001-10-01

    Localized 1H NMR spectroscopy using the 90°-t1-180°-t1+t2-180°-t2-Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t1 and t2. The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t1=t2) at an echo time of 2/J (≃290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX3 spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3, …, we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.

  15. Deriving blood-oxygen-level-dependent contrast in MRI with T2*-weighted, T2-prepared and phase-cycled SSFP methods: theory and experiment.

    PubMed

    Arumana, Jain Mangalathu; Li, Debiao; Dharmakumar, Rohan

    2008-03-01

    The objectives of this work were: 1) to perform a comparative evaluation of the oxygen-sensitive contrast (OC) derived from the phase-cycled steady-state free precession (SSFP PC) method against T*2-weighted gradient recalled echo (GRE) and T2-prepared (T2-prep) methods with theoretical simulations and imaging studies using an ischemic leg cuff model at 1.5T and 3.0T; and 2) to investigate the dependence of SSFP PC-based OC on imaging parameters. Results showed that the SSFP PC method (repetition time (TR) = 6.3 ms; flip angle (alpha) = 90 degrees ) provides significantly higher OC compared to T2-prep (at both field strengths) and GRE (3.0T) (P < 0.05). The OC of low TR SSFP (TR = 3.5 ms at 1.5T; TR = 4.5 ms at 3.0T; alpha = 90 degrees ) was significantly lower compared to GRE (P < 0.05) at 1.5T and 3.0T and to T2-prep methods at 1.5T (P < 0.05). In summary, the findings from this study are the following: 1) SSFP-based OC is directly dependent on TR and alpha at 1.5T and 3.0T; and 2) OC derived with SSFP PC can be increased above GRE and T2-prep methods with an appropriate choice of imaging parameters. PMID:18306408

  16. Comparative Relaxant Effects of Ataciguat and Zaprinast on Sheep Sphincter of Oddi

    PubMed Central

    Çakmak, Erol; Yönem, Özlem; Saraç, Bülent; Parlak, Mesut; Çelik, Cumali; Ataseven, Hilmi; Bağcivan, İhsan

    2016-01-01

    Background: Relaxing the sphincter of Oddi (SO) is an important process during endoscopic retrograde cholangiopancreatography (ERCP) procedures. This issue suggests that the easier the sphincterotomy and cannulation, the more post-ERCP complications decrease. Aims: To compare the relaxant effects of ataciguat (a novel soluble guanylyl cyclase activator) and zaprinast (an inhibitor of phosphodiesterase 5) on sheep SO in vitro, thus testing whether they can be used during ERCP. Study Design: Animal experimentation. Methods: Sheep SO rings were placed in tissue baths and their isometric tension to ataciguat and zaprinast were tested. We also tested their isometric tension against ataciguat in the presence of 1H-(1,2,4) oxadiazole (4,3-a) quinoxalin-1-one (ODQ) which is a soluble guanylyl cyclase inhibitor. Results: Ataciguat and zaprinast both triggered concentration addicted relaxation on sheep SO rings (p=0.0018, p=0.0025 respectively) but the relaxation of the ataciguat was significantly greater than that of zaprinast at all concentrations (p=0.0024). It was observed that decreased relaxation responses were initiated by ataciguat in the presence of ODQ (p=0.0012). Conclusion: Ataciguat and zaprinast both have relaxing effects on sphincter of Oddi, although that of zaprinast is lower. We believe that ataciguat and zaprinast can be used in ERCP procedures in order to relax the sphincter of Oddi and thus can be used locally in order to decrease complications. PMID:27606143

  17. Characterisation and application of ultra-high spin clusters as magnetic resonance relaxation agents.

    PubMed

    Guthausen, Gisela; Machado, Julyana R; Luy, Burkhard; Baniodeh, Amer; Powell, Annie K; Krämer, Steffen; Ranzinger, Florian; Herrling, Maria P; Lackner, Susanne; Horn, Harald

    2015-03-21

    In Magnetic Resonance Tomography (MRT) image contrast can be improved by adding paramagnetic relaxation agents such as lanthanide ions. Here we report on the use of highly paramagnetic isostructural Fe(III)/4f coordination clusters with a [Fe10Ln10] core to enhance relaxation. Measurements were performed over the range of (1)H Larmor frequencies of 10 MHz to 1.4 GHz in order to determine the relevant parameters for longitudinal and transverse relaxivities. Variation of the lanthanide ion allows differentiation of relaxation contributions from electronic states and molecular dynamics. We find that the transverse relaxivities increase with field, whereas the longitudinal relaxivities depend on the nature of the lanthanide. In addition, the Gd(III) analogue was selected in particular to test the interaction with tissue observed using MRT. Studies on biofilms used in waste water treatment reveal that the behaviour of the high-spin clusters is different from what is observed for common relaxation agents with respect to the penetration into the biofilms. The Fe10Gd10 cluster adheres to the surface of the biofilm better than the commercial agent Gadovist. PMID:25670214

  18. Conformational distribution of baclofen analogues by 1H and 13C NMR analysis and ab initio HF MO STO-3G or STO-3G* calculations

    NASA Astrophysics Data System (ADS)

    Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François

    1993-12-01

    The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.

  19. Identification and apoptotic potential of T-2 toxin metabolites in human cells.

    PubMed

    Weidner, Maria; Welsch, Tanja; Hübner, Florian; Schwerdt, Gerald; Gekle, Michael; Humpf, Hans-Ulrich

    2012-06-01

    The mycotoxin T-2 toxin, produced by various Fusarium species, is a widespread contaminant of grain and grain products. Knowledge about its toxicity and metabolism in the human body is crucial for any risk assessment as T-2 toxin can be detected in processed and unprocessed food samples. Cell culture studies using cells of human origin represent a potent model system to study the metabolic fate of T-2 toxin as well as the cytotoxicity in vitro. In this study the metabolism of T-2 toxin was analyzed in a cell line derived from human colon carcinoma cells (HT-29) and primary human renal proximal tubule epithelial cells (RPTEC) using high-performance liquid chromatography coupled with Fourier transformation mass spectrometry (HPLC-FTMS). Both cell types metabolized T-2 toxin to a variety of compounds. Furthermore, cell cycle analysis in RPTEC proved the apoptotic effect of T-2 toxin and its metabolites HT-2 toxin and neosolaniol in micromolar concentrations. PMID:22551244

  20. The Failure of Purified T-2 Mycotoxin to Produce Hemorrhaging in Dairy Cattle

    PubMed Central

    Weaver, G. A.; Kurtz, H. J.; Mirocha, C. J.; Bates, F. Y.; Behrens, J. C.; Robison, T. S.; Swanson, S. P.

    1980-01-01

    A Holstein cow was intubated with 182 mg of 97% pure T-2 toxin (0.44 mg/kg of body weight) for 15 days. A dairy ration containing 50 mg/kg (50 ppm) of T-2 toxin was refused. A calf, born four days after onset of maternal treatment, was intubated with 26.2 mg of purified T-2 toxin (0.6 mg/kg of body weight) for seven consecutive days and then on alternate days for a total of 16 days. The calf was severely affected clinically by the T-2 toxin. The T-2 toxin failed to cause bovine hemorrhagic syndrome in either animal. Unspecific gastrointestinal lesions were noted in the cow but none were detected in the calf. In the calf, severe depression, hindquarter ataxia, knuckling of the rear feet, listlessness and anorexia were caused by the T-2 toxin. PMID:7427850

  1. Biotransformation and detoxification of T-2 toxin by soil and freshwater bacteria.

    PubMed Central

    Beeton, S; Bull, A T

    1989-01-01

    Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation. PMID:2705769

  2. Catalytic NBP spot test for the detection of trichothecene mycotoxin T-2

    SciTech Connect

    Novak, T.J.; Quinn, K.A.

    1986-01-01

    Thorium(IV)salts were found to act as catalysts for the alkylation of 4-(p-nitrobenzyl)pyridine by T-2 toxin. Using thorium(IV)chloride as the catalyst, a detection procedure for T-2 toxin was developed that required a heating step consisting of only 2 minutes at 90/sup 0/C. The limit of detection of T-2 toxin with this procedure was found to be 1 microgram.

  3. Neurotoxic potential and cellular uptake of T-2 toxin in human astrocytes in primary culture.

    PubMed

    Weidner, Maria; Lenczyk, Marlies; Schwerdt, Gerald; Gekle, Michael; Humpf, Hans-Ulrich

    2013-03-18

    The trichothecene mycotoxin T-2 toxin, which is produced by fungi of the Fusarium species, is a worldwide occurring contaminant of cereal based food and feed. The cytotoxic properties of T-2 toxin are already well described with apoptosis being a major mechanism of action in various cell lines as well as in primary cells of different origin. However, only few data on neurotoxic properties of T-2 toxin are reported so far, but in vivo studies showed different effects of T-2 toxin on behavior as well as on levels of brain amines in animals. To further investigate the cytotoxic properties of T-2 toxin on cells derived from brain tissue, normal human astrocytes in primary culture (NHA) were used in this study. Besides studies of cytotoxicity, apoptosis (caspase-3-activation, Annexin V) and necrosis (LDH-release), the cellular uptake and metabolism of T-2 toxin in NHA was analyzed and compared to the uptake in an established human cell line (HT-29). The results show that human astrocytes were highly sensitive to the cytotoxic properties of T-2 toxin, and apoptosis, induced at low concentrations, was identified for the first time as the mechanism of toxic action in NHA. Furthermore, a strong accumulation of T-2 toxin in NHA and HT-29 cells was detected, and T-2 toxin was subjected to metabolism leading to HT-2 toxin, a commonly found metabolite after T-2 toxin incubation in both cell types. This formation seems to occur within the cells since incubations of T-2 toxin with cell depleted culture medium did not lead to any degradation of the parent toxin. The results of this study emphasize the neurotoxic potential of T-2 toxin in human astrocytes at low concentrations after short incubation times. PMID:23363530

  4. Differences in Patellar Cartilage Thickness, Transverse Relaxation Time, and Deformational Behavior

    PubMed Central

    Farrokhi, Shawn; Colletti, Patrick M.; Powers, Christopher M.

    2016-01-01

    Background The origin of patellofemoral pain (PFP) may be associated with the inability of the patellofemoral joint cartilage to absorb and distribute patellofemoral joint forces. Hypothesis When compared with a pain-free control group, young active women with PFP will demonstrate differences in their baseline patellar cartilage thickness and transverse (T2) relaxation time, as well as a less adaptive response to an acute bout of joint loading. Study Design Controlled laboratory study; Level of evidence, 3. Methods Ten women between the ages of 23 to 37 years with PFP and 10 sex-, age-, and activity-matched pain-free controls participated. Quantitative magnetic resonance imaging of the patellofemoral joint was performed at baseline and after participants performed 50 deep knee bends. Differences in baseline cartilage thickness and T2 relaxation time, as well as the postexercise change in patellar cartilage thickness and T2 relaxation time, were compared between groups. Results Individuals with PFP demonstrated reductions in baseline cartilage thickness of 14.0% and 14.1% for the lateral patellar facet and total patellar cartilage, respectively. Similarly, individuals with PFP exhibited significantly lower postexercise cartilage thickness change for the lateral patellar facet (2.1% vs 8.9%) and the total patellar cartilage (4.4% vs 10.0%) when compared with the control group. No group differences in baseline or postexercise change in T2 relaxation time were found. Conclusion The findings suggest that a baseline reduction in patellar cartilage thickness and a reduced deformational behavior of patellar cartilage following an acute bout of loading are associated with presence of PFP symptoms. PMID:20962335

  5. Spin relaxation in disordered media

    NASA Astrophysics Data System (ADS)

    Dzheparov, F. S.

    2011-10-01

    A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.

  6. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  7. NMR Relaxation and Petrophysical Properties

    NASA Astrophysics Data System (ADS)

    Fleury, Marc

    2011-03-01

    NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.

  8. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  9. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  10. Choosing a skeletal muscle relaxant.

    PubMed

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  11. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  12. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  13. Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues.

    PubMed

    Hocq, Aline; Luhmer, Michel; Saussez, Sven; Louryan, Stéphane; Gillis, Pierre; Gossuin, Yves

    2015-01-01

    Iron accumulation is observed in liver and spleen during hemochromatosis and important neurodegenerative diseases involve iron overload in brain. Storage of iron is ensured by ferritin, which contains a magnetic core. It causes a darkening on T2 -weighted MR images. This work aims at improving the understanding of the NMR relaxation of iron-loaded human tissues, which is necessary to develop protocols of iron content measurements by MRI. Relaxation times measurements on brain, liver and spleen samples were realized at different magnetic fields. Iron content was determined by atomic emission spectroscopy. For all samples, the longitudinal relaxation rate (1/T1 ) of tissue protons decreases with the magnetic field up to 1 T, independently of iron content, while their transverse relaxation rate (1/T2 ) strongly increases with the field, either linearly or quadratically, or a combination thereof. The extent of the inter-echo time dependence of 1/T2 also varies according to the sample. A combination of theoretical models is necessary to describe the relaxation of iron-containing tissues. This can be due to the presence, inside tissues, of ferritin clusters of different sizes and densities. When considering all samples, a correlation (r(2)  = 0.6) between 1/T1 and iron concentration is observed at 7.0 T. In contrast the correlation between 1/T2 and iron content is poor, even at high field (r(2)  = 0.14 at 7.0 T). Our results show that MRI methods based on T1 or T2 measurements will easily detect an iron overloading at high magnetic field, but will not provide an accurate quantification of tissue iron content at low iron concentrations. PMID:24954138

  14. Local T2 measurement employing longitudinal Hadamard encoding and adiabatic inversion pulses in porous media.

    PubMed

    Vashaee, S; Newling, B; Balcom, B J

    2015-12-01

    Band selective adiabatic inversion radio frequency pulses were employed for multi-slice T2 distribution measurements in porous media samples. Multi-slice T2 measurement employing longitudinal Hadamard encoding has an inherent sensitivity advantage over slice-by-slice local T2 measurements. The slice selection process is rendered largely immune to B1 variation by employing hyperbolic secant adiabatic inversion pulses, which simultaneously invert spins in several well-defined slices. While Hadamard encoding is well established for local spectroscopy, the current work is the first use of Hadamard encoding for local T2 measurement. PMID:26580063

  15. Local T2 measurement employing longitudinal Hadamard encoding and adiabatic inversion pulses in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Newling, B.; Balcom, B. J.

    2015-12-01

    Band selective adiabatic inversion radio frequency pulses were employed for multi-slice T2 distribution measurements in porous media samples. Multi-slice T2 measurement employing longitudinal Hadamard encoding has an inherent sensitivity advantage over slice-by-slice local T2 measurements. The slice selection process is rendered largely immune to B1 variation by employing hyperbolic secant adiabatic inversion pulses, which simultaneously invert spins in several well-defined slices. While Hadamard encoding is well established for local spectroscopy, the current work is the first use of Hadamard encoding for local T2 measurement.

  16. Detection and quantitation of t-2 mycotoxin in rat organs by radioimmunoassay

    SciTech Connect

    Hewetson, J.F.; Pace, J.G.; Beheler, J.E.

    1987-01-01

    A standard radioimmunoassay was compared with radiochromatography for the ability to detect unlabeled T-2 mycotoxin in organs from exposed animals. When 10% of HT-2, the only known metabolite that cross-reacts with T-2, was included an