Science.gov

Sample records for 1h-15n heteronuclear single

  1. 1H-13C/1H-15N Heteronuclear Dipolar Recoupling by R-Symmetry Sequences Under Fast Magic Angle Spinning for Dynamics Analysis of Biological and Organic Solids

    PubMed Central

    Hou, Guangjin; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2011-01-01

    Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for 1H-13C/1H-15N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RNnv-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-13C,15N]-alanine and [U-13C,15N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely 13C/uniformly 15N enriched CAP-Gly domain of dynactin and U-13C,15N-Tyr enriched C-terminal domain of HIV-1 CA protein. 2D and 3D R1632-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific 1H-13C/1H-15N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry based dipolar recoupling under fast MAS is expected to find

  2. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy.

    PubMed

    Okar, D A; Live, D H; Devany, M H; Lange, A J

    2000-08-15

    The histidines in the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were labeled with (15)N, both specifically at N1' and globally, for use in heteronuclear single quantum correlation (HSQC) NMR spectroscopic analyses. The histidine-associated (15)N resonances were assigned by correlation to the C2' protons which had been assigned previously [Okar et al., Biochemistry 38, 1999, 4471-79]. Acquisition of the (1)H-(15)N HSQC from a phosphate-free sample demonstrated that the existence of His-258 in the rare N1' tautomeric state is dependent upon occupation of the phosphate binding site filled by the O2 phosphate of the substrate, fructose-2,6-bisphosphate, and subsequently, the phosphohistidine intermediate. The phosphohistidine intermediate is characterized by two hydrogen bonds involving the catalytic histidines, His-258 and His-392, which are directly observed at the N1' positions of the imidazole rings. The N1' of phospho-His-258 is protonated ((1)H chemical shift, 14.0 ppm) and hydrogen bonded to the backbone carbonyl of Gly-259. The N1' of cationic His-392 is hydrogen bonded ((1)H chemical shift, 13.5 ppm) to the phosphoryl moiety of the phosphohistidine. The existence of a protonated phospho-His-258 intermediate and the observation of a fairly strong hydrogen bond to the same phosphohistidine implies that hydrolysis of the covalent intermediate proceeds without any requirement for an "activated" water. Using the labeled histidines as probes of the catalytic site mutation of Glu-327 to alanine revealed that, in addition to its function as the proton donor to fructose-6-phosphate during formation of the transient phosphohistidine intermediate at the N3' of His-258, this residue has a significant role in maintaining the structural integrity of the catalytic site. The (1)H-(15)N HSQC data also provide clear evidence that despite being a surface residue, His-446 has a very acidic pK(a), much less than 6.0. On the basis of

  3. MUSIC in Triple-Resonance Experiments: Amino Acid Type-Selective 1H- 15N Correlations

    NASA Astrophysics Data System (ADS)

    Schubert, Mario; Smalla, Maika; Schmieder, Peter; Oschkinat, Hartmut

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective 1H-15N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH2 or XH3 (X can be 15N or 13C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains.

  4. MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations

    PubMed

    Schubert; Smalla; Schmieder; Oschkinat

    1999-11-01

    Amino acid type-selective triple-resonance experiments can be of great help for the assignment of protein spectra, since they help to remove ambiguities in either manual or automated assignment procedures. Here, modified triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations are presented. They are based on novel coherence transfer schemes, the MUSIC pulse sequence elements, that replace the initial INEPT transfer and are selective for XH(2) or XH(3) (X can be (15)N or (13)C). The desired amino acid type is thereby selected based on the topology of the side chain. Experiments for Gly (G-HSQC); Ala (A-HSQC); Thr, Val, Ile, and Ala (TAVI-HSQC); Thr and Ala (TA-HSQC), as well as Asn and Gln (N-HSQC and QN-HSQC), are described. The new experiments are recorded as two-dimensional experiments and therefore need only small amounts of spectrometer time. The performance of the experiments is demonstrated with the application to two protein domains. Copyright 1999 Academic Press. PMID:10527741

  5. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    PubMed

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported. PMID:25451865

  6. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization

    NASA Astrophysics Data System (ADS)

    Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2012-03-01

    Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO3- or sulfamate 1H and 15N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of 15N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional 1H-15N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the 1H-15N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The 1H-15N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.

  7. Rapid screening for structural integrity of expressed proteins by heteronuclear NMR spectroscopy.

    PubMed Central

    Gronenborn, A. M.; Clore, G. M.

    1996-01-01

    A simple and rapid method based on 15N labeling and 1H-15N heteronuclear single quantum coherence spectroscopy is presented to directly assess the structural integrity of overexpressed proteins in crude Escherichia coli extracts without the need for any purification. The method is demonstrated using two different expression systems and two different proteins, the B1 immunoglobulin-binding domain of streptococcal protein G (56 residues) and human interleukin-1 beta (153 residues). It is shown that high quality 1H-15N correlation spectra, recorded in as little as 15 min and displaying only cross-peaks arising from the overexpressed protein of interest, can be obtained from crude E. coli extracts. PMID:8771212

  8. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    NASA Astrophysics Data System (ADS)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  9. The Heteronuclear Single-Quantum Correlation (HSQC) Experiment: Vectors versus Product Operators

    ERIC Educational Resources Information Center

    de la Vega-Herna´ndez, Karen; Antuch, Manuel

    2015-01-01

    A vectorial representation of the full sequence of events occurring during the 2D-NMR heteronuclear single-quantum correlation (HSQC) experiment is presented. The proposed vectorial representation conveys an understanding of the magnetization evolution during the HSQC pulse sequence for those who have little or no quantum mechanical background.…

  10. Heteronuclear refocusing by nonlinear phase and amplitude modulation on a single transmitter channel.

    PubMed

    Moore, Jay; Colón, Raul D; Tadanki, Sasidhar; Waddell, Kevin W

    2014-08-01

    The application of low magnetic fields to heteronuclear NMR has expanded recently alongside the emergence of methods for achieving near unity polarization of spin ensembles, independent of magnetic field strength. The parahydrogen induced hyperpolarization methods in particular, often use a hybrid arrangement where a high field spectrometer is used to detect or image polarized molecules that have been conjured on a separate, dedicated polarizer instrument operating at fields in the mT regime where yields are higher. For controlling polarizer chemistry, spare TTL channels of portable NMR spectrometers can be used to pulse program reaction timings in synchrony with heteronuclear RF transformations. The use of a spectrometer as a portable polarizer control module has the advantage of allowing detection in situ, simplifying the process of optimizing polarization yields prior to in vivo experimental trials. Suitable heteronuclear spectrometers compatible with this application are becoming more common, but are still sparsely available in comparison to a large existing infrastructure of single channel NMR consoles. With the goal of expanding the range of these systems to multinuclear applications, the feasibility of rotating a pair of heteronuclear spins ((13)C and (1)H) at 12mT was investigated in this study. Nonlinear phase and amplitude modulated waveforms designed to simultaneously refocus magnetization at 128kHz ((13)C) and 510kHz ((1)H) were generated numerically with optimal control. Although precise quantitative comparisons were not attempted due to limitations of the experimental setup, signals refocused at heteronuclear frequencies with this PANORAMIC approach (Precession And Nutation for Observing Rotation At Multiple Intervals about the Carrier) yielded amplitudes comparable to signals which were refocused using traditional block pulses on heteronuclear channels. Using this PANORAMIC approach to heteronuclear NMR at low field would reduce expense as well as

  11. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  12. 1H, 15N and 13C assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques.

    PubMed

    Davies, H A; Phelan, M M; Madine, J

    2016-04-01

    Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form the insoluble fibrils is sparse. This is because amyloid proteins are notoriously difficult to study in their soluble forms, due to their inherent propensity to aggregate. Using recent developments in fast NMR techniques, band-selective excitation short transient and band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence we have been able to assign a 5 kDa full-length amyloidogenic protein called medin. Medin is the key protein component of the most common form of localised amyloid with a proposed role in aortic aneurysm and dissection. This assignment will now enable the study of the early interactions that could influence initiation and progression of medin aggregation. The chemical shifts have been deposited in the BioMagRes-Bank accession Nos. 25399 and 26576. PMID:26377205

  13. Sequence-specific 1H, 15N and 13C resonance assignments of the 23.7-kDa homodimeric toxin CcdB from Vibrio fischeri.

    PubMed

    Respondek, Michal; Buts, Lieven; De Jonge, Natalie; Haesaerts, Sarah; Loris, Remy; Van Melderen, Laurence; Wyns, Lode; Zangger, Klaus

    2009-06-01

    CcdB is the toxic component of a bacterial toxin-antitoxin system. It inhibits DNA gyrase (a type II topoisomerase), and its toxicity can be neutralized by binding of its antitoxin CcdA. Here we report the sequential backbone and sidechain (1)H, (15)N and (13)C resonance assignments of CcdB(Vfi) from the marine bacterium Vibrio fischeri. The BMRB accession number is 16135. PMID:19636967

  14. Spectroscopic labeling of A, S/T in the 1H- 15N HSQC spectrum of uniformly ( 15N- 13C) labeled proteins

    NASA Astrophysics Data System (ADS)

    Chugh, Jeetender; Hosur, Ramakrishna V.

    2008-10-01

    A new triple resonance two-dimensional experiment, termed (HC)NH, has been described to generate specific labels on the peaks of alanines and serines/threonines, separately, in the 1H- 15N HSQC spectrum of a protein. The performance of the pulse sequence has been demonstrated with a 151 residue protein. The method permits the investigation of local environments around those specific residues without actually having to obtain complete resonance assignments for the entire protein. With this one can envisage use of the technique for studying large protein systems from different points of view.

  15. Site-specific analysis of heteronuclear Overhauser effects in microcrystalline proteins.

    PubMed

    del Amo, Juan Miguel Lopez; Agarwal, Vipin; Sarkar, Riddhiman; Porter, Justin; Asami, Sam; Rübbelke, Martin; Fink, Uwe; Xue, Yi; Lange, Oliver F; Reif, Bernd

    2014-08-01

    Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of [(1)H](13)C and [(1)H](15)N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the [(1)H](13)C heteronuclear NOE in combination with (13)C-R 1 can yield a more accurate analysis of side chain motional parameters. The observation of significant [(1)H](15)N heteronuclear NOEs for certain backbone amides, as well as for specific asparagine/glutamine sidechain amides is consistent with MD simulations. The measurement of site-specific heteronuclear NOEs is enabled by the use of highly deuterated microcrystalline protein samples in which spin diffusion is reduced in comparison to protonated samples. PMID:24989039

  16. Achievement of 1 H-19 F heteronuclear experiments using the conventional spectrometer with a shared single high band amplifier.

    PubMed

    Sakuma, Chiseko; Kurita, Jun-ichi; Furihata, Kazuo; Tashiro, Mitsuru

    2015-05-01

    The (1)H-(19) F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a (1)H/(19)F/(13) C double-tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various (1)H-(19)F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for (19)F{(1)H} and (1)H{(19)F} saturation transfer difference experiments. PMID:25808615

  17. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2. PMID:26878852

  18. Solution 1H, 15N NMR spectroscopic characterization of substrate-bound, cyanide-inhibited human heme oxygenase: water occupation of the distal cavity.

    PubMed

    Li, Yiming; Syvitski, Ray T; Auclair, Karine; Ortiz de Montellano, Paul; La Mar, Gerd N

    2003-11-01

    A solution NMR spectroscopic study of the cyanide-inhibited, substrate-bound complex of uniformly (15)N-labeled human heme oxygenase, hHO, has led to characterization of the active site with respect to the nature and identity of strong hydrogen bonds and the occupation of ordered water molecules within both the hydrogen bonding network and an aromatic cluster on the distal side. [(1)H-(15)N]-HSQC spectra confirm the functionalities of several key donors in particularly robust H-bonds, and [(1)H-(15)N]HSQC-NOESY spectra lead to the identification of three additional robust H-bonds, as well as the detection of two more relatively strong H-bonds whose identities could not be established. The 3D NMR experiments provided only a modest, but important, extension of assignments because of the loss of key TOCSY cross-peaks due to the line broadening from a dynamic heterogeneity in the active site. Steady-state NOEs upon saturating the water signal locate nine ordered water molecules in the immediate vicinity of the H-bond donors, six of which are readily identified in the crystal structure. The additional three are positioned in available spaces to account for the observed NOEs. (15)N-filtered steady-state NOEs upon saturating the water resonances and (15)N-filtered NOESY spectra demonstrate significant negative NOEs between water molecules and the protons of five aromatic rings. Many of the NOEs can be rationalized by water molecules located in the crystal structure, but strong water NOEs, particularly to the rings of Phe47 and Trp96, demand the presence of at least an additional two immobilized water molecules near these rings. The H-bond network appears to function to order water molecules to provide stabilization for the hydroperoxy intermediate and to serve as a conduit to the active site for the nine protons required per HO turnover. PMID:14583035

  19. 1H/15N HSQC NMR studies of ligand carboxylate group interactions with arginine residues in complexes of brodimoprim analogues and Lactobacillus casei dihydrofolate reductase.

    PubMed

    Morgan, W D; Birdsall, B; Nieto, P M; Gargaro, A R; Feeney, J

    1999-02-16

    1H and 15N NMR studies have been undertaken on complexes of Lactobacillus casei dihydrofolate reductase (DHFR) formed with analogues of the antibacterial drug brodimoprim (2,4-diamino-5-(3', 5'-dimethoxy-4'-bromobenzyl)pyrimidine) in order to monitor interactions between carboxylate groups on the ligands and basic residues in the protein. These analogues had been designed by computer modeling with carboxylated alkyl chains introduced at the 3'-O position in order to improve their binding properties by making additional interactions with basic groups in the protein. Specific interactions between ligand carboxylate groups and the conserved Arg57 residue have been detected in studies of 1H/15N HSQC spectra of complexes of DHFR with both the 4-carboxylate and the 4, 6-dicarboxylate brodimoprim analogues. The spectra from both complexes showed four resolved signals for the four NHeta protons of the guanidino group of Arg57, and this is consistent with hindered rotation in the guanidino group resulting from interactions with the 4-carboxylate group in each analogue. In the spectra of each complex, one of the protons from each of the two NH2 groups and both nitrogens are considerably deshielded compared to the shielding values normally observed for such nuclei. This pattern of deshielding is that expected for a symmetrical end-on interaction of the carboxylate oxygens with the NHeta12 and NHeta22 guanidino protons. The differences in the degree of deshielding between the complexes of the two structurally similar brodimoprim analogues and the methotrexate indicates that the shielding is very sensitive to geometry, most probably to hydrogen bond lengths. The 1H/15N HSQC spectrum of the DHFR complex with the brodimoprim-6-carboxylate analogue does not feature any deshielded Arg NHeta protons and this argues against a similar interaction with the Arg57 in this case. It has not proved possible to determine whether the 6-carboxylate in this analogue is interacting directly with

  20. 1H, 15N and 13C resonance assignments of light organ-associated fatty acid-binding protein of Taiwanese fireflies.

    PubMed

    Tseng, Kai-Li; Lee, Yi-Zong; Chen, Yun-Ru; Lyu, Ping-Chiang

    2016-04-01

    Fatty acid-binding proteins (FABPs) are a family of proteins that modulate the transfer of various fatty acids in the cytosol and constitute a significant portion in many energy-consuming cells. The ligand binding properties and specific functions of a particular type of FABP seem to be diverse and depend on the respective binding cavity as well as the cell type from which this protein is derived. Previously, a novel FABP (lcFABP; lc: Luciola cerata) was identified in the light organ of Taiwanese fireflies. The lcFABP was proved to possess fatty acids binding capabilities, especially for fatty acids of length C14-C18. However, the structural details are unknown, and the structure-function relationship has remained to be further investigated. In this study, we finished the (1)H, (15)N and (13)C chemical shift assignments of (15)N/(13)C-enriched lcFABP by solution NMR spectroscopy. In addition, the secondary structure distribution was revealed based on the backbone N, H, Cα, Hα, C and side chain Cβ assignments. These results can provide the basis for further structural exploration of lcFABP. PMID:26373428

  1. Sequence-specific (1)H, (15)N, and (13)C resonance assignments of the autophagy-related protein LC3C.

    PubMed

    Krichel, Carsten; Weiergräber, Oliver H; Pavlidou, Marina; Mohrlüder, Jeannine; Schwarten, Melanie; Willbold, Dieter; Neudecker, Philipp

    2016-04-01

    Autophagy is a versatile catabolic pathway for lysosomal degradation of cytoplasmic material. While the phenomenological and molecular characteristics of autophagic non-selective (bulk) decomposition have been investigated for decades, the focus of interest is increasingly shifting towards the selective mechanisms of autophagy. Both, selective as well as bulk autophagy critically depend on ubiquitin-like modifiers belonging to the Atg8 (autophagy-related 8) protein family. During evolution, Atg8 has diversified into eight different human genes. While all human homologues participate in the formation of autophagosomal membrane compartments, microtubule-associated protein light chain 3C (LC3C) additionally plays a unique role in selective autophagic clearance of intracellular pathogens (xenophagy), which relies on specific protein-protein recognition events mediated by conserved motifs. The sequence-specific (1)H, (15)N, and (13)C resonance assignments presented here form the stepping stone to investigate the high-resolution structure and dynamics of LC3C and to delineate LC3C's complex network of molecular interactions with the autophagic machinery by NMR spectroscopy. PMID:26280529

  2. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  3. Heteronuclear proton assisted recoupling

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Eddy, Matt; Megy, Simon; Böckmann, Anja; Griffin, Robert G.

    2011-03-01

    We describe a theoretical framework for understanding the heteronuclear version of the third spin assisted recoupling polarization transfer mechanism and demonstrate its potential for detecting long-distance intramolecular and intermolecular 15N-13C contacts in biomolecular systems. The pulse sequence, proton assisted insensitive nuclei cross polarization (PAIN-CP) relies on a cross term between 1H-15N and 1H-13C dipolar couplings to mediate zero- and/or double-quantum 15N-13C recoupling. In particular, using average Hamiltonian theory we derive effective Hamiltonians for PAIN-CP and show that the transfer is mediated by trilinear terms of the form N±C∓Hz (ZQ) or N±C±Hz (DQ) depending on the rf field strengths employed. We use analytical and numerical simulations to explain the structure of the PAIN-CP optimization maps and to delineate the appropriate matching conditions. We also detail the dependence of the PAIN-CP polarization transfer with respect to local molecular geometry and explain the observed reduction in dipolar truncation. In addition, we demonstrate the utility of PAIN-CP in structural studies with 15N-13C spectra of two uniformly 13C,15N labeled model microcrystalline proteins—GB1, a 56 amino acid peptide, and Crh, a 85 amino acid domain swapped dimer (MW = 2 × 10.4 kDa). The spectra acquired at high magic angle spinning frequencies (ωr/2π > 20 kHz) and magnetic fields (ω0H/2π = 700-900 MHz) using moderate rf fields, yield multiple long-distance intramonomer and intermonomer 15N-13C contacts. We use these distance restraints, in combination with the available x-ray structure as a homology model, to perform a calculation of the monomer subunit of the Crh protein.

  4. A different approach to multiplicity-edited heteronuclear single quantum correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakhaii, Peyman; Bermel, Wolfgang

    2015-10-01

    A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of 13C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD]r,x element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear 1JHC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and/or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed.

  5. A different approach to multiplicity-edited heteronuclear single quantum correlation spectroscopy.

    PubMed

    Sakhaii, Peyman; Bermel, Wolfgang

    2015-10-01

    A new experiment for recording multiplicity-edited HSQC spectra is presented. In standard multiplicity-edited HSQC experiments, the amplitude of CH2 signals is negative compared to those of CH and CH3 groups. We propose to reverse the sign of (13)C frequencies of CH2 groups in t1 as criteria for editing. Basically, a modified [BIRD](r,x) element (Bilinear Rotation Pulses and Delays) is inserted in a standard HSQC pulse sequence with States-TPPI frequency detection in t1 for this purpose. The modified BIRD element was designed in such a way as to pass or stop the evolution of the heteronuclear (1)JHC coupling. This is achieved by adding a 180° proton RF pulse in each of the 1/2J periods. Depending on their position the evolution is switched on or off. Usually, the BIRD- element is applied on real and imaginary increments of a HSQC experiment to achieve the editing between multiplicities. Here, we restrict the application of the modified BIRD element to either real or imaginary increments of the HSQC. With this new scheme for editing, changing the frequency and/or amplitude of the CH2 signals becomes available. Reversing the chemical shift axis for CH2 signals simplifies overcrowded frequency regions and thus avoids accidental signal cancellation in conventional edited HSQC experiments. The practical implementation is demonstrated on the protein Lysozyme. Advantages and limitations of the idea are discussed. PMID:26298081

  6. Synthesis of 7-15N-Oroidin and Evaluation of Utility for Biosynthetic Studies of Pyrrole-Imidazole Alkaloids by Microscale1H-15N HSQC and FTMS†

    PubMed Central

    Wang, Yong-Gang; Morinaka, Brandon I.; Reyes, Jeremy Chris P.; Wolff, Jeremy H.; Romo, Daniel; Molinski, Tadeusz F.

    2010-01-01

    Numerous marine-derived pyrrole-imidazole alkaloids (PIAs), ostensibly derived from the simple precursor oroidin, 1a, have been reported and have garnered intense synthetic interest due to their complex structures and in some cases biological activity; however very little is known regarding their biosynthesis. We describe a concise synthesis of 7-15N-oroidin (1d) from urocanic acid and a direct method for measurement of 15N incorporation by pulse labeling and analysis by 1D 1H-15N HSQC NMR and FTMS. Using a mock pulse labeling experiment, we estimate the limit of detection (LOD) for incorporation of newly biosynthesized PIA by 1D 1H-15N HSQC to be 0.96 μg equivalent of 15N oroidin (2.4 nmole) in a background of 1500 μg unlabeled oroidin (about 1 part per 1600). 7-15N-Oroidin will find utility in biosynthetic feeding experiments with live sponges to provide direct information to clarify the pathways leading to more complex pyrrole-imidazole alkaloids. PMID:20095632

  7. Backbone 1H, 15N, and 13C resonance assignments and secondary structure of a novel protein OGL-20P(T)-358 from hyperthermophile Thermococcus thioreducens sp. nov.

    PubMed

    Wilson, Randall; Hughes, Ronny; Curto, Ernest; Ng, Joseph; Twigg, Pamela

    2007-12-31

    OGL-20P(T)-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain OGL-20PT, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone 1H, 15N, and 13C resonance assignments of OGL-20PT-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily alpha-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein. PMID:18182861

  8. 15N-labeled tRNA. Identification of 4-thiouridine in Escherichia coli tRNASer1 and tRNATyr2 by 1H-15N two-dimensional NMR spectroscopy.

    PubMed

    Griffey, R H; Davis, D R; Yamaizumi, Z; Nishimura, S; Hawkins, B L; Poulter, C D

    1986-09-15

    Uridine is uniquely conserved at position 8 in elongator tRNAs and binds to A14 to form a reversed Hoogsteen base pair which folds the dihydrouridine loop back into the core of the L-shaped molecule. On the basis of 1H NMR studies, Hurd and co-workers (Hurd, R. E., Robillard, G. T., and Reid, B. R. (1977) Biochemistry 16, 2095-2100) concluded that the interaction between positions 8 and 14 is absent in Escherichia coli tRNAs with only 3 base pairs in the dihydrouridine stem. We have taken advantage of the unique 15N chemical shift of N3 in thiouridine to identify 1H and 15N resonances for the imino units of S4U8 and s4U9 in E. coli tRNASer1 and tRNATyr2. Model studies with chloroform-soluble derivatives of uridine and 4-thiouridine show that the chemical shifts of the protons in the imino moieties move downfield from 7.9 to 14.4 ppm and from 9.1 to 15.7 ppm, respectively; whereas, the corresponding 15N chemical shifts move downfield from 157.5 to 162.5 ppm and from 175.5 to 180.1 ppm upon hydrogen bonding to 5'-O-acetyl-2',3'-isopropylidene adenosine. The large difference in 15N chemical shifts for U and s4U allows one to unambiguously identify s4U imino resonances by 15N NMR spectroscopy. E. coli tRNASer1 and tRNATyr2 were selectively enriched with 15N at N3 of all uridines and modified uridines. Two-dimensional 1H-15N chemical shift correlation NMR spectroscopy revealed that both tRNAs have resonances with 1H and 15N chemical shifts characteristic of s4UA pairs. The 1H shift is approximately 1 ppm upfield from the typical s4U8 resonance at 14.8 ppm, presumably as a result of local diamagnetic anisotropies. An additional s4U resonance with 1H and 15N shifts typical of interaction of a bound water or a sugar hydroxyl group with s4U9 was discovered in the spectrum of tRNATyr2. Our NMR results for tRNAs with 3-base pair dihydrouridine stems suggest that these molecules have an U8A14 tertiary interaction similar to that found in tRNAs with 4-base pair dihydrouridine

  9. Design of Heteronuclear Metalloenzymes.

    PubMed

    Bhagi-Damodaran, A; Hosseinzadeh, P; Mirts, E; Reed, J; Petrik, I D; Lu, Y

    2016-01-01

    Heteronuclear metalloenzymes catalyze some of the most fundamentally interesting and practically useful reactions in nature. However, the presence of two or more metal ions in close proximity in these enzymes makes them more difficult to prepare and study than homonuclear metalloenzymes. To meet these challenges, heteronuclear metal centers have been designed into small and stable proteins with rigid scaffolds to understand how these heteronuclear centers are constructed and the mechanism of their function. This chapter describes methods for designing heterobinuclear metal centers in a protein scaffold by giving specific examples of a few heme-nonheme bimetallic centers engineered in myoglobin and cytochrome c peroxidase. We provide step-by-step procedures on how to choose the protein scaffold, design a heterobinuclear metal center in the protein scaffold computationally, incorporate metal ions into the protein, and characterize the resulting metalloproteins, both structurally and functionally. Finally, we discuss how an initial design can be further improved by rationally tuning its secondary coordination sphere, electron/proton transfer rates, and the substrate affinity. PMID:27586347

  10. Extending long-range heteronuclear NMR connectivities by HSQMBC-COSY and HSQMBC-TOCSY experiments

    NASA Astrophysics Data System (ADS)

    Saurí, Josep; Marcó, Núria; Williamson, R. Thomas; Martin, Gary E.; Parella, Teodor

    2015-09-01

    The detection of long-range heteronuclear correlations presenting J(CH) coupling values smaller than 1-2 Hz is a challenge in the structural analysis of small molecules and natural products. HSQMBC-COSY and HSQMBC-TOCSY pulse schemes are evaluated as complementary NMR methods to standard HMBC/HSQMBC experiments. Incorporation of an additional J(HH) transfer step in the basic HSQMBC pulse scheme can favor the sensitive observation of traditionally missing or very weak correlations and, in addition, facilitates the detection of a significant number of still longer-range connectivities to both protonated and non-protonated carbons under optimum sensitivity conditions. A comparative 1H-13C study is performed using strychnine as a model compound and several examples are also provided including 1H-15N applications.

  11. Heteronuclear Ni(ii)-Ln(iii) (Ln = La, Pr, Tb, Dy) complexes: synthesis and single-molecule magnet behaviour.

    PubMed

    Upadhyay, Apoorva; Das, Chinmoy; Langley, Stuart K; Murray, Keith S; Srivastava, Anant K; Shanmugam, Maheswaran

    2016-02-28

    The reaction of hydrated nickel(II) salts (chloride or nitrate) and hydrated lanthanide nitrate salts with the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol (HL) in methanol resulted in the isolation of three isostructural linear heterometallic trinuclear complexes and a heterometallic tetranuclear complex. The molecular structures of these complexes were determined via single crystal X-ray diffraction revealing molecular structures of formulae [Ni2La(L-)6](NO3)0.55(OH)0.45 (1), [Ni2Pr(L-)6](NO3)0.48(OH)0.52 (2), [Ni2Tb(L-)6](NO3)0.5(Cl)0.5 (3) and [Ni2Dy2(L-2(o-vanillin)2(CO3)2(NO3)2(MeOH)2] (4). Structural analysis for 1-3 reveals that the lanthanide ion is sandwiched between two Ni(II) ions and the Ni⋯Ln⋯Ni metallic core displays a linear arrangement, with an average ∠Ni⋯Ln⋯Ni bond angle of 179.7°. Analysis of 4 reveals the metal ions are arranged such that two Ni-Dy subunits are bridged by two carbonate ligands via the Dy sites. Direct current magnetic susceptibility measurements for complexes 1-4 reveal that the Ni(II) ions are coupled ferromagnetically with the Tb(III) (3) and Dy(III) (4) ions, and antiferromagnetically with the Pr(III) ion (2). For complex 1 a long range intramolecular ferromagnetic interaction is witnessed between the Ni(II) ions (Ni⋯Ni = 6.873(9) Å) via a closed shell La(III) ion. The magnetic data of 1 were fitted using the HDVV Hamiltonian revealing the following parameters; J = +0.46 cm(-1), g = 2.245, D = +4.91 cm(-1). Alternating current magnetic susceptibility measurements performed on complexes 2-4 revealed that 3 and 4 displayed frequency dependent χ′′M signals (Hac = 3.5 Oe and Hdc = 0 Oe) which is a characteristic signature of a single-molecule magnet behaviour. PMID:26810917

  12. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  13. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques.

    PubMed Central

    Pelton, J. G.; Torchia, D. A.; Meadow, N. D.; Roseman, S.

    1993-01-01

    IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed. PMID:8518729

  14. Heteronuclear decoupling by optimal tracking.

    PubMed

    Neves, Jorge L; Heitmann, Björn; Khaneja, Navin; Glaser, Steffen J

    2009-11-01

    The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments. PMID:19695913

  15. High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Chen, Hao; Cai, Shuhui; Chen, Zhong

    2015-11-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.

  16. Bis-phenoxido and bis-acetato bridged heteronuclear {Co(III)Dy(III)} single molecule magnets with two slow relaxation branches.

    PubMed

    Hazra, Susanta; Titiš, Ján; Valigura, Dušan; Boča, Roman; Mohanta, Sasankasekhar

    2016-04-25

    Two bis-μ-phenoxido-bis-μ-acetato heterobimetallic {Co(III)Dy(III)} complexes and , formulated as [Co(III)Dy(III)L(μ-OAc)2(NO3)2] derived from the comparable hexadentate Schiff bases N,N'-ethylenebis(3-ethoxysalicylaldimine) and N,N'-ethylenebis(3-methoxysalicylaldimine) were synthesized and X-ray structure analysis confirms their nearly identical structures. These are the first examples of bis(μ-phenoxido)-bis(μ-carboxylato) {Co(III)Dy(III)} systems. The AC susceptibility measurements show that both complexes exhibit a field-induced slow magnetic relaxation with two relaxation branches. While the high-frequency process spans the usual range of the relaxation time for analogous single molecule magnets (τ0 ∼ 10(-7) s), the low-frequency branch is as slow as τ ∼ 0.1 s at T = 1.9 K and B = 0.2 T. PMID:27046444

  17. Flexible Stoichiometry and Asymmetry of the PIDDosome Core Complex by Heteronuclear NMR Spectroscopy and Mass Spectrometry

    PubMed Central

    Nematollahi, Lily A.; Garza-Garcia, Acely; Bechara, Chérine; Esposito, Diego; Morgner, Nina; Robinson, Carol V.; Driscoll, Paul C.

    2015-01-01

    Homotypic death domain (DD)–DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130–158 kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional 1H,15N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. 13C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640

  18. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry.

    PubMed

    Nematollahi, Lily A; Garza-Garcia, Acely; Bechara, Chérine; Esposito, Diego; Morgner, Nina; Robinson, Carol V; Driscoll, Paul C

    2015-02-27

    Homotypic death domain (DD)-DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130-158kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional (1)H,(15)N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. (13)C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core. PMID:25528640

  19. Heteronuclear J-coupling measurements in grossly inhomogeneous magnetic fields.

    PubMed

    Mandal, S; Song, Y-Q

    2015-06-01

    It is difficult to measure chemical shifts in the small and inhomogeneous magnetic fields found in ex situ and single-sided NMR systems, such as those used for well-logging. However, it is still possible to obtain chemical information from J-coupling constants, which are independent of static field strength and temperature. We describe and analyze (1)H-(13)C double-resonance pulse sequences that are suitable for measuring heteronuclear J-coupling in grossly inhomogeneous fields. We also present preliminary experimental results from a low-frequency fringe-field system. PMID:25898398

  20. Conditional rotations of heteronuclear coupled spins.

    PubMed

    O'Donnell, Lauren F; Ridge, Clark D; Walls, Jamie D

    2015-01-01

    We present a new pulse sequence that conditionally excites I spin magnetization only in the presence of a nonzero heteronuclear coupling to an S spin. The pulse sequence, referred to as the reverse INEPT pathway selective pulse or RIPSP, generates a pure I spin rotation by an angle that depends upon the heteronuclear coupling constant in InS spin systems. Experimental demonstrations are shown in (13)C labeled chloroform, dichloromethane, and toluene samples and in unlabeled 2,3-dibromopropionic acid and brucine samples. PMID:25506815

  1. Conditional rotations of heteronuclear coupled spins

    NASA Astrophysics Data System (ADS)

    O'Donnell, Lauren F.; Ridge, Clark D.; Walls, Jamie D.

    2015-01-01

    We present a new pulse sequence that conditionally excites I spin magnetization only in the presence of a nonzero heteronuclear coupling to an S spin. The pulse sequence, referred to as the reverse INEPT pathway selective pulse or RIPSP, generates a pure I spin rotation by an angle that depends upon the heteronuclear coupling constant in In S spin systems. Experimental demonstrations are shown in 13C labeled chloroform, dichloromethane, and toluene samples and in unlabeled 2,3-dibromopropionic acid and brucine samples.

  2. Ultracold Collisions Involving Heteronuclear Alkali Metal Dimers

    SciTech Connect

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.; Honvault, Pascal; Launay, Jean-Michel

    2005-05-27

    We carry out the first quantum dynamics calculations on ultracold atom-diatom collisions in isotopic mixtures. The systems studied are spin-polarized {sup 7}Li+{sup 6}Li{sup 7}Li, {sup 7}Li+{sup 6}Li{sub 2}, {sup 6}Li+{sup 6}Li{sup 7}Li, and {sup 6}Li+{sup 7}Li{sub 2}. Reactive scattering can occur for the first two systems even when the molecules are in their ground rovibrational states, but is slower than vibrational relaxation in homonuclear systems. Implications for sympathetic cooling of heteronuclear molecules are discussed.

  3. Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory

    ERIC Educational Resources Information Center

    Wright, Nathan T.

    2016-01-01

    Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…

  4. Nonnuclear Attractors in Heteronuclear Diatomic Systems.

    PubMed

    Terrabuio, Luiz Alberto; Teodoro, Tiago Quevedo; Matta, Chérif F; Haiduke, Roberto Luiz Andrade

    2016-03-01

    Nonnuclear attractors (NNAs) are observed in the electron density of a variety of systems, but the factors governing their appearance and their contribution to the system's properties remain a mystery. The NNA occurring in homo- and heteronuclear diatomics of main group elements with atomic numbers up to Z = 38 is investigated computationally (at the UCCSD/cc-pVQZ level of theory) by varying internuclear separations. This was done to determine the NNA occurrence window along with the evolution of the respective pseudoatomic basin properties. Two distinct categories of NNAs were detected in the data analyzed by means of catastrophe theory. Type "a" implies electronic charge transfer between atoms mediated by a pseudoatom. Type "b" shows an initial relocation of some electronic charge to a pseudoatom, which posteriorly returns to the same atom that donated this charge in the first place. A small difference of polarizability between the atoms that compose these heteronuclear diatomics seems to favor NNA formation. We also show that the NNA arising tends to result in some perceptible effects on molecular dipole and/or quadrupole moment curves against internuclear distance. Finally, successive cationic ionization results in the fast disappearance of the NNA in Li2 indicating that its formation is mainly governed by the field generated by the quantum mechanical electronic density and only depends parametrically on the bare nuclear field/potential at a given molecular geometry. PMID:26842391

  5. Heteronuclear decoupling by multiple rotating frame technique

    PubMed Central

    Arthanari, Haribabu; Wagner, Gerhard; Khaneja, Navin

    2011-01-01

    The paper describes the multiple rotating frame technique for designing modulated rf fields, that perform broadband heteronuclear decoupling in solution NMR spectroscopy. The decoupling method presented here is understood by performing a sequence of coordinate transformations, each of which demodulates a component of the rf field to a static component, that progressively averages the chemical shift and the dipolar interaction. We show that by increasing the number of modulations in the decoupling field, the ratio of dispersion in the chemical shift to the strength of the static component of the rf field is successively reduced in the progressive frames. The known decoupling methods like continuous wave decoupling, TPPM, etc., can be viewed as special cases of this method and their performance improves by adding additional modulations in the decoupling field. The technique is also expected to find use in design of broadband excitation, inversion and mixing sequences and broadband experiments in solid state NMR. PMID:21227724

  6. Multiplet-separated heteronuclear two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.; Sørensen, O. W.; Ernst, R. R.

    1983-02-01

    Techniques are described for the identification and separation of peaks of different multiplicity in heteronuclear two-dimensional NMR spectroscopy. The methods are applied to the two-dimensional 13C- 1H shift correlation spectrum of menthol.

  7. Two dimensional heteronuclear complexes with cyanide and 4-aminomethylpyridine ligands

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; MuratTaş

    2014-09-01

    Two new cyano-bridged two-dimensional heteronuclear complexes, [Cd(NH3)2(μ-ampy)Ni(μ-CN)2(CN)2]n (1) and [Cd(H2O)2(μ-ampy)Pt(μ-CN)2(CN)2]n (2) (ampy = 4-aminomethylpyridine), were synthesized and characterized by FT-IR and Raman spectroscopic, thermal (TG, DTG and DTA) and elemental analyses and single crystal X-ray diffraction techniques. They crystallize in the triclinic system and P-1 space group. The Ni(II) or Pt(II) ions are four coordinate with four cyanide-carbon atoms in a square planar geometry and the Cd(II) ion exhibits a distorted octahedral coordination by two different N-atoms from two symmetrically equivalent ampy ligands, two ammine or aqua ligands and two bridging cyano groups.The most important features of the complexes are the presence of obvious M⋯π (M = Ni(II) or Pt(II)) interactions.

  8. Studies in protein dynamics using heteronuclear nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya

    Dynamic processes in proteins are important for their biological function. Several issues in protein dynamics are addressed by applying existing NMR methodologies to investigate dynamics of several small proteins. Amide H/D exchange rates have been measured for the N-terminal domain of the ribosomal protein L9, residues 1--56. The results suggest that the structure of the domain is preserved in isolation and that the stability of the isolated domain is comparable to the stability of this domain in intact L9. Single domain proteins can fold in vitro at rates in excess of 1 x 104 s-1. Measurement of folding rates of this magnitude poses a considerable technical challenge. Off-resonance 15N R1rho measurements are shown to be capable of measuring such fast protein folding rates. The measurements were performed on a sample of the peripheral subunit-binding domain from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus 15N labeled at Ala 11. Fast intramolecular motions (on ps-ns time scale) can be studied by heteronuclear laboratory frame NMR relaxation. The temperature dependence of the backbone dynamics of the 36-resiude subdomain of the F-actin bundling protein villin has been investigated by studying the temperature dependence of order parameters obtained from 15N relaxation measurements. The results support the hypothesis that one of the possible mechanisms of thermostability is to lower the heat capacity difference between the folded and unfolded states by lowering the contribution from the backbone dynamics. A commonly used model-free approach for the interpretation of the relaxation data for macromolecules in solution is modified to correct for the decoupling approximation between the overall and internal motions.

  9. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    SciTech Connect

    Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  10. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitry A.; Derevianko, Andrei; Varganov, Sergey A.

    2014-05-01

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X1Σ+ electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm-1 for LiNa and by no more than 114 cm-1 for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm-1, and the discrepancies for the anharmonic correction are less than 0.1 cm-1. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  11. Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates

    SciTech Connect

    Perez-Garcia, Victor M.; Beitia, Juan Belmonte

    2005-09-15

    We show that bright solitons exist in quasi-one-dimensional heteronuclear multicomponent Bose-Einstein condensates with repulsive self-interaction and attractive interspecies interaction. They are remarkably robust to perturbations of initial data and collisions and can be generated by the mechanism of modulational instability. Some possibilities for control and the behavior of the system in fully three-dimensional scenarios are also discussed.

  12. Heteronuclear DNP of protons and deuterons with TEMPOL.

    PubMed

    Kaminker, I; Shimon, D; Hovav, Y; Feintuch, A; Vega, S

    2016-04-28

    Dynamic nuclear polarization (DNP) experiments on samples with several types of magnetic nuclei sometimes exhibit "cross-talk" between the nuclei, such as different nuclei having DNP spectra with similar shapes and enhancements. In this work we demonstrate that while at 20 K the DNP spectra of (1)H and (2)H nuclei, in a sample composed of 50% v/v (1)H2O/DMSO-d6 and containing 40 mM TEMPOL, are different and can be analyzed using the indirect cross effect (iCE) model, at 6 K the DNP spectra of both (1)H and (2)H nuclei become identical. In addition we experimentally demonstrate that there exists an efficient polarization exchange between the two nuclear pools at this temperature. Both of these results are hallmark predictions of the thermal mixing (TM) formalism. However, the origin of these observations cannot, in our case, be explained using the standard TM formalism, as in our sample the electron reservoir cannot be described by a single non-Zeeman spin temperature, which is a prerequisite of TM. This conclusion follows from the analysis of the electron electron double resonance (ELDOR) experiments on our sample and is similar to the previously published results. Consequently, another mechanism must be used in order to explain these "cross-talk" effects. The heteronuclear cross effect (hnCE) DNP mechanism, previously introduced based on the simulations of the spin evolution in small model systems, results in "cross-talk" effects between two types of nuclei that are similar to the experimental ones seen in this work. In particular we show that the hnCE mechanism exhibits polarization transfer between the nuclei and that there exists a clear relationship between the steady state polarizations of the two types of nuclei which may, in the future, be correlated with the phenomenon observed in the two types of bulk nuclear signals in samples during DNP experiments. It is suggested that the hnCE electrons are a possible source for the process that equalizes the bulk

  13. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  14. Generation of heteronuclear 13C 1H chemical-shift correlations using soft pulses

    NASA Astrophysics Data System (ADS)

    Doddrell, David M.; Brooks, William; Field, James; Lynden-Bell, R. M.

    Two multipulse sequences are analyzed which can be used to generate heteronuclear 13C, 1H chemical-shift correlations without 2D NMR techniques. Both sequences utilize polarization-transfer techniques and generate the required chemical-shift correlation using a single soft proton pulse. The most useful technique is an extension of the DEPT method of polarization transfer since not only are the chemical-shift correlations generated in an easy to interpret form, but depending on the specific form of the pulse train used, the method can be employed to obtain information on the CH n group multiplicity. The methods are illustrated by applying them to generate 13C, 1H chemical-shift correlation spectra for menthol and cholesterol.

  15. (1)H, (15)N and (13)C resonance assignments of translationally-controlled tumor protein from photosynthetic microalga Nannochloropsis oceanica.

    PubMed

    Yao, Xingzhe; Xiao, Yan; Cui, Qiu; Feng, Yingang

    2015-10-01

    Translationally-controlled tumor protein (TCTP) is a eukaryote-conserved protein with crucial roles in cellular growth. It has also been proposed that plant TCTP has functions specific to plant, while no structure of TCTP from photosynthetic organism has been reported. Nannochloropsis is a photosynthetic microalga with high yield of lipid and high-value polyunsaturated fatty acid, which is promising for biodiesel production. Study of growth-related proteins may provide new clue for improving the yield of lipid. TCTP from Nannochloropsis oceanica shares low sequence identity with structure-known TCTPs. Here we reported the NMR resonance assignments of TCTP from N. oceanica for further structural and functional studies. PMID:25680850

  16. Backbone and sidechain 1H, 15N and 13C assignments of the KSR1 CA1 domain

    PubMed Central

    Koveal, Dorothy; Pinheiro, Anderson S.; Peti, Wolfgang; Page, Rebecca

    2014-01-01

    The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain. PMID:20737253

  17. Strong-field ionization of a heteronuclear diatomic molecule

    SciTech Connect

    Ren, Xianghe; Nakajima, Takashi

    2010-12-15

    We theoretically study strong-field ionization of a heteronuclear diatomic molecule, CO, by calculating the photoelectron angular distributions (PADs) and the total ionization rates using linearly and circularly polarized laser fields. We find that, although the PADs of CO generally do not have inversion symmetry, they become more inversion symmetric as the photoelectron energy increases. Heteronuclear features of CO upon ionization are better understood by comparing the results with those of a representative of homonuclear molecules, N{sub 2}, in that, although there are some similarities between CO and N{sub 2} due to the same orbital symmetry, {sigma}{sub g}, there are some differences between them in terms of the ionization suppression and orientation dependence of the total ionization yield. Namely, CO behaves more like an atom in the low-intensity range in a sense that ionization takes place mainly from the neighborhood of the C core, while it behaves more like a double-core molecule in the high-intensity range since ionization takes place from the neighborhood of both C and O cores. This explains why ionization suppression of CO is not seen at the low intensity but it becomes more visible at the high intensity range.

  18. Highly Repeatable Dissolution Dynamic Nuclear Polarization for Heteronuclear NMR Metabolomics.

    PubMed

    Bornet, Aurélien; Maucourt, Mickaël; Deborde, Catherine; Jacob, Daniel; Milani, Jonas; Vuichoud, Basile; Ji, Xiao; Dumez, Jean-Nicolas; Moing, Annick; Bodenhausen, Geoffrey; Jannin, Sami; Giraudeau, Patrick

    2016-06-21

    At natural (13)C abundance, metabolomics based on heteronuclear NMR is limited by sensitivity. We have recently demonstrated how hyperpolarization by dissolution dynamic nuclear polarization (D-DNP) assisted by cross-polarization (CP) provides a reliable way of enhancing the sensitivity of heteronuclear NMR in dilute mixtures of metabolites. In this Technical Note, we evaluate the precision of this experimental approach, a critical point for applications to metabolomics. The higher the repeatability, the greater the likelihood that one can detect small biologically relevant differences between samples. The average repeatability of our state-of-the-art D-DNP NMR equipment for samples of metabolomic relevance (20 mg dry weight tomato extracts) is 3.6% for signals above the limit of quantification (LOQ) and 6.4% when all the signals above the limit of detection (LOD) are taken into account. This first report on the repeatability of D-DNP highlights the compatibility of the technique with the requirements of metabolomics and confirms its potential as an analytical tool for such applications. PMID:27253320

  19. Tailored real-time scaling of heteronuclear couplings

    NASA Astrophysics Data System (ADS)

    Schilling, Franz; Glaser, Steffen J.

    2012-10-01

    Heteronuclear couplings are a valuable source of molecular information, which is measured from the multiplet splittings of an NMR spectrum. Radiofrequency irradiation on one coupled nuclear spin allows to modify the effective coupling constant, scaling down the multiplet splittings in the spectrum observed at the resonance frequency of the other nuclear spin. Such decoupling sequences are often used to collapse a multiplet into a singlet and can therefore simplify NMR spectra significantly. Continuous-wave (cw) decoupling has an intrinsic non-linear offset dependence of the scaling of the effective J-coupling constant. Using optimal control pulse optimization, we show that virtually arbitrary off-resonance scaling of the J-coupling constant can be achieved. The new class of tailored decoupling pulses is named SHOT (Scaling of Heteronuclear couplings by Optimal Tracking). Complementing cw irradiation, SHOT pulses offer an alternative approach of encoding chemical shift information indirectly through off-resonance decoupling, which however makes it possible for the first time to achieve linear J scaling as a function of offset frequency. For a simple mixture of eight aromatic compounds, it is demonstrated experimentally that a 1D-SHOT {1H}-13C experiment yields comparable information to a 2D-HSQC and can give full assignment of all coupled spins.

  20. Application of heteronuclear couplings to conformational analysis of oligonucleotides

    SciTech Connect

    Zhu, G.; Live, D.; Bax, A.

    1994-12-01

    The value of vicinal coupling constants extracted from NMR spectra in deducing torsion angles for conformational analysis is well recognized. Due to the abundance of protons, their couplings have been mostly widely used. In many instances, couplings between protons and other nuclei may be a valuable complement to proton-proton couplings or, in some instances, may be the only coupling available to characterize the torsion angle about a bond. Recently, heteronuclear couplings have been used to great benefit in studies of isotopically enriched proteins, and this general approach has been extended to peptides at natural abundance. The possibility of using this approach to study oligonucleotides is also attractive but has not as yet been widely exploited. With the development of strategies for labeling such molecules, particularly RNAs, this may become an important component in conformational analysis. For DNA, labeling is less accessible, but sufficient quantities of unlabeled material are readily available for measuring these couplings at natural abundance. We chose several DNA systems to explore the usefulness of heteronuclear couplings in addressing the sugar conformation and the glycosidic torsion angle. Intensities of cross peaks in long-range HMQC experiments can be related to the couplings. Crosspeaks involving H1{prime} and C1{prime} atoms have been emphasized because of the superior shift dispersion at these positions between sugar protons and carbon atoms. Results will be shown for the self-complementary Dickerson duplex dodecamer sequence d(CGCGAATTCGCG) and for d(GGTCGG), which dimerizes to form a G-tetrad structure incorporating both syn and anti base orientations. The couplings provide a clear discrimination between presence of C3{prime}-endo and C2{prime}-endo conformations of the sugars and syn and anti bases arrangements.

  1. Determination of unresolved heteronuclear scalar coupling constants by J(up)-HSQMBC

    NASA Astrophysics Data System (ADS)

    Glanzer, Simon; Kunert, Olaf; Zangger, Klaus

    2016-07-01

    Long-range heteronuclear scalar coupling constants provide important structural information, which is necessary for obtaining stereospecific assignment or dihedral angle information. The measurement of small proton-carbon splittings is particularly difficult due to the low natural abundance of carbon-13 and the presence of homonuclear couplings of similar size. Here we present a real-time J-upscaled HSQMBC, which allows the measurement of heteronuclear coupling constants even if they are hidden in the signal linewidth of a regular spectrum.

  2. Characterization and quantification of microstructures of a fluorinated terpolymer by both homonuclear and heteronuclear two-dimensional NMR spectroscopy.

    PubMed

    Ok, Salim

    2015-02-01

    Fluoropolymers are usually insoluble in organic solvents. Insolubility of fluoropolymers limits basic characterization such as microstructural investigations. In the family of fluoropolymers, terpolymer of tetrafluorethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF), named THV is one of the newest members. There are nine grades of THV available. Among the nine grades, THV-221 G is an ideal model polymer for basic characterization purposes. THV-221 G is soluble in solvents such as acetone and ethyl acetate. In the current report, both homonuclear and heteronuclear 2D NMR experiments were employed in solution on THV-221 G. The homonuclear gradient correlation spectroscopy NMR measurement revealed that THV has two adjacent TFE units in addition to TFE-HFP sequence orders. The fraction of the microstructures is quantified by the analysis of 1D solution (19)F NMR spectrum. Further, the gradient heteronuclear single quantum coherence experiment helped with the clarification of chemical environments of the units TFE, HFP, and VDF. The 1D solution (13)C NMR spectrum was helpful in clarifying sequence assignments of VDF. It is concluded that THV is a random polymer with a limited fraction of TFE-TFE and TFE-HFP sequence orders in addition to head-to-tail polymerization of VDF unit. PMID:25327292

  3. Simulating spin dynamics in organic solids under heteronuclear decoupling.

    PubMed

    Frantsuzov, Ilya; Ernst, Matthias; Brown, Steven P; Hodgkinson, Paul

    2015-09-01

    Although considerable progress has been made in simulating the dynamics of multiple coupled nuclear spins, predicting the evolution of nuclear magnetisation in the presence of radio-frequency decoupling remains challenging. We use exact numerical simulations of the spin dynamics under simultaneous magic-angle spinning and RF decoupling to determine the extent to which numerical simulations can be used to predict the experimental performance of heteronuclear decoupling for the CW, TPPM and XiX sequences, using the methylene group of glycine as a model system. The signal decay times are shown to be strongly dependent on the largest spin order simulated. Unexpectedly large differences are observed between the dynamics with and without spin echoes. Qualitative trends are well reproduced by modestly sized spin system simulations, and the effects of finite spin-system size can, in favourable cases, be mitigated by extrapolation. Quantitative prediction of the behaviour in complex parameter spaces is found, however, to be very challenging, suggesting that there are significant limits to the role of numerical simulations in RF decoupling problems, even when specialist techniques, such as state-space restriction, are used. PMID:26073419

  4. Bruker AMX Y Channel Heteronuclear Decoupling Using a Linear Amplifier

    SciTech Connect

    Alam, Todd M.; Lang, David P.

    1999-08-02

    Under both static and common MAS conditions (< 15 kHz) the question of residual X-Y heteronuclear decoupling can become a complicating factor in the analysis of various NMR results. In our lab the impact of {sup 31}P-{sup 23}Na dipolar coupling on the observed {sup 23}Na M{sub 2} relaxation for a series of sodium phosphate glasses was recently investigated by employing continuous wave {sup 31}P decoupling during the entire pulse sequence. Initially these efforts were complicate by the inability to provide a gating pulse during the data acquisition using the standard Bruker nomenclature, go=2, for the acquisition loop. A pulse sequence to overcome these restrictions is given below. Our AMX400 instrument is configured with a 3 channel MCI, but utilizes a linear AMT amplifier on the 3rd channel (requiring gating pulse via the C4 program call during the entire time it is on). The standard acquisition loop has been replaced by direct adc and aq commands for data acquisition. Unlike the go=2 statement which does not allow a C4 gating command to be included, these individual acquisition commands can all include distinct C4 gating.

  5. Heteronuclear three-body parameter pinned down by multichannel spinor model

    NASA Astrophysics Data System (ADS)

    Wang, Yujun; Julienne, Paul S.; Greene, Chris H.

    2015-05-01

    Although a quantitative study of ultracold three-body collisions has been recently performed for homonuclear atomic systems, a similar theoretical study for heteronuclear ones has not been available. In this work we show progress in predicting Efimov-like three-body resonances using multichannel spinor models. In particular, we show that our calculations correctly predict the experimental observed isotope dependence of the atom-diatomic resonances in 87Rb-87Rb-40K and 87Rb-87Rb-41K systems without fitting parameters. Our study demonstrates that with our simple spinor models, quantitative characterization of ultracold chemical processes for heteronuclear systems is in principle feasible. Application of our model to other heteronuclear alkali-metal systems is also discussed. The authors acknowledge the support of an AFOSR-MURI FA9550-09-1-0617, Y.W. also acknowledges the support of Department of Physics, Kansas State University.

  6. Determination of unresolved heteronuclear scalar coupling constants by J(up)-HSQMBC.

    PubMed

    Glanzer, Simon; Kunert, Olaf; Zangger, Klaus

    2016-07-01

    Long-range heteronuclear scalar coupling constants provide important structural information, which is necessary for obtaining stereospecific assignment or dihedral angle information. The measurement of small proton-carbon splittings is particularly difficult due to the low natural abundance of carbon-13 and the presence of homonuclear couplings of similar size. Here we present a real-time J-upscaled HSQMBC, which allows the measurement of heteronuclear coupling constants even if they are hidden in the signal linewidth of a regular spectrum. PMID:27183090

  7. Engineering of an all-heteronuclear 5-qubit NMR quantum computer.

    PubMed

    Marx, Raimund; Pomplun, Nikolas; Bermel, Wolfgang; Zeiger, Heinz; Engelke, Frank; Fahmy, Amr F; Glaser, Steffen J

    2015-06-01

    The realization of an all-heteronuclear 5-qubit nuclear magnetic resonance quantum computer is reported, from the design and synthesis of a suitable molecule through the engineering of a prototype 6-channel probe head. Full control over the quantum computer is shown by a benchmark experiment. PMID:25854330

  8. Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR.

    PubMed

    Bartova, Simona; Pechlaner, Maria; Donghi, Daniela; Sigel, Roland K O

    2016-06-01

    Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be. PMID:26880094

  9. Heteronuclear NMR of DNA with the heteronucleus in natural abundance: facilitated assignment and extraction of coupling constants.

    PubMed Central

    Schmieder, P; Ippel, J H; van den Elst, H; van der Marel, G A; van Boom, J H; Altona, C; Kessler, H

    1992-01-01

    Two heteronuclear proton-carbon NMR experiments are applied to the DNA-octamer d(TTGGCCAA)2 with carbon in natural abundance. They lead to a complete assignment of the carbon resonances of the sugars and bases. In addition, several heteronuclear coupling constants, proton-carbon as well as proton-phosphorous and phosphorous-carbon, were determined. The information can be obtained in a reasonable measuring time and offers valuable information for a detailed picture of DNA structure. PMID:1408787

  10. Characterization of heteronuclear decoupling through proton spin dynamics in solid-state nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    De Paëpe, Gaël; Eléna, Bénédicte; Emsley, Lyndon

    2004-08-01

    The work presented here aims at understanding the performance of phase modulated heteronuclear decoupling sequences such as Cosine Modulation or Two Pulse Phase Modulation. To that end we provide an analytical description of the intrinsic behavior of Cosine Modulation decoupling with respect to radio-frequency-inhomogeneity and the proton-proton dipolar coupling network. We discover through a Modulation Frame average Hamiltonian analysis that best decoupling is obtained under conditions where the heteronuclear interactions are removed but notably where homonuclear couplings are recoupled at a homonuclear Rotary Resonance (HORROR) condition in the Modulation Frame. These conclusions are supported by extensive experimental investigations, and notably through the introduction of proton nutation experiments to characterize spin dynamics in solids under decoupling conditions. The theoretical framework presented in this paper allows the prediction of the optimum parameters for a given set of experimental conditions.

  11. Measurement of Heteronuclear Dipolar Coupling by Transferred-Echo Double-Resonance NMR

    NASA Astrophysics Data System (ADS)

    Hing, A. W.; Vega, S.; Schaefer, J.

    A magic-angle spinning experiment called transferred-echo double resonance (TEDOR) has been introduced recently to measure the I-S dipolar coupling of heteronuclear I-S pairs of spin- {1}/{2} nuclei while eliminating unwanted background signals from uncoupled I and S spins via a coherence-transfer process. In this paper, a quantitative description of the TEDOR experiment is given in terms of the evolution of the density matrix for a pair of heteronuclear spins. The resulting equations provide a theoretical basis for evaluating the selectivity and sensitivity of TEDOR and suggest strategies for determining dipolar coupling constants directly from TEDOR data. Experimental examples illustrating these aspects of TEDOR are provided by studies performed on a range of 13C- 15N dipolar couplings found in double-labeled asparagine, alanine, glycine, and the linear peptide antibiotic, gramicidin.

  12. An effective field theory analysis of Efimov features in heteronuclear mixture of ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Acharya, Bijaya; Ji, Chen; Platter, Lucas

    2016-05-01

    Recent experimental studies have unveiled Efimov physics in ultracold atomic gases of heteronuclear mixtures. The recombination features of such atomic systems display universal correlations including discrete scaling invariance. We use Effective Field Theory (EFT) to study the Efimov features of the heteronuclear three-atom systems consisting of two identical bosons which interact with each other through a natural scattering length and with the third particle through a large scattering length. We compute the corrections to the universal correlations by perturbative insertions of the interspecies effective range and the intraspecies scattering length. Such an analysis is relevant for mixtures of ultracold atomic gases near the interspecies Feshbach resonance. Supported by the US Department of Energy under Contract No. DE-AC05-00OR22725 and the National Science Foundation under Grant No. PHY-1516077.

  13. Improving the resolution in proton-detected through-space heteronuclear multiple quantum correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Ming; Trébosc, J.; Lafon, O.; Pourpoint, F.; Hu, Bingwen; Chen, Qun; Amoureux, J.-P.

    2014-08-01

    Connectivities and proximities between protons and low-gamma nuclei can be probed in solid-state NMR spectroscopy using two-dimensional (2D) proton-detected heteronuclear correlation, through Heteronuclear Multiple Quantum Correlation (HMQC) pulse sequence. The indirect detection via protons dramatically enhances the sensitivity. However, the spectra are often broadened along the indirect F1 dimension by the decay of heteronuclear multiple-quantum coherences under the strong 1H-1H dipolar couplings. This work presents a systematic comparison of the performances of various decoupling schemes during the indirect t1 evolution period of dipolar-mediated HMQC (D-HMQC) experiment. We demonstrate that 1H-1H dipolar decoupling sequences during t1, such as symmetry-based schemes, phase-modulated Lee-Goldburg (PMLG) and Decoupling Using Mind-Boggling Optimization (DUMBO), provide better resolution than continuous wave 1H irradiation. We also report that high resolution requires the preservation of 1H isotropic chemical shifts during the decoupling sequences. When observing indirectly broad spectra presenting numerous spinning sidebands, the D-HMQC sequence must be fully rotor-synchronized owing to the rotor-synchronized indirect sampling and dipolar recoupling sequence employed. In this case, we propose a solution to reduce artefact sidebands caused by the modulation of window delays before and after the decoupling application during the t1 period. Moreover, we show that 1H-1H dipolar decoupling sequence using Smooth Amplitude Modulation (SAM) minimizes the t1-noise. The performances of the various decoupling schemes are assessed via numerical simulations and compared to 2D 1H-{13C} D-HMQC experiments on [U-13C]-L-histidineṡHClṡH2O at various magnetic fields and Magic Angle spinning (MAS) frequencies. Great resolution and sensitivity enhancements resulting from decoupling during t1 period enable the detection of heteronuclear correlation between aliphatic protons and

  14. The possibility of laser action in ionic heteronuclear molecules. I - Spectroscopy. II - Kinetics

    NASA Astrophysics Data System (ADS)

    Basov, N. G.; Voitik, M. G.; Zuev, V. S.; Kutakhov, V. P.

    1985-11-01

    A theoretical study is presented of the electronic structure of levels of ionic heteronuclear molecules (IHM) consisting of atoms and ions of inert gases, halogens, the oxygen group, and alkali metals. Electron transitions are found which are promising for the generation of laser action in the visible, UV, and far UV (greater than 70 nm). In addition, the feasibility of a new family of IHM gas lasers emitting in the above-mentioned ranges is demonstrated theoretically.

  15. Long-range dispersion interactions. I. Formalism for two heteronuclear atoms

    SciTech Connect

    Zhang, J.-Y.; Mitroy, J.

    2007-08-15

    A general procedure for systematically evaluating the long-range dispersion interaction between two heteronuclear atoms in arbitrary states is outlined. The C{sub 6} dispersion parameter can always be written in terms of sum rules involving oscillator strengths only and formulas for a number of symmetry cases are given. The dispersion coefficients for excited alkali-metal atoms interacting with the ground-state H and He are tabulated.

  16. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    SciTech Connect

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr. E-mail: ncn@inano.au.dk; Madhu, P. K. E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions is delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.

  17. Methodology for solid state NMR off-resonance study of molecular dynamics in heteronuclear systems.

    PubMed

    Jurga, Kazimierz; Woźniak-Braszak, Aneta; Baranowski, Mikołaj

    2015-10-01

    Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2 MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411 MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6 MHz and at the frequency of 28.411 MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics. PMID:26272112

  18. High-order-harmonic generation in homonuclear and heteronuclear diatomic molecules: Exploration of multiple orbital contributions

    SciTech Connect

    Heslar, John; Telnov, Dmitry; Chu, Shih-I

    2011-04-15

    We present a time-dependent density functional theory (TDDFT) approach with proper asymptotic long-range potential for nonperturbative treatment of high-order harmonic generation (HHG) of diatomic molecules with their molecular axis parallel to the laser field polarization. A time-dependent two-center generalized pseudospectral method in prolate spheroidal coordinate system is used for accurate and efficient treatment of the TDDFT equations in space and time. The theory is applied to a detailed all-electron nonperturbative investigation of HHG processes of homonuclear (N{sub 2} and F{sub 2}) and heteronuclear (CO, BF, and HF) molecules in intense ultrashort laser pulses with the emphasis on the role of multiple molecular orbitals (MOs). The results reveal intriguing and substantially different nonlinear optical response behaviors for homonuclear and heteronuclear molecules. In particular, we found that the HHG spectrum for homonuclear molecules features a destructive interference of MO contributions while heteronuclear molecules show mostly constructive interference of orbital contributions.

  19. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E. S.; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method’s potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet’s homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy’s capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences’ performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  20. (1)H, (15)N and (13)C chemical shift assignment of the Gram-positive conjugative transfer protein TraHpIP501.

    PubMed

    Fercher, Christian; Keller, Walter; Zangger, Klaus; Helge Meyer, N

    2016-04-01

    Conjugative transfer of DNA represents the most important transmission pathway in terms of antibiotic resistance and virulence gene dissemination among bacteria. TraH is a putative transfer protein of the type IV secretion system (T4SS) encoded by the Gram-positive (G+) conjugative plasmid pIP501. This molecular machine involves a multi-protein core complex spanning the bacterial envelope thereby serving as a macromolecular secretion channel. Here, we report the near complete (1)H, (13)C and (15)N resonance assignment of a soluble TraH variant comprising the C-terminal domain. PMID:26559076

  1. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution.

    PubMed

    Tjandra, N; Omichinski, J G; Gronenborn, A M; Clore, G M; Bax, A

    1997-09-01

    Anisotropy of the molecular magnetic susceptibility gives rise to a small degree of alignment. The resulting residual dipolar couplings, which can now be measured with the advent of higher magnetic fields in NMR, contain information on the orientation of the internuclear vectors relative to the molecular magnetic susceptibility tensor, thereby providing information on long range order that is not accessible by any of the solution NMR parameters currently used in structure determination. Thus, the dipolar couplings constitute unique and powerful restraints in determining the structures of magnetically oriented macromolecules in solution. The method is demonstrated on a complex of the DNA-binding domain of the transcription factor GATA-1 with a 16 base pair oligodeoxyribonucleotide. PMID:9303001

  2. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein. PMID:25893672

  3. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  4. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  5. Direct writing of CoFe alloy nanostructures by focused electron beam induced deposition from a heteronuclear precursor

    NASA Astrophysics Data System (ADS)

    Porrati, F.; Pohlit, M.; Müller, J.; Barth, S.; Biegger, F.; Gspan, C.; Plank, H.; Huth, M.

    2015-11-01

    Recently, focused electron beam-induced deposition has been employed to prepare functional magnetic nanostructures with potential in nanomagnetic logic and sensing applications by using homonuclear precursor gases like Fe(CO)5 or Co2(CO)8. Here we show that an extension towards the fabrication of bi-metallic compounds is possible by using a single-source heteronuclear precursor gas. We have grown CoFe alloy magnetic nanostructures from the HFeCo3(CO)12 metal carbonyl precursor. The compositional analysis indicates that the samples contain about 80 at% of metal and 10 at% of carbon and oxygen. Four-probe magnetotransport measurements are carried out on nanowires of various sizes down to a width of 50 nm, for which a room temperature resistivity of 43 μΩcm is found. Micro-Hall magnetometry reveals that 50 nm × 250 nm nanobars of the material are ferromagnetic up to the highest measured temperature of 250 K. Finally, the transmission electron microscopy (TEM) microstructural investigation shows that the deposits consist of a bcc Co-Fe phase mixed with a FeCo2 O4 spinel oxide phase with nanograins of about 5 nm diameter.

  6. Heteronuclear dipolar couplings, total spin coherence, and bilinear rotations in NMR spectroscopy

    SciTech Connect

    Garbow, J.R.

    1983-07-01

    In Chapter 1 a variety of different introductory topics are presented. The potential complexity of the nuclear magnetic resonsnace (NMR) spectra of molecules dissolved in liquid crystal solvents serves to motivate the development of multiple quantum (MQ) spectroscopy. The basics of MQ NMR are reviewed in Chapter 2. An experimental search procedure for the optimization of MQ pulse sequences is introduced. Chapter 3 discusses the application of MQ NMR techniques to the measurement of dipolar couplings in heteronuclear spin systems. The advantages of MQ methods in such systems are developed and experimental results for partially oriented (1-/sup 13/C) benzene are presented. Several pulse sequences are introduced which employ a two-step excitation of heteronuclear MQ coherence. A new multiple pulse method, involving the simultaneous irradiation of both rare and abundant spin species, is described. The problem of the broadening of MQ transitions due to magnetic field inhomogeneity is considered in Chapter 4. The method of total spin coherence transfer echo spectroscopy (TSCTES) is presented, with experimets on partially oriented acetaldehyde serving to demonstrate this new technique. TSCTES results in MQ spectra which are sensitive to all chemical shifts and spin-spin couplings and which are free of inhomogeneous broadening. In Chapter 5 the spectroscopy of spin systems of several protons and a /sup 13/C nucleus in the isotropic phase is discussed. The usefulness of the heteronuclear bilinear rotation as a calculational tool is illustrated. Compensated bilinear ..pi.. rotations, which are relatively insensitive to timing parameter missets, are presented. A new technique for homonuclear proton decoupling, Bilinear Rotation Decoupling, is described and its success in weakly coupled systems is demonstrated.

  7. Selective charge asymmetric distribution in heteronuclear diatomic molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2015-07-01

    In this paper we study double-ionization-induced charge asymmetric dissociation (CAD) in heteronuclear diatomic molecules. In CO we find a selective charge distribution in two CAD channels, i.e., C2 ++O is abundantly produced but C +O2 + is nearly nonexistent. This cannot be explained by the ionization energy difference between the two channels alone. Our study shows that the C2 ++O channel is sequentially formed through an intermediate state C++O and the selective charge distribution is the result of electron distribution in CO when exposed to intense laser fields.

  8. Quantum atom-heteronuclear molecule dark state: Role of population imbalance

    SciTech Connect

    Jing Hui; Cui Shuai

    2010-08-15

    Recently, the finite-number effect of initial atoms in coherent atom-molecule conversion was investigated by Zhao et al. [Phys. Rev. Lett. 101, 010401 (2008)]. Here, by extending to the atom-heteronuclear molecule dark state, we find that the initial populations imbalance of the atoms plays a significant role in quantum conversion rate and adiabatic fidelity. In particular, even for the finite total number of imbalanced two-species atoms, the mean-field conversion rate, contrary to the general belief, still can be remarkably close to the exact quantum results.

  9. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies.

    PubMed

    Nikonowicz, E P; Sirr, A; Legault, P; Jucker, F M; Baer, L M; Pardi, A

    1992-09-11

    A procedure is described for the efficient preparation of isotopically enriched RNAs of defined sequence. Uniformly labelled nucleotide 5'triphosphates (NTPs) were prepared from E.coli grown on 13C and/or 15N isotopically enriched media. These procedures routinely yield 180 mumoles of labelled NTPs per gram of 13C enriched glucose. The labelled NTPs were then used to synthesize RNA oligomers by in vitro transcription. Several 13C and/or 15N labelled RNAs have been synthesized for the sequence r(GGCGCUUGCGUC). Under conditions of high salt or low salt, this RNA forms either a symmetrical duplex with two U.U base pairs or a hairpin containing a CUUG loop respectively. These procedures were used to synthesize uniformly labelled RNAs and a RNA labelled only on the G and C residues. The ability to generate milligram quantities of isotopically labelled RNAs allows application of multi-dimensional heteronuclear magnetic resonance experiments that enormously simplify the resonance assignment and solution structure determination of RNAs. Examples of several such heteronuclear NMR experiments are shown. PMID:1383927

  10. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  11. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields

    NASA Astrophysics Data System (ADS)

    Tomza, Michał

    2015-08-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products.

  12. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields.

    PubMed

    Tomza, Michał

    2015-08-01

    We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products. PMID:26296115

  13. Two-center interference in high-order harmonic generation from heteronuclear diatomic molecules.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lan, Pengfei; Lu, Peixiang

    2011-01-17

    Two-center interference for heteronuclear diatomic molecules (HeDM) is investigated. The minimum in the high-order harmonic spectrum, as a consequence of the destructive interference, is shifted to lower harmonic orders compared with that in a homonuclear case. This phenomenon is explained by performing phase analysis. It is found that, for an HeDM, the high harmonic spectrum contains information not only on the internuclear separation but also on the properties of the two separate centers, which implies the potential application of estimating the asymmetry of molecules and judging the linear combination of atomic orbitals (LCAO) for the highest occupied molecular orbital (HOMO). Moreover, the possibility to monitor the evolution of HOMO itself in molecular dynamics is also promised. PMID:21263583

  14. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Bjerring, Morten; Sharma, Kshama; Madhu, P. K.; Nielsen, Niels Chr.

    2016-01-01

    Heteronuclear spin decoupling in solid-state magic-angle spinning NMR is investigated to present methods overcoming interferences between rf irradiation and sample spinning in the intermediate to fast spinning regime. We demonstrate that a recent phase-alternated variant of refocused CW irradiation (rCWApA) provides efficient and robust decoupling in this regime. An extensive experimental and numerical comparison is presented for rCWApA and PISSARRO (phase-inverted supercycled sequence for attenuation of rotary resonance), previously introduced to quench rotary-resonance recoupling effects, under conditions with spinning frequencies between 30 and 60 kHz. Simulations are used to identify the effect of decoupling for various nuclear spin interactions.

  15. Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR.

    PubMed

    Gooley, P R; Johnson, B A; Marcy, A I; Cuca, G C; Salowe, S P; Hagmann, W K; Esser, C K; Springer, J P

    1993-12-01

    Stromelysin-1, a member of the matrix metalloendoprotease family, is a zinc protease involved in the degradation of connective tissue in the extracellular matrix. As a step toward determining the structure of this protein, multidimensional heteronuclear NMR experiments have been applied to an inhibited truncated form of human stromelysin-1. Extensive 1H, 13C, and 15N sequential assignments have been obtained with a combination of three- and four-dimensional experiments. On the basis of sequential and short-range NOEs and 13C alpha chemical shifts, two helices have been delineated, spanning residues Asp-111 to Val-127 and Leu-195 to Ser-206. A third helix spanning residues Asp-238 to Gly-247 is characterized by sequential NOEs and 13C alpha chemical shifts, but not short-range NOEs. The lack of the latter NOEs suggests that this helix is either distorted or mobile. Similarly, sequential and interstrand NOEs and 13C alpha chemical shifts characterize a four-stranded beta-sheet with three parallel strands (Arg-100 to Ile-101, Ile-142 to Ala-147, Asp-177 to Asp-181) and one antiparallel strand (Ala-165 to Tyr-168). Two zinc sites have been identified in stromelysin [Salowe et al. (1992) Biochemistry 31, 4535-4540]. The NMR spectral properties, including chemical shift, pH dependence, and proton coupling of the imidazole nitrogens of six histidine residues (151, 166, 179, 201, 205, and 211), invariant in the matrix metalloendoprotease family, suggest that these residues are zinc ligands. NOE data indicate that these histidines form two clusters: one ligates the catalytic zinc (His-201, -205, and -211), and the other ligates a structural zinc (His-151, -166, and -179). Heteronuclear multiple quantum correlated spectra and specific labeling experiments indicate His-151, -179, -201, -205, and -211 are in the N delta 1H tautomer and His-166 is in the N epsilon 2H tautomer. PMID:8241164

  16. Adiabatic single scan two-dimensional NMR spectrocopy.

    PubMed

    Pelupessy, Philippe

    2003-10-01

    New excitation schemes, based on the use adiabatic pulses, for single scan two-dimensional NMR experiments (Frydman et al., Proc. Nat. Acad. Sci. 2002, 99, 15 858-15 862) are introduced. The advantages are discussed. Applications in homo- and heteronuclear experiments are presented. PMID:14519020

  17. Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules

    SciTech Connect

    Hasovic, E.; Busuladzic, M.; Becker, W.; Milosevic, D. B.

    2011-12-15

    The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

  18. Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR.

    PubMed

    Chen, Lei; Wang, Qiang; Hu, Bingwen; Lafon, Olivier; Trébosc, Julien; Deng, Feng; Amoureux, Jean-Paul

    2010-08-28

    A Symmetry-based Resonance-Echo DOuble-Resonance (S-REDOR) method is proposed for measuring hetero-nuclear dipolar couplings between two different spin-1/2 nuclei, under fast magic-angle spinning. The hetero-nuclear dipolar couplings are restored by employing the SR4 sequence, which requires the rf-field strength to be only twice the spinning frequency. The S-REDOR experiment is extended to S-RESPDOR (Symmetry-based Resonance-Echo Saturation-Pulse DOuble-Resonance) for determining dipolar coupling between a spin-1/2 nucleus (e.g.(13)C) and (14)N. It is demonstrated that S-REDOR and S-RESPDOR methods suppress efficiently the homo-nuclear dipolar interaction of the irradiated nucleus and benefit from high robustness to the rf-field inhomogeneity, chemical shielding and dipolar truncation. Therefore, these methods allow the measurement of (13)C/(14,15)N distances, with (13)C observation, in uniformly (13)C-labeled samples. Furthermore, we provide analytical solutions for the S-REDOR and S-RESPDOR dephasing curves. These solutions facilitate the measurement of hetero-nuclear distances from experimental data. PMID:20577687

  19. Structures and standard molar enthalpies of formation of a series of Ln(III)–Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid

    SciTech Connect

    Yang, Qi; Xie, Gang; Wei, Qing; Chen, Sanping Gao, Shengli

    2014-07-01

    Fifteen lanthanide–copper heteronuclear compounds, formulated as [CuLn{sub 2}(pzdc){sub 4}(H{sub 2}O){sub 6}]·xH{sub 2}O (1–6(x=2), 8(x=3), 9–10(x=4)); [CuLn{sub 2}(pzdc){sub 4}(H{sub 2}O){sub 4}]·xH{sub 2}O (7, 12–13, 15(x=4), 14(x=5), 11(x=8)) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H{sub 2}pzdc (C{sub 6}H{sub 4}N{sub 2}O{sub 4})=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with (4.6{sup 2}){sub 2}(4{sup 2}.6{sup 2}.8{sup 2})(6{sup 3}){sup 2}(6{sup 5}.8){sub 2} topology. Using 1 mol cm{sup −3} HCl(aq) as calorimetric solvent, with an isoperibol solution–reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state. - Graphical abstract: According to Hess' rule, the standard molar enthalpies of formation of Ln–Cu heterometallic coordination compounds were determined by a designed thermochemical cycle. - Highlights: • Fifteen lanthanide–copper heteronuclear isostructural compounds. • Structurally characterization by IR, X-ray diffraction and thermal analysis. • The standard molar enthalpy of formation. • Isoperibol solution–reaction calorimetry.

  20. Mixed frequency/time domain optical analogues of heteronuclear multidimensional NMR.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Meyer, Kent A; Kornau, Kathryn; Mathew, Nathan A; Thompson, David E; Wright, John C

    2006-03-16

    Ultrafast spectroscopy is dominated by time domain methods such as pump-probe and, more recently, 2D-IR spectroscopies. In this paper, we demonstrate that a mixed frequency/time domain ultrafast four wave mixing (FWM) approach not only provides similar capabilities, but it also provides optical analogues of multiple- and zero-quantum heteronuclear nuclear magnetic resonance (NMR). The method requires phase coherence between the excitation pulses only over the dephasing time of the coherences. It uses twelve coherence pathways that include four with populations, four with zero-quantum coherences, and four with double-quantum coherences. Each pathway provides different capabilities. The population pathways correspond to those of two-dimensional (2D) time domain spectroscopies, while the double- and zero-quantum coherence pathways access the coherent dynamics of coupled quantum states. The three spectral and two temporal dimensions enable the isolation and characterization of the spectral correlations between different vibrational and/or electronic states, coherence and population relaxation rates, and coupling strengths. Quantum-level interference between the direct and free-induction decay components gives a spectral resolution that exceeds that of the excitation pulses. Appropriate parameter choices allow isolation of individual coherence pathways. The mixed frequency/time domain approach allows one to access any set of quantum states with coherent multidimensional spectroscopy. PMID:16526612

  1. Regulation of charge delocalization in a heteronuclear Fe2 ru system by a stepwise photochromic process.

    PubMed

    Xu, Guang-Tao; Li, Bin; Wang, Jin-Yun; Zhang, Dao-Bin; Chen, Zhong-Ning

    2015-02-16

    Heteronuclear complexes FeCp2 -DTE-C≡C-Ru(dppe)2 Cl (1 o; dppe=1,2-bis(diphenylphosphino)ethane, Cp=cyclopentadienyl, DTE=dithienylethene) and FeCp2-DTE-C≡C-Ru(dppe)2-C≡C-DTE-FeCp2 (2 oo), with redox-active ferrocenyl and ruthenium centers separated by a photochromic DTE moiety, were prepared to achieve photoswitchable charge delocalization and Fe⋅⋅⋅Ru electronic communication. Upon UV-light irradiation of 2 oo, the Fe⋅⋅⋅Ru heterometallic electronic interaction is increasingly facilitated with stepwise photocyclization, 2 oo→2 co→2 cc; this is ascribed to the gradual increase in π-conjugated systems. The near-infrared absorptions in mixed-valence species [2 oo](+) /[2 co](+) /[2 cc](+) are gradually intensified following the conversion of [2 oo](+) →[2 co](+) →[2 cc](+) , which demonstrates that the extent of charge delocalization shows progressive enhancement with stepwise photocyclization. As revealed by electrochemical, spectroscopic, and theoretical studies, complex 2 exhibits nine switchable states through stepwise photochromic and reversible redox processes. PMID:25640650

  2. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    PubMed

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time. PMID:27306000

  3. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.

    2016-06-01

    Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  4. Structural dynamics and folding of beta-lactoglobulin probed by heteronuclear NMR.

    PubMed

    Sakurai, Kazumasa; Konuma, Tsuyoshi; Yagi, Masanori; Goto, Yuji

    2009-06-01

    Bovine beta-lactoglobulin (beta LG) has been one of the most extensively studied proteins in the history of protein science mainly because its abundance in cow's milk makes it readily available to researchers. However, compared to other textbook proteins, progress in the study of beta LG has been slow because of obstacles such as a low reversibility from denaturation linked with thiol-disulfide exchange or monomer-dimer equilibrium preventing a detailed NMR analysis. Recently, the expression of various types of recombinant beta LGs combined with heteronuclear NMR analysis has significantly improved understanding of the physico-chemical properties of beta LG. In this review, we address several topics including pH-dependent structural dynamics, ligand binding, and the complex folding mechanism with non-native intermediates. These unique properties might be brought about by conformational frustration of the beta LG structure, partly attributed to the relatively large molecular size of beta LG. We expect studies with beta LG to continue to reveal various important findings, difficult to obtain with small globular proteins, leading to a more comprehensive understanding of the conformation, dynamics and folding of proteins. PMID:19362581

  5. Observation of Resonant Effects in Ultracold Collisions between Heteronuclear Feshbach Molecules

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Wang, Fudong; Zhu, Bing; Guo, Mingyang; Lu, Bo; Wang, Dajun

    2016-05-01

    Magnetic field dependent dimer-dimer collisional losses are studied with ultracold 23 Na87 Rb Feshbach molecules. By ramping the magnetic field across the 347.8 G inter-species Feshbach resonance and removing residual atoms with a magnetic field gradient, ~ 8000 pure NaRb Feshbach molecules with a temperature below 1 μK are produced. By holding the pure molecule sample in a crossed optical dipole trap and measuring the time-dependent loss curves under different magnetic fields near the Feshbach resonance, the dimer-dimer loss rates with respect to the atomic scattering length a are mapped out. We observe a resonant feature at around a = 600a0 and a rising tail at above a = 1600a0 . This behavior resembles previous theoretical works on homonuclear Feshbach molecule, where resonant effects between dimer-dimer collisions tied to tetramer bound states were predicted. Our work shows the possibility of exploring four-body physics within a heteronuclear system. We are supported by Hong Kong RGC General Research Fund no. CUHK403813.

  6. Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Park, Sang Ho; Opella, Stanley J.

    2012-07-01

    We demonstrate 1H amide resonance line widths <300 Hz in 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in aligned phospholipid bilayers. This represents a substantial improvement over typically observed line widths of ˜1 kHz. Furthermore, in a proton detected local field (PDLF) version of the experiment that measures heteronuclear dipolar couplings, line widths <130 Hz are observed. This dramatic line narrowing of 1H amide resonances enables many more individual signals to be resolved and assigned from uniformly 15N labeled membrane proteins in phospholipid bilayers under physiological conditions of temperature and pH. Finding that the decrease in line widths occurs only for membrane proteins that undergo fast rotational diffusion around the bilayer normal, but not immobile molecules, such as peptide single crystals, identifies a potential new direction for pulse sequence development that includes overall molecular dynamics in their design.

  7. pH-Dependent two novel heteronuclear Cu(II)/Sr(II) coordination polymers constructed from 1,3,5-benzenetricarboxylic acid: Synthesis, crystal structures and properties

    NASA Astrophysics Data System (ADS)

    Sun, Qiao-Zhen; Yin, Yi-Biao; Pan, Jun-Qiao; Chai, Li-Yuan; Su, Nan; Liu, Hui; Zhao, Yi-Lin; Liu, Xing-Tao

    2016-02-01

    Two novel heteronuclear coordination polymers, namely, [CuSr2(BTC)2]·10H2O (1) and [Cu2Sr(H4TMA)2]·4H2O (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, H4TMA = 2-hydroxytrimesic acid) were hydrothermally synthesized as pH-dependent products and characterized by elemental analysis (EA), infrared spectroscopy (IR) and single crystal X-ray diffraction. For compound 1, it displays a 3D structure with (2,5,6)-connected net topology. For 2, the H3BTC ligand is oxidized into H4TMA and compound 2 features a 2D layer structure, which is further linked by Cu⋯Cu and Cu⋯O supramolecular interactions into a 3D structure. The results show that the pH plays a crucial role in determining the structure of the compounds. In addition, thermalgravimetric analysis of compounds 1-2 and luminescence property of 1 are also investigated.

  8. Structures and standard molar enthalpies of formation of a series of Ln(III)-Cu(II) heteronuclear compounds with pyrazine-2,3-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Xie, Gang; Wei, Qing; Chen, Sanping; Gao, Shengli

    2014-07-01

    Fifteen lanthanide-copper heteronuclear compounds, formulated as [CuLn2(pzdc)4(H2O)6]·xH2O (1-6(x=2), 8(x=3), 9-10(x=4); [CuLn2(pzdc)4(H2O)4]·xH2O (7, 12-13, 15(x=4), 14(x=5), 11(x=8) (Ln(III)=La(1); Ce(2); Pr(3); Nd(4); Sm(5); Eu(6); Gd(7); Tb(8); Dy(9); Ho(10); Er(11); Tm(12); Yb(13); Lu(14); Y(15); H2pzdc (C6H4N2O4)=pyrazine-2,3-dicarboxylic acid) have been hydrothermally synthesized. All compounds were characterized by element analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analyses confirm that all compounds are isostructural and feature a 3D brick-like framework structure with {4.62}2{42.62.82}{63}2{65.8}2 topology. Using 1 mol cm-3 HCl(aq) as calorimetric solvent, with an isoperibol solution-reaction calorimeter, the standard molar enthalpies of formation of all compounds were determined by a designed thermochemical cycle. In addition, solid state luminescence properties of compounds 5, 6, 8 and 9 were studied in the solid state.

  9. Electron correlation and relativistic effects in the coinage metal compounds. II. Heteronuclear dimers: CuAg, CuAu, and AgAu

    NASA Astrophysics Data System (ADS)

    Kellö, Vladimir; Sadlej, Andrzej J.

    1995-08-01

    Electric properties of heteronuclear dimers of the coinage metals are calculated at the level of the CCSD(T) approximation applied to 38 electrons of the valence and next-to-valence atomic shells. The relativistic effects are accounted for by using the scalar approximation to the Pauli hamiltonian. Both the pure relativistic and mixed relativistic-correlation contributions to energies and electric properties are computed. All calculations have been carried out by using the recently developed first-order polarized basis sets of the coinage metal atoms. In the non-relativistic approximation all studied dimers show only a moderate degree of polarity; the non-relativistic CuAg turns out to be the most polar dimer with the Cu(-)Ag(+) polarity. The relativistic effects considerably reduce the negative value of the CuAg dipole moment, change the sign of the CuAu dipole moment, and make the AgAu molecule the most polar species in the series. Simultaneously, the parallel component of the dipole polarizability shows only a small relativistic contraction. The calculated quasirelativistic interaction potentials have a correct behavior in the vicinity of their minima and give the Re and ωe values in complete agreement with experiment. Much less satisfactory are the dissociation energy data which seem to suffer from the single reference configuration approximation.

  10. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins

    NASA Astrophysics Data System (ADS)

    Traaseth, Nathaniel J.; Chao, Fa-An; Masterson, Larry R.; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1ρ and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R1ρ and transverse R2ρ) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (kex ˜ 104-105 s-1). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R1ρ and R2ρ relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R1ρ and R2ρ that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R1ρ experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.

  11. Heteronuclear cross-polarization in multinuclear multidimensional NMR: Prospects for triple-resonance CP

    SciTech Connect

    Majumdar, A.; Zuiderweg, E.R.P.

    1994-12-01

    Heteronuclear multiple-pulse-based Cross Polarization (HECP) between scalar coupled spins is gaining an important role in high-resolution multidimensional NMR of isotopically labeled biomolecules, especially in experiments involving net magnetization transfer. It has generally been observed that in these situations, the performance of HECP is superior to that of INEPT-based sequences. In particular, HECP-based three-dimensional HCCH spectroscopy is more efficient than the INEPT version of the same experiment. Differences in sensitivity have been intuitively attributed to relaxation effects and technical factors such as radiofrequency (rf) inhomogeneity We present theoretical analyses and computer simulations to probe the effects of these factors. Relaxation effects were treated phenomenologically; we found that relaxation differences are relatively small (up to 25%) between pulsed-free-precession (INEPT) and HECP-although always in favor of HECP. We explored the rf effects by employing a Gaussian distribution of rf amplitude over sample volume. We found that inhomogeneity effects significantly favor HECP over INEPT, especially under conditions of {open_quotes}matched {close_quotes} inhomogeneity in the two rf coils. The differences in favor of HECP indicate that an extension of HECP to triple resonance experiments (TRCP) in I -> S -> Q net transfers might yield better results relative to analogous INEPT-based net transfers. We theoretically analyze the possibilities of TRCP and find that transfer functions are critically dependent on the ratio J{sub IS}/J{sub SQ}. When J{sub IS} equals J{sub SQ}, we find that 100% transfer is possible for truly simultaneous TRCP and this transfer is obtained in a time 1.41 /J. The TRCP time requirement compares favorably with optimally concatenated INEPT-transfers, where net transfer I -> S -> Q is complete at 1.5 /J.

  12. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    SciTech Connect

    Nohaile, M J

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five {alpha}-helices and a five-stranded {beta}-sheet in a ({beta}/{alpha}){sub 5} topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  13. Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast.

    PubMed

    Chiou, Jian Wei; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The receptor for advanced glycation end products (RAGE), a transmembrane receptor in the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE induces cellular signaling pathways upon binding with various ligands, such as advanced glycation end products (AGEs), β-amyloids, and S100 proteins. The solution structure of S100A12 and the V ligand-binding region of RAGE have been reported previously. Using heteronuclear NMR spectroscopy to conduct 1H-15N heteronuclear single quantum coherence (HSQC) titration experiments, we identified and mapped the binding interface between S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the constraints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to generate a structural model of the S100A12-V domain complex. In addition, tranilast (an anti-allergic drug) showed strong interaction with S100A12 in the 1H-15N HSQC titration, fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was located at the binding site between S100A12 and the V domain, blocking interaction between these two proteins. Our results provide the mechanistic details for a structural model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which could be useful for the development of new drugs. PMID:27598566

  14. Efficient heteronuclear decoupling in MAS solid-state NMR using non-rotor-synchronized rCW irradiation.

    PubMed

    Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr

    2014-09-01

    We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. PMID:25123538

  15. Homonuclear and Heteronuclear NMR Studies of a Statherin Fragment Bound to Hydroxyapatite Crystals

    SciTech Connect

    Raghunathan, Vinodhkumar; Gibson, James M.; Goobes, Gil; Popham, Jennifer M.; Louie, Elizabeth; Stayton, Patrick; Drobny, Gary P.

    2006-05-11

    Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N(31P) rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N(31P) REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and

  16. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR.

    PubMed

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr; Nielsen, Anders B

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability. PMID:27608995

  17. Matter-wave solitons in heteronuclear atomic Bose-Einstein condensates with synchronously controllable interactions and potentials

    SciTech Connect

    Ding, Cai-Ying; Zhang, Xiao-Fei; Liu, W. M.; Zhao, Dun; Luo, Hong-Gang

    2011-11-15

    We investigate exact matter-wave soliton pairs of two-component heteronuclear atomic Bose-Einstein condensates with tunable interactions and harmonic potentials by using a combination of the homogeneous balance principle and the F-expansion technique. Our results show that exact matter-wave soliton pairs are asymmetric where their existence requires some restrictive conditions corresponding to experimentally controllable interactions and harmonic potential parameters. In contrast to homonuclear systems, the potentials for two components in heteronuclear systems are different, which is due to the mass of two components being unequal. Considering two explicit situations of the interaction parameters, we further explore the collision dynamics of the soliton pairs with opposite velocities by synchronously controlling the interaction and potential parameters. The collision dynamics occur during and after the simultaneous evaporative cooling of two condensates. The results show that collisions are elastic and that the solitons after the collision can keep their identities. In addition, we find that the amplitudes of the soliton pairs periodically grow with time during the cooling process and, for the same initial conditions, the collision time of the soliton pair without gain is delayed compared with that with gain. We also discuss how to observe these new phenomena in future experiments.

  18. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    SciTech Connect

    Hou, Guangjin E-mail: tpolenov@udel.edu; Lu, Xingyu E-mail: lexvega@comcast.net; Vega, Alexander J. E-mail: lexvega@comcast.net; Polenova, Tatyana E-mail: tpolenov@udel.edu

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  19. Heteronuclear correlations by multiple-quantum evolution. II. Proton-proton "decoupling" and multiplicity labeling in a constant-time experiment using carbon detection

    NASA Astrophysics Data System (ADS)

    Batta, Gyula; Kövér, Katalin E.

    Modified Müller-Bolton type heteronuclear multiple-quantum correlation experiments are analyzed theoretically and experimentally. It is shown that the constant-time version offers homonuclear decoupling, multiplicity labeling, and a very efficient suppression of strong coupling artifacts. Such sequences may have advantages for studying macromolecules.

  20. IPAP-HSQMBC: measurement of long-range heteronuclear coupling constants from spin-state selective multiplets.

    PubMed

    Gil, Sergi; Espinosa, Juan Félix; Parella, Teodor

    2010-12-01

    A new NMR approach is proposed for the measurement of long-range heteronuclear coupling constants ((n)J(XH), n>1) in natural abundance molecules. Two complementary in-phase (IP) and anti-phase (AP) data are separately recorded from a modified HSQMBC experiment and then added/subtracted to provide spin-state-selective α/β-HSQMBC spectra. The magnitude of (n)J(XH) can be directly determined by simple analysis of the relative displacement between α- and β-cross-peaks. The robustness of this IPAP-HSQMBC experiment is evaluated experimentally and by simulation using a variety of different conditions. Important aspects such as signal intensity dependence and presence of unwanted cross-talk effects are discussed and examples on the measurement of small proton-carbon ((n)J(CH)) and proton-nitrogen ((n)J(NH)) coupling constants are provided. PMID:20952232

  1. Relative merits of rCWA and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis

    NASA Astrophysics Data System (ADS)

    Equbal, Asif; Leskes, Michal; Nielsen, Niels Chr.; Madhu, P. K.; Vega, Shimon

    2016-02-01

    We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent.

  2. Isotope-detected 1H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage lambda repressor.

    PubMed Central

    Weiss, M A; Redfield, A G; Griffey, R H

    1986-01-01

    A strategy for editing interproton nuclear Overhauser effects (NOEs) in proteins is proposed and illustrated. Selective incorporation of 13C- (or 15N)-labeled amino acids into a protein permits NOEs involving the labeled residues to be identified by heteronuclear difference decoupling. Such heteronuclear editing simplifies the NOE difference spectrum and avoids ambiguities due to spin diffusion. Isotope-detected 1H NMR thus opens to study proteins too large for conventional one- and two-dimensional NMR methods (20-75 kDa). We have applied this strategy to the N-terminal domain of phage lambda repressor, a protein of dimer molecular mass 23 kDa. A tertiary NOE from an internal aromatic ring (Phe-51) to a beta-13C-labeled alanine residue (Ala-62) is demonstrated. PMID:3006046

  3. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples. PMID:23913630

  4. Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies.

    PubMed Central

    Masse, J E; Bortmann, P; Dieckmann, T; Feigon, J

    1998-01-01

    The use of uniformly 13C,15N-labeled RNA has greatly facilitated structural studies of RNA oligonucleotides by NMR. Application of similar methodologies for the study of DNA has been limited, primarily due to the lack of adequate methods for sample preparation. Methods for both chemical and enzymatic synthesis of DNA oligonucleotides uniformly labeled with 13C and/or 15N have been published, but have not yet been widely used. We have developed a modified procedure for preparing uniformly 13C,15N-labeled DNA based on enzymatic synthesis using Taq DNA polymerase. The highly efficient protocol results in quantitative polymerization of the template and approximately 80% incorporation of the labeled dNTPs. Procedures for avoiding non-templated addition of nucleotides or for their removal are given. The method has been used to synthesize several DNA oligonucleotides, including two complementary 15 base strands, a 32 base DNA oligonucleotide that folds to form an intramolecular triplex and a 12 base oligonucleotide that dimerizes and folds to form a quadruplex. Heteronuclear NMR spectra of the samples illustrate the quality of the labeled DNA obtained by these procedures. PMID:9592146

  5. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  6. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems.

    PubMed

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. PMID:26705906

  7. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  8. Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N, 1H] heteronuclear NMR spectroscopy.

    PubMed

    Worrall, J A; Kolczak, U; Canters, G W; Ubbink, M

    2001-06-19

    The interaction of yeast iso-1-cytochrome c with its physiological redox partner cytochrome c peroxidase has been investigated using heteronuclear NMR techniques. Chemical shift perturbations for both 15N and 1H nuclei arising from the interaction of isotopically enriched 15N cytochrome c with cytochrome c peroxidase have been observed. For the diamagnetic, ferrous cytochrome c, 34 amides are affected by binding, corresponding to residues at the front face of the protein and in agreement with the interface observed in the 1:1 crystal structure of the complex. In contrast, for the paramagnetic, ferric protein, 56 amides are affected, corresponding to residues both at the front and toward the rear of the protein. In addition, the chemical shift perturbations were larger for the ferric protein. Using experimentally observed pseudocontact shifts the magnetic susceptibility tensor of yeast iso-1-cytochrome c in both the free and bound forms has been calculated with HN nuclei as inputs. In contrast to an earlier study, the results indicate that there is no change in the geometry of the magnetic axes for cytochrome c upon binding to cytochrome c peroxidase. This leads us to conclude that the additional effects observed for the ferric protein arise either from a difference in binding mode or from the more flexible overall structure causing a transmittance effect upon binding. PMID:11401551

  9. Three-dimensional solution structure of mouse [Cd7]-metallothionein-1 by homonuclear and heteronuclear NMR spectroscopy.

    PubMed Central

    Zangger, K.; Oz, G.; Otvos, J. D.; Armitage, I. M.

    1999-01-01

    Sequential 1H-NMR assignments of mouse [Cd7]-metallothionein-1 (MT1) have been carried out by standard homonuclear NMR methods and the use of an accordion-heteronuclear multiple quantum correlation (HMQC) experiment for establishing the metal, 113Cd2+, to cysteine connectivities. The three-dimensional structure was then calculated using the distance constraints from two-dimensional nuclear Overhauser effect (NOE) spectroscopy spectra and the Cys-Cd connectivities as input for a distance geometry-dynamical simulated annealing protocol in X-PLOR 3.851. Similar to the mammalian MT2 isoforms, the homologous primary structure of MT1 suggested two separate domains, each containing one metal cluster. Because there were no interdomain constraints, the structure calculation for the N-terminal beta- and the C-terminal alpha-domain were carried out separately. The structures are based on 409 NMR constraints, consisting of 381 NOEs and 28 cysteine-metal connectivities. The only elements of regular secondary structure found were two short stretches of 3(10) helices along with some half-turns in the alpha-domain. Structural comparison with rat liver MT2 showed high similarity, with the beta-domain structure in mouse MT1 showing evidence of increased flexibility compared to the same domain in MT2. The latter was reflected by the presence of fewer interresidue NOEs, no slowly exchanging backbone amide protons, and enhanced cadmium-cadmium exchange rates found in the beta-domain of MT1. PMID:10631978

  10. Synthesis, crystal structures and Hirshfeld surface analyses of two new Salen type nickel/sodium heteronuclear complexes

    NASA Astrophysics Data System (ADS)

    Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram

    2016-04-01

    Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.

  11. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism: study of flucloxacillin biotransformation.

    PubMed

    Keun, Hector C; Athersuch, Toby J; Beckonert, Olaf; Wang, Yulan; Saric, Jasmina; Shockcor, John P; Lindon, John C; Wilson, Ian D; Holmes, Elaine; Nicholson, Jeremy K

    2008-02-15

    We present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.8 Hz/pt for both nuclei. The efficient statistical editing provided by these methods readily allowed the collection of drug metabolic data and assisted structure elucidation. This approach is of general applicability for studying the metabolism of other fluorine-containing drugs, including important anticancer agents such as 5-fluorouracil and flutamide, and is extendable to any drug metabolism study where there is a spin-active X-nucleus (e.g., 13C, 15N, 31P) label present. PMID:18211034

  12. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGESBeta

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  13. Photoelectron velocity-map imaging and theoretical studies of heteronuclear metal carbonyls MNi(CO)3 (-) (M = Mg, Ca, Al).

    PubMed

    Xie, Hua; Zou, Jinghan; Yuan, Qinqin; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2016-03-28

    The heteronuclear metal carbonyl anions MNi(CO)3 (-) (M = Mg, Ca, Al) have been investigated using photoelectron velocity-map imaging spectroscopy. Electron affinities of neutral MNi(CO)3 (M = Mg, Ca, Al) are measured from the photoelectron spectra to be 1.064 ± 0.063, 1.050 ± 0.064, and 1.541 ± 0.040 eV, respectively. The C-O stretching mode in these three clusters is observed and the vibrational frequency is determined to be 2049, 2000, and 2041 cm(-1) for MgNi(CO)3, CaNi(CO)3, and AlNi(CO)3, respectively. Density functional theory calculations are carried out to elucidate the geometric and electronic structures and to aid the experimental assignments. It has been found that three terminal carbonyls are preferentially bonded to the nickel atom in these heterobinuclear nickel carbonyls MNi(CO)3 (-1/0), resulting in the formation of the Ni(CO)3 motif. Ni remains the 18-electron configuration for MgNi(CO)3 and CaNi(CO)3 neutrals, but not for AlNi(CO)3. This is different from the homobinuclear nickel carbonyl Ni-Ni(CO)3 with the involvement of three bridging ligands. Present findings would be helpful for understanding CO adsorption on alloy surfaces. PMID:27036444

  14. Photoelectron velocity-map imaging and theoretical studies of heteronuclear metal carbonyls MNi(CO)3- (M = Mg, Ca, Al)

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Zou, Jinghan; Yuan, Qinqin; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2016-03-01

    The heteronuclear metal carbonyl anions MNi(CO)3- (M = Mg, Ca, Al) have been investigated using photoelectron velocity-map imaging spectroscopy. Electron affinities of neutral MNi(CO)3 (M = Mg, Ca, Al) are measured from the photoelectron spectra to be 1.064 ± 0.063, 1.050 ± 0.064, and 1.541 ± 0.040 eV, respectively. The C-O stretching mode in these three clusters is observed and the vibrational frequency is determined to be 2049, 2000, and 2041 cm-1 for MgNi(CO)3, CaNi(CO)3, and AlNi(CO)3, respectively. Density functional theory calculations are carried out to elucidate the geometric and electronic structures and to aid the experimental assignments. It has been found that three terminal carbonyls are preferentially bonded to the nickel atom in these heterobinuclear nickel carbonyls MNi(CO)3-1/0, resulting in the formation of the Ni(CO)3 motif. Ni remains the 18-electron configuration for MgNi(CO)3 and CaNi(CO)3 neutrals, but not for AlNi(CO)3. This is different from the homobinuclear nickel carbonyl Ni-Ni(CO)3 with the involvement of three bridging ligands. Present findings would be helpful for understanding CO adsorption on alloy surfaces.

  15. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids.

    PubMed

    Kharkov, B B; Chizhik, V I; Dvinskikh, S V

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental data obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees. PMID:26801025

  16. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms.

    PubMed Central

    Wiltscheck, R.; Kammerer, R. A.; Dames, S. A.; Schulthess, T.; Blommers, M. J.; Engel, J.; Alexandrescu, A. T.

    1997-01-01

    The C-terminal oligomerization domain of chicken cartilage matrix protein is a trimeric coiled coil comprised of three identical 43-residue chains. NMR spectra of the protein show equivalent magnetic environments for each monomer, indicating a parallel coiled coil structure with complete threefold symmetry. Sequence-specific assignments for 1H-, 15N-, and 13C-NMR resonances have been obtained from 2D 1H NOESY and TOCSY spectra, and from 3D HNCA, 15N NOESY-HSQC, and HCCH-TOCSY spectra. A stretch of alpha-helix encompassing five heptad repeats (35 residues) has been identified from intra-chain HN-HN and HN-H alpha NOE connectivities. 3JHNH alpha coupling constants, and chemical shift indices. The alpha-helix begins immediately downstream of inter-chain disulfide bonds between residues Cys 5 and Cys 7, and extends to near the C-terminus of the molecule. The threefold symmetry of the molecule is maintained when the inter-chain disulfide bonds that flank the N-terminus of the coiled coil are reduced. Residues Ile 21 through Glu 36 show conserved chemical shifts and NOE connectivities, as well as strong protection from solvent exchange in the oxidized and reduced forms of the protein. By contrast, residues Ile 10 through Val 17 show pronounced chemical shift differences between the oxidized and reduced protein. Strong chemical exchange NOEs between HN resonances and water indicate solvent exchange on time scales faster than 10 s, and suggests a dynamic fraying of the N-terminus of the coiled coil upon reduction of the disulfide bonds. Possible roles for the disulfide crosslinks of the oligomerization domain in the function of cartilage matrix protein are proposed. PMID:9260286

  17. Apoflavodoxin (un)folding followed at the residue level by NMR.

    PubMed Central

    van Mierlo, C. P.; van den Oever, J. M.; Steensma, E.

    2000-01-01

    The denaturant-induced (un)folding of apoflavodoxin from Azotobacter vinelandii has been followed at the residue level by NMR spectroscopy. NH groups of 21 residues of the protein could be followed in a series of 1H-15N heteronuclear single-quantum coherence spectra recorded at increasing concentrations of guanidinium hydrochloride despite the formation of protein aggregate. These NH groups are distributed throughout the whole apoflavodoxin structure. The midpoints of unfolding determined by NMR coincide with the one obtained by fluorescence emission spectroscopy. Both techniques give rise to unfolding curves with transition zones at significantly lower denaturant concentrations than the one obtained by circular dichroism spectroscopy. The NMR (un)folding data support a mechanism for apoflavodoxin folding in which a relatively stable intermediate is involved. Native apoflavodoxin is shown to cooperatively unfold to a molten globule-like state with extremely broadened NMR resonances. This initial unfolding step is slow on the NMR chemical shift timescale. The subsequent unfolding of the molten globule is faster on the NMR chemical shift timescale and the limited appearance of 1H-15N HSQC cross peaks of unfolded apoflavodoxin in the denaturant range studied indicates that it is noncooperative. PMID:10739257

  18. Structures of larger proteins in solution: Three- and four-dimensional heteronuclear NMR spectroscopy

    SciTech Connect

    Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.

  19. Distinct mechanistic differences in the hydrogen-atom transfer from methane and water by the heteronuclear oxide cluster [Ga2 MgO4](.).

    PubMed

    Li, Jilai; Wu, Xiao-Nan; Zhou, Shaodong; Tang, Shiya; Schlangen, Maria; Schwarz, Helmut

    2015-10-12

    The thermal reactions of the heteronuclear oxide cluster [Ga2 MgO4 ](.+) with methane and water have been studied using state-of-the-art gas-phase experiments in conjunction with quantum-chemical calculations. The significant reactivity differences, favoring activation of the strong OH bond, can be ascribed to a proton-coupled electron transfer (PCET) mechanism operative in the activation of water. This study deepens our mechanistic understanding on how inert RH bonds are cleaved by metal oxides. PMID:26136380

  20. A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field

    PubMed Central

    Lu, George J.; Son, Woo Sung; Opella, Stanley J.

    2011-01-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly 15N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly 15N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. PMID:21316275

  1. Epitope Mapping of Antigenic MUC1 Peptides to Breast Cancer Antibody Fragment B27.29: A Heteronuclear NMR Study

    SciTech Connect

    Grinstead, Jeffrey S.; Schuman, Jason T.; Campbell, Ann P.

    2003-11-13

    MUC1 mucin is a breast cancer-associated transmembrane glycoprotein, of which the extracellular domain is formed by the repeating 20-amino acid sequence GVTSAPDTRPAPGSTAPPAH. In neoplastic breast tissue, the highly immunogenic sequence PDTRPAP (in bold above) is exposed. Antibodies raised directly against MUC1-expressing tumors offer unique access to this neoplastic state, as they represent immunologically relevant ''reverse templates'' of the tumor-associated mucin. In a previous study [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], 1H NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRPAP core epitope sequence on the recognition and binding of Mab B27.29, a monoclonal antibody raised against breast tumor cells. In the study presented here, isotope-edited NMR methods, including 15N and 13C relaxation measurements, were used to probe the recognition and binding of the PDTRPAP epitope sequence to Fab B27.29. Two peptides were studied: a one-repeat MUC1 16mer peptide of the sequence GVTSAPDTRPAPGSTA and a two-repeat MUC1 40mer peptide of the sequence (VTSAPDTRPAPGSTAPPAHG)2. 15N and 13C NMR relaxation parameters were measured for both peptides free in solution and bound to Fab B27.29. The 13CR T1 values best represent changes in the local correlation time of the peptide epitope upon binding antibody, and demonstrate that the PDTRPAP sequence is immobilized in the antibody-combining site. This result is also reflected in the appearance of the 15N- and 13C-edited HSQC spectra, where line broadening of the same peptide epitope resonances is observed. The PDTRPAP peptide epitope expands upon the peptide epitope identified previously in our group as PDTRP by homonuclear NMR experiments [Grinstead, J. S., et al. (2002) Biochemistry 41, 9946-9961], and illustrates the usefulness of the heteronuclear NMR experiments. The implications of these results are discussed within the context of MUC1 breast cancer vaccine design.

  2. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.

  3. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    PubMed

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz. PMID:27472380

  4. Homo- and heteronuclear 2D NMR approaches to analyse a mixture of deuterated unlike/like stereoisomers using weakly ordering chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Ben Ali, Karim; Lafon, Olivier; Zimmermann, Herbert; Guittet, Eric; Lesot, Philippe

    2007-08-01

    We describe several homo- and heteronuclear 2D NMR strategies dedicated to the analysis of anisotropic 2H spectra of a mixture of dideuterated unlike/like stereoisomers with two remote stereogenic centers, using weakly orienting chiral liquid crystals. To this end, we propose various 2D correlation experiments, denoted "D(H) nD" or "D(H) nC" (with n = 1, 2), that involve two heteronuclear polarization transfers of INEPT-type with one or two proton relays. The analytical expressions of correlation signals for four pulse sequences reported here were calculated using the product-operators formalism for spin I = 1 and S = 1/2. The features and advantages of each scheme are presented and discussed. The efficiency of these 2D sequences is illustrated using various deuterated model molecules, dissolved in organic solutions of polypeptides made of poly- γ-benzyl- L-glutamate (PBLG) or poly- ɛ-carbobenzyloxy- L-lysine (PCBLL) and NMR numerical simulations.

  5. HN-NCA heteronuclear TOCSY-NH experiment for (1)H(N) and (15)N sequential correlations in ((13)C, (15)N) labelled intrinsically disordered proteins.

    PubMed

    Wiedemann, Christoph; Goradia, Nishit; Häfner, Sabine; Herbst, Christian; Görlach, Matthias; Ohlenschläger, Oliver; Ramachandran, Ramadurai

    2015-10-01

    A simple triple resonance NMR experiment that leads to the correlation of the backbone amide resonances of each amino acid residue 'i' with that of residues 'i-1' and 'i+1' in ((13)C, (15)N) labelled intrinsically disordered proteins (IDPs) is presented. The experimental scheme, {HN-NCA heteronuclear TOCSY-NH}, exploits the favourable relaxation properties of IDPs and the presence of (1) J CαN and (2) J CαN couplings to transfer the (15)N x magnetisation from amino acid residue 'i' to adjacent residues via the application of a band-selective (15)N-(13)C(α) heteronuclear cross-polarisation sequence of ~100 ms duration. Employing non-uniform sampling in the indirect dimensions, the efficacy of the approach has been demonstrated by the acquisition of 3D HNN chemical shift correlation spectra of α-synuclein. The experimental performance of the RF pulse sequence has been compared with that of the conventional INEPT-based HN(CA)NH pulse scheme. As the availability of data from both the HCCNH and HNN experiments will make it possible to use the information extracted from one experiment to simplify the analysis of the data of the other and lead to a robust approach for unambiguous backbone and side-chain resonance assignments, a time-saving strategy for the simultaneous collection of HCCNH and HNN data is also described. PMID:26282620

  6. Unexpected effects of third-order cross-terms in heteronuclear spin systems under simultaneous radio-frequency irradiation and magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Tatton, Andrew S.; Frantsuzov, Ilya; Brown, Steven P.; Hodgkinson, Paul

    2012-02-01

    We recently noted [R. K. Harris, P. Hodgkinson, V. Zorin, J.-N. Dumez, B. Elena, L. Emsley, E. Salager, and R. Stein, Magn. Reson. Chem. 48, S103 (2010), 10.1002/mrc.2636] anomalous shifts in apparent 1H chemical shifts in experiments using 1H homonuclear decoupling sequences to acquire high-resolution 1H NMR spectra for organic solids under magic-angle spinning (MAS). Analogous effects were also observed in numerical simulations of model 13C,1H spin systems under homonuclear decoupling and involving large 13C,1H dipolar couplings. While the heteronuclear coupling is generally assumed to be efficiently suppressed by sample spinning at the magic angle, we show that under conditions typically used in solid-state NMR, there is a significant third-order cross-term from this coupling under the conditions of simultaneous MAS and homonuclear decoupling for spins directly bonded to 1H. This term, which is of the order of 100 Hz under typical conditions, explains the anomalous behaviour observed on both 1H and 13C spins, including the fast dephasing observed in 13C{1H} heteronuclear spin-echo experiments under 1H homonuclear decoupling. Strategies for minimising the impact of this effect are also discussed.

  7. Tuning the electronic properties and work functions of graphane/fully hydrogenated h-BN heterobilayers via heteronuclear dihydrogen bonding and electric field control.

    PubMed

    Liang, Qiuhua; Jiang, Junke; Meng, Ruishen; Ye, Huaiyu; Tan, Chunjian; Yang, Qun; Sun, Xiang; Yang, Daoguo; Chen, Xianping

    2016-06-28

    Using density functional theory calculations with van der Waals correction, we show that the electronic properties (band gap and carrier mobility) and work functions of graphane/fully hydrogenated hexagonal boron nitride (G/fHBN) heterobilayers can be favorably tuned via heteronuclear dihydrogen bonding (C-HH-B and C-HH-N) and an external electric field. Our results reveal that G/fHBN heterobilayers have different direct band gaps of ∼1.2 eV and ∼3.5 eV for C-HH-B and C-HH-N bonds, respectively. In particular, these band gaps can be effectively modulated by altering the direction and strength of the external electric field (E-field), and correspondingly exhibit a semiconductor-metal transition. The conformation and stability of G/fHBN heterobilayers show a strong dependence on the heteronuclear dihydrogen bonding. Fantastically, these bonds are stable enough under a considerable external E-field as compared with other van der Waals (vdW) 2D layered materials. The mobilities of G/fHBN heterobilayers we predicted are hole-dominated, reasonably high (improvable up to 200 cm(2) V(-1) s(-1)), and extremely isotropic. We also demonstrate that the work function of G/fHBN heterobilayers is very sensitive to the external E-field and is extremely low. These findings make G/fHBN heterobilayers very promising materials for field-effect transistors and light-emitting devices, and inspire more efforts in the development of 2D material systems using weak interlayer interactions and electric field control. PMID:27265511

  8. Secondary structure and side-chain sup 1 H and sup 13 C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy

    SciTech Connect

    Ikura, Mitsuhiko; Spera, S.; Barbato, G.; Kay, L.E.; Bax, A. ); Krinks, M. )

    1991-09-24

    Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with {sup 15}N and {sup 13}C to a level of > 95%. Nearly complete {sup 1}H and {sup 13}C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and {sup 3}J{sub HNH{alpha}} coupling constants. A clear correlation between the {sup 13}C{alpha} chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM which consists of two pairs of a helix-loop-helix motif in each globular domain. The existence of a short antiparallel {beta}-sheet between the two loops in each domain has been confirmed. The eight {alpha}-helix segments identified from the NMR data are located at Glu-6 to Phe-19, thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long central helix from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.

  9. Hydrothermal liquefaction oil and hydrotreated product from pine feedstock characterized by heteronuclear two-dimensional NMR spectroscopy and FT-ICR mass spectrometry

    SciTech Connect

    Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard; Olarte, Mariefel; Schmidt, Andrew; Schaub, Tanner

    2014-12-01

    Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bond correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.

  10. Primitive models of chemical association. III. Totally flexible sticky two-point model for multicomponent heteronuclear fixed-chain-length polymerization

    SciTech Connect

    Lin, C.; Kalyuzhnyi, Y.V. |; Stell, G.

    1998-04-01

    A multidensity integral-equation theory for polymerization into freely jointed hard-sphere homonuclear chain fluids proposed earlier [J. Chem. Phys. {bold 106}, 1940 (1997)] is extended to the case of multicomponent heteronuclear chain polymerization. The theory is based on the analytical solution of the polymer Percus{endash}Yevick (PPY) approximation for the totally flexible sticky two-point (S2P) model of associating fluids. The model consists of an n-component mixture of hard spheres of different sizes with species 2,{hor_ellipsis},n{minus}1 bearing two sticky sites A and B, randomly distributed on its surface, and species 1 and n with only one B and A site per particle, respectively. Due to some specific restrictions imposed on the possibility of forming bonds between particles of various species, the present version of the S2P model represents an associating fluid that is able to polymerize into a mixture of heteronuclear chain macromolecules. The structural properties of such a model are studied in the complete-association limit and compared with computer-simulation results for homonuclear hard-sphere chain mixtures, symmetrical diblock copolymers, alternating copolymers, and homonuclear hard-sphere chains in a hard-sphere solvent. Some results for the case of partial association are also presented. The PPY theory represents a quantitatively successful theory for the mixtures of short homonuclear chains and the short copolymer systems studied here. We also expect that the theory will prove to be of the same order of accuracy in investigating the case of partial association. {copyright} {ital 1998 American Institute of Physics.}

  11. Primitive models of chemical association. IV. Polymer Percus{endash}Yevick ideal-chain approximation for heteronuclear hard-sphere chain fluids

    SciTech Connect

    Kalyuzhnyi, Y.V. |; Lin, C.; Stell, G.

    1998-04-01

    We continue here our series of studies in which integral-equation theory is developed and used for the monomer-monomer correlation functions in a fluid of multicomponent freely jointed hard-sphere polymers. In this study our approach is based on Wertheim{close_quote}s polymer Percus{endash}Yevick (PPY) theory supplemented by the ideal-chain approximation; it can be regarded as a simplified version of Wertheim{close_quote}s four-density PPY approximation for associating fluids considered in the complete-association limit. The numerical procedure of this simplified theory is much easier than that of the original Wertheim{close_quote}s four-density PPY approximation, but the degree of accuracy is reduced. The theory can also be regarded as an extension of the PPY theory for the homonuclear polymer system proposed by Chang and Sandler [J. Chem. Phys. {bold 102}, 437 (1995)]. Their work is based upon a description of a system of hard-sphere monomers that associate into a polydisperse system of chains of prescribed mean length. Our theory instead directly describes a multicomponent system of associating monomers that form monodisperse chains of prescribed length upon complete association. An analytical solution of the PPY ideal-chain approximation for the general case of a multicomponent mixture of heteronuclear hard-sphere linear chain molecules is given. Its use is illustrated by numerical results for two models of copolymer fluids, a symmetrical diblock copolymer system, and an alternating copolymer system. The comparison with Monte Carlo simulations is given to gauge the accuracy of the theory. We find for the molecules we study here that predictions of our theory for heteronuclear chain systems have the same degree of accuracy as Chang and Sandler{close_quote}s theory for homonuclear chain systems. {copyright} {ital 1998 American Institute of Physics.}

  12. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  13. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  14. A molecular dynamics simulation-based interpretation of nuclear magnetic resonance multidimensional heteronuclear spectra of α-synuclein·dopamine adducts.

    PubMed

    Dibenedetto, Domenica; Rossetti, Giulia; Caliandro, Rocco; Carloni, Paolo

    2013-09-24

    Multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy provides valuable structural information about adducts between naturally unfolded proteins and their ligands. These are often highly pharmacologically relevant. Unfortunately, the determination of the contributions to observed chemical shifts changes upon ligand binding is complicated. Here we present a tool that uses molecular dynamics (MD) trajectories to help interpret two-dimensional (2D) NMR data. We apply this tool to the naturally unfolded protein human α-synuclein interacting with dopamine, an inhibitor of fibril formation, and with its oxidation products in water solutions. By coupling 2D NMR experiments with MD simulations of the adducts in explicit water, the tool confirms with experimental data that the ligands bind preferentially to (125)YEMPS(129) residues in the C-terminal region and to a few residues of the so-called NAC region consistently. It also suggests that the ligands might cause conformational rearrangements of distal residues located at the N-terminus. Hence, the performed analysis provides a rationale for the observed changes in chemical shifts in terms of direct contacts with the ligand and conformational changes in the protein. PMID:23964651

  15. Opposite Dysregulation of Fragile-X Mental Retardation Protein and Heteronuclear Ribonucleoprotein C Protein Associates with Enhanced APP Translation in Alzheimer Disease.

    PubMed

    Borreca, Antonella; Gironi, Katia; Amadoro, Giusy; Ammassari-Teule, Martine

    2016-07-01

    Amyloid precursor protein (APP) is overexpressed in familiar and sporadic Alzheimer Disease (AD) patients suggesting that, in addition to abnormalities in APP cleavage, enhanced levels of APP full length might contribute to the pathology. Based on data showing that the two RNA binding proteins (RBPs), Fragile-X Mental Retardation Protein (FMRP) and heteronuclear Ribonucleoprotein C (hnRNP C), exert an opposite control on APP translation, we have analyzed whether expression and translation of these two RBPs vary in relation to changes in APP protein and mRNA levels in the AD brain at 1, 3, and 6 months of age. Here, we show that, as expected, human APP is overexpressed in hippocampal total extract from Tg2576 mice at all age points. APP overexpression, however, is not stable over time but reaches its maximal level in 1-month-old mutants in association with the stronger (i) reduction of FMRP and (ii) augmentation of hnRNP C. APP levels then decrease progressively as a function of age in close relationship with the gradual normalization of FMRP and hnRNP C levels. Consistent with the mouse data, expression of FMRP and hnRNP C are, respectively, decreased and increased in hippocampal synaptosomes from sporadic AD patients. Our findings identify two RBP targets that might be manipulated for reducing abnormally elevated levels of APP in the AD brain, with the hypothesis that acting upstream of amyloidogenic processing might contribute to attenuate the amyloid burden. PMID:26048669

  16. The role of interleukin-6 in mitogenic T-cell activation: detection of interleukin-2 heteronuclear RNA by polymerase chain reaction.

    PubMed

    Walz, G; Stevens, C; Zanker, B; Melton, L B; Clark, S C; Suthanthiran, M; Strom, T B

    1991-05-01

    It has been documented that interleukin-6 (IL-6) supports the proliferation of purified, anti-CD3-stimulated murine T cells. We found that stimulation of human peripheral blood mononuclear cells (PBMCs) with anti-CD3 induced a significant accumulation of IL-6 mRNA, indicating that antigen-mediated T-cell activation may involve IL-6 release from accessory cells. Phytohemagglutinin (PHA) had little effect upon IL-6 gene expression. In keeping with these findings, anti-IL-6 reduced but did not abolish anti-CD3-mediated proliferation of PBMCs, but had no significant effect upon PHA-stimulated proliferation. The addition of recombinant (r) IL-6 enhanced the proliferation of anti-CD3-stimulated PBMCs and increased the accumulation of IL-2 mRNA in PHA-stimulated PBMCs during the first 5 hr of culture. Nuclear run-off experiments did not reveal significant changes in IL-2 transcription in PHA plus rIL-6-treated PBMCs attempting to assume that IL-6 mediates stabilization of IL-2 mRNA. However, monitoring of partially spliced IL-2 mRNA by polymerase chain reaction revealed a clear increase in IL-2 heteronuclear RNA. Thus IL-6 increases the rate of IL-2 transcription which was not detectable by conventional in vitro transcription assays. We conclude that anti-CD3 triggers T-cell proliferation through a process that is partially but not entirely dependent upon release of IL-6. IL-6, in turn, supports IL-2 transcription. Insofar as anti-CD3 mimics antigen-triggered activation of the T-cell receptor complex, IL-6 appears to support the early immune response by augmenting antigen-triggered IL-2 gene expression. PMID:1827050

  17. Two heteronuclear dipolar results at the price of one: Quantifying Na/P contacts in phosphosilicate glasses and biomimetic hydroxy-apatite

    NASA Astrophysics Data System (ADS)

    Stevensson, Baltzar; Mathew, Renny; Yu, Yang; Edén, Mattias

    2015-02-01

    The analysis of S{I} recoupling experiments applied to amorphous solids yields a heteronuclear second moment M2 (S-I) that represents the effective through-space dipolar interaction between the detected S spins and the neighboring I-spin species. We show that both M2 (S-I) and M2 (I-S) values are readily accessible from a sole S{I} or I{S} experiment, which may involve either S or I detection, and is naturally selected as the most favorable option under the given experimental conditions. For the common case where I has half-integer spin, an I{S} REDOR implementation is preferred to the S{I} REAPDOR counterpart. We verify the procedure by 23Na{31P} REDOR and 31P{23Na} REAPDOR NMR applied to Na2O-CaO-SiO2-P2O5 glasses and biomimetic hydroxyapatite, where the M2 (P-Na) values directly determined by REAPDOR agree very well with those derived from the corresponding M2 (Na-P) results measured by REDOR. Moreover, we show that dipolar second moments are readily extracted from the REAPDOR NMR protocol by a straightforward numerical fitting of the initial dephasing data, in direct analogy with the well-established procedure to determine M2 (S-I) values from REDOR NMR experiments applied to amorphous materials; this avoids the problems with time-consuming numerically exact simulations whose accuracy is limited for describing the dynamics of a priori unknown multi-spin systems in disordered structures.

  18. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips

    PubMed Central

    Spengler, Nils; Höfflin, Jens; Moazenzadeh, Ali; Mager, Dario; MacKinnon, Neil; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G.

    2016-01-01

    We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC experiments. PMID

  19. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips.

    PubMed

    Spengler, Nils; Höfflin, Jens; Moazenzadeh, Ali; Mager, Dario; MacKinnon, Neil; Badilita, Vlad; Wallrabe, Ulrike; Korvink, Jan G

    2016-01-01

    We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5 nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC experiments. PMID

  20. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  1. Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO2](+) (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Weiske, Thomas; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-06-29

    The reactivity of the homo- and heteronuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) toward methane was studied using Fourier transform ion cyclotron resonance mass spectrometry, in conjunction with high-level quantum mechanical calculations. The most reactive cluster by both experiment and theory is [Al2O2](•+). In its favorable pathway, this cluster abstracts a hydrogen atom by means of proton-coupled electron transfer (PCET) instead of following the conventional hydrogen-atom transfer (HAT) route. This mechanistic choice originates in the strong Lewis acidity of the aluminum site of [Al2O2](•+), which cleaves the C-H bond heterolytically to form an Al-CH3 entity, while the proton is transferred to the bridging oxygen atom of the cluster ion. In addition, a comparison of the reactivity of heteronuclear and homonuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) reveals a striking doping effect by aluminum. Thus, the vacant s-p hybrid orbital on Al acts as an acceptor of the electron pair from methyl anion (CH3(-)) and is therefore eminently important for bringing about thermal methane activation by PCET. For the Al-doped cluster ions, the spin density at an oxygen atom, which is crucial for the HAT mechanism, acts here as a spectator during the course of the PCET mediated C-H bond cleavage. A diagnostic plot of the deformation energy vis-à-vis the barrier shows the different HAT/PCET reactivity map for the entire series. This is a strong connection to the recently discussed mechanism of oxidative coupling of methane on magnesium oxide surfaces proceeding through Grignard-type intermediates. PMID:27241233

  2. Synthesis of rhodium(III) complexes with tris/tetrakis-benzimidazoles and benzothiazoles--quick identification of cyclometallation by nuclear magnetic resonance spectroscopy.

    PubMed

    Chandrashekhar, N; Gayathri, V; Nanje Gowda, N M

    2009-08-01

    Reactions of rhodium(III) halides with multidentate N,S-heterocycles, (LH3) 1,3,5-tris(benzimidazolyl)benzene (L1H3; 1), 1,3,5-tris(N-methylbenzimidazolyl) benzene (L2H3; 2) and 1,3,5-tris(benzothiazolyl)benzene (L3H3; 3), in the molar ratio 1:1 in methanol-chloroform produced mononuclear cyclometallated products of the composition [RhX2(LH2)(H2O)] (X = Cl, Br, I; LH2 = L1H2, L2H2, L3H2). When the metal to ligand (1-3 or 1,2,4,5-tetrakis(benzothiazolyl)benzene [L4H2; 4]) molar ratio was 2:1, the reactions yielded binuclear complexes of the compositions [Rh2Cl5(LH2)(H2O)3] (LH2 = L1H2, L2H2, L3H2) and [Rh2X4(L4)(H2O)2] (X = Cl, Br, I). Elemental analysis, IR and 1H nuclear magnetic resonance (NMR) chemical shifts supported the binuclear nature of the complexes. Cyclometallation was detected by conventional 13C NMR spectra that showed a doublet around approximately 190 ppm. Cyclometallation was also detected by gradient-enhanced heteronuclear multiple bond correlation (g-HMBC) experiment that showed cross-peaks between the cyclometallated carbon and the central benzene ring protons of 1-3. Cyclometallation was substantiated by two-dimensional 1H-1H correlated experiments (gradient-correlation spectroscopy and rotating frame Overhauser effect spectroscopy) and 1H-13C single bond correlated two-dimensional NMR experiments (gradient-enhanced heteronuclear single quantum coherence). The 1H-15N g-HMBC experiment suggested the coordination of the heterocycles to the metal ion via tertiary nitrogen. PMID:19444858

  3. Non-Linear and Flexible Regions of the Human Notch1 Extracellular Domain Revealed by High-Resolution Structural Studies

    PubMed Central

    Weisshuhn, Philip C.; Sheppard, Devon; Taylor, Paul; Whiteman, Pat; Lea, Susan M.; Handford, Penny A.; Redfield, Christina

    2016-01-01

    Summary The Notch receptor is a key component of a core metazoan signaling pathway activated by Delta/Serrate/Lag-2 ligands expressed on an adjacent cell. This results in a short-range signal with profound effects on cell-fate determination, cell proliferation, and cell death. Key to understanding receptor function is structural knowledge of the large extracellular portion of Notch which contains multiple repeats of epidermal growth factor (EGF)-like domains. Here we investigate the EGF4-13 region of human Notch1 (hN1) using a multidisciplinary approach. Ca2+-binding measurements, X-ray crystallography, {1H}-15N heteronuclear nuclear Overhauser effects, and residual dipolar couplings support a non-linear organization for the EGF4-13 region with a rigid, bent conformation for EGF4-7 and a single flexible linkage between EGF9 and EGF10. These data allow us to construct an informed model for EGF10-13 which, in conjunction with comparative binding studies, demonstrates that EGF10 has an important role in determining Notch receptor sensitivity to Dll-4. PMID:26996961

  4. Structure Determination of a Membrane Protein with Two Trans-membrane Helices in Aligned Phospholipid Bicelles by Solid-state NMR Spectroscopy

    PubMed Central

    De Angelis, Anna A.; Howell, Stanley C.; Nevzorov, Alexander A.; Opella, Stanley J.

    2011-01-01

    The structure of the membrane protein MerFt was determined in magnetically aligned phospholipid bicelles by solid-state NMR spectroscopy. With two trans-membrane helices and a 10-residue inter-helical loop, this truncated construct of the mercury transport membrane protein MerF has sufficient structural complexity to demonstrate the feasibility of determining the structures of polytopic membrane proteins in their native phospholipid bilayer environment under physiological conditions. PISEMA, SAMMY, and other double-resonance experiments were applied to uniformly and selectively 15N labeled samples to resolve and assign the backbone amide resonances, and to measure the associated 15N chemical shift and 1H-15N heteronuclear dipolar coupling frequencies as orientation constraints for structure calculations. 1H/13C/15N triple-resonance experiments were applied to selectively 13C′ and 15N labeled samples to complete the resonance assignments, especially for residues in the non-helical regions of the protein. A single resonance is observed for each labeled site in one- and two-dimensional spectra. Therefore, each residue has a unique conformation, and all protein molecules in the sample have the same three-dimensional structure and are oriented identically in planar phospholipid bilayers. Combined with the absence of significant intensity near the isotropic resonance frequency, this demonstrates that the entire protein, including the loop and terminal regions, has a well-defined, stable structure in phospholipid bilayers. PMID:16967977

  5. Fragment based drug discovery: practical implementation based on ¹⁹F NMR spectroscopy.

    PubMed

    Jordan, John B; Poppe, Leszek; Xia, Xiaoyang; Cheng, Alan C; Sun, Yax; Michelsen, Klaus; Eastwood, Heather; Schnier, Paul D; Nixey, Thomas; Zhong, Wenge

    2012-01-26

    Fragment based drug discovery (FBDD) is a widely used tool for discovering novel therapeutics. NMR is a powerful means for implementing FBDD, and several approaches have been proposed utilizing (1)H-(15)N heteronuclear single quantum coherence (HSQC) as well as one-dimensional (1)H and (19)F NMR to screen compound mixtures against a target of interest. While proton-based NMR methods of fragment screening (FBS) have been well documented and are widely used, the use of (19)F detection in FBS has been only recently introduced (Vulpetti et al. J. Am. Chem. Soc.2009, 131 (36), 12949-12959) with the aim of targeting "fluorophilic" sites in proteins. Here, we demonstrate a more general use of (19)F NMR-based fragment screening in several areas: as a key tool for rapid and sensitive detection of fragment hits, as a method for the rapid development of structure-activity relationship (SAR) on the hit-to-lead path using in-house libraries and/or commercially available compounds, and as a quick and efficient means of assessing target druggability. PMID:22165820

  6. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    NASA Astrophysics Data System (ADS)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  7. Fluorine-Decoupled Carbon Spectroscopy for the Determination of Configuration at Fully Substituted, Trifluoromethyl- and Perfluoroalkyl-Bearing Carbons: Comparison with 19F–1H Heteronuclear Overhauser Effect Spectroscopy

    PubMed Central

    2016-01-01

    The synthesis of a series of α-trifluoromethylcyclohexanols and analogous trimethylsilyl ethers by addition of the Ruppert–Prakash reagent to substituted cyclohexanones is presented. A method for the assignment of configuration of such compounds, of related α-trifluoromethylcyclohexylamines and of quaternary trifluoromethyl-substituted carbons is described based on the determination of the 3JCH coupling constant between the fluorine-decoupled 13CF3 resonance and the vicinal hydrogens. This method is dubbed fluorine-decoupled carbon spectroscopy and abbreviated FDCS. The method is also applied to the configurational assignment of substances bearing mono-, di-, and perfluoroalkyl rather than trifluoromethyl groups. The configuration of all substances was verified by either 19F−1H heteronuclear Overhauser spectroscopy (HOESY) or X-ray crystallography. The relative merits of FDCS and HOESY are compared and contrasted. 2JCH, 3JCH, and 4JCH coupling constants to 19F decoupled CF3 groups in alkenes and arenes have also been determined and should prove to be useful in the structural assignment of trifluoromethylated alkenes and arenes. PMID:25561269

  8. Interaction with DNA of a heteronuclear [Na2Cu4] coordination cluster obtained from the assembly of two hydroxo-bridged [Cu(II)2] units by a dimeric sodium nitrate template.

    PubMed

    Mandal, Debashree; Chauhan, Mala; Arjmand, Farukh; Aromí, Guillem; Ray, Debashis

    2009-11-14

    The heteronuclear [Na(2)Cu(4)(bemp)(2)(OH)(2)(NO(3))(2)(OH(2))(4)] x 5 H(2)O (1 x 5H(2)O; H(3)bemp: 2,6-bis-[(2-hydroxyethylimino)-methyl]-4-methyl-phenol) cluster has been synthesized in aqueous-methanol at room temperature and structurally characterized. The water soluble complex is obtained from the template assembly of two [Cu(2)(bemp)(OH)] neutral fragments through their weak oxophillic interactions with two interconnected NaNO(3) units as core. Four [Na(2)Cu(4)] units form a metal-organic cage arrangement in the crystal lattice that traps a (H(2)O)(7) cluster. Variable-temperature magnetic susceptibility measurements (2-300 K) reveals a strong antiferromagnetic coupling between the Cu(II) ions within the dimers with J = -124.1 cm(-1) (in the H = -2JS(1)S(2) convention). The interaction of complex 1 x 3H(2)O with calf thymus DNA (binding constant K(b), 4.6 x 10(4) M(-1)) in Tris buffer was studied by UV-visible and emission titration, and cyclic voltammetry. The hexanuclear Na(2)Cu(4) complex also binds double-stranded supercoiled plasmid pBR322 DNA and displays efficient hydrolytic cleavage. The hydrolytic mechanism is supported by evidence from DNA relegation employing T4 ligase assay and reactive oxygen species (ROS) quenching cleavage experiments. PMID:20449195

  9. Enantiodiscrimination and extraction of short and long range homo- and hetero-nuclear residual dipolar couplings by a spin selective correlation experiment

    NASA Astrophysics Data System (ADS)

    Nath, Nilamoni; Suryaprakash, N.

    2010-08-01

    A two dimensional correlation experiment for the measurement of short and long range homo- and hetero- nuclear residual dipolar couplings (RDCs) from the broad and featureless proton NMR spectra including 13C satellites is proposed. The method employs a single natural abundant 13C spin as a spy nucleus to probe all the coupled protons and permits the determination of RDCs of negligible strengths. The technique has been demonstrated for the study of organic chiral molecules aligned in chiral liquid crystal, where additional challenge is to unravel the overlapped spectrum of enantiomers. The significant advantage of the method is demonstrated in better chiral discrimination using homonuclear RDCs as additional parameters.

  10. A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of cyano-bridged heteronuclear polymeric complex of triethylenetetramine

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Çetinkaya, Fulya; Arslan, Taner

    The cyano bridged complex of triethylenetetramine was characterized by FT-IR, Raman spectroscopy and X-ray single crystal diffraction analysis. The molecular geometry and vibrational frequencies of the complex in the ground state have been calculated by using B3LYP density functional method with LANL2DZ basis set. A good correlation was found via comparison of the experimental and theoretical vibrational frequencies of complex. The complex of the type [Zn(teta)Ni(μ-CN)2(CN)2]n has been studied in the 4000-250 cm-1 region and assignment of all the observed bands were made. The analysis of the FT-IR and Raman spectra indicates that there are some structure spectra correlations.

  11. On the reliability of heteronuclear precursors-ligand effects in the Li-MOCVD synthesis of SrTiO3 films.

    PubMed

    Seisenbaeva, Gulaim A; Gohil, Suresh; Kessler, Vadim G; Andrieux, Michel; Legros, Corinne; Ribot, Patrick; Brunet, Magali

    2011-09-01

    Strontium titanate SrTiO3 thin films are highly perspective as gate dielectric material. Difference in volatility of the common homometallic precursors-strontium beta-diketonates and titanium alkoxides remains major hinder for preparation of high quality coatings based on this phase. An attractive alternative in its synthesis by MOCVD is provided by application of heterometallic mixed-ligand complexes, Sr2Ti2(beta-diket)4(OR)8(ROH)x. Mass-spectrometric study reveals, however, that none of these species can be considered a true single-source precursor. The relative stability of the molecules in solution and the congruence of in-situ release of homometallic species on evaporation are, on the other hand, crucial for the quality of the produced films and are strongly influenced by the nature of alkoxide ligands, OR. The historically first discovered representative of this heterometallic family, a sec-alkoxide derivative Sr2Ti2(thd)4(O(i)Pr)8, is in fact unexpectedly unstable, transforming in solution into Sr2Ti(thd)4(O(i)Pr)4((i)PrOH), which explains difficulties in keeping the correct stoichiometry using isopropoxide precursor. The primary alkoxide complexes, Sr2Ti2(thd)4(OR)8(ROH)2, R = Et, (n)Pr are also unstable yielding Sr4Ti2(thd)4(OR)8(ROH)2 on decomposition. The best solution stability and most uniform evaporation was observed for the iso-derivative, Sr2Ti2(thd)4(O(i)Bu)8, permitting to apply it in long term experiments under industrial process conditions. Present contribution provides detailed experimental comparison between and sec-and iso-alkoxide derivatives and sheds light on the influence of the ligand on molecular stability of a precursor and how it influences the quality of the derived oxide film, especially in relation to its electrophysical properties. PMID:22097573

  12. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.

    PubMed

    Clore, G Marius; Schwieters, Charles D

    2004-08-24

    Backbone residual dipolar coupling (N-H, Calpha-Halpha, N-C', and Calpha-C') data collected in five different media on the B3 IgG binding domain of streptococcal protein G (GB3) have been analyzed by simultaneous refinement of the coordinates and optimization of the magnitudes and orientations of the alignment tensors using single and multiple structure representations. We show, using appropriate error analysis, that agreement between observed and calculated dipolar couplings at the level of experimental uncertainty is obtained with a two-structure (N(e) = 2) ensemble representation which represents the simplest equilibrium description of anisotropic motions. The data permit one to determine the magnitude of the anisotropic motions along the four different backbone bond vectors in terms of order parameters. The order parameters, , for the N-H bond vectors are in qualitative agreement with the generalized order parameters, S(2)NH(relaxation), derived from (15)N relaxation measurements, with a correlation coefficient of 0.84. S(2)NH(relaxation) can be regarded as the product of an anisotropic order parameter, corresponding to derived from the residual dipolar couplings, and an axially symmetric order parameter, S(2)NH(axial), corresponding to bond librations which are expected to be essentially uniform along the polypeptide chain. The current data indicate that the average value of S(2)NH(axial) is approximately 0.9. The close correspondence of and S(2)NH(relaxation) indicates that any large-scale displacements from the mean coordinate positions on time scales longer than the rotational correlation time are rare and hence do not perturb the observed dipolar couplings. Analysis of a set of 100 N(e) = 2 ensembles reveals the presence of some long-range correlated motions of N-H and Calpha-Halpha vectors involving residues far apart in the sequence but close together in space. In addition, direct evidence is

  13. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope.

    PubMed

    Bublin, Merima; Kostadinova, Maria; Fuchs, Julian E; Ackerbauer, Daniela; Moraes, Adolfo H; Almeida, Fabio C L; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes. PMID:26579717

  14. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope

    PubMed Central

    Fuchs, Julian E.; Ackerbauer, Daniela; Moraes, Adolfo H.; Almeida, Fabio C. L.; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R.; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients’ sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes. PMID:26579717

  15. Single Nanoparticle Detection Using Far-field Emission of Photonic Molecule around the Exceptional Point

    PubMed Central

    Zhang, Nan; Liu, Shuai; Wang, Kaiyang; Gu, Zhiyuan; Li, Meng; Yi, Ningbo; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Highly sensitive, label-free detection methods have important applications in fundamental research and healthcare diagnostics. To date, the detection of single nanoparticles has remained largely dependent on extremely precise spectral measurement, which relies on high-cost equipment. Here, we demonstrate a simple but very nontrivial mechanism for the label-free sizing of nanoparticles using the far-field emission of a photonic molecule (PM) around an exceptional point (EP). By attaching a nanoparticle to a PM around an EP, the main resonant behaviors are strongly disturbed. In addition to typical mode splitting, we find that the far-field pattern of the PM is significantly changed. Taking a heteronuclear diatomic PM as an example, we demonstrate that a single nanoparticle, whose radius is as small as 1 nm to 7 nm, can be simply monitored through the variation of the far-field pattern. Compared with conventional methods, our approach is much easier and does not rely on high-cost equipment. In addition, this research will illuminate new advances in single nanoparticle detection. PMID:26149067

  16. Anthrax Toxin Receptor 1 / Tumor Endothelial Marker 8: Mutation of Conserved Inserted Domain Residues Overrides Cytosolic Control of Protective Antigen Binding†

    PubMed Central

    Ramey, Jordan D.; Villareal, Valerie A.; Ng, Charles; Ward, Sabrina; Xiong, Jian-Ping; Clubb, Robert T.; Bradley, Kenneth A.

    2010-01-01

    Anthrax toxin receptor 1 (ANTXR1) / tumor endothelial marker 8 (TEM8) is one of two known proteinaceous cell surface anthrax toxin receptors. A metal ion dependent adhesion site (MIDAS) present in the integrin-like inserted (I) domain of ANTXR1 mediates the binding of the anthrax toxin subunit, protective antigen (PA). Here we provide evidence that single point mutations in the I domain can override regulation of ANTXR1 ligand-binding activity mediated by intracellular signals. A previously reported MIDAS-mutant of ANTXR1 (T118A) was found to retain normal metal ion binding and secondary structure but failed to bind PA, consistent with a locked inactive state. Conversely, mutation of a conserved I domain phenylalanine residue to a tryptophan (F205W) increased the proportion of cell-surface ANTXR1 that bound PA, consistent with a locked active state. Interestingly, the KD and total amount of PA bound by the isolated ANTXR1 I domain was not affected by the F205W mutation, indicating that ANTXR1 is preferentially found in the active state in the absence of inside-out signaling. Circular dichroism (CD) spectroscopy and 1H-15N heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) revealed that structural changes between T118A, F205W and WT I domains were minor despite a greater than 103-fold difference in their abilities to bind toxin. Regulation of toxin binding has important implications for the design of toxin inhibitors and for the targeting of ANTXR1 for anti-tumor therapies. PMID:20690680

  17. HyperSPASM NMR: A new approach to single-shot 2D correlations on DNP-enhanced samples

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Frydman, Lucio

    2012-12-01

    Dissolution DNP experiments are limited to a single or at most a few scans, before the non-Boltzmann magnetization has been consumed. This makes it impractical to record 2D NMR data by conventional, t1-incremented schemes. Here a new approach termed HyperSPASM to establish 2D heteronuclear correlations in a single scan is reported, aimed at dealing with this kind of challenge. The HyperSPASM experiment relies on imposing an amplitude-modulation of the data by a single Δt1 indirect-domain evolution time, and subsequently monitoring the imparted encoding on separate echo and anti-echo pathway signals within a single continuous acquisition. This is implemented via the use of alternating, switching, coherence selection gradients. As a result of these manipulations the phase imparted by a heteronucleus over its indirect domain evolution can be accurately extracted, and 2D data unambiguously reconstructed with a single-shot excitation. The nature of this sequence makes the resulting experiment particularly well suited for collecting indirectly-detected HSQC data on hyperpolarized samples. The potential of the ensuing HyperSPASM method is exemplified with natural-abundance hyperpolarized correlations on model systems.

  18. Synthesis of 2,4,5,8-tetrabromotricyclo(4. 2. 2. 0/sup 1,5/)decane and determination of its structure by two-dimensional homonuclear and heteronuclear correlation /sup 1/H and /sup 13/C NMR spectroscopy and x-ray crystallographic analysis

    SciTech Connect

    Sekatsis, I.P.; Kemme, A.A.; Liepin'sh, E.E.; Bleidelis, Ya.Ya.; Gavars, M.P.; Raguel, B.P.; Polis, Ya.Yu.

    1988-08-10

    It is known that the bromination of endotricyclo(5.2.1.0/sup 2,6/)decane (I) with bromine in the presence of aluminum bromide leads to the formation of 1,3,5- and 1,3,6-tribromoadamantanes and 1,2,3,5,6,7-hexabromonaphthalene. In view of the complexity of the isomerization of the endo-decane (I) to adamantane the authors studied the bromination of (I) with bromine in order to detect the intermediate products of this isomerization. 2,4,5,8-Tetrabromotricyclo(4.2.2.0/sup 1,5/)decane was synthesized by the bromination of endo-tricyclo(5.2.1.0/sup 2,6/)decane, and its structure was determined by two-dimensional homonuclear and heteronuclear correlation NMR spectroscopy with full assignment of the signals and was confirmed by x-ray crystallographic analysis.

  19. Tracking Transitions in Spider Wrapping Silk Conformation and Dynamics by (19)F Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sarker, Muzaddid; Orrell, Kathleen E; Xu, Lingling; Tremblay, Marie-Laurence; Bak, Jessi J; Liu, Xiang-Qin; Rainey, Jan K

    2016-05-31

    Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/β-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments. PMID:27153372

  20. The Role of Protein-Mineral Interactions for Protein Adsorption or Fragmentation

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P.; Washton, N.; Kleber, M.

    2014-12-01

    Soil exo-enzymes (EE) are proteins with the capability to catalyze the depolymerization of soil organic matter (SOM). SOM must be disassembled by EEs in order to be transported through the microbial cell wall and become metabolized. One factor determining an EE's functionality is their affinity to mineral surfaces found in the soil. Our goal was to establish the range of protein modifications, either chemical or structural, as the protein becomes associated with mineral surfaces. We hypothesized that pedogenic oxides would generate more extensive chemical alterations to the protein structure than phyllosilicates. A well-characterized protein proxy (Gb1, IEP 4.0, 6.2 kDA) was adsorbed onto functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnesite) at pH 5 and pH 7. We used 1H 15N Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance Spectroscopy (HSQC NMR) to observe structural modifications in the unadsorbed Gb1 that was allowed to equilibrate during the adsorption process for kaolinite, goethite and birnessite. Solid state NMR was used to observe the structural modifications of Gb1 while adsorbed onto kaolinite and montmorillonite. Preliminary results in the HSQC NMR spectra observed no changes in the native conformation of Gb1 when allowed to interact with goethite and kaolinite while birnessite induced strong structural modification of Gb1 at an acidic pH. Our results suggest that not all mineral surfaces in soil act as sorbents for EEs and changes in their catalytic activity upon adsorption to minerals surfaces may not just be an indication of conformational changes but of fragmentation of the protein itself.

  1. NMR Analysis of a Novel Enzymatically Active Unlinked Dengue NS2B-NS3 Protease Complex*

    PubMed Central

    Kim, Young Mee; Gayen, Shovanlal; Kang, CongBao; Joy, Joma; Huang, Qiwei; Chen, Angela Shuyi; Wee, John Liang Kuan; Ang, Melgious Jin Yan; Lim, Huichang Annie; Hung, Alvin W.; Li, Rong; Noble, Christian G.; Lee, Le Tian; Yip, Andy; Wang, Qing-Yin; Chia, Cheng San Brian; Hill, Jeffrey; Shi, Pei-Yong; Keller, Thomas H.

    2013-01-01

    The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker (“linked protease”), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a 1H-15N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV. PMID:23511634

  2. Using NMR to Develop New Allosteric and Allo-Network Drugs.

    PubMed

    Smith, Robert E; Tran, Kevin; Richards, Kristy M; Luo, Rensheng

    2015-01-01

    NMR is becoming an important tool for developing new allosteric and allo-network drugs that bind to allosteric sites on enzymes, partially inhibiting them and causing fewer side effects than drugs already developed that target active sites. This is based on systems thinking, in which active enzymes and other proteins are known to be flexible and interact with each other. In other words, proteins can exist in an ensemble of different conformations whose populations are tunable. NMR is being used to find the pathways through which the effects of binding of an allosteric ligand propagate. There are NMR screening assays for studying ligand binding. This includes determining the changes in the spin lattice relaxation due to changes in the mobility of atoms involved in the binding, measuring magnetization transfer from the protein to the ligand by saturation difference transfer NMR (STD-NMR) and the transfer of bulk magnetization to the ligand by water-Ligand Observed via Gradient Spectroscopy, or waterLOGSY. The chemical shifts of (1)H and (15)N of some of the atoms in amino acids change when an allosteric ligand binds to a protein. So, (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra can be used to identify key amino acids and ligand binding sites. The NMR chemical shifts of amino acids affected by ligand binding form a network that can be characterized. Allosteric networks can be identified by chemical shift covariance analysis (CHESCA). This approach has been used recently to study the binding of new molecular entities (NMEs) to potentially therapeutic drug targets. PMID:26577663

  3. Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA.

    PubMed

    Pennella, Mario A; Arunkumar, Alphonse I; Giedroc, David P

    2006-03-10

    Recent studies on metalloregulatory proteins suggest that coordination number/geometry and metal ion availability in a host cytosol are key determinants for biological specificity. Here, we investigate the contribution that individual metal ligands of the alpha5 sensing site of Staphylococcus aureus CzrA (Asp84, His86, His97', and His100') make to in vitro metal ion binding affinity, coordination geometry, and allosteric negative regulation of DNA operator/promoter region binding. All ligand substitution mutants exhibit significantly reduced metal ion binding affinity (K(Me)) by > or =10(3) M(-1). Substitutions of Asp84 and His97 give rise to non-native coordination geometries upon metal binding and are non-functional in allosteric coupling of metal and DNA binding (DeltaG(coupling) approximately 0 kcal mol(-1)). In contrast, His86 and His100 could be readily substituted with potentially liganding (Asp, Glu) and poorly liganding (Asn, Gln) residues with significant native-like tetrahedral metal coordination geometry retained in these mutants, leading to strong functional coupling (DeltaG(coupling) > or = +3.0 kcal mol(-1)). 1H-(15)N heteronuclear single quantum coherence (HSQC) spectra of wild-type and mutant CzrAs reveal that all H86 and H100 substitution mutants undergo 4 degrees structural switching on binding Zn(II), while D84N, H97N and H97D CzrAs do not. Thus, only those variant CzrAs that retain some tetrahedral coordination geometry characteristic of wild-type CzrA upon metal binding are capable of driving 4 degrees structural conformational changes linked to allosteric regulation of DNA binding in vitro, irrespective of the magnitude of K(Me). PMID:16406068

  4. The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug.

    PubMed

    Horváth, István; Harmat, Veronika; Perczel, András; Pálfi, Villo; Nyitray, László; Nagy, Attila; Hlavanda, Emma; Náray-Szabó, Gábor; Ovádi, Judit

    2005-03-01

    3'-(beta-Chloroethyl)-2',4'-dioxo-3,5'-spiro-oxazolidino-4-deacetoxyvinblastine (KAR-2) is a potent anti-microtubular agent that arrests mitosis in cancer cells without significant toxic side effects. In this study we demonstrate that in addition to targeting microtubules, KAR-2 also binds calmodulin, thereby countering the antagonistic effects of trifluoperazine. To determine the basis of both properties of KAR-2, the three-dimensional structure of its complex with Ca(2+)-calmodulin has been characterized both in solution using NMR and when crystallized using x-ray diffraction. Heterocorrelation ((1)H-(15)N heteronuclear single quantum coherence) spectra of (15)N-labeled calmodulin indicate a global conformation change (closure) of the protein upon its binding to KAR-2. The crystal structure at 2.12-A resolution reveals a more complete picture; KAR-2 binds to a novel structure created by amino acid residues of both the N- and C-terminal domains of calmodulin. Although first detected by x-ray diffraction of the crystallized ternary complex, this conformational change is consistent with its solution structure as characterized by NMR spectroscopy. It is noteworthy that a similar tertiary complex forms when calmodulin binds KAR-2 as when it binds trifluoperazine, even though the two ligands contact (for the most part) different amino acid residues. These observations explain the specificity of KAR-2 as an anti-microtubular agent; the drug interacts with a novel drug binding domain on calmodulin. Consequently, KAR-2 does not prevent calmodulin from binding most of its physiological targets. PMID:15596444

  5. Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region.

    PubMed

    Gill, Michelle L; Byrd, R Andrew; Palmer Iii, Arthur G

    2016-02-17

    Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) are known to play important roles in regulatory and signaling pathways. A critical aspect of these functions is the ability of IDP/IDRs to form highly specific complexes with target molecules. However, elucidation of the contributions of conformational dynamics to function has been limited by challenges associated with structural heterogeneity of IDP/IDRs. Using NMR spin relaxation parameters ((15)N R1, (15)N R2, and {(1)H}-(15)N heteronuclear NOE) collected at four static magnetic fields ranging from 14.1 to 21.1 T, we have analyzed the backbone dynamics of the basic leucine-zipper (bZip) domain of the Saccharomyces cerevisiae transcription factor GCN4, whose DNA binding domain is intrinsically disordered in the absence of DNA substrate. We demonstrate that the extended model-free analysis can be applied to proteins with IDRs such as apo GCN4 and that these results significantly extend previous NMR studies of GCN4 dynamics performed using a single static magnetic field of 11.74 T [Bracken, et al., J. Mol. Biol., 1999, 285, 2133-2146] and correlate well with molecular dynamics simulations [Robustelli, et al., J. Chem. Theory Comput., 2013, 9, 5190-5200]. In contrast to the earlier work, data at multiple static fields allows the time scales of internal dynamics of GCN4 to be reliably quantified. Large amplitude dynamic fluctuations in the DNA-binding region have correlation times (τs ≈ 1.4-2.5 ns) consistent with a two-step mechanism in which partially ordered bZip conformations of GCN4 form initial encounter complexes with DNA and then rapidly rearrange to the high affinity state with fully formed basic region recognition helices. PMID:26661739

  6. Four-body corrected first Born approximation for single charge exchange at high impact energies

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan

    1995-06-01

    Single electron capture is investigated by means of the four-body boundary corrected first Born approximation (CB1-4B). The "post" form of the transition amplitude for a general heteronuclear case (Zp; e1) + (ZT; e2) → (Zp; e1, e2) + ZT is derived in the form of readily obtainable two-dimensional real integrals. We investigate the sensitivity of the total cross sections to the choice of ground state wave function for helium-like atoms. Also, the influence of non-captured electron on the final results is studied. As an illustration, the CB1-4B method is used to compute the total cross sections for reactions: H(1s) + H(1s) → H-(1s2) + H+, He+(1s) + H(1s) → He(1s2) + H+ and He+(1s) + He+(1s) → He(1s2) + α. The theoretical cross sections are found to be in good agreement with the available experimental data.

  7. Multidimensional J-driven NMR correlations by single-scan offset-encoded recoupling.

    PubMed

    Lin, Yulan; Lupulescu, Adonis; Frydman, Lucio

    2016-04-01

    Two-dimensional (2D) correlations between bonded heteroatoms, lie at the cornerstone of many uses given to contemporary nuclear magnetic resonance (NMR). Improving the efficiency with which these correlations are established is an important topic in modern NMR, with potential applications in rapid chemical analysis and dynamic biophysical studies. Alternatives have been developed over the last decade to speed up these experiments, based among others on reducing the number of data points that need to be sampled, and/or shortening the inter-scan delays. Approaches have also been proposed to forfeit multi-scan schemes altogether, and complete full 2D correlations in a single shot. Here we explore and discuss a new alternative enabling the collection of such very fast - in principle, single-scan - acquisitions of 2D heteronuclear correlations among bonded species, which operates on the basis of a partial reintroduction of J couplings. Similar approaches had been proposed in the past based on collecting coupled spectra for arrays of off-resonance decoupling values; the proposal that is here introduced operates on the basis of suitably incorporating frequency-swept pulses, into spin-echo sequences. Thanks to the offset-dependent amplitude modulations of the in- and anti-phase components that such sequences impart, chemical shifts of coupled but otherwise unobserved nuclear species, can be extracted from the relative intensities and phases of J-coupled multiplets observed in one-dimensional acquisitions. A description of the steps needed to implement this rapid acquisition approach in a quantitative fashion, as well as applications of the ensuing sequences, are presented. PMID:26852416

  8. Multidimensional J-driven NMR correlations by single-scan offset-encoded recoupling

    NASA Astrophysics Data System (ADS)

    Lin, Yulan; Lupulescu, Adonis; Frydman, Lucio

    2016-04-01

    Two-dimensional (2D) correlations between bonded heteroatoms, lie at the cornerstone of many uses given to contemporary nuclear magnetic resonance (NMR). Improving the efficiency with which these correlations are established is an important topic in modern NMR, with potential applications in rapid chemical analysis and dynamic biophysical studies. Alternatives have been developed over the last decade to speed up these experiments, based among others on reducing the number of data points that need to be sampled, and/or shortening the inter-scan delays. Approaches have also been proposed to forfeit multi-scan schemes altogether, and complete full 2D correlations in a single shot. Here we explore and discuss a new alternative enabling the collection of such very fast - in principle, single-scan - acquisitions of 2D heteronuclear correlations among bonded species, which operates on the basis of a partial reintroduction of J couplings. Similar approaches had been proposed in the past based on collecting coupled spectra for arrays of off-resonance decoupling values; the proposal that is here introduced operates on the basis of suitably incorporating frequency-swept pulses, into spin-echo sequences. Thanks to the offset-dependent amplitude modulations of the in- and anti-phase components that such sequences impart, chemical shifts of coupled but otherwise unobserved nuclear species, can be extracted from the relative intensities and phases of J-coupled multiplets observed in one-dimensional acquisitions. A description of the steps needed to implement this rapid acquisition approach in a quantitative fashion, as well as applications of the ensuing sequences, are presented.

  9. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    PubMed

    Mühlhahn, P; Bernhagen, J; Czisch, M; Georgescu, J; Renner, C; Ross, A; Bucala, R; Holak, T A

    1996-10-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  10. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    PubMed Central

    Mühlhahn, P.; Bernhagen, J.; Czisch, M.; Georgescu, J.; Renner, C.; Ross, A.; Bucala, R.; Holak, T. A.

    1996-01-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  11. Mechanism of Solid-State Thermolysis of Ammonia Boraine: 15N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization

    SciTech Connect

    Kobayashi, Takeshi; Gupta, Shalabh; Caporini, Marc A; Pecharsky, Vitalij K; Pruski, Marek

    2014-08-28

    The solid-state thermolysis of ammonia borane (NH3BH3, AB) was explored using state-of-the-art 15N solid-state NMR spectroscopy, including 2D indirectly detected 1H{15N} heteronuclear correlation and dynamic nuclear polarization (DNP)-enhanced 15N{1H} cross-polarization experiments as well as 11B NMR. The complementary use of 15N and 11B NMR experiments, supported by density functional theory calculations of the chemical shift tensors, provided insights into the dehydrogenation mechanism of AB—insights that have not been available by 11B NMR alone. Specifically, highly branched polyaminoborane derivatives were shown to form from AB via oligomerization in the “head-to-tail” manner, which then transform directly into hexagonal boron nitride analog through the dehydrocyclization reaction, bypassing the formation of polyiminoborane.

  12. 1H, 13C and 15N resonance assignments of URNdesign, a computationally redesigned RRM protein

    SciTech Connect

    Dobson, Neil; Dantas, Gautam; Varani, Gabriele

    2005-10-01

    Protein design represents one of the great challenges of computational structural biology. The ability to successfully design new proteins would allow us to generate new reagents and enzymes, while at the same time providing us with an understanding of the principles of protein stability. Here we report 1H, 15N and 13C resonance assignments of a redesigned U1A protein, URNdesign. U1A has been studied extensively by our group and hence was chosen as a design target. For the assignments we sued 2D and 3D heteronuclearNMR experiments with uniformly 13C, 15N-labeled URNdesign. The assignments for the backbone NH, CO,Ca and Cb nuclei are 94%complete. Sidechain 1Hand13C, aromatic andQ/NNH2 resonances are essentially complete with guanidinium and K NH3 residues unassigned. BMRB deposit with accession number 6493

  13. Single-Sex Classrooms

    ERIC Educational Resources Information Center

    Protheroe, Nancy

    2009-01-01

    Although single-sex education was once the norm in the U.S., the practice has largely been confined to private schools for more than a century. However, with the introduction of the final version of the U.S. Department of Education's so-called single-sex regulations in 2006, public schools were allowed greater flexibility to offer single-sex…

  14. Single Parent Adoption.

    ERIC Educational Resources Information Center

    Administration for Children, Youth, and Families (DHHS), Washington, DC.

    Presenting two views of the single-parent family, this pamphlet includes an article by two researchers (William Feigelman and Arnold R. Silverman) and a short statement by a single adoptive parent (Amanda Richards). The first paper summarizes earlier research on single-parent adoptions and discusses the results of a nationwide survey of 713…

  15. Impact of the coordination environment on the magnetic properties of single-molecule magnets based on homo- and hetero-dinuclear terbium(iii) heteroleptic tris(crownphthalocyaninate).

    PubMed

    Holmberg, Rebecca J; Polovkova, Marina A; Martynov, Alexander G; Gorbunova, Yulia G; Murugesu, Muralee

    2016-05-31

    A series of Tb(III) triple-decker heteroleptic crownphthalocyaninate complexes consisting of a homodinuclear compound [(15C5)4Pc]Tb[(15C5)4Pc]Tb(Pc) (), and two novel heterodinuclear compounds [(15C5)4Pc]Tb[(15C5)4Pc]Y(Pc), () and [(15C5)4Pc]Y[(15C5)4Pc]Tb(Pc) (), have been synthesized. All compounds were characterised using UV-Vis spectroscopy, HR-ESI-MS, MALDI-TOF-MS, and (1)H NMR spectroscopy, followed by exploration into the effects of lanthanide coupling and ligand field symmetry on the magnetic properties of these complexes using SQUID magnetometry. Magnetic measurements on the homonuclear Tb(III) complex () displayed non-negligible ferromagnetic coupling between magnetic ions, eliciting a high zero-field energetic barrier to the magnetic relaxation of Ueff = 229.9(0) K, while the heteronuclear Tb(III)/Y(III) complexes displayed single-ion field-induced slow relaxation of the magnetization; yielding energetic barriers of Ueff = 129.8(0) K for , and 169.1(8) K for . PMID:27184182

  16. Single Molecule and Single Cell Epigenomics

    PubMed Central

    Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.

    2014-01-01

    Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781

  17. Self-assembly of highly luminescent heteronuclear coordination cages.

    PubMed

    Schmidt, Andrea; Hollering, Manuela; Han, Jiaying; Casini, Angela; Kühn, Fritz E

    2016-08-01

    Exo-functionalized Pd2L4 cage compounds with attached Ru(ii) pyridine complexes were prepared via coordination-driven self-assembly. Unlike most of the previously reported palladium(ii) cages, one of these metallocages exhibits an exceptionally high quantum yield of 66%. The presented approach is promising to obtain luminescent coordination complexes for various applications. PMID:27436541

  18. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule.

    PubMed

    Zhang, Wen-Ying; Lin, Yue-Jian; Han, Ying-Feng; Jin, Guo-Xin

    2016-08-24

    Owing to the often-similar physical and chemical properties of structural isomers of organic molecules, large efforts have been made to develop efficient strategies to isolate specific isomers. However, facile separation of regioisomeric compounds remains difficult. Here we demonstrate a universal organometallic capsule in which two silver centers are rigidly separated from each other by two tetranuclear [Rh4] pyramidal frustums, which selectively encapsulate a specific isomer from mixtures. Not only is the present heterometallic capsule suitable as a host for the encapsulation of a series of aromatic compounds, but also the receptor shows widely differing specificity for the various isomers. Direct experimental evidence is provided for the selective encapsulation of a series of para (p)-disubstituted benzene derivatives, such as p-xylene, p-dichlorobenzene, p-dibromobenzene, and p-diiodobenzene. The size and shape matching, as well as the Ag-π interactions, are the main forces governing the extent of molecular recognition. The encapsulated guest p-xylene can be released by using the solid-liquid solvent washing strategy, and the other guest molecules are easily liberated by using light stimulus. PMID:27463561

  19. Dimerization of Nitrophorin 4 at Low pH and Comparison to the K1A Mutant of Nitrophorin 1

    PubMed Central

    2015-01-01

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer–dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and 1H{15N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The “closed loop” form of the A–B and G–H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer. PMID:25489673

  20. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  1. Thermodynamic and phylogenetic insights into hnRNP A1 recognition of the HIV-1 exon splicing silencer 3 element.

    PubMed

    Rollins, Carrie; Levengood, Jeffrey D; Rife, Brittany D; Salemi, Marco; Tolbert, Blanton S

    2014-04-01

    Complete expression of the HIV-1 genome requires balanced usage of suboptimal splice sites. The 3' acceptor site A7 (ssA7) is negatively regulated in part by an interaction between the host hnRNP A1 protein and a viral splicing silencer (ESS3). Binding of hnRNP A1 to ESS3 and other upstream silencers is sufficient to occlude spliceosome assembly. Efforts to understand the splicing repressive properties of hnRNP A1 on ssA7 have revealed hnRNP A1 binds specific sites within the context of a highly folded RNA structure; however, biochemical models assert hnRNP A1 disrupts RNA structure through cooperative spreading. In an effort to improve our understanding of the ssA7 binding properties of hnRNP A1, herein we have performed a combined phylogenetic and biophysical study of the interaction of its UP1 domain with ESS3. Phylogenetic analyses of group M sequences (x̅ = 2860) taken from the Los Alamos HIV database reveal the ESS3 stem loop (SL3(ESS3)) structure has been conserved throughout HIV-1 evolution, despite variations in primary sequence. Calorimetric titrations with UP1 clearly show the SL3(ESS3) structure is a critical binding determinant because deletion of the base-paired region reduces the affinity by ∼150-fold (Kd values of 27.8 nM and 4.2 μM). Cytosine substitutions of conserved apical loop nucleobases show UP1 preferentially binds purines over pyrimidines, where site-specific interactions were detected via saturation transfer difference nuclear magnetic resonance. Chemical shift mapping of the UP1-SL3(ESS3) interface by (1)H-(15)N heteronuclear single-quantum coherence spectroscopy titrations reveals a broad interaction surface on UP1 that encompasses both RRM domains and the inter-RRM linker. Collectively, our results describe a UP1 binding mechanism that is likely different from current models used to explain the alternative splicing properties of hnRNP A1. PMID:24628426

  2. Single Mothers "Do" Family

    ERIC Educational Resources Information Center

    Nelson, Margaret K.

    2006-01-01

    This paper explores how single mothers both incorporate others into family life (e.g., when they ask others to care for their children) and simultaneously "do families" in a manner that holds out a vision of a "traditional" family structure. Drawing on research with White, rural single mothers, the author explores the manner in which these women…

  3. Single Parent Adoptive Homes.

    ERIC Educational Resources Information Center

    Shireman, Joan F.

    1996-01-01

    Reviews research and reports on a longitudinal study of 15 single-parent adoptive homes over a 14-year period that demonstrated that these homes have the capacity to be successful adoptive placements. Identifies unique characteristics of single-parent adoptive homes, and notes the need for additional research to identify children for whom these…

  4. Understanding Single Adulthood.

    ERIC Educational Resources Information Center

    Stein, Peter J.

    The life styles and life chances of the unmarried include elements of choices. Singles may be grouped and characterized according to whether their status may be considered stable or temporary. A life cycle, or continuum model of singlehood is reviewed, including its different factors, or phases. A new model for singles is proposed--a life spiral…

  5. Moving Single Atoms

    NASA Astrophysics Data System (ADS)

    Stuart, Dustin

    2016-05-01

    Single neutral atoms are promising candidates for qubits, the fundamental unit of quantum information. We have built a set of optical tweezers for trapping and moving single Rubidium atoms. The tweezers are based on a far off-resonant dipole trapping laser focussed to a 1 μm spot with a single aspheric lens. We use a digital micromirror device (DMD) to generate dynamic holograms of the desired arrangement of traps. The DMD has a frame rate of 20 kHz which, when combined with fast algorithms, allows for rapid reconfiguration of the traps. We demonstrate trapping of up to 20 atoms in arbitrary arrangements, and the transport of a single-atom over a distance of 14 μm with continuous laser cooling, and 5 μm without. In the meantime, we are developing high-finesse fibre-tip cavities, which we plan to use to couple pairs of single atoms to form a quantum network.

  6. Single nanoparticle plasmonic sensors.

    PubMed

    Sriram, Manish; Zong, Kelly; Vivekchand, S R C; Gooding, J Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  7. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  8. Single-ventricle physiology.

    PubMed

    Schwartz, Steven M; Dent, Catherine L; Musa, Ndidi L; Nelson, David P

    2003-07-01

    The patient with single-ventricle physiology presents a significant challenge to the intensive care team at all stages of management. An integrated approach that applies a working knowledge of cardiac anatomy, cardiopulmonary physiology, and the basic principles of intensive care is essential to guide management for each individual patient. This management requires cooperative and constructive involvement of surgeons, cardiologists, and intensivists, as well as a nursing and respiratory care team experienced in the management of single-ventricle patients. The outcome of each stage of palliation for single-ventricle lesions should continue to improve as new ideas are developed and as older ideas are subjected to rigorous scientific analyses. PMID:12848312

  9. Single Electron Tunneling

    SciTech Connect

    Ruggiero, Steven T.

    2005-07-25

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  10. Single Beam Holography.

    ERIC Educational Resources Information Center

    Chen, Hsuan; Ruterbusch, Paul H.

    1979-01-01

    Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)

  11. SINGLE CELL GENOME SEQUENCING

    PubMed Central

    Yilmaz, Suzan; Singh, Anup K.

    2011-01-01

    Whole genome amplification and next-generation sequencing of single cells has become a powerful approach for studying uncultivated microorganisms that represent 90–99 % of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities. PMID:22154471

  12. Selection of Simultaneous Coherence Pathways with Gradient Pulses

    NASA Astrophysics Data System (ADS)

    Ross, A.; Czisch, M.; Holak, T. A.

    A simple modification of a refocused INEPT sequence is described that produces single lines from multiplets of the heteronuclear coupled spin systems. Weighted selection of more than one coherence-transfer pathway is accomplished by pulsed field gradients in a single-scan experiment. Applications involve line selections in heteronuclear multiplets and the determination of relaxation times for selected coherences.

  13. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  14. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution. PMID:27378060

  15. Single-plasmon interferences.

    PubMed

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-03-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  16. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  17. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  18. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  19. Single-molecule bioelectronics.

    PubMed

    Rosenstein, Jacob K; Lemay, Serge G; Shepard, Kenneth L

    2015-01-01

    Experimental techniques that interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. In this study, we review several technologies that can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  20. Single Cell Oncogenesis

    NASA Astrophysics Data System (ADS)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  1. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their

  2. TRANSVERSITY SINGLE SPIN ASYMMETRIES.

    SciTech Connect

    BOER,D.

    2001-04-27

    The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.

  3. Contemporary Single Mothers.

    ERIC Educational Resources Information Center

    Eiduson, Bernice T.

    Fifty Caucasian, never-married single mothers aged 18-30, who had opted to keep their babies, were studied longitudinally from the last trimester of pregnancy through the first three years of their children's lives in order to learn the extent to which they had reinterpreted traditional roles and responsibilities and had restructured their lives.…

  4. Single Mother's Resource Handbook.

    ERIC Educational Resources Information Center

    Ferando, Annette; Newbert, David

    Funded under the Women's Educational Equity Act, the Assertiveness Training Program for Single Mothers was offered to mothers with children enrolled in the Omaha Head Start and Parent-Child Center Programs. The 16-week long program, providing a total of 40 hours of training, covered a wide range of topics in addition to the initial workshops on…

  5. Single Fathers Rearing Children.

    ERIC Educational Resources Information Center

    Greif, Geoffrey L.

    1985-01-01

    Describes single fathers rearing children alone following divorce (N=1,136). Findings revealed four primary reasons for the divorce and four broad situations in which the fathers obtained custody. These latter situations often are affected by the mother's desire to relinquish custody. (NRB)

  6. From single molecule to single tubules

    NASA Astrophysics Data System (ADS)

    Guo, Chin-Lin

    2012-02-01

    Biological systems often make decisions upon conformational changes and assembly of single molecules. In vivo, epithelial cells (such as the mammary gland cells) can respond to extracellular matrix (ECM) molecules, type I collagen (COL), and switch their morphology from a lobular lumen (100-200 micron) to a tubular lumen (1mm-1cm). However, how cells make such a morphogenetic decision through interactions with each other and with COL is unclear. Using a temporal control of cell-ECM interaction, we find that epithelial cells, in response to a fine-tuned percentage of type I collagen (COL) in ECM, develop various linear patterns. Remarkably, these patterns allow cells to self-assemble into a tubule of length ˜ 1cm and diameter ˜ 400 micron in the liquid phase (i.e., scaffold-free conditions). In contrast with conventional thought, the linear patterns arise through bi-directional transmission of traction force, but not through diffusible biochemical factors secreted by cells. In turn, the transmission of force evokes a long-range (˜ 600 micron) intercellular mechanical interaction. A feedback effect is encountered when the mechanical interaction modifies cell positioning and COL alignment. Micro-patterning experiments further reveal that such a feedback is a novel cell-number-dependent, rich-get-richer process, which allows cells to integrate mechanical interactions into long-range (> 1mm) linear coordination. Our results suggest a mechanism cells can use to form and coordinate long-range tubular patterns, independent of those controlled by diffusible biochemical factors, and provide a new strategy to engineer/regenerate epithelial organs using scaffold-free self-assembly methods.

  7. Towards single molecule switches.

    PubMed

    Zhang, Jia Lin; Zhong, Jian Qiang; Lin, Jia Dan; Hu, Wen Ping; Wu, Kai; Xu, Guo Qin; Wee, Andrew T S; Chen, Wei

    2015-05-21

    The concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch. Over the past decade, molecular switches on surfaces have been intensely investigated. A variety of external stimuli such as light, electric field, temperature, tunneling electrons and even chemical stimulus have been used to activate these molecular switches between bistable or even multiple states by manipulating molecular conformations, dipole orientations, spin states, charge states and even chemical bond formation. The switching event can occur either on surfaces or in break junctions. The aim of this review is to highlight recent advances in molecular switches triggered by various external stimuli, as investigated by low-temperature scanning tunneling microscopy (LT-STM) and the break junction technique. We begin by presenting the molecular switches triggered by various external stimuli that do not provide single molecule selectivity, referred to as non-selective switching. Special focus is then given to selective single molecule switching realized using the LT-STM tip on surfaces. Single molecule switches operated by different mechanisms are reviewed and discussed. Finally, molecular switches embedded in self-assembled monolayers (SAMs) and single molecule junctions are addressed. PMID:25757483

  8. 75 FR 9247 - Single Family Mortgage Insurance Premium, Single Family

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... URBAN DEVELOPMENT Single Family Mortgage Insurance Premium, Single Family AGENCY: Office of the Chief... the Single Family Premium Collection Subsystem-Upfront (SFPCS-U) to remit the upfront premium to... manage and process upfront single family mortgage insurance premium collections and corrections to...

  9. Single nanowire photovoltaics.

    PubMed

    Tian, Bozhi; Kempa, Thomas J; Lieber, Charles M

    2009-01-01

    This tutorial review focuses on recent work addressing the properties and potential of semiconductor nanowires as building blocks for photovoltaic devices based on investigations at the single nanowire level. Two central nanowire motifs involving p-i-n dopant modulation in axial and coaxial geometries serve as platforms for fundamental studies. Research illustrating the synthesis of these structural motifs will be reviewed first, followed by an examination of recent studies of single axial and coaxial p-i-n silicon nanowire solar cells. Finally, challenges and opportunities for improving efficiency enabled by controlled synthesis of more complex nanowire structures will be discussed, as will their potential applications as power sources for emerging nanoelectronic devices. PMID:19088961

  10. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  11. Single frequency multitransmitter telemetry

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A. (Inventor)

    1986-01-01

    The invention relates to a single frequency multitransmitter telemetry system that will deliver a substantial amount of data at low cost. The invention consists essentially of a plurality of sensor transmitter units at different locations, with individual signal conditioning and logic, which send sampled data signals to a single receiver. The transmitters operate independently on the same frequency in a frequency shift keying modulation system and are not synchronized to the receiver. The problem of reception of data from more than one transmitter simultaneously is solved by discarding the data - when there is overlap of data from two or more transmitters, the data is discarded and when there is no overlap the data is retained. The invention utilizes a unique overlap detection technique to determine if data should be retained or discarded. When data is received from a transmitter, it goes into a shift register.

  12. Single cell optical transfection.

    PubMed

    Stevenson, David J; Gunn-Moore, Frank J; Campbell, Paul; Dholakia, Kishan

    2010-06-01

    The plasma membrane of a eukaryotic cell is impermeable to most hydrophilic substances, yet the insertion of these materials into cells is an extremely important and universal requirement for the cell biologist. To address this need, many transfection techniques have been developed including viral, lipoplex, polyplex, capillary microinjection, gene gun and electroporation. The current discussion explores a procedure called optical injection, where a laser field transiently increases the membrane permeability to allow species to be internalized. If the internalized substance is a nucleic acid, such as DNA, RNA or small interfering RNA (siRNA), then the process is called optical transfection. This contactless, aseptic, single cell transfection method provides a key nanosurgical tool to the microscopist-the intracellular delivery of reagents and single nanoscopic objects. The experimental possibilities enabled by this technology are only beginning to be realized. A review of optical transfection is presented, along with a forecast of future applications of this rapidly developing and exciting technology. PMID:20064901

  13. Single mode thermal emission.

    PubMed

    Fohrmann, Lena Simone; Petrov, Alexander Yu; Lang, Slawa; Jalas, Dirk; Krauss, Thomas F; Eich, Manfred

    2015-10-19

    We report on the properties of a thermal emitter which radiates into a single mode waveguide. We show that the maximal power of thermal radiation into a propagating single mode is limited only by the temperature of the thermal emitter and does not depend on other parameters of the waveguide. Furthermore, we show that the power of the thermal emitter cannot be increased by resonant coupling. For a given temperature, the enhancement of the total emitted power is only possible if the number of excited modes is increased. Either a narrowband or a broadband thermal excitation of the mode is possible, depending on the properties of the emitter. We finally discuss an example system, namely a thermal source for silicon photonics. PMID:26480429

  14. Watching single molecules dance

    NASA Astrophysics Data System (ADS)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  15. Single-spin CCD.

    PubMed

    Baart, T A; Shafiei, M; Fujita, T; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this 'single-spin charge-coupled device'. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing. PMID:26727201

  16. Ageing single file motion

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Sanders, L.; Lomholt, M. A.; Lizana, L.; Fogelmark, K.; Ambjörnsson, Tobias

    2014-12-01

    The mean squared displacement of a tracer particle in a single file of identical particles with excluded volume interactions shows the famed Harris scaling ≃ K1/2t1/2 as function of time. Here we study what happens to this law when each particle of the single file interacts with the environment such that it is transiently immobilised for times τ with a power-law distribution ψ(τ) ≃ (τ★)α, and different ranges of the exponent α are considered. We find a dramatic slow-down of the motion of a tracer particle from Harris' law to an ultraslow, logarithmic time evolution ≃ K0 log 1/2(t) when 0 < α < 1. In the intermediate case 1 < α < 2, we observe a power-law form for the mean squared displacement, with a modified scaling exponent as compared to Harris' law. Once α is larger than two, the Brownian single file behaviour and thus Harris' law are restored. We also point out that this process is weakly non-ergodic in the sense that the time and ensemble averaged mean squared displacements are disparate.

  17. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  18. Single-spin CCD

    NASA Astrophysics Data System (ADS)

    Baart, T. A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

  19. Single wall penetration equations

    NASA Technical Reports Server (NTRS)

    Hayashida, K. B.; Robinson, J. H.

    1991-01-01

    Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.

  20. Single Echo MRI

    PubMed Central

    Galiana, Gigi; Constable, R. Todd

    2014-01-01

    Purpose Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout. The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve stimulation limits, yielding an image from a single 4 ms echo. Theory and Methods This sequence was inspired by considering the code of each voxel, i.e. the phase accumulation that a voxel follows through the readout, an approach connected to traditional encoding theory. We present simulations for the initial sequence, a low slew rate analog, and higher resolution reconstructions. Results Extremely fast acquisitions are achievable, though as one would expect, SNR is reduced relative to the slower Cartesian sampling schemes because of the high gradient strengths. Conclusions The prospect that nonlinear gradients can acquire images in a single <10 ms echo makes this a novel and interesting approach to image encoding. PMID:24465837

  1. Single-cell proteins

    SciTech Connect

    Litchfield, J.H.

    1983-02-11

    Both photosynthetic and nonphotosynthetic microorganisms, grown on various carbon and energy sources, are used in fermentation processes for the production of single-cell proteins. Commercial-scale production has been limited to two algal processes, one bacterial process, and several yeast and fungal processes. High capital and operating costs and the need for extensive nutritional and toxicological assessments have limited the development and commercialization of new processes. Any increase in commercial-scale production appears to be limited to those regions of the world where low-cost carbon and energy sources are available and conventional animal feedstuff proteins, such as soybean meal or fish meal, are in short supply. (Refs. 59).

  2. Single-polariton optomechanics.

    PubMed

    Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan

    2014-01-10

    This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum statistics of phonons in such an unconventional regime. PMID:24483897

  3. The single antenna interferometer

    SciTech Connect

    Fitch, J.P.

    1990-01-15

    Air and space borne platforms using synthetic aperture radars (SAR) have made interferometric measurements by using either two physical antennas mounted on one air-frame or two passes of one antenna over a scene. In this paper, a new interferometric technique using one pass of a single-antenna SAR system is proposed and demonstrated on data collected by the NASA-JPL AirSAR. Remotely sensed L-band microwave data are used to show the sensitivity of this technique to ocean surface features as well as a baseline for comparison with work by others using two-antenna systems. 7 refs., 3 figs.

  4. Single Axis Piezoceramic Gimbal

    NASA Technical Reports Server (NTRS)

    Horner, Garnett C.; Taleghani, Barmac K.

    1999-01-01

    This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal. The fabrication process consist of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil. The differential thermal expansion between the ceramic and metal induces a curvature. The pre-stressed, curved piezoceramic is mounted on a support mechanism and a mirror is attached to the piezoceramic. A plot of gimbal angle versus applied voltage to the piezoceramic is presented. A finite element analysis of the piezoceramic gimbal is described. The predicted gimbal angle versus applied voltage is compared to experimental results.

  5. Single Axis Piezoceramic Gimbal

    NASA Technical Reports Server (NTRS)

    Horner, Garnett; Taleghani, Barmac

    2001-01-01

    This paper describes the fabrication, testing, and analysis of a single axis piezoceramic gimbal. The fabrication process consists of pre-stressing a piezoceramic wafer using a high-temperature thermoplastic polyimide and a metal foil. The differential thermal expansion between the ceramic and metal induces a curvature. The pre-stressed, curved piezoceramic is mounted on a support mechanism and a mirror is attached to the piezoceramic. A plot of gimbal angle versus applied voltage to the piezoceramic is presented. A finite element analysis of the piezoceramic gimbal is described. The predicted gimbal angle versus applied voltage is compared to experimental results.

  6. [The single coronary artery].

    PubMed

    Godart, F; Berzin, B; Rihani, R; Pecheux, M; Dutoit, A

    1992-04-01

    Single coronary artery is a fairly rare entity which may nevertheless be found in 0.4 per cent of coronary arteriograms. The authors report 3 cases seen in 2 departments of cardiology. In each patient, despite the existence of definite cardiovascular risk factors, this distribution was a factor worsening coronary ischemia, leading to complete thrombosis in one case. Although most often a chance discovery, a review of the literature justifies the attribution to this anomaly of the onset of angina, infarction or even sudden death. PMID:1642437

  7. Single Molecule Transcription Elongation

    PubMed Central

    Galburt, Eric A.; Grill, Stephan W.; Bustamante, Carlos

    2009-01-01

    Single molecule optical trapping assays have now been applied to a great number of macromolecular systems including DNA, RNA, cargo motors, restriction enzymes, DNA helicases, chromosome remodelers, DNA polymerases and both viral and bacterial RNA polymerases. The advantages of the technique are the ability to observe dynamic, unsynchronized molecular processes, to determine the distributions of experimental quantities and to apply force to the system while monitoring the response over time. Here, we describe the application of these powerful techniques to study the dynamics of transcription elongation by RNA polymerase II from Saccharomyces cerevisiae. PMID:19426807

  8. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  9. Single compartment drug delivery

    PubMed Central

    Cima, Michael J.; Lee, Heejin; Daniel, Karen; Tanenbaum, Laura M.; Mantzavinou, Aikaterini; Spencer, Kevin C.; Ong, Qunya; Sy, Jay C.; Santini, John; Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert S.

    2014-01-01

    Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as “privileged,” since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective. PMID:24798478

  10. Single-case probabilities

    NASA Astrophysics Data System (ADS)

    Miller, David

    1991-12-01

    The propensity interpretation of probability, bred by Popper in 1957 (K. R. Popper, in Observation and Interpretation in the Philosophy of Physics, S. Körner, ed. (Butterworth, London, 1957, and Dover, New York, 1962), p. 65; reprinted in Popper Selections, D. W. Miller, ed. (Princeton University Press, Princeton, 1985), p. 199) from pure frequency stock, is the only extant objectivist account that provides any proper understanding of single-case probabilities as well as of probabilities in ensembles and in the long run. In Sec. 1 of this paper I recall salient points of the frequency interpretations of von Mises and of Popper himself, and in Sec. 2 I filter out from Popper's numerous expositions of the propensity interpretation its most interesting and fertile strain. I then go on to assess it. First I defend it, in Sec. 3, against recent criticisms (P. Humphreys, Philos. Rev. 94, 557 (1985); P. Milne, Erkenntnis 25, 129 (1986)) to the effect that conditional [or relative] probabilities, unlike absolute probabilities, can only rarely be made sense of as propensities. I then challenge its predominance, in Sec. 4, by outlining a rival theory: an irreproachably objectivist theory of probability, fully applicable to the single case, that interprets physical probabilities as instantaneous frequencies.

  11. Single-Mode VISAR

    SciTech Connect

    Krauter, K

    2007-11-16

    High energy-density physics (HEDP) experiments examine the properties of materials under extreme conditions. These experiments rely on the measurement of one or two velocities. These velocities are used to obtain Hugoniot relationships and thermodynamic equations of state. This methodology is referred to as 'velocimetry' and an instrument used to measure the shock wave is called a 'velocimeter' or a '(velocity) diagnostic'. The two most-widely used existing velocity diagnostics are; photonic Doppler velocimetry (PDV) and velocity interferometer system for any reflector (VISAR). PDV's advantages are a fast rise-time and ease of implementation but PDV has an upper velocity limit. Traditional implementations of VISAR have a rise time 10 times slower than PDV and are not easily implemented but are capable of measuring any velocity produced during HEDP experiments. This thesis describes a novel method of combining the positive attributes of PDV and VISAR into a more cost effective diagnostic called a Single-Mode VISAR (SMV). The new diagnostic will consist of PDV parts in a VISAR configuration. This configuration will enable the measurement of any velocity produced during shock physics experiments while the components used to build the diagnostic will give the diagnostic a fast rise time and make it easy to use. This thesis describes the process of building and testing the first single-mode VISAR. The tests include verifying the performance of the components and the diagnostic as a whole.

  12. Single ion heat engine

    NASA Astrophysics Data System (ADS)

    Singer, Kilian

    2015-03-01

    An experimental realization of a heat engine with a single ion is presented, which will allow for work extraction even with non-classical thermal reservoirs. To this goal a custom designed linear Paul trap with a single ion performing an Otto cycle is presented. The radial state of the ion is used as the working gas analogous to the gas in a conventional heat engine. The conventional piston is realized by the axial degrees of freedom and the axial motional excitation stores the generated work, just like a conventional fly-wheel. The heat baths can be realized by tailored laser radiation. Alternatively electrical noise can be used to control the state of the ion. The presented system possesses advantageous properties, as the working parameters can be tuned over a broad range and the motional degrees of freedom of the ion can be accurately determined. Dark resonances allow for fast stroboscopic thermometry during the entire working cycle. Monte Carlo simulations are performed to predict the efficiency and the gained work of the working cycle. We have also shown how the equations for the Carnot limit have to be modified if a squeezed thermal reservoir is employed. Furthermore structural phase transitions with laser cooled linear ion crystals are induced verifying the Kibble-Zurek mechanism.

  13. Single cell wound repair

    PubMed Central

    Abreu-Blanco, Maria Teresa; Verboon, Jeffrey M

    2011-01-01

    Cell wounding is a common event in the life of many cell types, and the capacity of the cell to repair day-to-day wear-and-tear injuries, as well as traumatic ones, is fundamental for maintaining tissue integrity. Cell wounding is most frequent in tissues exposed to high levels of stress. Survival of such plasma membrane disruptions requires rapid resealing to prevent the loss of cytosolic components, to block Ca2+ influx and to avoid cell death. In addition to patching the torn membrane, plasma membrane and cortical cytoskeleton remodeling are required to restore cell function. Although a general understanding of the cell wound repair process is in place, the underlying mechanisms of each step of this response are not yet known. We have developed a model to study single cell wound repair using the early Drosophila embryo. Our system combines genetics and live imaging tools, allowing us to dissect in vivo the dynamics of the single cell wound response. We have shown that cell wound repair in Drosophila requires the coordinated activities of plasma membrane and cytoskeleton components. Furthermore, we identified an unexpected role for E-cadherin as a link between the contractile actomyosin ring and the newly formed plasma membrane plug. PMID:21922041

  14. Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Fulton, T. A.

    2000-03-01

    Subsequent to the early work, the basic all-metal single-electron transistor (SET) and its semiconductor counterparts have become widely studied, both for their own behavior and for applications. For many people, the SET is an everyday research tool whose inner workings, even though they depend on charge quantization and the energy-time uncertainty principle, can readily be understood (given electron tunneling) by simple arguments based on elementary circuit models. Our own further studies, in various collaborations, were first concerned with finding and studying interactions between charging effects and Josephson tunneling in SET circuits, which had been the original motivation. Later, looking into applications for SETs, we demonstrated a crude but recognizable form of single-electron memory. Significant digital-circuit applications of SETs still seem remote, alas, but some analog applications are promising. Recently, in an ongoing collaboration, we have fabricated an SET on the tip of a tapered glass fiber for use as a scanning probe. With it, we have mapped the electric fields over a two-dimensional electron gas having a density, n, that varies with position. In the quantum Hall regime, step-like changes in surface potential are seen along lines where n corresponds to an integer filling factor ("edge-state regions"). Currently, we are investigating certain sub-micrometer structures, which sometimes form small networks, that appear in these regions. This structure seems to involve localization of individual electrons. note

  15. Single Cell Physiology

    NASA Astrophysics Data System (ADS)

    Neveu, Pierre; Sinha, Deepak Kumar; Kettunen, Petronella; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    The possibility to control at specific times and specific places the activity of biomolecules (enzymes, transcription factors, RNA, hormones, etc.) is opening up new opportunities in the study of physiological processes at the single cell level in a live organism. Most existing gene expression systems allow for tissue specific induction upon feeding the organism with exogenous inducers (e.g., tetracycline). Local genetic control has earlier been achieved by micro-injection of the relevant inducer/repressor molecule, but this is an invasive and possibly traumatic technique. In this chapter, we present the requirements for a noninvasive optical control of the activity of biomolecules and review the recent advances in this new field of research.

  16. Bioengineering single crystal growth.

    PubMed

    Wu, Ching-Hsuan; Park, Alexander; Joester, Derk

    2011-02-16

    Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern. PMID:21265521

  17. The Single Component Superinsulation

    NASA Astrophysics Data System (ADS)

    Getmanets, V. F.; Goncharenko, L. G.; Mikhalchenko, R. S.; Pershin, N. P.; Stears, H.

    Many up-to-date space and ground-based applications require a superinsulation characterized by low outgassing rate, minimal emission of particles and extremely low heat conductivity. All these qualities are featured by a single- component superinsulation blankets composed of metallized film-screens provided with small "dimples" and perforations of very specific size. Our team has optimized and produced material such as this as a result of a great number of multiple successful laboratory tests. We have characterized and documented all of the relevant parameters of such a superinsulation. We have also developed, manufactured and tested a machine intended for large- scale industrial production of "dimpled" and perforated superinsulation. Within this report are presented results of tests for the new superinsulation as related to cryovessels. Resultant data shows that this superinsulation type is the best appropriate one for outer space and terrestrial applications where maximum contamination concerns are present. Several US organizations are presently performing independent evaluation of our material.

  18. Single-molecule electrophoresis

    SciTech Connect

    Castro, A.; Shera, E.B.

    1995-09-15

    A novel method for the detection and identification of single molecules in solution has been devised, computer simulated, and experimentally achieved. The technique involves the determination of electrophoretic velocities by measuring the time required for individual molecules to travel a fixed distance between two laser beams. Computer simulations of the process were performed before-hand in order to estimate the experimental feasibility of the method and to determine the optimum values for the various experimental parameters. Examples of the use of the technique for the ultrasensitive detection and identification of rhodamine-6G, a mixture of DNA restriction fragments, and a mixture of proteins in aqueous solution are presented. 20 refs., 8 figs.

  19. Single crystalline magnetite nanotubes.

    PubMed

    Liu, Zuqin; Zhang, Daihua; Han, Song; Li, Chao; Lei, Bo; Lu, Weigang; Fang, Jiye; Zhou, Chongwu

    2005-01-12

    We descried a method to synthesize single crystalline Fe3O4 nanotubes by wet-etching the MgO inner cores of MgO/Fe3O4 core-shell nanowires. Homogeneous Fe3O4 nanotubes with controllable length, diameter, and wall thickness have been obtained. Resistivity of the Fe3O4 nanotubes was estimated to be approximately 4 x 10-2 Omega cm at room temperature. Magnetoresistance of approximately 1% was observed at T = 77 K when a magnetic field of B = 0.7 T was applied. The synthetic strategy presented here may be extended to a variety of materials such as YBCO, PZT, and LCMO which should provide ideal candidates for fundamental studies of superconductivity, piezoelectricity, and ferromagnetism in nanoscale structures. PMID:15631421

  20. Single Sex Education. WEEA Digest.

    ERIC Educational Resources Information Center

    Pollard, Diane S.

    Title IX of the Educational Amendments of 1972 prohibits discrimination on the basis of sex in educational institutions that receive federal financial assistance. This digest focuses on the theme of single-sex education. Articles featured in this issue include: (1) "Single-Sex Education" (Diane S. Pollard); (2) "A Legal Framework for Single-Sex…

  1. Indistinguishability of independent single photons

    NASA Astrophysics Data System (ADS)

    Sun, F. W.; Wong, C. W.

    2009-01-01

    The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform-limited pulses. The entanglement between single photons and outer environment or other photons induces the distribution of the center frequencies of those transform-limited pulses and makes photons distinguishable. Only the single photons with the same transform-limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down-conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.

  2. Single Molecule Mechanochemistry

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Zhang, Yanxing; Ho, Wilson; Wu, Ruqian; Ruqian Wu, Yanxing Zhang Team; Wilson Ho, Shaowei Li Team

    Mechanical forces can be used to trigger chemical reactions through bending and stretching of chemical bonds. Using the reciprocating movement of the tip of a scanning tunneling microscope (STM), mechanical energy can be provided to a single molecule sandwiched between the tip and substrate. When the mechanical pulse center was moved to the outer ring feature of a CO molecule, the reaction rate was significantly increased compared with bare Cu surface and over Au atoms. First, DFT calculations show that the presence of CO makes the Cu cavity more attractive toward H2 Second, H2 prefers the horizontal adsorption geometry in the Cu-Cu and Au-Cu cavities and no hybridization occurs between the antibonding states of H2 and states of Cu atoms. While H2 loses electrons from its bonding state in all three cavities, the filling of its anti-bonding state only occurs in the CO-Cu cavity. Both make the CO-Cu cavity much more effectively to chop the H2 molecule. Work was supported by the National Science Foundation Center for Chemical Innovation on Chemistry at the Space-Time Limit (CaSTL) under Grant No. CHE-1414466.

  3. Single-nucleon experiments

    SciTech Connect

    Deur, Alexandre

    2009-12-01

    We discuss the Jefferson Lab low momentum transfer data on moments of the nucleon spin structure functions $g_1$ and $g_2$ and on single charged pion electroproduction off polarized proton and polarized neutron. A wealth of data is now available, while more is being analyzed or expected to be taken in the upcoming years. Given the low momentum transfer selected by the experiments, these data can be compared to calculations from Chiral Perturbation theory, the effective theory of strong force that should describe it at low momentum transfer. The data on various moments and the respective calculations do not consistently agree. In particular, experimental data for higher moments disagree with the calculations.The absence of contribution from the $\\Delta$ resonance in the various observables was expected to facilitate the calculations and hence make the theory predictions either more robust or valid over a larger $Q^2$ range. Such expectation is verified only for the Bjorken sum, but not for other observables in which the $\\Delta$ is suppressed. Preliminary results on pion electroproduction off polarized nucleons are also presented and compared to phenomenological models for which contributions from different resonances are varied. Chiral Perturbation calculations of these observables, while not yet available, would be valuable and, together with these data, would provide an extensive test of the effective theory.

  4. Monovar: single-nucleotide variant detection in single cells.

    PubMed

    Zafar, Hamim; Wang, Yong; Nakhleh, Luay; Navin, Nicholas; Chen, Ken

    2016-06-01

    Current variant callers are not suitable for single-cell DNA sequencing, as they do not account for allelic dropout, false-positive errors and coverage nonuniformity. We developed Monovar (https://bitbucket.org/hamimzafar/monovar), a statistical method for detecting and genotyping single-nucleotide variants in single-cell data. Monovar exhibited superior performance over standard algorithms on benchmarks and in identifying driver mutations and delineating clonal substructure in three different human tumor data sets. PMID:27088313

  5. Single-nanowire photoelectrochemistry.

    PubMed

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm(-2) s(-1)) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm(-2) s(-1)). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts. PMID:27018660

  6. Single-nanowire photoelectrochemistry

    NASA Astrophysics Data System (ADS)

    Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong

    2016-07-01

    Photoelectrochemistry is one of several promising approaches for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance than their planar counterparts because of their unique properties, such as high surface area. Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current–voltage (I–V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7–30 electrons nm–2 s–1) is significantly reduced as compared with that of a planar analogue (∼1,200 electrons nm–2 s–1). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.

  7. Unfolding single- and multilayers

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Bons, Paul D.; Griera, Albert; Gomez-Rivas, Enrique

    2014-05-01

    When planar structures (e.g. sedimentary layers, veins, dykes, cleavages, etc.) are subjected to deformation, they have about equal chances to be shortened or stretched. The most common shortening and stretching structures are folds and boudinage, respectively. However, boudinage requires additional deformation mechanisms apart from viscous flow, like formation of fractures or strain localization. When folded layers are subjected to extension, they could potentially unfold back to straight layers. Although probably not uncommon, this would be difficult to recognize. Open questions are whether folded layers can unfold, what determines their mechanical behaviour and how we can recognize them in the field. In order to approach these questions, we present a series of numerical experiments that simulate stretching of previously folded single- and multi-layers in simple shear, using the two dimensional numerical modelling platform ELLE, including the finite element module BASIL that calculates viscous deformation. We investigate the parameters that affect a fold train once it rotates into the extensional field. The results show that the unfolding process strongly depends on the viscosity contrast between the layer and matrix (Llorens et al., 2013). Layers do not completely unfold when they experience softening before or during the stretching process or when other neighbouring competent layers prevent them from unfolding. The foliation refraction patterns are the main indicators of unfolded folds. Additionally, intrafolial folds and cusp-like folds adjacent to straight layers, as well as variations in fold amplitudes and limb lengths of irregular folds can also be used as indicators of stretching of a layer after shortening and folding. References: Llorens, M-.G., Bons, P.D., Griera, A. and Gomez-Rivas, E. 2013. When do folds unfold during progressive shear?. Geology, 41, 563-566.

  8. Single Molecule Detection and Imaging in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Nie, Shuming

    2002-03-01

    Direct observation of single molecules and single molecular events inside living cells could dramatically improve our understanding of basic cellular processes (e.g., signal transduction and gene transcription) as well as improving our knowledge on the intracellular transport and fate of therapeutic agents (e.g., antisense RNA and gene therapy vectors). This talk will focus on using single-molecule fluorescence and luminescent quantum dots to examine the dynamics and spatial distribution of RNA and proteins inside living cells and on the surface membrane surface. These single-molecule studies yield a detailed description of molecular events and cellular structures under physiological conditions.

  9. Photothermal single particle microscopy using a single laser beam

    SciTech Connect

    Selmke, Markus; Heber, André; Braun, Marco; Cichos, Frank

    2014-07-07

    We introduce a single-laser-beam photothermal microscopy scheme for the detection of single absorbing nano-objects. Here, a modulated incident laser beam with a constant intensity offset serves as pump and probe beam at the same time. Using the out-of-phase scattering response of the retarded thermorefractive wave field, the method provides a selective contrast for absorbers over a possible background of scatterers. The use of a single wavelength and a single beam, considerably simplifies the setup and integration of photothermal detection in existing microscopy schemes.

  10. Watching single gold nanorods grow.

    PubMed

    Wei, Zhongqing; Qi, Hua; Li, Min; Tang, Bochong; Zhang, Zhengzheng; Han, Ruiling; Wang, Jiaojiao; Zhao, Yuliang

    2012-05-01

    The consecutive evolution process of single gold nanorods is monitored using atomic force microscopy (AFM). The single-crystal gold nanorods investigated are grown directly on surfaces to which gold seed particles are covalently linked. The growth kinetics for single nanorods is derived from the 3D information recorded by AFM. A better understanding of the seed-mediated growth mechanism may ultimately lead to the direct growth of aligned nanorods on surfaces. PMID:22378704

  11. Quantitative biology of single neurons

    PubMed Central

    Eberwine, James; Lovatt, Ditte; Buckley, Peter; Dueck, Hannah; Francis, Chantal; Kim, Tae Kyung; Lee, Jaehee; Lee, Miler; Miyashiro, Kevin; Morris, Jacqueline; Peritz, Tiina; Schochet, Terri; Spaethling, Jennifer; Sul, Jai-Yoon; Kim, Junhyong

    2012-01-01

    The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible. PMID:22915636

  12. Single-Atom Single-Photon Quantum Interface

    NASA Astrophysics Data System (ADS)

    Moehring, David; Bochmann, Joerg; Muecke, Martin; Specht, Holger; Weber, Bernhard; Wilk, Tatjana; Rempe, Gerhard

    2008-05-01

    By combining atom trapping techniques and cavity cooling schemes we are able to trap a single neutral atom inside a high-finesse cavity for several tens of seconds. We show that our coupled atom-cavity system can be used to generate single photons in a controlled way. With our long trapping times and high single-photon production efficiency, the non-classical properties of the emitted light can be shown in the photon correlations of a single atom. In a similar atom-cavity setup, we investigate the interface between atoms and photons by entangling a single atom with a single photon emitted into the cavity and by further mapping the quantum state of the atom onto a second single photon. These schemes are intrinsically deterministic and establish the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers. This work was supported by the Deutsche Forschungsgemeinschaft, and the European Union SCALA and CONQUEST programs. D. L. M. acknowledges support from the Alexander von Humboldt Foundation.

  13. Single wheel testers, single track testers, and instrumented tractors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single wheel testers and single track testers are used for determining tractive performance characteristics of tires and tracks. Instrumented tractors are useful in determining the tractive performance of tractors. These machines are also used for determining soil-tire and soil-track interactions,...

  14. Combining single-molecule imaging and single-channel electrophysiology.

    PubMed

    Weatherill, Eve E; Wallace, Mark I

    2015-01-16

    Combining simultaneous single-molecule fluorescence measurements of ion channel conformational change with single-channel electrophysiology would enable a direct link between structure and function. Such methods would help us to create a truly molecular "movie" of how these important biomolecules work. Here we review past and recent progress toward this goal. PMID:25026065

  15. Single-Gender Schools Scrutinized

    ERIC Educational Resources Information Center

    Zubrzycki, Jaclyn

    2012-01-01

    This article reports on a study on publicly run schools in the Republic of Trinidad and Tobago which has found that, while single-sex schools may benefit female students who prefer a single-sex environment, they are not inherently beneficial for boys or most girls. While the findings are based on data from one Caribbean nation, experts say they…

  16. Hotelling's Single Sample T2.

    ERIC Educational Resources Information Center

    Lutz, J. Gary

    1979-01-01

    A specialized vector used to interpret rejected multivariate single sample hypotheses, introduced in an earlier article by the writer (EJ 097 103), is shown here to be equivalent to the vector that would be obtained if discriminant analysis techniques were to be applied to a single sample problem. (Author)

  17. Single-photon quadratic optomechanics

    PubMed Central

    Liao, Jie-Qiao; Nori, Franco

    2014-01-01

    We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128

  18. Chemical Analysis of Single Cells

    NASA Astrophysics Data System (ADS)

    Borland, Laura M.; Kottegoda, Sumith; Phillips, K. Scott; Allbritton, Nancy L.

    2008-07-01

    Chemical analysis of single cells requires methods for quickly and quantitatively detecting a diverse array of analytes from extremely small volumes (femtoliters to nanoliters) with very high sensitivity and selectivity. Microelectrophoretic separations, using both traditional capillary electrophoresis and emerging microfluidic methods, are well suited for handling the unique size of single cells and limited numbers of intracellular molecules. Numerous analytes, ranging from small molecules such as amino acids and neurotransmitters to large proteins and subcellular organelles, have been quantified in single cells using microelectrophoretic separation techniques. Microseparation techniques, coupled to varying detection schemes including absorbance and fluorescence detection, electrochemical detection, and mass spectrometry, have allowed researchers to examine a number of processes inside single cells. This review also touches on a promising direction in single cell cytometry: the development of microfluidics for integrated cellular manipulation, chemical processing, and separation of cellular contents.

  19. Single-shot readout of a single nuclear spin.

    PubMed

    Neumann, Philipp; Beck, Johannes; Steiner, Matthias; Rempp, Florian; Fedder, Helmut; Hemmer, Philip R; Wrachtrup, Jörg; Jelezko, Fedor

    2010-07-30

    Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register. PMID:20595582

  20. Nanochannel Based Single Molecule Recycling

    PubMed Central

    Lesoine, John F.; Venkataraman, Prahnesh A.; Maloney, Peter C.; Dumont, Mark

    2012-01-01

    We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly reverse the electrical potential controlling the flow direction. Our method does not rely on continuous observation and therefore is less susceptible to fluorescence blinking than existing fluorescence-based trapping schemes. The variation in the turnaround times can be used to measure the diffusion coefficient on a single molecule level. We demonstrate the ability to recycle both proteins and DNA in nanochannels and show that the procedure can be combined with single-pair Förster energy transfer. Nanochannel-based single molecule recycling holds promise for studying conformational dynamics on the same single molecule in solution and without surface tethering. PMID:22662745

  1. Single-electron thermal noise.

    PubMed

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise. PMID:25093235

  2. Cobalt single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Yang, En-Che; Hendrickson, David N.; Wernsdorfer, Wolfgang; Nakano, Motohiro; Zakharov, Lev N.; Sommer, Roger D.; Rheingold, Arnold L.; Ledezma-Gairaud, Marisol; Christou, George

    2002-05-01

    A cobalt molecule that functions as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atom ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single crystal of the compound was studied by means of a micro-superconducting quantum interference device magnetometer in the range of 0.040-1.0 K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal.

  3. Single-Molecule DNA Analysis

    NASA Astrophysics Data System (ADS)

    Efcavitch, J. William; Thompson, John F.

    2010-07-01

    The ability to detect single molecules of DNA or RNA has led to an extremely rich area of exploration of the single most important biomolecule in nature. In cases in which the nucleic acid molecules are tethered to a solid support, confined to a channel, or simply allowed to diffuse into a detection volume, novel techniques have been developed to manipulate the DNA and to examine properties such as structural dynamics and protein-DNA interactions. Beyond the analysis of the properties of nucleic acids themselves, single-molecule detection has enabled dramatic improvements in the throughput of DNA sequencing and holds promise for continuing progress. Both optical and nonoptical detection methods that use surfaces, nanopores, and zero-mode waveguides have been attempted, and one optically based instrument is already commercially available. The breadth of literature related to single-molecule DNA analysis is vast; this review focuses on a survey of efforts in molecular dynamics and nucleic acid sequencing.

  4. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  5. Single Cell Electrical Characterization Techniques

    PubMed Central

    Mansor, Muhammad Asraf; Ahmad, Mohd Ridzuan

    2015-01-01

    Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Since two decades ago, many researchers have developed tools to analyze the cell’s electrical states especially in single cell analysis (SCA). In depth analysis and more fully described activities of cell differentiation and cancer can only be accomplished with single cell analysis. This growing interest was supported by the emergence of various microfluidic techniques to fulfill high precisions screening, reduced equipment cost and low analysis time for characterization of the single cell’s electrical properties, as compared to classical bulky technique. This paper presents a historical review of single cell electrical properties analysis development from classical techniques to recent advances in microfluidic techniques. Technical details of the different microfluidic techniques are highlighted, and the advantages and limitations of various microfluidic devices are discussed. PMID:26053399

  6. Single mode acoustic fiber waveguide

    NASA Technical Reports Server (NTRS)

    Jackson, B. S.; May, R. G.; Claus, R. O.

    1984-01-01

    The single mode operation of a clad rod acoustic waveguide is described. Unlike conventional clad optical and acoustic waveguiding structures which use modes confined to a central core surrounded by a cladding, this guide supports neither core nor cladding modes but a single interface wave field on the core-cladding boundary. The propagation of this bound field and the potential improved freedom from spurious responses is discussed.

  7. Acquiring a Single New Word.

    ERIC Educational Resources Information Center

    Carey, Susan; Bartlett, Elsa

    Twenty children aged 3;0 to 3;10 were studied for behavior related to the acquisition of a single new word ("chromium," which was presented as designating the color olive green). The research was conducted in three cycles: prior to exposure to "chromium," at the time of a single encounter with that word, and about a week after the first encounter.…

  8. Single nanoparticle tracking spectroscopic microscope

    DOEpatents

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  9. Rehabilitation using single stage implants

    PubMed Central

    Mohamed, Jumshad B.; Sudarsan, Sabitha; Arun, K. V.; Shivakumar, B.

    2009-01-01

    Implant related prosthesis has become an integral part of rehabilitation of edentulous areas. Single stage implant placement has become popular because of its ease of use and fairly predictable results. In this paper, we present a series of cases of single stage implants being used to rehabilitate different clinical situations. All the implants placed have been successfully restored and followed up for up to one year. PMID:20376239

  10. Single axioms for Boolean algebra.

    SciTech Connect

    McCune, W.

    2000-06-30

    Explicit single axioms are presented for Boolean algebra in terms of (1) the Sheffer stroke; (2) disjunction and negation; (3) disjunction, conjunction, and negation; and (4) disjunction, conjunction, negation, 0, and 1. It was previously known that single axioms exist for these systems, but the procedures to generate them are exponential, producing huge equations. Automated deduction techniques were applied to find axioms of lengths 105, 131, 111, and 127, respectively, each with six variables.

  11. Single-cell western blotting

    PubMed Central

    Hughes, Alex J.; Spelke, Dawn P.; Xu, Zhuchen; Kang, Chi-Chih; Schaffer, David V.; Herr, Amy E.

    2014-01-01

    To measure cell-to-cell variation in protein-mediated functions — a hallmark of biological processes — we developed an approach to conduct ~103 concurrent single-cell western blots (scWesterns) in ~4 hours. A microscope slide supporting a 30 µm-thick photoactive polyacrylamide gel enables western blotting comprised of: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins, and antibody probing. We apply this scWestern to monitor single rat neural stem cell differentiation and responses to mitogen stimulation. The scWestern quantifies target proteins even with off-target antibody binding, multiplexes to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supports analyses of low starting cell numbers (~200) when integrated with fluorescence activated cell sorting. The scWestern thus overcomes limitations in single-cell protein analysis (i.e., antibody fidelity, sensitivity, and starting cell number) and constitutes a versatile tool for the study of complex cell populations at single-cell resolution. PMID:24880876

  12. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. PMID:25255052

  13. Single atom impurity in a single molecular transistor

    SciTech Connect

    Ray, S. J.

    2014-10-21

    The influence of an impurity atom on the electrostatic behaviour of a Single Molecular Transistor was investigated through Ab-initio calculations in a double-gated geometry. The charge stability diagram carries unique signature of the position of the impurity atom in such devices which together with the charging energy of the molecule could be utilised as an electronic fingerprint for the detection of such impurity states in a nano-electronic device. The two gated geometry allows additional control over the electrostatics as can be seen from the total energy surfaces (for a specific charge state), which is sensitive to the positions of the impurity. These devices which are operational at room temperature can provide significant advantages over the conventional silicon based single dopant devices functional at low temperature. The present approach could be a very powerful tool for the detection and control of individual impurity atoms in a single molecular device and for applications in future molecular electronics.

  14. Single Shot Measurement of a Silicon Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Ferrus, T.; Hasko, D. G.; Morrissey, Q. R.; Burge, S. R.; Freeman, E. J.; French, M. J.; Lam, A.; Creswell, L.; Collier, R. J.; Williams, D. A.; Briggs, G. A. D.

    2009-06-01

    We describe measurements on a silicon single electron transistor (SET) carried out using a custom cryogenic CMOS measurement circuit (LTCMOS) in close proximity to the device. Quantum mechanical states in the SET were mapped by continuous microwave spectroscopy. The real time evolution of a particularly long lived quantum mechanical state was observed in a single shot measurement, made possible by the much faster measurement rate (50kHz bandwidth). This technique is intended to be applied to the measurement of coherent states in a charge qubit device made of a silicon double dot.

  15. Deterministic Single-Phonon Source Triggered by a Single Photon

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Midolo, Leonardo; Lodahl, Peter

    2016-06-01

    We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.

  16. VVCF Single-phase Current Source Converter using Single Bridge

    NASA Astrophysics Data System (ADS)

    Neba, Yasuhiko; Matsumoto, Hirokazu; Itoh, Ryozo; Ishizaka, Kouichi; Hashimoto, Koichiro; Kaji, Daiki

    A single-phase current source converter with variable voltage and constant frequency is presented. The converter is a single bridge circuit of two legs and has a smoothing reactor in the dc side. The power source and the load are connected in series and they are connected to the bridge legs. The normal PWM method with the sinusoidal modulating and the triangular carrier waves is employed for the converter. The experimental results confirm that the PWM converter has the sinusoidal voltage and current in both the source and the load.

  17. Deterministic Single-Phonon Source Triggered by a Single Photon.

    PubMed

    Söllner, Immo; Midolo, Leonardo; Lodahl, Peter

    2016-06-10

    We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus. PMID:27341236

  18. Single Molecule Electronics and Devices

    PubMed Central

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  19. Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Wilde, Markus; Fukutani, Katsuyuki

    2014-12-01

    This review introduces hydrogen depth profiling by nuclear reaction analysis (NRA) via the resonant 1H(15N,αγ)12C reaction as a versatile method for the highly depth-resolved observation of hydrogen (H) at solid surfaces and interfaces. The technique is quantitative, non-destructive, and readily applied to a large variety of materials. Its fundamentals, instrumental requirements, advantages and limitations are described in detail, and its main performance benchmarks in terms of depth resolution and sensitivity are compared to those of elastic recoil detection (ERD) as a competing method. The wide range of 1H(15N,αγ)12C NRA applications in research of hydrogen-related phenomena at surfaces and interfaces is reviewed. Special emphasis is placed on the powerful combination of 1H(15N,αγ)12C NRA with surface science techniques of in-situ target preparation and characterization, as the NRA technique is ideally suited to investigate hydrogen interactions with atomically controlled surfaces and intact interfaces. In conjunction with thermal desorption spectroscopy, 15N NRA can assess the thermal stability of absorbed hydrogen species in different depth locations against diffusion and desorption. Hydrogen diffusion dynamics in the near-surface region, including transitions of hydrogen between the surface and the bulk, and between shallow interfaces of nanostructured thin layer stacks can directly be visualized. As a unique feature of 15N NRA, the analysis of Doppler-broadened resonance excitation curves allows for the direct measurement of the zero-point vibrational energy of hydrogen atoms adsorbed on single crystal surfaces.

  20. Single-photon decision maker

    PubMed Central

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-01-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions. PMID:26278007

  1. Single-photon decision maker.

    PubMed

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-01-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions. PMID:26278007

  2. Catalysis on Single Supported Atoms

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar

    2015-01-01

    The highly successful application of supported metals as heterogeneous catalysts in automotive catalysts, fuel cells, and other multitudes of industrial processes have led to extensive efforts to understand catalyst behavior at the nano-scale. Recent discovery of simple wet methods to prepare single supported atoms, the smallest nano-catalyst, has allowed for experimental validation of catalytic activity of a variety of catalysts and potential for large scale production for such catalysts for industrial processes. In this chapter, we summarize the synthetic and structural aspects of single supported atoms. We also present proposed mechanisms for the activity of single supported catalysts where conventional mechanisms cannot operate due to lack of M-M bonds in the catalysts.

  3. Nonlinear interaction between single photons.

    PubMed

    Guerreiro, T; Martin, A; Sanguinetti, B; Pelc, J S; Langrock, C; Fejer, M M; Gisin, N; Zbinden, H; Sangouard, N; Thew, R T

    2014-10-24

    Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a fascinating challenge but also central to numerous advanced applications in quantum information science. Here we report the nonlinear interaction between two single photons. Each photon is generated in independent parametric down-conversion sources. They are subsequently combined in a nonlinear waveguide where they are converted into a single photon of higher energy by the process of sum-frequency generation. Our approach results in the direct generation of photon triplets. More generally, it highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at telecom wavelengths, it opens the way towards novel applications in quantum communication such as device-independent quantum key distribution. PMID:25379916

  4. Single-photon decision maker

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  5. Room temperature single molecule microscopes

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Enderlein, G.; Semin, D.J.; Keller, R.A.

    1997-12-31

    We have developed three capabilities to image the locations of and interrogate immobilized single fluorescent molecules: near-field scanning optical, confocal scanning optical, and wide-field epi-fluorescence microscopy. Each microscopy has its own advantages. Near-field illumination can beat the diffraction limit. Confocal microscopy has high brightness and temporal resolution. Wide-field has the quickest (parallel) imaging capability. With confocal microscopy, we have verified that single fluorescent spots in our images are due to single molecules by observing photon antibunching. Using all three microscopies, we have observed that xanthene molecules dispersed on dry silica curiously exhibit intensity fluctuations on millisecond to minute time scales. We are exploring the connection between the intensity fluctuations and fluctuations in individual photophysical parameters. The fluorescence lifetimes of Rhodamine 6G on silica fluctuate. The complex nature of the intensity and lifetime fluctuations is consistent with a mechanism that perturbs more than one photophysical parameter.

  6. Transform-limited single photons from a single quantum dot

    PubMed Central

    Kuhlmann, Andreas V.; Prechtel, Jonathan H.; Houel, Julien; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.

    2015-01-01

    Developing a quantum photonics network requires a source of very-high-fidelity single photons. An outstanding challenge is to produce a transform-limited single-photon emitter to guarantee that single photons emitted far apart in the time domain are truly indistinguishable. This is particularly difficult in the solid-state as the complex environment is the source of noise over a wide bandwidth. A quantum dot is a robust, fast, bright and narrow-linewidth emitter of single photons; layer-by-layer growth and subsequent nano-fabrication allow the electronic and photonic states to be engineered. This represents a set of features not shared by any other emitter but transform-limited linewidths have been elusive. Here, we report transform-limited linewidths measured on second timescales, primarily on the neutral exciton but also on the charged exciton close to saturation. The key feature is control of the nuclear spins, which dominate the exciton dephasing via the Overhauser field. PMID:26348157

  7. Single Acquisition Quantitative Single Point Electron Paramagnetic Resonance Imaging

    PubMed Central

    Jang, Hyungseok; Subramanian, Sankaran; Devasahayam, Nallathamby; Saito, Keita; Matsumoto, Shingo; Krishna, Murali C; McMillan, Alan B

    2013-01-01

    Purpose Electron paramagnetic resonance imaging (EPRI) has emerged as a promising non-invasive technology to dynamically image tissue oxygenation. Due to its extremely short spin-spin relaxation times, EPRI benefits from a single-point imaging (SPI) scheme where the entire FID signal is captured using pure phase encoding. However, direct T2*/pO2 quantification is inhibited due to constant magnitude gradients which result in time-decreasing FOV. Therefore, conventional acquisition techniques require repeated imaging experiments with differing gradient amplitudes (typically 3), which results in long acquisition time. Methods In this study, gridding was evaluated as a method to reconstruct images with equal FOV to enable direct T2*/pO2 quantification within a single imaging experiment. Additionally, an enhanced reconstruction technique that shares high spatial k-space regions throughout different phase encoding time delays was investigated (k-space extrapolation). Results The combined application of gridding and k-space extrapolation enables pixelwise quantification of T2* from a single acquisition with improved image quality across a wide range of phase encoding delay times. The calculated T2*/pO2 does not vary across this time range. Conclusion By utilizing gridding and k-space extrapolation, accurate T2*/pO2 quantification can be achieved within a single dataset to allow enhanced temporal resolution (by a factor of 3). PMID:23913515

  8. Resolution of Single Spin Flips of a Single Proton

    NASA Astrophysics Data System (ADS)

    Mooser, A.; Kracke, H.; Blaum, K.; Bräuninger, S. A.; Franke, K.; Leiteritz, C.; Quint, W.; Rodegheri, C. C.; Ulmer, S.; Walz, J.

    2013-04-01

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle’s axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin flips and were identified using a Bayesian analysis.

  9. Resolution of single spin flips of a single proton.

    PubMed

    Mooser, A; Kracke, H; Blaum, K; Bräuninger, S A; Franke, K; Leiteritz, C; Quint, W; Rodegheri, C C; Ulmer, S; Walz, J

    2013-04-01

    The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin flips and were identified using a Bayesian analysis. PMID:25166966

  10. Single Particle Difraction at FLASH

    SciTech Connect

    Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; Chapman, H.; Bajt, S.; Schulz, J.; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Marchesini, Stefano; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; Rohner, Urs; /Tofwerk AG, Thun

    2010-06-11

    Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

  11. Single-Site Robotic Cholecystectomy

    PubMed Central

    Jung, Myung Jae; Lee, So young; Lee, Sung Hwan; Kang, Chang Moo; Lee, Woo Jung

    2015-01-01

    Abstract This study aims to introduce an alternative technique for effective single-site robotic cholecystectomy (SSRC) using a reverse port. Proper exposure of Calot's triangle is critical for safe laparoscopic cholecystectomy. Current robotic surgical systems are useful for single-site cholecystectomy. However, in exposing Calot's triangle, the gallbladder is usually retracted in a medial and upward direction, resulting in a narrow triangle. This intraoperative view is a major obstacle to safe laparoscopic cholecystectomy. From October 2013 to October 2014, 55 consecutive patients underwent SSRC by a single surgeon at Yonsei University Severance Hospital. Initially, 5 patients underwent the original robotic single site cholecystectomy technique, and the remaining 50 patients underwent robotic single site cholecystectomy using our reverse port technique. There were no differences between the SSRC-O (original port) group and the SSRC-R (reverse port) group in terms of patient age (P = 0.244), body mass index (P = 0.503), and pathologic conditions of the gallbladder (P = 0.841). Total operation time (132.6 vs 99.12 min; P = 0.009), actual dissection time (51.6 vs 30.28 min; P = 0.001), and console time (84.4 vs 50.46 min; P = 0.001) were all significantly shorter in the SSRC-R group. Mean intraoperative blood loss was minimal in both groups (20 vs 12.4 mL, P = 0.467), and bile spillage occurred in 2 patients of the SSRC-R group. There was one case of laparoscopic conversion in the SSRC-R group. The reverse port technique described in this study successfully widened Calot's triangle and improved the safety of the current robotic surgical system for single-site robotic cholecystectomy. PMID:26496344

  12. Electrochemically Grown Single Nanowire Sensors

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Penner, Reginald; Bangar, Mangesh; Mulchandani, Ashok; Myung, Nosang V.

    2004-01-01

    We report a fabrication technique that is potentially capable of producing arrays of individually addressable nanowire sensors with controlled dimensions, positions, alignments, and chemical compositions. The concept has been demonstrated with electrodeposition of palladium wires with 75 nm to 350 nm widths. We have also fabricated single and double conducting polymer nanowires (polyaniline and polypyrrole) with 100nm and 200nm widths using electrochemical direct growth. Using single Pd nanowires, we have also demonstrated hydrogen sensing. It is envisioned that these are the first steps towards nanowire sensor arrays capable of simultaneously detecting multiple chemical species.

  13. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  14. Single Quantum Level Electron Turnstile

    NASA Astrophysics Data System (ADS)

    van Zanten, D. M. T.; Basko, D. M.; Khaymovich, I. M.; Pekola, J. P.; Courtois, H.; Winkelmann, C. B.

    2016-04-01

    We report on the realization of a single-electron source, where current is transported through a single-level quantum dot (Q ) tunnel coupled to two superconducting leads (S ). When driven with an ac gate voltage, the experiment demonstrates electron turnstile operation. Compared to the more conventional superconductor-normal-metal-superconductor turnstile, our superconductor-quantum-dot-superconductor device presents a number of novel properties, including higher immunity to the unavoidable presence of nonequilibrium quasiparticles in superconducting leads. Moreover, we demonstrate its ability to deliver electrons with a very narrow energy distribution.

  15. Single Quantum Level Electron Turnstile.

    PubMed

    van Zanten, D M T; Basko, D M; Khaymovich, I M; Pekola, J P; Courtois, H; Winkelmann, C B

    2016-04-22

    We report on the realization of a single-electron source, where current is transported through a single-level quantum dot (Q) tunnel coupled to two superconducting leads (S). When driven with an ac gate voltage, the experiment demonstrates electron turnstile operation. Compared to the more conventional superconductor-normal-metal-superconductor turnstile, our superconductor-quantum-dot-superconductor device presents a number of novel properties, including higher immunity to the unavoidable presence of nonequilibrium quasiparticles in superconducting leads. Moreover, we demonstrate its ability to deliver electrons with a very narrow energy distribution. PMID:27152817

  16. Localized functionalization of single nanopores

    SciTech Connect

    Nilsson, J; Lee, J I; Ratto, T V; Letant, S E

    2005-09-12

    We demonstrate the localization of chemical functionality at the entrance of single nanopores for the first time by using the controlled growth of an oxide ring. Nanopores were fabricated by Focused Ion Beam machining on silicon platforms, locally derivatized by ion beam assisted oxide deposition, and further functionalized with DNA probes via silane chemistry. Ionic current recorded through single nanopores at various stages of the fabrication process demonstrated that the apertures can be locally functionalized with DNA probes. Future applications for this functional platform include the selective detection of biological organisms and molecules by ionic current blockade measurements.

  17. Single Sheet Agricultural Mechanics Plans.

    ERIC Educational Resources Information Center

    Schumacher, Leon, Ed.

    This packet contains 25 single-page plans for agricultural mechanics projects. Each plan consists of a one-page set of drawings of the object to be made with a list of needed materials, a cut list, and step-by-step construction procedures on the back of the page. Plans for the following wood projects are included: bluebird house, lawn seat, dog…

  18. Single-Donor Leukophoretic Technique

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.

    1977-01-01

    Leukocyte separation-and-retrieval device utilizes granulocyte and monocyte property of leukoadhesion to glass surfaces as basis of their separation from whole blood. Device is used with single donor technique and has application in biological and chemical processing, veterinary research and clinical care.

  19. Single photon searches at PEP

    SciTech Connect

    Hollebeek, R.

    1985-12-01

    The MAC and ASP searches for events with a single photon and no other observed particles are reviewed. New results on the number of neutrino generations and limits on selection, photino, squark and gluino masses from the ASP experiment are presented.

  20. Nanodevices for Single Molecule Studies

    NASA Astrophysics Data System (ADS)

    Craighead, H. G.; Stavis, S. M.; Samiee, K. T.

    During the last two decades, biotechnology research has resulted in progress in fields as diverse as the life sciences, agriculture and healthcare. While existing technology enables the analysis of a variety of biological systems, new tools are needed for increasing the efficiency of current methods, and for developing new ones altogether. Interest has grown in single molecule analysis for these reasons.

  1. CERN single sign on solution

    NASA Astrophysics Data System (ADS)

    Ormancey, E.

    2008-07-01

    The need for Single Sign On has always been restricted by the absence of cross platform solutions: a single sign on working only on one platform or technology is nearly useless. The recent improvements in Web Services Federation (WS-Federation) standard enabling federation of identity, attribute, authentication and authorization information can now provide real extended Single Sign On solutions. Various solutions have been investigated at CERN and now, a Web SSO solution using some parts of WS-Federation technology is available. Using the Shibboleth Service Provider module for Apache hosted web sites and Microsoft ADFS as the identity provider linked to Active Directory user, users can now authenticate on any web application using a single authentication platform, providing identity, user information (building, phone...) as well as group membership enabling authorization possibilities. A typical scenario: a CERN user can now authenticate on a Linux/Apache website using Windows Integrated credentials, and his Active Directory group membership can be checked before allowing access to a specific web page.

  2. Job Displacement Among Single Mothers:

    PubMed Central

    Brand, Jennie E.; Thomas, Juli Simon

    2015-01-01

    Given the recent era of economic upheaval, studying the effects of job displacement has seldom been so timely and consequential. Despite a large literature associating displacement with worker well-being, relatively few studies focus on the effects of parental displacement on child well-being, and fewer still focus on implications for children of single parent households. Moreover, notwithstanding a large literature on the relationship between single motherhood and children’s outcomes, research on intergenerational effects of involuntary employment separations among single mothers is limited. Using 30 years of nationally representative panel data and propensity score matching methods, we find significant negative effects of job displacement among single mothers on children’s educational attainment and social-psychological well-being in young adulthood. Effects are concentrated among older children and children whose mothers had a low likelihood of displacement, suggesting an important role for social stigma and relative deprivation in the effects of socioeconomic shocks on child well-being. PMID:25032267

  3. Single-Pilot Workload Management

    NASA Technical Reports Server (NTRS)

    Rogers, Jason; Williams, Kevin; Hackworth, Carla; Burian, Barbara; Pruchnicki, Shawn; Christopher, Bonny; Drechsler, Gena; Silverman, Evan; Runnels, Barry; Mead, Andy

    2013-01-01

    Integrated glass cockpit systems place a heavy cognitive load on pilots (Burian Dismukes, 2007). Researchers from the NASA Ames Flight Cognition Lab and the FAA Flight Deck Human Factors Lab examined task and workload management by single pilots. This poster describes pilot performance regarding programming a reroute while at cruise and meeting a waypoint crossing restriction on the initial descent.

  4. The first single atom magnet

    NASA Astrophysics Data System (ADS)

    Donati, Fabio; Rusponi, Stefano; Wäckerlin, Christian; Singha, Aparajita; Baltic, Romana; Diller, Katharina; Patthey, François; Fernandes, Edgar; Brune, Harald; Dreiser, Jan; Sljivancanin, Zeljko; Kummer, Kurt; Stepanow, Sebastian; Persichetti, Luca; Nistor, Corneliu; Gambardella, Pietro

    The prime feature of a magnet is to retain a significant fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom would allow storing and processing information in the smallest unit of matter. Here we show that individual rare-earth atoms on ultrathin insulating layers grown on non-magnetic metal substrates exhibit magnetic remanence and, therefore, are the first magnets formed by a single surface adsorbed atom. These magnets have a magnetic lifetime of 1500 s and a coercive field of 3.7 T at 10 K. In addition, their hysteresis loop remains open up to 30 K. This first example of a single atom magnet shows bistability at a temperature which is significantly higher than the best single molecule magnets reported so far. Its extraordinary stability is achieved by a suitable combination of magnetic ground state and adsorption site symmetry, and by decoupling the 4 f spin from the underlying metal by a tunnel barrier.

  5. Why Buy Single-Ply?

    ERIC Educational Resources Information Center

    Gwizdala, Mike

    1999-01-01

    Explains the benefits of prefabricated reinforced thermoplastic single-ply roofs as good solutions for education-facility roofing needs. Top benefits include durability, energy efficiency, no maintenance required, no hazardous materials present, and very water and wind resistant qualities. (GR)

  6. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui; Michelle D. Shinn

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  7. Single-electron charging effects

    SciTech Connect

    Ruggiero, S.T.

    1991-12-15

    The status of our project on single-electron tunneling is, again, excellent. As outlined in our original proposal, a key goal for this project has been the development of a scanning tunneling instrument for the purpose of imaging individual particles and tunneling into these particles at high magnetic fields. Further progress is discussed in this report.

  8. Handbook for Prospective Single Parents.

    ERIC Educational Resources Information Center

    Marindin, Hope

    This handbook for prospective single adoptive parents provides information on locating and adopting a child, necessary clothing and supplies for children of various ages, health and day care arrangements, expenses incurred after adoption, various financial benefits and subsidies available to the adoptive parent, and legal and financial provisions…

  9. Single mode glass fiber welding

    NASA Technical Reports Server (NTRS)

    Nelson, M. D.; Fearnehough, H. T.; Goldstein, R.; Goss, W. C.

    1979-01-01

    The electric-arc welding of commercially available single-mode optical fiber has been demonstrated. A mean transmission of 92% and a maximum transmission of 98% are reported for welds of fiber waveguide of 4.5 microns core diameter.

  10. Pulsed Single Frequency Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Shibin

    2016-06-01

    Pulsed single frequency fiber lasers with mJ level near 1 micron, 1.55 micron and 2 micron wavelengths were demonstrated by using our proprietary highly doped fibers. These fiber lasers exhibit excellent long term stable operation with M2<1.2.

  11. SINGLE FIBER TESTING VIA FAVIMAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is usually tested in bulk form utilizing a mass or beard of fibers to be presented to a test instrument for measurement. There are many reasons for this, not the least of which is that handling single cotton fibers is tedious and time consuming. Cotton breeders are being pushed to mak...

  12. Overhearing Single and Multiple Perspectives

    ERIC Educational Resources Information Center

    Fox Tree, Jean E.; Mayer, Sarah A.

    2008-01-01

    In 2 spontaneous speech experiments, this study found that multiple perspectives improved overhearers' abilities to select abstract shapes from an array, although single-perspective descriptions were more detailed. Prior findings that overhearers performed better when listening in on dialogues (Fox Tree, 1999) can best be understood as an…

  13. Single-cell and single-molecule laser biotechnology

    NASA Astrophysics Data System (ADS)

    Greulich, Karl O.; Bauer, Eckhard; Fiedler, Ursula; Hoyer, Carsten; Koenig, Karsten; Monajembashi, Shamci

    1996-01-01

    While lasers have found a wide field of application in the analysis of cells and biomolecules, their use in manipulation is less common. Now, new applications of lasers are emerging, which aim at cells and even molecules as biotechnological individuals: For example, in single cell gel electrophoresis individual cells are irradiated by UV laser pulses which cause radiation damage to DNA. When the whole cell is positioned in an electric field and the UV induced damages are converted into DNA strand breaks, the resulting DNA fragments are eluted out of the cell nucleus. Small fragments are running further than large ones. After staining of the DNA fragments, the cell has the appearance like a comet (therefore comet assay). The tail moment, a parameter quantifying the shape of the tail, gives information on the degree of DNA damage. The kinetics of DNA damage induction can be described by a type of exponential law with parameters which are related to radiation sensitivity of the DNA. A further emerging technique aims at DNA as a molecular individuum. One pivotal step for single molecule DNA analysis is single molecule handling. For that purpose, a DNA molecule is coupled to a micrometer sized polystyrene bead, either via an avidin-biotin bridge or, more specifically, by strand recognition, and labeled with fluorescence dyes such as DAPI. In order to visualize the dynamics of individual DNA molecules, highly sensitive video processing and single photon counting is required. Moving the polystyrene bead using optical tweezers, the molecule can be deformed, i.e., bent, turned or stretched. Using a laser microbeam, the same individual molecule can be cut into smaller portions.

  14. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements.

    PubMed

    Clubb, R T; Omichinski, J G; Sakaguchi, K; Appella, E; Gronenborn, A M; Clore, G M

    1995-05-01

    The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663341

  15. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ∼560–720 nm and typically exhibits two broad spectral peaks separated by ∼150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  16. Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells.

    PubMed

    Barbieri, Letizia; Luchinat, Enrico; Banci, Lucia

    2016-06-01

    In-cell NMR spectroscopy is a unique tool for characterizing biological macromolecules in their physiological environment at atomic resolution. Recent progress in NMR instruments and sample preparation methods allows functional processes, such as metal uptake, disulfide-bond formation and protein folding, to be analyzed by NMR in living, cultured human cells. This protocol describes the necessary steps to overexpress one or more proteins of interest inside human embryonic kidney 293T (HEK293T) cells, and it explains how to set up in-cell NMR experiments. The cDNA is transiently transfected as a complex with a cationic polymer (DNA:PEI (polyethylenimine)), and protein expression is carried on for 2-3 d, after which the NMR sample is prepared. (1)H and (1)H-(15)N correlation NMR experiments (for example, using band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence (SOFAST-HMQC)) can be carried out in <2 h, ensuring cell viability. Uniform (15)N labeling and amino-acid-specific (e.g., cysteine, methionine) labeling schemes are possible. The entire procedure takes 4 d from cell culture seeding to NMR data collection. PMID:27196722

  17. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Sergeyev, Ivan V.; Bahri, Salima; Day, Loren A.; McDermott, Ann E.

    2014-12-01

    High resolution two- and three-dimensional heteronuclear correlation spectroscopy (1H-13C, 1H-15N, and 1H-13C-13C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1-21 as well as residues 39-40 and 43-46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water 1H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water "tunnels" through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.

  18. Water-Protein Interactions of an Arginine-Rich Membrane Peptide in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy

    PubMed Central

    Li, Shenhui; Su, Yongchao; Luo, Wenbin; Hong, Mei

    2010-01-01

    The interaction of an arginine (Arg) residue with water in a transmembrane antimicrobial peptide, PG-1, is investigated by two-dimensional heteronuclear correlation (HETCOR) solid-state NMR spectroscopy. Using 13C and 15N dipolar-edited 1H-15N HETCOR experiments, we unambiguously assigned a water-guanidinium cross peak that is distinct from intramolecular protein-protein cross peaks. This water-Arg cross peak was detected within a short 1H spin diffusion mixing time of 1 ms, indicating that water is in close contact with the membrane-inserted guanidinium. Together with previously observed short guanidinium-phosphate distances, these solid-state NMR data suggest that the Arg sidechains of PG-1 are stabilized by both hydration water and neutralizing lipid headgroups. The membrane deformation that occurs when water and lipid headgroups are pulled into the hydrophobic region of the bilayer is symptomatic of the membrane-disruptive function of this antimicrobial peptide. The water-Arg interactions observed here provide direct experimental evidence for molecular dynamics simulations of the solvation of Arg sidechains of membrane proteins by deeply embedded water in lipid bilayers. PMID:20199036

  19. Selective observation of biologically important 15N-labeled metabolites in isolated rat brain and liver by 1H-detected multiple-quantum-coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.; Parivar, Farhad

    Four cerebral metabolites of importance in neurotransmission, serotonin, L-tryptophan, L-glutamine, and N-acetyl- L-aspartate, and two hepatic urea-cycle intermediates, citrulline and urea, were found to be observable by 1H- 15N heteronuclear multiple-quantum-coherence (HMQC) spectroscopy in aqueous solution at physiological pH and temperature, through the protons spin-coupled to their indole, amide, or ureido nitrogen. Their 1H chemical shifts were well dispersed over a 5-10 ppm region while the 1J 15N- 1H values were 87-99 Hz. For [γ- 15N]glutamine, a 50- to 100-fold increase in sensitivity over direct 15N detection was achieved, in contrast to a 2-fold increase by the polarization-transfer method. In the isolated brain of portacaval-shunted rats, the amide protons of biologically 15N-enriched [γ- 15N]glutamine were observed in 2 min of acquisition, with suppression of proton signals from all other cerebral metabolites. In isolated liver of 15N-enriched control rats, [ 15NIurea protons were observed in 16 min. The HMQC method is likely to be effective for the in vivo study of cerebral and hepatic nitrogen metabolism.

  20. Structure of the Trichomonas vaginalis Myb3 DNA-binding domain bound to a promoter sequence reveals a unique C-terminal β-hairpin conformation.

    PubMed

    Wei, Shu-Yi; Lou, Yuan-Chao; Tsai, Jia-Yin; Ho, Meng-Ru; Chou, Chun-Chi; Rajasekaran, M; Hsu, Hong-Ming; Tai, Jung-Hsiang; Hsiao, Chwan-Deng; Chen, Chinpan

    2012-01-01

    Trichomonas vaginalis Myb3 transcription factor (tvMyb3) recognizes the MRE-1 promoter sequence and regulates ap65-1 gene, which encodes a hydrogenosomal malic enzyme that may play a role in the cytoadherence of the parasite. Here, we identified tvMyb3(53-180) as the essential fragment for DNA recognition and report the crystal structure of tvMyb3(53-180) bound to MRE-1 DNA. The N-terminal fragment adopts the classical conformation of an Myb DNA-binding domain, with the third helices of R2 and R3 motifs intercalating in the major groove of DNA. The C-terminal extension forms a β-hairpin followed by a flexible tail, which is stabilized by several interactions with the R3 motif and is not observed in other Myb proteins. Interestingly, this unique C-terminal fragment does not stably connect with DNA in the complex structure but is involved in DNA binding, as demonstrated by NMR chemical shift perturbation, (1)H-(15)N heteronuclear-nuclear Overhauser effect and intermolecular paramagnetic relaxation enhancement. Site-directed mutagenesis also revealed that this C-terminal fragment is crucial for DNA binding, especially the residue Arg(153) and the fragment K(170)KRK(173). We provide a structural basis for MRE-1 DNA recognition and suggest a possible post-translational regulation of tvMyb3 protein. PMID:21908401

  1. Backbone 1H, 13C, and 15N assignments for the tandem ubiquitin binding domains of signal transducing adapter molecule 1.

    PubMed

    Lim, Jongsoo; Hong, Yoon-Hun; Lee, Bong-Jin; Ahn, Hee-Chul

    2011-04-01

    Signal transducing adapter molecule (STAM) forms the endosomal sorting complex required for transport-0 (ESCRT-0) complex with hepatocyte growth factor-regulated substrate (Hrs) to sort the ubiquitinated cargo proteins from the early endosomes to the ESCRT-1 complex. ESCRT-0 complex, STAM and Hrs, contains multiple ubiquitin binding domains, in which STAM has two ubiquitin binding domains, Vps27/Hrs/Stam (VHS) and ubiquitin interacting motif (UIM) at its N-terminus. By the cooperation of the multiple ubiquitin binding domains, the ESCRT-0 complex recognizes poly-ubiquitin, especially Lys63-linked ubiquitin. Here, we report the backbone resonance assignments and the secondary structure of the N-terminal 191 amino acids of the human STAM1 which includes the VHS domain and UIM. The {(1)H}-(15)N heteronuclear NOE experiments revealed that an unstructured and flexible loop region connects the VHS domain and UIM. Our work provides the basic information for the further NMR investigation of the interaction between STAM1 and poly-ubiquitin. PMID:20927613

  2. Getting to know the nitrogen next door: HNMBC measurements of amino sugars

    NASA Astrophysics Data System (ADS)

    Limtiaco, John F. K.; Langeslay, Derek J.; Beni, Szabolcs; Larive, Cynthia K.

    2011-04-01

    Long-range 1H- 15N correlations detected by the heteronuclear multiple-bond correlation (HMBC) experiment are explored for the characterization of amino sugars. The gradient-enhanced HMBC, IMPACT-HMBC, and a modified pulse sequence with the 1J-filters removed, IMPACT-HNMBC, are compared for sensitivity and resolution. 15N chemical shifts and long-range proton correlations are reported using the IMPACT-HNMBC experiment for N-acetyl-glucosamine, N-acetyl-galactosamine, and for a series of glucosamine analogs with an N-sulfo substitution, unmodified amino group, and 6- O-sulfonation. As is common with sugars, for all the compounds examined both anomeric forms are present in solution. For each compound studied, the 15N chemical shifts of the α anomer are downfield of the β form. For the N-acetylated sugars, the β anomer has a unique long-range 15N correlation to the anomeric proton not observed for the α anomer. Though N-sulfonation results in a significant change in the 15N chemical shift of the glucosamine analogs, 6- O sulfo substitution has no significant effect on the local environment of the amino nitrogen. For N-acetylated sugars in D 2O solution, peaks in the 15N projection of the HMBC spectrum appear as triplets as a result of J-modulation due to 2H- 15N coupling.

  3. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  4. Single laser beam photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Heber, Andre; Selmke, Markus; Braun, Marco; Cichos, Frank

    2015-03-01

    Fluorescence microscopy provides a tool to study dynamics in softmatter materials on a molecular level. However, the observation time for fluorescent objects is limited due to bleaching. One way to overcome this limitation is the use of gold nanoparticles as labels. They are chemically inert under typical situations. These particles are selectively imaged using a modulated heating laser and a non-absorbed detection laser even in the presence of background scatterers. The absorbed power results in a localised temperature profile and to a refractive index change which only occurs for absorption. For finite thermal diffusivities the temperature profile does not instantly follow temperature changes present on the nanoparticle's surface. This results in an out-of-phase modulation of the detection laser. By exploiting the limited thermal diffusivity we show that a single laser beam being intensity modulated is enough to selectively image and quantify absorption. The use of a single laser makes photothermal microscopy easier to implement into existing microscopy setups.

  5. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  6. Sr+ single-ion clock

    NASA Astrophysics Data System (ADS)

    Dubé, P.; Madej, A. A.; Jian, B.

    2016-06-01

    The evaluated uncertainty of the 88Sr+ ion optical clock has decreased by several orders of magnitude during the last 15 years, currently reaching a level of 1.2 x 10-17. In this paper, we review the methods developed to control very effectively the largest frequency shifts that once were the main sources of uncertainty for the 88Sr+ single-ion clock. These shifts are the micromotion shifts, the electric quadrupole shift and the blackbody radiation shift. With further improvements to the evaluation of the systematic shifts, especially the blackbody radiation shift, it is expected that the total uncertainty of the single-ion clock transition frequency will reach the low 10-18 level in the near future.

  7. Single mode levitation and translation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1988-01-01

    A single frequency resonance mode is applied by a transducer to acoustically levitate an object within a chamber. This process allows smooth movement of the object and suppression of unwanted levitation modes that would urge the object to a different levitation position. A plunger forms one end of the chamber, and the frequency changes as the plunger moves. Acoustic energy is applied to opposite sides of the chamber, with the acoustic energy on opposite sides being substantially 180 degrees out of phase.

  8. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  9. Control of Single Wheel Robots

    NASA Astrophysics Data System (ADS)

    Xu, Yangsheng; Ou, Yongsheng

    This monograph presents a novel concept of a mobile robot, which is a single-wheel, gyroscopically stabilized robot. The robot is balanced by a spinning wheel attached through a two-link manipulator at the wheel bearing, and actuated by a drive motor. This configuration conveys significant advantages including insensitivity to attitude disturbances, high maneuverability, low rolling resistance, ability to recover from falls, and amphibious capability for potential applications on both land and water.

  10. Turbine endwall single cylinder program

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1982-01-01

    Detailed measurement of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel is discussed. A better understanding of the three dimensional separation occuring in front of the cylinder on the endwall, and of the vortex system that is formed is sought. A data base with which to check analytical and numerical computer models of three dimensional flows is also anticipated.

  11. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  12. Single port laparoscopic mesh rectopexy

    PubMed Central

    2016-01-01

    Introduction Traditionally, laparoscopic mesh rectopexy is performed with four ports, in an attempt to improve cosmetic results. Following laparoscopic mesh rectopexy there is a new operative technique called single-port laparoscopic mesh rectopexy. Aim To evaluate the single-port laparoscopic mesh rectopexy technique in control of rectal prolapse and the cosmesis and body image issues of this technique. Material and methods The study was conducted in El Fayoum University Hospital between July 2013 and November 2014 in elective surgery for symptomatic rectal prolapse with single-port laparoscopic mesh rectopexy on 10 patients. Results The study included 10 patients: 3 (30%) males and 7 (70%) females. Their ages ranged between 19 years and 60 years (mean: 40.3 ±6 years), and they all underwent laparoscopic mesh rectopexy. There were no conversions to open technique, nor injuries to the rectum or bowel, and there were no mortalities. Mean operative time was 120 min (range: 90–150 min), and mean hospital stay was 2 days (range: 1–3 days). Preoperatively, incontinence was seen in 5 (50%) patients and constipation in 4 (40%). Postoperatively, improvement in these symptoms was seen in 3 (60%) patients for incontinence and in 3 (75%) for constipation. Follow-up was done for 6 months and no recurrence was found with better cosmetic appearance for all patients. Conclusions Single-port laparoscopic mesh rectopexy is a safe procedure with good results as regards operative time, improvement in bowel function, morbidity, cost, and recurrence, and with better cosmetic appearance. PMID:27350840

  13. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    NASA Astrophysics Data System (ADS)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  14. Single event AC - DC electrospraying

    NASA Astrophysics Data System (ADS)

    Stachewicz, U.; Dijksman, J. F.; Marijnissen, J. C. M.

    2008-12-01

    Electrospraying is an innovative method to deposit very small amounts of, for example, biofluids (far less than 1 p1) that include DNA or protein molecules. An electric potential is applied between a nozzle filled with liquid and a counter electrode placed at 1-2 millimeter distance from the nozzle. In our set-up we use an AC field superposed on a DC field to control the droplet generation process. Our approach is to create single events of electrospraying triggered by one single AC pulse. During this pulse, the equilibrium meniscus (determined by surface tension, static pressure and the DC field) of the liquid changes rapidly into a cone and subsequently into a jet formed at the cone apex. Next, the jet breaks-up into fine droplets and the spraying stops. The meniscus returns to its equilibrium shape again. So far we obtained a stable and reproducible single event process for ethanol and ethylene glycol with water using glass pipettes. The results will be used to generate droplets on demand in a controlled way and deposit them on a pre-defined place on the substrate.

  15. Adoption and Single Parents: A Review.

    ERIC Educational Resources Information Center

    Groze, Vic

    1991-01-01

    Examines the literature about people who choose to become single adoptive parents. Reviews the demographic and personal characteristics of single parents who adopt, and summarizes the experiences of single parents with the children they adopt. Calls for further research on single parents who adopt special needs children. (GH)

  16. Improved Cross Validation of a Static Ubiquitin Structure Derived from High Precision Residual Dipolar Couplings Measured in a Drug-Based Liquid Crystalline Phase

    PubMed Central

    2014-01-01

    The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to liquid crystalline cetyl pyridinium bromide. High precision residual dipolar couplings (RDCs) measured for the backbone 1H-15N, 15N-13C′, 1Hα-13Cα, and 13C′-13Cα one-bond interactions in the squalamine medium fit well to the static structural model previously derived from NMR data. Inclusion into the structure refinement procedure of these RDCs, together with 1H-15N and 1Hα-13Cα RDCs newly measured in Pf1, results in improved agreement between alignment-induced changes in 13C′ chemical shift, 3JHNHα values, and 13Cα-13Cβ RDCs and corresponding values predicted by the structure, thereby validating the high quality of the single-conformer structural model. This result indicates that fitting of a single model to experimental data provides a better description of the average conformation than does averaging over previously reported NMR-derived ensemble representations. The latter can capture dynamic aspects of a protein, thus making the two representations valuable complements to one another. PMID:24568736

  17. Single phase space laundry development

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Putnam, David F.; Lunsford, Teddie D.; Streech, Neil D.; Wheeler, Richard R., Jr.; Reimers, Harold

    1993-01-01

    This paper describes a newly designed, 2.7 Kg (6 pound) capacity, laundry machine called the Single Phase Laundry (SPSL). The machine was designed to wash and dry crew clothing in a micro-gravity environment. A prototype unit was fabricated for NASA-JSC under a Small Business Innovated Research (SBIR) contract extending from September 1990 to January 1993. The unit employs liquid jet agitation, microwave vacuum drying, and air jet tumbling, which was perfected by KC-135 zero-g flight testing. Operation is completely automated except for loading and unloading clothes. The unit uses about 20 percent less power than a conventional household appliance.

  18. Trapping Single Molecules by Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Hölzel, Ralph; Calander, Nils; Chiragwandi, Zackary; Willander, Magnus; Bier, Frank F.

    2005-09-01

    We have trapped single protein molecules of R-phycoerythrin in an aqueous solution by an alternating electric field. A radio frequency voltage is applied to sharp nanoelectrodes and hence produces a strong electric field gradient. The resulting dielectrophoretic forces attract freely diffusing protein molecules. Trapping takes place at the electrode tips. Switching off the field immediately releases the molecules. The electric field distribution is computed, and from this the dielectrophoretic response of the molecules is calculated using a standard polarization model. The resulting forces are compared to the impact of Brownian motion. Finally, we discuss the experimental observations on the basis of the model calculations.

  19. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  20. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  1. Single electron states in polyethylene

    SciTech Connect

    Wang, Y.; MacKernan, D.; Cubero, D. E-mail: n.quirke@imperial.ac.uk; Coker, D. F.; Quirke, N. E-mail: n.quirke@imperial.ac.uk

    2014-04-21

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  2. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  3. Magnetic remanence in single atoms.

    PubMed

    Donati, F; Rusponi, S; Stepanow, S; Wäckerlin, C; Singha, A; Persichetti, L; Baltic, R; Diller, K; Patthey, F; Fernandes, E; Dreiser, J; Šljivančanin, Ž; Kummer, K; Nistor, C; Gambardella, P; Brune, H

    2016-04-15

    A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier. PMID:27081065

  4. Single electron states in polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Y.; MacKernan, D.; Cubero, D.; Coker, D. F.; Quirke, N.

    2014-04-01

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  5. Single-stage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    President Bush established a three phase Space Exploration Initiative for the future of space exploration. The first phase is the design and construction of Space Station Freedom. The second phase is permanent lunar base. The last phase of the Initiative is the construction of a Mars outpost. The design presented is the concept of a single-stage Mars mission developed by the University of Minnesota Aerospace Design Course. The mission will last approximately 500 days including a 30-60 day stay on Mars.

  6. Piezoresistivity in single DNA molecules

    PubMed Central

    Bruot, Christopher; Palma, Julio L.; Xiang, Limin; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian

    2015-01-01

    Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π–π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes. PMID:26337293

  7. Piezoresistivity in single DNA molecules

    NASA Astrophysics Data System (ADS)

    Bruot, Christopher; Palma, Julio L.; Xiang, Limin; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian

    2015-09-01

    Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π-π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes.

  8. Piezoresistivity in single DNA molecules.

    PubMed

    Bruot, Christopher; Palma, Julio L; Xiang, Limin; Mujica, Vladimiro; Ratner, Mark A; Tao, Nongjian

    2015-01-01

    Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π-π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes. PMID:26337293

  9. Single neuron dynamics and computation.

    PubMed

    Brunel, Nicolas; Hakim, Vincent; Richardson, Magnus J E

    2014-04-01

    At the single neuron level, information processing involves the transformation of input spike trains into an appropriate output spike train. Building upon the classical view of a neuron as a threshold device, models have been developed in recent years that take into account the diverse electrophysiological make-up of neurons and accurately describe their input-output relations. Here, we review these recent advances and survey the computational roles that they have uncovered for various electrophysiological properties, for dendritic arbor anatomy as well as for short-term synaptic plasticity. PMID:24492069

  10. Magnetic levitation of single cells.

    PubMed

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  11. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Colvin, M E; Thelen, M P; Noy, A

    2004-01-06

    The DNA in eukaryotic cells is tightly packaged as chromatin through interactions with histone proteins to form nucleosomes. These nucleosomes are themselves packed together through interactions with linker histone and non-histone proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the chromatin fiber must be remodeled such that the necessary enzymes can access the DNA. The structure of the chromatin fiber beyond the level of the single nucleosome and the structural changes which accompany the remodeling process are poorly understood. We are studying the structures and forces behind the remodeling process through the use of atomic force microscopy (AFM). This allows both high-resolution imaging of the chromatin, and manipulation of individual fibers. Pulling a single chromatin fiber apart using the AFM tip yields information on the forces which hold the structure together. We have isolated chromatin fibers from chicken erythrocytes and Chinese hamster ovary cell lines. AFM images of these fibers will be presented, along with preliminary data from the manipulation of these fibers using the AFM tip. The implications of these data for the structure of chromatin undergoing the remodeling process are discussed.

  12. Efficiency of single noise barriers

    NASA Astrophysics Data System (ADS)

    Hothersall, D. C.; Chandler-Wilde, S. N.; Hajmirzae, M. N.

    1991-04-01

    A numerical model is described which enables the sound field in the region of outdoor noise barriers to be calculated by using the boundary element method. The non-uniqueness of solution of the method, producing unreliable results in some conditions, is discussed. The model can be applied to barriers of arbitrary cross-sectional shape and arbitrary distribution of surface cover. The model is two-dimensional, but results are shown to agree well with those obtained for the three-dimensional problem of propagation from a point source over a noise barrier of infinite length. The model is used to compare the efficiency of a wide range of constructions of single noise barriers of different height, cross-sectional shape and surface cover. The effects of the ground cover are also considered. Comparison is made by examining spectra of the insertion loss of the barriers, and also broadband insertion losses for a source with a characteristic A-weighted road traffic noise spectrum. Single-figure estimates are presented of the relative efficiency, in terms of insertion loss, in the deep shadow zone, of a wide range of barrier configurations.

  13. Spectral compression of single photons

    NASA Astrophysics Data System (ADS)

    Lavoie, J.; Donohue, J. M.; Wright, L. G.; Fedrizzi, A.; Resch, K. J.

    2013-05-01

    Photons are critical to quantum technologies because they can be used for virtually all quantum information tasks, for example, in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long-distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz (ref. 6) for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here, we demonstrate bandwidth compression of single photons by a factor of 40 as well as tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement, and enables ultrafast timing measurements. It is a step towards arbitrary waveform generation for single and entangled photons.

  14. Conquering the meredith single axiom.

    SciTech Connect

    Wos, L.; Mathematics and Computer Science

    2001-01-01

    For more than three and one-half decades, beginning in the early 1960s, a heavy emphasis on proof finding has been a key component of the Argonne paradigm, whose use has directly led to significant advances in automated reasoning and important contributions to mathematics and logic. The theorems studied range from the trivial to the deep, even including some that corresponded to open questions. Often the paradigm asks for a theorem whose proof is in hand but that cannot be obtained in a fully automated manner by the program in use. The theorem whose hypothesis consists solely of the Meredith single axiom for two-valued sentential (or propositional) calculus and whose conclusion is the Lukasiewicz three-axiom system for that area of formal logic was just such a theorem. Featured in this article is the methodology that enabled the program OTTER to find the first fully automated proof of the cited theorem, a proof with the intriguing property that none of its steps contains a term of the form n(n(t)) for any term t. As evidence of the power of the new methodology, the article also discusses OTTER's success in obtaining the first known proof of a theorem concerning a single axiom of Lukasiewicz.

  15. Magnetic levitation of single cells

    PubMed Central

    Durmus, Naside Gozde; Tekin, H. Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Davis, Ronald W.; Steinmetz, Lars M.; Demirci, Utkan

    2015-01-01

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10−4 g⋅mL−1. We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine. PMID:26124131

  16. Biomechanics of Single Cortical Neurons

    PubMed Central

    Bernick, Kristin B.; Prevost, Thibault P.; Suresh, Subra; Socrate, Simona

    2011-01-01

    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude – 10, 1, and 0.1 μm/s. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper-) elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented into a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements. PMID:20971217

  17. Airborne chemistry single cell level

    NASA Astrophysics Data System (ADS)

    Nilsson, Staffan; Viberg, Peter; Spegel, Peter; Santesson, Sabina; Cedergren, Eila; Degerman, Eva; Johansson, Tomas; Nilsson, Johan

    2002-11-01

    A miniaturized analysis system for the studying of living cells and biochemical reactions in microdrops was developed. Cell studies were performed using single adipocytes in 250-nL drops. Continuous flow-through droplet dispensers, developed in-house, were used for additions to the levitated droplet. Addition of b-adrenergic agonists stimulates the lipolysis in the adipocytes, leading to free fatty acid release and a consequent pH decrease of the surrounding buffer, a change that can be easily followed using a pH-dependent fluorophore continuously monitored by fluorescence imaging detection. An analytical method using capillary electrophoresis and nanospray mass spectrometry for measurement of the cAMP level in activated single adipocytes are now being developed for future use in combination with the levitation technique. The levitation approach was also employed for the screening of nucleation conditions for macromolecules. Here, the acoustic levitator offers a simplified way to determine the main features of the phase diagram (i.e., precipitation diagram). Using the droplet dispensers, different types and amounts of precipitation agents are injected into the levitated drop, allowing a systematic search for nucleation conditions that is not possible using standard crystallization methods. Once the precipitation diagram has been obtained, optimization using standard methods is employed to grow the crystals.

  18. A single pass electron accelerator

    NASA Astrophysics Data System (ADS)

    Schuetz, Marlin N.; Vroom, David A.

    1995-02-01

    Higher volumes, increasing competition and the need to improve quality have led us to re-examine the process for irradiation of tubing and wire. Traditionallyin Raychem, product irradiation has involved the use of large multi-purpose facilities that were designed to handle relatively small volumes of a large variety of products as a separate process. Today, with larger volumes of certain products, there is an interest in combining processes to improve quality and reduce cost. We have recently designed and constructed a small, low voltage accelerator system that can be placed in-line with another manufacturing process and can uniformly irradiate a tube or wire product in a single pass. The system is comprised of two conventional accelerator systems having elongated filaments and placed on opposite sides of a linear product path. The ribbon shaped electron beams from these two accelerators are scanned, after acceleration toward the product path, in a conventional manner and 180 degrees out of phase from each other. The two accelerated electron beams then enter a third magnetic field that is synchronous with the scanning magnets and whose oscillating polarity is such that the ribbon beams are converged onto a tubular shaped window close to and around a segment of the product path. Trials with a prototype system have produced tubing having a dose concentricity of better than ± 10 percent on a single pass through the system.

  19. Magnetotransport of single crystalline YSb.

    PubMed

    Ghimire, N J; Botana, A S; Phelan, D; Zheng, H; Mitchell, J F

    2016-06-15

    We report magnetic field dependent transport measurements on a single crystal of cubic YSb together with first principles calculations of its electronic structure. The transverse magnetoresistance does not saturate up to 9 T and attains a value of 75 000% at 1.8 K. The Hall coefficient is electron-like at high temperature, changes sign to hole-like between 110 and 50 K, and again becomes electron-like below 50 K. First principles calculations show that YSb is a compensated semimetal with a qualitatively similar electronic structure to that of isostructural LaSb and LaBi, but with larger Fermi surface volume. The measured electron carrier density and Hall mobility calculated at 1.8 K, based on a single band approximation, are [Formula: see text] cm(-3) and [Formula: see text] cm(2) Vs(-1), respectively. These values are comparable with those reported for LaBi and LaSb. Like LaBi and LaSb, YSb undergoes a magnetic field-induced metal-insulator-like transition below a characteristic temperature T m, with resistivity saturation below 13 K. Thickness dependent electrical resistance measurements show a deviation of the resistance behavior from that expected for a normal metal; however, they do not unambiguously establish surface conduction as the mechanism for the resistivity plateau. PMID:27160492

  20. Magnetotransport of single crystalline YSb

    NASA Astrophysics Data System (ADS)

    Ghimire, N. J.; Botana, A. S.; Phelan, D.; Zheng, H.; Mitchell, J. F.

    2016-06-01

    We report magnetic field dependent transport measurements on a single crystal of cubic YSb together with first principles calculations of its electronic structure. The transverse magnetoresistance does not saturate up to 9 T and attains a value of 75 000% at 1.8 K. The Hall coefficient is electron-like at high temperature, changes sign to hole-like between 110 and 50 K, and again becomes electron-like below 50 K. First principles calculations show that YSb is a compensated semimetal with a qualitatively similar electronic structure to that of isostructural LaSb and LaBi, but with larger Fermi surface volume. The measured electron carrier density and Hall mobility calculated at 1.8 K, based on a single band approximation, are 6.5× {{10}20} cm‑3 and 6.2× {{10}4} cm2 Vs‑1, respectively. These values are comparable with those reported for LaBi and LaSb. Like LaBi and LaSb, YSb undergoes a magnetic field-induced metal-insulator-like transition below a characteristic temperature T m, with resistivity saturation below 13 K. Thickness dependent electrical resistance measurements show a deviation of the resistance behavior from that expected for a normal metal; however, they do not unambiguously establish surface conduction as the mechanism for the resistivity plateau.

  1. Single Spin Asymmetries from a Single Wilson Loop

    NASA Astrophysics Data System (ADS)

    Boer, Daniël; Echevarria, Miguel G.; Mulders, Piet J.; Zhou, Jian

    2016-03-01

    We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order perturbative calculations of these TMDs show that at large transverse momentum they have common dynamical origins but that in the limit of a small longitudinal momentum fraction x , only one origin remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each other. At small x , they are all given by the expectation value of a single Wilson loop inside the transversely polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin asymmetries at small x is of importance to current and future experimental studies, paving the way to a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons.

  2. Single Spin Asymmetries from a Single Wilson Loop.

    PubMed

    Boer, Daniël; Echevarria, Miguel G; Mulders, Piet J; Zhou, Jian

    2016-03-25

    We study the leading-power gluon transverse-momentum-dependent distributions (TMDs) of relevance to the study of asymmetries in the scattering off transversely polarized hadrons. Next-to-leading-order perturbative calculations of these TMDs show that at large transverse momentum they have common dynamical origins but that in the limit of a small longitudinal momentum fraction x, only one origin remains. We find that in this limit, only the dipole-type gluon TMDs survive and become identical to each other. At small x, they are all given by the expectation value of a single Wilson loop inside the transversely polarized hadron, the so-called spin-dependent odderon. This universal origin of transverse spin asymmetries at small x is of importance to current and future experimental studies, paving the way to a better understanding of the role of gluons in the three-dimensional structure of spin-polarized protons. PMID:27058070

  3. Single-scale natural SUSY

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Reece, Matthew

    2013-08-01

    We consider the prospects for natural SUSY models consistent with current data. Recent constraints make the standard paradigm unnatural so we consider what could be a minimal extension consistent with what we now know. The most promising such scenarios extend the MSSM with new tree-level Higgs interactions that can lift its mass to at least 125 GeV and also allow for flavor-dependent soft terms so that the third generation squarks are lighter than current bounds on the first and second generation squarks. We argue that a common feature of almost all such models is the need for a new scale near 10 TeV, such as a scale of Higgsing or confinement of a new gauge group. We consider the question whether such a model can naturally derive from a single mass scale associated with supersymmetry breaking. Most such models simply postulate new scales, leaving their proximity to the scale of MSSM soft terms a mystery. This coincidence problem may be thought of as a mild tuning, analogous to the usual μ problem. We find that a single mass scale origin is challenging, but suggest that a more natural origin for such a new dynamical scale is the gravitino mass, m 3/2, in theories where the MSSM soft terms are a loop factor below m 3/2. As an example, we build a variant of the NMSSM where the singlet S is composite, and the strong dynamics leading to compositeness is triggered by masses of order m 3/2 for some fields. Our focus is the Higgs sector, but our model is compatible with a light stop (either with the first and second generation squarks heavy, or with R-parity violation or another mechanism to hide them from current searches). All the interesting low-energy mass scales, including linear terms for S playing a key role in EWSB, arise dynamically from the single scale m 3/2. However, numerical coefficients from RG effects and wavefunction factors in an extra dimension complicate the otherwise simple story.

  4. Single expansion ramp nozzle simulations

    NASA Technical Reports Server (NTRS)

    Ruffin, Stephen M.; Venkatapathy, Ethiraj; Lee, Seung-Ho; Keener, Earl R.; Spaid, Frank W.

    1992-01-01

    The single-expansion-ramp-nozzle (SERN) experiment underway at NASA Ames Research Center simulates the National Aerospace Plane propulsive jet-plume flow. Recently, limited experimental data has become available from an experiment with a generic nozzle/afterbody model in a hypersonic wind tunnel. The present paper presents full three-dimensional solutions obtained with the implicit Navier-Stokes solver, FL3D, for the baseline model and a version of the model with side extensions. Analysis of the computed flow clearly shows the complex 3-D nature of the flow, critical flow features, and the effect of side extensions on the plume flow development. Flow schematics appropriate for the conditions tested are presented for the baseline model and the model with side extensions. The computed results show excellent agreement with experimental shadowgraph and with surface pressure measurements. The computed and experimental surface oil-flows show the same features but may be improved by appropriate turbulence modeling.

  5. Single-cell biological lasers

    NASA Astrophysics Data System (ADS)

    Gather, Malte C.; Yun, Seok Hyun

    2011-07-01

    Since their invention some 50 years ago, lasers have made a tremendous impact on modern science and technology. Nevertheless, lasing has so far relied on artificial or engineered optical gain materials, such as doped crystals, semiconductors, synthetic dyes and purified gases. Here, we show that fluorescent proteins in cells are a viable gain medium for optical amplification, and report the first successful realization of biological cell lasers based on green fluorescent protein (GFP). We demonstrate in vitro protein lasers using recombinant GFP solutions and introduce a laser based on single live cells expressing GFP. On optical pumping with nanojoule/nanosecond pulses, individual cells in a high-Q microcavity produce bright, directional and narrowband laser emission, with characteristic longitudinal and transverse modes. Lasing cells remained alive even after prolonged lasing action. Light amplification and lasing from and within biological systems pave the way to new forms of intracellular sensing, cytometry and imaging.

  6. Single-bunch kicker pulser

    SciTech Connect

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  7. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  8. Single System Image Cluster Management

    2004-02-13

    Cluster computing has quickly proven itself to be a capable workhorse for a wide variety of production computing tasks; however, setting up and maintaining a cluster still requires significantly more effort than administrating just a single machine. As computing hardware descreases in price and cluster sizes grow, it is becoming increasingly important to manage clusters cleverly so that a system administration effort can "scale" as well. To ease the task of mananging many machines, administratorsmore » often deploy an environment that is homogeneous across all nodes of a cluster, and maintain a snapshot of the filesystem as a 'master image'. However due to operational, behavioral, and physical constraints, many nodes often require numerous deviations from the master image in order to operate as desired.« less

  9. Single conjugated polymer nanoparticle capacitors

    NASA Astrophysics Data System (ADS)

    Palacios, Rodrigo E.; Lee, Kwang-Jik; Rival, Arnaud; Adachi, Takuji; Bolinger, Joshua C.; Fradkin, Leonid; Barbara, Paul F.

    2009-02-01

    The hole injection from a carbazole derivative hole transport layer into nanoparticles ( r = 25 ± 15 nm) of the conjugated polymer MEH-PPV was investigated by an indirect single-particle fluorescence-quenching technique. The results suggest that there is a kinetic barrier for hole injection that prevents polymer particles from being charged in the dark. This barrier can be overcome with the assistance of optical excitation of the MEH-PPV nanoparticles, achieving a thermodynamic population of injected holes at positive bias. The amount of injected holes at equilibrium is observed to depend upon the bias in a manner highly consistent with device simulations based on a continuum model. Overall, the results demonstrate that the hole injection into nano domains of conjugated polymers is a complex process depending upon molecular interfacial effects determined by device geometry and electrostatic interactions.

  10. Single-cycle nonlinear optics

    SciTech Connect

    Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

    2008-11-05

    Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

  11. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  12. Single motoneuron succinate dehydrogenase activity.

    PubMed

    Chalmers, G R; Edgerton, V R

    1989-07-01

    We have developed a quantitative histochemical assay for measurement of succinate dehydrogenase (SDH) activity in single motoneurons. A computer image processing system was used to quantify the histochemical enzyme reaction product and to follow the time course of the reaction. The optimal concentration for each of the ingredients of the incubation medium for the SDH reaction was determined and the importance of using histochemical "blanks" in the determination of enzymatic activity was demonstrated. The enzymatic activity was linear with respect to reaction time and tissue thickness. The procedure described meets the criteria generally considered essential for establishment of a quantitative histochemical assay. The assay was then used to examine the SDH activity of cat and rat motoneurons. It was found that motoneurons with a small soma size had a wide range of SDH activity, whereas those with a large soma size were restricted to low SDH activity. PMID:2732457

  13. Nonlinear Single Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-03-01

    Qubits have been used as linear spectrum analyzers of their environments, through the use of decoherence spectroscopy. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013). Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: NIST, Boulder, CO.

  14. Electrochemical detection of single molecules.

    PubMed

    Fan, F R; Bard, A J

    1995-02-10

    The electrochemical behavior of a single molecule can be observed by trapping a small volume of a dilute solution of the electroactive species between an ultramicroelectrode tip with a diameter of approximately 15 nanometers and a conductive substrate. A scanning electrochemical microscope was used to adjust the tip-substrate distance ( approximately 10 nanometers), and the oxidation of [(trimethylammonio)methyl] ferrocene (Cp(2)FeTMA(+)) to Cp(2)FeTMA(2+) was carried out. The response was stochastic, and anodic current peaks were observed as the molecule moved into and out of the electrode-substrate gap. Similar experiments were performed with a solution containing two redox species, ferrocene carboxylate (Cp(2)FeCOO(-)) and Os(bpy)(3)(2+) (bpy is 2,2'-bipyridyl). PMID:17813918

  15. Single-contact tunneling thermometry

    DOEpatents

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  16. Single fatherhood due to cancer.

    PubMed

    Yopp, Justin M; Rosenstein, Donald L

    2012-12-01

    Cancer is a leading cause of widowed fatherhood in the USA. Fathers whose spouses have died from cancer constitute a potentially vulnerable population as they adjust to their role as sole or primary caregiver while managing their own grief and that of their children. The importance of addressing the psychological needs of widowed fathers is underscored by data showing that father's coping and emotional availability are closely tied to their bereaved children's mental health. Surprisingly, scant attention has been given to the phenomenon of widowed fatherhood with virtually no clinical resources or research studies devoted to fathers who have lost their wives to cancer. This commentary highlights key challenges facing this underserved population of widowers and calls for development of research agendas and clinical interventions for single fathers due to cancer. PMID:21830258

  17. The Single Parent and Public Policy.

    ERIC Educational Resources Information Center

    Schorr, Alvin L.; Moen, Phyllis

    1979-01-01

    Single parent families are misrepresented to the general public and to themselves. Issues change focus if one views single parenthood as a normal and permanent feature of our social landscape. (Author/EB)

  18. Tensional Homeostasis in Single Fibroblasts

    PubMed Central

    Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.

    2014-01-01

    Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury. PMID:24988349

  19. Stacking fault energy in some single crystals

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2012-06-01

    The stacking fault energy of single crystals has been reported using the peak shift method. Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory. The structural characterizations of these crystals are made by XRD. Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry, which possesses the stacking fault in the single crystal.

  20. Mechanical studies on single molecules: general considerations

    NASA Astrophysics Data System (ADS)

    Bensimon, David; Croquette, Vincent

    2015-10-01

    The following sections are included: * Elements of molecular biology * Advantages and drawbacks of single molecule studies * Order of magnitude of the relevant parameters at the single molecule level * Single molecule manipulation techniques * Comparison of the different techniques * DNA mechanical properties * Conclusion * Bibliography

  1. The Advantages of Single-Sex Education

    ERIC Educational Resources Information Center

    Hughes, Teresa A.

    2006-01-01

    Traditionally, single-sex education has been provided in the form of private schooling. Title IX regulations have loosened as a result of the No Child Left Behind Legislation; therefore, public school districts now have the legal right to create single-sex classes or single-sex schools if they deem it to be in the best interest of their students.…

  2. Single Subject Research: Applications to Special Education

    ERIC Educational Resources Information Center

    Cakiroglu, Orhan

    2012-01-01

    Single subject research is a scientific research methodology that is increasingly used in the field of special education. Therefore, understanding the unique characteristics of single subject research methodology is critical both for educators and practitioners. Certain characteristics make single subject research one of the most preferred…

  3. The Promise of Single-Sex Classes

    ERIC Educational Resources Information Center

    Stotsky, Sandra

    2012-01-01

    Despite the enthusiasm and the absence of definitive research on the pros and cons of single-sex classes, a 2011 article in Science, titled "The Pseudoscience of Single-Sex Schooling," by a new organization called American Council for CoEducational Schooling (ACCES) came out with the astonishing conclusion that single-sex education is ineffective…

  4. Single chip camera active pixel sensor

    NASA Technical Reports Server (NTRS)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  5. Single-Parent Families in Rural Communities

    ERIC Educational Resources Information Center

    Lewis, Ken

    1978-01-01

    Presenting national statistics on single-parent families, this article illustrates the need for serious study of this phenomenon, suggesting that changing divorce laws, increased single-parent adoptions, and an increase in the number of supportive services for single-parent families are contingencies having significant bearing upon the…

  6. Accurate pose estimation using single marker single camera calibration system

    NASA Astrophysics Data System (ADS)

    Pati, Sarthak; Erat, Okan; Wang, Lejing; Weidert, Simon; Euler, Ekkehard; Navab, Nassir; Fallavollita, Pascal

    2013-03-01

    Visual marker based tracking is one of the most widely used tracking techniques in Augmented Reality (AR) applications. Generally, multiple square markers are needed to perform robust and accurate tracking. Various marker based methods for calibrating relative marker poses have already been proposed. However, the calibration accuracy of these methods relies on the order of the image sequence and pre-evaluation of pose-estimation errors, making the method offline. Several studies have shown that the accuracy of pose estimation for an individual square marker depends on camera distance and viewing angle. We propose a method to accurately model the error in the estimated pose and translation of a camera using a single marker via an online method based on the Scaled Unscented Transform (SUT). Thus, the pose estimation for each marker can be estimated with highly accurate calibration results independent of the order of image sequences compared to cases when this knowledge is not used. This removes the need for having multiple markers and an offline estimation system to calculate camera pose in an AR application.

  7. Scaling and Single Event Effects (SEE) Sensitivity

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.

    2003-01-01

    This paper begins by discussing the potential for scaling down transistors and other components to fit more of them on chips in order to increasing computer processing speed. It also addresses technical challenges to further scaling. Components have been scaled down enough to allow single particles to have an effect, known as a Single Event Effect (SEE). This paper explores the relationship between scaling and the following SEEs: Single Event Upsets (SEU) on DRAMs and SRAMs, Latch-up, Snap-back, Single Event Burnout (SEB), Single Event Gate Rupture (SEGR), and Ion-induced soft breakdown (SBD).

  8. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  9. Single-electron entanglement and nonlocality

    NASA Astrophysics Data System (ADS)

    Dasenbrook, David; Bowles, Joseph; Bohr Brask, Jonatan; Hofer, Patrick P.; Flindt, Christian; Brunner, Nicolas

    2016-04-01

    Motivated by recent progress in electron quantum optics, we revisit the question of single-electron entanglement, specifically whether the state of a single electron in a superposition of two separate spatial modes should be considered entangled. We first discuss a gedanken experiment with single-electron sources and detectors, and demonstrate deterministic (i. e. without post-selection) Bell inequality violation. This implies that the single-electron state is indeed entangled and, furthermore, nonlocal. We then present an experimental scheme where single-electron entanglement can be observed via measurements of the average currents and zero-frequency current cross-correlators in an electronic Hanbury Brown–Twiss interferometer driven by Lorentzian voltage pulses. We show that single-electron entanglement is detectable under realistic operating conditions. Our work settles the question of single-electron entanglement and opens promising perspectives for future experiments.

  10. Bioinspired artificial single ion pump.

    PubMed

    Zhang, Huacheng; Hou, Xu; Zeng, Lu; Yang, Fu; Li, Lin; Yan, Dadong; Tian, Ye; Jiang, Lei

    2013-10-30

    Bioinspired artificial functional nanochannels for intelligent molecular and ionic transport control at the nanoscale have wide potential applications in nanofluidics, energy conversion, and biosensors. Although various smart passive ion transport properties of ion channels have been artificially realized, it is still hugely challenging to achieve high level intelligent ion transport features in biological ion pumps. Here we show a unique bioinspired single ion pump based on a cooperative pH response double-gate nanochannel, whose gates could be opened and closed alternately/simultaneously under symmetric/asymmetric pH environments. With the stimulation of the double-gate nanochannel by continuous switching of the symmetric/asymmetric pH stimuli, the bioinspired system systematically realized three key ionic transport features of biological ion pumps, including an alternating gates ion pumping process under symmetric pH stimuli, transformation of the ion pump into an ion channel under asymmetric pH stimuli, and a fail-safe ion pumping feature under both symmetric and asymmetric pH stimuli. The ion pumping processes could well be reproduced under a concentration gradient. With the advantages of the extraordinary ionic transport functions of biological ion pumps, the bioinspired ion pump should find widespread applicability in active transportation-controlling smart nanofluidic devices, efficient energy conversions, and seawater desalinization, and open the way to design and develop novel bioinspired intelligent artificial nanochannel materials. PMID:23773031

  11. Prions: Beyond a Single Protein.

    PubMed

    Das, Alvin S; Zou, Wen-Quan

    2016-07-01

    Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  12. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources. PMID:12618824

  13. Single crystals for welding research

    SciTech Connect

    David, S.A.; Boatner, L.A.

    1991-01-01

    Most welds last for many years, but a few fail after a relatively short time. Knowing the reasons why welds fail is important because cracks in welds can threaten the safety of people in buildings, airplanes, ships, automobiles, and power plants. Bad welds can lead to costly, extended shutdowns of industrial facilities such as petroleum refineries. Thus, research on this very important fabrication technology is critical to the multibillion-dollar welding industry. Research at ORNL and elsewhere strives to determine the structural features that make some welds strong and others weak. The goals are to find cost-effective ways to characterize the structure and strength of a new weld, correctly predict whether it will last a long time, and determine the welding conditions most likely to produce high-quality welds. There is more to welding than meets the eye. The cracks that make welds fail result from the complexities of microstructures formed during welding. Thus weld microstructure is linked to weld properties such as mechanical strength. As the hot weld material cools from a liquid into a solid, the crystalline grains grow at different speeds and in different directions, forming a new microstructure. By using single crystals rather than polycrystalline alloys to study different weld microstructures, scientists at ORNL have developed a way to predict more accurately the microstructures of various welds. The results could guide welders in providing the right conditions (correct welding speed, heat input, and weld thickness) for producing safer, higher-quality, and longer-lasting welds.

  14. Single-photon emission tomography.

    PubMed

    Goffin, Karolien; van Laere, Koen

    2016-01-01

    Single-photon emission computed tomography (SPECT) is a functional nuclear imaging technique that allows visualization and quantification of different in vivo physiologic and pathologic features of brain neurobiology. It has been used for many years in diagnosis of several neurologic and psychiatric disorders. In this chapter, we discuss the current state-of-the-art of SPECT imaging of brain perfusion and dopamine transporter (DAT) imaging. Brain perfusion SPECT imaging plays an important role in the localization of the seizure onset zone in patients with refractory epilepsy. In cerebrovascular disease, it can be useful in determining the cerebrovascular reserve. After traumatic brain injury, SPECT has shown perfusion abnormalities despite normal morphology. In the context of organ donation, the diagnosis of brain death can be made with high accuracy. In neurodegeneration, while amyloid or (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) are the nuclear diagnostic tools of preference for early and differential diagnosis of dementia, perfusion SPECT imaging can be useful, albeit with slightly lower accuracy. SPECT imaging of the dopamine transporter system is widely available in Europe and Asia, but since recently also in the USA, and has been accepted as an important diagnostic tool in the early and differential diagnosis of parkinsonism in patients with unclear clinical features. The combination of perfusion SPECT (or FDG-PET) and DAT imaging provides differential diagnosis between idiopathic Parkinson's disease, Parkinson-plus syndromes, dementia with Lewy bodies, and essential tremor. PMID:27432669

  15. Nonlinear Single Spin Spectrum Analayzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  16. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  17. [Neuropathological perspective on single slide].

    PubMed

    Hirano, Asao

    2008-11-01

    During over 50 years of my career in Neuropathology at Montefiore Medical Center in New York, I have come across certain interesting neuropathological findings. In this communication, some photographs showing macroscopic, microscopic and electron microscopic significant findings are selected to illustrate the usefulness, not only for the diagnosis but also for the understanding of the nervous system. The 11 topics presented in this paper are: (1) alteration of dura mater associated with advanced aging; (2) orderly arrangement of tumor cells in leptomeningeal carcinomatosis; (3) horizontal section of brain with border zone infarct; (4) neurofibrillary tangle formation in the nucleus basalis Meynert ipsilateral to a massive cerebral infarct; (5) extracellular spread of hematogenous edema fluid in the white matter: (6) unrolled myelin sheath: (7) unattached presynaptic terminals in cerebellar neuroblastoma: (8) unattached post synaptic terminals in agranular cerebellar degeneration: (9) neurofibrillary tangles and Lewy bodes in a single neuron: (10) Cu/Zu superoxide dismutase positive Lewy body-like hyaline inclusions in anterior horn cells in familial motor neuron disease: (11) Hirano body. Analysis of these findings are presented for an educational purpose. PMID:19198088

  18. Single-Chain Antibody Library

    DOE Data Explorer

    Baird, Cheryl

    Researchers at Pacific Northwest National Laboratory (PNNL) have constructed a nonimmune library consisting of 109 human antibody scFv fragments, which have been cloned and expressed on the surface of yeast. Nanomolar-affinity scFvs are routinely obtained by magnetic bead screening and flow cytometric sorting. The yeast library can be amplified 1010 fold without measurable loss of clonal diversity. This allows for indefinite expansion of the library. All scFv clones can be assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps. The ability to use multiplex library screening demonstrates the utility of this approach for high-throughput antibody isolation for proteomic applications. The yeast library may be used for research projects or teaching performed for U.S. Government purposes only. If you would like to request an aliquot of the single-chain antibody library for your research, please print and fill out the Materials Transfer Agreement (MTA) [PDF, 20K]. The website provides the contact information for mailing the MTA. [copied from http://www.sysbio.org/dataresources/singlechain.stm

  19. Cross Species Suppression of Optical Trap Loading Rate in a Heteronuclear Mixture

    NASA Astrophysics Data System (ADS)

    Gorges, Anthony; Hamilton, Mathew; Roberts, Jacob

    2009-05-01

    We report the effects of simultaneously loading ^85Rb and ^ 87Rb into a far off resonant trap (FORT) resulting in the disruption of the ^87Rb load rate and number loaded. While many problems arise from cooling a relatively dense cloud of atoms (radiation pressure, Raman transitions, etc.), the large detuning between the transitions of ^85Rb and ^87Rb should act to mitigate many of those effects. We observe, however, significant decrease in the load rate and number of one isotope of Rb into the FORT when the other non-resonant isotope is present. For instance if a ^85Rb MOT is present during an ^87Rb FORT load, the loading rate for ^87Rb is reduced even if ^85Rb itself is not loading into the FORT. Examination of the dynamics behind this load rate reduction reveal that it is neither due to elastic collisions nor light- assisted loss. We theorize the long-range dipole-dipole interactions are responsible for the observed load rate reduction.

  20. Design and Construction of a Versatile Dual Volume Heteronuclear Double Resonance Microcoil NMR Probe

    PubMed Central

    Kc, Ravi; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2009-01-01

    Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally-etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at 1H–2D (upper coil) and 1H–13C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8 to 1.1 Hz with good mass sensitivity for both 1H and 13C NMR detection. 13C directly detected 2D HETCOR spectra of 5% v/v 13C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed. PMID:19138541

  1. Ca cofactor of the water-oxidation complex: Evidence for a Mn/Ca heteronuclear cluster

    SciTech Connect

    Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; McFarlane, Karen L.; Pizarro, Shelly A.; Sauer, Ken; Yachandra, Vittal K.

    2001-07-25

    Calcium and chloride are necessary cofactors for the proper function of the oxygen-evolving complex (OEC) of Photosystem II (PS II). Located in the thylakoid membranes of green plants, cyanobacteria and algae, PS II and the OEC catalyze the light-driven oxidation of water into dioxygen (released into the biosphere), protons and electrons for carbon fixation. The actual chemistry of water oxidation is performed by a cluster of four manganese atoms, along with the requisite cofactors Ca{sup 2+} and Cl{sup -}. While the Mn complex has been extensively studied by X-ray absorption techniques, comparatively less is known about the Ca{sup 2+} cofactor. The fewer number of studies on the Ca{sup 2+} cofactor have sometimes relied on substituting the native cofactor with strontium or other metals, and have stirred some debate about the structure of the binding site. past efforts using Mn EXAFS on Sr-substituted PSII are suggestive of a close link between the Mn cluster and Sr, within 3.5 {angstrom}. The most recent published study using Sr EXAFS on similar samples confirms this finding of a 3.5 {angstrom} distance between Mn and Sr. This finding was base3d on a second Fourier peak (R {approx} 3 {angstrom}) in the Sr EXAFS from functional samples, but is absent from inactive, hydroxylamine-treated PS II. This Fourier peak II was found to fit best to two Mn at 3.5 {angstrom} rather than lighter atoms (carbon). Nevertheless, other experiments have given contrary results. They wanted to extend the technique by using polarized Sr EXAFS on layered Sr-substituted samples, to provide important angle information. Polarized EXAFS involves collecting spectra for different incident angles ({theta}) between the membrane normal of the layered sample and the X-ray electric field vector. Dichroism in the EXAFS can occur, depending on how the particular absorber-backscatterer (A-B) vector is aligned with the electric field. Through analysis of the dichroism, they extract the average number of scatterers per absorbing atom (N{sub iso}). Constraints on the structural model are then imposed by these parameters. In a complementary and definitive experiment, they use Ca K-edge EXAFS studies to probe the binding site of the native cofactor for any nearby Mn, within {approx} 4 {angstrom}. This is analogous to the Sr EXAFS studies already published, but it focuses on the native cofactor and avoids the treatments involving Ca depletion and Sr substitution. The samples examined were PS II membrane particles from spinach. This new technique promises to be a more sensitive and direct probe of the calcium binding site in PS II than Sr EXAFS. Clarifying whether the Ca cofactor is proximate to the Mn cluster, and finding its coordination environment at the various intermediate S-states of the OEC will reveal its important role in oxygen evolution.

  2. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    SciTech Connect

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  3. Heteronuclear probes of coal structure and reactivity. Semi-annual report

    SciTech Connect

    Verkade, J.G.

    1996-05-01

    Efforts toward quantitation of the sulfur removed from coal in the reaction Coal(S) + excess PBu{sub 3} with heat {r_arrow} Coal + SPBu{sub 3}/PBu{sub 3} by column chromatography of the products followed by weighing the SPBu{sub 3} and vacuum distillation of the SPBu{sub 3}/PBu{sub 3} mixture followed by gas chromatographic analysis are described. The first method failed, but the latter is more successful. It has been discovered that para-chloro phenol catalyzes the removal of sulfur from dibenzothiophene by PBu{sub 3} under mild conditions.

  4. Tridentate ligated heteronuclear tin(II) alkoxides for use as base catalysts

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    Tin alkoxide compounds are provided with accessible electrons. The tin alkoxide compound have the general formula (THME).sub.2 Sn.sub.3 (M(L).sub.x).sub.y, where THME is (O--CH.sub.2).sub.3 C(CH.sub.3), M is a metal atom selected from Sn and Ti, L is an organic/inorganic ligand selected from an alkoxide, a phenoxide or an amide, x is selected from 2 and 4 and y is selected from 0 and 1. These compounds have applicability as base catalysts in reactions and in metal-organic chemical vapor depositions processes.

  5. CH-RES-TOCSY: Enantiomers spectral resolution and measurement of heteronuclear residual dipolar couplings

    NASA Astrophysics Data System (ADS)

    Lokesh, N.; Suryaprakash, N.

    2015-04-01

    A new 2D NMR technique cited as CH-RES-TOCSY, for complete unraveling the spectra of enantiomers and for the measurement of structurally important Csbnd H RDCs is reported. The spectral overlap and complexity of peaks were reduced by the blend of selective excitation and homo-decoupling. Differential values of Csbnd H RDCs of enantiomers (R and S) are exploited to separate the enantiomeric peaks. The complete unraveling of the spectra of both the enantiomers is achieved by incorporating a TOCSY mixing block prior to signal acquisition. The additional application of the method is demonstrated for the assignment of symmetric isomers.

  6. Quantum Dynamics through Conical Intersections in Heteronuclear Alkali-Metal Trimers

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander; Makrides, Constantinos; Kotochigova, Svetlana

    2016-05-01

    Multi-particle potential surfaces have a number of characteristics that are absent from the more familiar two-body potentials of their constituents. Specifically in the case of triatomic alkali systems, the lowest two doublet surfaces are degenerate at specific locations commonly known as conical intersections. The collection of these points of intersection form a ``seam'' that trace out a line in nuclear space. As the complex propagates along the reaction path, the degeneracy at the seam allows for a radiationless transition between the surfaces. Here we analyze the lower two doublet states of the KRbK trimer. First, we map out the seam of intersections throughout the nuclear space and determine branching vectors that provide an accurate description of spatial derivative couplings in the vicinity of conical intersections and characterize the subsequent dynamics in the immediate region. We also revisit classical simulations of the nuclear motion on multiple surfaces and investigate how chaotic motion on the complex surfaces affect the reaction in the ultracold domain. This work is supported by the ARO-MURI and NSF grants.

  7. Heteronuclear probes of coal structure and reactivity. Quarterly report, January--March 1994

    SciTech Connect

    Verkade, J.G.; Hall, G.

    1994-04-30

    One of the goals of the proposal is to employ solution {sup 31}P NMR spectroscopy in tandem with HPLC to speciate and quantitate phenols in coal resids. As solution {sup 31}P NMR tagging agents, we are using both 1 and 2 since the {sup 31}P chemical shifts provided by each are different for identical phenols. This allows a cross-check on the indentity of phenols (especially isomeric examples) as well as their concentration. By building a library of {sup 31}P chemical shifts of a wide variety of phenols derivatized with 1 and 2, speciation of phenols in coal liquids, for example, can be accomplished. Using preparative HPLC, we can separate the phenols and also derivatize them with 1 and 2 for speciation. Tables III and IV list chemical shifts for phenols derivatized with 1 and 2, respectively. In Table V we hst the total phenol contents of three Consol coal reaids using reagent 1 and a {sup 31}P NMR procedure we reported earlier. We are gratified to note how well our quantitations compare with those reported in the literature using FTER spectroscopy. Because sample 3 contained paramagnetic species, speciation of phenols was precluded, owing to peak breadth and overlap. However, samples 1 and 2 produced well-resolved signals. We are now in the process of identifying the phenols responsible for these peaks.

  8. Chromatographic Study of Novel Heteronuclear Complexes with Schiff Base as Main Ligand.

    PubMed

    Wronka, Agnieszka; Malinowska, Irena; Ferenc, Wiesława; Cristovao, Beata

    2014-01-01

    The properties of 12 new heterodi- and heterotrinuclear complexes having general formulae [Cu2Ln(L)2(NO3)(H2O)2](NO3)2·3H2O [where Ln = Pr (1), Nd (2), Sm (3) and Eu (4)], and [CuLn(L)(NO3)2(H2O)3MeOH]NO3·MeOH [where Ln = Gd (5), Tb (6), Dy (7), Ho (8), Ef (9), Tm (10), Yb (11) and Lu (12)], and their main ligand [L = C19H18N2O4Br2 = N,N'-bis(5-bromo-3-methoxysalicylidene)propylene-1,3-diamine] have been characterized by chromatographic analyses. The parameter of relative lipophilicity (R M0) of the tested compounds was determined experimentally by reversed-phase high-performance thin layer chromatography method with mixtures of methanol and water as a mobile phase. We also described interactions between chromatographed substances and various surfaces (silica-SiO2 and modified by hydrocarbon chains-RP-2, RP-8, RP-18 phases). This study also investigates the effect of pH of the mobile phase on the retention on the polar stationary phase. Thin layer chromatography combined with magnetic and electric field has been proposed as a complementary method for the determination of physicochemical properties of the investigated compounds. The chromatograms in the field and outside of it were developed simultaneously in three identical chromatographic chambers. One of them was placed in external magnetic field of 0.4 T inductivity, and the second in external electrical field. In magnetic and electric fields, retention of some complexes changed, which indicated that the presence of these fields influenced physicochemical properties of the compounds and their interactions with the stationary phase. PMID:25089051

  9. Backbone dynamics of barstar: a (15)N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Majumdar, A; Udgaonkar, J B

    2000-12-01

    Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2

  10. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study.

    PubMed

    Sahu, S C; Bhuyan, A K; Udgaonkar, J B; Hosur, R V

    2000-10-01

    Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 degrees C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D [1H]-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear [1H]-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (tau(m)) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motion's cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action. PMID

  11. {Lambda} single-particle energies

    SciTech Connect

    Bodmer, A.R.; Usmani, Q.N.; Sami, M.

    1995-08-01

    We are continuing our work on the {Lambda} hyperon single-particle (s.p.) energies and their interpretation in terms of the basic {Lambda}-nuclear interactions. In particular we are interpreting the results obtained by S.C. Pieper, A. Usmani and Q.N. Usmani. We obtain about 30 MeV for the repulsive contribution of the three-body {Lambda}NN forces in nuclear matter. We are able to exclude purely {open_quotes}dispersive{close_quotes} {Lambda}NN forces. We are investigating the mix of dispersive and two-pion-exchange {Lambda}NN forces which provide a fit to the s.p. data. For interactions, which provide a fit to the s.p. data, the {Lambda} binding energy as a function of the nuclear matter density shows characteristic saturation features with a maximum at a density not very different from that of normal nuclear matter. We obtain a more precise measure of the space-exchange part of the {Lambda}-nuclear force than was previously available, corresponding to an exchange parameter {approx_equal} 0.32. The space-exchange force is rather directly related to the effective mass of a {Lambda} in the nuclear medium and turns out to be about 70% of its free mass. As a result, we also obtain a much better value for the p-state {Lambda}-nucleus potential which is about 40% of the s-state potential. The A binding to nuclear matter is determined to be {approx_equal} 28 MeV.

  12. A new toolbox for assessing single cells.

    PubMed

    Tsioris, Konstantinos; Torres, Alexis J; Douce, Thomas B; Love, J Christopher

    2014-01-01

    Unprecedented access to the biology of single cells is now feasible, enabled by recent technological advancements that allow us to manipulate and measure sparse samples and achieve a new level of resolution in space and time. This review focuses on advances in tools to study single cells for specific areas of biology. We examine both mature and nascent techniques to study single cells at the genomics, transcriptomics, and proteomics level. In addition, we provide an overview of tools that are well suited for following biological responses to defined perturbations with single-cell resolution. Techniques to analyze and manipulate single cells through soluble and chemical ligands, the microenvironment, and cell-cell interactions are provided. For each of these topics, we highlight the biological motivation, applications, methods, recent advances, and opportunities for improvement. The toolbox presented in this review can function as a starting point for the design of single-cell experiments. PMID:24910919

  13. Single Nanopore Investigations with Ion Conductance Microscopy

    PubMed Central

    Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.

    2011-01-01

    A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184

  14. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  15. Model protocells from single-chain lipids.

    PubMed

    Mansy, Sheref S

    2009-03-01

    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed. PMID:19399223

  16. Model Protocells from Single-Chain Lipids

    PubMed Central

    Mansy, Sheref S.

    2009-01-01

    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed. PMID:19399223

  17. Single-Cell Genomics for Virology.

    PubMed

    Ciuffi, Angela; Rato, Sylvie; Telenti, Amalio

    2016-01-01

    Single-cell sequencing technologies, i.e., single cell analysis followed by deep sequencing investigate cellular heterogeneity in many biological settings. It was only in the past year that single-cell sequencing analyses has been applied in the field of virology, providing new ways to explore viral diversity and cell response to viral infection, which are summarized in the present review. PMID:27153082

  18. Single-Cell Genomics for Virology

    PubMed Central

    Ciuffi, Angela; Rato, Sylvie; Telenti, Amalio

    2016-01-01

    Single-cell sequencing technologies, i.e., single cell analysis followed by deep sequencing investigate cellular heterogeneity in many biological settings. It was only in the past year that single-cell sequencing analyses has been applied in the field of virology, providing new ways to explore viral diversity and cell response to viral infection, which are summarized in the present review. PMID:27153082

  19. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin.

    PubMed

    Chou, S H; Zhu, L; Gao, Z; Cheng, J W; Reid, B R

    1996-12-20

    The DNA undecamers GTACAAAGTAC (AAA 11-mer) and GTACGAGGTAC (GAG 11-mer) have been studied in solution by high-resolution NMR spectroscopy. Both duplexes form stable hairpins containing single deoxyadenosine loops and stems containing five base-pairs that are closed at the loop end by sheared AxA and GxC pairs, respectively. These molecules thus contain new AAA and GAG loop turn motifs. All protons, including the chiral H5'/H5" protons of the loop residues, were assigned using NOESY, DQF-COSY and heteronuclear 1H-31P COSY experiments. The backbone torsion angles were constrained using experimental data from NOE crosspeaks, three-bond 1H-1H coupling constants and four-bond 1H-31P coupling constants and four-bond 1H-31P coupling constants. The AAA and GAG 11-mers form similar structures in solution. The detailed structure of the AAA 11-mer was determined by the combined use of NMR, distance geometry and energy minimization methods. This structure exhibits good stacking of the loop adenosine base on the closing 5Ax7A sheared pair, with the 6A base stacking on the 5A base and the 6A deoxyribose stacking with the 7A base. All sugars in the AAA 11-mer hairpin adopt the typical DNA C2'-endo conformation and a sharp backbone turn occurs between residues 6A and 7A. This loop turn is brought about mainly by a change in the backbone phosphate torsion angles from zeta(g-) alpha(g-) to zeta(g+) alphat(g+) at the turn. The gamma torsion angle of residue 7A in the closing sheared pair also changes from gauche+ to trans. In Pu1NPu2 loop turns of the GCA, AAA and GAG types, the chemical shift of the H4' proton of the loop deoxyribose depends on the nature of Pu2; this reflects the stacking of the loop sugar on the Pu2 base and the different ring current effects of A or G in this position. PMID:9000625

  20. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    SciTech Connect

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S.; Chemical Engineering

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper the authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is

  1. Single port VATS: recent developments in Asia.

    PubMed

    Yu, Peter S Y; Capili, Freddie; Ng, Calvin S H

    2016-03-01

    Single port video-assisted thoracic surgery (VATS) is the most recent evolution in minimally invasive thoracic surgery. With increasing global popularity, the single port VATS approach has been adopted by experienced thoracic surgeons in many Asian countries. From initial experience of single port VATS lobectomy to the more complex sleeve resection procedures now forming part of daily practice in some Asia institutes, the region has been the proving ground for single port VATS approaches' feasibility and safety. In addition, certain technical refinements in single port VATS lung resection and lymph node dissection have also sprung from Asia. Novel equipment designed to facilitate single port VATS allowing further reduce access trauma are being realized by the partnership between surgeons and the industries. Advanced thoracoscopes and staplers that are narrower and more maneuverable are particularly important in the smaller habitus of patients from Asia. These and similar new generation equipment are being applied to single port VATS in novel ways. As dedicated thoracic surgeons in the region continue to striving for excellence, innovative ideas in single incision access including subxiphoid and embryonic natural-orifice transluminal endoscopic surgery (e-NOTES) have been explored. Adjunct techniques and technology used in association with single port VATS such as non-intubated surgery, hybrid operating room image guidance and electromagnetic navigational bronchoscopy are all in rapid development in Asia. PMID:27014478

  2. Zero-Area Single-Photon Pulses.

    PubMed

    Costanzo, L S; Coelho, A S; Pellegrino, D; Mendes, M S; Acioli, L; Cassemiro, K N; Felinto, D; Zavatta, A; Bellini, M

    2016-01-15

    Broadband single photons are usually considered not to couple efficiently to atomic gases because of the large mismatch in bandwidth. Contrary to this intuitive picture, here we demonstrate that the interaction of ultrashort single photons with a dense resonant atomic sample deeply modifies the temporal shape of their wave packet mode without degrading their nonclassical character, and effectively generates zero-area single-photon pulses. This is a clear signature of strong transient coupling between single broadband (THz-level) light quanta and atoms, with intriguing fundamental implications and possible new applications to the storage of quantum information. PMID:26824539

  3. Nanometer Resolution Imaging by SIngle Molecule Switching

    SciTech Connect

    Hu, Dehong; Orr, Galya

    2010-04-02

    The fluorescence intensity of single molecules can change dramatically even under constant laser excitation. The phenomenon is frequently called "blinking" and involves molecules switching between high and low intensity states.[1-3] In additional to spontaneous blinking, the fluorescence of some special fluorophores, such as cyanine dyes and photoactivatable fluorescent proteins, can be switched on and off by choice using a second laser. Recent single-molecule spectroscopy investigations have shed light on mechanisms of single molecule blinking and photoswitching. This ability to controllably switch single molecules led to the invention of a novel fluorescence microscopy with nanometer spatial resolution well beyond the diffraction limit.

  4. Single port VATS: recent developments in Asia

    PubMed Central

    Yu, Peter S.Y.; Capili, Freddie

    2016-01-01

    Single port video-assisted thoracic surgery (VATS) is the most recent evolution in minimally invasive thoracic surgery. With increasing global popularity, the single port VATS approach has been adopted by experienced thoracic surgeons in many Asian countries. From initial experience of single port VATS lobectomy to the more complex sleeve resection procedures now forming part of daily practice in some Asia institutes, the region has been the proving ground for single port VATS approaches’ feasibility and safety. In addition, certain technical refinements in single port VATS lung resection and lymph node dissection have also sprung from Asia. Novel equipment designed to facilitate single port VATS allowing further reduce access trauma are being realized by the partnership between surgeons and the industries. Advanced thoracoscopes and staplers that are narrower and more maneuverable are particularly important in the smaller habitus of patients from Asia. These and similar new generation equipment are being applied to single port VATS in novel ways. As dedicated thoracic surgeons in the region continue to striving for excellence, innovative ideas in single incision access including subxiphoid and embryonic natural-orifice transluminal endoscopic surgery (e-NOTES) have been explored. Adjunct techniques and technology used in association with single port VATS such as non-intubated surgery, hybrid operating room image guidance and electromagnetic navigational bronchoscopy are all in rapid development in Asia. PMID:27014478

  5. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by

  6. Single-Molecule Tracking in Living Cells Using Single Quantum Dot Applications

    PubMed Central

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes. PMID:22896768

  7. Single Parent/Homemaker Project Reports.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Vocational Education.

    Annual reports, project descriptions, and various other materials are provided for 35 projects. Most of the projects focus on homemaking; some are on sex equity. Project titles include: Single Parent/Adult Homemaker Reentry Program (Ashland Community College); Career Awareness Class for the Single Parent and/or Homemaker (Cumberland Valley Health…

  8. Single-Level and Multilevel Mediation Analysis

    ERIC Educational Resources Information Center

    Tofighi, Davood; Thoemmes, Felix

    2014-01-01

    Mediation analysis is a statistical approach used to examine how the effect of an independent variable on an outcome is transmitted through an intervening variable (mediator). In this article, we provide a gentle introduction to single-level and multilevel mediation analyses. Using single-level data, we demonstrate an application of structural…

  9. A Treatment Model for Divorced Single Mothers.

    ERIC Educational Resources Information Center

    Betchen, Stephen J.

    1988-01-01

    Introduces and tests an eclectic model of psychotherapy aimed at alleviating problems of single divorced mothers, including what was believed to be an underlying dependency. Model includes psychodynamic and behavioral techniques. Used a repeated single-subject design to evaluate the treatment model. (Author/ABL)

  10. Single-Gender Education: Educators' Perspective

    ERIC Educational Resources Information Center

    Fry, John P.

    2009-01-01

    The examination of educator's views regarding single-gender education was the basis of this study. The significance of the intended study is to show the educator's view of single-gender education as it relates to student academic achievement and behavioral incidents. A quantitative study was conducted utilizing a sample population of regular and…

  11. Single-Sex Classes. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2004-01-01

    The research that has been conducted on single-sex schools and classes, has for the most part, been done in the private school and college realm, primarily because very few public schools established single-sex programs. One of the consistent findings has been that with so much emphasis having been placed on the development of girls, that boys are…

  12. Single-Sex Schooling and Women's Education.

    ERIC Educational Resources Information Center

    Bauch, Patricia A.

    Rarely when single-sex Catholic secondary schools convert to coed school organization is the potential loss of gender-specific benefits addressed. Since the movement to coeducation is seldom accompanied by the return of a "converted" school to single-sex status, the incalculable loss to the traditional gender diversity of school organization is…

  13. 10 CFR 603.1115 - Single audits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Single audits. 603.1115 Section 603.1115 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Post-Award... regarding single audits of nonprofit participant's systems are identified in the DOE “Guide to...

  14. Single Adoptive Mothers and Their Children

    ERIC Educational Resources Information Center

    Dougherty, Sharon Ann

    1978-01-01

    In view of the increasing number of single women who adopt children, the social work profession has an obligation to learn more about this group of mothers. This article is based on a research study to identify characteristics of single adoptive mothers and their children and to learn what community supports the mothers believe would be helpful.…

  15. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  16. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  17. Economic Aspects of Single Parenthood in Chicago.

    ERIC Educational Resources Information Center

    Sander, William

    1985-01-01

    Estimated single parenthood rates in Chicago in 1970 and 1980. Single parenthood was related to both low earning ability and very high earning ability. The former was affected by low educational levels and high unemployment. The latter was caused by an increase in women's earning ability. (BH)

  18. Integrated Electrowetting Nanoinjector for Single Cell Transfection

    PubMed Central

    Shekaramiz, Elaheh; Varadarajalu, Ganeshkumar; Day, Philip J.; Wickramasinghe, H. Kumar

    2016-01-01

    Single cell transfection techniques are essential to understand the heterogeneity between cells. We have developed an integrated electrowetting nanoinjector (INENI) to transfect single cells. The high transfection efficiency, controlled dosage delivery and ease of INENI fabrication promote the widespread application of the INENI in cell transfection assays. PMID:27374766

  19. The Future of Single-authored Papers

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2007-12-01

    For four sciences (astronomy, biology, chemistry, physics) I counted the fractions of single-authored papers in four journals for each science and during 1975-2005. The occurrences are best fit with exponential decays that never reach zero, implying that single-authored papers will continue to be published in the foreseeable future. This is contradictory to the predictions of their demise.

  20. A Single Person's Guide to Retirement Planning.

    ERIC Educational Resources Information Center

    American Association of Retired Persons, Washington, DC.

    This single person's retirement guide begins with an introduction that addresses the challenges of single living, the high dividends that planning pays, and the importance of attitude. Section II explores the changing roles and relationships in one's life, including aging parents, adult children, and a personal support network. Section III focuses…

  1. Single Parent Families: Diversity, Myths and Realities.

    ERIC Educational Resources Information Center

    Hanson, Shirley M. H., Ed.; And Others

    Major changes are taking place in western families which affect the way professionals interact with families. Drawing on a multidisciplinary team of scholars, this book presents a synthesis of the demographic, theoretical, and research data on the various permutations of the single parent family. Topics include economics, single custodial or…

  2. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  3. Saha equation, single and two particle states

    NASA Technical Reports Server (NTRS)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  4. Algal biosensor array on a single electrode.

    PubMed

    Tatsuma, Tetsu; Yoshida, Yutaka; Shitanda, Isao; Notsu, Hideo

    2009-02-01

    An algal array was prepared on a single transparent electrode, and photosynthetic activity of each algal channel and its inhibition by a toxin were monitored with a single-channel potentiostat by successive light irradiation with a LED array. PMID:19173040

  5. 10 CFR 603.1115 - Single audits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Single audits. 603.1115 Section 603.1115 Energy DEPARTMENT... Administration § 603.1115 Single audits. For audits of for-profit participant's systems, under §§ 603.640 through 603.660, the contracting officer is the focal point for ensuring that participants submit...

  6. Short single axioms for boolean algebra.

    SciTech Connect

    McCune, W.; Veroff, R.; Fitelson, B.; Harris, K.; Feist, A.; Wos, L.; Mathematics and Computer Science; Univ. of New Mexico; Univ. of Wisconsin at Madison; Duke Univ.

    2002-01-01

    We present short single equational axioms for Boolean algebra in terms of disjunction and negation and in terms of the Sheffer stroke. Previously known single axioms for these theories are much longer than the ones we present. We show that there is no shorter axiom in terms of the Sheffer stroke. Automated deduction techniques were used in several parts of the work.

  7. Single-port laparoscopy: Considerations in children

    PubMed Central

    Ponsky, Todd A; Krpata, David M

    2011-01-01

    As the quest to minimize scars from surgery continues, innovative methods of surgery, including single-port surgery, have come to the forefront. Here, we review considerations for surgery in children with particular attention to appendectomy and cholecystectomy. We discuss the future technologies that will aid in single-port surgery and how they apply to the paediatric population. PMID:21197252

  8. Chemical principles of single-molecule electronics

    NASA Astrophysics Data System (ADS)

    Su, Timothy A.; Neupane, Madhav; Steigerwald, Michael L.; Venkataraman, Latha; Nuckolls, Colin

    2016-03-01

    The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure-property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

  9. Extracting Models in Single Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  10. Microorganism characterization by single particle mass spectrometry.

    PubMed

    Russell, Scott C

    2009-01-01

    In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed. PMID:18949817

  11. Simple microcavity for single-photon generation.

    PubMed

    Plakhotnik, Taras

    2005-04-18

    A new design of an optical resonator for generation of single-photon pulses is proposed. The resonator is made of a cylindrical or spherical piece of a polymer squeezed between two flat dielectric mirrors. The mode characteristics of this resonator are calculated numerically. The numerical analysis is backed by a physical explanation. The decay time and the mode volume of the fundamental mode are sufficient for achieving more than 96% probability of generating a single-photon in a single-mode. The corresponding requirement for the reflectivity of the mirrors (~99.9%) and the losses in the polymer (100 dB/m) are quite modest. The resonator is suitable for single-photon generation based on optical pumping of a single quantum system such as an organic molecule, a diamond nanocrystal, or a semiconductor quantum dot if they are imbedded in the polymer. PMID:19495201

  12. Single-photon detection, truth, and misinterpretation

    NASA Astrophysics Data System (ADS)

    Berloffa, E. H.

    2013-10-01

    Within this investigation it is critically questioned, if we really can detect "single photons", respectively the response of a single quantum transition by use of modern photon detectors. In the course it is shown that avalanche photodiodes (AVDs) especially in the "Geiger" mode by virtue of its geometry (effective area) indeed can detect "single photon" events as proclaimed by the manufacturers, but they tacitly assume the bandwidth of originating visible source being not greater than ~ 2.107 [Hz]. A short excurse to solid state basic physics makes it obvious applying the adequate doping accomplishes "single photon detection". Nevertheless this does not mean there is a 1:1 correspondence between a photon emanated from the source location and that detected within the detector module. Propagation characteristics were simply overlooked during the numerous discussions about "single photon" detection. Practical examples are worked out on hand of a pin- / and a AVDphotodiode.

  13. Upconversion luminescence behavior of single nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie; Qiu, Jianrong

    2015-09-01

    Upconversion nanoparticles (UCNPs) have made a significant and valuable contribution to materials science, photophysics, and biomedicine due to their specific spectroscopic characteristics. However, the ensemble spectroscopy of UCNPs is limited because of the electronic behavior in average effect, which ignores the fact that these nanoparticles are heterogeneous. With regards to the research focus on heterogeneous intrinsic structures, unique photophysical phenomena, and advanced applications, the optical characterization of single UCNPs have been promoted to the frontier development of the UCNPs community. In this review, we give an overview of the importance of single UCNPs characterization, typical principles of UC, and single particle detection methods. Considerable emphasis is placed on the specific spectroscopic study of single UCNPs, which shows fantastic photophysical phenomena beyond ensemble measurement. Parallel efforts are devoted to the current applications of single UCNPs.

  14. Postsecondary Education and Economic Well-Being of Single Mothers and Single Fathers

    ERIC Educational Resources Information Center

    Zhan, Min; Pandey, Shanta

    2004-01-01

    We investigate the effects of post-secondary education on the economic well-being of single parents. The data for this study are from the 1993 Panel Study of Income Dynamics, with a sample of 930 single mothers and 168 single fathers. The results indicate that post-secondary education, particularly a 4-year college degree, improves the economic…

  15. A Single Father's Shopping Bag: Purchasing Decisions in Single-Father Families

    ERIC Educational Resources Information Center

    Ziol-Guest, Kathleen M.

    2009-01-01

    Using data from the 1980 to 2003 panels of the Consumer Expenditure Survey, this article examines purchasing decisions in father-headed single-parent families. Single-father expenditures are compared to both married-parent expenditures and single-mother expenditures on 17 broad categories of household-level goods and services. Multivariate…

  16. Single Parent Families: A Needs Assessment Survey of Single Parents, Ramsey County, Minnesota.

    ERIC Educational Resources Information Center

    Chase, Richard A.; And Others

    This report provides findings of an in-person survey of single parents in Ramsey County, Minnesota. The report is organized into seven chapters. Chapter 1 provides a current demographic, educational, and economic profile of single parents and examines whether the backgrounds of single parents relate to their present conditions. Chapter 2 describes…

  17. Quantification noise in single cell experiments

    PubMed Central

    Reiter, M.; Kirchner, B.; Müller, H.; Holzhauer, C.; Mann, W.; Pfaffl, M. W.

    2011-01-01

    In quantitative single-cell studies, the critical part is the low amount of nucleic acids present and the resulting experimental variations. In addition biological data obtained from heterogeneous tissue are not reflecting the expression behaviour of every single-cell. These variations can be derived from natural biological variance or can be introduced externally. Both have negative effects on the quantification result. The aim of this study is to make quantitative single-cell studies more transparent and reliable in order to fulfil the MIQE guidelines at the single-cell level. The technical variability introduced by RT, pre-amplification, evaporation, biological material and qPCR itself was evaluated by using RNA or DNA standards. Secondly, the biological expression variances of GAPDH, TNFα, IL-1β, TLR4 were measured by mRNA profiling experiment in single lymphocytes. The used quantification setup was sensitive enough to detect single standard copies and transcripts out of one solitary cell. Most variability was introduced by RT, followed by evaporation, and pre-amplification. The qPCR analysis and the biological matrix introduced only minor variability. Both conducted studies impressively demonstrate the heterogeneity of expression patterns in individual cells and showed clearly today's limitation in quantitative single-cell expression analysis. PMID:21745823

  18. Single-atom conductance of Y

    NASA Astrophysics Data System (ADS)

    Parveen, Nadia; Ishino, Yuji; Kurokawa, Shu; Sakai, Akira

    2016-05-01

    Y is a trivalent metal like Al but has one d valence electron instead of one p valence electron in Al. This makes a single-atom contact of Y a suitable playground for investigating how d valence electrons contribute to the single-atom conductance. In this paper, we present the results of our theoretical and experimental studies of the single-atom conductance of Y. We carried out conductance measurements on Y contacts and found that the conductance histogram observed at 4 K exhibits a single broad peak at 1.9G0. We also calculated the electron transmission through a Y single-atom contact and obtained the total transmission 1.75 at the Fermi level. Both our theoretical and experimental findings consistently indicate that the single-atom conductance of Y lies at (1.8 - 1.9)G0, which is nearly twice as high as that of Al. This increase in the single-atom conductance is due to the second and the third eigenchannels of Y which accomplish higher transmission compared to those of Al. We found that the difference in the contours of sd- and sp-eigenchannels can account for the higher transmission of the sd-eigenchannels.

  19. Single charge detection in capacitively coupled integrated single electron transistors based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Ishibashi, Koji

    2012-09-01

    Single charge detection is demonstrated in the capacitively coupled integrated single electron transistors (SETs) in single-walled carbon nanotubes (SWCNTs) quantum dots. Two SETs are fabricated based on two different SWCNTs aligned in parallel, by taking advantage of the aligned growth of SWCNTs and subsequent transfer-printed techniques. In order to make both two SETs be capacitively coupled, a metal finger is fabricated on the top of them. The charge sensing is proved by the response of a detector current in one SWCNT-SET when the number of electrons in the other SWCNT-SET is changed by sweeping the corresponding gate voltages. In this integrated device, shifts of Coulomb oscillation peaks due to the single electron event are also observed.

  20. Advanced piezoelectric single crystal based actuators

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.; Smith, Edward; Dong, Shuxiang; Viehland, Dwight; Moore, Jim, Jr.; Patrick, Brian

    2005-05-01

    TRS is developing new actuators based on single crystal piezoelectric materials such as Pb(Zn1/3Nb2/3)1-xTixO3 (PZN-PT) and Pb(Mg1/3Nb2/3)x-1TixO3 (PMN-PT) which exhibit very high piezoelectric coefficients (d33 = 1800-2200 pC/N) and electromechanical coupling factors (k33 > 0.9), respectively, for a variety of applications, including active vibration damping, active flow control, high precision positioning, ultrasonic motors, deformable mirrors, and adaptive optics. The d32 cut crystal plate actuators showed d32 ~ -1600 pC/N, inter-digital electroded (IDE) plate actuators showed effective d33 ~ 1100 pC/N. Single crystal stack actuators with stroke of 10 μm-100 μm were developed and tested at both room temperature and cryogenic temperatures. Flextensional single crystal piezoelectric actuators with either stack driver or plate driver were developed with stroke 70 μm - > 250 μm. For large stroke cryogenic actuation (> 1mm), a single crystal piezomotor was developed and tested at temperature of 77 K-300K and stroke of > 10mm and step resolution of 20 nm were achieved. In order to demonstrate the significance of developed single crystal actuators, modeling on single crystal piezoelectric deformable mirrors and helicopter flap control using single crystal actuators were conducted and the modeling results show that more than 20 wavelength wavefront error could be corrected by using the single crystal deformable mirrors and +/- 5.8 ° flap deflection will be obtained for a 36" flap using single crystal stack actuators.

  1. Heralding single photons without spectral factorability

    SciTech Connect

    Huang Yuping; Altepeter, Joseph B.; Kumar, Prem

    2010-10-15

    Recent efforts to produce single photons via heralding have relied on creating spectrally factorable two-photon states in order to achieve both high purity and high production rate. Through a careful multimode analysis, we find, however, that spectral factorability is not necessary. Utilizing single-mode detection, a similar or better performance can be achieved with nonfactorable states. This conclusion rides on the fact that even when using a broadband filter, a single-mode measurement can still be realized, as long as the coherence time of the triggering photons exceeds the measurement window of the on-off detector.

  2. CP Violation in Single Top Quark Production

    SciTech Connect

    Geng, Weigang

    2012-01-01

    We present a search for CP violation in single top quark production with the DØ experiment at the Tevatron proton-antiproton collider. CP violation in the top electroweak interaction results in different single top quark production cross sections for top and antitop quarks. We perform the search in the single top quark final state using 5.4 fb-1 of data, in the s-channel, t-channel, and for both combined. At this time, we do not see an observable CP asymmetry.

  3. Single Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Anbo Wang; Russell May; Gary R. Pickrell

    2000-10-28

    The goal of this 30 month program is to develop reliable accurate temperature sensors based on single crystal sapphire materials that can withstand the temperatures and corrosive agents present within the gasifier environment. The research for this reporting period has been segregated into two parallel paths--corrosion resistance measurements for single crystal sapphire fibers and investigation of single crystal sapphire sensor configurations. The ultimate goal of this phase one segment is to design, develop and demonstrate on a laboratory scale a suitable temperature measurement device that can be field tested in phase two of the program.

  4. Purification of single-photon entanglement.

    PubMed

    Salart, D; Landry, O; Sangouard, N; Gisin, N; Herrmann, H; Sanguinetti, B; Simon, C; Sohler, W; Thew, R T; Thomas, A; Zbinden, H

    2010-05-01

    Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum teleportation and entanglement swapping operations. Here, we report the first experiment where single-photon entanglement is purified with a simple linear-optics based protocol. In addition to its conceptual interest, this result might find applications in long distance quantum communication based on quantum repeaters. PMID:20482160

  5. Single Top Production at the Tevatron

    SciTech Connect

    Wu, Zhenbin; /Baylor U.

    2012-05-01

    We present recent results of single top quark production in the lepton plus jet final state, performed by the CDF and D0 collaborations based on 7.5 and 5.4 fb{sup -1} of p{bar p} collision data collected at {radical}s = 1.96 TeV from the Fermilab Tevatron collider. Multivariate techniques are used to separate the single top signal from the backgrounds. Both collaborations present measurements of the single top quark cross section and the CKM matrix element |V{sub tb}|. A search for anomalous Wtb coupling from D0 is also presented.

  6. Single layer multi-color luminescent display

    NASA Technical Reports Server (NTRS)

    Robertson, James B. (Inventor)

    1991-01-01

    The invention is a multi-color luminescent display comprising an insulator substrate and a single layer of host material which may be a phosphor deposited thereon that hosts one or more differential impurities, therein forming a pattern of selected and distinctly colored phosphors such as blue, green, and red phosphors in a single layer of host material. Transparent electrical conductor means may be provided for subjecting selected portions of the pattern of colored phosphors to an electric field thereby forming a multi-color, single layer electroluminescent display.

  7. Automated Single Cell Data Decontamination Pipeline

    SciTech Connect

    Tennessen, Kristin; Pati, Amrita

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  8. A Battery Made from a Single Material.

    PubMed

    Han, Fudong; Gao, Tao; Zhu, Yujie; Gaskell, Karen J; Wang, Chunsheng

    2015-06-17

    A single-material battery is prepared using Li10GeP2S12 as the electrolyte, anode, and cathode, based on the Li-S and Ge-S components in Li10GeP2S12 acting as the active centers for its cathode and anode performance, respectively. The single-Li10GeP2S12 battery exhibits a remarkably low interfacial resistance due to the improvement of interfacial contact and interactions, and the suppression of interfacial strain/stress. PMID:25925023

  9. Single Top Quarks at the Tevatron

    SciTech Connect

    Heinson, Ann P.; /UC, Riverside

    2008-09-01

    After many years searching for electroweak production of top quarks, the Tevatron collider experiments have now moved from obtaining first evidence for single top quark production to an impressive array of measurements that test the standard model in several directions. This paper describes measurements of the single top quark cross sections, limits set on the CKM matrix element |Vtb|, searches for production of single top quarks produced via flavor-changing neutral currents and from heavy W-prime and H+ boson resonances, and studies of anomalous Wtb couplings. It concludes with projections for future expected significance as the analyzed datasets grow.

  10. Broadband single-molecule excitation spectroscopy

    PubMed Central

    Piatkowski, Lukasz; Gellings, Esther; van Hulst, Niek F.

    2016-01-01

    Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy. PMID:26794035

  11. Teen Childbearing, Single Parenthood, and Father Involvement

    MedlinePlus

    ... SINGLE PARENTHOOD, AND FATHER INVOLVEMENT By Alison Stewart Ng and Kelleen Kaye Reducing teen pregnancy can improve ... is absent. 20 About the Authors Alison Stewart Ng is a Research Assistant and Kelleen Kaye is ...

  12. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  13. The Single-Stem Verb System Revisited

    ERIC Educational Resources Information Center

    Channon, Robert

    1975-01-01

    Linguistic theories cannot always be successfully applied to language teaching, but this article advocates the use of the single-stem verb system in teaching Russian. This system simplifies both teaching and learning Russian verb conjugation. (CHK)

  14. Molecular junctions: Single-molecule contacts exposed

    NASA Astrophysics Data System (ADS)

    Nichols, Richard J.; Higgins, Simon J.

    2015-05-01

    Using a scanning tunnelling microscopy-based method it is now possible to get an atomistic-level description of the most probable binding and contact configuration for single-molecule electrical junctions.

  15. Pediatric single port transumbilical nephrectomy and nephroureterectomy

    PubMed Central

    Sulisławski, Janusz; Wolnicki, Michał

    2011-01-01

    Objective To present seven cases of single incision laparoscopic nephrectomy and nephroureterectomy in children as a recent videoscopic innovation. Patients and methods Seven children with nonfunctioning kidneys, three with multicystic dysplastic kidneys, two with end-stage renal nephropathy due to vesicoureteral reflux, and two with giant hydronephrosis were qualified to nephrectomy or nephroureterectomy. The surgery was performed transperitoneally using single incision access laparoscopy. The operative time was in the range of 50-90 min. Results There were no intraoperative or postoperative complications. The patients were discharged on the third postoperative day. The incision scars were hidden inside the umbilicus. Conclusions Nephrectomy or nephroureterectomy using a single transumbilical port in children is a feasible and efficacious technique. The advantages are shortened convalescence, excellent cosmetic results, and reduction of potential wounds complications. However, clear indication of single site laparoscopic procedures in children remains to be clarified. PMID:24578903

  16. Heterotopic pregnancy after a single embryo transfer

    PubMed Central

    Lee, Ji Sun; Cha, Hyun-Hwa; Han, Ae Ra; Lee, Seong Goo

    2016-01-01

    Heterotopic pregnancy is a rare and life-threatening condition which is defined as coexistent intrauterine and ectopic gestation. The risk of ectopic and heterotopic pregnancy is increasing due to the increased risk of multiple pregnancies with the aid of assisted reproductive technologies. However, it hardly happens in the setting of single embryo transfer, since single embryo transfer significantly reduces the incidence of multiple pregnancies. Surprisingly, we experienced a case of heterotopic pregnancy after a single embryo transfer caused by coincidental natural pregnancy during assisted reproductive technologies. An infertile woman who underwent, during her natural cycle, transfer of a single embryo that had been cryopreserved for 3 years was found to be heterotopically pregnant. After an early and successful management with laparoscopic right salpingectomy, she finally reached at full-term vaginal delivery. PMID:27462600

  17. Assessing The Single-Parent Family

    PubMed Central

    Christie-Seely, Janet; Talbot, Yves

    1985-01-01

    The increase of single-parent families causes an increase in psychosocial problems and illness associated with stress. Divorce, separation, and lone parenting have now surpassed death as a cause of single-parent families. They are major life events, and the family physician who helps anticipate them and facilitates adaptation of the family can help prevent associated morbidity and mortality. A non-judgmental approach and understanding of system theory helps in assessing the single-parent family and its stresses. As in medical areas, diagnosis precedes treatment, appropriate assessment indicates management strategies. The acronym ‘PRACTICE’ describes an assessment tool for the areas likely to be problematic in single-parent families. The difference between the divorced, widowed and the never-married and their coping strategies are described. PMID:21274172

  18. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  19. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  20. Single molecule nanometry for biological physics

    PubMed Central

    Kim, Hajin; Ha, Taekjip

    2013-01-01

    Precision measurement is a hallmark of physics but the small length scale (~ nanometer) of elementary biological components and thermal fluctuations surrounding them challenge our ability to visualize their action. Here, we highlight the recent developments in single molecule nanometry where the position of a single fluorescent molecule can be determined with nanometer precision, reaching the limit imposed by the shot noise, and the relative motion between two molecules can be determined with ~ 0.3 nm precision at ~ 1 millisecond time resolution, and how these new tools are providing fundamental insights on how motor proteins move on cellular highways. We will also discuss how interactions between three and four fluorescent molecules can be used to measure three and six coordinates, respectively, allowing us to correlate movements of multiple components. Finally, we will discuss recent progress in combining angstrom precision optical tweezers with single molecule fluorescent detection, opening new windows for multi-dimensional single molecule nanometry for biological physics. PMID:23249673